UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF OCEAN AND EARTH SCIENCES

A comparative analysis of the calcification transcriptome and proteome of *Emiliania huxleyi*

by

Holger Anlauf

Thesis for the degree of Doctor of Philosophy

September 2015

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES

Doctor of Philosophy

A COMPARATIVE ANALYSIS OF THE CALCIFICATION TRASNCRIPTOME AND PROTEOME OF *EMILIANIA HUXLEYI*

Holger Anlauf

Calcium carbonate precipitation by marine organisms is an acknowledged contributor to the global carbon cycle. Coccolithophores are unicellular marine phytoplankton, that by excreting calcium scales and performing photosynthesis, contribute largely to the flux of atmospheric carbon to the surface and deeper oceans. The impact of elevated future ocean temperature and ocean acidity on the mechanism and rates, by which coccolithophores secret their calcium carbonate scales internally and contribute to the global carbon cycle, has been widely studied. However, biomineralisation in coccolithophores, the expression of molecular pathways, and the timing of gene expression related to calcification are still poorly understood. To better understand the process of calcification the transcriptome and proteome of calcifying G1-phase Emiliania huxleyi cells were investigated in the light and dark using next generation techniques. The results showed clear differences in both the transcriptomic and proteomic profiles between the photosynthetically enhanced calcification and the dark calcification phase. Interestingly, the bulk of the biomineralisation genes were higher expressed in the dark calcification phase at low calcification rates, suggesting that a large proportion of the molecular calcification machinery is bound to the Golgi apparatus and endoplasmic reticulum, which are complemented in the early G1-phase following cytokinesis. Furthermore, the results suggest that a set of biomineralisation genes exhibits continuous expression in both conditions of the G1 phase, whereas other genes are more abundantly expressed in the calcification phase. The importance of the calcium binding proteins calreticulin, calnexin, and calmodulin in the calcification phase was confirmed by transcriptomic and proteomic data. Proton pumping V-type ATPases were found higher expressed in dark phase but was still highly expressed in the enhanced calcification phase in the light. Calcium transport related gene expression of members of the NCKX (Na⁺/Ca2⁺-K⁺ exchanger), NCX (Na⁺/Ca²⁺exchanger), and CAX (calcium exchanger) were stronger in the low calcification phase, whereas SERCA-type calcium transporting ATPases were nearly equally expressed in both condition but originating from different genes that were expressed in either the light or the dark. Furthermore, transcriptome exploration suggested syntaxin and synaptobrevin could play an important role in calcification related vesicle fusion. The results have important implications for better understanding the timing of calcification related gene expression throughout the E. huxleyi cell cycle and for potential transcriptomic plasticity in response to changing environmental conditions.

Table of Contents

Table of Contents	iii
List of Tables	ix
List of Figures	xi
DECLARACTION OF AUTHORSHIP	XV
Acknowledgements	xvii
Abbreviations	xix
Chapter 1. General Introduction	1
1.1. Phytoplankton evolution – Coccolithophores and the supremacy of <i>Emiliania k</i>	iuxleyi 1
1.2. The biogeochemical processes of the carbon cycle and the importance of	
coccolithophores	3
1.3. Coccolithophore biomineralisation – Coccolithogenesis	6
1.4. The molecular basis of biomineralisation in coccolithophores	7
Ca ²⁺ transport	8
Inorganic carbon transport	8
H ⁺ transport	9
1.5. The putative function of molecules involved in the nucleation of calcium carbo	nate 10
1.6. Understanding cell functioning in the post-genome era	14
1.6.1. A history of transcriptome research technologies	15
1.6.2. Next generation sequencing (NGS)	16
1.6.1. Next generation high throughput transcriptomic methods	17
1.6.2. HiSeq Illumina based RNA sequencing	18
1.6.3. Advanced proteomics methods and principles of mass spectrometry proteomics	mics 21
1.6.4. MALDI quadrupole time-of-flight mass spectrometry	24
1.6.5. Transcriptomics and proteomics in coccolithophore studies	26
1.6.6. Key aims and Objectives	27
Chapter 2. Rates of photosynthesis and calcification in the cell cycle of <i>Emiliania hu</i> .	xleyi
(Lohmann), Hay et Mohler	29
2.1. Introduction	29
2.2. Material and Methods	31
2.2.1. Culturing	31
2.2.2. Experimental Design	31
2.2.3. Assessment of DNA content per cell	32
2.2.4. Cell density, cell volume, and growth rates assessment	33
2.2.5. Particulate organic carbon (POC) and particulate organic nitrogen (PON)	33
2.2.6. Particulate inorganic carbon (PIC) analysis	34
2.2.7. Nutrient measurements and dissolved inorganic carbon (DIC) analyses	34
2.2.8. Dissolved inorganic carbon (DIC) and total alkalinity (At)	35

2.2.9.	Chlorophyll <i>a</i> measurements	35
2.2.10.	Assessment of photosynthetic health	36
2.2.11.	Radioisotope measurements of photosynthesis and calcification	37
2.3. Res	sults	39
2.3.1.	Dynamics of DNA content, cell density, growth rates, and cell volume of E .	
	huxleyi stock cultures over a 24 hour period	39
2.3.2.	Production of organic carbon, organic nitrogen, the ratio of organic carbon and	
	nitrogen and cell volume	41
2.3.3.	Production of Particulate inorganic carbon	42
2.3.4.	Nutrient concentrations, dissolved inorganic carbon and total alkalinity	43
2.3.5.	Chlorophyll contents and photosynthetic health over a 24-hour period	44
2.3.6.	Rates of photosynthesis and calcification from ¹⁴ C-labelled NaHCO ₃ incubation	
	over a 24-hour period	45
2.4. Dis	ecussion	47
Chapter 3.	The transcriptome of Emiliania huxleyi at high and low calcification rates	53
3.1. Intr	roduction	53
3.1.1.	Molecular controls of gene expression at the transcript level	54
3.1.2.	Physiological feedback mechanism in gene expression	56
3.1.3.	Gene expression related to biomineralisation in coccolithophores	58
3.1.4.	Strategies for gene-expression analysis	59
3.1.5.	Aims and Objectives	59
3.1.6.	Working hypothesis	61
3.2. Ma	terials and Methods	63
3.2.1.	Experimental Design	63
3.2.2.	Algae Culturing	63
3.2.3.	Culture harvesting	64
3.2.4.	Assessment of physiological performance of E. huxleyi cells	65
3.2.5.	Statistics on non-molecular data	66
3.2.6.	RNA extractions	66
3.2.7.	RNA Quality and Quantity	67
3.2.8.	Independent approach of promoter expression analysis	68
3.2.9.	Illumina sequencing	68
3.2.10.	Processing of paired end Illumina output data	69
3.2.11.	Assessment of data quality and of transcript abundance	70
3.2.12.	Assessment of transcript abundance in the high rates of calcification (HC) and	
	low rates of calcification (LC) condition and overall identification success	70
3.2.13.	Modification of the Cuffdiff output	71
3 2 14	Gene recruitment and annotation success	71

3.2.15.	Assessment of functional differences between the high calcification (HC)	
	and low calcification (LC) condition using KOG-class annotations	71
3.2.16.	Assessment of gene expression differences between the high calcification (HC))
	and low calcification (LC) condition	72
3.3. Res	ults	75
3.3.1.	Cell fitness parameters in experimental Emiliania huxleyi cultures	75
3.3.1	.1. Cell culture growth	75
3.3.1	.2. Particulate organic carbon (POC) per cell	75
3.3.1	.3. Particulate Organic Nitrogen (PON) per cell	76
3.3.1	.4. Particulate Carbon to Nitrogen ratio (C:N) per cell	77
3.3.1	.5. Particulate Inorganic Carbon (PIC) per cell	77
3.3.1	.6. Particulate Inorganic Carbon : Particulate Organic Carbon ratio (PIC:POC)	77
3.3.1	.7. Photosynthetic health	77
3.3.1	.8. Nutrient consumption	78
3.3.2.	Dissolved inorganic carbon, total alkalinity and pH	78
3.3.3.	Transcriptomics	79
3.3.3	1. RNA quality and integrity	79
3.3.3	.2. Illumina raw sequences quality check and results of sequencing	80
3.3.3	.3. General results and quality control of the Tophat – Cufflinks pipeline	81
3.3.3	.4. Transcript abundances relative to HC and LC condition	82
	General gene recruitment success with Cufflinks:	83
	Annotation success:	84
	KEGG-Pathway annotations:	84
	Significantly different expressed genes:	85
3.3.3	.5. Functional differences of the <i>Emiliania huxleyi</i> transcriptome in the HC and	l
	LC condition based on euKaryotic Orthologous groups (KOG) annotations	86
	KOG-Group level:	86
	KOG-Class level:	88
	Comparison of unique and significantly higher expressed transcripts in the	he
	high calcification (HC) and low calcification (LC) conditions of the G1	
	cell-cycle phase	92
	Unique significant transcripts in the high calcification in the G1-phase	
	condition	92
	Unique significant transcripts in the low calcification in the G1-phase	
	condition	93
3.3.3	.6. Transcripts from each KOG-class selected by means of graphical	
	distinctiveness	98

	3.3.3	./. I ranscript abundance in the high and low calcification rate conditions in	
		the G1-phase of the E. huxleyi cell cycle of genes with a suggested role in	the
		calcification processes	105
		Proton pumping pyrophosphatases (PPase), V-type (vacuolar) proton	
		ATPases, P-type proton ATPase, and clathrin expression	106
		Expression of proton antiporter and proton exchanger and voltage	
		gated proton channels	107
		Observed Ca ²⁺ - transporter expression:	108
		Observed calmodulin and Ca ²⁺ - binding proteins expression	110
		Observed Bicarbonate transport and carbonate anhydrase expression	111
3.4.	Dis	cussion	115
		Methodological considerations of the E. huxleyi culture conditions	116
		Methodological considerations of the transcriptome analysis	117
		General expression patterns using functional physiological groups	118
		Unique transcripts in the early and late G1-phase involved in	
		biomineralisation	119
		Exploration for genes involved in calcification from the graphical	
		evaluation of significantly different transcript abundance	120
		Discovering expressed biomineralisation gene using transcript	
		abundance	122
		Expression of genes with a previously suggested role in coccolitho-	
		genesis in E. huxleyi	123
		Biomineralisation gene expression in the G1 cell-cycle phase	
		of E. huxleyi	126
		Considerations for Emiliania huxleyi calcification models	127
		Outlook	128
Chap	oter 4.	The proteome of <i>Emiliania huxleyi</i> at high and low calcification rates	131
4.1.	Intr	roduction	131
4	.1.1.	Aims and Objectives	134
4	.1.2.	Null hypothesis	134
4.2.	Ma	terial and Method	135
4	.2.1.	Experimental Design	135
4	.2.2.	Extraction of proteins	135
4	.2.3.	Protein quality assessment and troubleshooting	136
4	.2.4.	Protein concentrations assessment	137
4	.2.5.	iTRAQ®— labelling	137
4	.2.6.	Liquid chromatography mass spectrometric analysis of peptides	138
4	2.7	In silico identification of proteins	138

4.2.8. Data processing	139
4.3. Results	140
4.3.1. Protein yield and integrity of protein extract	140
4.3.2. Peptide identification and annotation success	141
4.3.2.1. General identification and annotation success	141
4.3.2.2. Functional and localisation prediction annotation of proteins	142
4.3.2.3. Significantly expressed proteins in the highly and low calcifying	
E. huxleyi cells	146
4.3.2.4. Proteins of interest involved in biomineralisation in highly calcifying	
and low calcifying E. huxleyi cells	152
4.3.2.5. Consensus of transcriptome and proteome	154
4.4. Discussion	157
Consensus of transcriptome and proteome	161
Conclusions and outlook	163
Chapter 5. Synopsis and General Discussion	165
Project summary:	165
Evaluation of transcriptome analysis approach	166
Evaluation of cell harvesting, RNA, and protein extraction approach	167
Evaluation of proteome analysis approach	167
Dark calcification in the early G1-phase of the cell-cycle	168
Transcriptome and proteome patterns related to calcification in	
different stages of Emiliania huxleyi G1-phase showing high	
calcification and low calcification rates	170
New insights into the calcification mechanisms and gene expression	
patterns in E. huxleyi from the synchronous study of the transcriptom	ie
and proteome at a different calcification levels (low and high)	
of the G1 phase	173
Concluding remarks and future work	175
Appendix A - Supplementary results - Chapter 3 - The transcriptome of <i>Emiliania</i>	
huxleyi at high and low calcification rates in the G1-phase	179
Appendix B – Supplementary results for Chapter 4 - The proteome of <i>Emiliania</i>	
huxleyi at high and low rates of calcification of the G1-phase	227
References	259
Bibliography	286

List of Tables

Table 1-1: Molecules potentially involved in calcification	12
Table 2-1: Experimental conditions and observed growth rates in previous	
studies and this study	51
Table 3-1: Nutrient consumption in <i>E. huxelyi</i> cultures within the last day before culture	
harvesting	78
Table 3-2: Seawater parameters in the <i>E. huxelyi</i> culture medium before the harvesting	
of cultures	78
Table 3-3: NanoDrop parameters of RNA samples assigned for Illumina Transcriptome	
sequencing	79
Table 3-4: RNA oncentrations and RQI values from chip-based electrophoresis RNA san	nples
for Illumina based transcriptome analysis.	79
Table 3-5: Basic results of the Illumina experiment	80
Table 3-6: Annotation success of transcripts.	83
Table 3-7: Annotation success of significantly different transcripts.	85
Table 3-8: KOG-group association of transcriptomes.	86
Table 3-9: Differences in transcriptomes by KOG-classes.	89
Table 3-10: KOG-class association of transcriptomes.	90
Table 3-11: Unique transcripts in the light and dark and their annotation success.	92
Table 3-12: Significantly higher abundant transcripts unique in the high calcification	
(HC) condition of the G1-phase of the E. huxleyi cell cycle	94
Table 3-13: Significantly higher abundant transcripts unique in the low calcification	
(LC) condition of the G1-phase of the E. huxleyi cell cycle	95
Table 3-14: Significantly more abundant transcripts potentially involved in the	
calcification process of <i>E. huxleyi</i> by KOG-Class.	104
Table 4-1: Protein concentrations in extracts from the collected cell pellets from	
experimental cultures	140
Table 4-2: Protein identification success in the identification pipeline and iTRAQ	141
Table 4-3: Counts of significantly more abundant peptides in the HC and LC	
condition	142
Table 4-4: Success of gene ontology (GO) annotation of peptides in the HC and LC	
condition	142
Table 4-5: Significantly overrepresented peptides in the HC condition by GO	143
Table 4-6: Significantly overrepresented peptides in the LC condition by GO	144
Table 4-7: Significantly overrepresented peptides in the light incubation period by GO	145
Table 4-8: Significantly overrepresented pentides in the dark incubation period by GO	146

Table 4-9: Significantly more abundant proteins in the HC and LC condition	147
Table 4-10: Proteins with potential role in calcification in the HC and LC condition.	153
Table 4-11: GO: calcification proteins in the HC and LC condition	153
Table 4-12: Proteome – transcriptome consensus.	155
Appendix A Table - 1: Statistical results comparing the physiological data	179
Appendix A Table - 2: Transcripts unique in highly calcifying cells of the late G1-phase.	181
Appendix A Table - 3: Transcripts unique in E. huxleyi early G1-phase	
(low calcification rates)	188
Appendix A Table - 4: Transcript of the graphically comprised cohorts from	
KOG-classes	196
Appendix A Table - 5: Transcripts matching proteins of the V-type proton ATPase	
cluster and clathrin cluster	212
Appendix A Table - 6: Transcripts matching proteins of the proton exchanger cluster.	215
Appendix A Table - 7: Transcripts matching proteins of the Ca ²⁺ - transport cluster.	215
Appendix A Table - 8: Transcripts matching calmodulin and calcium binding proteins.	220
Appendix A Table - 9: Bicarbonate transport protein cluster	221
Appendix A Table - 10: Aquaporin protein cluster.	223
Appendix A Table - 11: Details of transcript abundance of heat shock protein in	
E. huxleyi cells showing high (HC) and low rates of calcification (LC).	224
Appendix A Table - 12: Selected transcripts with potential role in biomineralisation of	
the 1000 most abundant transcripts in the light incubation period (high	
calcification rate) of the cell cycle.	225
Appendix B Table - 1: Proteins identified in in E. huxleyi cells showing high (HC) and	
low rates of calcification (LC) with significant expression direction ratios	
LC: HC, and consensus sequences in phylogenetic homology analysis	228
Appendix B Table - 2: Gene ontology annotations of all proteins identified in <i>E. huxleyi</i>	
showing highly calcifying cells of the late G1-phase	244
Appendix B Table - 3: Gene ontology annotations of all proteins identified <i>E. huxleyi</i>	
showing low calcification rates in the early G1-phase	246
Appendix B Table - 4: Peptides matching the most recent E. huxleyi genome	
(Read et al., 2013)	248

List of Figures

Figure 1-1: Emiliania huxleyi SEM.	2
Figure 1-2: The global carbon cycle.	4
Figure 1-3: Cell structure of <i>Emiliania huxleyi</i>	13
Figure 1-4: Illumina Sequencing technology	20
Figure 1-5: Schematics of a mass spectrometer after Devon Fyson	21
Figure 1-6: MALDI QqTOF mass spectrometer design	25
Figure 2-1: Proposed general scheme of a cell cycle of a coccolithophore	30
Figure 2-2: Experimental setup – cell cycle related calcification rates of <i>E. huxleyi</i>	32
Figure 2-3: Relative DNA content in Emiliania huxleyi over a 24-hour period	39
Figure 2-4: Dynamics of cell density, growth rates, cell volume, and cell cycle	
phase of E. huxleyi over a 24-hour period.	40
Figure 2-5: POC, PON, POC:PON dynamics of <i>E. huxleyi</i> over a 24-hour period	41
Figure 2-6: PIC dynamics of <i>E. huxleyi</i> over a 24-hour period	42
Figure 2-7: Macronutrients in <i>E. huxleyi</i> cultures over a 24-hour period	43
Figure 2-8: Chl a dynamics of E. huxleyi over a 24-hour period	44
Figure 2-9: Photosynthetic efficiency dynamics of <i>E. huxleyi</i> over a 24-hour period.	45
Figure 2-10: Rates of photosynthesis and calcification of <i>E. huxleyi</i> over	
a 24-hour period	46
Figure 3-1: Harvesting workflow of <i>E. huxleyi</i> cultures.	65
Figure 3-2: Flowchart showing the bioinformatics pipeline and data analysis from	
raw Illumina results	73
Figure 3-3: Cell fitness parameters of <i>E. huxleyi</i> cells in culture for transcriptome	
and proteome analysis.	76
Figure 3-4: Virtual gel of RNA-samples from chip-based electrophoresis	80
Figure 3-5: Transcript frequencies of trascriptomic samples.	81
Figure 3-6: Dissimilarity-analysis of transcriptomic samples.	82
Figure 3-7: Transcript length versus transcript abundance in Light and Dark condition	82
Figure 3-8: Transcript annotation success	84
Figure 3-9: Significantly different and unique transcripts.	85
Figure 3-10: KOG-group association of transcriptomes.	87
Figure 3-11: Differences of transcriptomes by KOG-classes	91
Figure 3-12: Transcript abundance by KOG-class (1-6)	99
Figure 3-13: Transcript abundance by KOG class (7-12)	100
Figure 3-14: Transcript abundance by KOG-class (13-18)	101
Figure 3-15: Transcript abundance by KOG-class (19-24)	102

Figure 3-16: Transcript abundance by KOG-class (25)	103
Figure 3-17: Transcript abundance and expression ratios of vacuolar type membrane	
proton pump ATPases (V-ATPase)	105
Figure 3-18: Transcript abundance and expression ratios of proton exchanger found	
at light and dark incubation period	107
Figure 3-19: Transcript abundance and expression ratios of Ca ²⁺ - transport	
related proteins	109
Figure 3-20: Transcript abundance and expression ratios of calmodulin (CaM)	
and Ca ²⁺ - binding proteins	110
Figure 3-21: Transcript abundance and expression ratios of bicarbonate transport	
and carbonic anhydrase	113
Figure 4-1: Example of results of 1D-SDS NuPage® gels	136
Appendix A Figure 1: Transcript abundance by KEGG-pathway classes	180
Appendix A Figure 2: Transcripts related to Heat Shock Protein 70 expression	224

DECLARACTION OF AUTHORSHIP

HOLGER ANLAUF I.

declare that this thesis and work presented in it are my own and has been generated by me as a

result of my own research.

A COMPARATIVE ANALYSIS OF THE CALCIFICATION TRASNCRIPTOME AND

PROTEOME OF EMILIANIA HUXLEYI

I confirm that:

1. This work done wholly or mainly while in candidature for a research degree at this

University;

2. Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

3. Where I have quoted from the work of others, this is always clearly attributed;

4. Where I have consulted the published work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work;

5. I acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

7. None of this work has been published before submission.

Sigend:

Tye Alf Date: 9th of September 2015

XV

Acknowledgements

So many people from all around the world have provided support, motivation and encouragement throughout this bumpy road to the completion of my Ph.D.. These Acknowledgements claim not be complete or represent any hierarchical order in appreciation.

However, at first I need to thank my final supervisors at the National Oceanography Centre, Dr. Chris Hauton who, above all, believed in me and was committed to support me at all times and gave important reviews on my writing. Chris kept the goal in sight.

Thanks to Dr. Debora Iglesias-Rodrigues, Dr. Julie LaRoche, and Dr. David O'Connor for their support and giving me the opportunity to join NOCS and complete my Ph.D. within the Calmaro program. Special thanks to Dr. Richard Edwards, Dr. Reider Andreson, and Paul Skipp who were invaluable in finding my way through the transcriptomic and proteome jungle of my data. Thanks to Dr. John Gittins for his directions in the lab and Dr. Bethan Jones for getting me started with the *E. huxleyi* culturing and proteomics work. Dr. Alex Poulton was patient with me and the *E. hux* cultures, which for some time had an experiment-fright and were committing suicide instead of utilizing the isotopic carbon source we had prepared for them. Thanks to Dr. Sophie Richier and Dr. Luke Mackinder for the valuable science think tanks on biomineralisation and the molecular drivers. Special gratitude to Dr. Aldo-Aquino-Cruz for his companionship and help during the 24-hour over-night sampling.

My family and so many friends at NOCS and outside have stayed with me on this road. Flo, Frauke, Hanna, Alex, Lauren, Sophie, Christian, Martha, FE, Victoire, Lavinia, Sudipta, the unknown George, Basti, Aaron, Christian K, Jan, Socratis, Katrin, Kathrine and more gave me perspective, encouragement and laughs that kept me going. The community of the National Oceanographic Centre and KAUST provided the important social and logistic infrastructures.

The completion of my Ph.D. would not have been possible without the boost of support I have gotten at KAUST. Especially Dr. Susana Carvalho and Prof. Burt Jones made it possible and relentlessly encouraged me to get it done.

A strong and important impulse came from my grandma that provided a necessary kick. Personally, the PhD thesis has been the toughest challenge of my life so far. And I believe, that it wouldn't be as difficult to prepare for and complete a swim across the British Channel. It has been a huge step for me but a relatively small one for science, I guess. At last, thanks to the ocean, for providing the interest, passion, energy, and the subject of study.

.

Abbreviations

2DE two dimensional electrophoresis

A adenine

ACC amorphous calcium carbonate

AS amino acid
At total alkalinity

ATP Adenosin-tri-phosphate

bp base pairs

CAP coccolith-associated polysaccharide

CAX calcium exchanger

CCMP canadian centre for the culture of microorganisms

CDC cell division control gene/protein

cDNA complementary deoxy-ribonucleic acid

Chl *a* chlorophyll a
Ci inorganic carbon

CP chloroplast

CRM certified reference material

CV coccolith vesicle

Dark experimental culture harvested in the dark period

DIC dissolved inorganic carbon

DNA deoxy-ribonucleic acid

DTT threo-1,4-Dimercapto-2,3-butanediol

ECB early cell cycle box
ER endoplasmic reticulum
EST expressed sequence tag

fg femto gram

Fm maximum fluorescence
Fo initial fluorescence

fpkm frames per kilobase per million kilobases (unit for transcript abundance)

Fv variable fluorescence

Fv/Fm photosynthetic quantum yield/ photosynthetic efficiency PS II

G1-phase Growth1 or Gap 1 phase of the cell cycle

G2-phase pre-mitotic phase or final phase of the interphase

Ga billion years
GB Golgi body

GO gene ontology

GPA glutamic acid, proline and alanine

H3 Histone 3

HSP heat shock protein

ID identifier

JGI Joint Genome Institute

L Litre

LC liquid chromatography

LC/LC multidimensional liquid chromatography

LD light/dark cylce

LDS Lithium dodecyl sulphate

Light experimental culture harvested in the light period

In natural logarithm basis e

M-phase mitotic phase / cell division

Ma million years

MADS-box gene-family for DNA-binding proteins/transcription factors

MALDI matrix-assisted laser desorption ionization

 $\begin{array}{lll} mE & micro \: Einstein \\ \mu L & micro \: Litre \\ mL & milli \: Litre \\ \mu M & micromolar \\ mM & millimolar \end{array}$

MPSS massive parallel signature sequencing

mRNA messenger ribonucleic acid

MS mass spectrometer

MS/MS tandem mass spectrometer

NA not available

NCKX Na⁺/Ca²⁺-K⁺ exchanger

ncRNA non coding ribonucleic acid

NCX Na⁺/Ca²⁺exchanger

NGS next generation sequencing

NZEH New Zealand Emiliania huxleyi strain

OA Ocean Acidification

PCL member of the cyclin-dependent kinase family

pCO₂ partial pressure of carbon dioxide

pI isoelectric value of protein
PIC particulate inorganic carbon

PLY Plymouth culture collection of marine microalgae

PM plasma membrane

POC particulate organic carbon
PON particulate organic nitrogen

PS I photosystem I PS II photosystem II

PSC highly acidic polysaccharides

qPCR quantitative polymerase chain reaction

RNA-Seq RNA sequencing

rRNA ribosomal ribonucleic acid

RuBisCo Ribulose-1,5-bisphosphate carboxylase oxygenase
S-phase Synthesis phase of the cell cycle/replication of DNA

SAGE serial analysis of gene expression

SDS sodium dedecyl sulfate

SERCA sarco/endoplasmic reticulum Ca²⁺ - ATPase

SLC solute carrier

SSH suppressive subtractive hybridization

TPC total particulate carbon tRNA transfer ribonucleic acid

v/v volume in volume v/w mass in volume

VCX-type vacuolar cation exchangers

Chapter 1. General Introduction

In nature the counterpart of chaos is not cosmos, but evolution (Gould and Waller, 2008)

1.1. Phytoplankton evolution -

Coccolithophores and the supremacy of *Emiliania huxleyi*

The rise of marine photosynthetic organisms began with the evolution of prokaryotic anoxygenic photoautotrophs ~3.5 Ga (billion years) ago (Finazzi and Moreau, 2010). Over hundreds of millions of years, prokaryotic oxygenic photoautotrophs oxidized the Earth's atmosphere and the oceans by the fixation of CO₂ using energy from sunlight (Gould and Waller, 2008) and allowed the evolution of single celled eukaryotic microorganisms – Protista (Haeckel, 1866). Circa 1.8 Ga ago an endosymbiotic event occurred. A photoautotroph cyanobacterium was encapsulated by the early eukaryote establishing the ancestor of all eukaryotic photosynthetic (Bhattacharya and Meldin, 1995; Keeling, 2004; Tirichine and Bowler, 2011). The enslaved cyanobacterium evolved into a plastid, the organelles of plants and algae that provide photosynthetic and other biochemical pathways. In a secondary endosymbiotic event of still debated timeframe, around 1-1.9 Ga ago, the ancestral phytoplankton host engulfed a red algae establishing the "red linage" of nanoplankton, which is grouped within the chromalveolates (Yoon et al., 2004; de Vargas et al., 2007; Keeling, 2009). Three phytoplankton groups of this "red linage" namely dinoflagellates, coccolithophores and diatoms, all containing the photosynthetic pigments chlorophyll a + c (Saez et al., 2004), dominate the modern ocean. The fossil record shows that the present dominance of dinoflagellates, coccolithophores and diatoms began in the Mesozoic Era - 251 to 65 Ma (million years) ago (Falkowski, 2004; Bown et al., 2004). Coccolithophores are the most abundant group of the Haptophytes and contribute significantly to the group's biodiversity (Jordan and Chamberlain, 1997). The prymnesiophyte ancestor of the coccolithophores developed the ability to form ornamented plate scales by controlled intracellular precipitation of calcium carbonate (CaCO₃) between 329 and 220 Ma ago (de Vargas et al., 2007; Liu et al., 2010) and have played key roles in the global cycling of carbon and the development of Earth's present climate system through their photosynthetic fixation of carbon and calcium carbonate precipitation (Thierstein et al., 1977; Robertson et al., 1994; Buitenhuis et al., 1996; Holligan et al., 1993; Ridgwell, 2005). From the Triassic until the present, over 4000 discrete morphological types of coccoliths have been confirmed in the geological record (de Vargas et

al., 2007). Today's oceans inhabit only ~280 morphological distinct coccolithophores (Young and Henriksen, 2003) of which *Emiliania huxleyi* (Lohmann) Hay et Mohler (Fig. 1) is the most abundant cosmopolitan coccolithophore (Winter et al., 1994; Bijma et al., 2001; Beaufort et al., 2007).



Figure 1-1: *Emiliania huxleyi* SEM. Scanning electron image (SEM) of an *Emiliania huxleyi* cell showing interlocking coccoliths creating the coccosphere. The specimen was isolated in a sample from Raunefjorden, Norway.

It is believed that *E. huxleyi* evolved around 250,000 years ago from the genus *Gephyrocapsa* (Thierstein et al., 1977; de Vargas et al., 2007). Physiological, immunological, and morphological differences separate 200 different strains within the species complex *E. huxleyi* (van Bleijswijk et al., 1991; J. R. Young et al., 1992; Young, 1994; Medlin et al., 1996; Young et al., 1999; Findlay and Giraudeau, 2000). Its cells are only 2.5 - 5.5 µm in diameter (van Bleijswijk et al., 1991). When *E. huxleyi* blooms occur they may cover over 1 × 10⁶ km² exceeding cell concentrations of 10⁶ cells L⁻¹ (Holligan et al., 1993; Tyrell & Merico, 2004). Therefore, *E. huxleyi* blooms can affect a) regional weather patterns through the production of dimethylsulfoniopropionate, which after more reaction steps to SO₂ and sulphate acts as a cloud formation nuclei (Charlson et al., 1987; Hegg et al., 1991), b) seawater alkalinity (Holligan et al., 1993; Robertson et al., 1994), and c) the marine carbon pump (Buitenhuis et al., 1996; Rost and Riebesell, 2003) (see Section 1.2). The ease of culturing and maintaining *E. huxleyi* in the laboratory has allowed a great deal of scientific progress in terms of understanding the biology, physiology and diversification of the *E. huxleyi* species complex. Although a single species, it is

becoming increasingly evident that large genetic and physiological variations between *E. huxleyi* strains exist (Medlin et al., 1996). *Emiliania huxleyi* shows a high intraspecific physiological variability in the ability to grow in different salinities (Brand, 1984), synthesize long chain lipids (Riebesell et al., 2000; Volkman et al., 1980), and to form coccoliths under elevated CO₂ in seawater (Langer et al., 2009; Lohbeck et al., 2014). A high genetic heterogeneity has been suggested to explain the intraspecific physiological response variability in *E. huxleyi* species complex and that this may also found its overall ecological success (Lohbeck et al., 2012). High levels of genetic variability were also evident in blooms of *E. huxleyi* showing differences between geographic locations, over time, within and in between blooms and populations (Medlin et al., 1996; Iglesias-Rodriguez et al., 2006). This resulted in a discussion about the species concept in *E. huxleyi* and a proposed bacterial-like pan-genome (Medini et al., 2005). A pan-genome comprises a group of core genes (found in all strains) and dispensable genes - specific only to certain strain (Medini et al., 2005; Read et al., 2013) and could explain the physiological response variability between *E. huxleyi* strains.

1.2. The biogeochemical processes of the carbon cycle and the importance of coccolithophores

The global carbon cycle describes the fluxes (pumps) of organic and inorganic carbon between mayor reservoirs e.g. the terrestrial biosphere, the atmosphere, the lithosphere and the oceans (Fig. 2). The fluxes of carbon between the carbon reservoirs are driven and interconnected by physical, chemical and biological processes. The oceans store the largest carbon dioxide inventory on the planet containing \sim 50-60 times more carbon than the atmosphere (Siegenthaler and Sarmiento, 1993; Houghton, 2007; Riebesell et al., 2009). In the ocean the solubility pump, biological pump, and carbonate counter pump (Volk and Hofert, 1985; Falkowski, 2000) describe the uptake of CO_2 from the atmosphere, its biological fixation to organic molecules by photosynthesis or respiratory processes and the release of CO_2 from biogenic calcification (Fig.2), respectively.

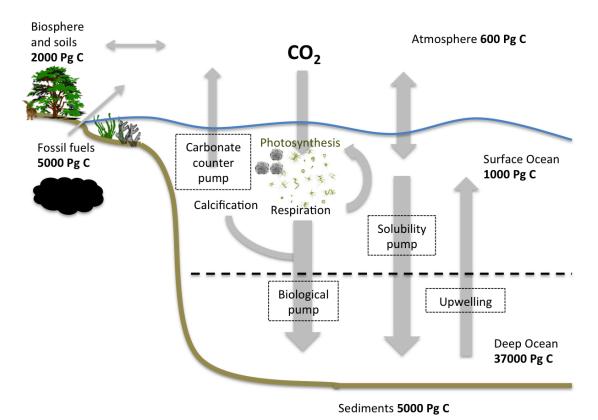


Figure 1-2: The global carbon cycle. Fluxes of carbon cycling between the biosphere, atmosphere and ocean. Dashed boxes label the major marine carbon pumps. The approximate storage capacities of the reservoirs (bold letters) is given in Pg C (10^{15} g C = gigatons C) after Zeebe and Ridgwell (2011).

In the Solubility pump (Figure 1-2) carbon dioxide dissolves in seawater and reacts with water molecules forming carbonic acid subsequently dissociating to carbonate, bicarbonate, and protons. This solubility pump is reflected by equation 1.

$$CO_2 + H_2O \rightleftharpoons H_2CO_3 \rightleftharpoons HCO_3^- + H^+ \rightleftharpoons CO_3^{2^-} + 2H^+$$
 (Equation 1)

The biological pump (Figure 1-2) comprises the net carbon flux from biological processes such as photosynthetic carbon fixation and respiration/degradation of organic matter into the deep sea. Carbon fixation into 3-phosphoglycerate catalyzed by Ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCo) is the main processes taking up CO₂ from the surface ocean and influencing the biological carbon pump. Regardless of their commonly microscopic size between 0.4 and 200 µm unicellular marine phytoplankton provide 45% of the global annual net primary production but represents less than 1% of the Earth's photosynthetic biomass (Field et al., 1998). Equation 2 shows the uptake of CO₂ and its photosynthetic conversion to particulate organic carbon (POC) by phytoplankton. Decomposition of organic matter and respiration are described by the reversion of equation 2 to produce CO₂.

$$CO_2 + H_2O -> CH_2O + O_2$$
 (Equation 2)

Coccolithophores comprise around 10% of the phytoplankton biomass (Tyrrell and Young, 2009). While the contribution of coccolithophores to global marine photosynthetic carbon fixation is relatively small (Gregg and Casey, 2007), coccolithophores have contributed largely to the formation of deep-sea CaCO₃ deposits around the globe (Volk and Hoffert, 1985; Milliman and Droxler, 1996), driving the Carbonate counter pump (Fig. 2). Coccolithophores and other marine calcifiers utilize HCO₃⁻ ions when producing CaCO₃ minerals (Nimer et al., 1992; Buitenhuis et al., 1999; Herfort et al., 2002). The reaction of CaCO₃ precipitation requires concentration of Ca²⁺ and CO₃²⁻ ions above the saturation state (Equation 3.1). Carbonate ions are indirectly produced in a high pH milieu (Equation 3.2). During the conversion of bicarbonate to carbonate, H⁺ are produced, indirectly increasing CO₂ levels due to lower pH levels (Equation 3.3). Therefore, the process of calcification becomes a net source of CO₂ when HCO₃⁻ is utilized (Equation 3.4.).

$$Ca^{2+} + CO_3^{2-} \longrightarrow CaCO_3$$
 (Equation 3.1)

$$HCO_3^- -> CO_3^{2-} + H^+$$
 (Equation 3.2)

$$H^{+} + HCO_{3}^{-} -> H_{2}O + CO_{2}$$
 (Equation 3.3)

$$Ca^{2+} + 2HCO_3^{-} -> CaCO_3 + H_2O + CO_2$$
 (Equation 3.4)

Coccolithophores, scleractinian corals, foraminifera, molluscs and coralline algae are the most significant calcium carbonate producers in the ocean (Milliman, 1993; Iglesias-Rodriguez et al., 2002). One third to half of the present marine CaCO₃ is formed by coccolithophores (Milliman, 1993; Baumann et al., 2004) contributing largely to the global carbonate budget (Archer et al., 2000). Up to 70% of coccolithophore scales dissolve in the upper 1300 m of the ocean, taking up additional CO₂ from seawater (Sabine et al., 2004). Coccolithophores' calcite scales provide also ballast for the export of particulate organic carbon (Milliman, 1993; Armstrong et al., 2001; Klaas and Archer, 2002) and form large deep-sea sediments (Volk and Hoffert, 1985; Milliman and Droxler, 1996). A reduction of calcification rates in coccolithophores would therefore directly affect the marine carbon cycle (Zondervan et al., 2001). Less bicarbonate would be converted to CO₂ reducing the sea to air CO₂-flux in the carbonate counter pump (Riebesell et al., 2009). Furthermore, less organic matter would be stored in the deep ocean because ballasting by coccoliths and sinking rates would decrease while CaCO₃ - dissolution remains (Armstrong et al., 2001; Klaas and Archer, 2002; Engel et al., 2009).

About half of the CO₂ - emissions from fossil fuel combusted have sequestered in the ocean where it has caused a decrease in oceanic pH by 0.1 units since pre-industrial times (Haugan and Drange, 1996; Sabine et al., 2004). This phenomenon is termed ocean acidification (OA) (Raven et al., 2005) and was found to affect the calcification and growth rates in coccolithophores and other marine calcifiers (Riebesell et al., 2000; Reynaud et al., 2003; Langer et al., 2006; Orr et al., 2005; Fabry, 2008). However, E. huxleyi's calcification and growth responds to OA is not uniform (e.g. Riebesell et al., 2000; Iglesias-Rodriguez et al., 2008). Diverse responses in growth rates and the physiological processes involved in calcification are the basis for the observed intraspecific variability (Langer et al., 2009). For a wide range of marine metazoans the process of calcification has an important physiological role that defines the organisms' ecological niche (Cusack and Freer, 2008). Therefore, present knowledge is far from developing a generalized model of calcification and its atmospheric feedbacks if details of the processes involved in calcification remain illusive (Zondervan, 2007; Riebesell et al., 2009). New incentive to study the biomineralisation physiology of E. huxleyi were commenced a) to improve our understanding of the biochemical and molecular pathways of the processes of calcification, b) to understand how the genetic plasticity can explain the variable responses, and c) to develop a greater understanding of the likely feedbacks changes in coccolithophore calcification suggest for the global carbon cycle.

1.3. Coccolithophore biomineralisation - Coccolithogenesis

Biomineralisation describes the production of minerals to form shells, scales and skeletons in living organisms (Weiner et al., 2003). Biominerals nucleate in physically and chemically isolated intracellular or extracellular compartments under rigorous biological control often directly connected to an organic matrix (Lowenstam, 1981; Lowenstam and Weiner, 1989). Therefore, specific morphological features have to be present in the organism to establish, isolate and conserve the chemical gradients of pH homeostasis and ion concentrations (e.g. Ca²⁺, carbonate ions) for the reaction towards the biogenic precipitation of the mineral.

The globally most abundant biogenic minerals are calcium carbonate minerals (Lowenstam and Weiner, 1989), of which 7 polymorphs are crystalline and one amorphous. Crystalline polymorphs of CaCO₃ are calcite, aragonite and vaterite. Calcite is more resistant to dissolution in seawater than aragonite and high-Mg calcite (Milliman, 1974). Magnesium calcite (Mgcalcite) and protodolomite contain magnesium. Hydrocerussite contains lead and monohydrocalcite water in combination CaCO₃. Amorphous calcium carbonate (ACC) is a noncrystalline precursor of calcium carbonate, which in marine species has been postulated to act as

a transport-form of calcium carbonate to the site of crystallization (Addadi et al., 2003; Weiner et al., 2003).

The intracellular nature of the calcium carbonate mineralization process in coccolithophores is a unique feature. Calcification in E. huxleyi is a process under intense biological control (Paasche, 1962). From scanning electron microscopy (SEM) studies in the species E. huxleyi (Wilbur and Watabe, 1963; Klaveness, 1976; van der Wal et al., 1983; van Emburg et al., 1986; Westbroek et al., 1989; Young et al., 1999), Pleurochrysis carterae (Manton and Leedale, 1969; van der Wal et al., 1987), Coccolithus pelagicus (Manton and Leedale, 1969; Taylor et al., 2007), Scyphosphaera apsteinii (Drescher et al., 2012), and Hymenomonas coronata and Ochrosphaera verrucosa (Inouye and Chihara, 1980), to name only a selection of studies, we have learned about the morphology of biomineralisation in coccolithophores. The mineralization of coccoliths occurs in an intracellular, Golgi-derived compartment, namely the coccolith vesicle (CV). The CV is positioned adjacent to the nucleus (van der Wal et al., 1983). The reticular body (RB) is a labyrinthine membrane system that connects distally to the CV throughout the calcification process in E. huxleyi, Gephyrocapsa sp. and C. pelagicus (Klaveness, 1976). However, a different feature is present in P. Carterae, where multiple vesicles show coccoliths at varying growth stages and form a trans-Golgi without a RB (van der Wal et al., 1983). The reticular body is expected to provide rapid ion transport and supersaturated conditions inside the CV (Brownlee and Taylor, 2004; Taylor et al., 2011). During coccolithogenesis, the coccolith-vesicle moves away from the nucleus, the CV membrane and plasma membrane fuse and the coccolith is then extruded through the layer of organic scales on the cell surface subsequently interlocking with adjacent coccoliths (Marsh, 2003; Taylor et al., 2007).

1.4. The molecular basis of biomineralisation in coccolithophores

Coccolithophogenesis is a complex process under rigorous genetic control involving the expression of many proteins of yet unknown functions to provide a network of interacting structural and regulatory molecules (Young and Henriksen, 2003; Henriksen et al., 2004; de Vargas et al., 2007). For the precipitation of calcium carbonate ion concentrations of calcium and carbonate above the saturation state of calcium carbonate must be reached inside the CV and H⁺ ions need to be removed from the CV's lumen. Ion-transporters or exchangers that involve, transport, and co-transport Ca²⁺, Mg²⁺, H⁺, Cl⁻, Na⁺ ions, highly acidic calcium binding proteins, carbonic anhydrase, and organic matrix-associated polysaccharides are generally involved in controlling coccolithophogenesis. The following paragraphs will introduce specific

important macromolecules involved in molecular pathways for cell functioning and especially calcification, such as Ca²⁺ transport, carbonate or inorganic carbon (Ci) transport, H⁺ transport, and organizing and controlling the biomineralisation process. Table 1-1 summarizes the molecules involved in the process of calcification in *E. huxleyi*.

Ca²⁺ transport

In seawater – the external medium - calcium is a conservative element with concentrations of around 10 mM. Net fluxes of Ca²⁺ and inorganic carbon (Ci) from the external medium to the intracellular CV and low concentrations of free cytosolic Ca²⁺ of around << 1 μM have to be sustained to guarantee coccolith production, avoid toxic effects of high Ca²⁺, and coccolithophore functioning (Brownlee and Taylor, 2004; Verret et al., 2010; Araki and Gonzales, 1998; Sanders et al., 2002; von Dassow, 2009). The absence of Ca²⁺ causes a decline of growths rates by hampering important cell signalling processes involved in cell division and lowers PIC production (Herfort et al., 2004; Timborn et al., 2007; Leonardos et al., 2009; Mackinder et al., 2011). At the plasma membrane (PM) of coccolithophores a variety of Ca²⁺ channels/transporters were identified that modulate the Ca²⁺ PM passage. Voltage-gated Ca²⁺ permeable channels (CA_v) were suggested to regulate the Ca²⁺ uptake from the external medium (Mackinder et al., 2010; Dolphin, 2009). A recent model by Mackinder et al. (2011) suggests that the peripheral endoplasmic reticulum adjacent to the PM might act as a trap and storage pool for Ca²⁺ ions. The Ca²⁺ storage capabilities of the ER are well documented (Meldolesi and Pozzan, 1998). In the ER proteins such as calreticulin bind calcium ions (Jacopo and Pozzan, 1998; Wahlund et al., 2004; Quinn et al., 2006). The calcium flux through the cytosol into the CV and ER is probably mediated by SERCA-type ATPases (sarco/endoplasmic reticulum Ca²⁺ - ATPase) and Ca²⁺/H⁺ VCX-type (vacuolar cation exchangers) to enhance an Ca²⁺-rich lumen of the ER and achieve the required supersaturated conditions for the precipitation of CaCO₃ inside the CV (Mackinder et al., 2010).

Inorganic carbon transport

Evidence shows that bicarbonate is the primary carbon source for the synthesis of CaCO₃ in coccolithophores (Frankignoulle et al., 1994; Israel and González, 1996; Raven, 2011; Bach et al., 2013). Transfer of bicarbonate along a gradient through the plasma membrane into the cytosol is thought to occur passively (Brownlee et al., 1995; Anning et al., 1996). Furthermore, recent finding also suggest the involvement of a putative HCO₃ transporters of the SLC44 (SLC4 family) in the carbonate / bicarbonate balance in *E. huxleyi* (von Dassow et al., 2009).

The solute carrier SLC4 exchanging Cl⁻/HCO₃²⁻ was successfully inhibited in *E. huxleyi* (Herfort et al., 2002) and it was suggested that it might interact with carbonic anhydrase enzymes (CA) in other eukaryotes (Vince and Reithmeier, 2000; Sterling et al., 2002).

Carbonic anhydrases are ubiquitous metalloenzymes and catalyze the reaction presented in equation 4 in both directions.

$$CO_2 + H_2O \rightleftharpoons HCO_3 + H^+$$
 (Equation 4)

The reaction is fundamental for the buffering of the bicarbonate system and therefore acid/base compensation in most organisms throughout all kingdoms. In higher plants and phytoplankton it is key to deliver CO_2 to RuBisCo for photosynthesis but isoforms of CA were suggested to be located in the cytosol and periplasmic space (Badger and Price, 1994; Mackinder et al., 2010). It was suggested that CA facilitates the conversion of HCO_3^- into CO_2 at the cytosolic face of the plasma membrane decreasing the local concentration of HCO_3^- at the cytosolic transport site (Isenberg et al., 1963). The expression of transcripts was up-regulated in calcifying versus non-calcifying phases supporting it (Quinn et al., 2006; Richier et al., 2009). Twelve different transcripts of CA have been identified in *E. huxleyi* (von Dassow et al., 2009). Specifically α -CA (prokaryotic like) and γ -CA - possibly located in or adjacent to the CV – were confirmed to be involved in the calcification process (Soto et al., 2006; Quinn et al., 2006). The CA reaction (Equation 4) also binds protons derived from the process of calcification and produces CO_2 for photosynthesis.

H⁺ transport

The regulation of proton levels is required to achieve certain membrane potentials, stable conditions of cytosolic pH and to excrete protons derived from CA activity, in the chloroplast and the CV to stabilize enzyme functioning, photosynthetic efficiency, and a regime for calcium carbonate precipitation. Calcification and photosynthesis affect with cytosolic pH. Proton pumping from the CV into the cytosol is necessary to create pH values of around 7 in the *E. huxleyi* cytoplasma and around 8.2 in the CV favouring the passive conversion of HCO₃⁻¹ to CO₃⁻² (Dixon et al., 1998; Brownlee et al., 1995). The synthesis of CaCO₃ using HCO₃⁻¹ produces protons and decreases the pH in the CV (refer to equation 3) requiring further proton pumping. Protons may also leak across membranes because of a conductive gradient that would be present at the cytosolic CV boundary (Suffrian et al., 2011), requiring continuous proton pumping. P-type (plasma membrane) ATPases and V- (vacuole) type ATPases are universal in eukaryotes removing protons from the cytosol (Finbow et al., 1997) and the latter may be Ca²⁺

stimulated, as shown in *Pleurochrysis sp.* (Araki and Gonzalez, 1998; Corstjens et al., 2001). The electrochemical gradient between seawater pH 8.2 and cytosol pH 7 creates a plasma membrane potential greater than -60 mV where high voltage gated H⁺- permeable channels (HVCN1) could remove intercellular H⁺ (Corstjens et al., 2001; Mackinder et al., 2010).

1.5. The putative function of molecules involved in the nucleation of calcium carbonate

An organic matrix within the CV is important for the ordered nucleation of calcium carbonate in coccolithophores. At the initiation of the coccolith formation a proto-coccolith ring forms around an organic base plate of highly acidic polysaccharides (PSC). Coccolithosomes, Golgi-derived polysaccharide and Ca²⁺ dense vesicles, supply polysaccharides and Ca²⁺ to the coccolith forming vesicles (Outka and Williams, 1973; van der Wal et al., 1983). In *P. carterae* three highly acidic polysaccharides, PSC-1, PSC-2 and PSC-3, have been identified to play a role in calcite precipitation (Marsh et al., 1992). Immunolocalization has identified that PSC-1 and PSC-2 are synthesized in the Golgi cisternae, stay associate with the organic base plate from the onset of crystallization until and after the coccolith is extruded to the cell surface (Marsh, 1994). Mutants without PSC-2 produced less than 5% calcite compared to wild-type cells (Marsh and Dickinson, 1997) and PSC-3 mutants were unable to form mature coccoliths as seen in wild-type cells (Marsh et al., 2002).

Emiliania huxleyi appears to have one polysaccharide termed the coccolith-associated polysaccharide (CAP) associated with extracellular coccoliths (de Jong et al., 1976). This complex polysaccharide is a galacturonomannan that consists of a sulphated mannan backbone with a variety of side chains rich in galacturonic acid (Vliegenthart, 1981), showing similarities to PSC-3 (Marsh, 2003). CAP has the ability to inhibit crystal formation in a supersaturated solution of Ca²⁺ and CO₃²⁻ (Borman et al., 1982) but also directs crystal growth by its specific affinity to calcite (Henriksen et al., 2004). In E. huxlevi a highly acidic macromolecule containing high levels of glutamic acid, proline and alanine (GPA) has potential Ca²⁺-binding capacity (Corstjens et al., 1998) and has been identified in E. huxleyi morphotypes A and B. The expression of the coccolith morphology motif (CMM) genomic region in the E. huxleyi correlates with the morphotype of the coccoliths (Schroeder et al., 2005). Counter-intuitively, a down regulation of GPA gene transcripts was found in calcifying cells suggesting a possible but debatable inhibitor role of GPA at high Ca²⁺ concentrations (Mackinder et al., 2011). Mackinder et al. (2010) suggested that an amorphous calcium carbonate (ACC) phase is being created in smaller vesicles (precursor of CV compartments) or Golgi cisternae, transported and merging into a CV, where the crystallization is directed by silk fibroin proteins in a nonaqueous environment (Weiner et al., 1984). An transient precursor such as ACC is found in mollusc larval shells transforming into aragonite (Weiss et al., 2002) and in the spicules of sea urchin larvae eventually forming calcite (Beniash et al., 1997). The proposed presence of ACC in coccolithophores finds theoretical support by the limits of the CV membrane that cannot fit the required abundance of membrane associated transporters to establish the chemical environment for CaCO₃ precipitation and uphill Ca²⁺ -transport onto its surface (Mackinder et al., 2010). If the larger surface of an endomembrane system as the Golgi body (cis-Golgi network) could provide sufficient protein bound Ca²⁺ the coccolithosome would represent a carrying vesicles and the CV would sustain precipitation favourable conditions. A likely acidic lumen of the *E. huxleyi* Golgi body (Llopis et al., 1998) would support the directed movement of calcium ions into the Golgi body.

Table 1-1: Molecules potentially involved in calcification. A selection of organic molecules in *E. huxleyi* possibly involved in calcification processes and their predicted location, function, and reference (GB/ER: Golgi body/endoplasmatic reticulum, CV: coccolith vesicle, CP: chloroplast, PM: plasma membrane, CS: cytosol).

Process	Protein Name	Location	Location Protein function/origin	Related publication
ort		GB/ER	Cation-exchanger, (H $^{\top}$ / Ca $^{\leftarrow -}$ - VCX ₁ -type antiporter)	Von Dassow et al., 2009
	Putative Na ⁺ /Ca ²⁺ exchanger	GB/ER	Efflux of cytosolic Ca ²⁺ (NCKX family)	Von Dassow et al., 2009
	SERCA-type Ca ²⁺ -pump	GB/ER	ATP driven, Mg ²⁺ , as cofactor	Von Dassow et al., 2009
	$CA_{ m v}$	GB/ER	Voltage gated Ca ²⁺ - channel	Richier et al., 2011; Dolphin, 2009
	Putative Ca ²⁺ channels	PM	In flux of Ca ²⁺ , ATP or electrochemical gradient driven	Mackinder et al., 2011
port	Ci – transport Carbonic anhydrases,	CS	DIC regulation (<i>E. hux</i> - specific – δ - EhCA1, γ -EhCA2)	Von Dassow et al., 2009; Richier et al., 2011
	Cl-/HCO3 exchanger,	PM	Membrane transporter, solute carrier 4 (SLC 4-family)	Von Dassow et al., 2009
H ⁺ transport	Vacuolor type H ⁺ - ATPase	CV	H+ removal from the CV, possibly Ca ²⁺ stimulated	Corstjens et al., 2001 Araki and Gonzalez, 1998
	Clathrin	CV/ER	In clathrin-coated vesicles, in association with V-ATPases	Jones et al., 2011
	P-type H ⁺ - ATPase	PM		Araki and Gonzalez, 1998
Ca ²⁺ binding	CAP (Coccolith-associated glutamic acid)	CV	Regulates directional crystal growth, similar de Jong et al., 1976; Marsh, 2003b; to acidic polysaccharides Henriksen et al., 2004	de Jong et al., 1976; Marsh, 2003b; Henriksen et al., 2004
	Calreticulin Calnexin	ER, CV	Ca^{2+} homeostasis, cellular functions (Ca^{2+} , Wahlund et al., 20 chaeperone – assist in non-covalent folding) [Quinn et al., 2006	Wahlund et al., 2004; Quinn et al., 2006
	Calmodulin (CaM)	ER, CV	Calcium-binding messenger protein	Sotoj et al., 2006
Nucleation	Highly acidic polysachharides	CV	Initiation of coccolith formation. Three identified forms: PSC1, PSC2, and PSC3.	Outka and Williams, 1973; van der Wal et al., 1983; Marsh et al., 1992
	GPA	CV	CaCO ₃ nucleation and regulating growth	Corstjens et al., 1998

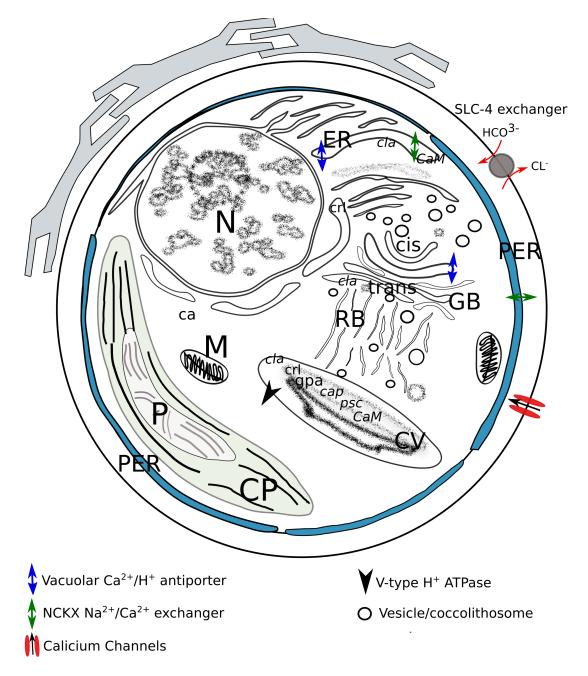


Figure 1-3: Cell structure of *Emiliania huxleyi* showing cell structure, suggested transporters and molecules involved in biomineralisation according to the reviewed literature and summary in Table 1-1. ER: endoplasmic reticulum, N: nucleus, RB: reticular body, M: mitochondria, CP: chloroplast, P: pyrenoid, PER: peripheral endoplasmic reticulum, GB (cis and trans face): Golgi body. Italic letters show the suggested position of molecules involved in calcification processes, such as: *cla*: clathrin, *CaM*: calmodulin, *crl*: calreticulin, *gpa*: glutamic acid, proline and alanine, *cap*: coccolith-associated glutamic acid, *psc*: highly acidic polysachharides, and *ca*: carbonate anhydrase.

1.6. Understanding cell functioning in the post-genome era

In the post-genome era scientists are studying the products of the genome, namely proteins and expressed RNAs, such as messenger RNA (mRNA), tRNA (transfer RNA) and rRNA (ribosomal RNA) to quantify gene expression and unravel the relationship between the genome and cell functioning. The cell's functional properties are delivered by the transcription of the coding regions of a gene (exon) into mRNA translation by ribosomes into amino acid (AS) strands and the folding of such polypeptides into globular or fibrous forms, facilitating a biological function. Cytosolic post-translational modification such as acetylation, adenylation, phosphorylation, sulphuration or addition of N- or O-linked saccharide are critically influencing the formation of the functional 3-D structure, activity, distribution, and the subcellular compartmental placement of the protein (Kalia and Gupta, 2005). Stimuli to the cell can induce transient event, where protein modification not necessarily requires the expression of a gene (Mitton and Kranias, 2003).

In transcriptomic research all RNA molecules including mRNA, rRNA, tRNA and non-coding RNA (ncRNA) (Huettenhofer and Vogel, 2006) are in the focus of interest. The transcripts represent a signature of gene-expression and activated genes. The entity of transcripts also provides the essence in understanding the functional and regulatory elements at the transcriptional and post-transcriptional level. One application of transcriptomics is the quantification of gene expression changes at different developmental stages or physiological conditions (Wang et al., 2009). Furthermore, whole cell transcriptome assessments can be used conduct *de novo* sequencing of an organism's genome (Grabherr et al., 2011). In metatranscriptomics RNA sequences from a group of interacting organisms are assessed and may point to important and novel molecules in ecosystem functioning (Warnecke and Hess, 2009).

Unlike the transcriptome, which is subject to post-transcriptional modification, the proteome gives insight into the protein inventory of a cell or organisms. Messenger RNA is often altered or not translated into proteins at all (Anderson and Seilhamer, 1997; Chen et al.; 2002; Tian et al., 2004; Choi et al., 2008). Proteins are much more stable and reflect active biochemical pathways more effectively than transcripts. In proteomic research, the quantity, diversity, structures and functions of proteins are studied (Anderson and Anderson, 1998; Blackstock and Weir, 1999). The term proteome originally describes the 'total protein complement of a genome' (Wasinger et al., 1995). Presently, most studies address the 'whole cell proteome', which should reflect the entire protein inventory of the cell at a current physiological state or point in time (Wilkins et al., 1996), but due to methodological constrains only subsets of the

'whole cell proteome' may be observed. Studying the physiological state of a cell at the protein expression level considers post-translational modifications (Olsen et al., 2006; López, 2007), non-translated mRNA (Eddy, 2001) and genetic regulatory processes. The proteome reflects a snapshot of the putative effective cellular processes at a given moment (Wilkins et al., 1996). Proteome studies in combination with transcriptome studies give comprehensive information about cell gene expression, protein translation and the physiological status of the cell.

Because of modifications at the post-transcriptional and post-translational level, whole-cell transcriptome and proteome assessments capture the complexity of cell functioning better than the genome sequence. Because, the total mRNA population of a cell does not correlate with the abundance of proteins (Anderson and Seilhamer, 1997; Chen et al. 2002; Tian et al., 2004; Choi et al., 2008) the proteome gives improved information about current physiological processes. Furthermore, the proteome is more stable than RNA transcripts (Anderson and Anderson, 1998). However, in standalone proteome or transcriptome studies limits of the inferences that can be drawn exist. For instance, the amount of ncRNA may be very large, whereas in more complex organisms only 5-10 % of the genetic code may be transcribed into mRNA (Frith et al., 2005). Alternative splicing or alternative transcription initiation and termination, and RNA editing can produce variants of mRNA that do not reflect the genetic origin. Protein's dynamic structure, their interaction with other proteins and molecules make it difficult to receive more than a snapshot of the cell's proteome (Humphrey-Smith et al., 1997). Furthermore, there are many technical challenges in extracting and characterizing proteins that cannot be easily amplified and have several post-translational modifications if they are yet unknown (Blackstock and Weir, 1999).

1.6.1.A history of transcriptome research technologies

In the mid-1970s the first quantification of mRNA using the Northern blotting method, which applies gel electrophoresis and blotting with hybridization probe-dependent detection of target RNAs (Alwine et al., 1977) became available. Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR) improved the quantification of RNA from genes of pathways of interest in 1992, because the produced complementary DNA (cDNA) was more stable, easier to sequence and to quantify. RT-qPCR was further enhanced by the development of real-time qPCR in 1996 that delivers immediate results (VanGuilder et al., 2008).

The era of transcriptomics and transcript discovery also began in the 1990s when great progress in the analysis of transcripts was made by establishing high-density microarray platforms. Microarray platforms allow parallel measurements of thousands of different transcripts, revealing a snapshot of the wider transcriptional state of an organism rather than looking at a limited number of transcripts of interest, as the case in PCR based studies (VanGuilder et al., 2008). Microarrays are based on the hybridization of transcripts from a biological sample to complementary DNA (cDNA) sequences, also called probes, located on a solid surface, such as a chip. The probes are arranged spatially in cohorts (features) on the chip for recruiting reverse transcribed sequences of the sample. The quantification of transcript abundance is achieved by fluorescent signals emitted by the reverse transcribed RNA copies recruiting to the features. For this, the extracted poly-adenylated mRNA was reverse transcribed in the presence of nucleotides that are linked to fluorescent dyes. The resulting fluorescent complementary DNA molecules bind to the sequences located on the microarray. A final washing step removes unbound cDNA, before the microarray is scanned with a laser that excites the fluorescent dye associated with the cDNA. The brightness of each feature is a measure of the relative abundance of the transcripts of each gene that is represented on the array.

An early sequencing-based technology to measure the abundance of mRNA transcripts is the Serial Analysis of Gene Expression (SAGE, Velculescu et al., 1995). In SAGE large numbers of short sequence tags excised from mRNA transcripts are reverse transcribed and the cDNA sequenced on genome sequencers. Bioinformatic tools are then used to identify the source gene of the sequenced tags. The advantage of SAGE is that it holds the possibility to discover unknown transcripts, isoforms or splicing products of transcripts (Velculescu et al., 1995).

1.6.2. Next generation sequencing (NGS)

More recently next-generation sequencing technologies have become available to assess the total transcript diversity and abundance. This approach, called RNA-seq, is based on the general procedure by which the selectively extracted RNA molecules of interest, such as eukaryotic mRNA via poly-adenylated tags, are revers transcribed to cDNA. The cDNA sequences are determined by rapid parallel sequencing (Wang et al., 2009). Next generation sequencing of transcriptomes has advantages over microarray studies due to the potential of isoform discovery and the ability to determine transcript abundances at a higher resolution than typically possible with microarrays. With RNA-seq genome-wide transcription may be analysed, thus providing additional features such as, analysis of novel transcripts, siRNA, miRNA and alternative splicing events. Furthermore, RNA-seq holds keys to analyse the regulation of gene expression by exposing transcribed but non-translated regions, such as UTR (un-translated regions) that

may act in regulating gene expression (Nookaew et al., 2012). A typical RNA-seq experiment generates large numbers of short reads that are aligned to an annotated reference genome using mapping tools (Martin and Wang, 2012). In next generation sequencing read lengths between 30 and 400 bp, depending on the sequencing technology and platform, are possible. Commonly, used sequencing platforms are SOLEXA, 454, and Illumina platforms. The continuous advances in sequencing technologies and protocols have established RNA-seq as an attractive analytical tool in transcriptomics and reduced running costs of an experiment (Nookaew, 2012).

Next generation sequencing transcriptomic experiments produce large amounts of data. Therefore, the bioinformatic toolbox is also in continuous expansion to increase the validity of the assumptions of functional properties concluded from NGS experiments. Many statistical methods applied in microarrays can be applied with a few modifications to NGS data sets (Fang et al., 2012). The approach to analyse the data comprises three steps: data preprocessing, statistical analysis, and functional interpretation. The data-preprocessing step includes artifact filtering and short read alignment/assembly. To identify differentially expressed transcripts among different samples or conditions statistical tests are performed. The results can be further analyzed to gain functional insights using gene ontology annotations (Fang et al., 2012). Statistical tools that distinguish for example the overexpression of transcripts comprised by a functional group, such as GO (gene ontology), are also available (Chen et al., 2012). More modern bioinformatic algorithms are able to conduct de-novo sequencing of a genome from the transcriptome information (Birol et al., 2009).

1.6.1. Next generation high throughput transcriptomic methods

Originally a variety of transcriptome analysis methods were developed based on sequencing previously cloned tags located in specific transcript locations (usually 3' or 5' ends) such as serial analysis of gene expression (SAGE) (Velculescu et al., 1995) and massively parallel signature sequencing (MPSS) (Brenner et al., 2000) Quantitative polymerase change reaction (qPCR) - experiments and microarrays also use pre-selected sequences from known genomes to assess transcripts at different physiological states of an organism (Quinn et al., 2006). Using hybridization-based microarrays expression levels over the entire transcriptome are accessible. However, background hybridization levels and different hybridization properties of the probes may bias the results (Denoeud et al., 2008).

The Sanger – sequencing is a method along with computational means that has increased the quality and speeds of DNA strand sequencing (Sanger et al., 1997). In expressed sequence tag (EST) analysis, randomly picked complementary DNA (cDNA) representing RNA transcripts

are partially sequenced by Sanger sequencing and redundancies removed to create a cDNA library (Nagaraj et al., 2006; Bonaldo et al., 1996). The double stranded cDNA is synthesized by reverse transcription using a specialized enzyme, the reverse transcriptase. However this approach is relatively low throughput, expensive and generally not quantitative (Wang et al., 2009). Serial analysis of gene expression (SAGE) (Velculescu et al., 1995; Harbers et al., 2005), cap analysis of gene expression (CAGE) (Kodzius et al., 2006), and massively parallel signature sequencing (MPSS) (Brenner et al., 2000) use tags to provide higher throughput and gene expression levels. However, expensive Sanger sequencing and short tags providing a limited resolution of transcripts and isoforms are disadvantageous (Wang et al., 2009).

Denoeud et al. (2008) and Wang et al. (2009) introduced RNA-Seq (RNA sequencing) that can create a library of cDNA fragments with adaptors attached to one or both ends and by this assess the total RNA or a fraction, such as poly (A)+ - extracted. High-throughput sequencing platforms such as those from SOLEXA or Illumina sequence each molecule from one end (single-end sequencing) or both ends (pair-end sequencing) in the range of 30-400bp (base pairs). The reads reflect the gene expression levels and structure for each gene after alignment to a reference genome or reference transcripts. A greater number of alternative splicing events can be revealed in RNA-seq and it promises the discovery of novel sequences and molecules that have not been annotated or sequenced previously (Denoeud et al., 2008). The on-going advances in next generation sequencing techniques and decreasing costs will continue to make RNA-seq a broadly used technique addressing biological and ecological questions.

1.6.2.HiSeq Illumina based RNA sequencing

Next generation genomics apply massive parallel sequencing technologies followed by computationally matching the readouts to known reference sequences. One of the PCR-based next generation sequencing technologies for massive parallel RNA sequencing was introduced in 2007; it utilizes the Illumina sequencing platform (Shokralla et al., 2012). The Illumina platform comprises the steps of library preparation (ligation of Illumina specific adapters), cluster generation (bridge amplification) and DNA sequencing. The general approach in most next generation sequencing technologies is very similar. The DNA of interest is randomly fragmented; the fragments are then ligated to custom linkers. The linkers establish a library on a solid surface of the cell where the DNA is amplified and then sequenced by stepwise nucleotide synthesis cycles. During each cycle of the sequencing process nucleotides attach to millions of the amplified DNA-fragments of interest and are detected in parallel over the entire surface of a flow cell lane by light sensitive sensors (Mardis, 2008). Each lane in an Illumina flow cell can hold one DNA sample. The steps of cDNA fragmentation, adapter ligation, flow cell surface

attachment, bridge amplification, building of double stranded DNA strands, and denaturation of double stranded are repeated until dNTPs are depleted and clusters of single-stranded DNA were built (Figure 1-4). After attaching primers to the DNA during each sequencing cycle one base labelled with a specific fluorescent dye is added. A camera records the position of the fluorescent signal when the flow-cell is scanned with an excitation laser.

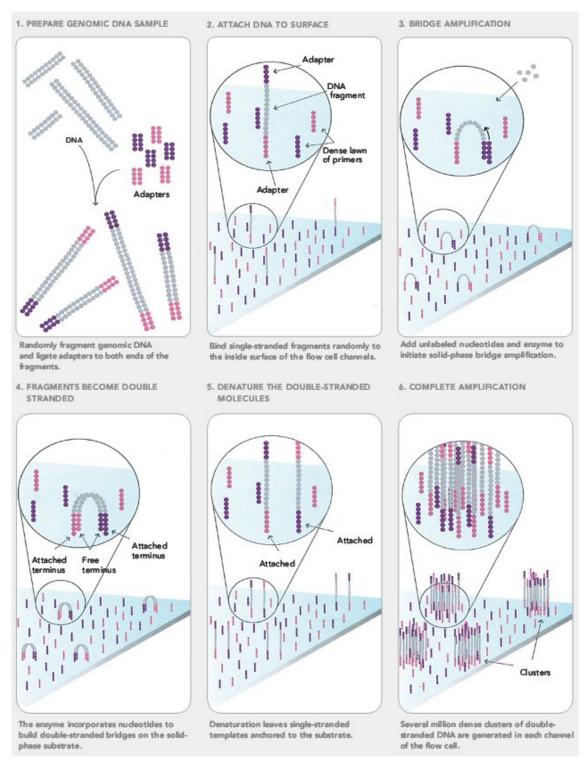


Figure 1-4: Illumina Sequencing technology. Illustration of the steps occurring in the flow cell up to DNA cluster generation using Illumina Sequencing technology. Image presented with courtesy of Illumina Incorporation.

1.6.3. Advanced proteomics methods and principles of mass spectrometry proteomics

Traditionally, proteomic studies were conducted largely by high-resolution two dimensional gel electrophoresis (2DE) that separates proteins according to their charge and size (O'Farrell, 1975). The detection of some post-translational modifications of proteins is also possible with 2DE (Anderson & Anderson, 1998). Though a promising technique at its time 2DE could not be improved to overcome issues of low sample throughput, poor reproducibility and poor resolution for proteins of extreme isoelectric (pI) values, and high labour intensity (O'Connor et al., 2000; Rehm, 2006). Modern quantitative high-resolution methods apply mass-spectrometry (MS) that can identify large numbers of proteins by their biological mass at their core (O'Connor et al., 2000; López, 2007).

In mass-spectrometry the mass to charge ratio of ions of an ionized samples is measured. Electrical and magnetic fields within the mass spectrometer alter the speed and direction of the injected ions. The degree by which the ion is deflected depends on its mass-to-charge ratio. The principle parts of sections of a basic mass spectrometer are the ion source, deflector and detector (see Figure 1 -5).

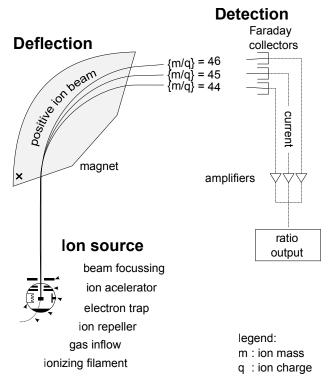


Figure 1-5: Schematics of a mass spectrometer after Devon Fyson (Wikimedia Commons), showing the key features of sample ionization, deflection and detection.

When a detector, such as discrete dynode electron multiplier, for example, receives the ions, their relative abundance is displayed as spectra. Another approach to obtain mass analysis of ions in mass spectrometry is by time of flight mass spectrometry (TOF) (Wiley and McLarren, 1955). In TOF, the mass-to-charge ratio is determined by the time it takes for ions with the same kinetic energy to reach the detector. Accelerated by an electrical field the ions arrival at the detector only depends on their mass-to-charge ratio (m/z). The principle design of MS and TOF was further developed. In the tandem mass spectrometry (MS/MS) two mass spectrometry steps excel the analytical capabilities of a single instrument. MS/MS involves that fragments of the precursor ions are scanned. In the first MS – step ions are selected according to their m/z. Fragment ions are produced by a variety of processes, for example, dissociation, collision, ionmolecule reaction, or photo-dissociation. The separation and identification of fragment ions of a particular mass-to-charge ratio occurs in the second stage of mass spectrometry. Quadrupoles have become an important and economic part in mass spectrometer, as they can be utilized as detector of m/z (Q), filter, focussing, or collision units (q) for ions of specific mass to charge ratios if multiple quadrupoles are aligned. Four cylindrical parallel rods, of which opposing rods receive an AC current with a DC offset for ion manipulation, are assembled in one quadrupole (Gross, 2011). By operating quadrupoles with the AC current and DC offset at radio frequency (r.f. mode) an average three-dimensional electrical force is created that focuses or traps electrically charged ions (Watson and Sparkman, 2007).

In mass spectrometry proteomics research two general strategies are followed, which are controlled by means of sample preparation. The bottom-up approach uses complete that are enzymatically digested into peptides whereas in the top-down approach intact proteins or their exact fragments are analyzed. The top-down approach requires large sample sizes and high mass accuracy instruments compared to the more versatile bottom-up approach, in which a greater variety of mass spectrometry instrument and reduced sample amount can be utilized. When dealing with complex protein samples the bottom-up approach is preferred (Yates et al., 2009). The investigation of a cell's proteome follows the bottom-up approach and has similarities to whole DNA sequencing, where small parts of the DNA sample are created and clustering overlapping DNA sequences into larger sequences reveals the entire DNA sequence. Because of the fractionation of DNA or protein digestion into peptides the techniques were given the terms "shotgun genomics", and "shotgun proteomics", respectively (Wolters et al., 2001; Aebersold and Mann, 2003). In shotgun proteomics the masses from peptides of a protein digest are matched to known or predicted masses of peptides in database searches (Perkins et al., 1999; Yates et al., 2009). Based on in silico-generated fragmentation patterns or reading frame translations together with genetic database searches the components of the proteome can

be established (e.g. Jones et al., 2013). Bottom-up proteomic studies apply tandem mass spectrometry and the associated computational pipelines as core instrumental features when investigating chemical protein modification and conduct quantitative analysis of proteins in cells or tissues. However, the data is not without bias and may show limited protein sequence coverage of the identified peptides, missing post-translational modifications, and bias related to the origin of redundant peptide sequences (Yates et al., 2009).

A liquid chromatograph (LC) or capillary electrophoresis system can separate polar peptides of low volatility according to their net charge prior to mass spectrometric analysis. Thus, the protein identification and quantification process in MS-proteomics becomes a multi-step procedure. At first the protein-concoction is digested into a complex peptide mixture and run in a LC, for example. The chromatographically focused fractions of the peptide mixture are ionized and injected into the mass spectrometer for analysis. Nano-electrospray ionization (Mann and Wilm, 1995), partial (no discharge) atmospheric pressure chemical ionization (Cristoni et al., 2002), and matrix-assisted laser desorption ionization (MALDI) (Patterson and Aebersold, 1995) are common ionization techniques in mass spectrometry. Electrospray ionization multidimensional liquid chromatography combined with tandem mass spectrometry (LC/LC-MS/MS) is a preferred method for dissolved protein samples and delivers weight signatures of peptides that require further in silico annotation by reference genomes or EST (expressed sequence tags) – libraries to identify the functional proteins (e.g. Jones et al., 2011). The MALDI expanded the application field in biological research as it could be utilized to ionize protein dots directly from 2D electrophoresis gels using automated stepper motors, for example (Chernushevich et al., 2001). One downside of MALDI mass spectrometry is the lack of sufficiently detecting peptides of low abundance from silver stained gels (Berndt et al, 1999). However, the laser ionization was not restricted to samples attached to matrix or surfaces and could also ionize elutes from continuous flow after liquid chromatography providing high sample throughput rates and high mass accuracy (Pasch and Pode, 1995; Nagra and Li, 1995). MALDI-generated ions are predominantly singly charged providing a preferable ion stream for top-down analysis of high-molecular-weight proteins. The low shot-to-shot reproducibility and labour intense sample preparation (Yates et al., 2009) evolved into a method using digested proteins as a source and an optional layered methods. If the peptide passed the MALDI-TOF MS without identification nanoelectrospray tandem mass spectrometry was applied to ensure peptide identification (Shevchenko et al., 2000). By coupling MALDI with orthogonal injection hybrid quadrupole time-of-flight mass spectrometer (MALDI QqTOF) a further substantial breakthrough in proteomics research was made. However, the Orbitrap® is the state of the art technology in bottom-up proteomic research. In Orbitrap®, ions are trapped in orbits around static electric fields. The ions spin around a central electrode and oscillate in axial direction. The axial oscillations of the ion rings are detected by an outer electrode and amplified. The m/z ratio is calculated from imaged orbits based on the principle of Fourier transform ion cyclotron resonance mass spectrometry. MALDI is the ionization method of choice in Orbitrap®, because it works better with pulses of ions rather than continuous streams of ions (Yates et al., 2009; Gross, 2011).

1.6.4.MALDI quadrupole time-of-flight mass spectrometry

MALDI QqTOF (Figure 1-5) is a next generation proteomic research tool that has been appreciated by the analytical community for its robustness and its powerful and unique capabilities (Chernushevich et al., 2001). The QqTOF mass spectrometry harvests the power of analytical (Q) and collision (q) quadrupoles (Shevchenko et al., 2000; Chernushevich et al., 2001). As the MALDI ionization produces pulses of ions rather than continuous beams it was incompatible with scanning mass analysers. Hence a cooling and focusing quadrupole is added immediately after the ionization (Figure 1-6). In MS mode the Q1 quadrupole could perform MS analysis by using the TOF section as a total ion current detector only. The advantage of better peptide identification through TOF spectra implies that the Q1 is used for Q1 calibration and tuning only (Chernushevich et al., 2001). TOF measurements are of multiple ions are synchronized by Q2, which traps ions before releasing modulated bursts into the TOF.

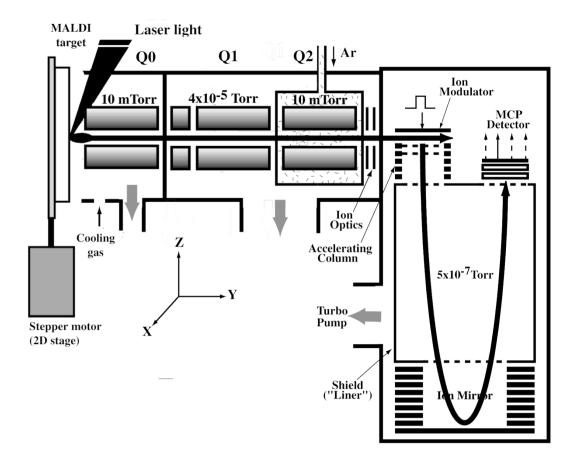


Figure 1-6: MALDI QqTOF mass spectrometer design shown with a matrix or gel source as samples (2D stage). In MALDI QpTOF, Q refers to a mass-resolving quadrupole (Q1), q refers to hexapole collision cell (Q2) (r.f.-only quadrupole) and TOF refers to a time-of-flight mass spectrometer. The Q0 is an additional r.f. quadrupole that was added to provide collisional cooling and focusing of the ions created by the laser impulse. In MS only operations the Q1 would act as the mass analyzer. Since the TOF provides improved spectra quality the Q1 is only used for calibration and tuning. The Q2 acts as a collision cell trapping ions before releasing short burst into the TOF modulator and finally to the TOF itself (after Chernushevich et al., 2001)

The resulting spectra benefit from the high resolution and mass accuracy of the TOF instruments, and also from their ability to record all ions in parallel, without scanning (Chernushevich et al., 2001). A MALDI QqTOF can identify the components of simple mixtures if the relative abundance of the components differs by the factor 10. An upstream high performance separation technique like UPLC or LC for complex protein mixtures with lower relative abundance of peptides in a trypsin digested protein sample will increase the analytical performance of MALDI QqTOF further, as the peptides entering the MS analysis have been pre-fractionated by size (Reemtsma, 2003; Farré et al., 2007). Furthermore, chromatographic fractionation in combination with QqTOF mass spectrometer provides a significantly higher mass resolution than quadrupole analyzers by themselves and the available mass resolution of TOF instruments diminish the problem of isobaric interferences allowing for analysis of complex samples using of isobaric tags (Farré et al., 2007).

1.6.5. Transcriptomics and proteomics in coccolithophore studies

The genome *E. huxleyi* (strain CCMP1516) has been sequenced and is publically available at the Joint Genome Institute (www.doe.jgi.gov). Recent studies on *E. huxleyi* have used this reference and attempted to shed light into the function of transcripts and the molecular origin of coccolith formation using expressed sequence tags (ESTs), suppressive subtractive hybridization (SSH), serial analysis of gene expression (SAGE), cDNA microarrays, and qPCR to identify numerous proteins and genes also found active in the biomineralisation process of other marine organisms (Wahlund et al., 2004; Nguyen et al., 2005; Dyhrman et al., 2006; Quinn et al., 2006; Fujiwara et al., 2007; Richier et al., 2009; Dassow et al., 2009; Richier et al., 2011). These experiments were designed to reveal differences in gene expression related to calcification rates using nutrient starvation or strains showing different calcification properties. However, the transcripts provided only low recovery rates for proteins and their isoforms putatively involved in the calcification process, encourages subsequent studies applying state of the art sequencing techniques to unravel the genome functioning of *Emiliania huxleyi* and coccolithophores (Dyhrman et al., 2006; Quinn et al., 2006).

Pioneering proteomics-research on coccolithophores by Jones et al. (2010) identified 99 proteins operating from a variety of physiological pathways in the *E. huxleyi* strain NZEH (PLY # M219) (Jones et al., 2011). However, this protein recovery rate appears very low when compared for example to *Saccharomyces cerevisiae* where 4300 verified proteins were identified (King et al., 2006). To discover proteins involved in the calcification process, pCO2-enrichment experiments, known to enhance calcification in *E. huxleyi* NZEH were conducted (Jones et al., 2013). Under high pCO2 conditions, only 4 homologous protein groups were significantly down-regulated in the NZEH strain, namely: Histones H2A, H3, and 4 (H4) and a chloroplastic 30S ribosomal protein. Histone 4 is a structural component of the nucleosome and is a methyl donor involved in transcription and translational processes (Chiang et al., 1996). These results however are difficult to evaluate with respect to biomineralisation, because a) both molecules are unlikely to play a role in biomineralisation process and b) *E. huxleyi* PLY # M219 under high pCO2 was found to accumulate more PIC. The underlying mechanism for the increased PIC accumulation remains unclear. The identification of more key genes and proteins is required to shed light the functioning of calcification processes (Richier et al., 2009).

1.6.6. Key aims and Objectives

- Determine the growth rates, physiological parameters, and rates of photosynthesis and calcium carbonate production using stable isotope incubations over 24 hours.
- Investigate cell cycle related differences of DNA content over a 24-hour period to conclude cell cycle phases.
- Determine adequate cell harvesting times for the sampling of transcriptome and proteome at high and low calcification phases where other cell cycle phase related processes and the involved gene expression are limited.
- Compare the transcriptomes at high and low calcification phases of the cell cycle of *Emiliania huxleyi* with an emphasis on transcripts that are potentially involved in biomineralisation using next generation sequencing techniques.
- Compare the proteome at high and low calcification phases of the *Emiliania huxleyi* cycle with an emphasis on proteins that are potentially involved in biomineralisation applying shotgun-proteomics for protein identification and protein quantification.
- Investigate general differences of the transcriptome and proteome at high and low calcification phases of the *Emiliania huxleyi* cell cycle..
- Investigate coherent molecular and gene expression characteristics of the observed transcriptome and proteome patterns.

Chapter 2. Rates of photosynthesis and calcification in the cell cycle of *Emiliania huxleyi* (Lohmann), Hay et Mohler

2.1. Introduction

Coccolithophores possess varying rates of cellular calcification based on their genetic repertoire and plasticity, depending on environmental conditions, and cell or life cycle phases (Paasche, 2002). For example, high, low- or non-calcifying strains of the coccolithophore *E. huxleyi* have been observed, including the high calcifying strain NZEH (PLY# M219) (Iglesias-Rodriguez et al., 2008; Shi et al., 2009) and the low calcifying strain 279 (Scottish Marine Biological Association) (Nimer et al. 1992). Limited availability of phosphorous has been shown to result in an increase of calcium carbonate per cell (Paasche, 1998; Müller et al., 2008) as low light conditions were found to decrease net calcification rates (Bleijswijk et al., 1994). The life cycle of *E. huxleyi* is characterised by three different life-cycle phases or cell types: 1) diploid non-motile coccolith-bearing (calcified cells); 2) diploid non-motile non-calcified (naked) cells; and 3) haploid non-calcified cells of the flagella phase bearing only organic scales.

Within a natural 24 h cycle of light and dark, calcifying E. huxleyi cells generally undergo phases of higher and lower calcification rates and pass through the cell cycle (Müller et al., 2008; Paasche and Brubak, 1994; Paasche, 2002). These diurnal fluctuations in calcification rates correlate with the two phases, which are dominated by photosynthetic carbon assimilation and cell division. A more detailed look at the cell cycle with respect to cell division separates four phases: the G1-phase of photosynthetic carbon assimilation (Mitchison, 1971), the S-phase where the genomic information is replicated and the G2 and M-phases, where cell division is arranged, coordinated and completed (Figure 2-1). In the cell cycle of E. huxleyi maximal calcification rates are closely correlated with the photosynthetic carbon assimilation (G1-phase) (Paasche, 1962). Calcification rates arrest when the DNA is replicated (S-phase) to prepare for cell division (G2/M phase). As the majority of the cell population of E. huxleyi divided within a short period cells subsequently continued into the early G1-phase, where no light for photosynthesis existed (Müller et al., 2008). Some calcification in the S and G2/M phase were reported to occur in E. huxleyi, but at much decreased rates compared to the photosynthetic phase (Balch et al. 1992; Paasche and Brubak 1994; Sekino and Shiraiwa 1996). Furthermore, a population of cells undergoing the cell cycle is not fully synchronized (Hagiwara et al., 2012).

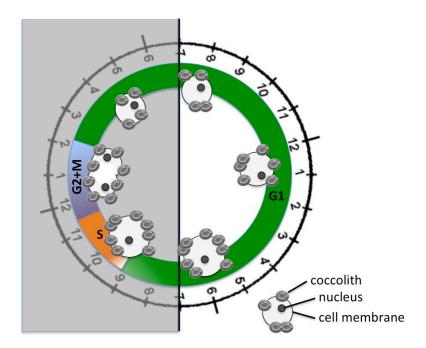


Figure 2-1: Proposed general scheme of a cell cycle of a coccolithophore based on finding of Müller et al. 2008, showing G1 –assimilation phase or gap 1, S – DNA synthesis – phase, G2 + M-cell division - mitosis-phase. Calcification and photosynthetic carbon assimilation in the G1 – phase is illustrated as a relative increase in lith-numbers and cell size. The timing and the duration of the cell cycle phases are roughly estimated from Mueller et al., 2008 Figure B, whereas in reality the phases overlap and especially the S and G2+M-phase can not be clearly separated in a population of cells. The grey shaded area indicates the dark incubation phase.

Two general models describing the mechanisms driving the cell cycle have been proposed: an internal clock (Edmunds and Adams, 1981) and a triggered oscillation, such as by the external light dark cycle that solely triggers the cell cycle phases (Spudish and Sager, 1980). Recent research has illuminated the controls of the cell cycle at the genome level (e.g. Kondorosi et al., 2000; Bisova et al., 2005; Inzé et al., 2006; Carretero-Paulet et al., 2010). A cascade of interacting molecules and gene clusters has been found to control the cell cycle oscillation. In yeast, for example, cyclins (PCL9, CLN3) and regulators for DNA replication (CDC6) initiate the cell cycle (Bastajian et al., 2013). A key role is played by the Early Cell cycle Box (ECB) comprising a gene cluster, which is regulated by further transcription factors (MADS-box's Mcm1 or the repressors Yox1 or Yhp1) describing a principal cell cycle interface through which the cell may change its fate (Bastajian et al., 2013). It is likely that a similar feature such as the ECB is present in other organisms. A change of fate leading towards a delay of cell division may occur if environmental conditions or resources within the cell are unfavourable. The survival strategy for delayed or halted reproduction is known from higher plants and animals and is a common feature in nature (e.g. Kirk, 1997). In E. huxleyi, a delay in cell division might also reflect a response to adverse environmental conditions. Emiliania huxlevi's cell division

rates were reported to reach up to 2.8 divisions per day when sufficient nutrients and light were supplied (Price et al., 1998). Moreover, a surplus of nutrients or light was found to extend the duration of the G1 phase and interrupt cell division leading to an increase of the CaCO₃-content per cell (Müller at al., 2008). An increase of calcium per cell was also found when *E. huxleyi* was exposed to increased levels of CO₂ (Iglesias-Rodriguez et al., 2008; Jones et al., 2013). The research summarised in this chapter investigated the diurnal rates of photosynthesis and calcification. Using ¹⁴C-radionuclide incorporation, together with flow-cytometric DNA-content analysis for cell cycle phase determination, the diurnal cycle of the *E. huxleyi strain* PLY # M217 was described. These data were used in subsequent experiments to identify the target times to obtain samples for transcriptome and proteome analysis.

2.2. Material and Methods

2.2.1.Culturing

The strain *Emiliania huxleyi* PLY# M217 [also known as CCMP 1516 strain (Provasoli-Guillard National Centre for the Culture of Marine Phytoplankton, Maine, USA)], was obtained from the Plymouth Culture Collection of Marine Microalgae. At the National Oceanography Centre, Southampton batch cultures of PLY# M217 were maintained in f/50-Si (Si-free) seawater medium (Guillard, 1975; Balch et al., 1992). The culture medium was prepared from filter-sterilised seawater obtained during a cruise offshore from Plymouth (U.K.) using a pore size of 0.22 μm (Millipore, Billerica, USA). The medium contained final nutrient concentrations of 36 μM nitrate and 1.45 μM phosphate.

To ensure that the cells were in exponential growth at the beginning of the experiment, the 1 L medium in each replicate was inoculated to achieve 500 cells per mL. The pre-experimental cultures were exposed to irradiance levels of $94 \pm 4 \,\mu\text{E m}^{-1}\,\text{sec}^{-1}\,(\text{n=}20)$ over a 12:12 light: dark (LD) cycle at 18 °C and were mixed daily. The pre-experimental cultures reared in exponential growth for at least 20 generations prior to radioisotope incubations.

2.2.2.Experimental Design

Three stocks of 14 L culture media in 20L Nalgene® (Thermo ScientificTM, Loughborough, U.K.) culture vessels were inoculated with 2000 *E. huxleyi* cells in exponential growth. The stock cultures were grown for five generations until cell densities reached 50000 to 100000 cells mL⁻¹. The stock cultures provided three aliquot cultures of 50 mL for radioisotope incubation

with ¹⁴C-labelled sodium bicarbonate (NOC/RAM/730A). The sampling of aliquot cultures commenced at 10 am on the 19th April 2011 and then every other h until 10 am, of the 20th April 2011. Particulate organic carbon (POC) and particulate inorganic carbon (PIC) were measured following the micro-diffusion technique after Paasche and Brubak (1994) and Balch et al. (2000). For biogeochemical and chemical analysis including cell counts, nutrient measurements, chlorophyll *a* per cell, particulate organic carbon and particulate organic nitrogen (PON), flow cytometric DNA content analysis, chlorophyll, and photosynthetic health, a 250 ml sample was obtained at each sampling time from stock culture (see Fig. 2-2).



Figure 2-2: Experimental setup – cell cycle related calcification rates of *E. huxleyi*. Sampling layout for two hourly measurements for each of three stock cultures growing *Emiliania huxleyi*

2.2.3. Assessment of DNA content per cell

For the assessment of DNA content per cell one sample of 1.8 mL was taken from the well-mixed 250 mL culture aliquot and 0.2 mL of a glutaraledehyde-paraformaldehyde mixture (10% and 5% (v/v)) was added to fix the sample. The samples were allowed to incubate for two hours at room temperature and then stored at -80 °C until further analysis. The DNA content was quantified by staining the defrosted samples with SYBR green I (Sigma-Aldrich, St. Louis, USA) for 45 min. SYBR green specifically binds to double-stranded DNA and the emitted fluorescent signal is proportional to the DNA content of the cells (Wittwer et al., 1997; Nunez,

2001). Multifluorescent beads (diameter 0.5 μm; Polysciences Europe GmbH, Heidelberg, Germany) were added to each sample for size calibration. The fluorescence of the cells was measured using a FACS Calibur flow cytometer (BD Biosciences, San Jose, CA, U.S.A.) with assistance from Mr. Ross Holland (National Oceanography Centre, Southampton). The ratios of cell cohorts in different cell cycle phases were then analysed using the WinMDI Vers. 2.8 software (Windows Multiple Document Interface for Flow Cytometry, Joe Trotter, San Diego, USA).

2.2.4. Cell density, cell volume, and growth rates assessment

A sample of 5 mL, taken from the 250 mL aliquot, was used to quantify cell density and cell volume. Duplicates of 1 mL from the samples were diluted 1:10 with 3 % NaCl (w/v) and analysed using a MultisizerTM 3 Coulter Counter [®] (Beckman Coulter (UK) Ltd, High Wycombe, United Kingdom) fitted with a 70 μm aperture. Averages of triplicate cell counts and cell volume measurements were assessed using the Multisizer 3 software package (Version 3.51, Beckman Coulter Inc, Brea, USA). Growth rates (μ) per h in each experimental stock culture were calculated according to Equation 1.

Equation 1:
$$\mu = (lnC_1 - lnC_0)/\Delta t$$
 μ : Growth rate C_0 : Initial or previous cell counts [cells/mL] C_1 : Most recent cell counts [cells/mL]

2.2.5. Particulate organic carbon (POC) and particulate organic nitrogen (PON)

To assess the contents of organic carbon and organic nitrogen per cell, duplicates of 50 mL, taken from the 250 mL culture aliquot, were filtered on pre-combusted (450°C for 12 hours) 25 mm diameter GF/F filters (Whatman, Maidstone, United Kingdom). The filters containing the samples were then stored at -20 °C until further processing. Samples and blanks were prepared for analysis by removing inorganic carbonates by sulphuric acid (H₂SO₄) fumes under vacuum for 36 hours (Verado et al., 1990). After drying for 24 hours at 50 °C, the filters were pelleted in pre-combusted aluminium foil discs (Elemental Microanalysis Ltd, Oakhampton, United Kingdom). The final quantifications of POC and PON were completed by Mr. Robert Head, Plymouth using a Thermo Finnigan Flash EA1112 elemental analyser (Thermo Scientific™, Loughborough, United Kingdom) calibrated and standardised with acetanilide. Total organic carbon and organic nitrogen production were then calculated per cell in pmol for every two-hour sampling interval.

2.2.6. Particulate inorganic carbon (PIC) analysis

To analyse the cellular PIC, duplicate samples of 50 mL from the 250 mL culture aliquot were collected on 0.2 μm Nucleopore[®] filters (Whatman, Maidstone, United Kingdom). At the end of the filtration each filter was rinsed with ~ 1 mL of alkaline ultrapure Milli-QTM water (pH ~9) and then stored at -20 °C until analysis. Eventually, the samples were defrosted and treated overnight with 10 mL 0.1 M nitric acid (HNO₃) (Romil, Cambridge, United Kingdom) to dissolve the calcium carbonate containing coccoliths. Additionally, standards in the expected concentration range were prepared in the same way. Prior to PIC analyses, samples and standards were filtered through 0.22 μm Millex filters (Millipore, Billerica, MA, U.S.A) and then analysed by Mr. Darryl Green (National Oceanography Centre, Southampton) on an inductively coupled plasma-optical emission spectrometer (ICP-OES, Agilent Technologies, Wokingham, United Kingdom).

2.2.7. Nutrient measurements and dissolved inorganic carbon (DIC) analyses

A sufficient supply of nutrients is vital for phytoplankton cultures. Reduced macronutrient concentrations of N and P will alter cell physiology and in the case of *E. huxleyi* affect calcification rates (Paasche, 2000; Mueller et al., 2008). Low nutrient consumption may indicate an impaired physiological state. Nutrient concentrations of the stock cultures were measured every two hours. By filtering 30mL of stock culture through 0.22 μm polycarbonate filters cells were separated from the media. The filtrate was then transferred into a Falcon[®]-tube and stored at -20 °C until further analysis. Nutrients were measured on a Skalar San+ auto analyser (Skalar (UK) Ltd., Wheldrake, United Kingdom), calibrated for the expected range of nutrient concentrations. The detection limit of NO3/NO2 and PO4 was 0.03 μmol L⁻¹ and 0.01 μmol L⁻¹, respectively. The nutrient analysis was carried out by Mr. Mark Stinchcombe (NOCS, National Oceanography Centre, Southampton). Each sample was analysed in duplicates and average values were computed for each sampling point in replicate cultures. The nutrient consumption rates were calculated per cell per hour.

2.2.8. Dissolved inorganic carbon (DIC) and total alkalinity (At)

To monitor any modifications of the carbonate system within the E. huxleyi cultures, seawater carbonate chemistry parameters, such as dissolved inorganic carbon, total alkalinity, and pH were assessed at three time points in the course of the experiment (at 10:00 am, 8:00 pm, and 8:00 am on the 20th April 2011). For this, approximately 250 mL of stock culture was siphoned from the stock cultures into a borosilicate bottle (Duran, Fisher Scientific, Leicestershire, UK). To prevent further changes of the carbonate chemistry 50 μL of 3.5% (w/v) mercuric chloride (HgCl₂) were added and the DIC samples stored in the dark until further analysis. DIC and TA were then measured at the carbonate facility at the National Oceanography Centre, Southampton by Dr. Cynthia Dumousseaud using an Apollo SciTech DIC infrared analyser (AS-C3) (Apollo SciTech, Inc., Bogart, GA 30622 USA) and an Apollo SciTech AS-ALK2 Alkalinity Titrator (Apollo SciTech, Inc., Bogart, GA 30622 USA). Certified reference materials (CRM) provided by A. G. Dickson (Scripps Institution of Oceanography, University of California San Diego, U.S.A) were used as standards to calibrate the system prior each measurement. To correct the measurements for various parameters including titration acid density, nutrient concentration of the sample, temperature, salinity and CRM a MATLAB script (originally designed by Dr. Dorothee Bakker at University of East Anglia, U.K. and modified by Dr. Cynthia Dumousseaud at National Oceanography Centre, Southampton) was used.

2.2.9. Chlorophyll *a* measurements

Measurements of extracted chlorophyll *a* in algae are an established physiological parameter that can indicate N or P limitation of the cell (Geider et al., 1993; La Roche et al., 1993; Geider et al., 1998). Chlorophyll *a* (Chl *a*) concentrations were measured at 10:00 am, 4:00 pm, 8:00 pm, 0:00 am, 4:00 am + 1 day, 8:00 am + 1 day, and 10:00 am + 1 day. From the well-mixed 250 mL stock culture aliquot, a volume of 10 mL was gently vacuum filtered through a GF/F filter (25 mm diameter). The filters were transferred into glass tubes and 6 ml of 90% acetone was added. Chlorophyll pigments were extracted passively in acetone over night (12 hours) at 4° C in the dark. Quantification of chlorophyll *a* was completed on a 10AU Turner fluorometer (Turner Designs, Sunnyvale, USA) using borosilicate test tubes (Turner Designs, Sunnyvale, USA). The system was equipped with a blue mercury vapour lamp and excitation (436 nm) and emission (680 nm) filters according to the method after Welschmeyer (1994). Chlorophyll *a* concentrations in the acetone extract were calculated per mL sample after Equation 2 and are presented as Chl *a* per *E. huxleyi* cell for each sampling time.

Equation 2: Chl a conc. (
$$\mu$$
g ml⁻¹) = C x ($\frac{v}{V}$)

C= conc. of Chl a from Turner fluorometer v= volume of acetone extract

V= volume of culture sample

2.2.10. Assessment of photosynthetic health

The photosynthetic efficiency or quantum yield of photosynthesis (Fv/Fm) can provide a measure of the physiological state of phytoplankton cells particularly when under nutrient stress (Kobler et al., 1983; Geider et al., 1993; Beardall et al., 2001; Moore et al., 2006). The photosynthetic quantum yield quantifies the efficiency by which the absorbed irradiance is utilised by the Photosystem II complex (PSII) (Krause et al., 1991); the maximum PSII photochemical efficiency typically decreases under nutrient starvation or extreme irradiance (Kolber et al. 1988, 1994; Geider et al. 1993b). For Fv/Fm measurements a culture aliquot of ~ 5 mL was stored in the dark for at least 25 min to relax the reaction centres of the PSII. Then Fv/Fm values were assessed by measuring F₀ and Fm, the minimum and the maximum *in vivo* chlorophyll *a* fluorescence yield after dark-adaptation, using a Fast Repetition Rate Fluorometer (FRRF, Chelsea II, Chelsea Technologies Group Ltd., West Molsey, United Kingdom). The instrument fired 100 flashes of 440 nm at 1.1 µs intervals to saturate the PSII. Values for F₀ and Fm were directly read by the FastInP-software (Vers. 1.0.0, Chelsea Technologies Group Ltd., West Molsey, United Kingdom) on the FRRF-workstation. The Fv/Fm value was then calculated based on the following equations:

Equation 3:
$$Fv = Fm - Fo$$
 Fv = Variable fluorescence
$$Fm = \text{Maximum fluorescence}$$
 Fo = Initial fluorescence
$$Fv/Fm = \frac{(Fm - Fo)}{Fm}$$
 Fv/fm = Photosynthetic efficiency of photosystem II

Values of Fv/Fm were plotted over time and compared to values reported in the literature, to estimate the photosynthetic health of E. huxleyi cells in this experiment. Photosynthetic quantum yield was assessed at 10:00 am, 12:00 am, 4:00 pm, 8:00 pm, 0:00 am, 4:00 am + 1 day, 8:00 am + 1 day, and 10:00 am + 1 day.

2.2.11. Radioisotope measurements of photosynthesis and calcification

To measure the rates of photosynthesis and calcification in E. huxleyi, the ¹⁴C-incoporation into the organic and inorganic carbon fractions of the cells was measured using the general methodology described in Paasche and Brubak (1994) and Balch et al. (2000). Three aliquot cultures of 50 mL were immediately spiked with 5.25 µCi (194.25 kBq) ¹⁴C-labelled sodium bicarbonate (Sigma, NOC/RAM/730A). One aliquot was poisoned with two mL of boratebuffered formaldehyde solution to create a blank that corrected for non-biological isotope exchange (Paasche, 1963). All ¹⁴C-spiked aliquots were exposed to the same LD cycle as the stock cultures for 2 hours to allow ¹⁴C incorporation into organic and inorganic fractions. As a result incubations starting at 8:00 pm and 8:00 am were exposed to one hour of light and one hour of darkness. The incomplete incubations of one hour in the light and one hour in the dark were excluded from the data presentation. Following the incubation for two hours, duplicate 25 mL fractions were filtered onto 25 mm diameter 0.4 µm polycarbonate filters (Whatman, Maidstone United Kingdom) for total particulate carbon (TPC) and incorporated particulate inorganic carbon. The particulate organic carbon fraction was calculated as the difference of TPC and PIC (Balch et al., 2000). For the assessment of radioisotope incorporation the TPC filter was transferred to a scintillation vial and 15 mL of scintillation cocktail (Ultima GoldTM Cocktail, Perkin Elmer, Cambridge, United Kingdom) were added. The PIC filter was transferred to a separate 20 mL glass scintillation vial, which was sealed by a septum. The septum had a plastic beaker attached to it, in which a GF/F (Whatman, Maidstone, United Kingdom) filter drenched with 200 µL phenethylamine was placed. Phenethylamine has the capacity to trap CO₂ by forming a carbonate salt. After injecting one millilitre of 1% phosphoric acid through the septum onto the PIC filter the inorganic carbon was freed as ¹⁴Clabelled CO₂. The phenethylamine-drenched filter captured the developing CO₂ for radioisotope determination (Woeller, 1961). The septum closed scintillation vial containing phosphoric acid was left over night for a full dissolution of the particulate inorganic carbon fraction. Both, the PIC-filter and phenethylamine drenched filter were then transferred into separate fresh 20 mL glass vials and 15 mL of scintillation cocktail added to each. Eventually, the samples and scintillation cocktail were incubated for 24 hours at room temperature. The activity originating from the ¹⁴C-labelled sodium bicarbonate incorporation was assessed on a TriCarb 2100TR (Perkin Elmer, Cambridge, United Kingdom) liquid scintillation spectrometry counter.

2.3. Results

The following sections will summarize the data collected from an *E. huxleyi* culture over a period of 24 hours using isotopic and non-isotopic methods with particular focus on calcification rates, rates of photosynthesis, and the diurnal DNA contents.

2.3.1.Dynamics of DNA content, cell density, growth rates, and cell volume of *E. huxleyi* stock cultures over a 24 hour period

To determine the cell cycle phase in *E. huxleyi* stock cultures the relative DNA content calculated by the WinMDI software was assessed every two hours over a period of 24 hours. The histograms in Figure 2-3 showed an increase of relative DNA content compared to the total DNA content in the first 16 hours (until 2 am in the Dark period) of the measurements. After 2 am the peak of lower relative DNA content increased while less cells with higher DNA content were observed. The histograms show no clear separation of cell cycle phases.

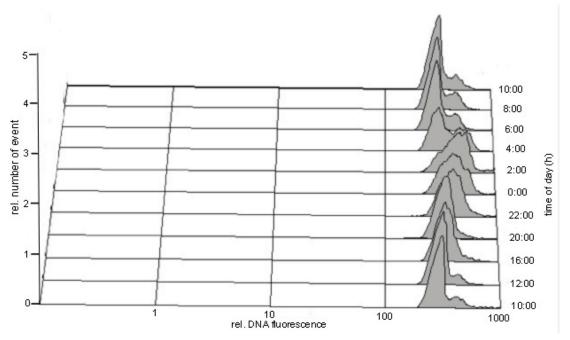


Figure 2-3: Relative DNA content in *Emiliania huxleyi* over 24-hour, showing relative DNA fluorescence histograms of *E. huxleyi* PLY# M217 at sampling times over the duration of the cell cycle experiment.

The percentages of cells in cell cycle phase were derived from the data presented in the histograms (Figure 2-3) and are presented in Figure 2-4D. A doubling of the relative DNA content of the G1-phase concluded the separation of S-Phase from the G1-phase. The G2+M phase could not be clearly separated from the S-phase, because of intermediate character and short duration of the G2+M cell phase. The 1-n cells in the early G1-phase were more apparent

allowing for a better separation of the G2+M phase from the early G1-phase. Therefore, a combined S+G2+M cell phase was presented in Figure 2-4D. During the light period, the greatest proportion of cells (> 85 %) was in the G1-phase. Relative DNA content increased from 10:00 pm to 2:00 am 20^{th} April 2011 when the greatest proportion of cells was observed in the S+G2+M-phase. By 6:00 am the relative DNA content in the majority of had dropped to G1-phase values. Over the course of the 24-hour experiment cell densities increased more than 2 fold (in detail 2.8, 2.3, and 2.1 fold in the stock cultures PLY217-1, PLY217-2, and PLY217-3, respectively; see Figure 2-4A). The most dramatic increase in cell densities occurred between 0:00 am and 4:00 am in the Dark period. The cell population continued to grow at approximately half as fast between 4:00 am and 6:00 am. This was also reflected by the highest calculated growth rates per hour at 2:00 am in the stock cultures PLY217-1, PLY217-2, and PLY217-3 with 0.15, 0.15, and 0.14 μ h⁻¹, respectively (see Figure 2-4B). The cell volume was greatest between 4:00 pm 19^{th} April 2011 and 2:00 pm 20^{th} April 2011 into the dark period (see Figure 2-4C). The average cell volume in this time frame was 94 μ m³. The average cell volume had decreased to around 50 μ m³ per cell at the end of the 24 hours of measurements.

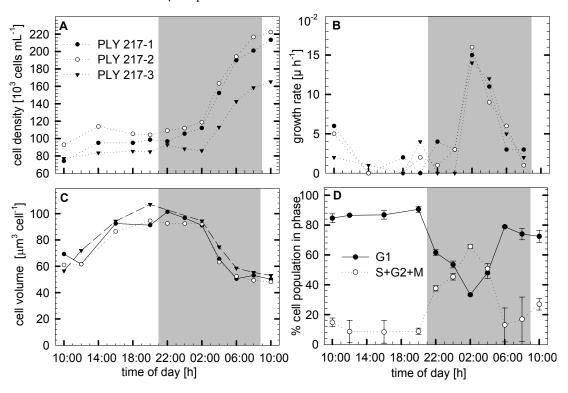


Figure 2-4: Dynamics of cell density, growth rates, cell volume, and cell cycle phase of *E. huxleyi* over a 24-hour period.. A) Cell density; B) Growth rates [μ h⁻¹], C) Cell volume [μ m·cell⁻¹], D) Percentages of cells in each cell cycle phase; G1 (solid line) and S+G2+M (dotted line). For A), B), and C) the measurement in the replicate cultures PLY217-1, PLY217-2, and PLY217-3 are presented (see legend Figure A). Grey areas represent the dark incubation phase of the 12:12 hours LD cycle. Error bars represent one standard deviation of three measurements from three independent experiments.

2.3.2.Production of organic carbon, organic nitrogen, the ratio of organic carbon and nitrogen and cell volume

The production of organic carbon and organic nitrogen occurred during the light incubation period of the LD-cycle and correlated with the extension of the cell volume. The highest values for particulate organic carbon were observed at 8:00 pm with 1.33 ± 0.05 µmol cell⁻¹ and lowest organic carbon contents per cell were found at 8:00 am + 1day with 0.62 ± 0.07 µmol cell⁻¹, showing less than half of the maximum value (see Figure 2-5). Organic nitrogen per cell was at maximum at 12:00 am with 0.145 ± 0.01 µmol cell⁻¹ and at minimum at 8:00 am 20^{th} April 2011 with 0.078 ± 0.01 µmol cell⁻¹. The ratio of organic carbon to organic nitrogen showed a peak at 8:00 pm with 14.2 and was smallest at 8:00 am 20^{th} April 2011 day with 7.9 (Figure 2-5).

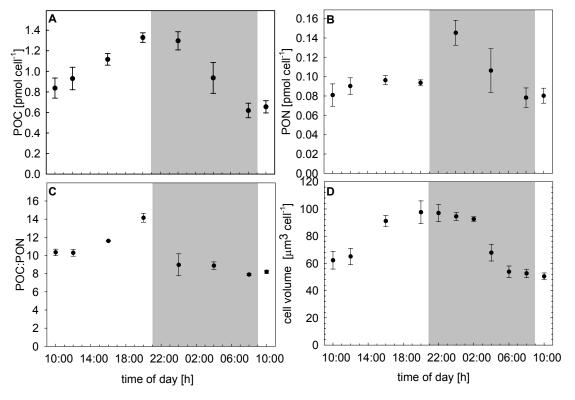


Figure 2-5: POC, PON, POC:PON dynamics of *E. huxleyi* over a 24-hour period. Averages of A) Particulate organic carbon, B) Particulate organic nitrogen, C) Ratios of particulate organic carbon to organic nitrogen, and D) Cell volume measurements of three stock cultures over a period of 24 hours are presented. Grey areas represent the dark incubation phase of the 12:12 hours light-dark incubation cycle. Error bars represent one standard deviation of three measurements from three independent experiments.

2.3.3. Production of Particulate inorganic carbon

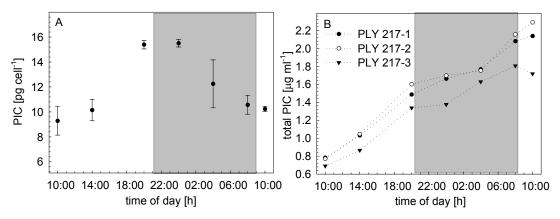


Figure 2-6: PIC dynamics of *E. huxleyi* over a 24-hour period, showing A) Averages of particulate inorganic carbon (CaCO₃) per cell and B) Measurement of total particulate inorganic carbon per mL of *E. huxleyi* culture in the replicate stock culture PLY217-1, PLY217-2, and PLY217-3. Grey areas represent the dark incubation phase of the 12:12 hours Light-Dark incubation cycle. Error bars represent one standard deviation of three measurements from three independent experiments.

The accumulation of PIC is equivalent to the production of calcium carbonate scales by coccolithophores. The amount of PIC per cell increased steadily during the illuminated period of the LD-cycle. The maximum of about 0.39 ± 0.008 pmol cell⁻¹ was reached at 12:00 am (Figure 2-6A). After the initiation of cell division at around 2 am the PIC content per cell decreased. Between 10:00 am and 8:00 am the PIC production rate was calculated at an average of 0.0152 pmol cell⁻¹ h⁻¹. Assuming that the average calcium content of a single coccolith was 6.69 fmol lith⁻¹ (Fagerbakke et al., 1994) between 10:00 am and 8:00 pm coccoliths were produced at a rate of 2.24 liths h⁻¹. In the dark phase PIC per cell decreased at rate a of 0.0154 pmol cell⁻¹ h⁻¹. The total PIC per ml increased from 18.7 ± 1.2 nmol mL⁻¹ to 51.1 ± 7.4 nmol mL⁻¹ in the course of 24 hours (see Figure 2-6B). An increase of total PIC ml⁻¹ was also observed at lower rates throughout the dark period.

2.3.4. Nutrient concentrations, dissolved inorganic carbon and total alkalinity

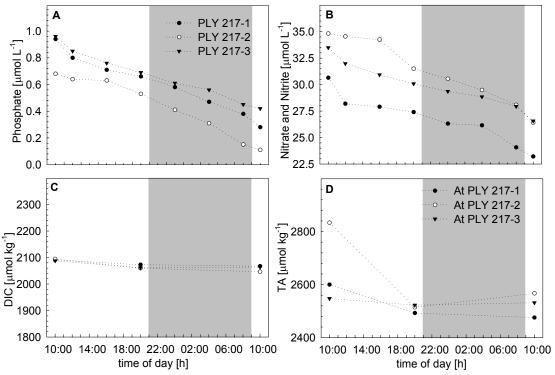


Figure 2-7: Macronutrients in *E. huxleyi* cultures over a 24-hour period. Macro nutrient concentrations and seawater carbonate chemistry parameters in the replicate stock cultures PLY217-1, PLY217-2, and PLY217-3 are presented: A) Phosphate and B) Nitrate and nitrite over a period of 24 hours. The seawater carbonate chemistry parameters dissolved inorganic carbon C) and total alkalinity D) at 10:00, 20:00 and 10:00 the following morning are presented. Grey areas represent the dark incubation phase of the 12:12 hours Light-Dark incubation cycle.

E. huxleyi cells did not exhaust the macro nutrients PO₄ and NO₃ in any of the replicate stock cultures and did not alter total alkalinity and dissolved inorganic carbon in seawater. The average nutrient consumption per cell per h in both the light and dark incubation phase is given in Figure 2-7. The consumption of nitrogen was significantly higher in the light with $14.0 \pm 5.20 \, 10^{-9}$ mmol cell⁻¹ h⁻¹ compared to $3.41 \pm 1.91 \, 10^{-9}$ mmol cell⁻¹ h⁻¹ in the dark (p < 0.001; two tailed t-test). In the dark, nitrogen uptake rates were decreased by 76% in the dark and phosphorous uptake rates decreased by 39% (Figure 2-7A and B). The calculated average consumption rate of phosphate was $4.42 \pm 2.94 \, 10^{-10}$ mmol cell⁻¹ h⁻¹ in the light and $27.0 \pm 2.72 \, 10^{-11}$ mmol cell⁻¹ h⁻¹ in the dark. The corresponding ratios of nitrogen and phosphorous uptake Light:Dark ratios were N:P _{light} 33.6 ± 9.48 and N:P _{dark} = 9.60 ± 1.17 (mean ± s.d., n=3). The concentrations of dissolved inorganic carbon concentrations per kilogram seawater (SW) showed an average of 26 μmol kg⁻¹ SW during the day, while at night DIC decreased only by 6 μmol kg⁻¹ SW. Total alkalinity decreased by 150 μmol kg⁻¹ SW during the day and increased by 15 μmol kg⁻¹ SW during night time (see Figure 2-7C and D).

2.3.5. Chlorophyll contents and photosynthetic health over a 24-hour period

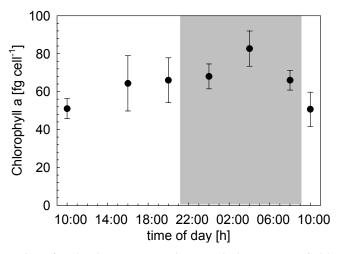


Figure 2-8: *Chl a* dynamics of *E. huxleyi* over a 24-hour period. Average of chlorophyll *a* content in *E. huxleyi* cells in fg cell⁻¹ over the period of 24 hours. Grey-shaded area illustrates the dark incubation period.

To assess the photo-physiological health of the *E. huxleyi* cells in the stock cultures over the duration of the cell cycle experiment the chlorophyll *a* content per cell and the photosynthetic efficiency were assessed. Chlorophyll *a* showed steady increase from 10:00 am to 4:00 am the next morning. After 4:00 am the chlorophyll content per cell decreased (Figure 2-8). The chlorophyll *a* contents per cell were smallest at the begin of the light period at 10:00 am with 51 \pm 6 fg Chl *a* cell⁻¹ (Figure 2-8). The concentration then ranged between 65 \pm 15 and 82 \pm 9 (maximum at 4:00 am + 1 day) fg Chl *a* cell⁻¹. By 10:00 am + 1 day Chl *a* contents had reached the values from the previous day, measuring 51 \pm 9 fg Chl *a* cell⁻¹.

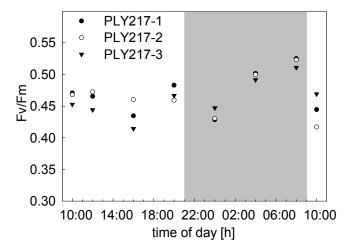


Figure 2-9: Photosynthetic efficiency dynamics of *E. huxleyi* over a 24-hour period. Photosynthetic efficiency (Fv/Fm) of *E. huxleyi* cells in the replicate stock cultures PLY217-1, PLY217-2, and PLY217-3 over a period of 24 hours. Grey-shaded area indicates the dark incubation phase.

The quantum yield of photosynthesis in the PSII was similar in all stock cultures (PLY217-1, PLY217-2, and PLY217-3; Figure 2-9). The Fv/Fm values in the light incubation period ranged between 0.436 ± 0.022 and 0.471 ± 0.01 . Within the dark incubation period Fv/Fm values increased reaching the maximum of 0.52 ± 0.007 at 8:00 am the next morning. With the onset of the new light incubation period at 10:00 am 20^{th} April 2011 the quantum yield in PSII dropped to 0.444 ± 0.026 .

2.3.6.Rates of photosynthesis and calcification from ¹⁴C-labelled NaHCO₃ incubation over a 24-hour period

To determine the rates of photosynthesis and calcification *E. huxleyi* were exposed to ¹⁴C-labelled bicarbonate source. The incorporation of ¹⁴C into particulate organic and particulate inorganic carbon was assessed and the rate of photosynthesis and calcification rates derived. Calcification and photosynthesis were both enhanced in the light incubation period. While photosynthesis came to a complete stop in the dark incubation period, calcification continued at strongly reduced rates. The ¹⁴C labelled bicarbonate incubations suggest that calcification rates (in pmol CaCO₃ cell⁻¹ h⁻¹) in *E. huxleyi* were at their maximum of 0.042 ± 0.002 pmol CaCO₃ cell⁻¹ h⁻¹at 6:00 pm. Dark calcification was detected throughout the dark incubation period, but at rates of only 0.005 to 0.008 pmol CaCO₃ cell⁻¹ h⁻¹ (Figure 2-10A). The calculated maximum coccolith production rate was 1.56 liths h⁻¹ at 6 pm (Figure 2-10B). The highest rates of photosynthetic carbon assimilation were observed at 4:00 pm with 0.048 ± 0.005 pmol CaCO₃ cell⁻¹ h⁻¹, while photosynthesis came to a complete halt in the dark incubation period (Figure 4-10C). In the light incubation phase the ratio of calcification: photosynthesis (CF:PS) increased

gradually from 0.5 at 10 am to 1.1 at 6:00 pm (Figure 2-10D). The CF:PS - value of 1.4 at 8:00 pm is omitted from the evaluation because of the 1 h incubation light (see Section 2.2.2). In the dark incubation period (CF:PS) increased to values of up to 22.7 due to low rates of photosynthesis. Between 10:00 am and 8:00 pm the average CF: PS ratio was 0.9 ± 0.23 .

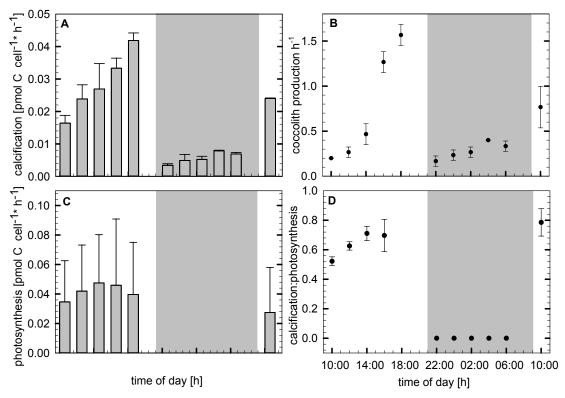


Figure 2-10: Rates of photosynthesis and calcification of *E. huxleyi* over a 24-hour period. Photosynthesis and calcification measurements based on the incorporation of ¹⁴C-labelled bicarbonate. Incubations that started at 8:00 pm and 8:00 am were excluded from the presentation, because of only receiving one hour of light exposure. Rates for photosynthesis were set to zero in the dark and calcification: photosynthesis ratios not calculated for the dark incubation period. A) Calcification rates per cell; B) coccoliths production per cell and h; C) photosynthesis rates per cell; and D) calcification: photosynthesis. Error bars indicate one standard deviation of three independent replicates. The dark incubation phase is shaded grey.

2.4. Discussion

Within the focus of this study, the DNA content and physiological parameters of E. huxleyi PLY # M217 were followed over a period of 24 hours to describe cell cycle phases and periods of maximum and minimum calcification rates. The relative DNA content and the assessed physiological parameters namely maximum rates of calcification and photosynthesis, chlorophyll a content, particulate organic carbon and particulate organic nitrogen per cell, and cell volume, followed a 24-hour periodicity as previously described (e.g. Bleijswijk et al., 1994; Bleijswijk and Veldius, 1995; Paasche, 2002; Müller et al., 2008). Photosynthesis was linked to the diurnal rhythm of light and dark. The maximum rates of calcification occurred during the G1-phase of the cell cycle at the end of the light incubation phase between 6:00 and 8:00 pm when photosynthetic activity was also high. In the combined S+G2+M phase (dark incubation) calcification was observed only at rates of 12% to 19% of those measured during the late G1phase. The following paragraphs discuss the assessed physiological parameters of E. huxleyi PLY # M217 in more detail. Furthermore, the adequate cell harvesting times for investigating the transcriptome and proteome at rates of high and low calcification is concluded from the relative DNA content per cell, the calcification rates over 24-hours, and knowledge of cell cycle physiological characteristics.

Environmental factors such as elevated temperature, prolonged illumination and nutrient replete conditions are known to encourage cell division in natural coccolithophore populations and cultures (Paasche and Brubak, 1996; Paasche, 1967; Fritz and Balch, 1996; Price et al., 1998; Müller et al., 2008; Poulton et al., 2010). The observed growth rate of 0.9, which is an equivalent to 1.3 divisions per cell per day, suggests that some cell cohorts could have divided multiple times within the 24 hours of sampling. Growth rates above 0.69 (equivalent to one division per day) were also reported by Mullin et al. (1966), Paasche (1967), Balch et al. (1996), Eker-Develi et al. (2006). Cell size, temperature, light and the proposed internal clock have been reported as commonly active triggers for cell division in algae (Donnan et al., 1985; Lam et al., 2001). Observations in mamallian cell lines showed that larger cells pass into the S-phase more quickly than smaller cells (Ronning and Lindmo, 1983), with larger cells showing higher rates of DNA synthesis (Ronning and Seglen, 1982). The average cell volume presented in Figure 2-4C indicates that cell volume decreased over time but remained higher at the end of the 24 hours period compared to the start of the 24-hour monitoring period. Histograms of cell size in the cultures at the end of the 24-hour monitoring period also showed cohorts of the cell with larger cells after cell devisions had occurred (data not presented) compared to the beginning of

the monitoring period. These observations could support the assumption that a proportion of the cell population were dividing multiple times. Further support of asynchronous and multiple fissions per day is given by the DNA content of the cells. The histograms of relative DNA content and cells in cell cycle phases (Figure 2-3 and Figure 2-4D) show that cells with 2n DNA were still present in the morning of April 20th 2011 and that a proportion of the cell population remained or returned into the S+G2+M -phase. This suggests that growth rates of 0.9 were achieved by cohorts of cells passing the S+G2+M -phase multiple times (Chisholm et al. 1984). Furthermore, asynchronous and multiple fission of cell cohorts in the culture justify the conservative distinction between the G1 and S+G2+M phase because of cells with overlapping cell cycle phases S, G2, and M in the cell population. Müller et al. (2008) and Bleijswijk and Veldhuis (1995) investigated the cell cylce features of *E. huxleyi* CCMP 371 and also found higher proportions of the cell population in the S-phase rather than the G2/M-phase.

Algal culture growth, kinetics of macronutrient uptake, cellular concentrations of chlorophyll a, photosynthetic quantum yield (Fv/Fm), cellular POC, and cellular PON have been suggested as measures for algae physiology impairment through nutrient limitation or other stressors (Kobler et al., 1983; Geider et al., 1993; Beardall et al., 2001; Moore et al., 2006). Even though natural E. huxlevi populations thrive well under both high and low nutrient regimes (Zondervan, 2007) E. huxlevi lab cultures limited in phosphorous showed reduced growth rates (Paasche, 1998; Riegman et al., 2000; Paasche 2002), increased cellular organic carbon content (Paasche and Brubak, 1994; Paasche, 1998; Riegman et al., 2000; Shiraiwa et al., 2003), and an increase in number of liths per cell (Paasche, 1998). Nitrogen limitation in lab cultures has been shown to result in a reduction of cell size and putatively cellular organic carbon content and a small increase in calcite per cell (Riegman et al., 2000; Sciandra et al., 2003, Zondervan, 2007; Mueller et al., 2008). Therefore, it is not suggested by the observed growth rates, organic carbon content per cell, and inorganic carbon per cell that macronutrients were limiting for growth (see Section 2.3). The measurements of PIC per cell (Figure 2-6A), and particulate organic carbon (Figure 2-5A) were not significantly different between the start and end of the 24-hour sampling period (p < 0.05, two-tailed t-test, n = 6; data not shown). However, cell volume was significantly lower at the end of the 24-hour sampling period (p = 0.04, two-tailed t-test, n = 6; data not shown). Nevertheless, the slight significant decrease of cell volume within 24 hours does not suggest that the cells were experiencing nutrient limitation.

A sufficient supply of the macronutrients nitrogen and phosphorous is central to cell functioning, physiology, and cell division. The nutrient concentrations in this cell cylce

experiment were significantly reduced during the course of the 24-hour monitoring period. The total uptake rates of nutrients in the light and dark incubation period were different with respect to previously reported uptake rates (see Müller et al. 2008). Nitrogen uptake rates in the light were around 5 times lower and nitrogen uptake in the dark was around 10 times lower in this experiment compared to Müller et al. (2008). The phosphorous uptake rates in the light and dark incubation period in this study were both 10 times lower compared to Müller et al. (2008; Table 1). The observed differences in nutrient uptake rates might be explained by the different genetic repertoire of the strains CCMP 371 and PLY # M217. Despite the observaion of different uptake rates of phosphorous is was confirmed that phospohorous uptake in the light and dark are not significantly different (Müller et al., 2008). The uptake ratio of N:P in the light versus the dark was significantly reduced by about 70% (p = 0.012, two-tailed t-test, n = 6; data not shown) (compare Riegman et al., 2000; and Müller et al., 2008). Ronning and Lindmo, 1998 showed that the demand for nitrogen is lower in the dark because protein synthesis is suppressed in the dark, in particular when cells pass through the S and G2/M-phase. In this study the consumption of nitrogen was also significantly reduced in the dark (p < 0.001, twotailed t-test, n = 15; data not shown). Therfore it can be inferred that the higher nitrogen uptake rates in the light also reflected elevated protein synthesis and biomass accumulation (compare Ronning and Lindmo, 1998; Müller et al., 2008).

The chlorophyll *a* content per cell was found to be lower or within the range of previously reported values (e.g. Muggli and Harrison, 1996, 1997; 49 to 130 fg Chl *a* cell⁻¹; Eker-Develi et al., 2006; 200 fg Chl *a* cell⁻¹; Houdan et al., 2005; 117 fg Chl *a* cell⁻¹; Suggett et al., 2007; 97 – 132 fg Chl *a* cell⁻¹; Loebl et al., 2010; 140 fg Chl *a* cell⁻¹). The lower values found in this study could reflect a strain specific feature. From the lower Chl *a* content alone an impairment of *E*. *huxleyi* physiology can not be inferred (Kruskopf and Flynn, 2005).

Measurements of photosynthetic health (Fv/Fm) can rapidly detect nutrient stress in phytoplankton cultures that are not adapted to nutrient limitation (Parkhill et al., 2001) by inducing only little stress on the cells (Falkowski and Kolber, 1995). Phytoplankton cells require nitrogen to synthesize proteins for PSII repair, because light frequently damages the PSII reaction centers (Nishiyama et al., 2006; Ragni et al., 2008). The observed photosythetic efficiency (Fv/Fm) – measurements do not suggest an impairment of the photosystem II in *E. huxleyi* cells and therefore nutrient starvation. Under nutrient starvation Fv/Fm was found to decrease (Sugett et al., 2009). However, Ho et al. (2003) and Suggett et al. (2007) reported generally higher values for Fv/Fm ranging between 0.557 and 0.58 for the *E. huxleyi* strains

B11, B92 and the field strain ASM 1, compared to the average range of Fv/Fm of 0.435 and 0.520 found in *E. huxleyi* strain PLY # M217. This difference is likely to represent a 'taxonomic signature' or difference in photophysiological performance between the strains (Suggett et al., 2009). Interestingly, a peak value of photosythetic efficiency was observed at the end of the dark incubation period (Figure 2-9) when most cells of the population were about 3 hours into the G1-phase. This peak in photosythetic efficiency can be explained by the 'young cells' and 'young photosystems' showing increased values of Fv/Fm (Post et al., 1985). Furthermore, a similar pattern of lower Fv/Fm values at the onset of the G2/M was shown in diatoms (Claquin et al., 2004).

Nutrient limitation affects growth and carbon accumulation in *E. huxleyi* (reviewed by Paasche, 2002). Any significant changes of the cellular organic carbon, cellular inorganic, and organic nitrogen content were however not observed between the beginning and end of the 24-hour experiment (p < 0.05 for POC, PIC and PON, two-tailed t-test, n = 6; data not shown), that would indicate a limitation of P and N supply to the *E. huxleyi* cells. P limited cells in *E. huxleyi* cultures are known to show an increase of organic carbon content per cell (e.g. Paasche and Brubak, 1994; Riegman et al., 2000). Indicative of N limitation are a decrease in POC and in cell volume (Riegman et al., 2000; Sciandra et al., 2003; Müller et al., 2008) and a moderate increase or even a decrease in PIC (Paasche, 1998; Fritz, 1999). However, it should be noted that Müller et al. (2008) found higher contents of POC and PON in the *E. huxleyi* strain CCMP 371 under nutrient replete conditions and observed similar concentrations of organic nitrogen only in N-limited cultures.

One emphasis of this experiment was to measure the rates of photosynthesis and calcification over a 24-hour period. The data presented here support previous conclusions that rates of calcification and photosynthesis in *E. huxleyi* follow a light dark cycle (Müller et al. 2008; Paasche 1962). Calcification rates were found to be dependent on the irradiance levels (Paasche, 1964; Paasche, 1965; Linschooten et al., 1991; Nimer and Merrett, 1993; Bleijswijk 1994; Paasche, 1999; Zondervan et al., 2002) and our results supported the coupling of calcification on photosynthesis, suggesting that energy deriving from photosynthesis accelerates the precipitation of CaCO₃ (Anning et al., 1996). Dark calcification (Figure 2-10A) was observed as was previously reported (Paasche, 1966; Balch et al., 1992; Nimer an Merrett, 1992; Paasche and Brubak, 1994; Sekino and Shiraiwa, 1994, 1996). Rates as low as 10 to 15 % of the calcification rate in the light were reported for the dark (Paasche, 2002), which compare to rates of between 12 and 19 % of the maximum calcification rate in the light incubation period in this study. Mueller et al. (2008) however, reported an absence of dark calcification.

The energy required to drive dark calcification was suggested to derive from mitochondrial respiration (Sekino and Shiraiwa, 1996). In this study a lag-phase was observed before the maximum rates of calcification, rates of coccolith production, and photosynthesis were reached. The inorganic carbon assimilation increased over a period of 9 hours until 6:00 pm when maximum rates were reached. This might indicate the tight energetic coupling of photosynthesis and calcification (Anning et al, 1996) or that the degree at which biochemical energy from photosynthetic carbon fixation supplied for calcification was lower in the early hours of the light incubation phase because other cellular processes had higher energetic demands. It is known that the assimilated carbon is incorporated at different rates in molecular components such as proteins, polysaccharides, lipids, and low molecular weight molecules throughout the cell cycle (Fernandez et al., 1996). Therefore, it can be assumed that theses quotas change over time and under different physiological demands of other cell processes.

A comparison with data from the available literature showed that calcification and photosynthetic rates were within the range of previous results (see Table 2-1). The results were closest to the studies by Paasche and Brubak (1994) and Balch et al. (1996). Those two studies were also found to reflect rates similar to those found in natural subsurface calcifying populations at the Iceland Basin (Poulton et al., 2010). However, notable differences between the results presented here and those obtained by Mueller et al. (2008) were found. Nevertheless, the different kinetics of inorganic and organic carbon assimilation did not affect the characteristics of the *E. huxleyi* cell cycle.

Table 2-1: Experimental conditions and observed growth rates in previous studies and this study. Summary of experimental conditions and observed growth rates in previous studies using strains of *Emiliania huxleyi*, which investigated growth, calcification, photosynthesis properties applying ¹⁴C-labelling. CF: calcification, PS: photosynthesis. Values for CF and PS are given in fmol cell⁻¹ h⁻¹. Abbreviations: av = average and pk = peak value (maximum).

E. huxleyi Strain	Growth rate [m]	Medium/ condition	CF	PS	CF : PS	Reference
E88	n.a	F/2, 50 mE m ⁻² s ⁻¹	1.8	2.2	0.9	Nimer and Merrett (1992)
5/90/25j	1.26	P=0.6 mM, N= 125 mM, 20°C	~23.4 -32.4	~26-36	~0.82-0.9	Paasche and Brubak (1994)
E88		K, 17±0.5°C, cont.75 mE m ⁻² s ⁻¹ continuously	18	42	0.43	Balch et al. (1996)
CCMP371	0.72	F\50. 21°C	8	~18.5	0.44	Mueller et al. (2008 Fig.2)
PLY # M217	0.9	F\50. 19°C 94 mE m ⁻² s ⁻		av=40 pk=48	av=0.75 pk=0.88	This study

It can be concluded that in this study, E. huxleyi cells were not exposed to nutrient limitations and that their growth was well mantained in the culture conditions. The results of the ¹⁴C-bicarbonate incubation, the determination of calcification rates and rates of photosynthesis over 24 hours, as well as the analysis of relative DNA content per cell, of three replicate cultures of E. huxleyi PLY # M217 revealed a 24-hour pattern similar to previously reported light dark periodicity (Müller et al. 2008; Paasche 1962). The bulk of calcification could be correlated with the late G1-phase of the cell cycle. Due to the asynchronous cell cycle progression and suggested multiple division of the cells in the dark it was uncertain to clearly seaprate between the S and G2+M cell cycle phases. Therefore, only two cell cylce phases, namely the G1 and S+G2+M phase, were separated. The observation that DNA replication and nuclear and cellular division may overlap in non-G1 phases (Zachleder et al., 2016) supports the functional separation in two cell cycle phases in this study in respect to subsequent molecular studies. In the S+G2+M phase demands of nitrogen and showed lower deman for nitrogen in the dark incubation period because protein synthesis is suppressed in the dark, when cells pass through the S +G2+M-phase (Ronning and Lindmo, 1998). However, Ferandez et al. (1996) suggested that the overall carbon incorporation into proteins is much higher in the dark than in the light. Prevailing cell cycle processes of microalgae in the G1-phase suggest elevated contents of RNA and proteins in the late G1-phase. In the early G1-phase, still in the dark period, cell division was completed and RNA and proteins related to cell division processes, which could provide noise in the transcriptome and preoteome analysis, were thought to be at low levels (Zachleder and Šetlík, 1988; Zachleder et al., 2016). The results of cell population growth and DNA content suggested that the cells were in the G1-phase at both harvesting time. Therefore, the time windows for harvesting cells at low and high calcification rates for transcriptome and proteome analysis were chosen between 7:00 pm in the light incubation period, when maximum calcification rates were observed and the bulk of the cells were in the late G1 cell-cycle phase. Hereafter, the samples of the late G1-phase are referred to as (high calcification – late G1-phase (hc-lG1 or just HC) samples. The harvesting time at low calcification rates was chosen at 7:00 am, the end of the dark incubation period, when cells showed low calcification rates, the bulk of the cells had completed cell division, and cells had transited into the early G1-phase. The harvesting time at 7:00 am is here after referred to as low calcification – early G1-phase (lc-eG1 or just LC).

Chapter 3. The transcriptome of *Emiliania huxleyi* at high and low calcification rates

"Perhaps all forms of life on this planet use essentially the same genetic language."

(Nirenberg, 1968)

3.1. Introduction

In all organisms genetic information is stored in DNA that is replicated during cell division or transcribed to form proteins after gene expression. Gene expression and protein synthesis comprises two steps: (1) transcription of DNA to RNA and (2) translation of RNA to proteins. During transcription, RNA transcripts complementary to one strand of DNA are synthesised. Throughout translation, the information in the RNA sequence is converted into sequences of amino acids and polypeptides. This flow of genetic information for the purpose of DNA replication or the transcription into RNA sequences and the translation into proteins is also referred to as the central dogma of molecular biology. With the exception of RNA viruses, where the information that is stored in RNA sequences can be reverse transcribed into DNA, the direction of the flow of genetic information is from DNA to RNA to proteins (Snustad and Simmons, 2000).

There are many types of RNA, such as mRNA (messenger RNA), tRNA (transfer RNA), rRNA (ribosomal RNA), snRNA (small nuclear RNA), and small interfering RNA (siRNA) (Kanno et al., 2005; Onodera et al., 2005). The information to synthesize polypeptides is stored in the mRNA sequence. In eukaryotes pre-mRNA is an immature mRNA precursor that is edited by affiliating additional 7-methyl guanosine caps or poly (A) (a sequence of many adenosine nucleotides) to the transcript or splicing noncoding intron sequences from the transcript. In eukaryotes, most of the maturation of mRNA occurs in the nucleus, whereas polypeptide synthesis occurs in the ribosomes (macromolecular protein biosynthesis units comprised of both protein and rRNA) of the cytoplasma. Ribosomal RNA is essential for the growth of the polypeptide sequences in the ribosome, because rRNA catalyses the chemical bond between two amino acids. Furthermore, rRNAs were found to evolve and are used for the identification of taxonomic groups by separating rRNAs according to their rate of sedimentation during sucrose gradient centrifugation. Transfer RNAs adapt specifically to amino acids and the codon in the mRNA. The tRNA decodes the triplets of RNA bases (codon) into the according amino acid. The following sections focus on the expression of protein coding genes and discuss mRNA or transcripts abundance at high and low calcification rates in the coccolithophore E. huxleyi.

3.1.1.Molecular controls of gene expression at the transcript level

Gene expression describes the process in which a protein is produced from the template of genomic gene sequence. A regulatory macromolecular machinery selectively controls gene expression in response to environmental factors, developmental stage or cell type; thus making the processes contributing to gene expression highly dynamic. The regulation of gene expression involves the interaction of activators and repressors that operate at different and multiple layers of the transcription process and protein synthesis machinery. Activating or repressing transcription factors (Eberhardy and Farnham, 2002), the coiling of the chromosomes through nucleosome modification (Lee and Young, 2000), initiation cofactors for the RNA II polymerase (Pol II) (Jang et al., 2005), the elongation (Aso et al., 1995) or pausing of mRNA synthesis (Muse et al., 2007), and mRNA processing (Keller and Noon, 1984) are some of the levels at which the expression of protein coding genes is regulated within the cell. Multiple genes may be controlled by activating or repressing gene-regulatory processes (Lee and Young, 2000; Wijnen and Young, 2006). These regulatory processes might comprise just one of many interacting activators or even a combination of activators and repressors (Levine and Tijan, 2003). Transcript synthesis in eukaryotes starts by binding activators of gene expression to upstream activating sequences. A specific DNA-binding domain within the transcription factor protein binds to the promoter DNA sequence of the gene. Transcription factors direct the specific binding of the RNA polymerases I, II, and III to the DNA sequence and initiates the transcripts synthesis (Snustad and Simmons, 2000; Lee and Young, 2000). The transcription factors may act as an activator by attracting and stimulating the coupling of RNA polymerase to the transcription start site gene sequences or as a repressors by preventing the binding of RNA polymerase or other required proteins to the gene sequence (Lee and Young, 2000; Snustad and Simmons, 2000). In Emiliania huxlevi a total of 419 different transcription factors were identified, which contribute around 1% of its proteome (Rayko et al., 2010).

The degree of coiling of the DNA double helix not only establishes the condensation of chromosomes but also exposes DNA sequences that are accessible to transcription. Histones coil the DNA to form nucleosomes, which are the basic building blocks of the chromatin structure. In supercoiled DNA, as in chromosomes, the transcription machinery is unlikely to recruit to a promoter and start the transcription process. Processes that can unfold the chromatin structure for transcription are modifications of the histone complexes, such as methylation as well as acetylation and deacetylation (Margueron et al., 2005).

In eukaryotes an array of transcription factors, such as TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and TATA-box binding proteins, complement the RNA polymerase II holo-enzyme to

create the pre-initiation complex that defines the transcription start site (TSS) (Bengal et al., 1991Chiang et al., 1993; Tan et al., 1994; Näär et al., 2001; Kettenberger et al., 2004; Thomas and Chiang, 2006; Kwak and Lis, 2012). In regulated transcription additional general cofactors are often required to mediate between the gene-specific activators and the general transcription machinery (Dynlacht et al., 1991; Thomas et al., 2006). Both, stimulating and repressing cofactors have been discovered that are important in binding the promoter to the specific transcription factors regulate basal transcription (reviewed by Thomas et al., 2006).

Nuclear pre-mRNA is subject to post-transcriptional modifications. Once the modifications are conducted the mRNA is ready for translation into the amino acid sequence. Post-transcriptional modifications are the excision of non-coding introns from the transcript (Keller and Noon, 1984), the addition of 7-methyl guanosine cap to the 5' end of the transcript (Shatkin, 1976), and polyadenylation to the 3' end of the transcript. The capping of 7-methyl guanosine caps occurs shortly after the initiation of transcription adding protection to the growing RNA strand from degradation by nucleases. The addition of poly(A) tails occurs through endonucleolytic cleavage in response of a downstream polyadenylation signal the AAUAAA sequence (Snustad and Simmons, 2000). Non-coding introns are excised on complex ribonucleoprotein structures called spliceosomes. In spliceosomes previously assembled snRNA – protein complexes and protein splicing factors cut out non-coding sequences and ligate the adjacent exons. In some cases the multiple introns are removed by splicing the pre-mRNA. If two successive introns are excised, the exon between them will be cut out. Alternative splicing, exon removal, and transcript isoforms create different polypeptides (Houk et al., 1991; Snustad and Simmons, 2000).

Modulating the transcriptional outcome through RNA polymerase II (Pol II) pausing can also control the process of transcript elongation. Hence, influencing the number of transcribed sequences directly (Kwak and Lis, 2013). The control of transcript elongation occurs at early elongation and productive elongation stages, adding a further level of gene expression control. Early transcript elongation pausing in the promoter-proximal regions is required to add the 5' caps (Rasmussen and Lis, 1993) and decrease the response time of the transcription machinery to changes in physiological demands as during heat shock (Andrulis et al., 2000). Throughout later periods of the transcription process Pol II passes through numerous obstacles, including

intrinsic pause sites and nucleosomes, at which point elongation factors are required to promote the continuation of transcript elongation (Young and Lee, 2000). For elongation pausing, passing elongation pausing or enhancements of the elongation process an array of nucleoproteins are utilized (Kwak and Lis, 2013).

3.1.2. Physiological feedback mechanism in gene expression

The patterns of gene expression in a cell are a direct response to the cell cycle stage, cell development, and environmental conditions (Snustad and Simmons, 2000). The changes in transcription may be induced, for example, in response to light or temperature (Ritossa 1962; Ballantuono et al., 2012) or internal triggers, such as hormones in multicellular eukaryotes or the intrinsic circadian clock (Johnson et al., 1993; Snustad and Simmons, 2000; Farré 2012). An induction of gene expression may involve a receptor, usually a receptor-protein that experiences an alteration in its three dimensional structure in response to changes in the physical or chemical environment of the cell (Urizar et al., 2000; Snustad and Simmons, 2000; Yamamoto, 2005). The receptor-protein may undergo redox reactions or phosphorylation in the case of DNA-binding proteins. These two examples of chemical reactions often occur at key molecules when gene expression is induced or paused.

Heat or cold, for example, are an important inducer of heat shock proteins, which occur in all organisms and assist in protein refolding under stress conditions (Feder and Hofmann, 1999; Wang et al., 2004). However, other environmental stressors may also induce the production of heat shock proteins, such as drought, oxidative stress, salinity, UV-radiation, or nutrient depletion (Vierling 1991; Rizhsky et al., 2002; Pockley, 2003; Wang et al., 2004). Heat shock proteins were also found to play an important role in cell signalling and immune response (Pockley, 2003). In *Drosophila melanogaster* the promoter of the heat shock protein genes *hsp70* is induced by the heat shock transcription factor (Hsf). Under ambient temperature Hsf is present in the nuclei as a non-promoter binding form. Upon heat stress Hsf is phosphorylated and binds to the DNA sequence upstream *hsp70*, at the heat shock response element section of the promoter (Snustad and Simmons, 2000).

Light acts as an important environmental factor inducing physiological responses and gene expression in many organisms (Wijnen and Young, 2006). In photosynthetic organisms light levels influence for example the state of the light-harvesting complexes and photomorphogenesis – the light mediated development in plants (Rochaix, 2014; Wu, 2014). For example, light was found to induce transcription in the nucleus of *Arabidopsis thaliana* via triggering the phytochrome RED/FAR RED (R/FR)-light photoreceptor, the UVB

photoreceptors and cytochrome directly (Chen, 2008; Fankhauser and Chen, 2010). The photoreceptor triggering may spark further diverse processes of gene expression regulation, such as photophysiological processes optimizing photosynthetic efficiency by readjusting the absorption cross sections of PSII and PSI, whereas the mobile LHCII (Light harvesting Complex of photosystem II) antenna is being redistributed. The redistribution of LHCII may occur as a short-term response or through transcriptional and translational regulation of LHC gene expression for prolonged modifications (Pfannschmidt et al., 2001; Rochaix, 2014). Different light qualities and harmful UV light were found to trigger differential gene expression of up to one third of genes in seedlings of Arabidopsis thaliana (Ma et al., 2001). Structural modifications of the photosynthetic complexes and within the thylakoid membrane of the LHCII (PSII) can induce protection mechanisms to avoid damage to the photosynthetic apparatus by high intensities of light and harmful spectral characteristics of light (ultraviolet light) (Rochaix, 2014). Light affects gene expression at the transcriptional, posttranscriptional, and translational level in plants. Hundreds to thousands of genes are differently expressed following changes in the light regime (Wu, 2014; Pfannschmidt et al., 2001; Wijnen and Young, 2006). In coccolithophores the rates of calcification are increasing in the Light period (e.g. Paasche et al., 1969, Balch et al., 1993) by the higher availability of energy of carbon fixation (Bach et al., 2013). Even though the suggestion that calcification acts as a carbon concentrating mechanism was disproved (Bach et al., 2013) transcriptional responses in calcification related genes were shown to depend on the light periodicity (Richier et al., 2009).

The periodicity of the diurnal light regime and the light/dark transition were found to act as an additional "zeitgeber" for the in circadian gene expression fluctuations that activate regulatory circuits preventing, for example, DNA damage from mutagenic ultra violet light during cell division (Nikaido and Johnson, 2000; Chen and McKnight, 2007). Hence, the diurnal light level fluctuations are closely linked with the endogenous timekeeping mechanism, the circadian clock, which enables organisms to respond as they experience environmental change and prepare for coming change (McClung, 2014). Therefore, gene expression in the advanced dark phase may prepare photosynthetic cells for optimal physiological performance during the light (Green et al., 2002; Dodd et al., 2005; Winjen et al., 2006).

3.1.3.Gene expression related to biomineralisation in coccolithophores

The genetic control of coccolithophogenesis involves the expression of many proteins of yet unknown functions to provide a network of interacting structural and regulatory molecules (Young and Henriksen, 2003; Henriksen et al., 2004; de Vargas et al., 2007). Previous coccolithophore research identified molecules and genes of interest that are involved in biomineralisation by comparing calcifying and non-calcifying strains, calcifying diploid and naked (non-calcifying) haploid cells, stimulating or altering the calcification performance of coccolithophores through culturing conditions (e.g. Nguyen et al., 2005; Quinn et al., 2006; VanDassow et al., 2009, Mackinder et al., 2011; Emery et al., 2012). An outline of the molecules involved in calcium carbonate crystallization in coccolithophores is given in chapter 1 of this monograph. Here, the results from studies comparing calcifying and non-calcifying stages of coccolithophores are summarized in the context of this chapter, which investigates the expression of genes involved in the biomineralisation process in the Dark period (low calcification rates) and Light period (high rates of calcification).

Richier et al. (2009) investigated the expression of specific genes related to biomineralisation in haploid and diploid cells in the light and dark period. Key proteins, such as calmodulin, the E. huxleyi type of carbonic anhydrase (γ -EhCA2), and the calcium binding protein (GPA) were significantly higher expressed in calcifying diploid cells in the light (Richier et al., 2009). Comparative studies of gene expression related to biomineralisation in phosphorous replete and phosphorous limited cultures showed that a significant number of genes related to stress compensation and cell repair processes, such as HSP 70, HSP 80, HSP 81, HSP 82, and HSP 90, and the co-chaperonins Dna J and Dna K were also over-expressed (Wahlund et al., 2004). Quinn et al. (2006) found 127 significantly up down regulated genes when comparing phosphorous replete and phosphorous limited cultures. The majority of the identified molecules were involved in cellular metabolism, ion channels, protein transport, vesicular trafficking, and cell signaling. In phosphorous limited calcifying cells putative gamma-carbonic anhydrase was significantly higher expressed (Quinn et al., 2006). Patterns of gene expression in isogenic haploid non-calcifying flagellated cells and diploid calcifying cells of different life cycle phases indicated diploid specific expression of genes potentially involved in calcification. In diploid cells genes potentially related to biomineralisation included Ca²⁺, H⁺, and HCO³-pump coding sequences. Specifically, transcripts of Ca²⁺-transporting ATPase, K⁺dependent Ca²⁺/Na⁺ exchanger NCKX1, and V-type H⁺ - ATPases subunits a, d, M9.7, c/c², A, B F, and H were more abundant in diploid calcifying cells (von Dassow et al., 2009). In naked and coccoliths-bearing cells of *Pleurochrysis haptonemofera* Fujiwara et al. (2007) found 54

genes of 3-fold higher expression specific to the coccoliths-bearing phase of the life cycle, of which 32 matched to registered sequences, among them sequences referring to carbonic anhydrases, Myb1, and a mitochondrial Ca²⁺ - dependent solute carrier (for a summary, see Table 1-1).

Additional knowledge of yet unidentified genes involved in the biomineralisation process in the diurnal phases of coccolithophorgenesis is required to better understand the processes of biomineralisation in general and the timing of relevant gene expression events. Recent studies, have suggested molecules putatively involved in the biomineralisation processes in *E. huxleyi* and extended existing models of calcification suggesting a role of putative Ca²⁺-channels in the control of Ca²⁺ flux from the peripheral endoplasmic reticulum into the maturing CV, the requirement of H⁺ removal from the cytosol by voltage gated H⁺ channels and an amorphous calcium carbonate pre-cursor (Mackinder et al., 2010). This study aims to identify the patterns of biomineralisation related gene expression and possibly identify new links of molecules and biomineralisation applying next generation RNA sequencing techniques on calcifying and non-calcifying *E. huxleyi* cells.

3.1.4. Strategies for gene-expression analysis

In transcriptome research the diversity, structure, and sequences of RNA molecules are investigated with the aim to connect the genome to gene functioning. Two main approaches are followed in transcriptome studies, the knowledge-driven and the data-driven approach. The choice of the approach depends on the goals of the investigator. In the knowledge driven approach the researcher knows the genes or physiological pathways and the proteins of interest from a sequenced genome or the molecular process of interest. In a data-driven approach the entire population of mRNA in a cell or tissue is sequenced. The data was analysed using known sequences and gene homologies from other organisms. When supplemented with their functions the discovered transcripts become truly meaningful and useful to increase our understanding of the molecules involved in molecular physiology.

3.1.5. Aims and Objectives

Next generation sequencing techniques open the door to a wider exploration of the transcriptomes of *E. huxleyi* showing elevated and no calcification, promising also the illumination of new genes potentially involved in the calcification processes. Previously, the molecular controls of calcification in *E. huxleyi* were studied using phosphorous limitation (Wahlund et al., 2004a; Nguyen et al., 2005; Quinn et al., 2006), comparing isogenic non-

calcifying haploid with calcifying diploid life cycle-phases (Fujiwara et al., 2007; Richier et al., 2009; von Dassow et al., 2009;), and relating isogenic non-calcifying cultures to calcifying cultures (Mackinder et al., 2011). We have previously established (Chapter 2) that the bulk of calcification in this E. huxleyi PLY# M217 took place during the light phase in the late G1phase and is presumably energetically driven by photosynthetic carbon fixation. Furthermore, giving the assumption that higher gene expression related to biomineralisation processes is linked to the higher rates of calcification, gene expression important to coccolithogenesis could be explored by assessing the transcriptome in a high calcification late G1-phase (HC). Low levels of biomineralisation related gene expression could be assumed when no photosynthesis is occurring but cell are in the G1-phase (Paasche 2000) (see Chapter 2). In order to compare high calcification rates related gene expression to low calcification rates related gene expression the target cell harvesting time was chosen in the at low calcification rates in the early G1-phase (LC). Investigating E. huxleyi at calcifying and low calcifying phases of the G1-phase has the further advantage of limiting the degree of cell division derived gene expression noise. Furthermore, by using the next generation full transcriptome analysis approach other levels of molecular processes potentially involved in biomineralisation may become apparent. Therefore, cultures of E. huxleyi strain PLY# M217 were harvested at low and high rates of calcification in the G1-phase of the cell cycle. The transcriptomes at low and high calcification rates were sequenced on Hi Seq Illumina platforms and significant differences in transcript abundance between the low and high calcification phases were evaluated.

The aims of this investigation were:

- to sequence the transcriptomes of iso-genetic cultures from low and high calcification phases in the G1-phase to reduce cell division related transcript recovery,
- to determine significant differences in transcript abundance and diversity between the low and high calcification phase, and
- to investigate details of the molecular machinery that drives calcifcation.

3.1.6. Working hypothesis

The null hypothesises for these studies are:

- There are no differences in transcript abundance between the transcriptomes of E.
 huxleyi PLY# M217 from the high and low rate calcification period within the G1-phase;
- There are no differences in transcript diversity between the transcriptomes of *E. huxleyi* PLY# M217 from the high and low rate calcification period within the G1-phase;
- The general expression of genes related to calcification is not enhanced in the high calcification period when calcification rates were found to be at a maximum.

3.2. Materials and Methods

To identify the molecular processes involved in the formation of coccoliths RNA and proteins were extracted from *Emiliania huxleyi* PLY\$ M217 cultures when cells were calcifying at high and low rates. The timeframes for culture harvesting were determined from the results of Chapter 2. The physiological performance of the cultures was assessed to exclude any potential limitation of nutrients or alternations of the cell population development that would affect gene expression. The extracted transcripts of messenger RNA at high and low calcification rates were sequenced using next generation sequencing techniques. Subsequently, a thorough evaluation of the gene expression patterns in respect to the conditions high calcification (light) and low calcification (dark) was conducted and candidate genes involved in calcification were identified.

3.2.1.Experimental Design

Exponentially growing stock cultures of *Emiliania huxleyi*, strain PLY#M217, previously adjusted to light, temperature and nutrient regimes (F/50), were used to inoculate three 16-litres stock cultures in 20L Nalgene® culture vessels. The 16L cultures were reared for 3 to 5 generations until cell densities exceeded 50000 to 100000 cells mL⁻¹, in order to supply sufficient coccolithophore biomass for RNA and protein extractions.

3.2.2. Algae Culturing

Stock cultures of *Emiliania huxleyi* PLY# M217 were reared for 20 generation in 2L culture flasks in 1L filter-sterilized F/50 culture medium based on oceanic natural seawater (Guillard, 1975). The seawater was collected from offshore Plymouth (UK) and filtered through 0.22 μm pore-size Millipore-filters (Millipore, Billerica, USA). All algae cultures were grown at 19 °C, irradiance levels of 103 ± 6 μE sec⁻¹ m⁻¹ (n=32) in a 12:12 Light:Dark (LD) cycle using Sylvania white fluorescent F36W/135-T8 bulbs (Havells Sylvania Europe, Raunheim, Germany), and macronutrient concentrations of 36 μM nitrate and 1.45 μM phosphate at the time of culture inoculation. The algae cultures were mixed daily and cell densities were monitored using a Neubauer haemocytometer (Weber Scientific International, Teddington, UK).

Several 20 L Nalgene® culture vessels were prepared with 16 litres of F/50 culture medium based on sterilized oceanic seawater. Each culture medium was inoculated with 15000 cells ml⁻¹ and reared for 3 to 5 generations until the cell densities exceeded 50000 to 100000 cells mL⁻¹. Throughout the experiment some cultures were aborted because the growth of the cell

population collapsed. Only *E. huxleyi* cultures that remained in the exponential growth phase were used for transcriptome analysis. In total three replicate cultures for each calcification phase (low and high) were harvested. Hereafter, the replicate cultures were referred to as HC-1 to HC-3 and LC-1 to LC-3.

To estimate the physiological state of the *E. huxleyi* cells physiological and seawater parameters, such as cell densities, cell volume, POC, PON, PIC, nutrient uptake, DIC, total alkalinity, chlorophyll *a*, and photosynthetic health were assessed one day before culture harvesting and at the day of culture harvesting. The methods used to assess the cell physiological and seawater parameters were described in detail in Chapter 2 of this monograph. Hereafter, only modifications from the methods described in Chapter 2 are elaborated.

3.2.3. Culture harvesting

Cells were harvested for biomass collection at 7:30 pm and 7:00 am for the light incubation period and dark incubation period, respectively. The results of cell population growth and DNA content (Chapter 2) suggested that the cells were in the G1-phase at both harvesting time. Naturally RNA degrades rapidly (Jan, 2002; Baker et al., 2004; Deutscher, 2006). To limit RNA alteration a flow through filtration set-up as shown in Figure 3-1 was used to collect the cells. The cells were retrieved on 3 µm pore-size polycarbonate filters Ø147mm (Millipore Billerica, MA, U.S.A) fitted in a pancake-filter holder (see Figure 3-1). A Watson-Marlow Bredel Pump 620S (Falmouth, Cornwall, UK) at 50 rpm gently pressed the total coccolithophore suspension from the 20L Nalgene® culture vessels through the polycarbonate filter. To avoid sample contamination especially with RNAses or proteases all parts of the filtration set-up, (e.g. siphons, tubing, filter-holder, and filters) were washed for 24 hours in 10% hydrochloric acid prior to commencing the cell harvesting. Once the total E. huxlevi – suspension was siphoned through the filtration set-up the polycarbonate filter containing algae cells was transferred quickly onto a sterile custom made ice cooled plastic half pipe (10 cm diameter). The cells were washed off the filter with sterile filtered seawater (0.22 mm polycarbonate, Millepore®) and the concentrated suspension collected in a 50 mL falcon tube. The cell suspension was immediately centrifuged for 5 min at 4630 rpm and 4 °C (Rotanta 460R, Hettich Zentrifugen, Germany). The seawater supernatant was discarded, the concentrated cell pellet snap-frozen in liquid nitrogen and stored at -80 °C until RNA extractions were conducted. This harvesting procedure was completed within 25-30 minutes.

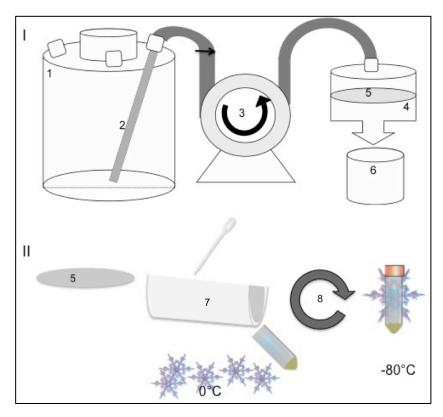


Figure 3-1: Harvesting workflow of *E. huxleyi* cultures. I – Pumping of culture medium from culture vessel (1) through siphon (2) via peristaltic pumping (3) onto 147 mm diameter polycarbonate filters (5) fitted in pancake filter membrane holder (4). The filtrate is collected in another culture vessel for sterilization (6). II – Collection of coccolithophores from filters (5) in a half-pipe (7) with sterile filtered seawater under cooling, centrifugation (8) for 5 min at 4630 rpm, snap-freezing of pellet and storage at -80°C.

3.2.4. Assessment of physiological performance of *E. huxleyi* cells

To estimate the physiological performance of *E. huxleyi* cells during the experiment the following parameters were assessed according to the methods described in Chapter 2 without modifications:

- Cell density
- Growth rate
- Photosynthetic health
- Particulate organic carbon (at one day prior and the day of harvesting)
- Particulate organic nitrogen (at one day prior and the day of harvesting)
- Particulate inorganic carbon (at one day prior and the day of harvesting)
- pH
- DIC, total alkalinity, salinity (at the time of harvesting)
- Nutrient concentrations (at the time of harvesting)

3.2.5. Statistics on non-molecular data

Differences in the physiological performance (see section 2.3) of *Emiliania huxleyi* cells in cultures harvested during the light and in the dark were graphically presented using SigmaPlot 12.5 (Systat Software, Salisbury, UK). Statistical tests, such as two-sample t-test, Mann-Whitney Rank Sum Test were applied on cell growth and fitness parameters to test for differences between conditions (HC and LC). In the case of the larger data set sizes retrieved for photosynthetic health and growth rate ANCOVA models in STATISTICA Version 10 (StatSoft Inc., Tulsa, USA) were applied to test for significant changes over time and between the conditions, using day as covariate. Shapiro-Wilk tests for normality and equal variance tests were performed in SigmaPlot 12.5 to confirm the suitability of the parametric design. Results of the normality tests and equal variance tests are not presented.

3.2.6.RNA extractions

Total RNA was extracted following a TRI Reagent® (Sigma-Aldrich, Dorset, UK) method. The TRI® total RNA extraction protocol uses the principle of RNAse inactivation by guanidinium isothiocyanate and an acidic phenol/chloroform separation of lipids and proteins from the RNA containing aqueous phase. The greatest yields of RNA quantity and quality were achieved using TRI Reagent® extraction followed by a Nucleospin® II (Machery-Nagel GmbH & Co KG, Düren, Germany) standard clean up protocol, which was supported by two subsequent DNA digestion steps. At first, a fraction of the frozen cell pellet (see section 3.2.3) was separated and transferred to a DNA/RNA free 2 mL Eppendorf tube. Then, 1.5 mL of cooled TRI Reagent® were added and the pellet resuspended by pipetting. Cell lysis was achieved by vortexing the TRI Reagent® cell suspension for 5 minutes with 20 acid – washed glass beads (0.5 mm diameter) added to the 2 mL Eppendorf tube. The suspension of disrupted cells was allowed 15 minutes at 37 °C for a complete inactivation of RNAses and dissociation of nucleoprotein complexes. The cell debris was separated from the suspension by centrifugation at 14000 g, 15 min, 4 °C (Mikro 22R centrifuge, Hettich Zentrifugen, Germany). Subsequently, the RNA was extracted and separated from DNA and proteins by adding 300 µL of chloroform (Sigma-Aldrich, Dorset, UK) and vigorous vortexing for 15 seconds. After allowing 2 min at room temperature centrifugation for 15 min at 12000 g and 4 °C (Mikro 22R centrifuge, Hettich Zentrifugen, Germany) completed the formation of the aqueous phase. The aqueous phase was pipetted into a fresh micro-centrifuge tube (1.5 mL) and another chloroform wash step conducted to remove remaining lipids and proteins. From the final collected aqueous

phase the RNA was precipitated with - 20 °C isopropanol (Sigma-Aldrich, Dorset, UK), incubated at - 20 °C for 20 min and the RNA pelleted by centrifugation for 15 min (12000g, 4 °C). After removal of the supernatant the RNA pellet was washed with 75% ethanol (Sigma-Aldrich, Dorset, UK) once and dried on ice under sterile conditions (laminar flow system Foster BHG 2006; Foster-air, Cornaredo, Italy). Subsequently, a first DNA digestion step using Ambion®-Turbo DNAse-free (Life Technologies Co.) was performed following the manufacturer's instruction. Preliminary trials, revealed that residual DNA on acrylamide gels was still present after the Ambion®-Turbo DNAse digestion step. Therefore, the resulting sample was submitted to a second on column DNA-digestion step using standard Nucleospin® II DNAse followed by a Nucleospin® II column clean up for RNA samples from reaction mixtures. The purified RNA sample was diluted in 100 μL DNAse/RNAse - free water (HyCloneTM, Thermo Scientific, Loughborough, UK) and stored on ice for shorter periods or at - 80 °C until further processing.

3.2.7.RNA Quality and Quantity

The spectrometric absorbance ratio at wavelength 280 and 260 nm A₂₆₀/A₂₈₀ was analysed as a measure for RNA purity and quantity (Glasel 1995) using a ND-1000 spectrophotometer (NanoDrop[®], Thermo Scientific, Wilmington, USA). The absorbance at 260 nm (A260) is a measure of nucleic acid concentration, whereas the absorbance at 280 nm shows amounts of contaminants, such as proteins or phenols, which may inhibit enzymatic reactions in downstream protocols. An A₂₆₀/A₂₈₀ ratio of 1.8 to 2.0 is preferable for RNA sequencing or complementary DNA library construction. RNA integrity describes the contribution of RNA subsets of different lengths to a population of RNA and it is of greatest importance when applications involve RNA quantitation for gene expression studies because it reflects the degradation status of the isolated RNA (Denisov et al., 2008). Naturally, cells contain only small amounts of messenger RNA but greater amounts of ribosomal RNA 18S and 28S fractions (5 kb and 2 kb in size, respectively). Therefore, a 28S/18S rRNA ratio close to 2 should be indicative for intact mRNA (Sambrook et al., 1987). The RNA integrity in the described experiments was measured on an automated capillary micro fluid electrophoresis system - ExperionTM (ExperionTM Bio-Rad Laboratories, Inc., Hemel Hempstead, UK) (Imbeaud et al., 2005) using StdSens chips and reagents. The ExperionTM - system delivers results in form of a virtual gel (electropherogram) and the RNA Quality Indicator (RQI-value). Three regions of the electropherogram are taken into account when calculating the RQI value: the 28S region, the 18S region, and the pre - 18S regions. The ExperionTM Bio-Rad system compares the sample to a standard and returns RQI values between 10 (intact RNA) and 1 (highly degraded RNA) for each eukaryotic RNA sample (for details see Denisov et al., 2008). An electropherogram also gives details about the presence of rRNA and tRNA segments – in the range of 5S and 5.8S - in the sample. For the subsequent steps of RNASeq Illumina sequencing a RQI threshold of 7.5 was used as a minimum requirement. The ExperionTM Bio-Rad StdSens protocol and recommendations were followed in detail to assess the integrity of the RNA samples. In the case of poor RQI values the extraction from the frozen cell pellet (section 3.2.6) was repeated until RNA quality specifications were affirmed. For sequencing 12 ng RNA diluted in TE-buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA) were aliquoted stored at - 80 °C.

3.2.8. Independent approach of promoter expression analysis

Following RNA extraction and RNA quality validation (section 3.2.7) another aliquot of 15 ng total RNA per sample was sent to DNAFORM Inc. (Leading Venture Plaza-275-1, Ono-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan) for cap analysis of gene expression (CAGE) (Shiraki et al., 2003; Kodzius et al., 2006). The CAGE identifies the exact transcription start site by sequencing short 5'-sequences of the mRNA population. In CAGE the beginning of the 5'mRNA is reverse transcribed after selecting the biotin residue at the cap sites using streptavidin-coated magnetic beads (Corninci et al., 1996). CAGE raw sequences have ben independently analysed by Dr. Reidar Andreson (University of Tartu, Estonia) to investigate differential patterns of promoter expression in *E. huxleyi* PLY\$ M217 at rates of high and low calcification.

3.2.9.Illumina sequencing

For the investigation of the transcriptomes from the at times of high and low calcification in the cell cycle of *E. huxleyi* the extracted RNA was sent to the Institute of Clinical Molecular Biology (IKMB) at the Christian-Albrechts-University Kiel, Germany for sequencing. In total 6 samples (3 x HC, 3 x LC condition) were shipped on dry ice to the IKMB for Illumina based RNA sequencing. The IKMB followed the Illumina TrueSeq sample prepation guide. RNA was reverse transcribed into cDNA using Sera Mag[®] oligo(dT)₁₄ tags, magnetic Oligo(dT) microparticles, which covalently bind specifically to polyadenylated mRNA and therefore establishing a population of cDNA from purely eukaryotic mRNA (see Sera-Mag manual for details). The prepared cDNA from low and high calcification periods of *E. huxleyi* was sequenced using a raw Illumina 2000 system sequencing at a depths of 100 bp paired reads.

Raw sequence reads were provided by the IKMB and in silico processed by Dr. Reidar Andreson, University of Tartu, Estonia.

3.2.10. Processing of paired end Illumina output data

The raw sequences from the Illumina sequencing were quality checked using FastQC Version 0.11.4 (www.bioinformatics.babraham.ac.uk/projects/). The sequencing data was then converted into sequence counts and gene expression analysis compatible data by Dr. Reidar Andreson, University of Tartu, Estonia. The software package Tophat (Trapnell et al., 2009; http://tophat.cbcb.umd.edu) was applied for clustering and mapping the transcript sequences to the reference genome of *E. huxleyi* CCMP 1516 version from 25.4.2008 available at http://genome.jgi.doe.gov/Emihu1/Emihu1.home.html. Then the Cufflinks package (Trapnell et al. 2010, http://bio.math.berkeley.edu/cufflinks) was utilized to test for significant differences in the abundance of transcripts between the light and dark condition.

Tophat uses a two-step read-mapping algorithm suitable for the alignment of reads from RNA-Seq experiments (Trapnell et al., 2009). First, the sequences are mapped to the reference genome using Bowtie, a short DNA sequence aligner (Langmead et al., 2009) that also accounts for 'initially unmapped reads'. The initial consensus of mapped regions is computed using the subroutine Maq (Li et al., 2008). In the analysis Dr. Reidar Andreson applied the following Tophat-parameters: number of threads 30 bases, inner-distance 300 bases, minimal intron length 20 bases, maximum intron-length 1000 bases, minimal anchor-length 10 bases, splice-mismatches 1, minimum-closure-intron 20 bases, maximum-closure-intron 1000 bases, minimal segment-intron 20 bases, and maximal segment-intron 1000 bases. In the case of paired end reads, as produced by the Illumina 2000® sequencer in this study, the counting of duplicate reads from the paired end approach was avoided.

The Cufflinks package was applied to estimate the abundance of transcripts from the paired end reads of the Illumina 2000® - data. Furthermore, Tophat-annotation was conducted to compare the differences in gene expression levels. The algorithm aligns overlapping 'bundles' of fragments, identifying spliced mRNA isoforms as pairs of 'incompatible' fragments by taking into account the distribution of fragment lengths for the identification of isoforms. Cufflinks counts the transcript abundance in fpkm (fragments per kilobase per million) and utilizes a beta-negative binomial model to estimate the variance of the RNA-Seq data and to

distinguish significant differences between treatment conditions such as the HC and LC running a t-test-like statistic. The significance is based on q-values. The q-value is a correction of the p-value that accounts for the likelihood of *a type 1 error* using a significance level threshold of 0.05 (see Benjamini and Hochberg, 1995). Cufflinks 2.0 produces multiple result tables that contain transcript abundance, isoform abundance, promoter area usage, transcription start sites counts, the coding sequence, and the significantly different transcripts. Subsequently, the R - package CummeRbund (available http://compbio.mit.edu/cummeRbund/) (Trapnell et al., 2012) was applied to build a database from the cufflinks output files. This database was used as the core for the analysis of differential expression between the conditions HC and LC applying procedures described in the CummeRbund manual and to create further tables isolating specific results of interest and connecting transcripts with annotation data (see details in section 3.2.11). The pipeline of transcript sequence mapping and differential gene expression analysis is summarized in Figure 3.2.

3.2.11. Assessment of data quality and of transcript abundance

The cufflinks output files were connected using the R-package CummeRbund to create a SQL – related database that linked transcripts with parameters such as expression data, isoforms, and transcription start site. In order to investigate the general data for over-dispersion, the quality of the sequencing data and the performance of the Tophat-Cufflinks pipeline graphical visualization, Box-Plots, and hierarchical clustering techniques were applied.

3.2.12. Assessment of transcript abundance in the high rates of calcification (HC) and low rates of calcification (LC) condition and overall identification success

Overrepresented transcripts in the light were assigned to the HC condition and transcripts overrepresented in the dark were assigned to the LC condition for all subsequent evaluations. Histograms of the transcript abundances and the fragment-sizes were produced through the R package CummRbund to investigate general differences between the transcriptomes from the HC and LC condition. The overall identification success of isoform, transcription start sites (TSS), coding sequences (CDS), promoters, splicing regions, and regulated CDS was called from the CummeRbund database. For details of the commands used refer to the CummeRbund manual (http://compbio.mit.edu/cummeRbund/manual_2_0.html).

3.2.13. Modification of the Cuffdiff output

The cuffdiff output file "gene_exp_func.diff" was the source of differential gene expression analysis between the HC and HC condition, whereas the significance level for differential gene expression between the conditions was q < 0.05. In the original output file some transcripts were present as duplicates and the clustering by the Tophat-Cufflinks pipeline was apparently omitted. To correct duplicate transcripts, the cufflinks output table "gene_exp_func.diff" was modified for downstream analysis. Multiple expression values for the same transcript sequence were simply summarized. According to Trapnell at al. (2012), adding transcript abundances referring to the same gene or transcript is permitted because the fpkm-values are directly proportional to the abundance of transcripts.

3.2.14. Gene recruitment and annotation success

The numbers of transcripts that could be recruited to genes of the JGI *E. huxleyi* reference genome (http://genome.jgi.doe.gov/Emihu1/Emihu1.home.html) were counted. Additional annotation information, such as KOG (euKaryotic Orthologous groups), KEGG (Kyoto Encyclopedia of Genes and Genomes), and protein information based on non-redundant protein NR, SwissProt and UniProt databases was downloaded from JGI sources and connected to the gene expression results. Subsequently, the transcript annotation success was assessed at the levels of gene recruitment, KOG annotations, KEGG annotations, and protein annotations and differences between the conditions evaluated.

3.2.15. Assessment of functional differences between the high calcification (HC) and low calcification (LC) condition using KOG-class annotations

The largest amount of functional annotations was provided by KOG information. Therefore, the KOG annotations were used to investigate functional differences between the conditions. The numbers of transcripts in relation to their predominance in the HC or LC condition were used to investigate differences in functional expression within KOG-groups and KOG-classes. The arbitrary significance level of p < 0.01 for Chi-Square tests was applied to classify significant differences in gene expression between KOG-classes. The data provided low degrees of freedom. Therefore, the Chi-square test with Yates-correction, was applied to distinguish significant deviation of the ratio of the number of significantly overexpressed genes LC:HC in each KOG-class to the overall ratio LC:HC of the gene expression by means of transcripts (19093:15310). Furthermore, an arbitrary threshold for the ratio of gene expression of all genes

expressed in each KOG-class and the ratio of gene expression for significantly higher expressedgenes was set at 2 and 0.5 to indicate difference in expression patterns in the functional KOG-classes. This ratio is considered to be comparable to the Chi-square approach. However, in those KOG-classes were omitted from consideration where the thresholds were created by an absence of transcripts in either condition.

3.2.16. Assessment of gene expression differences between the high calcification (HC) and low calcification (LC) condition

Gene expression differences between the HC and the LC condition were investigated using a number of approaches. First, it was of interest which transcripts might be absent from the other calcification condition in the G1-phase (HC or LC). Therefore, the genes unique to either condition were investigated. Genes with a potential role in the calcification process in E. huxlevi were taken in focus. Secondly, the functional groups according to KOG-annotations were applied to subdivide HC and LC transcriptomes. Following this KOG-class grouping, the frequency of transcripts in the HC condition was plotted against the frequency of transcripts in the LC condition, marking non-significantly and significantly more abundant transcripts. This graphical presentation of the transcripts in each KOG-class was used to identify interesting clusters of significant transcripts. The genes and the functions of the members of the selected transcripts were investigated in detail. Thirdly, a selection of molecules, previously reported in the literature to play a role in the processes surrounding calcification and coccolith formation in E. huxleyi, was made (Marsh et al. 1992; Wahlund et al., 2004; Nguyen et al. 2005; Quinn et al., 2006; Richier et al., 2009; von Dassow, 2009; Macckinder et al., 2009, 2011, 2012; Emery et al., 2012). The JGI gene ID were retrieved for the molecules of interest, such as V-type proton ATPases, clathrin, P - type proton ATPase, proton exchanger, Ca²⁺ - transporters, calmodulin, Ca²⁺ - binding proteins, GPA, bicarbonate transporter, and carbonate anhydrase (CA) and their gene expression levels plotted.

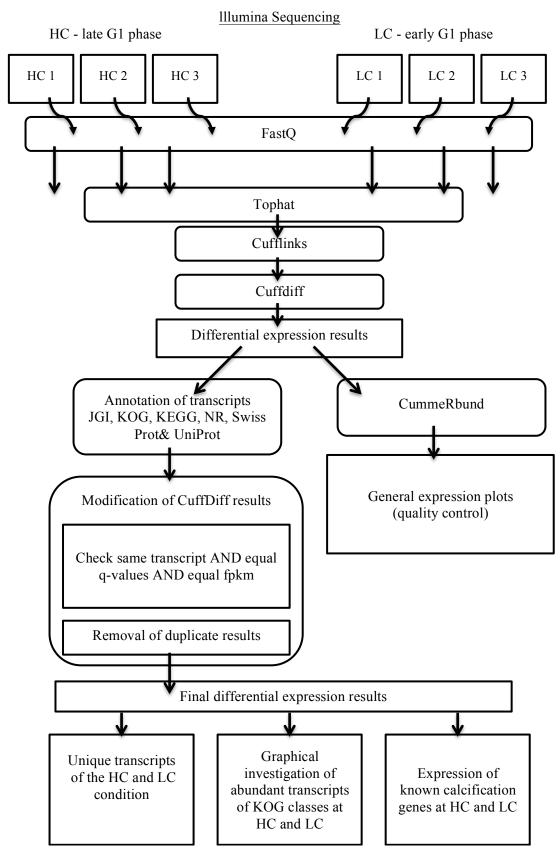


Figure 3-2: Flowchart showing the bioinformatics pipeline and data analysis from raw Illumina results to differential expression results comparing gene expression at the transcript level in the high calcification rate (late G1-phase) and low calcification rate phase (early G1-phase) of *Emiliania huxleyi* PLY# M217.

3.3. Results

The physiological parameters between the day before cell harvesting and the day of harvesting showed significant differences for PON and PIC. No significant differences were found between the high calcification and the low calcification condition. This suggests that the physiology of the *E. huxleyi* cell population was not altered. The results are graphically summarized in Figure 3.3.

3.3.1.Cell fitness parameters in experimental *Emiliania huxleyi* cultures

Growth rates per day were calculated from daily cell density measurements to assess the development of the *E. huxleyi* PLY# M217 cultures. Furthermore, physiological growth parameters such as particulate organic carbon per cell, particulate organic nitrogen, particulate inorganic carbon, and the photosynthetic quantum yield (Fv/Fm) were quantified to judge the fitness of the cells. The ratios of POC:PON and PIC:POC were calculated.

3.3.1.1. Cell culture growth

E. huxleyi PLY# M217 grew exponentially in all F/50 natural seawater cultures. Figure 3-3 A and B illustrate cell densities and growth rates observed in the *E. huxleyi* cultures until cell harvesting. Five out of 6 cultures showed a lag phase of one to two days before growth rates increased to above $0.5 \, d^{-1}$ (Figure 3-3 B). In one cultures (HC 3) this lag phase extended over two days. The maximum growth rate of $1.41 \, d^{-1}$ was observed in culture HC 3 between day 3 and day 4. Average growth rates of HC and LC cultures were 0.69 ± 0.02 (n=3; SD) and 0.68 ± 0.04 (n=3; SD), respectively. Despite the observed lag phase the growth rates in the culture vessels were not significantly different (ANOVA; df: 4,27; F = 0.147, p = (0.978).

3.3.1.2. Particulate organic carbon (POC) per cell

One day before harvesting POC was in average 1.36 ± 0.1 pmol cell⁻¹ in the light and 1.40 ± 0.27 pmol cell⁻¹ in the LC cultrues. At the day of harvest lower POC values were observed, being 1.04 ± 0.09 pmol cell⁻¹ and 1.19 ± 0.26 pmol cell⁻¹, for the HC and LC cultures respectively (see Figure 3-3 C). The sampling time was scheduled earlier than on the day before the harvesting due the extended work plan at the day of harvesting. No significant differences between conditions and sampling days became apparent (Kruskal-Wallis ANOVA; df: 3, H= 3.667, p = 0.381).

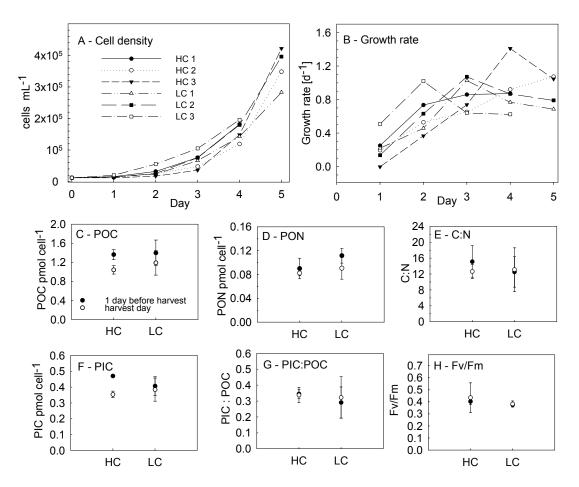


Figure 3-3: Cell fitness parameters of *E. huxleyi* cells in culture for transcriptome and proteome analysis. A - Cell densities in *E. huxleyi* cultures, B - Growth rates [μ] per day of *E. huxleyi* cultures; HC 1 to HC 3 replicate cultures for harvesting at high calcification rates and LC 1 to LC 3 for cultures harvested at low calcification rates. C - POC (Particulate Organic Carbon) content per cell, D - PON (Particulate Organic Nitrogen) content per cell, E - C:N (Ratios of particulate inorganic carbon to organic carbon), F - PIC (Particulate Inorganic Carbon) per cell, G - PIC:POC (Particulate Inorganic Carbon to Particulat Organic Carbon ratio), and H - Fv/Fm (average values of quantum yield of PSII based on FRRF, Chelsea II, measurements of *E. huxleyi* cells in cultures 1 day before and at the day of harvesting. For C, F, and H n = 3. For D, E, and G n = 2. Error bars show standard deviation from the mean.

3.3.1.3. Particulate Organic Nitrogen (PON) per cell

Averages of PON at the time of harvesting were 0.082 ± 0.007 pmol cell⁻¹ and 0.091 ± 0.018 pmol cell⁻¹ for the HC and LC cultures, respectively (compare Figure 3-3 D). No significant differences between conditions became apparent No significant difference was found in respect to PON between the different sampling times (Kruskal-Wallis ANOVA; df: 3, H= 2.833, p = 0.543).

3.3.1.4. Particulate Carbon to Nitrogen ratio (C:N) per cell

The ratios of organic carbon and nitrogen per cell at the day of sampling were 12.7 ± 1.8 and 13.1 ± 5.5 in the HC and LC cultures, respectively (see Figure 3 - 3 E). At the day before cell harvest C:N values were slightly higher with 15.1 ± 4.0 and 12.5 ± 3.8 for the HC and LC condition, respectively. No significant differences were found in the C:N values between the HC and LC cultures and the different sampling times (Kruskal-Wallis ANOVA; df: 3, H = 4.167, p = 0.324).

3.3.1.5. Particulate Inorganic Carbon (PIC) per cell

One day before the cell harvesting the PIC in the HC and LC cultures was 0.47 ± 0.01 and 0.41 ± 0.06 , respectively. Just prior cell harvest the PIC content was 0.34 ± 0.05 pmol cell⁻¹ and 0.32 ± 0.13 pmol cell⁻¹ in the HC and LC condition, respectively (see Figure 3-3 F). No significant difference was found for PIC between the conditions and the different sampling times (ANOVA; df: 3,8, F = 3.212, p = 0.083).

3.3.1.6. Particulate Inorganic Carbon : Particulate Organic Carbon ratio (PIC:POC)

The ratio of PIC to POC was conserved over the two days of measurement (see Figure 3-3 G). It was between 0.35 ± 0.03 and 0.34 ± 0.05 for the HC cultures and between 0.29 ± 0.10 and 0.32 ± 0.13 in the LC cultures, for the day before harvest and the day of harvest respectively. No significant difference was found in respect to PON between the HC cultures and the different sampling times. There was no difference in PIC:POC between one day before harvesting and the day of harvesting and the HC and the LC conditions (Kruskal-Wallis ANOVA; df: 3, H = 5.500, p = 0.139).

3.3.1.7. Photosynthetic health

The average photosynthetic efficiency was observed at 0.403 ± 0.024 (n=3; SD) in the HC cultures and 0.377 ± 0.016 (n=3; SD) in the LC cultures one day before cell harvesting. At the day of cell harvesting Fv/Fm values were 0.435 ± 0.122 (n=3; SD) at HC condition and 0.382 ± 0.025 (n=3; SD) at LC condition (see Figure Figure 3-3 H). No significant difference was found in respect to Fv/Fm values between the HC and LC conditions and the different sampling times (ANOVA; df: 3,8, F = 2.153, p = 0.172).

3.3.1.8. Nutrient consumption

Nutrient consumption of the cell populations in the cultures is shown in Table 3-1. Cells consumed in average 14.3 ± 2.2 mmol L⁻¹d⁻¹ of nitrogen and 0.530 ± 0.08 mmol L⁻¹d⁻¹ phosphorous per day. No significant differences of nitrogen or phosphorous uptake within all *E. huxleyi* cultures were found (ANOVA [N uptake]; df: 1,5, F = 0.126, p = 0.741; (ANOVA [P uptake]; df: 1,5, F = 1.926, p = 0.237).

Table 3-1: Nutrient consumption in E. huxelyi cultures within the last day before culture harvesting.

	N uptake	P uptake	
Culture	[µmol L ⁻¹ d ⁻¹]	[µmol L ⁻¹ d ⁻¹]	
HC 1	15.57	0.64	
HC 2	16.97	0.60	
HC 3	11.30	0.46	
LC 1	12.00	0.45	
LC 2	14.89	0.51	
LC 3	14.87	0.50	

3.3.2. Dissolved inorganic carbon, total alkalinity and pH

Results for dissolved inorganic carbon, total alkalinity and pH are given in Table 3-2. In average DIC was in average 1789 \pm 159 mmol kg⁻¹ SW in the HC cultures and 1945 \pm 66 mmol kg⁻¹ SW in the LC cultures. Total alkalinity (At) means were 2102 \pm 110 mmol kg⁻¹ SW in the HC condition samples and 2228 \pm 48 mmol kg⁻¹ SW in the LC condition samples. Values of pH were 8.04 ± 0.02 in average in the HC cultures and 8.02 ± 0.03 in average in the LC cultures.

Table 3-2: Seawater parameters in the *E. huxelyi* culture medium before the harvesting of cultures. Dissolved inorganic carbon (DIC) and total alkalinity (At) are presented. Averaged values for pH and standard deviation over the growth period of 5 days for *E. huxleyi* cultures.

	DIC	At	pH (n = 5)
Culture	[mmol kg ⁻¹ SW]	[mmol kg ⁻¹ SW]	$(Average \pm SD)$
HC 1	1967.5	2222.7	8.02 ± 0.04
HC 2	1736.1	2076.9	8.05 ± 0.06
HC 3	1663.3	2007.4	8.04 ± 0.04
LC 1	1929.0	2223.2	7.99 ± 0.08
LC 2	1888.3	2183.0	8.03 ± 0.03
LC 3	2018.3	2278.3	8.05 ± 0.05

3.3.3.Transcriptomics

3.3.3.1. RNA quality and integrity

The RNA purity achieved the recommended values for the ratios 260/230 and 260/280 (compare Table 3-3).

Table 3-3: NanoDrop parameters of RNA samples assigned for Illumina transcriptome sequencing

Sample - Label	260/230	260/280
HC 1 – L1	2.04	2.33
HC 2 - L2	2.05	2.01
HC 3 - L3	2.02	2.41
LC 1 – D1	2.04	2.32
LC 2 - D2	2.04	1.95
LC 3 - D3	2.04	2.38

Sufficient integrity of the RNA samples extracted from cells of the HC and LC conditions is confirmed by the RQI values. The 28S:18S ribosomal RNA ratio is below 2 in all samples, which is a common finding in algae and other marine organisms (Dr. John Gittins pers. communication) (see Table 3-4 and Figure 3-11).

Table 3-4: RNA concentrations and RQI values from chip-based electrophoresis RNA samples for Illumina based transcriptome analysis.

Sample - Label	RNA conc. [ng mL ⁻¹]	Ratio [28S:18S]	RQI
HC 1 – L1	417.0	1.67	8.8
HC 2 - L2	379.8	1.72	8.6
HC 3 - L3	468.4	1.57	8.4
LC 1 – D1	350.1	1.59	8.6
LC 2 – D2	468.2	1.68	9.0
LC 3 – D3	262.5	1.81	8.8

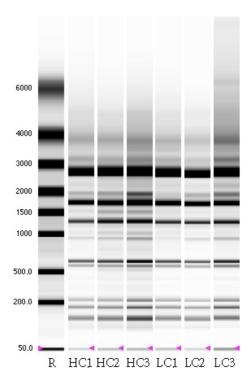


Figure 3-4: Virtual gel of RNA-samples from chip-based electrophoresis. R: Ladder, HC1 – HC3: Samples taken at the end of the Light period – HC-condition, LC1 – LC3: Samples taken at the end of the Dark period – LC-condition.

3.3.3.2. Illumina raw sequences quality check and results of sequencing

The raw sequences from the Illumina sequencing were quality checked using FastQC Version 0.11.4 (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc). All sequences were 101 bp long. No sequences of poor quality were observed (data not shown). No sequence was flagged of poor quality. However, the per base sequence quality showed dropping reliability of base identification after around 80 bp with quality score values below 25 in all replicate samples. This is not an uncommon observation in Illumina sequencing and due to photobleaching of the dyes from laser scanning. The per-sequence quality score was good in all sequenced samples. No concerns resulted from using the Illumina raw sequences in the Tophat – Cufflinks pipeline. Basic statistics of Illumina reads including total reads in each sample and unique hits to the reference genome are summarized in Table 3-5.

Table 3 - 5: Basic results of the Illumina experiment.

Sample	Total reads	GC content	Reads removed	Unique hits to reference genome
HC 1	14864840	66 %	0	73.36
HC 2	18687928	66 %	0	74.08
HC 3	14537310	66 %	0	73.62
LC 1	17147800	67 %	0	73.62
LC 2	15536898	67 %	0	73.72
LC 3	14313635	66 %	0	74.38

3.3.3.3. General results and quality control of the Tophat – Cufflinks pipeline

An over-dispersion of transcript frequencies or differences in the abundances of transcripts of different length between the replicate samples was not observed. Over-dispersion of transcripts in the RNASeq replicates was visualized using Box-plot (see Figure 3-5). The boxes indicate that transcripts with higher fpkm were found in replicates of the LC condition. Outliers with a high fpkm-value were represented more abundant in the HC condition (one fpkm equals 10000 transcripts per 100 ng RNA; Trapnell et al., 2010). In the dark (LC condition) outliers of low fpkm-value appear to be more frequent. Replicate HC1 shows a greater abundance of transcripts within the first to third quartile of the data. This represents a slight dissimilarity to the replicates HC2 and HC3 and is reflected also in the hierarchical cluster analysis (see Figure 3-6). However, the dissimilarity is small and only present in one replicate. In subsequent analyses of gene expression differences this circumstance is likely not to cause a significant effect.

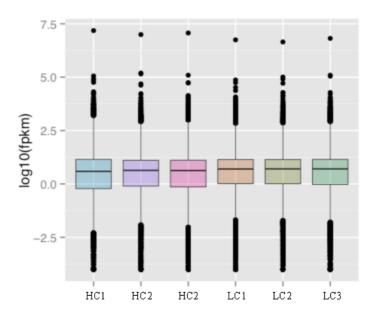


Figure 3-5: Transcript frequencies of trascriptomic samples. CummeRbund-Box-Plot showing the presence of transcripts in each replicate of the condition HC and LC in the G1-phase of *Emiliania huxleyi* (x-axis) presented as fragments per kilobase of transcript per million mapped (fpkm), including outliers. One fpkm equals 10000 transcripts per 100 ng RNA (Trapnell et al., 2010).

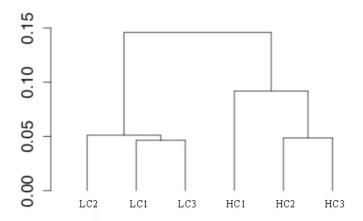


Figure 3-6: Dissimilarity-analysis of transcriptome samples. CummeRbund-Hierachical clustering analysis showing dissimilarities of all transcripts in the repleiates of the conditions HC and LC.

3.3.3.4. Transcript abundances relative to HC and LC condition

The frequency of transcripts relative to their length in fpkm is presented in Figure 3-7 to visualize differences in the population of transcripts of different sequence length in the HC and LC condition. It was obvious that transcripts of around $10^{0.6}$ to $10^{1.2}$ fpkm were more abundant in the dark (low calcification rates condition). In the light (high calcification rates condition) transcripts in the ranges of around 10^{-1} to $10^{0.4}$ fpkm and around 10^{2} to $10^{3.2}$ fpkm were more frequent.

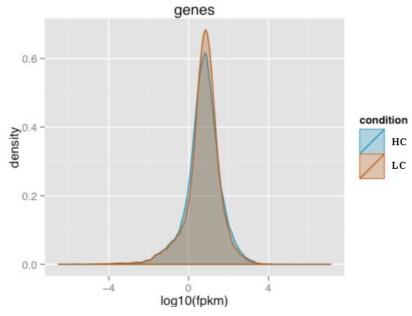


Figure 3-7: Transcript length versus transcript abundance in HC and LC condition. Transcript abundance (density – y axis) in the HC and LC condition relative to transcript length (x-axis) is presented. In this presentation 5269 cases in the HC condition and 5263 cases in the LC condition were automatically removed by the CummeRbund package.

General gene recruitment success with Cufflinks:

Cufflinks conducted counts of reference genome matches in the combined transcriptomes of *E. huxleyi* PLY\$ M217 in HC and LC conditions. A total of 43009 genes were counted in both conditions. The original results from the Cufflinks differential expression analysis algorithm were corrected and general statistics of sequence annotation were performed. Low quality or inconclusive data (see Section 3.2.13) was omitted from the analysis and multiple gene hits were merged by transcript abundances. Then the gene expression data set comprised of 34403 transcripts of which 24352 transcripts found matching sequences on the JGI *E. huxleyi* reference genome and 9999 could be mapped to know genes of the JGI *E. huxleyi* reference genome (see Table 3-6).

Table 3-6: Annotation success of transcripts. The table summarizes the transcripts found in *E. huxleyi* in the HC and LC condition, showing recruitment success to the JGI- reference genome, protein knowledge base matches of transcript clusters, and the number of retrieved KOG annotations. The number of transcripts found significantly more abundant in the HC or the LC condition are given in the columns: HC sig. (significantly more abundant transcripts in HC condition – high calcification and light incubation period) and LC sig. (significantly more abundant transcripts in LC condition – low calcification and dark incubation period).

	Total	HC total	HC sig.	LC total	LC sig.
JGI reference gene hits	9999	6446	1846	3553	515
Protein Sequences hits	15150	7099	1332	8051	1299
Transcripts with KOG annotation	9974	4564	420	5410	1065
Total number of transcripts	34403	15310	3216	19093	3762

Annotation success:

A total of 15150 transcript-clusters, 44% of the transcriptomes, matched to known proteins. Functional annotation based on euKaryotic Orthologous groups (KOG) could be provided for 22 % (7689) of the transcriptome (see Figure 3-8). However, 228 transcript-sequences had only KOG annotation but no matches in protein databases. The total number of transcripts having KOG annotations was 9974.

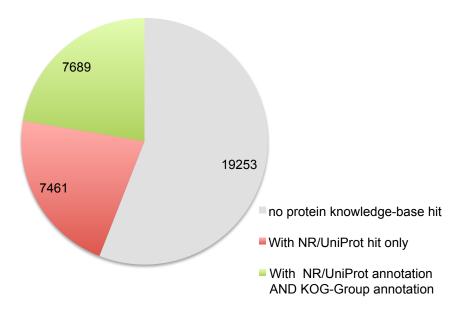


Figure 3-8: Transcript annotation success. The degree of non-redundant and UniProt protein and euKaryotic Orthologous groups (KOG) annotation in the combined transcriptomes of HC and LC conditions is presented.

KEGG-Pathway annotations:

Annotations of KEGG-pathways only provided annotations for 2748 recruited transcripts. A figure presenting the transcripts abundance for each KEGG pathway class can be found in the Appendix A of this monograph.

Significantly different expressed genes:

Between the HC and LC condition 6978 transcripts (20 %) out of the total 34403 transcripts were significantly different expressed.

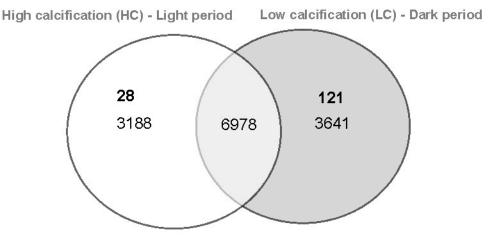


Figure 3-9: Significantly different and unique transcripts. Number of significantly different transcripts found in the transcriptomes of *E. huxleyi* in the HC and LC conditions are shown together with transcripts that were unique (bold letters) for the HC and LC conditions.

Table 3-7: Annotation success of significantly different transcripts. Number of transcripts found in the transcriptomes of E. huxleyi in the HC and LC conditions are presented in respect to counts of significantly different transcripts at the q-value threshold < 0.05 and numbers of transcripts with annotation information.

Category	Total	НС	LC	Significant
Total number	34403	15310	19093	6978
Significantly different ($q = < 0.05$)	6978	3216	3762	
Unique transcripts ($q = < 0.05$)		28	121	
All unique transcripts		153	177	
NR/UniProt/SwissProt hit	15150	7099	8051	2631
Sig. with NR/UniProt/SwissProt hit	2631	1332	1299	

A total of 3216 transcripts were significantly more frequent in the light (high calcification condition), of which 28 transcripts were unique for the HC condition. In the dark (low calcification condition) 121 transcripts were unique and 3641 transcripts significantly more abundant (compare Figure 3-9 and Table 3-6). Out of the total of 15150 transcripts with protein annotation 47% were higher expressed in the HC and 53% were higher expressed in the LC condition. Only 2631 of the protein annotated transcripts showed significant differences, of which 1332 were significantly higher expressed in the HC condition and 1299 significantly higher expressed in the LC condition (compare Table 3-7).

3.3.3.5. Functional differences of the *Emiliania huxleyi* transcriptome in the HC and LC condition based on euKaryotic Orthologous groups (KOG) annotations

The euKaryotic Orthologous groups (KOG) annotations provided the highest number of functional annotations represented with 9974 transcripts. Therefore, KOG-groups and KOG-classes were used to investigate general functional features of the transcriptomes at the HC and LC condition. To evaluate differences in functional features between the HC and the LC condition the number of transcripts for all featured KOG-groups and KOG-classes were counted in respect to predominance in the HC or LC condition of the G1-phase of the cell cycle and their significant different overexpression in the HC or LC condition.

KOG-Group level:

In this study it was observed that higher numbers of transcripts were more frequent in the dark period (compare Table 3-6). This was also reflected by the counts of transcripts with KOG-groups and KOG-class annotations. At the functional level of KOG-group no group showed pronounced presence of genes relative to the condition and total ratio of transcript predominance (see Table 3-8).

Table 3-8: KOG-group association of transcriptomes. Numbers of transcripts annotated with KOG-groups, for the total population, transcripts overexpressed in the Light or Dark condition, and significantly different transcripts in the HC or LC condition.

		Overa	ıll at	Signifi	cant at
KOG-Group	Total	HC	LC	HC	LC
Cellular processes and signalling	3357	1543	1814	277	343
Information storage and processing	2190	1081	1109	157	198
Metabolism	2242	934	1308	319	208
Poorly characterized	2185	1006	1179	178	205

The highest number of transcripts (3357) was found in the "Cellular processes and signalling" group and provided 34 % of the transcripts, combined in the HC and LC condition. Significantly more frequent transcripts in the LC and HC condition of the KOG-group 'cellular processes and signalling' transcripts contributed 18 % and 17 % (343 and 277), respectively (compare Figure 3-10). Twenty-two per cent of the transcripts in the HC and LC condition were related to 'Information storage and processing'. However, higher rates of significant gene expression were found in the Dark condition. A portion of 22 % of the gene transcripts attributed to the KOG-group 'Metabolism', which were slightly more frequent in the dark (58 % of 2242). Only 25 % of the 'Metabolism' gene transcripts were significantly more abundant in the light (HC condition) compared to 30 % significantly more abundant in the LC condition. Another 22 % of the gene transcripts were 'Poorly characterized'.

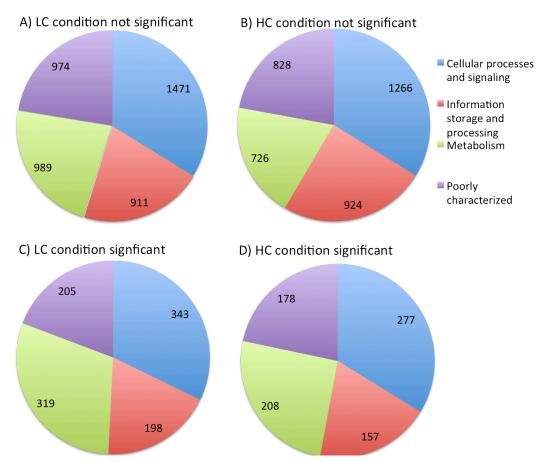


Figure 3-10: KOG-group association of transcriptomes. Number of transcript hits assigned to KOG-groups being singificantly or not significantly over-presented in the HC (high calcification) or LC (low calcification) condition. Significance level was set at q < 0.05.

KOG-Class level:

Functional differences in gene expression between the HC and LC condition were assessed at KOG-class level. The ratio LC:HC of the number of all genes was used as the expected ratio to which the ratio of significantly more abundant transcripts for each KOG-class was compared by means of Chi-square statistics (see Table 3-9 for a summary of the statistical results). Furthermore, the LC:HC ratio being equal or exceeding the arbitrary thresholds of 0.5 or 2 was used to identify relevant KOG-classes for cell functional evaluation (see Table 3-10). The LC:HC ratios of the KOG-classes 'Translation, ribosomal structure and biogenesis', 'Posttranslational modification, protein turnover, and chaperones', and 'Lipid transport and metabolism' showed significant deviation from the expected ratio (Chi-square test, p < 0.01, see Table 3-8).

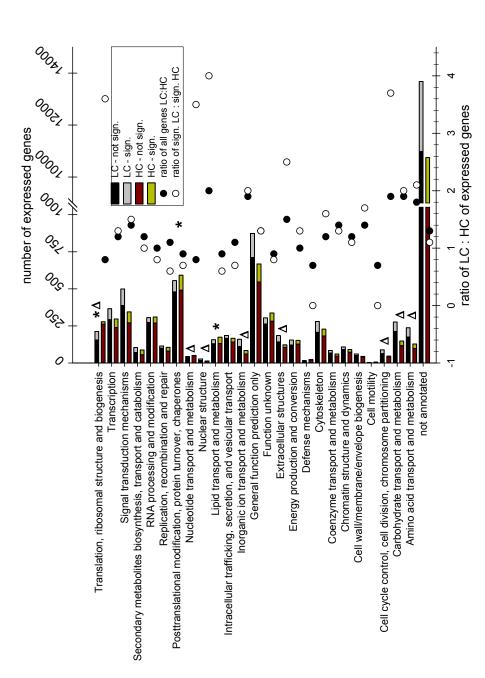

The abundance ratios of the expressed genes from the entire gene population exceeded the thresholds of 2 (higher abundance in the dark incubation period) only in the KOG-class 'Nuclear structure'. However, 'Nuclear structure' expression was even higher for significantly different expressed KOG-class annotated genes, showing a ratio of 4. For significantly different expressed KOG-class annotated genes the ratios exceeded 2 also in the KOG-classes 'Translation, ribosomal structure and biogenesis', 'Nucleotide transport and metabolism', 'Inorganic ion transport and metabolism', 'Extracellular structures', 'Cell cycle control, cell division, chromosome partitioning', 'Carbohydrate transport and metabolism', and 'Amino acid transport and metabolism', showing higher numbers of KOG-class annotated genes to be expressed in the LC condition. The results for significantly more abundant transcripts for each KOG-class by means of Chi-square statistics and the abundance ratios of expressed KOG-class annotated genes for the entire gene population and the significantly higher expressed genes are summarized in Figure 3-11.

Table 3-9: Differences in transcriptomes by KOG-classes. Results of the analysis for significant differences between the expected LC:HC ratio from the whole transcriptome population and the observed LC:HC ratio of significantly more abundant transcript in each KOG-class from Chi-Square tests with Yates-correction (p<0.01) testing. KOG-classes that showed significantly different LC:HC ratios were marked bold. The transcript abundances in each KOG-Class can be found in Table 3-10.

KOG class	All genes vs. sig. KOG- Class
Translation, ribosomal structure and biogenesis	< 0.001
Transcription	0.812
Signal transduction mechanisms	0.224
Secondary metabolites biosynthesis, transport and	0.521
RNA processing and modification	0.045
Replication, recombination and repair	0.023
Posttranslational modification, protein turnover	0.001
Nucleotide transport and metabolism	0.313
Nuclear structure	0.099
Lipid transport and metabolism	0.009
Intracellular trafficking, secretion, and vesicular transport	0.101
Inorganic ion transport and metabolism	0.060
General function prediction only	0.608
Function unknown	0.016
Extracellular structures	0.022
Energy production and conversion	0.949
Defence mechanisms	0.176
Cytoskeleton	0.195
Coenzyme transport and metabolism	0.926
Chromatin structure and dynamics	0.873
Cell wall/membrane/envelope biogenesis	0.755
Cell motility	0.386
Cell cycle control, cell division, chromosome partitioning	0.012
Carbohydrate transport and metabolism	0.023
Amino acid transport and metabolism	0.032

period (HC and LC condition), which were KOG-class annotated, are presented. The calculated ratios of transcript numbers LC: HC for the total transcripts and significantly higher expressed transcripts are given. The KOG-classes are marked bold upon exceeding either the arbitrary expression ratio thresholds of 2 or 0.5. Asterisks at the KOG-class name indicate the significant difference of gene expression ratios (p < 0.01) according to Table 3-9. Table 3-10: KOG-class association of transcriptomes. Total numbers of transcripts and significantly higher abundant transcripts in the light and dark incubation

	LC condition	dition		HC condition	dition		Total ratio	Ratio Sig.
KOG class	Not sig.	sig.	Unique	Not sig.	sig.	unique	LC:HC	LC:HC
Translation, ribosomal structure and biogenesis *	155	58	I	262	91	0	8.0	3.6
Transcription	292	74	0	240	99	0	1.2	1.3
Signal transduction mechanisms	387	112	1	271	73	4	1.4	1.5
Secondary metabolites biosynthesis, transport and catabolism	71	33	2	99	32	0	1.2	1.0
RNA processing and modification	274	32		569	42	0	1.0	8.0
Replication, recombination and repair	100	15	0	80	26	0	1.1	9.0
Posttranslational modification, protein turnover chaperones *	480	75	0	491	101	0	6.0	0.7
Nucleotide transport and metabolism	37	7	0	20	7	0	8.0	3.5
Nuclear structure	16	12	0	11	3	0	2.0	4.0
Lipid transport and metabolism *	130	27	0	132	42	3	6.0	9.0
Intracellular trafficking, secretion, and vesicular transport	167	19	0	141	26	0	1.1	0.7
Inorganic ion transport and metabolism	111	49	0	09	24	0	1.9	2.0
General function prediction only	711	163	2	546	122	1	1.3	1.3
Function unknown	263	42	1	282	99	0	6.0	8.0
Extracellular structures	143	42	1	106	17	1	1.5	2.5
Energy production and conversion	122	33	2	127	26	1	1.0	1.3
Defence mechanisms	16	0	1	20	3	0	0.7	0.0
Cytoskeleton	207	73	2	183	45	3	1.2	1.6
Coenzyme transport and metabolism	29	18	0	46	14	0	1.4	1.3
Chromatin structure and dynamics	06	19	0	73	17	0	1.2	1.1
Cell wall/membrane/envelope biogenesis	51	10	0	39	9	0	1.4	1.7
Cell motility	4	0	0	4	2	0	0.7	0.0
Cell cycle control, cell division, chromosome partitioning	63	5 6	1	39	7	0	1.9	3.7
Carbohydrate transport and metabolism	213	63	0	117	31	0	1.9	2.0
Amino acid transport and metabolism	175	63	1	66	30	1	1.8	2.1
Not annotated *	10896	2697		8250	2396	0	1.3	1.1

not significant differences in LC and HC conditions (see legend) are presented. Significant differences of the observed transcript abundance Figure 3-11: Differences of transcriptomes by KOG-classes. Number of transcripts (top x-axis) per KOG-class vindicating significant and ratio LC:HC of KOG-class against entire transcriptomes (p < 0.01, Chi-Square test with Yates-correction as in Table 3-8) is indicated by asterisks. (△) Indicating expression ratios LC: HC exceeding the threshold of 0.5 or 2 (see Table 3-9).

Comparison of unique and significantly higher expressed transcripts in the high calcification (HC) and low calcification (LC) conditions of the G1 cell-cycle phase

The number of total unique transcripts and unique significant transcripts varied between the conditions. In total 153 transcripts were unique in the HC condition and 177 transcripts were unique in the LC condition. For a large number of unique transcripts no annotation data was available. Only 28 unique transcripts were significantly increased at HC and 121 unique transcripts were significantly increased in the LC condition. For the HC condition only 9 of the significant transcripts matched known proteins. In total, gene annotations for 54 significantly overexpressed and unique transcripts in the LC condition were retrieved. Further details of the annotation success of unique transcripts are given in Table 3-11.

Table 3-11: Unique transcripts in the light and dark and their annotation success. Number of the light and dark condition with and without annotation (KOG-desc.: KOG-description, Sig.: significant, Not sig.: not significant)

	H	C condition	ns	I	LC condition	n	Grand
	Total	Not sig.	Sig	Total	Not sig.	Sig	total
Sequenced transcripts	153	125	28	177	56	121	330
Recruited genes	82	73	9	97	46	51	179
With KOG-desc.	14	12	2	16	6	10	30
With protein annotation	40	34	6	54	27	27	94

Unique significant transcripts in the high calcification in the G1-phase condition

The three most frequent significantly unique transcripts in the HC condition with known annotation were similar to a proton-coupled amino acid transporter 3 (JGI\$ 225551, UniProt ID ID: Q4V8B1, q-value: 0.0096), a pentatricopeptide repeat-containing protein At2g18940 (JGI\$ 205977, UniProt ID: Q64624, q-value: 0.1284), and a putative homeobox protein R749 (JGI\$ 250018, UniProt ID: Q5UP03, q-value: 0.01298). The pentatricopeptide repeat-containing protein At2g18940 was also unique and significantly transcribed by the JGI\$ 249953. For further details of unique significant transcripts in HC condition refer to Table 3-12. The most abundant transcript (JGI\$ 352298) only found at HC had an unknown function. The full list of unique transcripts in the HC condition is given in the Appendix A Table 2, including transcripts not being significantly different, without annotation data or matching genes in the *E. huxleyi* reference genome.

Unique significant transcripts in the low calcification in the G1-phase condition

In the LC condition the three most significantly and uniquely abundant transcripts were a probable fatty acid methyltransferase (JGI# 454253, UniProt ID: P31049, q-value: 1.18 10-16), a transcript recruiting to gene JGI# 446057, q-value: 2.54 10-15 without a known protein, and a putative uncharacterized protein (JGI# 205338, UniProt ID: D8LH42, q-value: 2.88 10-15) with a suggested signal transducer activity inferred from electronic annotation. For further details of unique significant transcripts at LC refer to Table 3-13. The full list of unique transcripts found in the LC condition treatment is given in the Appendix A Table 3, including transcripts without being significantly different, having annotation data provided or recruiting to known genes in the *E. huxleyi* reference genome.

Table 3-12: Significantly higher abundant transcripts unique in the high calcification (HC) condition of the G1-phase of the *E. huxleyi* cell cycle, with match of sequence to the reference genes (Sig.: if significant).

Function	Proton-coupled amino acid transporter 3	Pentatricopeptide repeat-containing protein At2g18940	Putative homeobox protein R749	Pentatricopeptide repeat-containing protein At2g18940	1	Flavohemoprotein	1	Transcriptional regulatory protein	*Serine/threonine protein kinase
UniProt ID	Q4V8B1	064624	Q5UP03	064624	1	Q6LM37	1	A0PLM4	
Sig.	yes	yes	yes	yes	yes	yes	yes	yes	yes
q_value	9600.0	0.0128	0.0130	0.0153	0.0204	0.0241	0.0293	0.0388	0.0390
Transcripts at HC [fpkm]	8.63	2.48	14.50	1.67	5.97	1.12	44.25	1.83	1.71
Gene	225551	205977	250018	249953	201176	435200	352298	98132	369373

* based on KOG definition

Table 3-13: Significantly higher abundant transcripts unique in the low calcification (LC) condition of the G1-phase of the *E. huxleyi* cell cycle with match of sequence to the reference genes (Sig.: if significant).

D Function	Probable fatty acid methyltransferase		2 Putative uncharacterized protein	*FOG: Zn-finger		2 Putative surface protein bspA-like	3 Serine/threonine-protein kinase chk-1		*Collagens (type IV and type XIII)		Putative uncharacterized protein	MAP kinase phosphatase with leucine-rich repeats protein 3	Putative	•	•	•	UPF0012 hydrolase in pqqF 5'region		7 Formamidase-like protein	Porphyromonas-type peptidyl-arginine deiminase	Predicted protein	3 Putative uncharacterized protein
UniProt ID	P31049	•	D8LH42	•	•	Q8MTI2	69N3Z3	-	•	1	F0Y858	Q54Y32	F0Y858	-	-	-	P55176	-	B7G3J7	A9A494	CIEILS	F2TWL3
Sig.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
q_value	1.18E-16	2.54E-15	2.88E-15	1.54E-14	5.90E-13	4.28E-12	8.81E-11	1.12E-10	3.08E-09	7.65E-09	1.07E-07	2.10E-07	2.94E-07	4.70E-07	7.99E-07	1.18E-06	1.27E-06	1.42E-06	3.01E-06	3.08E-06	2.40E-05	6.33E-05
Transcripts at LC [fpkm]	24.87	24.85	271.96	13.28	12.24	27.64	6.57	42.00	7.65	10.01	5.50	4.09	5.24	4.31	4.62	5.27	4.40	4.19	16.09	3.30	2.94	2.78
Gene	454253	446057	205338	439818	435479	309174	196275	450646	455889	208723	459932	208470	456341	456791	450077	435146	456340	240013	258092	221272	217995	233951

Table 3 - 13 continued

			i				1								
Function		Putative uncharacterized protein	Mitochondrial substrate carrier family protein ucpB	Predicted protein	1	ı	Porphyromonas-type peptidyl-arginine deiminase	1	ı	Mpv17-like protein 2	ı	ı	Putative aldolase class 2 protein PA3430	*LRR-containing protein	Beta, beta-carotene 9', 10'-oxygenase
UniProt ID		F0Y048	B0G143	B7G168		1	A9A494		1	6000	1	1	О9НҮН5	-	Q99NF1
Sig.		yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
q_value		7.15E-05	9.21E-05	0.00015	0.00017	0.00028	0.00031	0.00041	0.00107	0.001111	0.00123	0.00143	0.00150	0.00169	0.00227
Transcripts at LC [fpkm]		4.43	3.58	3.97	6.62	100.07	1.60	8.94	2.55	3.89	2.44	2.18	2.58	96.0	06.0
Gene		207272	454351	247181	352052	249502	218752	243061	109294	222516	237168	251402	461189	117279	113812

Table 3 - 13 continued

				se											
Function	ı	Protein Mpv17	Lipase 1	Phthiocerol synthesis polyketide synthase type I PpsA	Beta, beta-carotene 9', 10'-oxygenase	UPF0012 hydrolase in pqqF 5'region	Protein strawberry notch homolog 1	ı	ı	Predicted protein	ı	Putative membrane protein	1	-	<u> </u>
UniProt ID	1	Q5TZ51	Q8NUI5	Q10977	Q99NF1	P55176	Q5F371	1	,	C1DZB7	,	A9G2Z3		-	ı
Sig.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
q_value	0.00258	0.00335	0.00455	0.00663	0.00820	0.01044	0.01163	0.01301	0.01364	0.01490	0.01581	0.01944	0.02808	0.03236	0.04740
Transcripts at LC [fpkm]	4.73	2.56	5:33	3.71	2.20	88.0	1.92	1.63	1.15	1.77	1.54	26.0	0.88	1.88	1.96
Gene	424057	232962	248076	211836	113553	248875	211047	359963	103163	232178	249876	244412	255132	229436	369188

* based on KOG-definition

Transcripts from each KOG-class selected by means of graphical distinctiveness

A graphical presentation approach was used to identify distinct significantly more abundant transcripts in the high calcification (HC) and low calcification (LC) condition of the G1-phase of the *E. huxleyi* cell cycle. Hence, the frequency of the transcripts of each KOG - class was plotted for the light (x-axis; HC condition) and dark (y-axis; LC condition) and are presented (see Figure 3-12 to Figure 3-16). From the figures significantly more abundant transcripts were extracted and presented in the Appendix A Table 4. The focus was to extract transcripts from genes, which are potentially involved in the calcification processes in *E. huxleyi*. Fifteen transcripts potentially related to calcification in *E. huxleyi* were identified (see Table 3-14). Ten of the identified transcripts were significantly more frequent in the HC condition and only 5 were significantly more frequent in the LC condition.

The three most abundant transcripts in the HC condition were from the clusters recruiting to calreticulin (JGI\$\pm\$426711, UniProt ID: P15253, q - value: 0.031, 1206 fpkm in the HC condition, log2fold-value: -3.1), GPA - calcium binding protein (JGI\$\pm\$431830, UniProt ID: Q0MYW8, q - value: 1.29 10⁻⁵, 1026 fpkm in the HC condition, log2fold - value: -6.16), and a synaptobrevin-B (JGI\$\pm\$444996, UniProt ID: Q54GB3, q - value: 0.031, 561 fpkm in the HC condition, log2fold-value: -2.84). The three most abundant transcripts in the LC condition were from clusters recruiting to a sodium/potassium/calcium exchanger 1 (NCKX1) (JGI\$\pm\$447939, UniProt ID: Q9QZM6, q - value: 1.77 10⁻⁵, 897 fpkm in LC condition, log2fold-value: 4.03), a probable sodium/potassium/calcium exchanger CG1090 (JGI\$\pm\$354606, UniProt ID: Q9VN12, q-value: 0.008, 553 fpkm in LC condition, log2fold -value: 2.62), and a vacuolar cation / proton exchanger 5 (CAX5) (JGI\$\pm\$416800, UniProt ID: Q8L783, q - value: 7.1 10⁻⁵, 549 fpkm in LC condition, log2fold - value: 2.7). Further transcripts of the HC and LC condition identified by graphical means and potentially involved in the coccoliths production processes are listed in Table 3-43 and Appendix A Table 4.

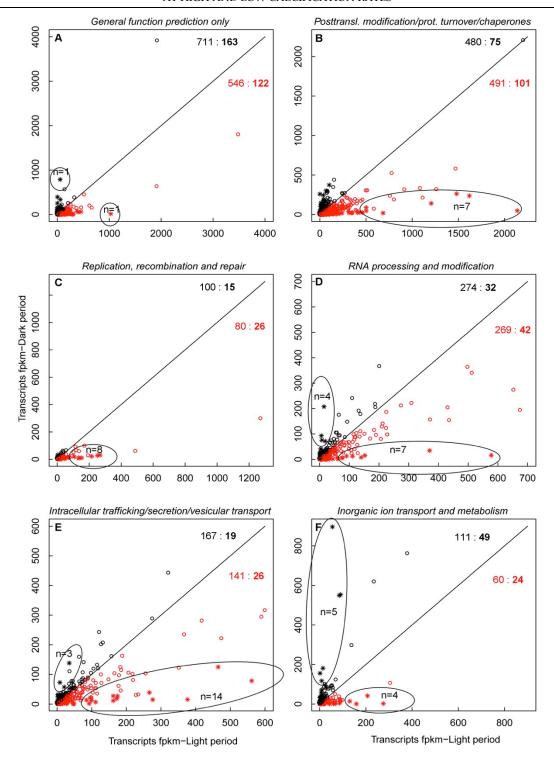


Figure 3-12: Transcript abundance by KOG-class (1-6) in the light (HC condition) (x-axis) against transcript abundance in the dark (LC condition) (y-axis) for the KOG-classes A) General function prediction only, B) Posttranslational modification, protein turnover and chaperones, C) Replication, recombination and repair, D) RNA processing and modification, E) Intracellular trafficking, secretion, and vesicular transport, and F) Inorganic ion transport and metabolism. Small circles show not significant transcripts and small asterisks show significant transcripts. In red: transcripts overrepresented the HC condition and in black transcripts overrepresented in the LC condition. The ratios in red and black show the total number of non-significant and significant transcripts (bold) for the HC and LC condition, respectively. Clusters of significant transcripts of interest are selected by ellipses.

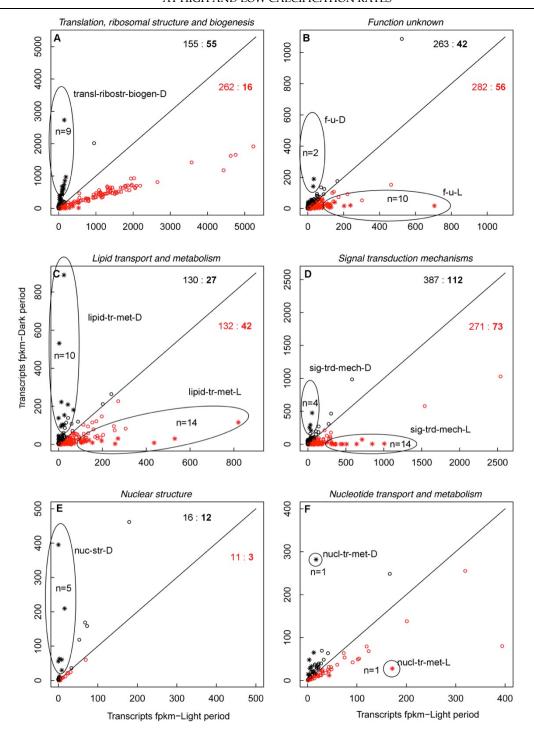


Figure 3-13: Transcript abundance by KOG class (7-12) in the light (HC condition) (x-axis) against transcript abundance in the dark (LC condition) (y-axis) for the KOG-classes A) Translation, ribosomal structure and biogenesis, B) unknown Function, C) Lipid transport and metabolism, D) Signal transduction mechanism, E) Nuclear structure, and F) Nucleotide transport and metabolism. Small circles show not significant transcripts and small asterisks show significant transcripts. In red: transcripts overrepresented the HC condition and in black transcripts overrepresented in the LC condition. The ratios in red and black show the total number of non-significant and significant transcripts (bold) for the HC and LC condition, respectively. Clusters of significant transcripts of interest are selected by ellipses.

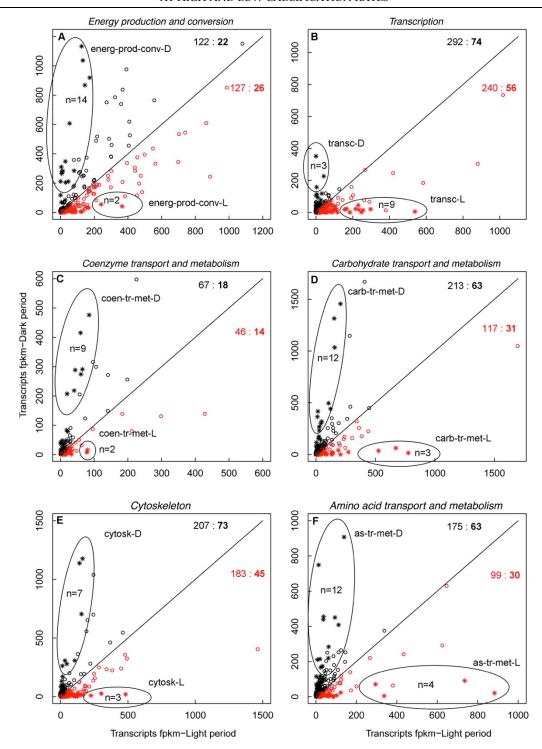


Figure 3-14: Transcript abundance by KOG-class (13-18) in the light (HC condition) (x-axis) against transcript abundance in the dark (LC condition) (y-axis) for the KOG-classes A) Energy production and conversion, B) Transcription, C) Coenzyme transport and metabolism, D) Carbohydrate transport and metabolism, E) Cytoskeleton, and F) Amino acid transport and metabolism. In red: transcripts with abundance ratios towards the HC condition and in black with ratios towards the LC condition. Ratios in red and black show the total number of non-significant and significant transcripts (bold) for the HC and LC condition, respectively. Clusters of significant transcripts of interest are pooled by ellipses.

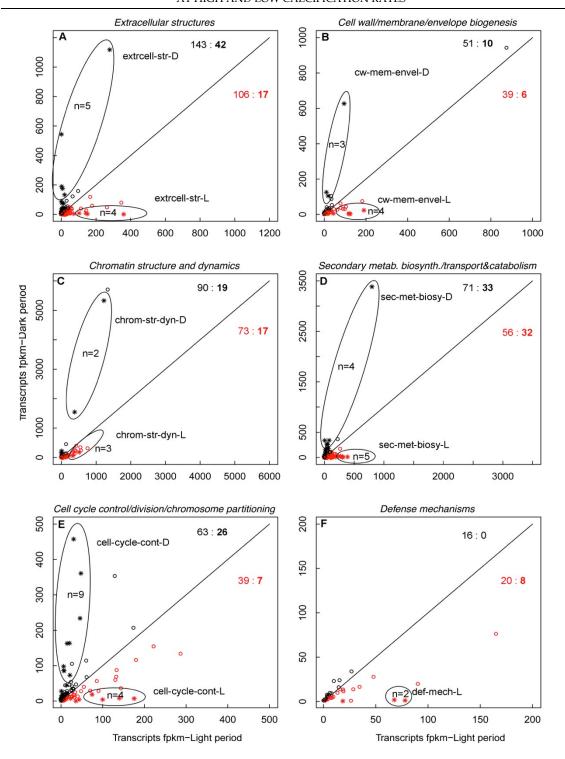


Figure 3-15: Transcript abundance by KOG-class (19-24) in the light (HC condition) (x-axis) against transcript abundance in the dark (LC condition) (y-axis) for the KOG-classes A) Extracellular structures, B) Cell wall, membrane and envelope biogenesis, C) Chromatin structure and dynamics, D) Secondary metabolism, biosynthesis, transport and catabolism, E) Cell cycle control, division, and chromosome partitioning, and F) Defence mechanism. Small circles show not significant transcripts and small asterisks show significant transcripts. In red: transcripts overrepresented the HC condition and in black transcripts overrepresented in the LC condition. The ratios in red and black show the total number of non-significant and significant transcripts (bold) for the HC and LC condition, respectively. Clusters of significant transcripts of interest are selected by ellipses.

Figure 3-16: Transcript abundance by KOG-class (25) in the light (HC condition) (x-axis) against transcript abundance in the dark (LC condition) (y-axis) for the KOG-classes cell motility. Small circles show not significant transcripts and small asterisks show significant transcripts. In red: transcripts overrepresented the HC condition and in black transcripts overrepresented in the LC condition. The ratios in red and black show the total number of non-significant and significant transcripts (bold) for the HC and LC condition, respectively. Clusters of significant transcripts of interest are selected by ellipses.

Table 3-14: Significantly more abundant transcripts potentially involved in the calcification process of *E. huxleyi* by KOG-Class. Genes were selected after clustering transcripts based on KOG —annotation as presented in Figure 3-12 to Figure 3-16. All genes selected per KOG — class are given in the Appendix A, Table 4.

Condition	Condition JGI gene	fpkm at HC	fpkm at LC	UniProt ID	fpkm at LC UniProt ID Function or KOG-description (KOG)
HC	431830	1029	14	Q0MYW8	GPA - Putative calcium binding protein
HC	426711	1206	141	P15253	Calreticulin
HC	444996	561	78	Q54GB3	Synaptobrevin-B
HC	437571	596	39	P47193	Vesicle-associated membrane protein 2,
HC	351006	162	27	070480	Vesicle-associated membrane protein 4,
HC	463384	100	12	D3Z5L6	MFS-type transporter C6orf192 homolog,
HC	460762	96	22	Q9ZRD6	VAMP-like protein YKT61, Synaptobrevin
HC	434324	85	14	P93654	Syntaxin-22
HC	466232	276	2	O9HGM6	Putative transporter C543.05c, HCO ₃ transport
HC	314659	207	41	O9HGM6	Putative transporter C543.05c, HCO ₃ transport
ГС	99733	21	58	Q84WW5	Vesicle-associated protein 1-3
ГС	447939	55	268	9MZQ6Q	Sodium/potassium/calcium exchanger 1
TC	354606	06	553	Q9VN12	Probable sodium/potassium/calcium
Γ C	416800	84	549	Q8L783	Vacuolar cation/proton exchanger 5
Γ C	463095	1	156	Q9XES1	Calcium-transporting ATPase 4, ER-type

3.3.3.7. Transcript abundance in the high and low calcification rate conditions in the G1-phase of the *E. huxleyi* cell cycle of genes with a suggested role in the calcification processes

A selection of molecules, previously reported in the literature to play a role in the processes surrounding calcification and coccolith formation in *E. huxleyi* (Marsh et al. 1992; Wahlund et al., 2004; Nguyen et al., 2005; Quinn et al., 2006; Richier et al., 2009; von Dassow, 2009; Mackinder et al., 2009, 2011, 2012; Emery et al., 2012) are presented in Figure 3-17 to Figure 3-21. The individual figures represent clusters of molecules according to their function and characteristics.

PPase, V-type and P-type proton ATPase, and clathrin transcript clusters

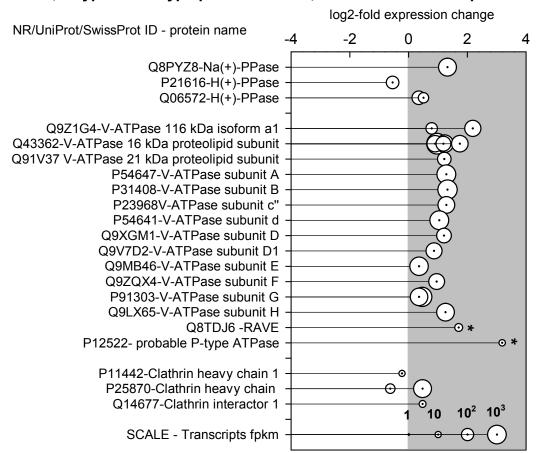


Figure 3-17: Transcript abundance and expression ratios of vacuolar type membrane proton pump ATPases (V-ATPase) in light and dark incubation period (shaded grey), a regulator of V-ATPase assembly (RAVE), and clathrin. Positive 2^X-fold expression values indicate elevated expression in the low calcification condition. The sizes of the circles indicate the total abundance of transcripts found in high and low calcification conditions. The results table can be found in Appendix A Table 5

Proton pumping pyrophosphatases (PPase), V-type (vacuolar) proton ATPases, P-type proton ATPase, and clathrin expression

V-type proton ATPases and PPases were suggested to paly an important role in the control of the pH in organelles (Mackinder et al., 2010), where calcium carbonate is precipitated and to stabilize the electrochemical gradient across membranes (Suffrian et al., 2011). Transcripts of V-type proton ATPases and PPases with suggested vacuolar location were present in transcriptomes of high and low calcification condition (compare Figure 3-17). Higher abundances of transcripts of the V-type proton ATPases and PPases cluster were observed in the low calcification (LC) condition. Three transcripts for pyrophosphate-energized vacuolar membrane proton pumps (Na⁺ and H⁺-PPases) were found more abundant in low calcification condition. Two genes expressed the H⁺-PPase with the UniProt ID: Q06572. Furthermore, transcripts for 13 peptides of the V-type proton ATPase were present, whereas the 16 kDa proteolipid subunit of the V-type ATPase formed a cluster by 7 genes, the V-type proton ATPase 116 kDa subunit a isoform 1 and probable V-type proton ATPase subunit G formed clusters of two genes (for details of the expression levels of each transcript refer to Appendix A Table 5). Only the P21616 peptide of the H⁺-PPase of the described V-ATPase cluster was higher expressed in the high calcification (HC) condition. None of the V-ATPase related transcripts were significantly higher expressed in HC or LC condition. However, the predicted RAVE (regulator of V-ATPase assembly) a complex subunit RAV1/DMX protein of the WDrepeat superfamily, JGI# 461741 was significantly higher expressed in the LC condition, showing 3-fold more transcripts in the dark and a total of 21 fkpm. Only the transcript of P12522 being a P-type ATPase 1B was 9-fold significantly higher expressed in the LC condition. The total abundance of transcripts in both periods was 11.15 fpkm.

Clathrin was suggested to play an indirect role in the calcification process by being present in clathrin-coated vesicles and occurring together with V-type proton ATPases. The observed expression of clathrin did show any significant increase in the HC or LC condition. Four genes were expressed and the bulk of transcripts (801 fpkm) matched the clathrin heavy chain P25870, whereas 25 % more were present in the LC condition (see Appendix A, Table 5 for details).

Expression of proton antiporter and proton exchanger and voltage gated proton channels

Further proton transport across membranes may involve sodium proton antiporters, chloride proton exchanger transporters, proton sugar co-transporters, and voltage-gated H⁺ channel proteins. The abundance of transcripts of the above-mentioned transporters is presented in Figure 3-18.

Proton exchanger transcript clusters

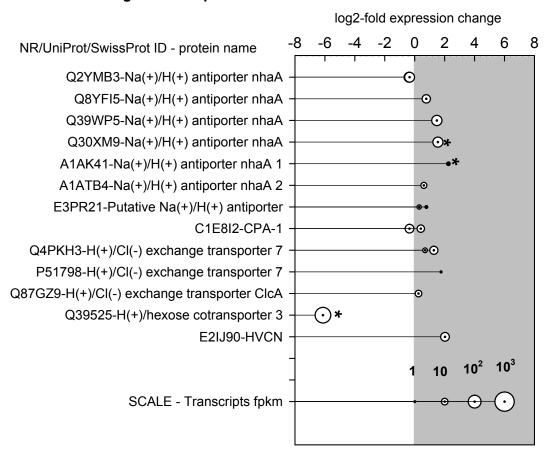
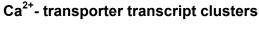



Figure 3-18: Transcript abundance and expression ratios of proton exchanger found at light and dark incubation period (shaded grey). CPA1: monovalent cation: proton antiporter-1 family. HVCN: Voltage-gated H⁺ channel protein. Positive 2^X-fold expression values indicate elevated expression in the low calcification condition. The sizes of the circles indicate the total abundance of transcripts found in high and low calcification conditions. The results table can be found in Appendix A Table 6.

Sodium proton antiporters, chloride proton exchanger transporters, proton sugar cotransporters, and voltage-gated H⁺ channel proteins were present in the high and low calcification rate conditions of the G1-phase of the *E. huxleyi* cell cycle. Significant differences for the expression levels between the HC and LC condition were found for transcripts of the Na⁺/H⁺ antiporter nhaA protein (UniProt ID Q30XM9) and Na⁺/H⁺ antiporter nhaA1 Protein (UniProt ID ID A1AK41) in the LC condition representing 27 fpkm and 2 fpkm transcripts, respectively (compare Appendix A Table 6). In the light incubation period (HC condition) the H⁺/hexose co-transporter 3 was significantly higher expressed (280 fpkm transcripts).

Observed Ca²⁺ - transporter expression:

Calcium transporters are an important part of cell signalling pathways and fundamental for reaching the saturation state for the precipitations of calcium carbonate. Calcium transporters of the K⁺ dependent Ca²⁺/Na⁺ exchanger (NCKX), vacuolar cation/proton exchanger (VCX), cation/proton exchanger (CAX), calcium transporting ATPase – endoplasmic reticulum (SERCA) type, together with plasma membrane calcium-transporting ATPases (PMCA) and voltage dependent calcium channels were found in the transcriptomes at high and low calcification rate conditions of the G1-phase of the E. huxleyi cell cycle (compare Figure 3-19). The clusters of transcripts for the NCKX1 protein (UniProt ID: O9OZM), the probable sodium / potassium / calcium exchanger CG1090 protein (UniProt ID Q9VN12), vacuolar cation/proton exchanger 5 (UniProt ID: Q8L783).), the SERCA- type 4 ATPase (UniProt ID: Q9XES1), the plasma membrane calcium-transporting ATPase 4 (UniProt ID: Q64542), and the voltagedependent calcium channel subunit alpha-2/delta-2 (UniProt ID O9NY47) were significantly more expressed in the LC condition. Furthermore, the long transient receptor potential cation channel proteins (UniProt IDs: Q91YD4, P48994, and O94759) were expressed in the LC condition. The E. huxleyi calcification specific cation/proton exchanger CAX 3 (von Dassow et al., 2009) was apparently not found in the transcriptomes of the HC and LC conditions. For details about transcript abundance refer to Appendix A Table 7.

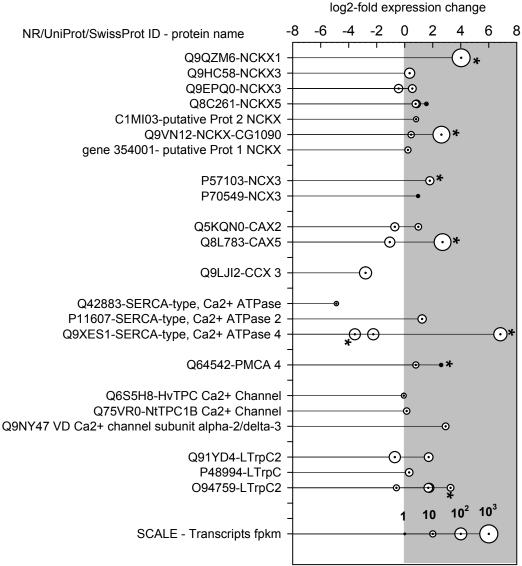


Figure 3-19: Transcript abundance and expression ratios of Ca²⁺ - transport related proteins found at light and dark incubation period (shaded grey). NCKX: K⁺ dependent Ca²⁺/Na⁺ exchanger, VCX: vacuolar cation/proton exchanger, CAX: cation/proton exchanger, SERCA: calcium transporting ATPase – endoplasmic reticulum type, PMCA: plasma membrane calcium-transporting ATPase, VD: voltage dependent, Ca²⁺/Mg²⁺-permeable cation channels LTrpC: Long transient receptor potential cation channel. Positive 2^X-fold expression values indicate elevated expression in the low calcification condition. The sizes of the circles indicate the total abundance of transcripts found in high and low calcification conditions. The results table can be found in Appendix A Table 7.

Observed calmodulin and Ca²⁺ - binding proteins expression

Calcium binding proteins play an important part in reaching and maintaining saturated concentrations of calcium ions prior to the precipitation calcium carbonate provide a pool of calcium ions within the cell (Schroeder et al., 2005). The results of the observed transcripts for calcium binding proteins are presented in Figure 3-20.

CaM and Ca²⁺- binding proteins transcript clusters

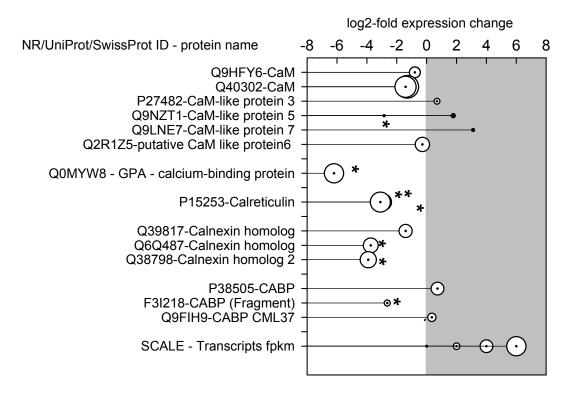


Figure 3-20: Transcript abundance and expression ratios of calmodulin (CaM) and Ca²⁺ - binding proteins found at light and dark incubation period (shaded grey). CABP: calcium binding protein. Positive 2^X-fold expression values indicate elevated expression in the low calcification condition. The sizes of the circles indicate the total abundance of transcripts found in high and low calcification conditions. The results table can be found in Appendix A Table 8.

Calmodulin transcripts were more frequent in the HC condition, namely Q9HFY6, Q40302, and the calmodulin like protein 6 (Q2R1Z5) (compare Figure 3-20 and Appendix A Table 8). Transcripts of calmodulin like proteins were also observed in the low calcification rate condition (LC) of the G1-phase of the *E. huxleyi* cell cycle but at much lower rates. However, the only significant difference in expression rates between the HC and LC conditions was found for clamodulin CaM-like protein 5 (Q9NZT1) showing only 1 fpkm transcripts. In total 4265 fpkm transcripts of the different calmodulin isoforms were found in the HC condition compared

to 1736 fpkm transcripts in the LC condition (see Appendix A Table 8). The known GPA calcium binding protein (Q0MYW8) was significantly high expressed in the cells of the G1-phase showing higher calcification rates in the light incubation period. In the HC 1029 fpkm compared to 14 fpkm in the LC condition of GPA transcripts were observed. Two genes of calreticulin (UniProt ID: P15253) expressed significantly higher transcripts in the HC condition (1516 fpkm) compared to 183 fpkm transcripts in the LC condition. Furthermore, genes of calnexin homologs (UniProt ID: Q39817, Q6Q487, and Q38798) produced significantly more transcripts in the HC condition (596 fpkm) compared to 67 fpkm to the LC condition. Transcripts of the predicted calcium binding protein (UniProt ID: F31218) were also significantly higher expressed in the HC condition.

Observed Bicarbonate transport and carbonate anhydrase expression

The transport of bicarbonate and activity of carbonate anhydrase provides CO_2 and CO_3^{2-} - ions for photosynthesis and calcium carbonate synthesis in E. huxleyi (von Dassow et al., 2009; Richier et al., 2011). A total of 20 genes of the E. huxleyi genome related to bicarbonate transport were tested for differential expression between the high (HC) and low calcification rate (LC) conditions of the G1-phase of the E. huxleyi cell cycle and results are presented in Figure 3-21. Transcripts relating to 9 genes showed significantly different abundance in 4 gene clusters. Gene expression related to bicarbonate transport was significantly higher for 5 out of 9 genes in the LC condition and for 4 out of 9 genes in the HC condition. The genes JGI# 99943, 426735, 200137, 198643, and 120259 code for the isoforms of the anion exchanger 2 protein (UniProt ID: P23347) and were higher expressed in the LC condition comprising a total of 726 fpkm, whereas transcripts of the genes JGI# 99943, 200137, 198643, and 120259 were significantly more abundant in the LC condition. The putative Na⁺-independent Cl⁻/HCO³⁺ exchanger AE1 of the SLC4 family (UniProt. ID: Q9HGM6) was more frequent in the HC condition and transcribed by 3 genes. Transcripts recruited to the E. huxleyi gene JGI# 466232 showed 276 fpkm in the HC condition, which was significantly higher than in the LC condition (2 fpkm). Transcripts recruited to the E. huxleyi gene JGI# 314659 were also significantly more abundant in the HC condition showing 207 fpkm transcripts in the light incubation period compared to 4 fpkm in the dark incubation period. The sodium bicarbonate co-transporter 3 of the SLC 7 family (JGI gene # 469783, UniProt. ID: Q8BTY2) was significantly higher expressed in the LC condition with 15 fpkm compared to one fpkm transcripts in the HC condition. Furthermore, the uncharacterized vacuolar membrane protein of the SLC 26 family (UniProt. ID: YGR125W) involved in sulphate/bicarbonate/oxalate exchanger was expressed by three genes, of which two were significantly more expressed. Genes relating to the sulphate/bicarbonate/oxalate exchanger were significantly more expressed in both the HC and LC condition, whereas JGI gene # 98125 expression was significant for the HC condition and JGI gene # 460215 expression was significantly increased in the LC condition. The total transcript

abundance of the YGR125W homologs was 34 fpkm in the HC and LC condition. For details of transcript abundance related to bicarbonate transport refer to Appendix A Table 9.

The gene expression differences in the HC and LC condition of seven genes related to carbonic anhydrase were investigated. In general, carbonic anhydrase expression was elevated in the LC (low calcification) condition compared to the HC (high calcification) condition (compare Figure 3-21). Increasingly expressed genes for carbonic anhydrases were found significant in the LC condition. Three homologs of the carbonic anhydrase (UniProt ID: O52535) were present, of which only transcripts recruiting to JGI gene \$233460 were significant in the LC condition. Out of two homologs of carbonic anhydrase UniProt ID Q50940 in the LC condition only transcripts mapping to JGI gene \$62679 were significant. Interestingly, the sequences of most transcripts were mapped to the *E. huxleyi* specific delta-carbonic anhydrase (UniProt ID: Q0ZB86, JGI gene \$436031), which were only present in the LC condition with 74 fpkm transcripts. Details for all transcripts related to carbonic anhydrases are given in Appendix A Table 9.

HCO, transporter & carboante anhydrase transcript clusters

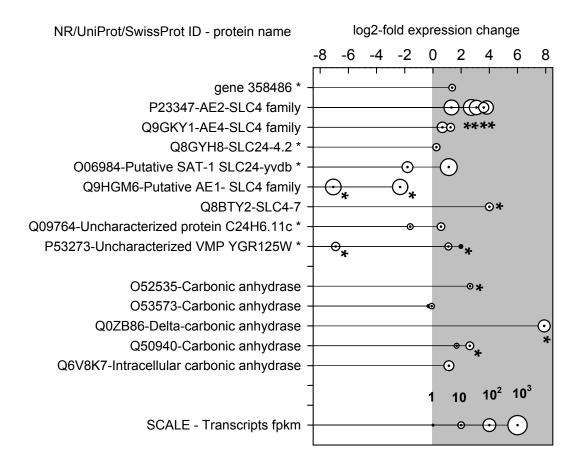


Figure 3-21: Transcript abundance and expression ratios of bicarbonate transport and carbonic anhydrase found at light and dark incubation period (shaded grey). AE: Anion exchanger. SLC: Solute carrier family. VMP: vacuolar membrane protein. Asterisks at the protein name indicate EuKaryotic Orthologous Groups (KOG) definition: Sulphate/bicarbonate/oxalate exchanger SAT-1 and related transporters (SLC26 family). Positive 2^X-fold expression values indicate elevated expression in the low calcification condition. The sizes of the circles indicate the total abundance of transcripts found in high and low calcification conditions. The results table can be found in Appendix A Table 9.

3.4. Discussion

In this study, experimental cultures of the unicellular coccolithophore E. huxleyi PLY# M217 were reared in F/50 medium to investigate the transcriptomes at high and low calcification rates of the G1-phase of the cell cycle. Previous studies observed different gene expression in Emiliania huxleyi related to life cycle phases, different cell cycle phases, under calcification stimulating by phosphorous limitation, and different carbonate chemistry regimes (e.g. Quinn et al., 2006; von Dassow et al., 2009; Richier et al., 2009; Mackinder et al., 2011; Bach et al., 2013). This study showed that gene expression related to biomineralisation differs significantly within the G1 cell-cycle phase at high and low calcification rates, the light and the dark incubation period, respectively. Interestingly, the expression of proteins, which were previously reported to be involved in coccolithophogenesis, was more frequent in the low calcification phase of the G1-phase. This suggests patterns of gene expression, in which a significant amount and molecules involved in biomineralisation processes, namely ion transporting pathways, are expressed before the calcification machinery maximizes under light exposure. For example, the bulk of V-type ATPases related transcripts (see Appendix A Table 5 for details), around 75% of the cation proton exchanger CAX5 transcripts, the majority of K⁺ dependent Ca²⁺ / Na⁺ exchanger (NCKX) transcripts, and higher numbers of clathrin transcripts were observed when cells were actually calcifying at low rates. This might suggest that large proportion of the potential biomineralisation proteins is synthesized during or just after mitosis and that a smaller degree of those proteins needs continuous synthesis during periods of highest calcification rates. Furthermore, the observed gene expression patterns also support the general importance of calcium binding proteins in the process of coccolithophogenesis. Calcium binding proteins were increasingly expressed in the high calcification condition of the G1-phase, which could also indicate that many of those calcium-binding proteins are lost during coccolithogenesis. In particular GPA showed 70-fold increase in the light enhanced calcification phase.

The following paragraphs will lead to putting the gene expression results from the transcriptomes of early and late G1-phase *E. huxleyi* cells, in a wider context. First, the experimental methodology, culturing conditions, transcriptome analysis using functional groups and a graphical approach are reassessed and discussed. Eventually existing models of calcification in coccolithophores are discussed with the results from this study taking into account models of the algae cell cycle and cell division.

Methodological considerations of the *E. huxleyi* culture conditions

The culturing conditions, depletion of nutrients and the time point of cell harvesting may have affected the physiological performance and therefore calcification of E. huxleyi in the presented study. Using cultures of E. huxleyi grown in F/50 medium might have affected the general patterns of gene expression but should not have affected the investigation of gene expression relevant to coccolithophogenesis. The F/50 medium is considered to limit the supply of phosphate to coccolithophores and thereby increase the accumulation of calcium carbonate per cell and cause physiological stress to the cells (Paasche, 2002; Wahlund et al., 2004). Under phosphate limited conditions general gene expression was reduced in E. huxleyi compared to gene expression in phosphate-replete conditions (Wahlund et al., 2004b; Nguyen et al., 2005). Phosphate limitation was found to cause gene expression linked to stress and cell defence, among them genes coding for homologs of HSP70 (Wahlund et al., 2004b). Testing the expression of HSP 70 homologs in the transcriptomes of the high calcification period and low calcification period showed that 4 homologs were significantly more frequent in the light period (high calcification condition) (see Appendix A Figure A-2 and Appendix A Table 11), which could indicate phosphate depletion at the time of cell harvesting for transcriptome analysis. The cells require phosphate for a diversity of processes such as the synthesis of DNA and RNA. Under phosphate limited conditions cells might not be able to pass into cell division phase in the dark because at earlier cell cycle check points the cell had not attained its critical size and energy reserves (Zachleder et al., 2016). As a result of prolonged cell cycle and cell growth, more calcium carbonate per cell is accumulated until the cellular reservoirs of phosphate have been filled. Only when phosphate pools were restored the cells may pass through cell division. However, an accumulation of calcium carbonate per cell (PIC increase) and a halting of the cell cycle cannot be concluded from the increase in cell densities and growth rates (Figure 3-3 A and B). The PIC per cell (Figure 3-3 F) remained stable at the termination of the experiment. Furthermore, the POC and PON results did not show any differences between the day before cell harvest and the day of harvest. It was therefore thought that the cells were not altered in their physiology during the experiment and a phosphate limitation was not given. If phosphate was depleted, even though the data suggest otherwise, phosphate limitation should enhance gene expression related to biomineralisation in E. huxleyi (Wahlund et al., 2004b; Nguyen et al., 2005; Quinn et al., 2006).

Methodological considerations of the transcriptome analysis

Matching the raw transcript sequences of late and early G1-phase to the *Emiliania huxleyi* genome v.1.0 (April 25, 2008; http://genome.jgi.doe.gov/Emihu1/Emihu1.home.html) identified 34403 transcripts using NGS Illumina sequencing of mRNA. However, only 9999 gene transcripts matched to known proteins suggesting the relatively poor annotation of the *Emiliania huxleyi* genome v.1.0, a large degree of regulatory transcripts, and post-transcriptional modifications. Nevertheless, the present study revealed nearly twice the number of transcripts as reported in the EST analysis by von Dassow et al. (2009) (19188 ESTs; strain RCC 1217). However, von Dassow et al. (2009) reported nearly twice as much transcripts using the strain CCMP 1516, B-morphotype, which showed 72,513 ESTs. From the most recent genome of *E. huxleyi* CCMP1516 it is thought that the *E. huxleyi* genome comprises of 142Mb containing 30,569 protein-coding genes of which 28429 were matched to known transcripts in databases (Read et al., 2013). The results of this study found 9999 transcripts matching the 2008 version of the reference genome but 15150 transcripts matching known protein sequences. Again the comprehensiveness of the *Emiliania huxleyi* genome v.1.0 (April 25, 2008) might have influenced the annotation success of the observed transcripts. At the time of analysis the newly sequenced genome http://www.ebi.ac.uk/ena/data/view/ GCA_000372725.1 (Read et al., 2013) was not available at the time.

The Illumina sequencing and Tophat-cufflinks pipeline found large numbers of differentially expressed transcripts. However, the Tophat-cufflinks pipeline has been criticized for its return of increased number of false positives (Rapaport et al., 2013). The accuracy issues with significant differential gene expression in the Tophat-cufflinks pipeline were addressed by the introduction of the q – value, which provides higher correctness (Trapnell et al., 2012) and reduces false positive identifications (Rapaport et al., 2013). Microarray based gene expression analysis applied thresholds of p < 0.01 and 2-fold-expression greater than two to identify significantly different transcripts abundance in E. huxleyi cultures grown in nutrient replete and nutrient deplete conditions (Quinn et al., 2006). In a simulation, the threshold values of Quinn et al. (2006) were applied to the differential expression results of the Tophat-cufflinks pipeline. Thus, the numbers of significantly different transcripts were reduced by 43% from 6978 significantly different expressed genes (q < 0.5) to 3942 significantly different expressed genes (p < 0.01; 2-fold expression greater than 2). Quinn et al. (2006) showed that of a total of 2298 ESTs 127 transcripts (5%) showed significantly different up or down regulation. In this study 20% of the transcripts were significantly up or down regulated following the Tophat-cufflinks pipeline and even after applying the additional thresholds (q < 0.01 and 2-fold expression greater than 2) 11% of the transcripts were different in cells of the early G1-phase low-calcifying and late G1-phase high calcifying conditions. Further transcriptome analysis was conducted without the implementation of arbitrary thresholds because other means (e.g. graphical selection by transcript frequency and previously reported genes) were used to select the differentially expressed genes of interest.

General expression patterns using functional physiological groups

The affiliations of the proteins transcribed by the observed transcripts to functional groups such as the euKaryotic Orthologous groups (KOG) were used to investigate general functional differences in the transcriptomes of the high calcification (HC) and low calcification (LC) condition of *E. huxleyi* cells in the late and early G1phase, respectively. Functional KOG annotation groups showed the highest number of KOG annotations and were therefore applied for the general inferences of functional characteristics of the cells in the HC and LC condition. 'Cell signalling' was found to be the most important functional characteristic of the expressed genes according to the retrieved transcripts with KOG-group annotation. Genes involved in 'Metabolism' and 'Information storage and processing' were almost equally expressed in the Light and Dark period. In all KOG-groups more transcripts were abundant in the LC condition (see Table 3-7). Wahlund et al. (2004) reported that most transcripts in nutrient replete and nutrient deplete cultures referred to the functional group of 'Metabolism', and could not discover a pattern towards over-representation relating to culture conditions, which increase calcification or alter calcification.

At the KOG-class the general expression patterns showed that transcripts belonging to 'Translation, ribosomal structure and biogenesis', 'Posttranslational modification, protein turnover, chaperones', and 'Lipid transport and metabolism' were significantly different from the overall expression ratios in the HC and LC condition. 'Translation, ribosomal structure and biogenesis' showed more significantly expressed transcripts in the LC condition, whereas more significantly expressed genes of 'Posttranslational modification, protein turnover, chaperones' and 'Lipid transport and metabolism' were observed in the HC condition (late G1-phase). Increased numbers of significantly expressed genes of the KOG-class 'Translation, ribosomal structure and biogenesis' in the LC condition could indicate that a higher general activity of cell structure synthesis, due to internal 'zeitgeber', in preparation for the onset of the HC condition (McClung, 2014) or for complementation of cell assemblies divided during cytokinesis. Elevated gene expression related to the KOG-class 'Translation, ribosomal structure and biogenesis' in the early G1-cell-cycle-phase enables photosynthetic organisms to efficiently produce carbohydrates at an early stage of the photosynthetic period already (Green et al., 2002; Dodd et al., 2005; Winjen et al., 2006).

The ratio of genes showing significantly different expression was increased in the KOG-classes 'Translation, ribosomal structure and biogenesis', 'Nucleotide transport and metabolism', 'Inorganic ion transport and metabolism', 'Extracellular structures', 'Cell cycle control, cell division, chromosome partitioning', 'Carbohydrate transport and metabolism', and 'Amino acid transport and metabolism' towards the Dark period. Von Dassow et al. (2009) showed that transcripts belonging to the KOG-Classes 'Signal transduction mechanisms' and 'Cytoskeleton' were significantly more abundant in non-calcifying 1N *E. huxleyi* cells. In calcifying 2N *E. huxleyi* cells von Dassow et al. (2009) showed that transcripts of the KOG-

Class 'Translation, ribosomal structure and biogenesis', 'Signal transduction mechanisms', and 'Cytoskeleton' were overrepresented. Only the total ratios of genes expressed in the KOG-classes 'Translation, ribosomal structure and biogenesis' and 'Nucleotide transport and metabolism' were more abundant in calcifying cells in the light phase of this study.

It was unexpected to find transcripts of the functional class summarizing 'inorganic ion transport' and 'carbohydrate transport and metabolism mechanisms' more abundant in the dark period (low calcification condition), as genes of these groups should be more active during biomineralisation and photosynthesis. However, the observed patterns further support that the readiness for biomineralisation and photosynthetic machinery is established before the start of the light phase as part of the synthesis of cell structures (e.g. Golgi apparatus), which were reduced in their extend during cell division (Nebenfuehr et al., 2000; Puhka et al., 2007). This readiness could be accomplished by inducing gene expression in a periodicity that is slightly uncoupled from the physiological activity and more related to the cell organelle construction.

It seems that care must be taken when estimations of the functional machinery are made from interpreting functional annotations. The functional groups comprise transcripts, which are active in many physiological pathways including calcification and photosynthesis. Furthermore, the evaluation does not consider transcript abundance and the potential amount of translated proteins. The expression patterns by comparison of KOG-class representatives, or by other functional annotations (e.g. GO annotations), could mask the actual general gene expression patterns that equally account for transcript abundance.

Unique transcripts in the early and late G1-phase involved in biomineralisation

Previously, the observations of unique transcripts in conditions of increased or altered biomineralisation of E. huxleyi suggested that the unique transcripts relate to genes, which could be involved in calcification (Quinn et al., 2006). The gene expression analysis of transcripts in the high calcification (HC) and low calcification (LC) conditions, when cells were in the late and early G1-phase, respectively, revealed 153 unique transcripts in the HC condition and 177 transcripts in the LC condition. The numbers of unique transcripts in the HC and LC condition follow the general pattern of higher transcript abundance in the early G1-phase (LC condition). However, only 18% of the unique transcripts in the late G1-phase and 68% of the unique transcripts in the early G1-phase were found differently expressed (q < 0.05). In particular, in the late G1-phase (high calcification condition) the percentage of significant transcripts was low.

Most of the transcripts unique in the HC conditions were not annotated and thus attributing functions to the most abundant transcripts is lacking. However, the second most abundant unique transcript In the HC condition is referred to Q5UP03 having a potential role in regulation of transcription. The third most abundant unique to the HC condition transcript translated to the proton-coupled amino acid transporter 3

(UniProt ID: Q4V8B1), which could be part of processes involved in the precipitation of calcium carbonate in E. huxleyi. Coccoliths are complex structures made generally of subsequent layers of organic matrix and calcium carbonate. The organic matrix is important for the directed precipitation of calcium carbonate forming the characteristic 3-D structure of the calcite scales (Marsh, 1986; Arias and Fernandez, 2008). The intercellular location of Q4V8B1 is suggested in the endoplasmatic reticulum using Euk-mPLoc 2.0 (Chou and Shen, 2010). Calcium carbonate and calcium binding proteins were found to be abundant in the ER and the CV (Corstjens et al., 1998; Mackinder et al., 2010). Furthermore, single amino acids were found to modulate the precipitation of calcium carbonate crystals in situ (Briegel et al. 2012) and amino acids were also found stabilizing amorphous calcium carbonate (ACC) in vitro in the red claw crayfish Cherax quadricarinatus (Bentov et al., 2010). In coccolithophores it was suggested that an ACC phase might play a role in coccolithophore-genesis (Mackinder et al., 2010) additionally requiring transporters Mg²⁺ and protons to sustain the pH and aqueous phase of ACC in the maturating CV before a directed precipitation of calcium carbonate is mediated by an increase in pH in the coccolithosome. Hence, the proton-coupled amino acid transporter 3 (UniProt ID: Q4V8B1) could be an important molecule under photosynthetically enhanced calcification that in conserving the Ca²⁺ in coccolithosomes by ACC conformation and thereby reducing the transport of protons from the ER, coccolithosomes, and CV into the cytosol. Four additional membraneassociated proton-coupled amino acid transporters were found in the transcriptome, showing 224 fpkm. The potential function in regard to ACC stabilization of these transporters in coccolithophores requires further investigation.

In the non-calcifying state of *E. huxleyi* (LC condition) the abundance of unique transcripts was greater than in the HC condition (see Table 3-10). In comparison Quinn et al. (2006) found more significantly upregulated genes by using micro-arrays, which can be explained by targeting ESTs that were previously identified by Wahlund et al. (2004a). The restricted selection of target genes might have missed many transcripts as the knowledge of the *E. huxleyi* genome was still at an early stage. The unique genes of the Dark period of this study seem, as expected, to have no relevance for processes involved in calcification.

Exploration for genes involved in calcification from the graphical evaluation of significantly different transcript abundance

The expressed transcripts were clustered according to KOG-Class annotations; their expression levels at high and low calcification rates graphically illustrated, and thus obvious patterns of gene regulation explored. Out of a total of 271 graphically selected transcripts fifteen genes with a putative involvement in biomineralisation related processes were identified. Ten transcripts potentially involved in biomineralisation were significantly overrepresented in the calcification phase (late G1-phase) and five transcripts showed elevated frequencies in the low calcification phase (early G1-phase).

The most abundant transcript of those selected in the calcification phase (late G1-phase) was calreticulin (UniProt ID: P15253) showing nearly nine times higher expression in the HC condition. Calreticulin binds Ca²⁺ - ions and was found in other calcifying organisms such as corals (Tambutté et al., 2011) as well as *E. huxleyi* (Wahlund et al., 2004b; Quinn et al., 2006; Mackinder et al., 2010). Calreticulin was reported to be abundant in the endoplasmatic reticulum where it binds Ca²⁺ and buffering concentrations between 100-500 µM (Berridge, 2002) or it acts as a stress response protein (Pockley, 2003). Furthermore, calreticulin regulates the expression of SERCA-type 2 Ca - ATP pumps (John et al., 1998). SERCA-type Ca transporters were previously found in *E. huxleyi* (von Dassow et al., 2009) but the limited Ca - transport potential of the SERCA-type Ca - ATP pump suggested to be insufficient to establish the required Ca – concentrations in the CV alone (Mackinder et al., 2010). However, in combination with calsequestrin calreticulin may enable the ER to modulate impulses of calcium flux (Berridge, 2002) that could initiate coccolithogenesis, if the properties of the ER persist in the CV.

The second most abundant transcripts in the HC condition recruited to gene 431830 coding for a further putative calcium binding protein GPA (Corstjens et al., 1998). GPA was found up-regulated in calcifying cells (Quinn et al., 2006) and was present in calcifying 2N and non-calcifying 1N cells (Richier et al., 2009; Mackinder et al., 2010). In this study, JGI gene \$\pm\$ 431830 was 70 fold (1029 fpkm in HC versus 14 fpkm in LC) higher expressed in the calcification phase of *E. huxleyi*, supporting its direct or indirect involvement in calcification. An elevation of GPA-expression in calcifying *E. huxleyi* cells in nutrient replete cultures was previously reported (Richier et al., 2009), thus supporting the key importance of GPA in coccolithophogenesis. Furthermore, Mackinder et al. (2010) suggested that the silk fibrion protein similarities of GPA might make it important in the formation of amorphous calcium carbonate (ACC), as an intermediate form in advance of calcium carbonate crystallisation. However, the existence of ACC in coccolithophores is still debated.

Another potentially relevant process for coccolithogenesis might be membrane fusion and exocytosis, in which syntaxin and synaptobrevin are part of the SNARE complex (Soluble NSF Attachment Protein Receptor). Syntaxin and synaptobrevin were expressed through JGI gene \sharp 434324 and JGI gene \sharp 444996, 437571, 351006, and JGI gene \sharp 460762, respectively (compare Table 3-13). Both proteins are part of the SNARE complex, which is involved in vesicle membrane fusion. During the calcification process it is thought that coccoliths are formed in the CV. When the coccolith has formed the CV fuses with the cell membrane to expose the coccoliths to the outside of the cell (Taylor, 2007). Furthermore, from the Golgi apparatus polysaccharide and Ca²⁺ - rich vesicles, termed coccolithosomes, constantly supply polysaccharide and Ca²⁺ to the coccolith-forming vesicles (Outka and Williams, 1971; van der Wal et al., 1983); a process that also requires vesicle membranes to fuse.

Interestingly, significantly elevated transcript abundance of the MFS transporter homolog was also found in the high calcification condition. MFS-type transporters are capable of transporting small solutes in response to chemiosmotic ion gradients and are characterized as single-polypeptide secondary carriers. However, it is not clear how MFS – transporter activity could assist the biomineralisation and what solutes the MFS-transporters could process within the coccolithophores. In the low calcification condition, three genes (JGI gene # 354606, 447939 and 416800) were found to express the greatest number of sequences similar to members of the Na⁺/Ca²⁺ - K⁺ exchanger (NCKX) family. NCKX cation / Ca²⁺ - exchangers play an important role in Ca²⁺ - homeostasis. Proteins of the NCKX – family were suggested to contribute significantly to the Ca²⁺ transport into endomembrane precursor CV compartments (Mackinder et al., 2011). Here however, the putative NCKX family member's gene was expressed significantly higher in the low calcification phase (early G1-phase), when no calcification occurred (refer to section 2, Figure 2.10). Nevertheless, multiple genes in the E. huxleyi genome for NCKX – like proteins and their expression levels will be discussed in more detail below to evaluate the potential activity of NCKX transporters during the calcification phase. The calcium transporters that were expressed in non-calcifying early G1-phase cells (compare Table 3 - 13) may still play a role in calcification during the light phase. In the early G1-phase after cell division was completed general protein synthesis is increased (Snustad and Simmons, 2000). Calcium transporters are most likely expressed as well to construct the functionality of organelles, membranes and compartments to enable the establishment of Ca²⁺ gradients; for example between the cytosol and the ER lumen before the onset of the Light period.

Discovering expressed biomineralisation gene using transcript abundance

An analysis of the top 1000 most abundant transcripts of the light phase demonstrated transcript abundances ranging from 13 10⁶ fpkm to 225 fpkm. The selection of the 1000 most frequent transcripts coding for proteins potentially involved in calcification is presented in Appendix A Table 12. The most abundant transcript in the light (JGI *E. huxleyi* scaffold 781:3342-3438) is newly described as an unreviewed hypothetical protein partial mRNA (NCBI XM_005771519.1; Read et al., 2013). One protein-homologous group previously not discussed in this monograph was discovered in the 1000 most abundant transcripts that indicates a potential role in the calcification processes. A GTP-binding protein SAR (UniProt ID: Q01476) a subunit of the COPII vesicle coat complex showed 255 fpkm and 103 fpkm transcripts in cells showing elevated and reduced calcification rates, respectively. Clathrin was previously identified as another highly abundant transcript in the both conditions. Clathrin peptides were also identified to have significantly higher relative abundance in calcifying *E. huxleyi* cells by the proteome analysis. Jones et al. (2011) suggested clathrin to be important in the biomineralisation process because it occurs together with V-type ATPase proton transporter in clathrin-coated vesicles (Forgac, 2000). Also vacuolar-type proton

pumping ATPase was identified in the coccolithophore vesicle membranes (Corstjens et al., 2001), suggesting that these two molecules exist together in coccolith vesicles. Clathrin's significance for vesicle-mediated transport in the silica-precipitating diatom *T. pseudonana* was previously suggested from proteome analysis (Nunn et al., 2009). Vesicle-mediated transport in coccolithophores with clathrin and/or GTP-binding protein SAR could deliver minerals from the Golgi network to the CV via coccolithosomes. The V-type ATPase could control the luminal pH of the coccolithosome and trigger forced alkalinisation. The presence and location of clathrin and GTP-binding proteins using molecular staining should be investigated. Such a study might reveal that clathrin and the COP vesicle coat complex should be placed in a more general model for vesicle transport in marine phytoplankton if it is active in diatoms and coccolithophores alike. Vesicle fusion assisted by the SNARE complex is another related process that was indicated by the significant higher abundant transcripts of syntaxin and synaptobrevin, which are part of the SNARE complex, in the light period (see Table 3-13).

Expression of genes with a previously suggested role in coccolithogenesis in *E. huxleyi*

The expressions of known genes coding for vacuolar membrane proton pump ATPases (V-ATPase), proton exchanger, Ca²⁺ - transport proteins, calmodulin (CaM) and Ca²⁺ - binding proteins, and bicarbonate transport related protein were investigated in periods of calcification and no calcification over the cell cycle of E. huxlevi. The general expression of these genes is higher in the early G1-phase (no calcification), with the exception of genes coding for calmodulin (CaM) and Ca²⁺ - binding proteins. The genes (JGI# 373343, 442625, and 443126) coding for CaM (UniProt. ID: Q40302) were the highest expressed of the Ca²⁺ binding proteins. Previously, Richier et al. (2009) also found that CaM and GPA expression was elevated in the Light period of diploid E. huxleyi RCC1217. As reported above calreticum and calnexin expression was highly up-regulated in the calcification phase (Light period). The constant demand for calcium binding proteins may result from the continuous construction of coccolithosomes to supply calcium to the CV. The high abundance of transcripts of calcium binding proteins could also suggest that the molecules are instable or are lost after the CV merges with the cell membrane and the coccolith is expelled to the outside of the cell. Calnexin and calreticulin were assigned to the ER (Brodski and Skach, 2011), whereas no preferred location for the calmodulin is known, as it may be found at different subcellular locations such as the cytoplasm, organelles or plasma organelle membranes (InterPro Protein Archive). Hence, calmodulin in E. huxleyi could also be a messenger protein for calcium transport to receiver proteins (Chou et al., 2001), such as other calcium binding proteins. Continuous synthesis of calreticulin, calnexin, and CaM appeared to be present in calcifying cells for the delivery of calcium or stabilization of calcium concentrations within coccolithosomes and the CV.

The relatively under-represented transcripts of NCKX, CAX, and, calcium channels in the calcification phase could indicate a lower significance of calcium transporter expression for the maintenance of coccolithophogensis. In fact the low expression of NCKX, CAX, and calcium channels might also indicate that the calcium transporters are more stable within the membrane of the ER and that there is a transverse flow of calcium in the ER from areas with high abundance of NCKX, CAX, and calcium channels to areas of coccolithosome-formation. Only the transporters that are lost from the ER by coccolithosome-formation need to be resynthesized. This could explain why expression levels of NCKX, CAX, and calcium channels were lower in the calcification period than in the low calcification period.

The control of the pH is vital for calcium carbonate precipitation and important for coccolith production. Hence, proton levels need to be controlled by active proton pumping to establish low proton concentrations inside the CV. Previously suggested proton pumps in E. huxleyi include Ca²⁺-stimulated vacuolar V-type-ATPase and P-type ATPase (inorganic pyrophosphate driven H⁺ pumps) (Corstjens et al., 2001). Only one Vacuolar H⁺-pyrophosphatase (P21616) showed higher expression in the Light period. Nevertheless, transcripts of V-type ATPase and P-type ATPase were also present in the calcification phase but at roughly $\frac{1}{2}$ to $\frac{1}{3}$ of the densities as in the Dark period, but still reaching frequencies of approximately 1000 and 130 fpkm per gene. The observed expression patterns suggest that V-type proton ATPase and P-type proton ATPase are mainly translated during the Dark period and maybe at a very early stage of the Light period. However, expression levels for V-type H⁺ ATPase and P-type H⁺ ATPase are also considerable in the calcification period. Vacuolar type proton ATPases were suggested to be pivotal for proton pumping in coccolithophores and were located at the coccolith producing membrane (Corstjens et al., 2001). Mackinder et al. (2010) discussed the possibility of a unique pumping direction of V-type proton ATPases and V-PPases, in which case proton pumping would occur from the organelle (CV) into the cytosol. Potentially, the considerable expression of V-type H⁺ ATPase and P-type H⁺ ATPase during the Light period is required to replace molecules that are lost during coccolithophogenesis, whereas the higher expression of V-type ATPases and P-type ATPases in the Dark period implies that the molecules are required at many locations of the cell for transporting protons and are incorporated into cell endosomal membranes, such as those of the ER. Further proton exchangers were also more abundant in the Dark period. The significantly expressed Na⁺/H⁺ antiporters (UniProt ID: O39WP5 and O30XM9) are both considered integral components of membranes and are involved in pH regulation (Mackinder et al., 2010). However, both genes were significantly higher expressed in the dark, showing only very little transcripts or none in the Light period (see Appendix A Table 6 for details). Only the proton transporting protein H⁺/hexose cotransporter 3 (UniProt ID: Q39525) was more highly expressed in the calcification phase and is specifically involved in co-transporting sugar across the plasmalemma (Stadler et al., 1995). H⁺/hexose cotransporter 3 was not suggested to play a role in calcium carbonate precipitation in coccolithophores.

Interestingly, the voltage gated proton channel (UniProt ID: E2IJ90) that was suggested to play an important role in pH homeostasis in calcifying cells of *Coccolithus pelagicus ssp braarudii*, as it mediates rapid H⁺ efflux (Taylor et al., 2011), was not over expressed in calcifying cells of *Emiliania huxleyi* in the Light period.

The intracellular calcification of coccolithophores requires constant fluxes of inorganic carbon and calcium into the cell and the CV. A variety of potential Ca²⁺ -transporters, such as CAX, NCKX, NCX, and SERCA-type Ca²⁺ -ATPases have been identified as important candidates to raise Ca²⁺ concentrations in the CV or its precursors (Mackinder et al., 2010). The transcriptome analysis did ascertain the significantly over expression of SERCA type calcium-transporting ATPase 4 (JGI gene \$\pm\$: 251608, UniProt ID: Q9XES1) in the calcifying period and by JGI gene \$\pm\$: 463095 in the Dark period. But Q9XES1 was also expressed by JGI gene \$\pm\$: 429294 in the HC condition, leading to almost balanced levels of Q9XES1 expression in the HC and LC condition (compare Appendix A, Table 7). The SERCA – type calcium-transporting ATPase was found to have limited calcium transport capacities to provide all the necessary calcium transport. Therefore, NCKX/NCX, Ca²⁺/H⁺ exchangers, and Ca²⁺/Na⁺ exchangers were suggested to provide additional calcium flux (Mackinder et al., 2010). Transcripts of greater abundance than 25 fpkm in the light were given by a NCKX1 (JGI gene \$\pm\$: 447939), a probable sodium/potassium/calcium exchanger 1 of the NCKX1-type (JGI gene \$\pm\$: 354606), CAX5 (JGI gene \$\pm\$: 416800 and 415715), and a transient receptor potential cation channel subfamily M member (2 LTrpC-2, JGI gene \$\pm\$: 460292), which could help to recover the calcium fluxes across the ER - membrane and potentially across the coccolithosome membrane.

The primary source of carbonate for the formation of calcium carbonate is bicarbonate (Nimer et al., 1997; Paasche, 2001; Bach et al., 2012). In this study, the bulk of carbonic anhydrase was expressed in the early G1-phase. Under low DIC conditions carbonic anhydrase was found more highly expressed (Mackinder et al., 2011; Bach et al., 2012). However, the DIC characteristics of the cultures (concentrations of HCO₃⁻, CO₃²-, and CO₂; data not shown) do not suggest that carbonic anhydrase expression was stimulated. Hence, the CO₂ levels in the cultures were sufficient for efficient photosynthesis (Ross et al., 2003; Bach et al., 2012). Richier et al. (2009) reported elevated expression of *E. huxleyi* carbonic anhydrase in the light in K2 medium. The location of CA is assumed in cellular organelles and the plasmalemma (Kitao et al., 2008; Soto et al., 2006). Recent data suggested an absence of cytosolic CA in *E. huxleyi* (Suffrian et al., 2012; Bach et al., 2012). Under low CO₂ concentration Bach et al. (2012) observed an increased expression of an anion exchanger like protein 1 (AEL1) of the solute carrier 4 family (SLC4) with a suggested location at the plasma membrane and induction at low CO₂ concentrations.

Transcripts of AE1 like proteins (UniProt ID: Q9HGM6) were more abundant in the calcification period and JGI gene # 466232 and # 314659 significantly more highly expressed, supporting the importance of the AEL1 in coccolithophore calcification and photosynthesis. However, another AE1 related protein (UniProt ID: P23347) was significantly higher expressed in the LC condition.

Biomineralisation gene expression in the G1 cell-cycle phase of *E. huxleyi*

The differences in the gene expression profiles between the high and low calcification conditions of the G1-phase E. huxleyi cells became apparent at many levels of the analysis. The observed patterns of gene expression presented here, however, were not related to sampling at different cell-cycle phases (G1, S, or G2+M) but exclusively related to different calcification rates in dark and photosynthetically enhanced phases of the G1-phase. Thus, the results presented here, are novel insights into the synthesis of compartments and biological pathways in E. huxleyi and constitute that a status quo at the onset of the photosynthesis phase in a diurnal cycle is reached, which facilitates immediately increasing calcification rates in the light phase. Furthermore, the observed patterns show that a large proportion of the molecular machinery driving calcification is bound to the general cell structure or cell compartments. Significantly higher gene expression and transcript diversity was observed in non-calcifying early G1-phase E. huxleyi cells (see section 3.3.3) compared to highly calcifying late G1-phase cells. The null hypothesis that there are no differences in gene expression between non-calcifying early G1-phase cells and calcifying late G1-phase cell related to genes involved in calcification processes in respect to transcript abundance and diversity, must be rejected. The expression of many genes previously related to processes involved in calcification was found much higher in the low calcifying early G1-phase compared to the highly calcifying late G1-phase cells. For example, all investigated ion-transporter transcript clusters showed more transcripts in the Dark period. However, this observation was sometimes offset by the higher expression of genes in the late G1-phase relating to the same protein (e.g. SERCA type calcium-transporting ATPase 4, UniProt ID: Q9XES1), which could indicate differences in gene expression triggering and control as well as that the transporter genes, which were highly expressed in the late G1-phase period, are involved in coccolithophogenesis. On the other, this pattern may also reflect the re-construction of molecular machinery that was separated during cytokinesis. Golgi stacks, endoplasmic reticulum, ribosomes, mitochondria and chloroplasts are known to be equally partitioned between daughter cells during cytokinesis (Nebenfuhr et al., 2000; Puhka et al., 2007). Following cytokinesis the ER and Golgi membranes are synthesized, as the ribosomal-ER-Golgi cell physiological network is pivotal for protein translation and posttranslational protein modifications. These networks ensure that at dawn efficient photosynthetic carbon assimilation can render cell growth and accumulation of energy reserves for passing cell division check points of the next cell division cycle (Green et al., 2002; Dodd et al., 2005; Winjen et al., 2006b; Zachleder et al., 2016). The synchronisation gene expression and the

environmental light - dark rhythm improves the physiological performance of photosynthetic organisms (Green et al., 2002; Dodd et al., 2005; Winjen et al., 2006b). Hence, serving the need for maximized cell growth and ecological prevailing. It is an energetic advantage especially for photosynthetic cells to establish the physiological networks before the next illumination period. Because calcification and photosynthesis in coccolithophores is tightly coupled (Balch et al., 1992), the genes relating to the physiological networks for biomineralisation, Golgi apparatus and ER for example, and photosynthesis were all expressed in the early G1-phase. Therefore, the timing of the sampling can explain many biases of the expression levels observed for molecules with known function in coccolith calcification. The model that gene expression of transporter proteins potentially involved in coccolith production (e.g. NCKX, VCX) was increased in the early G1-phase to complement the reduced cytoplasmic compartments of ER and Golgi apparatus after cytokinesis is supported by elevated levels of gene expression of proteins with known involvement in either ribosomes, mitochondria, or chloroplasts in the early G1-phase. Significantly higher expressed proteins in the early G1phase showed ratios of 35:39, 38:46, and 121:147 of significantly expressed in the dark versus total significantly expressed protein for ribosomal, mitochondrial, and chloroplastic proteins, respectively. The expression of chloroplastic, ribosomal and mitochondrial genes was found to be reduced in the G1-phase for Cyanidioschyzon merolae. Periodicity of gene expression directly related to cell cycle phases or plastid gene expression in the unicellular red alga Cyanidioschyzon merolae. 158 genes were only induced during the S or G2/M-phase, of which 93 were known and contained genes related to mitochondrial division (Fujiwara et a., 2009). Overall the observed gene expression patterns are likely following an endogenous clock set by periodic environmental cues such as the diurnal cycle of light and dark in E. huxleyi cultures (Wijnen and Young, 2006; McClung, 2014).

Considerations for *Emiliania huxleyi* calcification models

Genes that were previously reported to be involved in *E. huxleyi* calcification process are not necessarily found at higher expression rates in the photosynthesizing late G1-phase cell. In fact, the transcriptome patterns suggest that suggest that more and less expendable proteins interact during coccolithogenesis. Nevertheless, null-hypothesis that the general expression of genes related to calcification is not enhanced in the high calcification period when calcification rates were found to be at a maximum, can only be partly rejected. Future models of biomineralisation for *E. huxleyi* should distinguish between proteins that are more decisive for coccolithogenesis and such that are very relevant for general cell functioning but partly expended in the process of coccolith production. The level at which proteins are conserved is partly due to the membrane bound location of proteins involved in ion-transport, such as NCKX transporters, V-type Ca²⁺/H⁺ antiporter, and V-type ATPases. However, in the scenario where coccolithosomes are expelled from the membrane of the Golgi body some of the transporters are lost in the process; hence requiring expression in the calcification phase of *E. huxleyi*. The expression of proteins with a high disposal rate such as calcium

binding proteins calmodulin, calreticulin, and calnexin was concentrated in the highly calcifying late G1-phase. These expression patterns confirmed the importance of continuous calcium binding protein synthesis in the calcification period to maintain coccolithophogenesis. The highly acidic and calcium binding macromolecule, containing high levels of glutamic acid, proline and alanine, (GPA) was expressed 70 fold higher in the sampled calcification period. Furthermore, the observations of genes uniquely expressed in the HC and LC condition has suggested new genes with potential roles in the stabilisation of amorphous calcium carbonate and processes of membrane fusion. However, the presence of ACC has yet not been confirmed and the proton-coupled amino acid transporter 3 (UniProt ID: Q4V8B1) gene was not showing as high rates of expression as the ion transporter genes in early G1-phase cells. The SNARE complex that combines the revealed syntaxin and synaptobrevin proteins could be relevant for the fusion of vesicle membranes in the growth of the CV. The functions and locations of the proton-coupled amino acid transporter 3 and the SNARE related proteins within *E. huxleyi* should be further investigated to reveal or not to reveal their involvement in processes related to calcification, ACC stabilisation, and vesicle membrane fusion.

Outlook

The results presented here are of high relevance for the design of future experiments and confirm the great importance of Ca²⁺ binding proteins in coccolithophogenesis. The expression patterns clearly suggest that a large proportion of biomineralisation genes are expressed in the early G1-phase of the *E. huxleyi* cell cycle; in particular those genes transcribing proteins that were required to complement the reduced size of cell compartment as a result of cytokinesis, but which also play an important role in the process of coccolith production. More conserved proteins involved in biomineralisation of *E. huxleyi*, which were found to be highly expressed in the non-coccolith producing early G1-phase, may provide the transport rates required to create the high calcium concentrations in coccolithosomes. The ion transport proteins expressed in the calcification phase are mainly required to maintain the ion concentrations in the coccolithosomes and CV and replace proteins that were lost in the process of coccolithogenesis.

Chapter 4. The proteome of *Emiliania huxleyi* at high and low calcification rates

"Cellular reality is more elaborate than the dreams of even the nucleus itself."

(Anderson and Anderson 1998)

4.1. Introduction

Studying the proteomes of marine organisms has developed into a new and ambitious field of marine molecular biology that aims to provide deeper understanding of the physiological functioning of species in the marine realm (López, 2007). At the organism as well as the population level new insights gained by studying the proteome and therefore the drivers for the organism's physiological activity have increased our understanding of key ecological processes. For example, a variety of quantitative expression proteomics studies have been conducted on different marine taxa, such as on the bivalve *Pinctada margaritifera* (Joubert et al., 2010) – focusing on the expression of shell matrix proteins using EST analysis of cells of the calcifying mantle and verifying shell matrix protein presence using proteome analysis of the shell, microalga such as the diatom *Thalassiosira pseudonana* - investigating the general physiology and acclimation in response to nutrient availability (Dyhrman et al., 2012), on the bivalve Mytilus galloprovincialis - investigating proteomic responses to different temperature regimes (Tomanek & Zuzow, 2010), and Emiliania huxleyi - investigating changes due to ocean acidification and light intensity (Jones et al., 2013; McKew et al., 2013). Meta-population studies applying proteomics identified how the utilization of nutrients and energetic flows shift over an environmental gradient of macronutrients in the South Atlantic. A significant fraction of the microbes showed a high presence of TonB-dependent transporters, which are proteins able to utilize light for generating a proton motive force that increases the efficiency of ATP synthases and ATP independent nutrient uptake (Morris et al., 2010).

The importance of biomineralisation at the organismal level for the control of optimal physiological conditions and on an ecosystem scale for the transport of inorganic carbon was elaborated in Chapter 1. Proteomic studies have aimed to reveal the proteins involved in constructing the underlying molecular and cellular mechanisms involved in calcification (Joubert et al., 2010; Tomanek et al., 2011; Jones et al., 2013). In the coral *Acropora millepora* Ramos-Silva et al. (2013) confirmed the importance of skeletal organic matrix proteins (SOMPs) and inferred on the evolutionary origin of the transcoding SOMP genes. In close relationship with polysaccharides, SOMPs and amino acids form the organic matrix directing and controlling precipitation of calcium carbonate in the sub-calicoblastic space (Tambutte et

al., 2011; Venn et al., 2011; Ramos-Silva et al., 2013). A total of 36 SOMPs were identified in a study of the proteome of *Acropora millepora*. Interestingly the evolutionary origin of many of the identified SOMPs pointed towards non-calcifying cnidarians and only two homologs were restricted to Scleractinia (Ramos-Silva et al., 2013).

The number of next generation proteomics studies on coccolithophores is still limited. Jones et al. (2011) have published pioneering work on the proteome of *E. huxleyi*, identifying a set of 99 proteins in the strains NZEH (PLY# M219), CCMP1516, and CCMP371. Some of the identified proteins, such as carbonic anhydrase, vacuolar ATPase units, and clathrin were discussed to be involved in *E. huxleyi* calcification processes (Jones et al., 2011). The importance of V-type ATPases in the establishment of proton gradients and high pH values in the CV (coccolith vesicle) promoting calcium carbonate precipitation was supported (Corstjens et al., 2001; Mackinder et al., 2010). Also, clathrin - coated vesicle membranes contain V- ATPases in eukaryote cells (Kirchhausen, 2000), was found by Jones et al., (2011). Hence, Jones et al. (2011) hypothesized that clathrin may constitute the membranes of the CV or ER in coccolithophores. Clathrin - coated vesicles were found to provide membrane trafficking pathways within Golgi networks (Lewin and Mellman, 1998; Kirchhausen, 2000).

More recently a quantitative E. huxleyi proteome study explored differences in the proteomes at ambient and elevated CO₂ concentrations (Jones et al., 2013). The study yielded 115 homologous protein groups of these, 46 could be explored in respect to their differential expression in the experimental treatments (Jones et al., 2013). However, no proteins known or with a suggested role in coccolithogenesis were significantly affected by ocean acidification. Only the histones H2A, H3 and H4 and a chloroplastic 30S ribosomal protein S7 were down-regulated under elevated CO₂ concentrations. But trends of membrane related processes, e.g. an upregulation of an acyl-carrier protein, could indicate increased lipid production and increased vesicle membrane synthesis under elevated CO₂. Furthermore, an up-regulation of vacuolar membrane bound V – type proton ATPases could indicate stronger regulation of cellular and vesicle pH in an ocean acidification scenario. The proteome studies on Emiliania huxleyi have been proven as very challenging due to protein extract quality issues, possibly resulting from high levels of lipid, polysaccharide or salt contamination in the protein extracts (Jones et al., 2009; Jones et al., 2013). Furthermore, the genomic data on coccolithophores has only recently been improved by the publication of the pan genome of *Emiliania huxleyi* (Read et al., 2013). The protein identification yield for Emiliania huxleyi was improved to 500 highly abundant and confident proteins from a total of 1835 proteins in the study of McKew et al., 2013. The protein abundance in different light incubations was investigated and showed that proteins of the photosystem I, photosystem II, and proteins involved in biosynthesis and oxidative stresses were more abundant in the high light treatment (McKew et al., 2013). Calcification rates also increased by two fold in the high light treatment (1000 µmol photons m⁻² s⁻¹). A detailed study of the proteome harvested from cells showing higher calcification rates indicated that V-type

proton ATPases and the calcium-binding protein calreticulin were more abundant (supplementary data from McKew et al., 2013). The study by McKew and colleagues (2013) greatly increased recovery yields of proteins predicted by the *E. huxleyi* 1516 'Filtered ("best") Models' gene set (http://genome.jgi-psf.org/Emihu1/Emihu1.home.html; Read et al., 2013). However, the number of recovered proteins from the *E. huxleyi* proteomes out of a 39126 predicted by gene models (Jones et al., 2013; McKew et al., 2013, Read et al., 2013) is still relatively small in comparison to recovery rates in *Saccharomyces cerevisiae* where 4300 confirmed proteins were recovered from a genome of 5,770 genes (King et al., 2006).

In this study the proteomes from *E. huxleyi* cells from the late G1-phase (high calcification) and early G1-phase (low calcification) (as described in Chapter 3) are compared using a quantitative shotgun proteomic approach similar to Jones et al. (2011), to identify proteins of the calcification period that might be involved in the process of biomineralisation in coccolithophores. The consensus of recovered proteins and observed transcripts is evaluated.

4.1.1. Aims and Objectives

The proteome directly reflects the given physiological state of the cells and in the case of *Emiliania huxleyi* promises to show molecules utilized in calcification processes. By investigating differences in the proteomes of cells harvested from cultures at time points where low and high rates of calcification were previously confirmed (see Chapter 2), proteins involved in the calcification processes were identified. Therefore, proteins were extracted from cells harvested in the late and early G1-phase (light and dark incubation period) and a quantitative comparison of the proteomes of *E. huxleyi* by means of multidimensional liquid chromatography tandem mass spectrometry (LC/LC-MS/MS) and iTRAQ labelling was conducted.

The aims of this study were:

- to assess the proteomes of iso-genetic cultures of *Emiliania huxleyi* at negligible (early G1-phase) and high rates of calcification (late G1-phase) of the cell cycle,
- to compare the proteomes at negligible and high calcification rates for differences in protein abundance,
- to elucidate proteins potentially involved in biomineralisation, and
- to evaluate the proteome with the transcriptome (see Chapter 3) for matching gene expression patterns.

4.1.2. Null hypothesis

The working hypothesises for these studies are:

- There are no differences in proteomes of the highly calcifying and low calcifying E. huxleyi cells;
- Proteins potentially involved in the process of calcification are not expressed in the calcification period (late G1-phase).

4.2. Material and Method

4.2.1. Experimental Design

From the same exponentially growing cultures harvested as described in Chapter 3 proteins were extracted and subjected to proteome analysis. Six batches of 16 L cultures of *E. huxleyi* PLY\$ M217 were grown with starting cell densities of 5000 cell mL⁻¹. Cell harvesting was conducted when cell densities exceeded 50,000 – 100,000 cells mL⁻¹. Cells were harvested 9 hours into the light period and 10 hours into the dark period at 6:00 pm and 7:00 am using inline filtration (see Figure 3.1, Chapter 3). Samples for nutrient analysis, cell count, cell volume, DIC, PIC, and POC were taken immediately before cell harvesting. The assessed biogeochemical parameters were determined following the described methods in Chapter 3. Cells were collected from a 147 mm filter with sterile filtered seawater and concentrated by centrifugation for 5 min at 46000 g (Rotanta 460R, Hettich Zentrifugen, Germany).

4.2.2.Extraction of proteins

Around 50% of the frozen cell pellet from 4.2.1 were transferred to a 50mL Falcon[®] tubes and ten millilitres of 100 mM triethylammonium bicarbonate (TEAB, Sigma Aldrich, Poole, UK), 0.1% sodium dodecyl sulphate (SDS, Sigma-Aldrich, WGK Germany) buffer were added. Probe-sonication on ice was conducted to resuspend and break the cells by shearing forces using a VC300 Vibracell sonicator (Sonics and Materials, USA, 20 kHz frequency, 10% duty cycle). Twenty-five, ten seconds bursts on output 3, with each burst separated by a 30 second pause for cooling were most efficient to destroy the cells and solubilize the proteins. The cell debris was separated from the protein extract by centrifugation (46000 g, 30min, 4°C, Rotana 460R). The supernatant was transferred into a new 50mL Falcon tube. Four volumes of 100% Acetone (HPLC-grade, Thermo-Fisher, Loughborough, UK) cooled to -20 °C were added and gently mixed with the TEAB-buffer. The proteins were allowed 36 hours at -20 °C to precipitate. The precipitated proteins were collected by centrifugation (20000 g, 30min, 4 °C). The acetone-supernatant was discarded and the protein pellet resuspended in cold (-20°C) 80% acetone for further purification steps. After a resting time of around 5 minutes at -20 °C the protein was pelleted by centrifugation (20000 g, 30min, 4 °C). This washing procedure with -20 °C 80% acetone was conducted twice. The final protein pellet was dried on ice in a laminar flow environment and the protein sample re-dissolved in TEAB-buffer (100mM Triethylammonium bicarbonate buffer 1.0 M, pH 8.5±0.1, 0.1% (w/v) SDS). The protein samples were stored at -20 °C until proteome analysis.

4.2.3. Protein quality assessment and troubleshooting

The thawed protein samples from 4.2.2 were resuspended by repeated cycles of vortexing and sonication at 37 °C to increase the solubility of proteins. The protein solution was centrifuged at 10000 g for 10 minutes to pellet insoluble molecules. One-dimensional gradient SDS-polyacrylamide gel electrophoresis was performed to assess protein quality. For SDS gel electrophoresis the samples were prepared by adding 30 μL of the sample supernatant, 10 μL 4 x LDS-loading buffer (Invitrogen, Paisley, UK) and 2 μL of 0.5 M DTT (*threo*-1,4-Dimercapto-2,3-butanediol, Sigma-Aldirch, UK). Samples were heated for 10 min at 75°C for protein denaturation before loading the gel pockets. The separation of proteins into fractions was performed on a 4-12% gradient SDS-polyacrylamide gel (NuPAGE®, dimensions: 8.0 cm x 8.0 cm, Invitrogen, Paisley, UK) in NuPAGE® MOPS SDS running buffer (Thermo Fisher Scientific, UK) at 200 V for 55 min. Proteins were stained with Colloidal Coomassie Brilliant Blue 0.2% (w/v) dye (Colloidal CBB, Sigma-Aldrich, Dorset, UK) incubation for 30 minutes. Subsequently, de-staining using 30% methanol and 2.5% glacial acetic acid was conducted over night. The de-stained gels were imaged on a VersaDoc imaging system and the PDQuest software (Bio- Rad, Hercules, CA, USA).

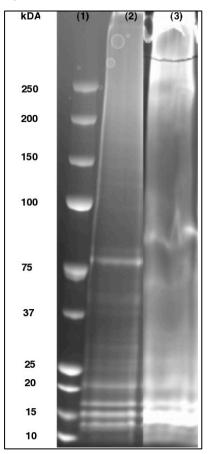


Figure 4-1:Example of results of 1D-SDS NuPage® gels illustrating the encountered issue with smearing. (1) Protein weight ladder, (2) sample after additional ultra-sonication and acetone washing and (3) sample showing smearing of protein material.

Early 1D-SDS gels showed smearing and low levels of protein fractioning (Figure 4-1). Lipids, DNA, polysaccharides, and salts were observed to alter the quality of protein samples. Nagai et al. (2008) suggested that viscous polysaccharides cause smearing on SDS-PAGE gels produced from protein extracts of kelp (*Ecklonia kurome*). Furthermore, small amounts of lipids may deform the protein-fraction-bands on a gel (Pokhariyal et al., 2014). Therefore, the cleaning steps were varied and tested to reduce the concentration of contaminants that caused smearing. The attempts to improve protein quality included desalting columns, additional washes with acetone after four short one-second bursts from the sonicator to resuspend the pellet, and stronger as well as longer centrifugation at 10000g. The additional acetone washes in combination with resuspending the protein pellets with short sonication bursts showed the best fractionation of proteins (compare Figure 4-1).

4.2.4. Protein concentrations assessment

Protein sample concentrations in 100 mM TEAB-buffer were assessed prior to the LC/LC-MS/MS runs applying a bicinchoninic acid (BCA) protein assay (Pierce Biotechnology, Rockford, USA). The working reagent was prepared for the 96-well microplate procedure following the manufacturer's instructions. Standards of BSA concentrations from 0.1 mg mL⁻¹ to 1.0 mg mL⁻¹ and sample aliquots were prepared using 20 μL of samples or standards in 200 μL of working reagent. Protein–stain was allowed to develop for 30 min in the dark at room temperature. Plates were read at 570 nm using a Dynex plate reader and analysed with the Revelation 3.2 software (Dynex Technologies Limited, Worthing, UK). For the iTRAQ[®] labelling and subsequent tandem mass spectrometry quantification and identification of proteins the sample concentrations were adjusted to be equal.

4.2.5.iTRAQ®- labelling

The iTRAQ[®] technique describes a non-gel proteomic approach simultaneously identifying and measuring abundance levels of proteins in a mixture containing peptides from up to 8 different sample extracts (Applied Biosystems, Foster City, U.S.A). The key is to assign the peptides to the different samples within the protein cocktail by attaching probes – 'tags' - that differ in isotope composition to the N-terminus of the amino acids. The isotopic signature of the iTRAQ[®] tags (reporter ions) are detected by the mass spectrometer without interacting chemically or technically with the detection of the amino acids. By associating the relative quantities of the reporter ions with the identified proteins the protein abundance levels in the different samples in the mixture can be compared (Ross et al. 2004; Choe et al., 2007).

The procedure was kindly conducted by Dr. Paul Skipp, Institute for Life Sciences, and is briefly described here (for details see Skipp et al., 2005; Jones et al., 2013). The manufacturer's instructions (Applied Biosystems, Foster City, U.S.A.) were followed to perform the iTRAQ®-labeling of samples. Accordingly,

each sample containing around 100 μg protein was reduced, cysteine blocked, digested with 10 μL trypsin at 37 °C overnight, vacuum-dried for 1 hour at 45 °C, to which 30 μL iTRAQ® solution buffer were added. The iTRAQ® labels 113 to 118 for Light and Dark period samples (three replicate samples per condition) were attached to the N-terminus of peptides in isopropanol at pH above 7.5 within 2 hours of incubation. The labelled samples were stored at -20 °C prior to liquid chromatography (LC) and tandem mass spectrometry analysis.

4.2.6. Liquid chromatography mass spectrometric analysis of peptides

Dr. Paul Skipp at the Institute for Life Sciences (University of Southampton, UK) also conducted the separation of peptides by liquid chromatography and identification by mass spectrometry as previously described (Skipp et al., 2005). Hence, in the first step, the digested and iTRAQ® - labeled peptides were injected onto a nano-capillary two dimensional reverse phase (2D-RP) LC system, using a Waters C18 RP, 3 μm, 100 Å (150 mm x 75 μm, internal diameter) column for separation of peptides based on their hydrophobicity (Waters, Elstree, UK). The LC column reduced the complexity of the peptide-mixture and before the separated peptides were ionized in an in-line Matrix-Assisted Laser Desorption/Ionization (MALDI) phase of the hot plume of an ablated gas plasma. The ionized molecules were accelerated to the quadrupole time-of flight tandem mass spectrometer (Q-Tof Global Ultima, Waters, Milford, USA). According to the mass-to-charge-ratio (m/z) of the eluting peptide the collision energy was acquired during a survey scan at m/z 300 to 1700 switching the criteria for MS to MS/MS, the ion intensity and charge state. The spectra of the peptides were compared to fragmentation data of the peptides in the database to identify the proteins. During MALDI the iTRAQ®-tag is also separated from the peptide releasing a unique signal in the mass spectrometer. A relative quantification of the number of peptides or their fragments of one sample (tag) is achieved by comparing the number of reporter ions (tags) released in coherence with the peptide being reported in other samples, for example between the peptide ratios of the same peptide labelled with the tags 113 and 114

4.2.7.In silico identification of proteins

The MS/MS generated spectra of the peptides or fragments showed peaks that were compared against a library of known mass fingerprints of amino acids and peptides within the MASCOT Distiller Software v.2.2.1 (Matrix Science, London, UK), applying a probabilistic scoring algorithm for statistical confirmation of matches between observed and projected peptide fragments (Koenig et al., 2008). The peptide mass fingerprinting is based on the assumption that a protein will produce a specific set of peptides when it is digested with a site-specific protease such as trypsin, which represent a virtual set of masses to compare with

the MS results. The matching of the experimental protein mass to the predicted masses of proteins is conducted within the MASCOT Distiller Software referring to a large computer database containing predicted proteins from various reference genomes. The MASCOT software compared the experimental spectra of peptides against the predicted proteins of the Emiliania huxleyi CCMP1516 draft genome produced by the US Department of Energy Joint Genome Institute (JGI; http://www.jgi.doe.gov, downloaded 22.2.2012, file: "Emihu1 all proteins.fasta"). The reference sequences consisted of 115,995 non-redundant sequences from all models generated by the JGI annotation pipeline. Furthermore, the experimental scans were also searched against a taxonomically restricted database, which contained 196,774 proteins (93,921,998 residues) constructed from all Alveolata, Cryptophyta, Haptophyceae, Rhodophyta, and Stramenopile sequences available at UniProtKB Release 15.1 (UniProt 2008). The mass tolerance for all searches was set at 150 ppm and fragment mass tolerance at 0.25 Da. Additional settings were carbamidomethylation set to fixed modification, oxidation of methionine to variable modification, and the maximum missing cleavage was set to one. Protein matches were only accepted if supported by 2 or more peptides and under the significance threshold of p < 0.05. Non - E. huxleyi proteins from the taxonomically restricted database (TAXDB) were defined and removed as redundant if supported by less than 2 peptides. Protein matches to TAXDB were validated using homology in a phylogenetic context by HAQESAC (Homologue Alignment Quality, Establishment of Subfamilies and Ancestor Construction) (Edwards et al., 2007). The automated analysis pipeline HAQESAC generated multiple sequence alignments and phylogenetic trees of protein families. Proteins were searched using BLAST (e < 10-4) against the previously created taxonomically restricted protein database (TAXDB) and the \leq 50 closest homologues were aligned with MAFFT (Katoh and Toh, 2008). The homologues were used to construct a phylogenetic tree with 1000 bootstraps using FastTree (Price et al., 2009). The findings of the protein identification by phylogenetic information were validated manually to remove false positives and prefer proteins taxonomically closer to E. huxleyi. The database constructing and bioinformatic processing was conducted by Dr. Richard Edwards (former Institute for Life Sciences, University of Southampton, UK)

4.2.8. Data processing

Redundancy and duplicate matches of proteins to the *E. huxleyi* JGI reference genome data and the TAXDB were manually removed by similarities of protein identifier, sequence length and quantitative iTRAQ data. The redundancy filtered results of the MASCOT identification and iTRAQ relative protein quantification for matches against the *Emiliania huxleyi* genome and the TAXDB were combined and annotated. Functional annotations, such as gene ontology. (GO) biological process, molecular function, cellular component, and GO IDs were retrieved from the UniProtKB ID mapping service (http://www.uniprot.org; Huntley et al., 2015). KOG annotations were anticipated to allow functional comparison to the transcriptome. KOG annotations from *E. huxleyi* JGI reference genome annotations yielded insufficient results for any functional conclusions.

Only 5 out of 403 total proteins had KOG annotations provided by JGI. Hence, GO annotations were the main feature to compare functional properties in the Light and Dark condition. For the functional annotation GO biological process only the first GO term was used to summarize the results. The entire proteome was also searched for proteins with a potential role in calcification based on protein description and GO annotations. The significantly expressed proteins in the Light and Dark condition were filtered and evaluated for dominant physiological processes. Furthermore, to find consensus of the proteomics and transcriptomics data (Chapter 3) the MASCOT proteins identified by the JGI *E. huxleyi* reference genome were investigated for consensus hits using the JGI gene IDs of 34403 transcripts (Chapter 3) and the UniProt IDs of transcripts using R.

4.3. Results

The experimental design was the same as described in Chapter 3 of this monograph. The same physiological parameters such as, PIC, POC, PON, growth rates, and nutrient consumption were relevant for the evaluation of the cell cultures. In the following section, only additional proteome related results of *E. huxleyi* in the highly calcifying late G1-phase and low calcifying early G1-phase, the light and dark incubation period, respectively, are presented. The results for cell physiological parameters, calcification, nutrient consumption, dissolved inorganic carbon, and irradiance levels are presented in subchapter 3.3.

4.3.1. Protein yield and integrity of protein extract

The extraction of proteins using TEAB-buffer yielded protein concentrations of 2.6 to 4.2 mg ml⁻¹ (see Table 4-1) sufficient for iTRAQ labelling and MS/MS based peptide sequence assessment.

Table 4-1: Protein concentrations in extracts from the collected cell pellets from experimental cultures at the late G1-phase (highly calcifying cell, HC) and early G1-phase (low calcifying cells, LC)

	Protein conc.
Culture	in mg ml ⁻¹
HC-1	3.1
HC-2	3.3
HC-3	3.4
LC-1	2.6
LC-2	4.2
LC-3	3.2

4.3.2. Peptide identification and annotation success

The following sections describe the general and more specific protein identification and annotation success, in respect to functional categories, significantly more relatively higher abundant proteins, and proteins potentially involved in the biomineralisation process in *E. huxleyi*.

4.3.2.1. General identification and annotation success

The MASCOT-identified peptides were mapped against the *E. huxleyi* genome (dataset JGI) and taxonomically restricted database (dataset TAXDB) (see section 4.2.7). In the identification pipeline a total of 496 hits to both reference databases were achieved. However, 55 of the hits to the JGI reference database did not return a BLAST hit (e < 10⁻⁴). The remaining 441 proteins showing BLAST annotated findings recruited to a total of 329 protein clusters (compare Table 4-2). Differences in the total yield of identified proteins occurred in the iTRAQ experiment. Quantitative protein information was returned for 409 hits to JGI and TAXDB reference databases in total. The iTRAQ pipeline returned a total of 403 non-redundant hits, equivalent to 339 peptide matches, and recruiting to 287 protein clusters (for details see Table 4-2). In the following sections the evaluation of the quantitative iTRAQ proteomics data is central for the presentation.

Table 4-2: Protein identification success in the identification pipeline and iTRAQ experiment (nr: non redundant; JGI: matches against the JGI reference genome of 22.2.2012; TAX DB: matches against the taxonomically restricted data base created be Dr. Richard Edwards, see Subchapter 4.2.8)

	Identificati	on pipeline			iTRAQ	experiment	
Dataset	Total peptide hits	No Blast hits removed	Protein clusters	iTRAQ peptide hits	nr iTRAQ peptide hits	nr protein	nr protein clusters
JGI	406	351	241	330	327	263	235
TAXDB	90	90	88	79	76	76	65
Total	496	441	329	409	403	339	287

In the HC condition 77 peptides matching to known proteins out of 90 total hits were up-regulated. Higher abundance ratios of proteins in the LC condition were found in 26 cases, of which 23 returned protein matches. The majority of the total hits and annotated protein showed no significantly increased relative abundance in the HC or LC condition. This means that 26% of the identified proteins showed up or down regulation in both experimental conditions (for details see Table 4-3).

Table 4-3: Counts of significantly more abundant peptides in the HC and LC condition. (E.hux.G.: JGI *E. huxleyi* reference genome, Sig. higher rel. abund.: significant higher relative abundant proteins based on iTRAQ peptide ratios).

	Total hits	Hits with	Hits without	Hits in	Hits in
		UniProt ID	UniProt ID	E. hux.G.	TaxaDB
НС	90	77	13	75	15
LC	26	23	3	19	7
Not sign.	287	239	48	233	54
Total	403	339	66	327	76

4.3.2.2. Functional and localisation prediction annotation of proteins

Only 5 KOG annotations were returned from the JGI reference genome mapping results. Therefore, functional information based on gene ontology (GO) annotation was more abundantly available. The UniProt knowledge base GO annotation is evaluated at the level of biological process and cellular component. For the summary of the GO annotation success refer to Table 4-4.

Table 4-4: Success of gene ontology (GO) annotation of peptides in the HC and LC condition at the levels biological process and cellular component (Sig. higher rel. abund.: significant higher relative abundant proteins based on iTRAQ peptide ratios).

Sig. higher	Gene Ontology	Gene Ontology	Gene Ontology
rel. abund.	(GO)	(biological process)	(cellular component)
НС	70	60	44
LC	18	12	13
Not sign.	210	211	116
Total	298	211	173

The number of proteins attributed to the dominant biological processes based on GO annotations in the HC and LC condition are given in Table 4-5 and Table 4-6, respectively. Proteins involved in energy turnover processes such as photosynthesis, ATP hydrolysis glycolysis, carbohydrate metabolism, cell homeostasis, protein transport, and metabolism were activated in the HC condition (see Table 4-5 for details). In the dark incubation period biological processes involved in mitosis (e.g. microtubule-based process [GO:0007017], protein polymerization [GO:0051258], nucleosome assembly [GO:0006334]), protein synthesis (e.g. protein folding [GO:0006457], translation [GO:0006412]), amino acid synthesis (e.g. gluconeogenesis [GO:0006094], pyruvate metabolic process [GO:0006090], carboxylic acid metabolic process [GO:0019752]), and cell wall synthesis (terpenoid biosynthetic process [GO:0016114]) are indicated.

Table 4-5: Significantly overrepresented peptides in the HC condition by GO: biological processes. The number of significantly overrepresented peptides in the HC condition by Gene Ontology biological processes annotation is presented.

Gene Ontology – biological process [GO IDs]	Number of Peptides
Photosynthesis; light harvesting [GO:0009765]; protein-chromophore linkage [GO:0018298]	14
ATP hydrolysis coupled proton transport [GO:0015991]; ATP synthesis coupled proton transport [GO:0015986]	8
Glycolytic process [GO:0006096]	5
Protein folding [GO:0006457]	3
Carbohydrate metabolic process [GO:0005975]; glycerol-3-phosphate catabolic process [GO:0046168]	3
Glucose metabolic process [GO:0006006]; glycolytic process [GO:0006096]	2
ATP synthesis coupled proton transport [GO:0015986]	2
Cell redox homeostasis [GO:0045454]; cellular response to oxidative stress [GO:0034599]; glycerol ether metabolic process [GO:0006662]; oxidation-reduction process [GO:0055114]; protein folding [GO:0006457]; protein folding [GO:0006457]; sulphate assimilation [GO:0000103];	1
Photosynthesis; light harvesting [GO:0009765]	1
Protein transport [GO:0015031]; small GTPase mediated signal transduction [GO:0007264]	1
Mitochondrial respiratory chain complex III assembly [GO:0034551]	1
Carbohydrate metabolic process [GO:0005975]	1
Oxygen transport [GO:0015671]	1
Sulphate assimilation [GO:0000103]	1
One-carbon metabolic process [GO:0006730]	1
Glucose metabolic process [GO:0006006]	1
ATP hydrolysis coupled proton transport [GO:0015991]	1
Ubiquitin-dependent protein catabolic process [GO:0006511]	1
Gluconeogenesis [GO:0006094]; glycolytic process [GO:0006096]	1
Protein import [GO:0017038]; protein targeting [GO:0006605]	1
Arginyl-tRNA aminoacylation [GO:0006420]	1
ATP hydrolysis coupled proton transport [GO:0015991]; ATP metabolic process [GO:0046034]	1
Pyridoxal phosphate biosynthetic process [GO:0042823]; vitamin B6 biosynthetic process [GO:0042819]	1
Translation [GO:0006412]	1
Cell redox homeostasis [GO:0045454]; glutathione metabolic process [GO:0006749]	1
Peptidyl-pyrromethane cofactor linkage [GO:0018160]; tetrapyrrole biosynthetic process [GO:0033014]	1
Protein folding [GO:0006457]; response to stress [GO:0006950]	1
Reductive pentose-phosphate cycle [GO:0019253]	1
Photosynthetic electron transport in photosystem II [GO:0009772]; Protein-chromophore linkage [GO:0018298]	1
Carotenoid biosynthetic process [GO:0016117]	1

Table 4-6: Significantly overrepresented peptides in the LC condition by GO: biological processes. The number of significantly overrepresented peptides in the LC condition by Gene Ontology biological processes annotation is presented.

Gene Ontology – biological process [GO IDs]	Number of Peptides
Microtubule-based process [GO:0007017]; protein	2
polymerization [GO:0051258]	3
Nucleosome assembly [GO:0006334]	2
Protein folding [GO:0006457]	1
Translation [GO:0006412]	1
Transmembrane transport [GO:0055085]	1
Protein catabolic process [GO:0030163]	1
Gluconeogenesis [GO:0006094]; pyruvate metabolic	
process [GO:0006090]	1
Terpenoid biosynthetic process [GO:0016114]	1
Carboxylic acid metabolic process [GO:0019752]	1

In general, the majority of up regulated proteins in highly calcifying cells were tagged to the chloroplast [GO:0009507] (n = 21). Fewer proteins related to the cytoplasm [GO:0005737] (n = 3), Golgi apparatus [GO:0005794] (n = 1), membrane [GO:0016020] (n = 1), mitochondrion [GO:0005739] (n = 1), and nucleosome [GO:0000786] (n = 1) were also identified (see Table 4-6). Interestingly, two proteins related to proton-transporting V-type ATPases [GO:0033179] and GO:003318] were identified in highly calcifying cells. For more details of gene ontology cellular component annotation in the HC condition refer to Table 4-7. In the dark incubation period (LC condition) the largest cohort of proteins recruited to the nucleosome [GO:0000786] (n = 6), mitosis in the form of microtubule [GO:0005874] (n = 2), Cytoplasm [GO:0005737] (n = 2). For further details of gene ontology cellular component annotation in the LC condition refer to Table 4-8.

Table 4-7: Significantly overrepresented peptides in the light incubation period by GO: cellular component. The number of significantly overrepresented peptides in the HC condition by Gene Ontology: cellular component annotation is presented.

Gene Ontology – cellular component [GO IDs] LIGHT	Number of Peptides
Chloroplast [GO:0009507]; integral component of membrane	1.4
[GO:0016021]; photosystem II [GO:0009523]	14
Proton-transporting ATP synthase complex, catalytic core F(1) [GO:0045261]	6
Chloroplast thylakoid membrane [GO:0009535]; proton-	
transporting ATP synthase complex, catalytic core F(1)	
[GO:0045261]	4
Glycerol-3-phosphate dehydrogenase complex [GO:0009331]	3
Cytoplasm [GO:0005737]	2
Cell [GO:0005623]	1
Chloroplast [GO:0009507]	1
Chloroplast [GO:0009507]; integral component of membrane	
[GO:0016021]; photosystem II [GO:0009523]; thylakoid	
membrane [GO:0042651]	1
Chloroplast stroma [GO:0009570]; chloroplast thylakoid	
membrane [GO:0009535]	1
Chloroplast thylakoid membrane [GO:0009535]; integral	
component of membrane [GO:0016021]; light-harvesting	
complex [GO:0030076]; photosystem II [GO:0009523]	1
Clathrin coat of coated pit [GO:0030132]; clathrin coat of	
trans-Golgi network vesicle [GO:0030130]	1
Cytoplasm [GO:0005737]; nucleus [GO:0005634]; proteasome	
core complex, alpha-subunit complex [GO:0019773]	1
Golgi apparatus [GO:0005794]	1
Membrane [GO:0016020]	1
Mitochondrion [GO:0005739]	1
Nucleosome [GO:0000786]; nucleus [GO:0005634]	1
Phosphopyruvate hydratase complex [GO:0000015]	1
Plasma membrane [GO:0005886]	1
Proton-transporting V-type ATPase, V0 domain, across	
membrane transport [GO:0033179]	1
Proton-transporting V-type ATPase, V1 domain, across	
membrane transport [GO:0033180]	1
Ribosome [GO:0005840]	1

Table 4-8: Significantly overrepresented peptides in the dark incubation period by GO: cellular component. The number of significantly overrepresented peptides in the LC condition by Gene Ontology: cellular component annotation is presented.

Gene Ontology – cellular component [GO IDs] DARK	Number of Peptides
Nucleosome [GO:0000786]; nucleus [GO:0005634]	6
Microtubule [GO:0005874]	2
Cytoplasm [GO:0005737]	1
Cytoplasm [GO:0005737]; microtubule [GO:0005874]	1
Integral component of membrane [GO:0016021]	1
Nucleus [GO:0005634]	1
Small ribosomal subunit [GO:0015935]	1

The gene ontology tables considering all protein hits can be found in Appendix B Table 2 and Table 3.

4.3.2.3. Significantly expressed proteins in the highly and low calcifying *E. huxleyi* cells

The quantitative proteomics experiment using iTRAQ showed that 110 peptides with known UniProt IDs showed significant higher relative abundance in highly calcifying *E. huxleyi* cells and cells calcifying at low rates (see Table 4-3 and Table 4-9). Protein function and gene ontology frequencies show a similar general trend that distinct functional protein groups were up-regulation in either the light or dark incubation period (Section 4.3.2.2.). Proteins involved in photosynthesis and ATP synthesis were up regulated in the HC condition. Proteins suggested to be involved in the calcification process, namely clathrin (Dark:Light = 0.664; UniProt ID: C1E1W7; JGI407983) and subunits of V-type proton ATPases (e.g. UniProt ID: D8TKK9, JGI43077; Dark:Light = 0.813) were more abundant in the HC condition. In *E. huxleyi* cells calcifying at lowest rates, if at all, histones and tubulins were significantly upregulated.

Table 4-9: Significantly more abundant proteins in the HC and LC condition. Proteins showing significant relative up- and down-regulation of identified peptides at abundance ratio) proteins were more abundant in highly calcifying cells. The abundance ratio of all peptides is given in Appendix B. LC: HC sig. dir.: indicating significant more abundant peptides in the HC or LC condition. (DB ID: identifier for matches to TaxDB and JGI reference genome, Consensus: reference ID for high calcification (HC condition) or in low calcifying cell (LC condition). If LC:HC < 1 (proteins in low calcifying cells versus proteins in high calcifying cells match in HAQESAC. Shading of table rows indicates proteins with abundance ratio towards the LC condition).

DB ID U	niProt ID	UniProt ID Protein description	LC:HC sig. dir	LC:HC	LC:HC Min	LC:HC Min LC:HC Max	Consensus
JGI65061 Q	Q2IA28	Chloroplast light harvesting protein isoform 12	HC	0.594	0.433	0.751	HAJGI222
TAXDB13 Q4G3F4	4G3F4	Ribulose bisphosphate carboxylase large chain	HC	0.598	0.544	0.660	TAXDB13
JGI281147 Q5UU97	5UU97	Enolase	HC	0.09.0	0.447	0.729	HAJGI283
JGI206028 Q2IA28	2IA28	Chloroplast light harvesting protein isoform 12	HC	0.632	0.487	0.763	HAJGI261
JGI66310 F0XZQ3)XZQ3	Putative uncharacterized protein	HC	0.641	0.416	0.911	HAJGI043
TAXDB73 A3FQF5	3FQF5	Uncharacterized protein	HC	0.647	0.528	0.799	TAXDB73
JGI269056 Q39709	39709	Fucoxanthin-chlorophyll a-c binding protein	HC	0.654	0.565	0.845	HAJGI382
TAXDB14 Q4G396	4G396	Photosystem II CP43 reaction center protein	HC	0.681	0.581	0.801	TAXDB14
TAXDB22 B8C4K2	8C4K2	Uncharacterized protein	HC	0.691	0.443	0.950	TAXDB22
JGI62246 Q2IA73	2IA73	Chloroplast light harvesting protein isoform 6	HC	0.693	0.544	0.787	HAJGI246
JGI109974 NA	A	NA	HC	669.0	0.479	866.0	NA
JGI220283 NA	A	NA	HC	0.700	0.653	0.772	NA
JGI103600 D8LB65	8LB65	Glucokinase	HC	0.703	0.522	0.884	HAJGI275
JGI67584 Q2IA28	2IA28	Chloroplast light harvesting protein isoform 12	HC	0.704	0.489	0.926	HAJGI264
JGI218041 P51821	51821	ADP-ribosylation factor 1	HC	0.704	0.568	0.924	HAJGI036
JG145869 Q21A76	2IA76	Chloroplast light harvesting protein isoform 3	HC	0.705	0.538	0.937	HAJGI029
JGI104438 C1DZ32	1DZ32	Predicted protein	HC	0.710	0.540	0.843	HAJGI260
JGI281510 F0YM05)YM05	Putative uncharacterized protein	HC	0.710	0.589	0.853	HAJGI085
JGI96082 NA	A	NA	HC	0.718	0.594	0.805	NA
TAXDB75 Q5ENR8	5ENR8	Phosphoglycerate kinase	HC	0.720	0.647	0.818	TAXDB75
JGI90250 F0YFF1)YFF1	Putative uncharacterized protein	HC	0.726	0.630	0.804	HAJGI405
JGI237243 NA	A	NA	HC	0.727	0.498	0.955	HAJGI191
JGI275754 Q5ENS1	5ENS1	Chloroplast phosphoribulokinase	HC	0.727	0.604	0.883	HAJGI167
JGI67108 Q21A72	2IA72	Chloroplast light harvesting protein isoform 7	НС	0.728	0.596	0.974	HAJGI299

HAJGI079 HAJGI365 HAJGI186 HAJG1025 TAXDB85 HAJGI259 HAJGI035 **HAJGI209** HAJGI136 **HAJGI008** HAJGI140 HAJGI335 LC:HC sig. dir |LC:HC |LC:HC Min|LC:HC Max |Consensus TAXDB81 HAJGI125 HAJGI280 HAJGI372 HAJG1027 TAXDB61 TAXDB41 HAJGI071 HAJGI381 NA NA 0.836 0.950 0.8500.855 1.053 0.877 0.864 0.858 0.870 0.998 0.975 0.892 0.870 0.945 0.953 0.792 0.845 966.0 0.949 0.821 0.881 0.861 0.961 0.536 0.573 0.679 0.589 969.0 0.659 0.673 0.614 0.688 0.6170.706 0.684 0.664 0.672 0.612 0.687 0.387 0.622 0.613 0.461 0.587 0.760 0.661 0.735 0.786 0.664 0.728 0.744 0.756 0.757 0.758 0.760 0.7630.765 0.766 0.767 0.774 0.732 0.762 0.777 0.780 0.782 0.7740.797 0.751 0.781 Table 4-9: Significantly more abundant proteins on the Light and Dark phase, continued HC HC HC HC HC НС НС HC HC НС HC НС НС HC НС HC HC HC HC Chloroplast light harvesting protein isoform 4 Chloroplast light harvesting protein isoform 3 Chloroplast light harvesting protein isoform 3 Chloroplast light harvesting protein isoform 3 ATP synthase epsilon chain, chloroplastic ATP synthase subunit beta, chloroplastic ATP synthase subunit beta, chloroplastic Chloroplast glyceraldehyde-3-phosphate Plastid C1 class II fructose bisphosphate Cytosolic glyceraldehyde 3-phosphate Heat shock protein 70 / HSP70 (ISS) Putative uncharacterized protein ATP synthase subunit beta Adenosylhomocysteinase Clathrin heavy chain UniProt ID | Protein description Predicted protein dehydrogenase dehydrogenase aldolase NA NA JGI120262 F0Y2W6 JG1122970 Q01AH9 TAXDB85 D8TRA2 JGI271331 D0NEK2 JGI102901 | O50D45 JGI407983 C1E1W7 FAXDB61 Q4G3C8 JGI273928 G5A9A0 TAXDB41 Q4G3C9 JGI283485 B8CFP9 JGI216402 G4ZP25 JGI358141 Q84LQ0 F0Y6E3 JGI120829 Q2IA75 JGI103637 Q2IA76 JGI102701 | O2IA76 JGI407305 Q2IA76 [AXDB81 | Q40612 JGI106019 A811X3 JGI230835 Q2IA55 NA JGI112702 NA JGI406321 NA JG188932 JG199131

FAXDB88 HAJGI266 HAJGI019 TAXDB05 HAJGI048 HAJGI098 HAJGI402 HAJGI138 **HAJGI205** HAJG1026 HAJGI349 HAJGI242 HAJG1030 LC:HC sig. dir | LC:HC | LC:HC Min|LC:HC Max | Consensus **HAJGI397** HAJGI237 HAJGI380 HAJGI162 HAJGI387 HAJGI037 HAJGI267 HAJG1007 HAJGI291 HAJGI097 HAJGI121 HAJGI081 NA NA 0.976 0.910 0.909 0.878 0.994 0.934 0.935 0.995 0.938 0.919 0.965 0.994 966.0 0.905 0.948 0.949 0.887 0.887 0.940 0.987 0.969 0.971 0.931 0.931 0.961 0.981 908.00.7200.758 0.6700.724 0.726 0.726 969.0 0.750 0.712 0.717 0.724 0.723 0.725 0.739 0.703 0.695 0.662 0.709 0.749 0.751 0.697 0.681 0.773 0.671 0.751 0.787 0.798 0.818 0.836 0.846 0.799 0.8080.810 0.819 0.836 0.839 0.845 0.8000.813 0.823 0.824 0.828 0.833 0.833 0.839 0.843 0.843 0.848 0.851 0.817 0.841 0.847 0.831 Table 4-9: Significantly more abundant proteins on the Light and Dark phase, continued НС НС HC НС НС НС НС HCHC HC НС HC НС HC HC HC HC HC НС HC HCProtein translocase subunit SecA, chloroplastic Chloroplast light harvesting protein isoform 12 Chloroplast light harvesting protein isoform 5 Glyceraldehyde-3-phosphate dehydrogenase Vacuolar H+ ATPase V0 sector, subunit D ATP synthase subunit alpha, chloroplastic V-type proton ATPase catalytic subunit A Putative plastid light harvesting protein Putative uncharacterized protein Proteasome subunit alpha type Molecular chaperone, putative Putative plastid transketolase Heat shock protein, putative Heat shock protein, putative Triosephosphate isomerase Nucleolar protein NOP5 UniProt ID | Protein description Predicted protein Predicted protein isoform 40 NA NA NA NA JG1120592 O0MYX3 JGI43077 D8TKK9 JGI198360 C5KNV3 JGI252355 F0XWG3 JGI88203 | A6YAZ8 JGI88977 | A4RW83 JGI212512 G5A9A0 JGI87079 B9PNV8 JGI206438 D0NBZ5 JGI265597 G5A9A0 JG1102800 G0QQ50 JGI270399 015GC7 FAXANA C5K6Q8 JGI272624 A4S2C6 JGI202968 F0YD68 TAXDB05 Q4G397 JGI61340 Q2IA74 FAXDB88 | 021A54 JG196943 C1EIH7 IGI218081 | O2IA28 JGI366337 A8J387 JGI222386 P48414 JGI199538 NA JGI235106 NA JGI100088 NA JGI350570 NA JGI254140 NA

TAXDB48 HAJGI038 FAXDB90 HAJGI386 HAJGI103 HAJGI200 HAJGI058 HAJGI319 TAXDB02 HAJGI104 HAJGI289 HAJGI235 **HAJGI268** HAJGI144 LC:HC sig. dir | LC:HC | LC:HC Min|LC:HC Max | Consensus HAJGI220 HAJGI073 HAJGI092 HAJGI367 HAJG1017 $HAJGI15\overline{7}$ HAJGI147 TAXDB77 HAJGI377 NA NA 1.215 0.994 696.0 0.9980.979 0.973 0.978 0.968 0.964 0.964 0.978 0.998 0.9991.205 1.209 1.312 1.259 1.372 1.368 0.927 0.970 0.962 0.987 1.267 0.951 0.766 928.0 0.789 0.770 0.774 0.768 0.752 0.765 0.870 0.835 0.929 1.010 1.049 0.713 0.730 1.007 1.002 1.022 1.007 1.017 0.741 0.811 1.027 0.854 0.855 0.865 0.865 0.874 0.924 0.938 1.130 0.883 906.0 0.957 1.133 0.867 0.882 0.887 1.107 1.137 0.871 0.877 0.877 1.141 1.161 1.161 0.871 1.081 Table 4-9: Significantly more abundant proteins on the Light and Dark phase, continued НС НС НС НС HC НС HC HC HC HC HC НС HC Γ C Γ_{C} CC CC Γ C Putative chloroplast 4-hydroxy-3-methylbut-2-Proliferation-associated protein 2G4, putative Elongation factor tu gtp-binding domain Peptidyl-prolyl cis-trans isomerase (EC 26S protease regulatory subunit 7 Putative uncharacterized protein en-1-yl diphosphate synthase ATP synthase subunit alpha ATP synthase subunit alpha ATP synthase gamma chain ATP synthase subunit beta ATP synthase subunit beta 60S ribosomal protein L3 Phosphoglycerate kinase Glutathione reductase Heat shock protein 90 UniProt ID | Protein description Histone H2A Histone H2A Thioredoxin protein 2 GI97545 B6KVV6 FAXDB90 GOORF6 JGI89571 Q5ENR5 JG1402650 C1EHC0 JGI272626 F0YAX4 JGI276141 D0NY29 JGI231324 D0NEH7 JGI209460 G4YJL5 JGI365196 B6DX96 JGI360985 G4Z7L2 JG199724 | D8LHC1 JGI105420 Q5DK81 TAXDB77 D7FXG1 JGI412390 C1FE16 IGI266878 F0YE54 TAXDB02 CIFFK0 JG1105146 C1E0B7 F0YST3 JGI270342 D8U3I9 JGI266768 B8C830 JGI197716 Q2IA11 TAXDB48 049JJ1 Q49JJZ NA JGI360891 NA JGI64083 JGI71008 JG195565

TAXDB65 **FAXDB19** TAXDB28 HAJGI156 TAXDB72 LC:HC sig. dir | LC:HC | LC:HC Min | LC:HC Max | Consensus HAJGI296 HAJGI074 **HAJGI208** HAJGI185 HAJGI143 HAJGI379 HAJGI082 TAXDB53 HAJGI158 **HAJGI307** HAJGI401 TAXDB71 HAJGI111 1.916 1.764 3.448 1.264 1.372 1.280 1.403 1.389 1.524 1.502 1.524 1.580 1.709 1.397 1.477 1.441 1.631 1.821 1.484 1.076 1.034 1.002 1.030 1.156 1.285 1.383 1.082 1.007 1.100 1.052 1.094 1.063 1.242 1.181 .280 1.147 2.388 1.165 1.476 1.168 1.550 1.577 1.170 1.213 1.244 1.305 1.362 1.373 1.504 1.207 1.333 1.161 1.277 1.281 Table 4-9: Significantly more abundant proteins on the Light and Dark phase, continued Γ C CC CC Γ C CC Γ C Γ C CC CC Γ C CC CC Putative uncharacterized protein (Fragment) Putative uncharacterized protein Putative uncharacterized protein Alpha-tubulin (Fragment) 40S ribosomal protein S3 Tubulin alpha-2 chain Histone H3, putative UniProt ID | Protein description Predicted protein Predicted protein Alpha-tubulin Histone H2B Histone H2A Histone H2B Histone H2A Histone H4 Histone H4 NA FAXDB72 F0XW25 JGI72235 C1MVY5 JGI267796 Q1WLZ2 CAXDB71 D0MWJ7 JGI271455 F0YFV2 FAXDB65 F0Y8U4 JGI76377 B7G0V7 JGI255477 A7AT84 [AXDB19 Q00Y53 JGI279740 C1FFE2 Q013K3 CAXDB28 C1E6T8 IGI277202 Q5G920 FAXDB53 Q5G917 JGI201707 A4RS62 IGI87697 F0Y9S1 JGI374572 NA JGI256830 NA JGI96192

4.3.2.4. Proteins of interest involved in biomineralisation in highly calcifying and low calcifying *E. huxleyi* cells

The abundance ratios for all identified proteins can be found in Appendix B Table 1. The entire population of identified proteins was investigated for proteins involved in biomineralisation at the gene ontology level and by protein name. The results show that four proteins potentially involved in *E. huxleyi* biomineralisation were relatively more abundant in calcifying cells of the late G1 cell cycle phase (see Table 4-10 and Table 4-11). The peptides related to biomineralisation matched three proton V-ATPases and one clathrin (see section 4.3.2.3). Gene ontology suggested three proteins involved in the calcification process, whereas two are predicted and uncharacterized. Furthermore, a putative alpha-actinin-1 and oxygen evolving enhancer 1 (JGI265795, UniProt ID: Q8L878; Dark: Light = 0.944) was suggested by gene ontology to play a role in calcification. In cells showing low rates of calcification (LC condition) (JGI271455, UniProt ID: F0YFV2; LC: HC = 1.1170) was indicated to be involved in calcification trusting GO annotations. However, WolfsPSort (Horton et al., 2007) predicts the location of the uncharacterised protein in the chloroplast.

Table 4-10: Proteins with potential role in calcification in the HC and LC condition. Known proteins involved in biomineralisation observed in the proteomes of the HC and LC conditions. LC: HC sig. dir.: indicating significantly more abundant peptides in the HC or LC condition. (DB ID: identifier for matches to TaxDB and JGI reference genome, Consensus: reference ID for match in HAQESAC).

DB ID	UniProt ID	niProt ID Protein description	LC:HC sig. dir LC:HC	LC:HC	LC:HC Min	LC:HC Min LC:HC Max Consensus	Consensus
JGI43077	D8TKK9	Vacuolar H+ ATPase V0 sector, subunit D	HC	0.813	0.751	288.0	HAJGI048
JGI222386 P48414	P48414	V-type proton ATPase catalytic subunit A	HC	0.833	0.681	0.971	HAJGI081
JGI276075 D8U1	D8U1L3	Vacuolar ATP synthase subunit E		0.894	0.772	1.047	HAJGI202
JGI407983	GI407983 CIE1W7	Clathrin heavy chain	HC	0.664	0.387	1.053	HAJGI365

proteomes of the HC and LC condition. LC: HC sig. dir.: indicating significantly more abundant peptides in the HC or LC condition. (DB ID: identifier for matches to TaxDB and JGI reference genome, Consensus: reference ID for match in HAQESAC). Shading of table rows indicates proteins with Table 4-11: GO: calcification proteins in the HC and LC condition. Proteins with "calcification" as a keyword in gene ontology annotation in the abundance ratio towards the LC condition.

DB ID UniProt ID	JniProt ID Protein description	LC:HC sig. dir LC:HC LC:HC Min LC:HC Max Consensus	LC:HC	LC:HC Min	LC:HC Max	Consensus
GI408848 D0NLH6	Alpha-actinin-1, putative		0.918	0.759	1.122	HAJGI110
IGI113436 A8IJG5	Predicted protein		0.942	0.789	1.101	HAJGI262
GI265795 Q8L878	Oxygen evolving enhancer 1		0.944	0.765	1.224	HAJGI298
GI271455 F0YFV2	Putative uncharacterized protein	TC	1.170	1.034	1.441	HAJGI185

4.3.2.5. Consensus of transcriptome and proteome

To find consensus of the proteomics and transcriptomics data (Chapter 3) the MASCOT peptides identified by the JGI *E. huxleyi* reference genome and TAXDB were compared as described in section 4.2.8. Out of 496 protein hits only 51 were found to show a consensus transcript based on the JGI gene ID. A total of 20 matches based on protein identifies (UniProt ID) were found in the proteome and transcriptome. After removing duplicates in the combined results based on JGI gene ID 35 matches remained, of which 31 had relative expression / abundance data. Of those 31 matches 12 showed the same direction towards the HC or LC condition, whereas only 2 showed higher abundance in cells with low calcification rates. The expression direction was found significantly different only in one case; the chloroplastic fucoxanthin-*chl a-c* binding protein (JGI ID: 269056; UniProt ID: Q39709) was more abundant in the HC condition. The protein matches in the proteome and transcriptome are presented in Table 4-12. None of the proteins match by the proteome against the transcriptome appears to be involved in biomineralisation.

Table 4-12: Proteome – transcriptome consensus. Matching hits (proteins) in the proteome and transcriptome datasets are presented. Abundance ratios for the proteins and transcripts are presented. dir. prot. indicating significant peptide ratio. LC:HC: peptide ratio average, LC:HC min.: peptide ratio minimum, LC:HC max.: peptide ratio maximum, log 2x: log 2-fold ratio of transcripts, dir transcr.: direction of transcript abundance, sig.: significantly different transcript abundance. Italic and bold JGI ID mark matches where the direction of abundance ratio of proteins and transcripts is the same.

			dir		LC:HC	LC:HC		dir	
JGI ID	JGI ID UniProt ID Descriptior	Description	prot.	LC: HC	min.	max.	log2 x	transcr.	sig.
67108	Q2IA72	Chloroplast light harvesting protein isoform 7	HC	0.728	0.596	974	0.7	ЭТ	no
243741	243741 D8TS49	Component of cytosolic 80S ribosome and 60S large submit		0.872	965 0	1 353	-1 28	ЭH	uu
240795	240795 G4ZPW0	Elongation factor Tu		NA	NA	NA	-0.14	HC	no
		Fucoxanthin-chlorophyll a-c binding protein,						ЭН	
269056	269056 Q39709	chloroplastic	HC	0.654	0.565	0.845	-2.25		yes
198360	198360 C5KNV3	Molecular chaperone, putative		0.836	0.726	0.931	-0.5	ЭН	0U
206438	206438 D0NBZ5	Nucleolar protein NOP5		0.839	0.695	0.961	-1.14	ЭН	ou
193927	193927 B8BU34	Predicted protein		0.88	0.618	1.669	1.78	ЭТ	yes
102657	102657 A4RTV8	Predicted protein		0.895	0.799	1.055	-1.26	ЭН	no
96453	B8LEJ5	Predicted protein		0.951	0.615	2.008	5.22	ЭТ	yes
200165	200165 B7G9A2	Predicted protein		0.98	808.0	1.164	-0.51	ЭН	no
108180	108180 C1N4F5	Predicted protein		1.058	0.871	1.346	-1.27	ЭН	ou
279740	279740 C1FFE2	Predicted protein	ΓC	1.161	1.007	1.372	-1.07	ЭН	no
233632	233632 B8CAB4	Predicted protein		1.795	0.588	6.25	-3.22	ЭН	yes
351398	351398 B5Y3N7	Predicted protein		NA	NA	VN	1.87	ЭТ	yes
		Protein disulfide-isomerase-like protein							
108073	108073 Q50KB1	EhSep2		1.087	0.781	1.546	-2.4	HC	no
		Protein translocase subunit SecA,						Γ C	
88977	A4RW83	chloroplastic	HC	0.824	0.697	0.938	1.84		yes
281510	281510 F0YM05	Putative uncharacterized protein	HC	0.71	0.589	0.853	4.01	ЭТ	yes
10901	106019 A811X3	Putative uncharacterized protein	HC	0.777	0.536	966.0	-2.48	HC	no
202968	202968 F0YD68	Putative uncharacterized protein	HC	0.848	0.749	696.0	0.39	ΓC	no
212481	212481 D7FJQ9	Putative uncharacterized protein		0.874	0.735	1.167	1.92	ΓC	yes
365947	365947 E1ZDS1	Putative uncharacterized protein		0.885	069.0	1.117	-1.21	ЭН	ou

Table 4 12: Proteome – transcriptome consensus continued:

		•			LC:HC	LC:HC		dir	
GI ID	UniProt ID	IGI ID UniProt ID Description	dir prot.	dir prot. LC: HC	min.	max.	$\log 2 x$	transcr. sig.	sig.
258285	58285 E1Z343	Putative uncharacterized protein		0.900	90.70	1.116	-0.83	HC	no
273308	73308 B4ZG44	Putative uncharacterized protein		0.91	0.781	1.054	4.67	ΓC	yes
269305	269305 F0Y0B9	Putative uncharacterized protein		0.973	0.829	1.23	3.84	ΓC	yes
216106	216106 D8TLK9	Putative uncharacterized protein		1.024	0.943	1.073	0.78	ΓC	no
284352	284352 D7FSF0	Putative uncharacterized protein		1.122	0.847	1.776	2.67	ΓC	yes
26928	F0Y9S1	Putative uncharacterized protein	СС	1.577	1.383	1.764	-3.15	HC	yes
61467	F0Y333	Putative uncharacterized protein		NA	NA	NA	0.79	ΓC	no
215132	215132 D7G200	Putative uncharacterized protein		NA	NA	NA	-1.91	HC	no
237243	237243 no match	NA		0.727	0.498	0.955	0.79	ΓC	no
199538	199538 no match	NA		0.810	0.717	926.0	1.63	ΓC	yes
105039	105039 no match	NA		0.875	0.750	1.015	-0.27	HC	no
227764	27764 no match	NA		0.972	0.509	1.555	1.5	ΓC	yes
100546	00546 no match	NA		0.978	0.791	1.153	0.2	ΓC	no
220968	220968 no match	NA		1.199	0.805	1.862	1.56	ΓC	yes

4.4. Discussion

To date five studies were investigating the proteome of the globally important marine calcifying coccolithophore *Emiliania huxleyi*. Pioneering work on the *E. huxleyi* proteome by Jones et al. (2011) identified 99 proteins operating from a variety of physiological pathways applying a similar protocol for protein extraction and identification. Protein identification was improved to 115 (Jones et al., 2013) by studying different *E. huxleyi* strains and the proteome response to elevated CO₂ conditions. In response to different light regimes 500 highly abundant and confident proteins were identified (McKew et al., 2013). Furthermore, Rose et al. (2014) explored microdomains in the host virus interaction of *Emiliania huxleyi* virus infections using shotgun proteomics and observed proteins specifically associated with cellular stress, host defence, programmed cell death and immunity pathways. Alcolombri et al. (2015) were interested identifying the genetic origin of the enzymes for responsible forming dimethyl sulphide (DMS) from dimethylsulfoniopropionate (DMSP) in *Emiliania huxleyi*. DMS is an important signal in marine food webs and can influence local weather by affecting cloud formation. Shotgun proteomics and transcriptomics were combined and identified the *Alma1* gene in *E. huxleyi*, which yielded high DMSP-lyase activity.

In this study, the quantitative proteome characteristics of the unicellular coccolithophore *E. huxleyi* PLY# M217 at high and low calcification rates of the G1-phase of the cell cycle were investigated to determine abundance patterns of protein potentially involved in biomineralisation. The proteome study also sought to find consensus with the transcriptome (Chapter 3).

A total of 403 different peptides were identified during the iTRAQ experiment. Of those 339 were matching known non-redundant proteins in the UniProt database. The proteins comprised of 287 protein clusters, which represent a significant improvement in protein identification yield in comparison to Jones et al., 2013. The results showed that the proteomes of the late G1-phase (high calcification) and early G1-phase (low calcification) showed significant differences in relative protein abundance; however, only five proteins involved in calcification processes were identified and quantified. Both null-hypotheses that there are no differences in proteomes of the highly calcifying and low calcifying *E. huxleyi* cells and proteins potentially involved in the process of calcification are not expressed in the calcification period (late G1-phase) must be rejected. Significant up-regulation of calcification related proteins was accounted for three proteins of clathrin and V-type proton ATPases in the calcification phase. The V-type ATPases were suggested for proton pumping at the coccolith producing membrane (Corstjens et al.,

2001) to establish a flux of protons into the cytosol to establish high pH conditions in the CV (Mackinder et al., 2010). Furthermore, the identified clathrin (UniProt ID: C1E1W7; JGI407983) is known to play a role in vesicle trafficking protein of trans-Golgi vesicle transport (Kirchhausen, 2000) and occurs together with clathrin-coated vesicles (Forgac, 2000). Jones et al. (2011) suggested an importance of clathrin in the biomineralisation process because it occurs together with V-type ATPase proton transporter in clathrin-coated vesicles (Forgac, 2000). Furthermore, clathrin was abundant in the proteome of the silica-precipitating diatom T. pseudonana (Nunn et al., 2009). Hence, vesicle mediated transport of minerals from the Golgi network and V-type ATPase forced alkanilisation could be a more general model for biomineralisation if it is active in diatoms and coccolithophores alike. Furthermore, clathrin was found in higher abundance in phosphate starved cultures of the brown alga Aureococcus anophagefferens, which could suggest that clathrin coated vesicles may act in nutrient scavenging from the environment (Wurch et al., 2011). The growth of the experimental E. huxleyi cultures and observed nutrient concentrations, as documented in Chapter 3, did not imply nutrient limitation. Therefore, an expression of clathrin in response to nutrient limitation is not suggested and the bulk expression of clathrin is most likely related to clathrin-coated vesicle construction.

Further exploration of the proteome using the keyword "calcification" in GO annotations revealed additional proteins. Any role of these proteins selected by their gene ontology annotation in coccolithogenesis has not been previously suggested. The α – actinin (JGI40884, D0NLH6) has a known affection for Ca^{2+} – ions and has an important role in cytogenesis and muscle function (Jayadev et al., 2014). The abundance ratio between the cell of the early and late G1-phase showed no significant difference and so a role for α – actinin in the biomineralisation processes could not be inferred. The oxygen evolving enhancer 1 (JGI265795, UniProt ID: Q8L878, protein name: psbO) is part of a complex, comprised of a cluster of manganese, calcium and chloride ions binding extrinsic proteins (Bricker et al., 2012), which catalyse the splitting of water to O_2 and 4 H $^+$ (GO functional annotations, source www.uniprot.org; Huntley et al., 2015). The location of psbO is at the thylakoid membrane facing the thylakoid lumen (Ferreira et al., 2004). The binding of calcium ions within the oxygen-evolving centre is fundamental for the mechanism of water oxidation (Siegbahn, 2002). Therefore, it can be concluded that Q8L878 plays no role in biomineralisation and is closely involved in photosynthetic processes.

In contrast to Jones (2010) Histone 4 (H4) and other histones were up regulated at low calcification rates. Histone 4 was down regulated in *E. huxleyi* PLY# M219 under high pCO₂

levels (Jones, 2013). However, both observations are not in disagreement if under elevated CO₂ the cell cycle and culture growth rates are slowed and the cells undergo mitosis less frequently. Histone 4 is a structural component of the nucleosome and is a methyl donor involved in transcription and translational processes (Chiang et al., 1996). Therefore, *E. huxleyi* cells could require less newly synthesized histones for nucleosome construction under high CO₂ (Jones, 2013).

Heat shock proteins play an important role in the proteome response to environmental stressors, immune response, and cell signalling (Pockley, 2003; Wang et al., 2004). Here, heat shock proteins are discussed because in previous proteome studies of E. huxleyi heat shock proteins were observed (Jones et al., 2011; Jones et al., 2013, McKew et al., 2013) and nutrient depletion stress can be inferred from their expression values, whereas higher expression of HSP 70 was found in phosphate limited cultures (Wahlund et al., 2004b). Heat shock protein (HSP) expression responded when E. huxleyi cells were exposed to higher light intensities (McKew et al., 2013). An elevation in HSP expression was also observed in the light incubation period in this study, as 3 out of 10 observed HSPs were significantly upregulated in the HC condition. Periodic expression patterns of HSPs in E. huxleyi have not been reported before. Human HSPs expression was regulated and variable during the cell cycle, whereas a 10-to15-fold expression increase of HSP 70 mRNA was found upon entry into S-phase; levels of HSP 70 expression decreased by the late S and G2 phase (Milarski & Morimoto, 1986). Therefore, the observed higher presence of heat shock proteins in the late G1-phase could be a result of the chosen sampling times. The E. huxleyi cultures in this experiment were harvested in the late G1 and early G1 phase, and the observed abundance of HSP could reflect the relative heat shock protein abundance at these cell cycle phases. Furthermore, heat shock proteins are also involved in nonstress related protein folding and housekeeping processes (Picard, 2002). The very balanced expression of 8 peptides matching HSPs in the late and early G1-phase supports the housekeeping function of HSP in E. huxleyi (see Appendix A Table 11). The maturation of specific protein complexes also requires the presence of HSPs. For example, during the insertion of the precursor of the major light-harvesting complex of photosystem II into the thylakoid chloroplastic HSP 70 was found to play a key role (Yalosky et al, 1992). Because photosynthesis-related proteins were most abundant in the Light condition it can be speculated that a bulk of the expressed heat shock proteins was involved in protein folding processes of photosynthesis related proteins. However, with the available data the dominant cause of higher HSP expression in the late G1-phase remains unclear. It would require additional sampling points throughout the cell cycle to improve the understanding of HSP expression in the cell cycle of E. huxleyi, which was not the objective of this study.

The observed overexpression of proteins related to pathways such as photosynthesis, glycolysis, vesicle transport, and cell repair in the Light period was conclusive. The majority of the identified proteins in the HC condition were associated with the chloroplast and inner cell membranes, and for a minority of proteins a function in cytoplasm or the Golgi-network was suggested. Considering that a large proportion of the biomineralisation proteins would be active within endomembranes (e.g. V-type proton ATPases), finding only four proteins potentially involved in biomineralisation could indicate insufficient extraction of proteins, issues with salt contamination of the sample, or insufficient dynamic range of the mass spectrometer. Previously, protein extraction of E. huxleyi using TEAB buffer and subsequent proteome analysis revealed a maximum of 115 homologous protein groups when searched against JGI E. huxlevi genome, the taxonomically restricted UniProt KB database, and an EST database were combined. Of those 115 homologues protein groups 46 showed differential expression using iTRAQ (Jones et al., 2013). This study, using only JGI E. huxleyi genome (version from 22.2.2012) and the taxonomically restricted database showed 105 homologous proteins with 35 homologous proteins being differentially expressed. However, the JGI-genome search by Jones et al. (2013) yielded only 40 hits compared to 327 proteins (287 protein clusters) in this study, using the same version of the reference genome. Previously, limitations in the protein extraction using TEAB buffer were discussed (Jones, 2011); because of low protein recovery rates and observed smearing in gel electrophoresis. In this study an optimized protocol to achieve a 4 times faster cell harvesting time in comparison to Jones et al. (2011) was implemented, which might explain higher rates of protein matches and identification. However, E. huxleyi TEAB buffer protein extraction appears to alter protein recovery when compared with SDS/TRISbuffer (Qiagen) extraction (McKew et al., 2013). The SDS/TRIS-buffer would allow for simultaneous extraction of DNA, RNA, and proteins and appears to improve the protein extraction greatly. McKew and colleagues identified 1835 proteins and 500 with high confidence against the newly published JGI E. huxleyi genome using label free protein quantification (McKew et al., 2013; Read et al., 2013). The iTRAQ - technique is not compatible with reagents containing primary amines and the RLT Buffer was not considered as a suitable extraction buffer for the iTRAQ experiment, as not recommended by the iTRAQ manufacturer (Applied Biosystems, Foster City, U.S.A). Furthermore, the matrix-assisted laser desorption ionization technique produced higher noise to sample ratios if salty elutes are utilized (Yates et al., 2009). Salt were removed from the protein sample using desalination column. However, non-covalently binding salt in the protein sample could have carried salts over to the matrix-assisted laser desorption ionization and mass spectrometric analysis. The utilized LC/LC-MS/MS (MALDI QqTOF, Global Ultima 2, Waters) has a lower dynamic rate, lower protein discovery rates, and mass accuracy than an Orbitrap mass spectrometer (Yates et

al., 2009). A hybrid high-resolution LTQ/Orbitrap Velos instrument (Thermo Scientific) was used by McKew et al., 2009, which may explain the higher protein discovery rates in the McKew study.

To exclude the possibility that the different protein discovery rates relate to the different versions of the reference genome, MS/MS data were matched against the newly published JGI E. huxleyi gene set (JGI; http://www.jgi.doe.gov, downloaded 15.6.2015, file: "Emihul best proteins.fasta"). Preliminary results suggested that the more recent reference genome yielded 507 genome hits (see Appendix B Table 4), which is only around 28% of the identification success achieved by McKew et al. (2013) but an improvement of 25 % more identification compared with the older version of the reference genome. Therefore, using the newly annotated E. huxleyi genome improves the yield of protein identification but may only explain the differences in protein identification success between this study and McKew et al. (2013) to some degree. Preliminary evaluation suggests that the yield of peptide identification on the data presented in this study could be further improved by employing the BUDAPEST pipeline (Bioinformatics Utility for Data Analysis of Proteomics using ESTs provided by Dr. Richard Edwards and referenced in Jones et al., 2011; Jones et al., 2013) using an extended set of reference genome databases. The extended in silico identification suggests 1372 peptide matches (data not presented in this thesis). The identified 1372 proteins from searches against the JGI genome, taxonomically restricted databases, metatranscriptomic databases, E. huxleyi EST databases, and non-redundant protein sequences (Uniprot database) are believed to contain redundancies that were not removed at the time of writing. Preliminary, results suggest that 350 homologous protein groups were identified, which would improve the protein clustering by 12 %. Clustering the protein matches from the matches against the JGI and TAXDB references returned 287 protein clusters. Potentially, extended sequence database searches and improvement of the protein extraction protocol, or a label free MS/MS protein quantification approach could further improve yield of the E. huxleyi proteome. In the future, modifications of protein extract preparation, selection of lysis-buffer, and the utilized MS protein identification and quantification technology (e.g. Orbitrap) should be considered to achieve greater proteome coverage and reveal additional proteins relevant to biomineralisation in E. huxleyi.

Consensus of transcriptome and proteome

The transcriptome and proteome of *Emiliania huxleyi* were evaluated with a focus on genes significantly overexpressed and potentially involved in biomineralisation. Based on the protein ID, a total of 35 genes were represented in both the transcriptome and proteome reflecting a 7 %

success in identifying matches of proteins and transcript. Frith et al. (2005) note that translation of only 5-10 % of mRNA occurs. Unfortunately, none of the matched genes in the transcriptome and proteome indicated proteins potentially involved in calcification. The indicated low rate of finding matches based on the JGI gene identifier (genetic sequence) could imply high levels of post-translational modification. The annotated transcripts presented in Chapter 3 of this monograph were related to the EuKaryotic Orthologous group class (KOGclass) posttranslational modification, protein turnover chaperones in *both* cell showing high rates of calcification and low rates of calcification, HC and LC condition, respectively. In the Haptophyta *Prymnesium parvum* most of the discovered transcripts also belonged to the KOGclass posttranslational modification, protein turnover chaperones (Claire, 2006). Therefore, higher rates of posttranslational modifications could indicate a more general characteristic of Haptophyta. However, it must be noted that the protein sequences were not directly matched against the transcripts of the Illumina experiment described in Chapter 3. Here, the consensus finding was based solely on gene identifier (JGI ID) and protein identifier (UniProt ID). A sequence based matching of proteome and transcriptome data is future work.

A closer investigation of matching transcripts and proteins potentially involved in calcification in E. huxelyi based on the protein function showed that V-type proton ATPases and clathrin were represented in the transcriptomes and proteomes of the HC and LC condition. Vacuolar proton ATPases and clathrin were previously observed in the proteome of E. huxleyi (Jones et al., 2011; Jones et al., 2013). Transcripts and peptides matching V-type proton ATPase were more present in the calcification phase. The proteomes showed an increased relative abundance of clathrin in the calcification phase. However, the same gene or protein for clathrin was not matched in the transcriptome and proteome. Furthermore, clathrin transcripts were less abundant in the HC condition, 355 fpkm compared to 471 fpkm transcripts in the LC conditon. In the case of clathrin protein and transcript abundance patterns in the HC and LC condition did not agree. The high presence of clathrin would support the model of Golgi-derived vesicle mediated growth of the coccolithosome (Jones et al., 2011). The transcriptome showed further transcripts with high abundance in the calcification phase relating to the vesicle coating complexes COP I and COP II (e.g. JGI ID: 432215, 57758). The COPI involve clathrin to transport molecules between the Golgi and the endoplasmic reticulum (McMahon and Mills, 2004). The cell division cell cycle homolog 48 was observed by Jones (2010) in the proteomes of E. huxleyi and suggested that it could be operating in vesicular transport from the transitional ER to the Golgi. Cell cycle homolog 48 was also observed in the proteomes of the HC and LC condition, the late and early G1-phase of the cell cycle. The transcriptome showed 68 transcripts transcribing for 51 different proteins that are involved in vesicle transport (data not presented in this thesis). The majority of the transcripts related to proteins such as clathrin, vesicle complex COP I and COP II, and alpha SNAP, a protein required for vesicle fusion. Vesicle transport is important for coccolithogenesis and it appears that many proteins may be present in *E. huxleyi*, which could be involved in vesicle formation, vesicular transport, vesicle fusion, and coccolithosome merging. However, clathrin and other vesicle transport associated vesicle play a role in numerous cellular processes.

Conclusions and outlook

This study presents the first results of proteomes of *Emiliania huxleyi* at different calcification rates during the G1-phase of the cell cycle. Relative protein quantification shows clear differences between the highly calcifying and the poorly calcifying phase. Photosynthesis and calcification related proteins were present in the calcification phase. V-type proton ATPase proteins and the calcium binding proteins clathrin relevant for biomineralisation were identified in the calcification phase. The number of matches of proteins and transcripts was low; however within the range of the suggested 5-10 % of transcripts being translated to proteins (Frith, et al., 2005). Transcripts in the cells were represented by 7 % of the identified proteins. The direction of transcript and protein abundance agreed in 34 % of the cases. Albeit the yield of protein identification using TEAB-buffer for protein extraction was improved compare to previous studies (Jones et al., 2011; Jones et al., 2013), the observed proteome is likely to present only a fraction of the actual proteome of *Emiliania huxleyi*. Future work should address matching the peptide information directly to the observed transcriptome and aim to apply the most state of the art mass spectrometry proteomics technique for protein identification. The utilization of the Orbitrap technology would greatly improve the protein discovery. Furthermore, label-free quantification methods may provide a more elaborate choice of protein extraction buffer to increase the knowledge of diurnal proteomes in coccolithophores. These initial novel results of diurnal proteome characteristics in E. huxleyi should encourage to conduct further experiments to extend the knowledge of cell cycle proteomes using additional sampling time-points and improved protein extraction, identification, and quantification protocols.

Chapter 5. Synopsis and General Discussion

Project summary:

Identifying how marine organisms respond to changes in their environment at the physiological level is fundamental to understand processes in nature, the ecology of organisms, and their interactions at larger environmental scales. The motivation for this study was to investigate the calcification processes of the coccolithophore Emiliania huxleyi because of its importance for global biogeochemical cycles and to increase the understanding of the fundamental molecular processes driving calcification in the species and in broader phytoplankton communities. The high abundance and global distribution and the significant contribution of coccolithophores to the global carbon cycle have brought them to the focus of scientific endeavours. In recent decades the potential susceptibility of the carbon pumping by coccolithophores' photosynthesis and calcification due to ocean acidification was addressed by many studies (e.g. Riebesell et al., 2000; Reynaud et al., 2003; Langer et al., 2006; Orr et al., 2005; Fabry, 2008; Jones et al., 2013). Because biomineralisation in Emiliania huxleyi occurs internally and cells rarely exceed 5 nm in diameter it has been difficult to study the biology of coccolithogenesis. Molecular tools have already proven successful in improving our understanding of biomineralisation in *Emiliania huxleyi* (e.g. Wahlund et al., 2004a; Nguyen et al., 2005; van Dassow et al., 2009; Jones et al., 2011; McKew et al., 2013) and the response to ocean acidification (Richier et al., 2011; Lohbeck et al., 2012; Bach et al., 2013; Jones et al., 2013).

To better understand the fundamental processes driving calcification, unaltered biomineralisation properties throughout the cell cycle were investigates by assessing physiological parameters and a novel combination of whole cell transcriptome and proteome analysis. First, the cell-cycle phases, calcification rates and rates of photosynthesis in *Emiliania huxleyi* PLY\$ M217 were studied over a 24-hour period using flow cytometry and stable carbon isotope incorporation to resolve appropriate sampling time points at high and low calcification rates for whole cell transcriptome and whole cell proteome sampling. The cell-cyclic analysis of DNA content per cell allowed for the separation of the G1-phase from a combined S+G2/M-phase. The patterns of carbon assimilation showed a clear pattern of maximum calcification occurring at 9 hours into the photosynthetic light period when coccolith production was found to reach 1.6 per hour. At 9 hours into the dark phase calcification rates of 19 % of the maximum calcification rates in the light were observed (see chapter 2). According to the analysis of cell population growth and DNA content analysis cells were found to be G1-phase of the cell cycle

at both sampling times. Dark calcifications rates of 10-15 % were reported in previous studies (Paasche, 1966; Balch et al., 1992; Nimer an Merrett, 1992; Paasche and Brubak, 1994; Sekino and Shiraiwa, 1994, 1996). The energy driving the dark calcification was suggested to derive from mitochondrial respiration (Sekino and Shiraiwa, 1996). Calcification is significantly enhanced in photosynthesizing cells (Paasche, 2002).

The transcriptome and proteome of *Emiliania huxleyi* were evaluated with a focus on genes potentially involved in biomineralisation, which showed significant differential expression between low and high calcification states of the G1 cell-cycle phase. Three general approaches were undertaken to explore differential expression relevant to the calcification process in the two conditions at transcriptome and proteome level: a) using functional KOG-class (euKaryotic Orthologous groups) annotation groups or GO (gene ontology) groups to retrieve general expression patterns, b) using a graphical approach to mine for clusters of significant differences in higher abundant transcripts of biomineralisation genes in each KOG-class, and c) exploring the differential expression of known biomineralisation relevant genes at peptide and transcript level. The results have been discussed in respect to calcification physiology in coccolithophores using the exclusive transcriptome and proteome data and the consensus of transcriptome and proteome. Here methodological considerations are discussed and the results are put into a larger context of coccolithophore biology, cell cycle regulated gene expression in *Emiliania huxleyi*, and future research implications.

Evaluation of transcriptome analysis approach

The transcripts from the Illumina experiment described in Chapter 3 were matched against the older JGI *Emiliania huxleyi* genome version from 23.8.2012 using the Tophat – cufflink package (Trapnell et al., 2012). Subsequent to this work, a new version of the *E. hux* genome has been released and, in future work, the transcripts could be matched against the most recent version of the *E. huxleyi* genome (Read et al., 2013) to improve transcript annotations. Furthermore, it should be thoroughly researched beforehand what features the transcriptome analysis packages have and what kind of difficulties users have experienced. There are many publically available molecular expression data analysis tools available through www.bioconductor.org (Huber et al., 2014). A good choice of the analytical software package should consider subsequent analysis. In this study it was difficult to apply the data from the cufflinks output to other analysis tools due to compatibility issues that could not be resolved. An enrichment analysis functional GO annotation using, for example the topGo R script (Alexa & Rahnenfuhrer, 2010), was difficult to apply to the cufflinks output. Therefore, the analysis was

based on a basic summary of KOG annotations. A functional or pathway analysis might reveal insights into activated physiological pathways and interacting components. A combined RNA and protein extraction protocol such as the AllPrep DNA/RNA/Protein Mini Kit (Qiagen) may have improved the overall quality of the proteome and transcriptome assessment.

Evaluation of cell harvesting, RNA, and protein extraction approach

RNA and proteins are vulnerable to degrading. The rapid sampling of live cells and RNA extraction was pivotal for obtaining high quality data. Previous proteomics studies on *E. huxleyi* at the National Oceanography Centre, Southampton in collaboration with the Institute for Life Sciences, University of Southampton showed poorer yields in protein quality, whereas the assessed proteomes were thought to represent only a part of the actual proteome of *E. huxleyi*. Therefore, it was anticipated to accelerate the cell harvesting process and protein extraction. The MASCOT software successfully fingerprinted Mass spectra of 409 different peptides. The peptides were successfully matched to 287 different proteins, which is an increase in the *Emiliania huxleyi* protein identification yield in an iTRAQ experiment of 250 % compared to Jones et al. (2013). The accelerated cell harvesting method and the resulting shorter period until snap freezing may have caused less protein degradation. The cell harvesting method described in Chapter 3 took 25 to 30 minutes compared to 2 hours in previous studies (Jones et al. 2011; Jones et al., 2013). Additional acetone wash steps as described in Chapter 3 may have further improved the protein sample quality. The proteome discovery rate would be greatly improved using a more advanced mass spectrometry system, such as the Orbitrab®.

Evaluation of proteome analysis approach

The quantitative proteomics approach for *Emiliania huxleyi* using isobaric tags (iTRAQ) has been previously established at the Institute for Life Sciences, University of Southampton. The iTRAQ method returns relative peptide abundance ratios between samples per peptide, from which relative protein abundance between conditions can be concluded. The relative abundance lacks information of absolute protein abundance in the cell. Information on absolute or relative to the absolute proteome peptide abundance would be important to understand the kinetics of biomineralisation in *E. huxleyi*. For example, it was estimated that 250,000 SERCA-type Ca²⁺ ATPase molecules would be required to provide the Ca²⁺ transport for one-hour's coccolith production (Mackinder et al., 2011). However, the Ca²⁺ transport by SERCA type Ca²⁺ ATPase cannot be achieved alone and other Ca²⁺/H⁺ exchanger were suggested at other locations, preferably the endoplasmic reticulum, to achieve the transport kinetics. A more accurate quantification of protein abundance and diversity and compartmental location in *E. huxleyi*

would be pivotal to better understand the ion transport kinetics. The technical implementation of truly quantitative proteomics remains challenging. Improved MS/MS proteomics techniques (e.g. Orbitrap®) are now available, which apply a combination of iTRAQ and unlabelled proteomics techniques (SWATH-MS) (Basak et al., 2015) or novel isobaric-labelled techniques using internal heavily labelled standards (Curran et al., 2015). Furthermore, peptide sequences should be matched directly to the transcript sequences and subsequently matched to the most recent E. huxleyi reference consensus analysis of proteome and transcriptome. The combination of a simultaneous DNA/RNA/protein extraction and a label free quantitative proteomics approach, such as by using normalized counts of MS/MS spectra assigned to a specific peptide, protein abundances could be estimated and methodological bias from indices application could be minimized (Schulze and Usadel, 2010; McKew et al., 2013). However, the protein identification and relative quantification presented here was more successful than previously reported for an iTRAQ experiment on Emiliania huxleyi (Jones et al., 2010). Out of 403 identified proteins using only the JGI E. huxlevi genome and taxonomically restricted reference databases 116 peptides showed significantly different abundances between the early and late G1-phase (dark and light incubation period). Interestingly, more proteins with relative abundances were significantly higher in the high calcification rate phase (n = 90) compared to the low calcification rate phase (n = 26).

Dark calcification in the early G1-phase of the cell-cycle

The assessment of calcification rates over 24 hours (Chapter 2) showed detectable calcification in the dark phase in the range of those previously reported (Paasche, 2002). It was argued that calcification is restricted to the G1-phase of the cell cycle. However, the existence of dark calcification in coccolithophores has been discussed. During nuclear division electron microscopy did not detect coccolith vesicles (van Emburg, 1989). Linschooten et al. (1991) showed that dark calcification was not detectable in cultures of synchronous cell division using ⁴⁵Ca as a tracer of biomineralisation. No existence of dark calcification is further supported by dark calcification only being accountable to cells not undergoing cell division in the dark. As such phosphorous-limited coccolithophore cultures, with inhibited nuclear division, were showing dark calcification (Paasche and Brubak, 1994; van Bleijswijk et al., 1994). Dark calcification requires energy for ion transport and synthesis of cellular structures, which is supplied from respiration (Sekino and Shiraiwa, 1996). Transcription and protein synthesis also require energy through hydrolysis of ATP (Snustad and Simmons, 2000; Robinson and Oijen, 2013). The observed transcript abundance shows that high rates of transcription occurred in the early-G1 (experimental low calcification) phase in the *E. huxleyi* cultures, which suggests

sufficient ATP availability. Therefore, it can be hypothesized that cohorts of old and new generation of the cells performed the observed dark calcification, which were in the early G1phase. The results from the DNA content analysis support that the cell cycle of the cell population was not synchronised. If we assume, that a fraction of the cell population was always in the G1-phase and that proteins relevant to the calcification process were present the observation of dark calcification throughout the dark incubation period is explained. A high abundance of calcification specific transcripts in the early G1-phase and the nature of cytokinesis, by which ER and Golgi networks are distributed equally between daughter cells, further support that the proteins and calcification pathways were present at all times. The available proteome data also shows that, for example the V-type ATPase proton transporter and clathrin were present in the early G1-phase (compare Table 4.10). The raw MASCOT data from the iTRAQ experiment suggests that a total of 23 V-type proton ATPases matching peptides and 10 clathrin peptides were counted in both conditions (data not shown). The average protein abundance ratios were 0.847 for type proton ATPases and 0.664 for clathrin relative to the early G1-phase, which would suggest that some of these proteins were present a could provide low rates of calcium carbonate production. If cell structures and proteins were present and synthesized in the early G1-phase a molecular biomineralisation machinery of smaller size could be present in the cells, contributing to rates of dark calcification. It could be argued that the observed biomineralisation peptides in the dark incubation period originated from those cells, which did not pass cell division. However, the observed growth rates in this study indicated that the cell population more than duplicated (average 2.4 fold, see section 2.3.1) over the course of 24 hours, making it unlikely that cells were not passing through the S + G2/M phase. Furthermore, during mitosis the proteins and cell structures are divided between the daughter cells. Paasche (2002) noted that respiratory CO₂ production would oppose calcification in the absence of photosynthesis. However, E. huxleyi has a high internal buffering capacity for CO₂ and takes up external CO₂ as its primary source for photosynthesis to reach maximum POC production rates. Furthermore, bicarbonate was found to be the primary source for PIC production and elevated CO₂ did not affect calcification (Bach et al., 2013). The additional CO₂ formed during dark calcification and respiration might be transported to the chloroplast or buffered in the cytosol. This argument would support an effective dark calcification, which is driven by the remaining and newly developing molecular biomineralisation machinery in the targeted cell phase. To verify the observation of dark calcification the redevelopment of the CV could be observed using cross-polarized light microscopy and electron microscopy alongside isotope incorporation. Additional sampling point at which proteomes and transcriptomes are analyzed could greatly improve our understanding of the natural gene expression and existing molecular pathway in the cell cycle of *E. huxleyi*.

Transcriptome and proteome patterns related to calcification in different stages of *Emiliania huxleyi* G1-phase showing high calcification and low calcification rates

Cell cycle-specific transcription, targeted proteolytic degradation, and protein modification are regulators of cell cycle progression (Cardone and Sassone-Corsi, 2003). Chauton et al. (2013) showed high periodicity in gene regulation of carbon fixation, storage, and utilization in the diurnal cycle related genes of the diatom *Phaeodactylum tricornutum*. Hence, a cell-cycle regulation of gene expression related to calcification in Emiliania huxleyi was expected. The transcriptome profiles from the light and dark incubation period from this study showed significant differential expression. Interestingly, the transcriptome in the dark was 20 % larger showing 19093 transcripts compared to 15310 transcripts in the light. This overall pattern of higher transcript abundance in the dark is also reflected in, for example, the unique transcripts observed at the dark and light sampling point, the higher abundance of transcripts belonging to V-type-proton ATPases, SERCA-type calcium ATPases, and Na⁺ - dependent Ca²⁺ exchanger (NCKX and NCX) (see Chapter 3 for details) in cells of the early G1-phase cells (dark period). The finding of higher transcript abundance and significant differential expression of genes potentially involved in calcification process in the dark is intriguing at first, knowing that the bulk of calcification in coccolithophores is linked to the light period. Statistical analysis showed that, 11 and 22 genes, with link to processes involved in calcification, were significantly higher expressed in highly calcifying and low calcifying cells, respectively. The majority of significantly expressed genes in the calcification phase indicated that calcium binding proteins such as calreticulin, calnexin, and calmodulin are continuously highly expressed in the light. Calreticulin transcripts, for example, were 8-fold more abundant in the light, at 1516 fpkm. Calcium binding protein seem to be in high demand in the light phase, which suggests that continuous synthesis is required because the molecules are lost during coccolithophogenesis.

Cell cycle phase specific gene expression is widely supported in the scientific literature (e.g. Rustici et al, 2004; Kanesaki et al., 2012; Bastajian et al., 2013), and is triggered by external 'zeitgeber', such as the light/dark cycle (Lorenzen, 1957). The periodicity of gene expression was also found to be cell cycle-phase specific for mitochondria, chloroplast, and cell nucleus in the in the Unicellular Red Alga *Cyanidioschyzon merolae*; whereas, for example, the *cmdnm2* gene involved in plastid division was higher expressed in the G2/M phase and the *ftsZ2-1* and *ftsZ2-2* gene, involved in mitochondrial division, in the S phase (Fujiwara et al., 2009). In the diatom *Phaeodactylum tricornutum* microarray analysis from 8 sampling times showed differential gene expression for 44 % of the whole transcriptome, with highest transcriptional activity during the day. Six clusters of genes with differential expression and dominant

physiological pathways were identified. Chloroplast and nucleus-encoded ribosomal genes were upregulated in the light, heat shock proteins, chaeperones, and proteins involved in protein modification/degradation were upregulated at midday, and proteins of cellular processes such as carotenoid, chlorophyll, and fatty acid synthesis were down-regulated during night time, for example (Chauton et al., 2013). The synchronisation of the circadian clock and the environmental light - dark rhythm improves the physiological performance of photosynthetic organisms (Green et al., 2002; Dodd et al., 2005; Winjen et al., 2006b). Therefore, it is an energetic advantage, especially for photosynthetic cells, to establish the physiological networks before the next illumination period.

The diurnal periodicity of gene expression in E. huxleyi is hardly known. Gene expression studies using the dark phase as sampling point were focussing on three biomineralisation genes (Richier et al, 2009). In this study, it was concluded that the majority of the cell populations at the dark and light sampling points were in stages of the G1-phase (see Figure 2-4D), the late and early G1-phase, respectively. As calcification in coccolithophores is restricted to the G1phase but increases significantly in photosynthesizing cells (Paasche 2000), the presence of gene expression related to calcification was expected. However, the results presented in this study are a novelty as they show that the larger number of known biomineralisation genes are more highly expressed in the early G1-phase (dark period). The significantly higher expression of, for example, gene 354606 (probable K⁺ dependent Ca^{2+/}Na⁺ exchanger), gene 463095 (SERCA - calcium-transporting ATPase 4), and 109061 (calmodulin-like protein 5 / CLP 5) in the dark would suggest that the proteins are not involved in calcification processes (see Appendix A Table 7 and 8). WolfPSort (Horton et al., 2007) identifies the ER as the location of the probable K⁺ dependent Ca^{2+/}Na⁺ exchanger (gene 354606, UniProt ID: Q9VN12) and SERCA - calcium-transporting ATPase 4 (gene 463095, UniProt ID: Q9XES1). The calmodulin-like protein 5 / CLP 5 (gene 109061, UniProt ID: Q9NZT1) is of mitochondrial location by WolfPSort. Therefore, the observed high general gene expression and high expression of calcification related genes reflected the re-construction of molecular machinery that was separated during cytokinesis. Golgi stacks, endosplasmic reticulum, ribosomes, mitochondria and chloroplasts are known to be equally partitioned between daughter cells during cytokinesis (Nebenfuhr et al., 2000; Puhka et al., 2007). Following cytokinesis the ER and Golgi membranes are synthesized, as the ribosomal-ER-Golgi cell physiological network is pivotal for protein translation and posttranslational protein modifications. In E. huxlevi calcification the ER and Golgi-apparatus are important in Ca²⁺ rich coccolithosome production that is pivotal for the precipitation of the coccolith in the coccolith vesicle. These networks also ensure that at dawn efficient photosynthetic carbon assimilation can render cell growth and

accumulation of energy reserves for passing cell division check points of the next cell division cycle (Green et al., 2002; Dodd et al., 2005; Winjen et al., 2006b; Zachleder et al., 2016). The ER and mitochondria related gene expression showed periodicity in cell-cycle of *C. merolae* (Fujiwara et al., 2009) and it can be assumed that cell organelle related gene expression occurs also in periodic waves throughout the cell cycle of *E. huxleyi*. The elevated gene expression of proteins related to biomineralisation is coherent with the post cytokinesis G1-phase characteristics of gene expression. Even the relatively high levels of calmodulin transcript abundance in the dark period (~1650 fpkm), support the synthesis of the ER networks in the early G1-phase, as calmodulin is an important component in maintaining high Ca²⁺ concentrations of the ER lumen.

Interestingly, more proteins with relative abundances were significantly higher in the late G1-phase (n = 90) compared to the early G1-phase (n = 26). This observation stands in contrast to the observed pattern of transcript abundance. The identified significantly more abundant proteins in the light were mainly involved in processes related to photosynthesis (photosystem II) and ATPase proton transport as indicated by counts of proteins' function, subcellular location, and GO cellular component annotations. The predicted locations of the proteins identified to be relatively more abundant in the light were the chloroplast, cytoplasma, Golgi apparatus, and plasma membrane. In the dark period proteins with higher relative abundance of nucleosome and microtubule origin were more common. The proteome of the light reflected the general catalytic activity in the photosynthesis phase and given by the higher relative abundance proton transporting ATPases and clathrin calcification and coccolithogenesis. Vacuolar proton ATPases and clathrin were previously observed in the proteome of E. huxleyi (Jones et al., 2011; Jones et al., 2013). Both proteins may be directly associated in clathrin coated vesicles (Forgac, 2000). However, both proteins have functions in a variety of cellular processes and locations. Clathrin is generally the primary component of endocytic transport systems (Takei and Hauke, 2001) and was also found to be highly expressed in the diatom *Thalassiosira* pseudonana (Nunn et al., 2009). Clathrin has a versatile function in processes such as endocytosis events that induce nutrient availability, growth of cell structures, protein transport, stabilization of forming vesicles, and the reformation of synaptic vesicles (Kirchhausen 2000; Takei and Hauke, 2001; Nunn et al., 2009). Synaptic vesicle recycling is also mediated by clathrin (Marks and McMahon, 1998). The precise function of clathrin in coccolithophores remains speculation. However, it can be assumed that clathrin coated vesicles may play a significant role in the vesicle transport by coccolithosomes to the coccolith vesicle. Jones (2010) also observed clathrin and COP in the proteomes of E. huxleyi and suggested that it could be operating in vesicular transport from the transitional ER to the Golgi. Furthermore, V-type

ATPases have been shown to be important for the acidification of cellular compartments, such as neuron (Moriyama et al., 1992) and were proposed to contribute to acidification of the trans-Golgi network in *Arabidopsis* (Dettmer et al., 2006). If clathrin-coated vesicles are associated with V-type ATPase in *Emiliania huxleyi* they could be involved in the acidification of the Golgi-derived coccolithosomes.

New insights into the calcification mechanisms and gene expression patterns in *E. huxleyi* from the synchronous study of the transcriptome and proteome at a different calcification levels (low and high) of the G1 phase

The proteome and transcriptome results of the calcification phase have so far accentuated the importance of four functional proteins categories for coccolithophore calcification: calcium binding proteins, clathrin-coated vesicle transport, membrane fusion, and proton-transport, which can be considered to propose a model for vesicular transport of Ca²⁺ to the coccolith vesicle. Calcium binding proteins, such as calmodulin and calreticulin have a higher affinity to Ca ions in acidic conditions (Yoo and Lewis, 1992; Nash et al., 1994) and can bind up to 25 moles of Ca²⁺ per mol calreticulin (Baksch and Michalak, 1991). Calreticulin changes into a tetramer in low pH with increased mass, with increasing Ca²⁺ binding capacity (Yoo and Lewis. 1992) and has high capacity low affinity Ca²⁺ binding characteristics (Corbett and Michalak, 2000). Calreticulin and other calcium binding proteins are associated and abundant in the Golgi network and endoplasmic reticulum, which act as a Ca-ion buffering structure in cells and modulates the uptake and release of Ca²⁺ in the endoplasmic reticulum (Corbett and Michalak, 2000; Arnaudeau 2002). Calcium loaded calreticulin could be included in coccolithosomes that are released from the trans-Golgi. The vesicle-like coccolithosome membrane could be clathrin coated (Takei and Hauke, 2001) and therefore contain numerous V-type proton ATPases. Clathrin coated vesicles originating from the Golgi were previously identified (Orci et al., 1986). Mackinder et al. (2011) suggested that a down-regulation of V-type proton ATPase could promote calcium carbonate precipitation under supersaturated conditions of Ca2+ and HCO₃ and at pH 7.2. Calreticulin was found to change to a monomer under more alkaline conditions and suggested to release calcium (Yoo and Lewis, 1992). Active V-type proton ATPase could stabilize calreticulin and other calcium binding proteins at high calcium binding capacities during trans-cytosolic migration to the CV. Clathrin and COP I, COP II, and SNARE complexes may assist in the fusion of coccolithosome and coccolith vesicle membranes. The CV might already show higher pH during this fusion. The V-type ATPases are at some point down-regulated in the CV membranes to develop a more alkaline environment for calcium carbonate precipitation. V-type proton ATPases were found to have peripheral complex

 V_1 (Arai, 1989). The integral membrane complex membrane V_0 and peripheral V_1 complex are easily dissociated reducing proton pumping across the membrane to a minimum (Kane, 1995; Beyenbach and Wiezorek, 2006), which could regulate the pH of the CV in favour for calcium carbonate precipitation if the CV maintained a cytoplasmic-side negative membrane potential (Mackinder et al., 2011). The results presented here strongly suggest the requirement of V-type proton ATPase, calcium binding proteins, and membrane fusion complexes, which would be required for the above scenario. Future research on *E. huxleyi* calcification should attempt to elucidate the location of calreticulin in the cell. A remaining questions, which may be very hard to address experimentally, should address the differences of pH and composition of the coccolithosomes to the CV. A lower pH value in the coccolithosomes than the CV would support the above-proposed model that coccolithosomes carry higher loads of Ca^{2+} due to calreticulin in acidified conditions.

Furthermore, the molecular results indicate some interesting characteristic of cell-cyclic gene expression in E. huxleyi. The transcriptome analysis identified a few genes that transcribed for the same protein but, interestingly, showed preferred expression in the early-G1-phase or late G1-phase. Thus suggesting that different promoter sites and different gene regulation pathways activated gene expression regulation. For example, the endoplasmic reticulum-type calcium transporting ATPase 4 Q9XES1 was expressed by three genes (251608, 429294, 463095). Genes 251608 and 429294 were dominantly expressed in the late G1-phase in highly calcifying cells, whereas gene 463095 was expressed almost exclusively in the early G1-phase (dark incubation period) when cell compartments like the endoplasmic reticulum were complemented after cytokinesis (compare Appendix A Table 7). A more detailed investigation of the transcriptome might reveal more such cases. Gene expression transcribing the same protein also showed genes that with higher expression than others. For example, the expression of six genes transcribing for V-type proton ATPase 16 kDa proteolipid subunit Q43362 were observed to show higher transcript abundance in the early G1-phase. Among those, gene 359783 was at least 3 times higher expressed than any other gene transcribing for Q43362. It is unclear if an elevated physiological or environmental key could trigger higher expression of the other genes and if all genes transcribing for Q43362, for example, could provide the same maximum transcription rate. The outstanding cap analysis of gene expression will provide additional insights in differences of gene expression patterns in the early and late G1-phase. A higher plasticity of the transcriptome in respect to elevating the expression of genes that are not transcribed at maximum rates, such as the V-type proton ATPases, suggests that E. huxlevi has a potential to compensate for calcification altering effects of ocean acidification. In fact, after 500 generations of ocean acidification exposure E. huxelyi cells were found to show an adaptive

response, which included a putative vacuolar type two-sector proton pump (Lohbeck et al., 2014).

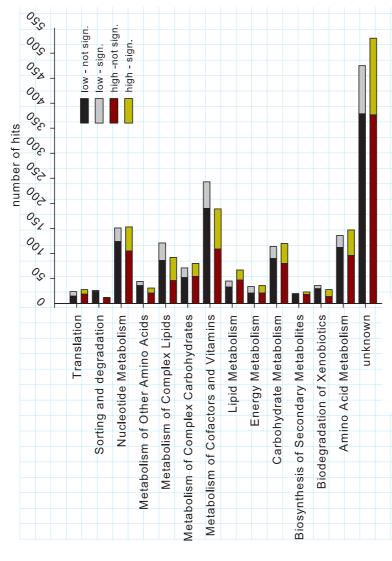
Concluding remarks and future work

The original outline of the project anticipated sampling a natural coccolithophore bloom, to improve existing protocols of *Emiliania huxleyi* proteomics, and to find transcriptome and proteome matches. The data presented and discussed in this monograph represents only a fraction of the information that the whole cell transcriptomic and whole cell proteomic results hold. Future, investigations should address functional network and predict the location of the identified proteins. Furthermore, a great deal of data that was assessed during this PhD has not been used in the framework of this PhD thesis. Due to time constraints, the metatranscriptomic assessment of a natural *Emiliania huxleyi* bloom in Raunefjorden, Norway has not been fully analysed and was not presented here; this work, among others, is on going.

The investigation of the transcriptome and proteome of unaltered diurnal biomineralisation patterns has shown that multiple genes of homologous groups are expressed at different times during the cell cycle. The observations imply that a bulk of proteins involved in coccolithophore calcification, such as V-type-proton ATPases, SERCA-type calcium ATPases, and Na⁺ dependent Ca²⁺ exchanger (NCKX and NCX) are expressed in the early G1-phase of the cell cycle and that ribosomal synthesis of these proteins occurs shortly after. Furthermore, the early expression of the biomineralisation genes implies that they are part of compartmental systems and organelles that are maturing in the early G1 phase. To decipher the molecular machinery at the core of biomineralisation it is critical to further engage studies using modern genomic, transcriptomic, proteomic and metabolomic techniques that target explore the expression and its control (e.g. promoter expression analysis) additional time points throughout the cell cycle. Chauton et al. (2013) have provided an example for cyclic diurnal gene expression study that suggested clusters of genes that are expressed at different times throughout the cell cycle. A similar study and molecular analysis could be conducted on coccolithophores. Furthermore, knockout, knockdown and overexpression of genes, which have become apparent in this study, should help to confirm the role of the genes putatively identified herein as being important for biomineralisation. An analysis of gene expression, proteome patterns and calcification under conditions of specifically knocked out ion transporter genes should help to differentiate between a core set of ion transporter genes involved in calcification (core set) and secondary pathways. Knockout or transformation techniques are now more widely available and have been more frequently applied in marine species, such as Nannochloropsis gaditana to enhance their

potential use in biofuel production (Radakovits et al., 2012). Such transformation techniques are needed in coccolithophores to understand the fundamental mechanisms driving calcification. In respect to the response of coccolithophores to ocean acidification a CO₂ exposure experiment could illuminate, if the early expression of biomineralisation proteins increases under CO₂ or if the responses occur with increasing rates of calcification during the light period. Such an experiment may also help to decipher which genes that are involved in calcification are activated as a response to elevated CO₂ and which genes are more likely expressed because they function in cellular compartments. The results presented in this study – the cell cycle phase of sampling greatly matters when drawing conclusions from gene expression studies that address biomineralisation - should be considered in the design of future experiments, in particular those addressing the response to ocean acidification and adaptation to global change. Further fundamental assessments of the calcification physiology at different cell cycle phases will improve the understanding of the level at which adaptive processes to ocean acidification in coccolithophores occur. Lohbeck et al. (2014) showed that after 500 generations of CO₂ exposure Emiliania huxlevi showed an adaptive response and was able to reestablish partly the calcification and growth rates. At a molecular level the adaptive response was observed as upregulation of genes of interest involved in pH regulation and carbon transport. As this study has shown there are multiple genes that are active in processes, which could be important for calcification and those genes may be expressed at an early stage of the cell cycle. It would be most interesting to investigate how the adaptive processes are reflected in selected promoter enhancement and transcriptome plasticity (transcribing at maximum gene expression rates) of genes that are not fully expressed under ambient CO₂ and whether or not the adaptive changes are reflected in early G1-phase cells or in photosynthesizing cells of the late G1-phase. Early G1-phase adaptive changes would suggest an "evolutionary" response in E. huxleyi to altering ocean acidity because the extend of the ER and Golgi apparatus are improved, for example. Changes of gene expression related to calcification in photosynthesizing cells of the late G1phase would indicate an improvement of the physiological pathways under photosynthetic enhancement of the calcification process. Such insights would increase our detailed knowledge of the molecular adaptation of E. huxleyi to the future high CO₂ world and furthermore, help to improve estimating the changes in future calcite production and the global carbon cycle.

Appendices


Appendix A - Supplementary results - Chapter 3 The transcriptome of *Emiliania huxleyi* at high and low calcification rates in the G1-phase

Physiological data:

Appendix A Table - 1: Statistical results comparing the physiological data from the day before cell harvesting with the day of harvesting and the late and the early G1-phase. (KWA: Kruskal-Wallis ANOVA).

Parameter	Comparison	test	n	d.f.	F-statistics H-statistics	p-value
Fv/Fm	full	ANOVA	12	3,8	F= 2.153	0.172
POC	full	KWA	8	3	H= 3.667	0.381
PON	full	KWA	8	3	H= 2.833	0.543
PIC	full	ANOVA	12	3,8	F= 3.212	0.083
C:N	full	KWA	8	3	H= 4.167	0.324
PIC:POC	full	KWA	8	3	H= 5.500	0.139

Transcriptomics data:

Appendix A Figure 1: Transcript abundance by KEGG-pathway classes for Emiliania huxleyi cells showing high and low calcifications in the G1-phase.

Appendix A Table - 2: Unique transcripts in highly calcifying cells of the late G1-phase.

	Function																							Expressed protein		
	Fur	,	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	Ext	ı	1
	UniProt ID	-	-					-			-					1	-	-						F0Y854	1	
	Sig.	no	no	no	no	no	ou	no	yes	yes	yes	yes	no	ou	ou	no	no	yes	yes	no	no	yes	no	no	yes	no
	q_value	0.2242	0.0917	0.2379	0.1550	0.0847	0.1283	0.0715	0.0258	0.0135	0.0293	0.0452	0.0547	0.0568	0.1009	0.1336	0.1336	0.0114	0.0446	0.1128	0.0612	0.0351	0.1170	0.0788	0.0135	0.1202
G1-phase fpkm in late	Ĝ1-phase	2228.59	592.35	365.22	325.07	154.93	68.95	56.49	46.63	45.76	44.25	43.29	42.94	33.11	30.79	24.16	24.16	24.01	23.89	23.42	20.55	20.42	19.35	18.61	17.39	16.91
Unique transcripts of the late	JGI/gene-ID	-/XLOC_020772	-/XLOC_019818	-/XLOC_029101	-/XLOC_006956	-/XLOC_039075	-/XLOC_024334	-/XLOC_039067	-/XLOC_022511	-/XLOC_018847	352298 / XLOC_008894	-/XLOC_024335	-/XLOC_001410	-/XLOC_015139	-/XLOC_007296	-/XLOC 000845	-/XLOC_034717	-/XLOC_021913	-/XLOC_031851	-/XLOC_015199	-/XLOC_003721	-/XLOC_002711	-/XLOC_015880	100679 / XLOC_018351	-/XLOC_026071	-/XLOC_007295

	Function	-	Putative homeobox protein R749	CBL-interacting protein kinase 3	ı	ı	ı	ı	1	1	ı	ı	1	1	Proton-coupled amino acid	transporter 3	1	1	3-hydroxybutyryl-CoA	dehydratase	Putative uncharacterized protein	ı	1	1	1	ı	ı	ı	1
	UniProt ID	-	Q5UP03	Q8LIG4	ı	ı	-	-	ı	-	-	-	ı	-		Q4V8B1	-	-		P52046	E1ZM53	-	-	-	-	-	-	-	ı
	Sig.	no	yes	ou	no	yes	yes	ou	yes	yes	yes	ou	no	yes		yes	no	ou		no	no	ou	ou	ou	ou	yes	ou	ou	yes
	q_value	0.0679	0.0130	0.0865	0.1927	0.0454	0.0167	0.1070	0.0162	0.0287	0.0271	0.1700	0.1472	0.0409		0.0096	0.1875	0.1523		0.0841	0.0781	0.1763	0.0736	0.2272	0.1234	0.0279	0.1568	0.1266	0.0204
G1-phase fpkm in late	G1-phase	15.20	14.50	13.97	13.01	12.42	12.06	11.96	10.34	10.28	88.6	88.6	8.86	8.79		8.63	8.54	8.46		8.27	7.70	7.68	7.28	86.9	92.9	6.44	6.33	6.16	5.97
Unique transcripts of the late	JGI/gene-ID	-/XLOC_014742	250018 / XLOC_040170	44463 / XLOC_018334	255559 / XLOC_024876	-/XLOC_002710	-/XLOC_010612	-/XLOC_012328	-/XLOC_030958	-/XLOC_010900	-/XLOC_008618	-/XLOC_042065	-/XLOC_007297	-/XLOC_019883		225551 / XLOC_005371	-/XLOC_004089	-/XLOC_010896		44813 / XLOC_006798	235819 / XLOC_016605	358042 / XLOC_034611	-/XLOC_022048	317194 / XLOC_038198	-/XLOC_004722	-/XLOC_016788	-/XLOC_035469	-/XLOC_017020	201176 / XLOC_005902

	Function	1	1	1	1	1	1	1	1	-	CBL-interacting serine/threonine-	protein kinase 23	Sialidase	1	1	1	1	1	1	Glucan endo-1,3-beta-glucosidase	tRNA (guanine-N(7)-)-	methyltransferase	Phosphatidate phosphatase LPIN2	1	Peptidase S1 and S6,	chymotrypsin/Hap (Precursor)	-	-	
	UniProt ID	ı	ı	1.	ı	ı	•	1	ı	-		Q93VD3	P23253	ı	•	ı	ı	ı	1	P52409		B8GAY2	Q99PI5	ı		Q0AS57	1	1	1
	Sig.	ou	no	yes	yes	no	ou	ou	no	no		no	no	yes	ou	ou	no	no	no	ou		n0	no	yes		no	no	no	ou
	q_value	8990.0	0.1477	0.0249	0.0236	0.0615	0.0874	0.0783	0.0715	0.0876		0.0820	0.7657	0.0388	0.1077	0.0828	0.1367	0.0513	0.0805	0.0704	,	0.1115	0.1640	0.0323		0.1296	0.1404	0.0770	0.0736
G1-phase	fpkm in late G1-phase	5.95	5.72	5.63	5.62	5.59	5.31	5.08	4.98	4.83		4.71	4.60	4.43	4.38	4.29	3.95	3.88	3.83	3.79	1	3.73	3.70	3.68		3.67	3.64	3.61	3.60
Unique transcripts of the late	JGI/gene-ID	225228 / XLOC 005039	-/XLOC 017535	-/XLOC_031076	-/XLOC_039416	208991 / XLOC_025228	-/XLOC_037632	213562 / XLOC_032951	-/XLOC_018766	-/XLOC_007057		44442 / XLOC_013259	59486 / XLOC_033585	-/XLOC_032599	-/XLOC_010356	-/XLOC_008965	243770 / XLOC 026235	219951 / XLOC 040503	242647 / XLOC 025007	99134 / XLOC_011273		442881 / XLOC_014908	432890 / XLOC_036316	-/XLOC_017283		260314 / XLOC_002425	-/XLOC_006119	-/XLOC_033682	-/XLOC_039731

	Function	1	1	1	1	1	1	Protein TIS11	1	Endoglucanase B	1	1	KDEL motif-containing protein 1	Pentatricopeptide repeat-	containing protein At2g18940	Putative uncharacterized protein At1g67060/F1019 7		1	1	1	Putative uncharacterized protein	1	1	1	Myosin-IIIb	1	Lysine-specific histone
	UniProt ID	ı	ı	1	ı	ı	ı	P47980	ı	P18126	ı	ı	Q7ZVE6		064624	O8GZ24	,	ı	ı	ı	F0YCE4	ı	ı	ı	Q8WXR4	ı	
	Sig.	ou	ou	ou	ou	ou	ou	ou	ou	ou	ou	ou	ou		yes	no	ou	no	ou	ou	ou	ou	ou	ou	ou	ou	
	q_value	0.1672	0.0998	0.0979	0.0585	0.0546	0.0548	0.0782	0.1074	0.0769	0.5047	0.1853	0.5858		0.0128	0.4439	0.0694	0.0599	0.0972	0.0990	0.2364	0.7376	0.1596	0.0971	0.7310	0.2170	
G1-phase fpkm in late	G1-phase	3.59	3.38	3.37	3.14	3.10	2.98	2.89	2.86	2.68	2.64	2.56	2.53		2.48	2.46	2.45	2.44	2.24	2.15	2.14	2.13	2.10	2.09	2.06	2.01	
Unique transcripts of the late	JGI/gene-ID	-/XLOC_008573	-/XLOC 007061	-/XLOC_007294	-/XLOC_027620	-/XLOC_023509	309164 / XLOC_002899	212382 / XLOC_031465	357004 / XLOC_031810	236785 / XLOC_017870	260625 / XLOC 003743	-/XLOC 029150	236638 / XLOC_017485		205977 / XLOC_018405	70381 / XLOC 004911	-/XLOC 032352	368720 / XLOC 023158	114681 / XLOC 016638	-/XLOC_033459	101089 / XLOC_019781	460267 / XLOC_042278	-/XLOC_016541	-/XLOC_020107	66080 / XLOC_028085	225509 / XLOC_005361	

	Function	Uncharacterized protein R617		Transcriptional regulatory protein	Predicted protein	Adenylyl-sulfate kinase	1	SEC14-like protein 3	ı	1	Pentatricopeptide repeat-	containing protein At2g18940	ı	1	Uncharacterized tRNA/rRNA	methyltransferase Mb0905	ı	1	Putative leucine-rich repeat	receptor-like serine/threonine-	protein kinase At2g24130		ı	1	Sjogren syndrome antigen B	Nephrocystin-3	_		í
	UniProt ID	Q5UR67	ı	A0PLM4	C1N072	Q7VE24	1	Q9Z1J8	ı	-		O64624	ı	ı		P59968	•	-			Q9ZUI0	-	1	ı	E9C982	Q6AZT7	-	-	•
	Sig.	ou	ou	yes	no	no	ou	no	yes	no		yes	no	no		no	no	no			no	no	no	no	no	no	no	no	no
	q_value	0.1059	0.1710	0.0388	0.2511	0.4115	5695.0	6890'0	0680'0	0.1686		0.0153	0.1199	0.1550		0.5486	0.2262	0.3794			0.1340	0.6886	0.5235	0.1057	0.7671	0.1231	0.0629	0.0890	0.3827
G1-phase	ipkili ili iate G1-phase	1.98	1.93	1.83	1.79	1.78	1.75	1.73	1.71	1.70		1.67	1.65	1.63		1.57	1.56	1.56			1.48	1.46	1.45	1.42	1.41	1.39	1.36	1.34	1.33
Unique transcripts of the late	JGI/gene-ID	70033 / XLOC_003329	-/XLOC 027592	98132 / XLOC_005959	208652 / XLOC_024737	238888 / XLOC_020156	353266 / XLOC_014417	107915 / XLOC_042479	369373 / XLOC_024951	-/XLOC_017838		249953 / XLOC_039941	234824 / XLOC_015193	224967 / XLOC_004763		439062 / XLOC_041432	195328 / XLOC_021657	439135 / XLOC_041832			55544 / XLOC_038225	209316 / XLOC_025921	228876 / XLOC_009104	359059 / XLOC_037819	194425 / XLOC_000234	99618 / XLOC_013707	-/XLOC_004217	238542 / XLOC_019899	259646 / XLOC_042244

Unique transcripts of the late	G1-phase fokm in late				
JGI/gene-ID	G1-phase	q_value	Sig.	UniProt ID	Function
					Branched-chain-amino-acid
53381 / XLOC_028567	1.31	0.0751	ou	Q9FYA6	aminotransferase 5, chloroplastic
118001 / XLOC_025412	1.29	0.0743	ou	-	-
314118 / XLOC_010560	1.27	0.2436	ou	P52409	Glucan endo-1,3-beta-glucosidase
-/XLOC_023365	1.26	0.1724	ou	-	-
-/XLOC_022709	1.25	0.0353	yes	-	-
441995 / XLOC_011055	1.23	0.2190	ou	-	-
196464 / XLOC_026780	1.17	0.1961	ou		-
252131 / XLOC_005405	1.15	9180.0	ou	-	-
239576 / XLOC_020921	1.15	0.0816	ou	-	-
228379 / XLOC_008391	1.15	2888.0	ou	1	-
435200 / XLOC_018392	1.12	0.0241	yes	Q6LM37	Flavohemoprotein
435722 / XLOC 022879	1.11	0.6750	ou	O91FH7	Putative FAD-linked sulfhydryl oxidase 347L
ı.~	1.08	0.1419	ou	,	1
194548 / XLOC_000281	1.08	0.1692	ou		1
256592 / XLOC_030906	1.07	0.3583	ou	-	-
251825 / XLOC_004247	1.03	0.1003	ou	-	-
222247 / XLOC_001541	1.01	0.6332	no	1	-
					WD repeat, SAM and U-box
233729 / XLOC_014109	1.00	0.3195	no	A0AUS0	domain-containing protein 1
227000 / XLOC_006870	0.97	0.2076	no	-	-
310662 / XLOC_025270	0.97	0.1365	ou	P55495	Uncharacterized protein y4iL
-/XLOC_027364	6.0	0.1407	ou	-	-
117487 / XLOC_023944	0.97	0.1037	no	D6U4E0	Acyltransferase 3
236421 / XLOC_017284	0.95	0.1996	no	1	-
207447 / XLOC_022297	0.95	0.4150	no	059843	1,4-beta-D-glucan cellobiohydrolase B

		Function	Q63424 Solute carrier family 15 member 2	1	ı	no P14328 Spore coat protein SP96
		UniProt ID Function	Q63424	-	-	P14328
		Sig.	ou	ou	ou	ou
		q_value Sig.	0.3271	0.0758	0.1737	0.1046
G1-phase	tpkm in late	G1-phase	6.03	0.92	0.91	0.91
Unique transcripts of the late G1-phase		JGI/gene-ID	201173 / XLOC_006055	113645 / XLOC_014089	-/XLOC_023129	218775 / XLOC_039349

Appendix A Table - 3: Transcripts unique in E. huxleyi early G1-phase (low calcification rates).

Function		1	Putative uncharacterized protein		-	•	ı	-		-	1		-	•	ı	-	1	1	Putative surface protein bspA-like	ı		Probable fatty acid		1	1	1
UniProt ID	ı	1	D8LH42	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Q8MTI2	-	-	P31049	C10101	-	1	
Sig	yes	no	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	VAC	3 53	yes	yes	yes
q value	0.0479	0.1399	0.0000	0.0258	0.0170	0.0050	0.0000	0.0034	0.0003	0.0000	0.0000	0.0000	0.0005	0.0026	0.0000	0.0062	0.0000	0.0004	0.0000	0.0000	0.0091	00000	00000	0.0000	0.0011	0.0000
G1-phase fpkm in early G1-phase	2873.86	461.17	271.96	207.08	169.45	166.95	122.87	114.46	100.07	94.24	74.53	66.51	50.67	42.20	42.00	34.16	32.75	32.54	27.64	26.40	25.80	74.87	24.05	24.85	23.19	22.64
Unique transcripts of the early JGI/gene-ID	-/XLOC 035007	-/XLOC_007334	205338 / XLOC_017557	-/XLOC_039432	-/XLOC_006749	-/XLOC_007641	-/XLOC_039916	-/XLOC_023432	249502 / XLOC_038428	-/XLOC_025529	-/XLOC_023232	-/XLOC_005269	-/XLOC_006849	-/XLOC_035748	450646 / XLOC_020305	-/XLOC_024344	-/XLOC_009645	-/XLOC_036400	309174 / XLOC_003093	-/XLOC_001858	-/XLOC_031978	454253 / XI OC 002024		446057 / XLOC 033730	-/XLOC_026248	-/XLOC_039074

	Function						Probable ATP-dependent RNA	וועוועמטע ממעט ו	Formamidase-like protein									1		-		1		Glycine-rich RNA-binding,	abscisic acid-inducible protein	-	1	
	UniProt ID	-	-	-	-	1	040980	01000	B7G3J7	ı	1	ı	1	-	-	1	1	1	-	-	-	1	-		P10979	-	1	1
	sig.	yes	yes	yes	yes	yes	Cu	VPS	ves	yes	ou	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes		no	yes	yes	yes
	q_value	0.0000	0.0189	0.0000	0.0146	0.0133	0.1504	0.000	0.0000	0.0005	0.0632	0.0371	0.0000	0.0000	0.0000	0.0007	0.0000	0.0057	0.0000	0.0088	0.0000	0.0000	0.0004		0.1721	0.0000	0.0001	0.0308
G1-phase fpkm in early	Ġ1-phase	20.72	19.77	19.23	19.04	18.27	19 10	16.90	16.09	15.67	14.52	13.46	13.28	12.96	12.24	11.54	11.30	10.99	10.01	9.90	9.80	9.00	8.94		8.77	8.51	7.91	7.87
Unique transcripts of the early	JGI/gene-ID	-/XLOC_036606	-/XLOC_028775	-/XLOC_004785	-/XLOC_040372	-/XLOC_008781	755350 DO 1X / VCL250	1 2	258092 / XLOC 036904	-/XLOC 013724	-/XLOC_018631	-/XLOC 013144	439818 / XLOC_002631	-/XLOC_017538	435479 / XLOC_020267	-/XLOC_042388	-/XLOC_005332	-/XLOC_019260	208723 / XLOC_024764	-/XLOC_011815	-/XLOC_014788	-/XLOC_005601	243061 / XLOC_025503		49394 / XLOC_027735	-/XLOC_038400	-/XLOC_018176	-/XLOC_004381

	Function	1	1	ı	1	1	1	1	1	Serine/threonine-protein kinase chk-1	1	1	Putative uncharacterized protein	1	ı	1	1	Putative uncharacterized protein	ı	Lipase 1	ı	Putative uncharacterized protein	ALG-2 interacting protein X	1	ı	Putative uncharacterized protein (Fragment)	
	UniProt ID	ı	ı		ı	ı	ı	ı	ı	Q9N3Z3	ı	ı	E9C645	ı	ı	ı	ı	F0Y858	ı	Q8NUI5		F0Y858	Q8T7K0	ı	ı	F0Y502	1
	sig.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	ou	yes	ou	yes	yes	yes	yes	yes	yes	yes	ou	yes	yes	no	yes
	q_value	0.0000	0.0027	0.0030	$6000^{\circ}0$	0.0003	0.0040	0.0002	0.0299	0.0000	0.0231	0.0030	0.1689	0.0131	9690'0	0.0039	0.0009	000000	$0000^{\circ}0$	0.0045	000000	$0000^{\circ}0$	9760.0	$0000^{\circ}0$	0.0035	0.1038	0.0026
G1-phase fpkm in early	G1-phase	7.65	7.52	7.18	7.18	7.16	6.87	6.62	6.57	6.57	6.25	6.22	6.14	6.05	5.97	5.89	5.88	5.50	5.40	5.33	5.27	5.24	5.14	4.97	4.91	4.86	4.73
Unique transcripts of the early	JGI/gene-ID	455889 / XLOC_010285	-/XLOC_029998	-/XLOC_024364	-/XLOC_041374	-/XLOC_013640	-/XLOC_023541	352052 / XLOC_007394	-/XLOC_024331	196275 / XLOC 026420	-/XLOC_040772	-/XLOC_013190	452468 / XLOC 034205	-/XLOC_033991	-/XLOC_018256	-/XLOC_027238	-/XLOC_024385	459932 / XLOC_036896	-/XLOC_023121	248076 / XLOC_034319	435146 / XLOC_018339	456341 / XLOC_012114	229350 / XLOC_009553	-/XLOC_033848	-/XLOC_001985	216305 / XLOC 035795	424057 / XLOC_014299

Unique transcripts of the early	G1-phase fpkm in early		. ;	71 to () ()	T
450077 / XLOC 016201	4.62	9 varue 0.0000	yes.	-	runcuon -
70738 / XLOC 006435	4.59	0.1036	no	B7NLB5	Peroxyureidoacrylate/ureidoacryla te amidohydrolase RutB
207272 / XLOC 022237	4.43	0.0001	yes	F0Y048	Putative uncharacterized protein
ı					UPF0012 hydrolase in pqqF
456340 / XLOC_012113	4.40	0.0000	yes	P55176	5'region
456791 / XLOC_014244	4.31	0.0000	yes	-	1
/XLOC_031251	4.28	0.0390	yes	-	1
-/XLOC_022102	4.22	0.0008	yes	ı	1
240013 / XLOC_021890	4.19	0.0000	yes	ı	ı
208470 / XLOC 024289	4.09	0.0000	ves	O54Y32	MAP kinase phosphatase with leucine-rich repeats protein 3
-/XLOC 020111	4.08	0.0019	yes	,	1
247181 / XLOC_032305	3.97	0.0001	yes	B7G168	Predicted protein
222516 / XLOC_001666	3.89	0.0011	yes	LADG9Ò	Mpv17-like protein 2
308883 / XLOC_038740	3.85	0.6729	no	-	-
-/XLOC_034289	3.83	0.0000	yes	-	ı
-/XLOC_018175	3.83	0.0004	yes	-	-
-/XLOC_021462	3.79	0.0004	yes	-	ı
-/XLOC_009785	3.78	0.0941	ou	-	1
211836 / XLOC 030827	3.71	9900.0	yes	<i>LL</i> 6010	Phthiocerol synthesis polyketide synthase type I PpsA
	0	000			Embryogenesis-associated protein
223170 / XLOC_002452	3.69	0.1888	no	E9CG20	EMB8
454351 / XLOC 002508	3.58	0.0001	ves	B0G143	Mitochondrial substrate carrier family protein ucpB
	3.45	0.0002	yes	ı	1
-/XLOC 005270	3.34	0.0101	yes	ı	1
221272 / XLOC 042335	3.30	0.0000	yes	A9A494	Porphyromonas-type peptidyl-

	Function	arginine deiminase	ı	ı	Acetoin:2,6-	dichlorophenolindophenol	oxidoreductase subunit alpha	Predicted protein	Putative uncharacterized protein	Probable ADP-ribosylation factor	GTPase-activating protein AGD5	Putative aldolase class 2 protein	PA3430	Protein Mpv17	ı	ı	1	1	ı	ı	1	ı	ı	ı		Beta, beta-carotene 9',10'-	oxygenase	ı	1
	UniProt ID		-	-			031404	C1EIL5	F2TWL3		Q9FL69		О9НҮН5	Q5TZ51	-	ı	ı	ı	ı	ı	ı	-	ı	1	ı		Q99NF1	-	
	sig.		yes	ou			no	yes	yes		no		yes	yes	ou	yes	no	yes	yes	yes	yes	ou	yes	yes	yes		yes	ou	ves
	q_value		0.0267	0.0597			0.3922	0.0000	0.0001		0.5138		0.0015	0.0033	0.0627	0.0011	0.2228	0.0308	0.0003	0.0012	0.0094	0.4152	0.0232	0.0461	0.0005		0.0082	0.2222	0.0014
G1-phase fpkm in early	Ġ1-phase		3.27	3.12		•	3.08	2.94	2.78		2.72		2.58	2.56	2.56	2.55	2.54	2.51	2.50	2.44	2.41	2.37	2.34	2.32	2.32		2.20	2.19	2.18
Unique transcripts of the early	JGI/gene-ID		-/XLOC_021870	-/XLOC_033689			_	217995 / XLOC_037996	233951 / XLOC_014272		426599 / XLOC_010056		461189 / XLOC_021379	232962 / XLOC_013178	-/XLOC_008610	109294 / XLOC_004057	255893 / XLOC 027244	-/XLOC 017664	-/XLOC_026932	237168 / XLOC_018165	-/XLOC_008707	254752 / XLOC_019564	-/XLOC_003248	-/XLOC_007186	-/XLOC 009931		113553 / XLOC_013918	196894 / XLOC_030373	251402 / XLOC 002738

	Function	-	-	Phototropin-2	Phototropin-2	Phototropin-2	-	-	Protein strawberry notch homolog 1	-		-	Glucomannan 4-beta-	mannosyltransterase 1	Predicted protein	D-lactate dehydrogenase	1	-	_	1	DNA polymerase	Porphyromonas-type peptidyl-	arginine deiminase	-	-	-	1	7
	UniProt ID	-		Q9ST27	Q9ST27	Q9ST27	-	-	Q5F371	-	1	-		Q/PC/6	C1DZB7	B8BXH2	-	-	-	-	F0XX34		A9A494	-	-	-	-	
	sig.	no	yes	no	ou	no	yes	yes	yes	no	yes	no		no	yes	no	no	yes	no	yes	no		yes	yes	no	yes	no	ou
	q_value	0.0501	0.0017	0.1308	0.1308	0.1308	0.0474	0.0127	0.0116	0.0895	0.0324	0.2293	0 1001	0.1901	0.0149	0.6037	0.2607	0.0064	0.4960	0.0130	0.2712		0.0003	0.0158	0.1144	0.0035	0.0794	0.3546
G1-phase fpkm in early	G1-phase	2.04	2.03	1.98	1.98	1.98	1.96	1.96	1.92	1.90	1.88	1.87	1	1./9	1.77	1.74	1.70	1.67	1.65	1.63	1.62		1.60	1.54	1.39	1.38	1.34	1.28
Unique transcripts of the early	JGI/gene-ID	369186 / XLOC_024471	-/XLOC 008682	244577 / XLOC_027869	244576 / XLOC_027868	208026 / XLOC_023608	369188 / XLOC_024460	-/XLOC_033477	211047 / XLOC_029003	-/XLOC_033938	229436 / XLOC_009577	455708 / XLOC_009450	452714 / X/I OO 025411	452/14 / XLOC_035411	232178 / XLOC_012271	208111 / XLOC_023743	-/XLOC_015733	-/XLOC_004041	211666 / XLOC_029727	359963 / XLOC_041264	245483 / XLOC_029078		218752 / XLOC_039208	249876 / XLOC_039717	214286 / XLOC_033579	-/XLOC_023263	115968 / XLOC_019986	211783 / XLOC_030802

Dimotion	runction	Uncharacterized protein		Predicted protein	HBS1-like protein			Monoterpene epsilon-lactone hydrolase	1	1	Transcriptional regulator, AraC family	Ankyrin repeat and protein kinase domain-containing protein 1	1	1	-	ı	Putative uncharacterized protein	ı	Pentatricopeptide repeat-containing protein At1g05670,	mitochondrial	Putative membrane protein		Kinesin-related protein 5	Predicted protein
11 12 Drot 110	OIIIFIOLID	LdOZ9O	-	B5Y3V8	Q2KHZ2	ı	-	Q9EX73	1		Q397B0	Q8BZ25			-	ı	F0VJG8	1		Q0WVK7	A9G2Z3	ı	Q8T135	A4RY54
	N.B.	04	yes	no	no	no	no	no	ou	no	no	no	no	no	yes	ou	no	ou		no	yes	yes	no	ou
ort or s	9 value 0 0604	0829.0	0.0136	0.0612	0.5251	0.4936	0.3932	0.2110	0.7185	0.1436	0.1255	0.5700	0.1194	0.4709	0.0021	0.4934	0.5248	0.4301		0.5487	0.0194	0.0017	0.5608	0.3933
G1-phase fpkm in early	1 28	1.15	1.15	1.15	1.14	1.14	1.13	1.11	1.10	1.10	1.08	1.08	1.04	1.04	1.03	1.03	1.03	1.02		1.01	0.97	96.0	0.93	06.0
Unique transcripts of the early	-/XI OC 015760	717295 / XI OC 037315	η-	216181 / XLOC 035607	455975 / XLOC_010574	230353 / XLOC_010590	202497 / XLOC_011174	449016 / XLOC_004485	234141 / XLOC 014712	253036 / XLOC_009393	212940 / XLOC 032136	205336 / XLOC 017556	219179 / XLOC_039750	229875 / XLOC_009942	-/XLOC_028155	215526 / XLOC_034875	236751 / XLOC_017884	238038 / XLOC_019306		206847 / XLOC_019800	244412 / XLOC_027759	117279 / XLOC_023358	426727 / XLOC_012634	236239 / XLOC_017181

<u>sof the early G1-phase</u> fpkm in early	G1-phase q_value sig. UniProt ID Function	Beta, beta-carotene 9',10'-	.014649 0.90 0.0023 yes Q99NF1 oxygenase	WD repeat, SAM and U-box	032145 0.89 0.5149 no A0AUS0 domain-containing protein 1	UPF0012 hydrolase in pqqF	. 036897 0.88 0.0104 yes P55176 Sregion	- on 0790.0 88.0 e	. 022217 0.88 0.0281 yes - -	023145 0.85 0.7507 no C1EIX2 Predicted protein	
Unique transcripts of the early G1-phase fpkm in ea	JGI/gene-ID		113812 / XLOC_014649		212962 / XLOC_032145		248875 / XLOC_036897	-/XLOC_034399	255132 / XLOC_022217	241150 / XLOC_023145	

Appendix A Table - 4: Transcript of the graphically comprised cohorts from KOG-classes and their annotation.

HC or LC	3	fpkm in HC	fpkm in HC fpkm in LC					
condition	†IDC	condition	condition	INK PIOLID	d value	Gener Gener	olg. Olganism General function	runcuon
НС	431830	1029	14	Q0MYW8	1.29E-05	yes	Emiliania huxleyi	Putative calcium binding protein
НС	366938	453	09	Q8CIP4	1.34E-02	yes	Mus musculus	MAP/microtubule affinity-regul. kinase 4
НС	443010	403	53	•	4.57E-02	yes	-	_
НС	439733	377	74	1	3.58E-02	yes	1	1
НС	354307	307	3	ı	8.12E-11	yes	1	1
НС	463672	295	12	Q8H485	1.92E-04	yes	Oryza sativa subsp. japonica	Tubby-like F-box protein 11
НС	432500	280	4	Q39525	5.47E-07	yes	yes Parachlorella kessleri	H(+)/hexose cotransporter 3
CC	462385	54	788	P80030	1.25E-06	yes	Brassica napus	Enoyl-[acyl-carrier-protein] reductase [NADH], chloroplastic
CC	465364	33	394	P38230	0.00E+00	yes	Saccharomyces cerevisiae (strain yes ATCC 204508 / S288c)	Probable quinone oxidoreductase
CC	433442	28	336	P29618	2.27E-03	yes	onica	Cyclin-dependent kinase A-1
CC	442561	2	254	Q54FR4	0.00E+00	yes	0.00E+00 yes Dictyostelium discoideum	PXMP2/4 family protein 4
				Posttransl	ational mod	lificati	Posttranslational modification, protein turnover, chaperones	
НС	362359	2139	48	P27323	7.30E-09	yes	yes Arabidopsis thaliana	Heat shock protein 90-1
НС	420962	6191	237	669060	1.14E-02	yes	yes Manduca sexta	Heat shock 70 kDa protein cognate 4
НС	363448	1481	263	09SKQ0	4.37E-02	yes	Arabidopsis thaliana	Peptidyl-prolyl cis-trans isomerase CYP19-2
HC	426711	1206	141	P15253	4.33E-03	yes	yes Oryctolagus cuniculus	Calreticulin
НС	440477	685	18	-	3.14E-03	yes	-	-
НС	432765	501	46	Q6YYB0	3.02E-04	yes	yes Oryza sativa subsp. japonica	Uncharacterized protein Os08g0359500
НС	435425	501	88	Q70YI1	1.41E-02	yes	yes Legionella pneumophila	Outer membrane protein MIP

Appendix A	\ - Table	- 4: Transcrip	pt of the grapk	nically compris	sed cohorts	and the	Appendix A - Table - 4: Transcript of the graphically comprised cohorts and their annotation continued:	
HC or LC	#I5I		fpkm in HC fpkm in LC condition	NR Prot ID	Signal		Organism	Function
					Replication	1, reco	Replication, recombination and repair	
HC	40604	268	31	P33991	4.00E-02	yes	Homo sapiens	DNA replication licensing factor MCM4
HC	51597	252	28	P30664	1.36E-02	yes	Xenopus laevis	DNA replication licensing factor mcm4-B
HC	358490	215	22	Q9WUK4	4.64E-03	yes	yes Mus musculus	Replication factor C subunit 2
HC	447864	152	10	Q6DFV7	3.13E-04	yes	yes Mus musculus	Nuclear receptor coactivator 7
HC	75254	137	8	P43299	1.21E-06	yes	yes Arabidopsis thaliana	Protein PROLIFERA
HC	316205	135	10	P43299	2.69E-05	yes	yes Arabidopsis thaliana	Protein PROLIFERA
HC	310913	135	10	P43299	2.72E-05	yes	yes Arabidopsis thaliana	Protein PROLIFERA
HC							Schizosaccharomyces pombe	
	467665	107	18	O60182	9.75E-03	yes	yes (strain 972 / ATCC 24843)	Replication factor C subunit 1
					RNA pro	cessin	RNA processing and modification	
HC	443184	878	16	1	2.03E-04	yes -		ı
HC	438654	370	34	•	6.10E-04	yes -	7	-
HC	439979	152	15	•	3.46E-04	yes -	7	-
HC	373806	140	8	-	8.37E-08	yes -	-	-
HC	98041	1111	12	1	6.95E-04	yes -	-	_
НС	434023	06	13	OOCER3	6.21E-03	Ves	Aspergillus terreus (strain NIH ves 2624 / FGSC A1156)	Putative uncharacterized profein
HC	443600	75	9	QSDUS6	1.06E-03	yes	Mus musculus	Protein NLRC3
TC	460685	15	207	ı	9.03E-11	yes -		
TC								DEAD-box ATP-dependent RNA helicase 3,
	432507	9 ,	93	Q0DM51	3.24E-13	yes	yes Oryza sativa subsp. japonica	chloroplastic
ΓC	467848	7	92	Q7ZWM3	8.44E-09	yes	Xenopus laevis	CUGBP Elav-like family member 3-B
ГC	437070	19	72	D7FJQ9	1.26E-02	yes	yes Ectocarpus siliculosus	Putative uncharacterized protein

Frafficking protein particle complex subunit 2 nositol polyphosphate 5-phosphatase OCRL-Meiosis-specific nuclear structural protein 1 MFS-type transporter C6orf192 homolog Vesicle-associated membrane protein 2 Vesicle-associated membrane protein 4 Mitochondrial import receptor subunit Phosphatidylinositol 4-kinase beta 1 outative uncharacterized protein Vesicle-associated protein 1-3 VAMP-like protein YKT61 ADP-ribosylation factor Importin subunit alpha-1 Surfeit locus protein 4 FOM22 homolog 2 Synaptobrevin-B Syntaxin-22 Intracellular trafficking, secretion, and vesicular transport Sryptococcus neoformans var. neoformans serotype D (strain JEC21 / ATCC MYA-565) Q54GB3 | 3.12E-02 | yes | Dictyostelium discoideum Appendix A - Table - 4: Transcript of the graphically comprised cohorts and their annotation continued: Trichoplax adhaerens yes Arabidopsis thaliana Q84WW5 | 3.65E-02 | yes | Arabidopsis thaliana yes Arabidopsis thaliana Arabidopsis thaliana Arabidopsis thaliana Arabidopsis thaliana yes Rattus norvegicus Xenopus laevis Mus musculus Homo sapiens Mus musculus Bos taurus yes Sus scrofa Organism yes ves ves yes yes yes yes yes yes q valueSig. ves ves 3.49E-03 8.55E-03 P0CM16 | 2.49E-04 4.97E-05 9.53E-03 1.04E-02 2.26E-03 5.68E-03 3.31E-02 3.05E-02 1.01E-02 1.64E-02 3.44E-03 6.38E-03 7.56E-07 O9FNC9 Q6AXQ8 NR Prot.ID O9FMJ0 Q9ZRD6 D3Z5L6 A7YY49 F1SRI0 001968 P47193 070480 P93654 **B3RPE1** Q96321 fpkm in HC fpkm in LC condition 125 138 58 78 15 15 39 27 18 12 22 14 73 \Box 27 7 condition 465 377 276 266 174 172 162 162 100 561 96 35 93 85 21 436140 443186 432331 351006 434042 463384 460762 434324 465064 99733 444996 316256 440861 66952 440111 437571 51911 JGI# HC or LC condition HC HC HC НС HC HC НС НС НС ЭН ЭН ЭН Γ C

Calcium-transporting ATPase 4, endoplasmic erredoxin--nitrite reductase, chloroplastic Sodium/potassium/calcium exchanger 1 Probable sodium/potassium/calcium Vacuolar cation/proton exchanger 5 Sodium/bile acid cotransporter 50S ribosomal protein L7/L12 Putative transporter C543.05c Putative transporter C543.05c 50S ribosomal protein L13 50S ribosomal protein L13 50S ribosomal protein L17 30S ribosomal protein S1 Glycine-rich protein 2 exchanger CG1090 reticulum-type Fragment) Function Thermosynechococcus elongatus Synechococcus sp. (strain ATCC Thermoanaerobacter sp. (strain Thermoanaerobacter sp. (strain Schizosaccharomyces pombe Schizosaccharomyces pombe ATCC 29133 / PCC 73102) (strain 972 / ATCC 24843) (strain 972 / ATCC 24843) Vostoc punctiforme (strain Drosophila melanogaster Appendix A - Table - 4: Transcript of the graphically comprised cohorts and their annotation continued: norganic ion transport and metabolism yes Arabidopsis thaliana 0.00E+00 yes Arabidopsis thaliana P27484 | 3.54E-04 | yes | Nicotiana sylvestris yes Rattus norvegicus yes Homo sapiens (strain BP-1) Organism yes Zea mays 27144)) X514) X514) ves yes ves ves yes yes ves yes yes q valueSig. Q9HGM6 | 2.61E-02 5.43E-03 9.63E-08 2.71E-07 O9HGM6 | 4.02E-06 1.77E-05 7.82E-03 9.64E-04 6.58E-05 4.50E-05 2.11E-03 1.13E-02 1.16E-08 9MZŎ6Ŏ Q8DM25 NR Prot.ID Q9VN12 O9XES1 B0K5S7 **B0K5S7** B2ITN0 014973 P17847 P46228 **Q8L783** fpkm in HC fpkm in LC condition 2730 999 897 553 549 156 970 855 743 674 14 181 41 α 0 condition 276 207 158 130 150 147 124 193 167 55 7 93 90 84 103004 314659 416800 463095 466232 128968 416208 437762 447939 354606 415031 69198 77930 49364 72821 JGI# HC or LC condition HC HC HC НС 2 \mathcal{C} 2 S S \mathcal{C}

77 10 711	17.	condition	1 Ipani in 11					
condition			condition	NR Prot.ID	q_valueSig.		Organism	Function
				Trar	nslation, rib	osoma	nslation, ribosomal structure and biogenesis	
ГС	468608	131	595	P36236	4.52E-03	yes	Synechocystis sp. (strain ATCC 27184 / PCC 6803 / N-1)	50S ribosomal protein L1
ГС	439611	95	576	B0CAC9	1.59E-03	yes 1	Acaryochloris marina (strain yes MBIC 11017)	50S ribosomal protein L11
ГС	441818	93	514	Q3MFC0	9.58E-03	yes ,	Anabaena variabilis (strain yes ATCC 29413 / PCC 7937)	50S ribosomal protein L4
					F	unctio	Function unknown	
НС	437226	902	17	A7S4N4	3.94E-05	yes	yes Nematostella vectensis	Probable serine incorporator
НС	361672	238	20	Q54RS7	3.29E-03	yes	yes Dictyostelium discoideum	ELMO domain-containing protein C
НС	440226	202	16	ı	3.68E-04	yes -	1	-
НС							Schizosaccharomyces pombe	
	441326	150	40	Q9URW6	3.26E-02	yes ((strain 972 / ATCC 24843)	SH3 domain-containing protein PJ696.02
НС	446071	130	6	Q9H841	1.16E-03	yes 1	Homo sapiens	NIPA-like protein 2
HC	437398	125	26	Q2KJ22	3.23E-02	yes 1	Bos taurus	Protein FAM63A
HC	361462	122	5	P10775	1.12E-04	yes	Sus scrofa	Ribonuclease inhibitor
НС	358812	114	18	Q8BMW7	3.51E-02	yes	yes Mus musculus	Magnesium transporter NIPA3
HC	433894	111	13	ı	2.59E-02	yes -	1	-
НС	436574	110	30	Q8BK64	4.33E-02	yes	yes Mus musculus	Activator of 90 kDa heat shock protein ATPase homolog 1
ГС	469213	33	189	B7G571	9.35E-03	yes (Phaeodactylum tricornutum (strain CCAP 1055/1)	Predicted protein
CC	433126	30	141		1 500 04			

Appendix A	A - Table	- 4: Transcriț Falm in HC	- 4: Transcript of the graph	nically compri	sed cohorts	and the	Appendix A - Table - 4: Transcript of the graphically comprised cohorts and their annotation continued:	
condition)GI#	condition	condition	NR Prot.ID	q_valueSig.		Organism	Function
					Lipid tı	anspo	Lipid transport and metabolism	
НС	360281	820	116	P79274	4.72E-02	yes	yes Sus scrofa	Long-chain specific acyl-CoA dehydrogenase, mitochondrial
HC	432191	530	30	B8BTZ6	8.15E-04	yes	Thalassiosira pseudonana	Predicted protein
HC	435731	436	8	P46250	9.08E-05	yes	Candida albicans (strain SC5314 / ATCC MYA-2876)	SEC14 cytosolic factor
HC	437926	271	31	Q3ZBF6	1.01E-02			Short-chain specific acyl-CoA dehydrogenase, mitochondrial
HC	443385	258	3		2.47E-05	yes		1
HC	445286	197	18	Q8K214	7.24E-03	yes	Mus musculus	Polycomb protein SCMH1
НС	444795	155	6	Q9LVZ3	8.35E-04	yes	Arabidopsis thaliana	Probable lipid desaturase ADS3.2, chloroplastic
НС							Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS	
	442614	139	22	Q7SBB6	2.61E-02	yes	708.71 / DSM 1257 / FGSC 987) Probable C-5 sterol desaturase	Probable C-5 sterol desaturase
НС	438299	127	17	P04634	3.25E-02	yes	Rattus norvegicus	Gastric triacylglycerol lipase
HC	456684	120	15	Q5ZKR7	1.85E-02	yes	Gallus gallus	Long-chain-fatty-acidCoA lig. ACSBG2
HC	399191	117	70	V 202 V Q	777 00	901		Short/branched chain specific acyl-CoA
	404000		707	F43934	4.74E-02			denydrogenase, mnochondrai
НС	442519	106	8	Q9R008	1.58E-03	yes	Mus musculus	Mevalonate kinase
HC	442508	104	12	P19967	1.03E-02	yes	yes Drosophila melanogaster	Cytochrome b5-related protein
НС	435778	101	20	Q9FS87	2.14E-02	yes	yes <i>Solanum tuberosum</i>	Isovaleryl-CoA dehydrogenase 2, mitochondrial (Fragment)
ГС	455280	25	688	P11029	7.18E-09	yes		Acetyl-CoA carboxylase
ГС	429248	3	531	Q00955	0.00E+00		Saccharomyces cerevisiae (strain ATCC 204508 / S288c)	Acetyl-CoA carboxylase
								201

		Acetyl-CoA carboxylase	Acyl-CoA desaturase	Malonyl-CoA-acyl carrier protein transacylase, mitochondrial	Acyl-CoA desaturase	Elongation of very long chain fatty acids protein 5	Fatty acid desaturase 2	Fatty acid desaturase 2	Fatty acid desaturase 2				Probable myosin light chain kinase				Sodium- and chloride-dependent neutral and basic amino acid transporter B(0+)			Proteophosphoglycan 5	CBL-interacting serine/threonine-protein
Function		Acetyl-Co.	Acyl-CoA	Malonyl-C transacylas	Acyl-CoA	Elongation protein 5	Fatty acid	Fatty acid	Fatty acid		ı	ı	Probable n	1	-	ı	Sodium- a basic amin		1	Proteophos	CBL-intera
Organism	Lipid transport and metabolism	yes Gallus gallus	yes Cyprinus carpio	yes Mus musculus	Cyprinus carpio	yes Mus musculus	Danio rerio	yes Bos taurus	yes Danio rerio	Signal transduction mechanisms			Dictyostelium discoideum				yes Mus musculus			yes <i>Leishmania major</i>	
Sig. (anspor	yes (yes (yes //	yes (yes //	yes 1	yes I	yes 1	ransdu	yes -	yes -	yes 1	yes -	yes -	yes -	yes //	yes -	yes -	yes 1	
q_valueSig.	Lipid tı	2.98E-05	2.67E-03	2.40E-02	2.59E-05	0.00E+00	6.64E-06	2.57E-03	8.33E-07	Signal t	4.44E-07	6.04E-08	2.30E-02	3.19E-08	3.93E-09	3.21E-08	3.52E-08	9.14E-10	7.23E-10	1.53E-04	Į.
NR Prot.ID		P11029	092038	Q8R3F5	Q92038	Q8BHI7	Q9DEX7	A4FV48	Q9DEX7		-	-	9M698Ò	-	-	-	Q9JMA9		-	E9AEM9	
condition		223	209	181	153	138	103	103	94		6	9	72	4	2	3	3	1	2	2	ć
condition		13	43	89	27	0	16	25	11		1007	847	713	642	510	461	431	368	360	334	
JGI# c		449545	444084	54629	447535	351492	438795	417285	454147		444252	435065	443525	435910	439698	443934	462780	435909	440198	462351	
condition		TC 7	TC 7	ГС	TC 7	E 3	7 DT	7 OT	TC 7		7 OH	7 OH	7 JH	7 JH	7 OH	HC 7	HC	7 OH	7 OH		ЭН

Appendix A	A - Table	- 4: Transcrip	- Table - 4: Transcript of the graphically compri	nically compri-	sed cohorts	and the	ised cohorts and their annotation continued:	_
HC or LC condition	#IDI	fpkm in HC condition	fpkm in HC fpkm in LC condition	NR Prot.ID	q value	Sig.	Organism	Function
				-	Signal t	ransdu	Signal transduction mechanisms	
HC	440893	310	33	B8CAB4	1.99E-02	yes	yes Thalassiosira pseudonana	Predicted protein
HC	462359	305	9	'	2.33E-05	yes -		
HC	365420	258	32	Q3E9C0	9.12E-03	yes	Arabidopsis thaliana	Calcium-dependent protein kinase 34
ГС	125588	55	475	A7BQ37	4.60E-05	yes	Beggiatoa sp. PS	Receptor protein kinase
ГС	420555	32	294	022437	3.16E-04	yes	Pisum sativum	Magnesium-chelatase subunit chID, chloroplastic
ГС	442554	1 21	250	P39442	3.10E-06	yes	Natronomonas pharaonis	Halocyanin
ГС	68547	42	208	Q8YP49	1.09E-02	yes	Nostoc sp. (strain PCC 7120 / UTEX 2576)	1-deoxy-D-xylulose 5-phosphate reductoisomerase
							TC	
ГС	441363	0	395		5.37E-07	yes .		
ГС	455397	16	209	C1N6V7	8.01E-06	` _	Micromonas pusilla (strain CCMP1545)	Predicted protein
ГС	100060	3	63	E7F3N4	7.66E-111	yes	Danio rerio	Uncharacterized protein
ГС	432966	6 9	61	-	2.82E-05	yes .	_	-
ГС	432237	0	26	-	2.71E-11	yes .		
					Nucleotid	e trans	Nucleotide transport and metabolism	
НС	365588	172	28	Q56E62	4.60E-03	yes	Nicotiana tabacum	Nucleoside diphosphate kinase 1
TC	82609	17	282	Q7Z8P9	5.28E-13	yes	Neosartorya fumigata (strain ATCC MYA-4609 / Af293 / CBS 101355 / FGSC A1100)	Nucleoside diphosphate kinase
								2
								203

Appendix A HC or LC	\ - Table 	- 4: Transcrij fokm in HC	- 4: Transcript of the graph fokm in HC fokm in LC	iically compris 	sed cohorts a	nd the	Appendix A - Table - 4: Transcript of the graphically comprised cohorts and their annotation continued: HC or LC fbkm in HC fbkm in LC	
condition	JGI#	condition	condition	NR Prot.ID	q_valueSig.		Organism	Function
					Energy p	roduct	Energy production and conversion	
HC	451022	365	42	Q42686	1.18E-03	yes	yes Chlamydomonas reinhardtii	Malate dehydrogenase, mitochondrial
HC	349815	241	55	P39616	4.85E-02	yes	yes Bacillus subtilis	Probable aldehyde dehydrogenase ywdH
Γ C								FerredoxinNADP reductase, root isozyme,
	361737	125	1133	P41345	7.37E-04	yes	yes Oryza sativa subsp. japonica	chloroplastic
Γ C	461699	133	1037	80690Ò	5.11E-03	yes	yes Odontella sinensis	ATP synthase gamma chain, chloroplastic
CC								Soluble inorganic pyrophosphatase 1,
	437335	173	919	60LXC9	7.28E-03	yes	yes Arabidopsis thaliana	chloroplastic
Γ C								FerredoxinNADP reductase, root isozyme,
	432385	144	898	P41345	6.08E-03	yes	Oryza sativa subsp. japonica	chloroplastic
ΓC								Glycerol-3-phosphate dehydrogenase 1-like
	415940	54	209	Q5XIZ6	4.93E-07	yes	Danio rerio	protein
ΓC							Drosophila pseudoobscura	Glycerol-3-phosphate dehydrogenase
	460094	. 29	348	Q27928	2.40E-09	yes	pseudoobscura	[NAD+], cytoplasmic
Γ C								Glycerol-3-phosphate dehydrogenase
	427769	4	310	035077	0.00E+00	yes	yes Rattus norvegicus	[NAD+], cytoplasmic
CC								Cytochrome b6-f complex iron-sulfur subunit
	45312	80	285	Q02585	1.24E-02	yes	yes Nicotiana tabacum	2, chloroplastic
Γ C								Pyruvate dehydrogenase E1 component
	417078	13	283	Q1XDM1	8.33E-07	yes	Porphyra yezoensis	subunit beta
ГС						,	Rickettsia bellii (strain RML369-	Rickettsia bellii (strain RML369- Dihydrolipoyllysine-residue acetyltransferase
	448908	8	278	Q1RJT3	8.64E-14	yes	C)	comp. of pyruvate dehydrogenase complex
ΓC	437063	7	265	095847	0.00E+00	yes	Homo sapiens	Mitochondrial uncoupling protein 4
ГС	436192	0	212	O93Y52	0.00E+00	ves	ves Chlamvdomonas reinhardtii	Soluble inorganic pyrophosphatase 1, chloroplastic
ГС	455448	46	211	B0G143	2.77E-03	ves		Mitochondrial SLC protein ucpB

Appendix A - Table - 4: Transcript of the graphically comprised cohorts and their annotation continued:

Appendix t	1 - Taule	- 4. Hallsell	Appendix A - 1adie - 4. Hanscript of the grapmeany compr	ilcany compin	sea colloits	יוומ מווכ ווומ מווכ	isea conoits ana their annotation continuea.	_
HC or LC condition	JGI⊭	fpkm in HC fpkm in l condition conditior	fpkm in LC condition	NR Prot.ID	q_valueSig.		Organism	Function
					Energy p	roduci	Energy production and conversion	
Dark	420435	30	204	P72740	1.24E-04	yes	Synechocystis sp. (strain ATCC 27184 / PCC 6803 / N-1)	Dihydrolipoyl dehydrogenase
						Tran	Franscription	
HC	433598	539	5	P10243	3.58E-06	yes	yes Homo sapiens	Myb-related protein A
HC	436010	297	21	-	5.76E-04	yes	-	
HC	452735	256	14	Q9H0I3	2.04E-02	yes	Homo sapiens	Coiled-coil domain-containing protein 113
HC	440310	247	2	-	1.56E-08	yes	-	•
HC	454961	234	17	Q0JIC2	4.56E-03	yes	Oryza sativa subsp. japonica	Transcription factor GAMYB
HC	437110	230	45	-	4.81E-02	yes	-	
HC	436479	215	22	Q4R8Y1	4.25E-04	yes	Macaca fascicularis	Bromodomain testis-specific protein
HC	439494	184	1	Q9S7L2	1.23E-09	yes	Arabidopsis thaliana	Transcription factor MYB98
HC	441236	184	1	-	4.13E-08	yes	-	•
ГС	449660	0	352	P38529	8.64E-14	yes	Gallus gallus	Heat shock factor protein 1
ГС	314592	42	227	P49263	1.77E-03	yes	Xenopus laevis	Pentraxin fusion protein
ГС	354747	4	158	097670	9.22E-11	yes	yes Oryctolagus cuniculus	Homeobox expressed in ES cells 1 (Fragment)
					Coenzyme	trans	Coenzyme transport and metabolism	
НС	426057	08	16	Q8VHT6	7.30E-03	yes	yes Rattus norvegicus	Arsenite methyltransferase
HC	351930	78	8	-	2.10E-05	yes	-	•
ГС	423968	85	476	Q6H6D2	2.74E-03	yes	Oryza sativa subsp. japonica	Porphobilinogen deaminase, chloroplastic
TC	443289	09	415	Q42698	1.25E-04	yes	Catharanthus roseus	Geranylgeranyl pyrophosphate synthase, chloroplastic
TC	432924	. 65	291	P35055	6.65E-03	yes	yes Glycine max	Coproporphyrinogen-III oxidase, chloroplastic

condition)GI#	condition	condition condition	NR Prot.ID	q_valueSig.	Sig.	Organism	Function
					Coenzym	e trans	Coenzyme transport and metabolism	
	427895	44	289	Q55467	3.82E-05	yes	Synechocystis sp. (strain ATCC yes 27184 / PCC 6803 / N-1)	Magnesium-protoporphyrin O- methyltransferase
	436908	61	274	Q8S4R4	1.35E-02	yes	Solanum lycopersicum	Prolycopene isomerase, chloroplastic
	361296	41	219	A5GJR6	6.18E-04	yes	Synechococcus sp. (strain WH7803)	Uroporphyrinogen decarboxylase
	56011	20	207	A7HSV9	2.99E-04	yes	Parvibaculum lavamentivorans (strain DS-1 / DSM 13023 / NCIMB 13966)	Bifunctional protein FolD
	465530	19	84	B1XIF6	7.52E-04	yes	Synechococcus sp. (strain ATCC 27264 / PCC 7002 / PR-6)	Uroporphyrinogen decarboxylase
	435069	22	79	Q2S1W0	5.10E-03	yes	Salinibacter ruber (strain DSM 13855 / M31)	Uroporphyrinogen decarboxylase
					Carbohydra	ite trar	Carbohydrate transport and metabolism	
	436725	9//	15	•	7.39E-06	yes	-	1
	438851	671	62	P29495	6.86E-04	yes	Propionibacterium freudenreichii subsp. shermanii	Pyrophosphatefructose 6-phosphate 1-phosphotransferase
	439674	526	36	Q9UT63	1.64E-03	yes	Schizosaccharomyces pombe yes (strain 972 / ATCC 24843)	Probable phosphoglycerate mutase C513.02
	70323	272	24	P14618	2.50E-04	yes	yes Homo sapiens	Pyruvate kinase isozymes M1/M2
	439593	205	1	Q3UP75	2.64E-09	yes	yes Mus musculus	UDP-glucuronosyltransferase 3A1
	017400	101	41	DAETE 7	CO 300 C	((0000111 -: (0000) 2:1: 1-1: (00000)	Bifunctional polymyxin resistance protein
	437959		1456	O556J0	1.13E-02	yes	yes Troteus mirabuts (strain 1114320) Aritha ves Dictrostelium discoideum Trans	Transketolase
	436550		1315	Q0PAS0	1.09E-03	yes	Campylobacter jejuni	Fructose-bisphosphate aldolase
	417537	156	1035	Q9SBN4	2.57E-03	yes	Volvox carteri	Phosphoglycerate kinase, chloroplastic
	100158	105	496	Q42971	6.31E-03	yes	yes Oryza sativa subsp. japonica	Enolase

Appendix A		- 4: Transcript of the grap	ot of the graph	- Table - 4: Transcript of the graphically compris	sed cohorts a	nd thei	ed cohorts and their annotation continued:	
condition	JGI⊭	condition	condition	NR Prot.ID	q_valueSig.		Organism	Function
					Carbohydra	te tran	Carbohydrate transport and metabolism	
TC	351398	121	442	Q9ZU38	2.58E-02	yes	Arabidopsis thaliana	Probable ribose-5-phosphate isomerase
ГС	440786	16	417	B6IRB5	8.64E-14		Rhodospirillum centenum (strain ATCC 51521 / SW)	1-deoxy-D-xylulose-5-phosphate synthase
ГС	433869	12	365	Q93VR3	4.10E-10	yes	Arabidopsis thaliana	GDP-mannose 3,5-epimerase
ГС	418341	47	319	052402	2.98E-03	yes 1	Edwardsiella ictaluri (strain 93-146)	Fructose-bisphosphate aldolase
ГС	444895	40	298	P51181	3.18E-04	yes 1	Bacillus licheniformis	Pyruvate kinase
TC	438704	1 28	268	P0AG10	3.16E-07	yes 2	yes Shigella flexneri	Ribulose-phosphate 3-epimerase
TC	438492	28	267	P0AG10	4.44E-07	yes	Shigella flexneri	Ribulose-phosphate 3-epimerase
ГС	439215	26	232	P51181	2.25E-05	yes 1	òrmis	Pyruvate kinase
						Cyto	Cytoskeleton	
HC	439339	482	19	1	4.78E-04	yes -		
HC	444747	301	26	1	1.22E-03	yes -		-
HC	432151	225	8	1	2.27E-04	yes -		-
TC	432636	163	1177	P26302	5.11E-03	yes	Triticum aestivum	Phosphoribulokinase, chloroplastic
ΓC	445562	140	1138	Q40832	1.08E-03	yes l	yes Pelvetia fastigiata	Tubulin alpha-2 chain
TC	416424	155	704	Q40832	2.61E-02	yes 1	Pelvetia fastigiata	Tubulin alpha-2 chain
ГС	78244	105	308	Q08114	4.98E-02	yes 1	yes Euplotes octocarinatus	Tubulin alpha chain
ГС	459906	32	307	Q63425	4.35E-05	yes 1	Rattus norvegicus	Periaxin
ГС	441006	94	279	D8TPL1	1.77E-03	yes	Volvox carteri	Metalloproteinase, extracellular matrix glycoprotein VMP10 (Fragment)
ГС	457781	13	262		7.44E-08	yes -		
								207

NR Prot.ID q value Sig. Organism Amino acid transport and metabolism Amino acid transport and metabolism Parino acid transport and metabolism Extracellular structures - 4.20E-04 yes - 4.20E-07 yes - 6.67E-04 yes - 6.67E-04 yes - 6.67E-09 yes - 4.01E-02 yes - 68LB31 0.00E+00 - 8.20E-07 yes Arabidopsis thaliana QeyUVH3 9.38E-03 yes Arabidopsis thaliana QeGQX6 1.55E-07 yes Arabidopsis thaliana QeGQX6 1.55E-03 yes Arabidopsis thaliana QeLXT9 1.03E-03 yes<	dition JGI# condition Condition NR ProLID q value Sig. Organism A71108 24 166 Q9SE94 3.25E-04 yes Zea mays A31808 359 1 5.34E-10 yes Zea mays 436756 150 3 4.20E-07 yes CCE9901) 437049 103 8 A4S1T5 3.85E-02 yes CCE9901) 43583 279 1118 4.01E-02 yes CCE9901) 436530 7 175 P39442 8.20E-07 yes CCE9901) 435130 19 133 P74615 2.21E-06 yes Arabidopsis thatiana 461984 190 24 Q9UVH3 9.38E-03 yes Arabidopsis thatiana 461984 190 24 Q9UVH3 9.38E-03 yes Arabidopsis thatiana 461984 124 3 Q9SYM1 1.15E-04 yes Arabidopsis thatiana 46230 95 627 Q94K16 4.59E-05 yes Arabidopsis thatiana 46830 18 105 Q5W915 1.48E-03 yes Arabidopsis thatiana 4818185 10 125 Q9LXT9 1.38E-05 yes Arabidopsis thatiana 4818185 10 125 Q9LXT9 1.48E-03 yes Arabidopsis thatiana 4818186 105 Q5W915 1.48E-03 yes Pisum sativum	Appendix A HC or LC	A - Table	- 4: Transcrig fpkm in HC	 - 4: Transcript of the grapl fpkm in HC fpkm in LC 	Appendix A - Table - 4: Transcript of the graphically compris HC or LC fpkm in HC fpkm in LC	sed cohorts a	and the	ised cohorts and their annotation continued:	
Amino acid transport and metabolism	Amino acid transport and metabolism 471108	condition		condition	condition	NR Prot.ID	q_value;			Function
471108 24 166 Q9SE94 3.25E-04 yes Extracellular structures 431808 359 1 5.34E-10 yes - 442609 142 9 6.67E-04 yes - 442609 142 9 6.67E-04 yes - 443608 279 1118 4.01E-02 yes - 455541 1 544 0.00E+00 yes - 46583 2 189 Q8LB31 0.00E+00 yes Arabidopsis thaliana 463630 7 175 P39442 8.20E-07 yes Arabidopsis thaliana 463630 7 175 P39442 8.20E-07 yes Arabidopsis thaliana 461984 190 24 Q9UVH3 9.38E-03 yes Arabidopsis thaliana 558244 124 3 Q9SYM1 1.15E-04 yes Arabidopsis thaliana 46230 95 627 Q9RK16 4.59E-03 yes Arabidopsis thaliana 468230 95 627 Q9RK16 4.59E-03 yes Arabidopsis thaliana 48185 10 125 Q9LXT9 1.48E-03 yes Arabidopsis thaliana 45930 18 105 Q5W915 1.48E-03 yes Pisum sativum	471108 24 166 Q9SE94 3.25E-04 yes Extracellular structures 431808 359 1 - 5.34E-10 yes - 436756 150 3 - 4.00E-07 yes - 435083 279 1118 - 6.67E-04 yes - 46583 2 189 Q8LB31 0.00E+00 yes - 46360 7 175 P39442 8.20E-07 yes - 432130 19 133 P74615 2.21E-06 yes Arabidopsis thaliana 433117 119 6 Q6GQX6 1.55E-07 yes Arabidopsis thaliana 46630 95 627 Q84K16 4.59E-05 yes Arabidopsis thaliana 48185 10 125 Q9LXT9 1.03E-05 yes Arabidopsis thaliana 484885 10 125 Q9LXT9 1.03E-05 yes Arabidopsis thaliana						Amino aci	d trans	sport and metabolism	
Extracellular structures 431808 359 1 - 5.34E-10 yes - 442609 142 9 - 6.67E-04 yes - 437049 103 8 A4S1T5 3.85E-02 yes CCE9901) 437049 103 8 A4S1T5 3.85E-02 yes CCE9901) 435083 279 1118 - 4.01E-02 yes - 46583 2 189 Q8LB31 0.00E+00 yes - 46583 2 189 Q8LB31 0.00E+00 yes - 46583 1 175 P39442 8.20E-07 yes Natronomonas pharaonis 46583 2 189 Q8LB31 0.00E+00 yes - 46583 2 189 Q8LB31 0.00E+00 yes - 46583 2 189 Q8LB31 0.00E+00 yes - 46583 4 175 P39442 8.20E-07 yes Natronomonas pharaonis 46583 2 189 Q8LB31 0.00E+00 yes - 478130 19 133 P74615 2.21E-06 yes 27184 PCC 6803 / N-1) Cell wall/membrane/envelope biogenesis 461984 124 3 Q9SYM1 1.15E-04 yes Arabidopsis thaliana 46230 95 627 Q84K16 4.59E-03 yes Spinacia oleracea 48185 10 125 Q9LXT9 1.03E-05 yes Arabidopsis thaliana 48188 10 125 Q9LXT9 1.03E-05 yes Bisum sativum	A31808 359 1 - 5.34E-10 yes 442609 142 9 - 6.67E-04 yes 442609 142 9 - 6.67E-04 yes 442609 142 9 - 6.67E-04 yes 442609 103 8 A4S1T5 3.85E-02 yes CCE9901) A35083 279 1118 - 4.01E-02 yes CCE9901) A45541 1 544 - 0.00E+00 yes Arabidopsis thaliana 463630 7 175 P39442 8.20E-07 yes Arabidopsis thaliana A32130 19 133 P74615 2.21E-06 yes Arabidopsis thaliana A33117 119 6 Q6GQX6 1.55E-07 yes Arabidopsis thaliana A6230 95 627 Q98YM1 1.15E-04 yes Arabidopsis thaliana A48185 10 125 Q9LXT9 1.03E-03 yes Arabidopsis thaliana A48185 10 125 Q9LXT9 1.03E-03 yes Arabidopsis thaliana A584930 18 105 Q5W915 1.48E-03 yes Arabidopsis thaliana A584930 18 105 Q5W915 1.48E-03 yes Pisum sativum	TC	471108	24	166	Q9SE94	3.25E-04	yes		Methylenetetrahydrofolate reductase 1
431808 359 1 - 5.34E-10 yes - 436756 150 3 - 6.67E-04 yes - 442609 142 9 - 6.67E-04 yes - 437049 103 8 A4S1T5 3.85E-02 yes CCE9901) 435083 279 1118 - 4.01E-02 yes CCE9901) 46583 2 1189 Q8LB31 0.00E+00 yes - 46583 2 189 Q8LB31 0.00E+00 yes - 46583 2 189 Q8LB31 0.00E+00 yes Arabidopsis thaliana 46583 7 175 P39442 8.20E-07 yes Arabidopsis thaliana 461984 190 24 Q9UVH3 9.38E-03 yes Arabidopsis thaliana 358244 124 3 Q9SYM1 1.15E-04 yes Arabidopsis thaliana 466230 95 627 </td <td>431808 359 1 - 5.34E-10 yes - 436756 150 3 - 6.67E-04 yes - 432609 142 9 - 6.67E-04 yes - 437049 103 8 A4S1T5 3.85E-02 yes CCE9901) 435083 279 1118 - 4.01E-02 yes CCE9901) 46583 2 1118 - 4.01E-02 yes CCE9901) 46583 2 118 - 4.01E-02 yes 4.7abidopsis thaliana 46583 2 189 Q8LB31 0.00E+00 yes 4.7abidopsis thaliana 46583 2 175 P39442 8.20E-07 yes 4.7abidopsis thaliana 461984 190 24 Q9UVH3 9.38E-03 yes 4.7abidopsis thaliana 466230 95 67 Q9GQX6 1.55E-07 yes 4.7abidopsis thaliana 466230 95<!--</td--><td></td><td></td><td></td><td></td><td></td><td>Ext</td><td>racellı</td><td>ular structures</td><td></td></td>	431808 359 1 - 5.34E-10 yes - 436756 150 3 - 6.67E-04 yes - 432609 142 9 - 6.67E-04 yes - 437049 103 8 A4S1T5 3.85E-02 yes CCE9901) 435083 279 1118 - 4.01E-02 yes CCE9901) 46583 2 1118 - 4.01E-02 yes CCE9901) 46583 2 118 - 4.01E-02 yes 4.7abidopsis thaliana 46583 2 189 Q8LB31 0.00E+00 yes 4.7abidopsis thaliana 46583 2 175 P39442 8.20E-07 yes 4.7abidopsis thaliana 461984 190 24 Q9UVH3 9.38E-03 yes 4.7abidopsis thaliana 466230 95 67 Q9GQX6 1.55E-07 yes 4.7abidopsis thaliana 466230 95 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ext</td> <td>racellı</td> <td>ular structures</td> <td></td>						Ext	racellı	ular structures	
436756 150 3 - 4.20E-07 yes - 42609 142 9 - 6.67E-04 yes - 437049 103 8 A4S1T5 3.85E-02 yes CCE9901) 435083 279 1118 - 4.01E-02 yes CCE9901) 46583 2 189 Q8LB31 0.00E+00 yes 4rabidopsis thaliana 46583 2 189 Q8LB31 0.00E+00 yes 4rabidopsis thaliana 46583 7 175 P39442 8.20E-07 yes 4rabidopsis thaliana 46583 19 133 P74615 2.21E-06 yes 2184-PCC 6803 /N-1) 461984 190 24 Q9UVH3 9.38E-03 yes Arabidopsis thaliana 461984 124 3 Q9SYM1 1.15E-04 yes Arabidopsis thaliana 466230 95 627 Q84KI6 4.59E-03 yes Arabidopsis thaliana	436756 150 3 - 6.67E-04 yes - 442609 142 9 - 6.67E-04 yes - 437049 103 8 A4S1T5 3.85E-02 yes - 435083 279 1118 - 4.01E-02 yes - 46583 2 189 Q8LB31 0.00E+00 yes - 46583 2 189 Q8LB31 0.00E+00 yes - 46583 7 175 P3942 8.20E-07 yes Arabidopsis thaliana 46580 7 175 P39442 8.20E-07 yes Arabidopsis thaliana 461984 190 24 Q9UVH3 9.38E-03 yes Arabidopsis thaliana 358244 124 3 Q9SYM1 1.15E-04 yes Arabidopsis thaliana 466230 95 627 Q84K16 4.59E-03 yes Arabidopsis thaliana 454930 18	НС	431808	359	1	-	5.34E-10	yes	-	-
442609 142 9 - 6.67E-04 yes - 437049 103 8 A4S1T5 3.85E-02 yes CCE9901) 435083 279 1118 - 4.01E-02 yes - 46583 2 189 Q8LB31 0.00E+00 yes Arabidopsis thaliana 46583 19 133 P74615 2.21E-06 yes Arabidopsis thaliana 461984 190 24 Q9UVH3 9.38E-03 yes Arabidopsis thaliana 358244 124 3 Q9SYM1 7.68E-05 yes Arabidopsis thaliana 466230 95 627<	42609 142 9 - 6.67E-04 yes - 437049 103 8 A4S1T5 3.85E-02 yes CCE9901) 435083 279 1118 - 4.01E-02 yes - 46583 2 1189 QSLB31 0.00E+00 yes - 46583 2 189 QSLB31 0.00E+00 yes - 46583 2 189 QSLB31 0.00E+00 yes - 46583 7 175 P39442 8.20E-07 yes Arabidopsis thaliana 461984 190 24 Q9UVH3 9.38E-03 yes Arabidopsis thaliana 461984 190 24 Q9UVH3 9.38E-03 yes Arabidopsis thaliana 461984 190 24 Q9UVH3 9.38E-03 yes Arabidopsis thaliana 466230 95 627 Q84KI6 4.59E-03 yes Arabidopsis thaliana 454930 1	HC	436756	150	3		4.20E-07	yes	-	-
437049 103 8 A4S1T5 3.85E-02 yes CCE9901) 435083 279 1118 - 4.01E-02 yes - 46583 2 189 Q8LB31 0.00E+00 yes - 46583 7 175 P39442 8.20E-07 yes Arabidopsis thaliana 46583 19 133 P74615 2.21E-06 yes 27184 / PCC 6803 / N-1) A61984 190 24 Q9UVH3 9.38E-03 yes Arabidopsis thaliana 358244 124 3 Q9SYM1 1.15E-04 yes Arabidopsis thaliana 466230 95 627 Q84K16 4.59E-03 yes Arabidopsis thaliana 466230	437049 103 8 A4S1T5 3.85E-02 yes CCE9901) 435083 279 1118 4.01E-02 yes CCE9901) 455541 1 544 0.00E+00 yes 466583 2 189 Q8LB31 0.00E+00 yes Arabidopsis thaliana 463630 7 175 P39442 8.20E-07 yes Arabidopsis thaliana ATCC 432130 19 133 P74615 2.21E-06 yes Arabidopsis thaliana ATCC wall/membran-einvelope biogenesis Afolyska 124 3 Q9SYM1 1.15E-04 yes Arabidopsis thaliana 466230 95 627 Q9LXT9 1.03E-05 yes Arabidopsis thaliana 466230 95 627 Q9LXT9 1.03E-05 yes Arabidopsis thaliana 466230 95 627 Q9LXT9 1.03E-05 yes Arabidopsis thaliana 488185 10 125 Q9LXT9 1.03E-05 yes Arabidopsis thaliana 454930 18 105 Q5W915 1.48E-03 yes Pisum sativum	HC	442609	142	6	-	6.67E-04	yes	-	-
435083 279 1118 - 4.01E-02 yes - 465584 1 544 - 0.00E+00 yes - 465583 2 189 Q8LB31 0.00E+00 yes - 46583 2 189 Q8LB31 0.00E+00 yes Arabidopsis thaliana 461380 7 175 P3442 8.20E-07 yes Arabidopsis thaliana A51313 19 24 Q9UVH3 9.38E-03 yes Arabidopsis thaliana A53117 119 6 Q6GQX6 1.55E-07 yes Arabidopsis thaliana A66230 95 627 Q84K16 4.59E-03 yes Arabidopsis thaliana 466230 95 627 Q9LXT9 1.03E-05 yes Arabidopsis thaliana 454930 18 105 Q5KW15 1.48E-03 yes Brium sativum	435083 279 1118 - 4.01E-02 yes - 46583 2 189 Q8LB31 0.00E+00 yes 4rabidopsis thaliana 46583 2 189 Q8LB31 0.00E+00 yes 4rabidopsis thaliana 463630 7 175 P39442 8.20E-07 yes Arabidopsis thaliana 461984 190 24 Q9UVH3 9.38E-03 yes Arabidopsis thaliana 358244 124 3 Q9SYM1 1.15E-04 yes Arabidopsis thaliana 466230 95 627 Q84K16 4.59E-03 yes Spinacia oleracea 454930 18 105 Q5W915 1.48E-03 yes Spinacia oleracea	НС	437049	103	8	A4S1T5	3.85E-02		cus lucimarinus (strain	Predicted protein
455541 1 544 - 0.00E+00 yes - 466583 2 189 Q8LB31 0.00E+00 yes Arabidopsis thaliana 46583 2 175 P39442 8.20E-07 yes Arabidopsis thaliana 461330 19 133 P74615 2.21E-06 yes 27184 / PCC 6803 / N-1) A61984 190 24 Q9UVH3 9.38E-03 yes Arabidopsis thaliana 461984 124 3 Q9SYM1 1.15E-04 yes Arabidopsis thaliana 485242 118 3 Q9SYM1 7.68E-05 yes Arabidopsis thaliana 466230 95 627 Q84K16 4.59E-03 yes Arabidopsis thaliana 4848185 10 125 Q9LXT9 1.03E-05 yes Arabidopsis thaliana 454930 18 105 Q5W915 1.48E-03 yes Pisum sativum	455541 1 544 - 0.00E+00 yes Arabidopsis thaliana 466583 2 189 Q8LB31 0.00E+00 yes Arabidopsis thaliana 46583 2 175 P39442 8.20E-07 yes Arabidopsis thaliana 463630 7 175 P39442 8.20E-07 yes Arabidopsis thaliana A52130 19 133 P74615 2.21E-06 yes Arabidopsis thaliana A61984 190 24 Q9UVH3 9.38E-03 yes Arabidopsis thaliana 358244 124 3 Q9SYM1 1.15E-04 yes Arabidopsis thaliana 466230 95 627 Q84K16 4.59E-03 yes Arabidopsis thaliana 454930 18 105 Q5W915 1.48E-03 yes Pisum sativum	ГС	435083	279	1118	-	4.01E-02	yes	-	-
465583 2 189 Q8LB31 0.00E+00 yes Arabidopsis thaliana 463630 7 175 P39442 8.20E-07 yes Matronomonas pharaonis 432130 19 133 P74615 2.21E-06 yes Synechocystis sp. (strain ATCC Synechocystis	465583 2 189 Q8LB31 0.00E+00 yes Arabidopsis thaliana 463630 7 175 P39442 8.20E-07 yes Natronomonas pharaonis 432130 19 133 P74615 2.21E-06 yes 27184 / PCC 6803 / N-1) A61984 190 24 Q9UVH3 9.38E-03 yes Mortierella alpina 358244 124 3 Q9SYM1 1.15E-04 yes Arabidopsis thaliana 433117 119 6 Q6GQX6 1.55E-07 yes Arabidopsis thaliana 466230 95 627 Q84K16 4.59E-03 yes Spinacia oleracea 466230 95 627 Q84K16 4.59E-03 yes Spinacia oleracea 454930 18 105 Q5W915 1.48E-03 yes Pisum sativum	ГС	455541	1	544	-	0.00E+00	yes	-	7
463630 7 175 P39442 8.20E-07 yes Natronomonas pharaonis 432130 19 133 P74615 2.21E-06 yes Z7184 / PCC 6803 / N-1) 461984 190 24 Q9UVH3 9.38E-03 yes Mortierella alpina 358244 124 3 Q9SYM1 1.15E-04 yes Arabidopsis thaliana 466230 95 627 Q84K16 4.59E-05 yes Arabidopsis thaliana 448185 10 125 Q9LXT9 1.03E-05 yes Arabidopsis thaliana 454930 18 105 Q5W915 1.48E-03 yes Pisum sativum	463630 7 175 P39442 8.20E-07 yes Natronomonas pharaonis 432130 19 133 P74615 2.21E-06 yes 27184 / PCC 6803 / N-1) A61984 190 24 Q9UVH3 9.38E-03 yes Mortierella alpina 358244 124 3 Q9SYM1 1.15E-04 yes Arabidopsis thaliana 466230 95 627 Q84K16 4.59E-03 yes Arabidopsis thaliana 454930 18 105 Q5W915 1.48E-03 yes Pisum sativum	ГС	466583	2	189	Q8LB31	0.00E+00			Putative uncharacterized protein
A32130 19 133 P74615 2.21E-06 yes 27184 / PCC 6803 / N-1)	432130 19 133 P74615 2.21E-06 yes Synechocystis sp. (strain ATCC	СС	463630	7	175	P39442	8.20E-07			Halocyanin
Cell wall/membrane/envelope biogenesis 461984 190 24 Q9UVH3 9.38E-03 yes Mortierella alpina 358244 124 3 Q9SYM1 1.15E-04 yes Arabidopsis thaliana 433117 119 6 Q6GQX6 1.55E-07 yes Mus musculus 358242 118 3 Q9SYM1 7.68E-05 yes Arabidopsis thaliana 466230 95 627 Q84KI6 4.59E-03 yes Arabidopsis thaliana 448185 10 125 Q9LXT9 1.03E-05 yes Arabidopsis thaliana 454930 18 105 Q5W915 1.48E-03 yes Pisum sativum	Cell wall/membrane/envelope biogenesis 461984 190 24 Q9UVH3 9.38E-03 yes Mortierella alpina 358244 124 3 Q9SYM1 1.15E-04 yes Arabidopsis thaliana 433117 119 6 Q6GQX6 1.55E-07 yes Arabidopsis thaliana 466230 95 627 Q84K16 4.59E-03 yes Arabidopsis thaliana 448185 10 125 Q9LXT9 1.03E-05 yes Arabidopsis thaliana 454930 18 105 Q5W915 1.48E-03 yes Pisum sativum	ГС	432130	19	133	P74615				Uncharacterized protein sll1483
461984 190 24 Q9UVH3 9.38E-03 yes Mortierella alpina 358244 124 3 Q9SYM1 1.15E-04 yes Arabidopsis thaliana 433117 119 6 Q6GQX6 1.55E-07 yes Mus musculus 358242 118 3 Q9SYM1 7.68E-05 yes Arabidopsis thaliana 466230 95 627 Q84KI6 4.59E-03 yes Spinacia oleracea 448185 10 125 Q9LXT9 1.03E-05 yes Arabidopsis thaliana 454930 18 105 Q5W915 1.48E-03 yes Pisum sativum	461984 190 24 Q9UVH3 9.38E-03 yes Mortierella alpina 358244 124 3 Q9SYM1 1.15E-04 yes Arabidopsis thaliana 433117 119 6 Q6GQX6 1.55E-07 yes Mus musculus 358242 118 3 Q9SYM1 7.68E-05 yes Arabidopsis thaliana 466230 95 627 Q84KI6 4.59E-03 yes Spinacia oleracea 448185 10 125 Q9LXT9 1.03E-05 yes Arabidopsis thaliana 454930 18 105 Q5W915 1.48E-03 yes Pisum sativum)	Cell wall/me	embrai	ne/envelope biogenesis	
358244 124 3 Q9SYM1 1.15E-04 yes Arabidopsis thaliana 433117 119 6 Q6GQX6 1.55E-07 yes Mus musculus 358242 118 3 Q9SYM1 7.68E-05 yes Arabidopsis thaliana 466230 95 627 Q84KI6 4.59E-03 yes Spinacia oleracea 448185 10 125 Q9LXT9 1.03E-05 yes Arabidopsis thaliana 454930 18 105 Q5W915 1.48E-03 yes Pisum sativum	358244 124 3 Q9SYM1 1.15E-04 yes Arabidopsis thaliana 433117 119 6 Q6GQX6 1.55E-07 yes Mus musculus 358242 118 3 Q9SYM1 7.68E-05 yes Arabidopsis thaliana 466230 95 627 Q84K16 4.59E-03 yes Spinacia oleracea 448185 10 125 Q9LXT9 1.03E-05 yes Arabidopsis thaliana 454930 18 105 Q5W915 1.48E-03 yes Pisum sativum	НС	461984	190	24	былинз 🗆	9.38E-03	yes		Palmitoyltransferase AKR1 (Fragment)
433117 119 6 Q6GQX6 1.55E-07 yes Mus musculus 358242 118 3 Q9SYM1 7.68E-05 yes Arabidopsis thaliana 466230 95 627 Q84KI6 4.59E-03 yes Spinacia oleracea 448185 10 125 Q9LXT9 1.03E-05 yes Arabidopsis thaliana 454930 18 105 Q5W915 1.48E-03 yes Pisum sativum	433117 119 6 Q6GQX6 1.55E-07 yes Mus musculus 358242 118 3 Q9SYM1 7.68E-05 yes Arabidopsis thaliana 466230 95 627 Q84K16 4.59E-03 yes Spinacia oleracea 448185 10 125 Q9LXT9 1.03E-05 yes Arabidopsis thaliana 454930 18 105 Q5W915 1.48E-03 yes Pisum sativum	НС	358244	124	3	Q9SYM1	1.15E-04			Uncharacterized mscS family protein At1g78610
358242 118 3 Q9SYM1 7.68E-05 yes Arabidopsis thaliana 466230 95 627 Q84K16 4.59E-03 yes Spinacia oleracea 1 448185 10 125 Q9LXT9 1.03E-05 yes Arabidopsis thaliana 4 454930 18 105 Q5W915 1.48E-03 yes Pisum sativum	358242 118 3 Q9SYM1 7.68E-05 yes Arabidopsis thaliana 466230 95 627 Q84KI6 4.59E-03 yes Spinacia oleracea 448185 10 125 Q9LXT9 1.03E-05 yes Arabidopsis thaliana 454930 18 105 Q5W915 1.48E-03 yes Pisum sativum	НС	433117	119	9	9XO59O	1.55E-07			Ankyrin repeat and SAM domain-containing protein 6
466230 95 627 Q84K16 4.59E-03 yes Spinacia oleracea 448185 10 125 Q9LXT9 1.03E-05 yes Arabidopsis thaliana 6 454930 18 105 Q5W915 1.48E-03 yes Pisum sativum	466230 95 627 Q84K16 4.59E-03 yes Spinacia oleracea 448185 10 125 Q9LXT9 1.03E-05 yes Arabidopsis thaliana 454930 18 105 Q5W915 1.48E-03 yes Pisum sativum	НС	358242	118	3	Q9SYM1	7.68E-05			Uncharacterized mscS family protein At1g78610
448185 10 125 Q9LXT9 1.03E-05 yes Arabidopsis thaliana 454930 18 105 Q5W915 1.48E-03 yes Pisum sativum	448185 10 125 Q9LXT9 1.03E-05 yes Arabidopsis thaliana 454930 18 105 Q5W915 1.48E-03 yes Pisum sativum	ГС	466230	95	627	Q84KI6	4.59E-03		Spinacia oleracea	UDP-sulfoquinovose synthase, chloroplastic
	454930 18 105 Q5W915 1.48E-03 yes Pisum sativum	ГC	448185	10	125	Q9LXT9	1.03E-05			Callose synthase 3
		ГС	454930	18	105	Q5W915	1.48E-03	yes		UDP-sugar pyrophospharylase

Appendix A - Table - 4: Transcript of the graphically comprised cohorts and their annotation continued:

HC or LC | fpkm in HC | fpkm in LC | condition | JGI# | condition | JGI# | condition | Condition | JGI# | Condition |

condition	JGI♯	condition	condition	NR Prot.ID	q_valueSig.		Organism	Function
					Chromat	in stru	Chromatin structure and dynamics	
НС	50586	513	179	P82888	4.22E-02	yes	yes Olisthodiscus luteus	Histone H4
НС	350324	331	57	698I6Q	1.21E-02	yes	yes Gallus gallus	Histone-binding protein RBBP7
HC	371985	221	69	P04735	3.75E-02	yes	yes Psammechinus miliaris	Late histone H2A.1
ГС	460675	1226	5329	ı	4.74E-02	yes	-	
TC	442150	382	1543	Q6YNC8	4.71E-02	yes	yes Ovis aries	Histone H2A.Z
				Secondary	metabolites	s biosy	y metabolites biosynthesis, transport and catabolism	
НС	350030	386	1.7	0203Ca	7.41E 04	0xyM	Myxococcus xanthus (strain DK	- NAWA and and deside the ANA ANI COM
HC	53289		3	023024	1.90E-03	yes	dopsis thaliana	Flavin-containing monooxygenase YUCCA3
НС			,	1				Dehydrogenase/reductase SDR family
	438972	302	16	Q99J47	1.16E-03	yes	yes Mus musculus	member 7B
HC	454764	270	23	Q9ZU35	1.56E-02	yes	yes Arabidopsis thaliana	ABC transporter G family member 7
ГС	435829	862	3384	Q11HZ5	2.45E-02	yes	Koribacter versatilis (strain Ellin345)	Acyl carrier protein
ГС	457138	78	340	Q1IHZ5	2.11E-03	yes	Koribacter versatilis (strain yes Ellin345)	Acyl carrier protein
ГС	415523	S	338	034340	0.00E+00	yes	Bacillus subtilis	3-oxoacyl-[acyl-carrier-protein] synthase 2
ГС							Haemophilus influenzae (strain ATCC 51907 / DSM 11121 /	
	461962	44	267	P43710	2.48E-03	yes	KW20 / Rd)	3-oxoacyl-[acyl-carrier-protein] synthase 1
ТС	438034	49	253	O34340	1.70E-03	yes	Bacillus subtilis	3-oxoacyl-[acyl-carrier-protein] synthase 2
	_	_	_	_	_		_	

Probable dual specificity protein phosphatase Ubiquitin and WLM domain-containing Structural maintenance of chromosomes Structural maintenance of chromosomes Structural maintenance of chromosomes Chromosome segregation protein sudA Probable kinetochore protein NUF2 Condensin complex subunit 2 Condensin complex subunit 3 G2/mitotic-specific cyclin-1 Proteophosphoglycan ppg4 protein C1442.07c Aurora kinase A Aurora kinase A protein 4 protein 2 rotein 4 Function 5 Cell cycle control, cell division, chromosome partitioning Oryptococcus neoformans var. neoformans serotype D (strain Schizosaccharomyces pombe yes Medicago sativa subsp. varia JEC21 / ATCC MYA-565) 2.98E-03 | yes (strain 972 / ATCC 24843) yes Dictyostelium discoideum Dictyostelium discoideum Appendix A - Table - 4: Transcript of the graphically comprised cohorts and their annotation continued: yes Arabidopsis thaliana 1.16E-02 | yes | Emericella nidulans yes Rattus norvegicus E9AEM8 | 2.79E-03 | yes | Leishmania major yes Mus musculus yes Homo sapiens yes Homo sapiens yes Homo sapiens Defence mechanisms Organism Cell motility yes ves 6.88E-05 yes ves q valueSig. 1.89E-04 5.47E-09 8.79E-05 1.70E-06 3.22E-03 3.24E-13 3.02E-05 1.14E-02 2.62E-05 7.69E-04 3.26E-04 1.70E-11 NR Prot.ID Q9FJL0 **Q9BPX3** 094580 **Q9NTJ3** P0CP40 O54T76 Q54PK4 Q15003 000737 P46277 P97477 P59241 fpkm in HC fpkm in LC condition 163 163 234 457 18 361 86 86 85 73 21 ∞ 4 2 condition 176 140 211 100 30 48 46 78 89 74 20 14 21 9 9 102888 359888 122222 466575 468124 366332 125202 465321 444453 446038 113594 374001 156538 72589 448323 58171 JGI# HC or LC condition HC HC НС НС Σ Σ 2 HC HC Γ C $\sum_{i=1}^{n}$ CC $\sum_{i=1}^{n}$ HC

Appendix A Table - 5: Transcripts matching proteins of the V-type proton ATPase cluster and clathrin cluster.

Protein JGI#	UniProt ID	Function	Short name change.	2 ^x -fold change.	2 ^x -fold fpkm HC at fpkm LC at change. condition		Sig.	KOG definition
		V-ty)	V-type proton ATPase and clathrin	Pase an	d clathrin			
439740	Q8PYZ8	K(+)-stimulated pyrophosphate- energized sodium pump	H Ppase	1.32	235	989	ou -	
415047	P21616	Pyrophosphate-energized vacuolar membrane proton pump	V-type PPase	-0.55	70	48	no -	
51239	Q06572	Pyrophosphate-energized vacuolar membrane proton pump	V-type PPase	0.34	29	85	no -	
75032	Q06572	Pyrophosphate-energized vacuolar membrane proton pump	V-type PPase	0.5	20	28	no -	
464767	Q9Z1G4	V-type proton ATPase 116 kDa subunit a isoform 1	V-ATPase	0.78	28	49	no	Vacuolar H ⁺ -ATPase V0 sector, subunit a
61253	Q9Z1G4	V-type proton ATPase 116 kDa subunit a isoform 1	V-ATPase	2.18	62	358	no	Vacuolar H ⁺ -ATPase V0 sector, subunit a
313422	Q43362	V-type proton ATPase 16 kDa proteolipid subunit	V-ATPase	1.25	116	277	no	Vacuolar H ⁺ -ATPase V0 sector, subunits c/c'
359783	Q43362	V-type proton ATPase 16 kDa proteolipid subunit	V-ATPase	96.0	748	1460	no	Vacuolar H ⁺ -ATPase V0 sector, subunits c/c'
362459	Q43362	V-type proton ATPase 16 kDa proteolipid subunit	V-ATPase	1.22	211	489	no	Vacuolar H ⁺ -ATPase V0 sector, subunits c/c'
364707	Q43362	V-type proton ATPase 16 kDa proteolipid subunit	V-ATPase	6.0	153	285	no s	Vacuolar H ⁺ -ATPase V0 sector, subunits c/c'
366512	Q43362	V-type proton ATPase 16 kDa proteolipid subunit	V-ATPase	1.18	81	184	no	Vacuolar H ⁺ -ATPase V0 sector, subunits c/c'
457332	Q43362	V-type proton ATPase 16 kDa proteolipid subunit	V-ATPase	1.74	108	361	no	Vacuolar H ⁺ -ATPase V0 sector, subunits c/c'
451883	Q91V37	V-type proton ATPase 21 kDa proteolipid subunit	V-ATPase	1.21	48	110	no	Vacuolar H ⁺ -ATPase V0 sector, no subunit c"

Appendix A - Table - 5: Transcripts matching proteins of the V-type proton ATPase cluster and clathrin cluster continued:

Protein	IniProt ID Eunotion	Function	Short name	2 ^X -fold	2 ^X -fold fpkm HC fpkm LC	fpkm LC	\(\frac{\chi_{\chi\ti}{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi}\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\ti}{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\ti}}\chi_{\chi\ti}{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\ti}}\chi_{\chi_{\chi_{\chi_{\chi\ti}}\chi_{\chi_{\chi\ti}}\chi_{\chi\ti}\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi}\chi_{\chi\ti}\chi_{\chi\ti}\chi_{\chi\ti}\chi_{\chi_{\chi}\chi\ti}\chi_{\chi\ti}\chi_{\chi\ti}\chi_{\chi\ti}\chi_{\chi\ti}\chi\ti}\chi\ti}\chi\chi\chi\chi\ti}\chi\chi\chi\ti}\chi\ti}\chi\chi\chi\ti}\chi\ti}\chi\chi\chi\ti}\chi\ti}\chi\chi\ti}\chi\ti\ti\ti\ti\ti\ti\ti\ti\ti\ti\ti\ti\ti	2 ^X -fold fpkm HC fpkm LC Sign KOG definition
			V-type proton ATPase and clathrin	Pase and c	lathrin		<u>a</u> .	
/30538	DSAKAT	V-type proton ATPase catalytic	V_A TDasa	1 28	373	982	<u>> 5</u>	Vacuolar H ⁺ -ATPase V1 sector,
00000	110101	V time aroten A These subunit D	V-7111 430	1.40	040	00/		Complet U+ ATDess VI soctor
435128	P31408	v-type proton A 1 rase subunit B, brain isoform	V-ATPase	1.32	391	926	v on	vacuoiai n -A1 rase v 1 secioi, subunit B
							>	Vacuolar H ⁺ -ATPase V0 sector,
313800	P23968	V-type proton ATPase subunit c"	V-ATPase	1.28	154	374	no si	subunit c"
							Λ	Vacuolar H ⁺ -ATPase V0 sector,
413949	P54641	V-type proton ATPase subunit d	V-ATPase	1.04	360	739	no sı	subunit d
							<u>\</u>	Vacuolar H ⁺ -ATPase V1 sector,
420005	Q9XGM1	Q9XGM1 V-type proton ATPase subunit D	V-ATPase	1.2	76	175	no si	subunit D
		V-type proton ATPase subunit D					<u> </u>	Vacuolar H ⁺ -ATPase V1 sector,
425833	Q9V7D2	1	V-ATPase	0.86	138	251	no sı	subunit D
							>	Vacuolar H ⁺ -ATPase V1 sector,
433060	Q9MB46	Q9MB46 V-type proton ATPase subunit E	V-ATPase	0.35	411	526	no si	no subunit E
							^	Vacuolar H ⁺ -ATPase V1 sector,
352209	Q9ZQX4	V-type proton ATPase subunit F	V-ATPase	0.95	128	246	no sı	subunit F
		Probable V-type proton ATPase					>	Vacuolar H ⁺ -ATPase V1 sector,
355949	P91303	subunit G	V-ATPase	0.46	556	765	no si	subunit G
		Probable V-type proton ATPase					>	Vacuolar H ⁺ -ATPase V1 sector,
369392	P91303	subunit G	V-ATPase	0.35	299	382	no si	subunit G
							Λ	Vacuolar H ⁺ -ATPase V1 sector,
95543	Q9LX65	V-type proton ATPase subunit H	V-ATPase	1.25	217	518	no si	no subunit H
		RAVE (regulator of V-ATPase					<u>~</u>	RAVE, RAV1/DMX protein, WD
461741	Q8TDJ6	assembly) complex subunit	DmX	1.7	5	16	yes re	yes repeat superfamily
			H Ppase				<u> </u>	Plasma membrane H ⁺ -transporting
67081	P12522	Probable proton ATPase 1B		3.18	-	10	yes A	yes ATPase

proteins of the V-type proton ATPase cluster and clathrin cluster continued:	m LC	Short name change. condition condition Sig. KOG definition		Vesicle coat protein clathrin, heavy 5 no chain	Vesicle coat protein clathrin, heavy	15 no chain	Vesicle coat protein clathrin, heavy	443 no chain	8 no Clathrin coated vesicle
and clath	2 ^x -fold fpkm HC fpkm LC	lition <mark>co</mark> n	rin	9		23		320 4	9
cluster	d fpkn	conc	l clath						
ATPase	2^{x} -folc	change	Pase anc	-0.23		-0.63		0.47	0.47
V-type proton		Short name	V-type proton ATPase and clathrin						
Appendix A - Table - 5: Transcripts matching proteins of the		Function	V-ty	P11442 Clathrin heavy chain 1	,	P25870 Clathrin heavy chain		P25870 Clathrin heavy chain	Q14677 Clathrin interactor 1
Table - 5: T		UniProt ID Function		P11442		P25870		P25870	Q14677
Appendix A	Protein	JGI#		456439		455942		352114	209558

Appendix A Table - 6: Transcripts matching proteins of the proton exchanger cluster.

KOG definition				ydrase				Pantothenate kinase and related prot.							Cl- channel CLC-7 and related proteins	Cl- channel CLC-7 and related proteins	CI- channel CLC-7 and related proteins	Cl- channel CLC-7 and related proteins	sporter	Beta-catenin-binding protein APC	
		1	-	Carbonic anhydrase		1		Pantothenate		1		ı		1	Cl- channel C		CI- channel C	CI- channel C	Predicted transporter	Beta-catenin-	
Sig.		no	no	no	no	yes	yes	ou	no	ou					ou	no	ou	no	yes	ou	
fpkm HC fpkm LC condition		14	15	12	30	27	2	5	1	2		6		7	13	3	1	9	4	19	
Short 2 ^x -fold fpkm HC fpkm LC name change condition	nanger	19	19	7	11	6	0	3	1	2		12		9	5	2	0	5	280	5	
2 ^x -fold change	Proton Exchanger	3.1	3.1	2.6	3.2	3.2	1.1	1.9	6.0	1.4		2.7		2.3	2.6	1.5	9.0	2.1	-6.1	2	
Short	\mathbf{P}_{1}	NhaA	NhaA	NhaA	NhaA	NhaA	NhaA	NhaA	NhaA	NhaA					CIC-7	C1C-7	CIC-7	CIC-7			
Function		Q2YMB3 Na(+)/H(+) antiporter nhaA	Q2YMB3 Na(+)/H(+) antiporter nhaA	Na(+)/H(+) antiporter nhaA	Na(+)/H(+) antiporter nhaA	Na(+)/H(+) antiporter nhaA	A1AK41 Na(+)/H(+) antiporter nhaA 1	Na(+)/H(+) antiporter nhaA 2	Putative Na(+)/H(+) antiporter	Putative Na(+)/H(+) antiporter	Monovalent Cation: Proton	antiporter-1 family	Monovalent Cation: Proton	antiporter-1 family	H(+)/Cl(-) exchange transporter 7	H(+)/Cl(-) exchange transporter 7	H(+)/Cl(-) exchange transporter 7	H(+)/Cl(-) exch. transporter ClcA	H(+)/hexose cotransporter 3	Voltage-gated H+ channel protein	
UniProt ID		Q2YMB3	Q2YMB3	Q8YFI5	Q39WP5	Q30XM9	A1AK41	A1ATB4	E3PR21	E3PR21	C1E8I2		C1E8I2		О4РКНЗ	О4РКНЗ	P51798	6Z5L8Q	Q39525	E2IJ90	
Protein JGI#		469557	423009	468382	447659	198981	219535	105293	365993	358003	359372		120657		459148	452730	221620	450698	432500	461000	

Appendix A Table - 7: Transcripts matching proteins of the Ca²⁺ - transport cluster.

	KOG-Definition		K ⁺ -dependent Ca ²⁺ /Na ⁺ exchanger NCKX1 and related proteins	K ⁺ -dependent Ca ²⁺ /Na ⁺ exchanger NCKX1 and related proteins	K^{+} -dependent $Ca^{2+}Na^{-}$ exchanger NCKX1 and related proteins			Splicing coactivator SRm160/300, subunit SRm300			K ⁺ -dependent Ca ²⁺ /Na ⁺ exchanger NCKX1 and related proteins		K ⁺ -dependent Ca ²⁺ /Na ⁺ exchanger NCKX1 and related proteins	K ⁺ -dependent Ca ²⁺ /Na ⁺ exchanger NCKX1 and related proteins	
	sig.		yes	no	no	no	no	no	no	no	no	yes	no	no	
	fpkm LC condition	(X	<i>L</i> 68	29	11	9	11	12	2	6	4	553	7	S	
	2 ^x -fold fpkm HC fpkm LC change condition	nger (NCK	55	23	14	4	8	7	1	5	2	06	5	4	
;	2 ^x -fold change	K+ dependent Ca2+/Na+ exchanger (NCKX)	4.0	0.4	-0.4	0.5	0.5	6.0	1.6	8.0	8.0	2.6	0.5	0.2	
•	short name	dent Ca2+/	NCKX1	KCKX3	NCKX3'	NCKX3'	NCKX3'	NCKX5	NCKX5	NCKX5					
ort transcripts	Function	K+ depend	Sodium/potassium/calcium exchanger 1	Sodium/potassium/calcium exchanger 3	Sodium/potassium/calcium exchanger 3 (Fragment)	Sodium/potassium/calcium exchanger 3 (Fragment)	Sodium/potassium/calcium exchanger 3 (Fragment)	Sodium/potassium/calcium exchanger	Sodium/potassium/calcium exchanger 5	Sodium/potassium/calcium exchanger 5	Predicted protein	Probable sodium/potassium/calcium exchanger CG1090	Probable sodium/potassium/calcium exchanger CG1090	NCKX1 and related proteins	
Presence of Ca ²⁺ - transport transcripts	UniProt ID		9WZ060	Q9HC58	О9ЕРО0	ОЭЕРОО	ОЭЕРОО	Q8C261	Q8C261	Q8C261	C1MI03	Q9VN12	Q9VN12	ı	
Presence of	∄IGI#		447939	461099	447153	437634	368842	450681	258305	212884	469467	354606	219401	354001	

Presence of	Presence of Ca ²⁺ - transport transcripts	ort transcripts						
)GI#	UniProt ID	Function	short name	2 ^x -fold change	2 ^x -fold fpkm HC change condition	fpkm LC condition	sig.	KOG-Definition
		K ⁺ indepe	ndent Ca2	+/Na exch	K ⁺ independent Ca2 ⁺ /Na ⁺ exchanger (NCX)	()		
)			Ca ²⁺ /Na ⁺ exchanger NCX1 and
454623	P57103	Sodium/calcium exchanger 3	NCX3	1.79	S	18	yes	related proteins Ca ²⁺ /Na ⁺ exchanger NCX1 and
369786	P70549	Sodium/calcium exchanger 3	NCX3	0.95		2	no	related proteins
			ion/proton	Cation/proton exchanger (CAX)	_			•
72273	Q5KQN0	Q5KQN0 Vacuolar cation/proton exchanger 2	CAX2	0.97	4	8	no	Ca^{2+}/H^+ antiporter VCX1 and related proteins
223499	Q5KQN0	Q5KQN0 Vacuolar cation/proton exchanger 2	CAX2	-0.71	14	6	no	Ca ²⁺ /H ⁺ antiporter VCX1 and related proteins
416800	Q8L783	Vacuolar cation/proton exchanger 5	CAX5	2.7	84	549	yes	Ca ²⁺ /H ⁺ antiporter VCX1 and related
415715	Q8L783	Vacuolar cation/proton exchanger 5	CAX5	-1.07	33	16	no	
		Cat	ion/Ca2+	Cation/Ca2+ exchanger (CCX)	(CCX)			
449053	Q9LJI2	Cation/calcium exchanger 3	AtCCX3	-2.80	, 80 ,	13	no	no K ⁺ -dependent Na ⁺ :Ca ²⁺ antiporter
		Calcium transporting ATPase – endoplasmatic reticulum type (SERCA-type)	ase – endo	plasmatic	reticulum ty	rpe (SERC/	1-type	(9)
258138	Q42883	Calcium-transporting ATPase, endoplasmic reticulum-type	SERCA	-4.88	4	0	no	,
62350	P11607	Sarcoplasmic/endoplasmic reticulum calcium ATPase 2	SERCA 2	1.24	7	17	no	,
251608	Q9XES1	Calcium-transporting ATPase 4, endoplasmic reticulum-type	SERCA 4	-3.56	64	5	yes	
429294	Q9XES1	Calcium-transporting ATPase 4, endoplasmic reticulum-type	SERCA 4	-2.25	62	13	no	Ca ²⁺ transporting ATPase
463095	Q9XES1	Calcium-transporting ATPase 4, endoplasmic reticulum-type	SERCA 4	6.83		156	yes	Ca ²⁺ transporting ATPase

Presence or	Presence of Ca ²⁺ - transport transcripts	ort transcripts	· -	Ì	-	-	· -	
†IGI#	UniProt ID	Function	short	2 ^x -fold change	fpkm HC condition	fpkm LC condition	sig.	KOG-Definition
		į		•				
	_	Plasma membrane calcium-transporting A1 Pase (FMCA)	e calcium-	transportu	ng All Pase (PMCA)	-	
466567	Q64542	Plasma membrane calcium- transporting ATPase 4	PMCA4	0.79	4	9	no Calci	Calcium transporting ATPase
460140	Q64542	Plasma membrane calcium- transporting ATPase 4	PMCA4	2.6	0	2	yes Calciu	Calcium transporting ATPase
			Putativ	Putative proteins				
78746	P35315	Probable calcium-transporting ATPase		3.28	0	5	$\frac{\text{yes}}{\text{Ca}^{2^+}}$	Ca ²⁺ transporting ATPase
107905	B7FRE6	Predicted protein		0.78	10	17	no F0F1-	F0F1-type ATP synthase, \alpha subunit
			Calcium	Calcium Channels				
101180	8Н5Ѕ9О	Two pore calcium channel protein 1	HvTPC1	-0.07	3	3	Noltage-subunits	Voltage-gated Ca ²⁺ channels, alphal subunits
452741	Q75VR0	Q75VR0 Two pore calcium channel protein 1B HvTPC1	HvTPC1	0.14	5	9	Noltage-	Voltage-gated Ca ²⁺ channels, alpha1 subunits
452291	Q9NY47	Voltage-dependent calcium channel subunit alpha-2/delta-2		2.92	1	11	yes chann	L-type voltage-dependent Ca ²⁺ channel, alpha2/delta subunit
		Transient	receptor p	otential ca	Transient receptor potential cation channel	1		
468587	Q91YD4	Transient receptor potential cation channel subfamily M member 2 (1)	LTrpC-2	1.71	7	22	$\frac{\text{Ca}^{2+}/\text{I}}{(\text{LTR})}$	Ca ²⁺ /Mg ²⁺ -permeable cation channels (LTRPC family)
462171	P48994	Transient-receptor-potential-like		0.32	~	10	Recept no cation	Receptor-activated Ca ²⁺ -permeable cation channels (STRPC family)
00007	, (V)		C	12.0) 6		,	Ca ²⁺ /Mg ²⁺ -permeable cation channels
450292	094759	Channel Subfamily M member 2 (1) Transient receptor potential cation channel Subfamily M member 2 (1)	L11pC-2	1.76	4°	62 6	$Ca2^{+}/Ca2^{-}/Ca2^$	(LTMC tanny) Ca2 ⁺ /Mg ²⁺ -permeable cation channels (LTRPC family)
449985	094759	Transient receptor potential cation channel subfamily M member 2 (1)	LTrpC-2	1.68		22		Ca ²⁺ /Mg ²⁺ -permeable cation channels (LTRPC family)
250817	094759		LTrpC-2	3.27	1	12	yes -	

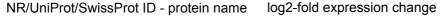
	KOG-Definition	Ca ²⁺ /Mg ²⁺ -permeable cation channels no (LTRPC family)
	Sig.	no
	fpkm LC condition	4
	short 2 ^x -fold fpkm HC fpkm LC name change condition condition	9
	2 ^x -fold change	-0.59
	short name	LTrpC-2
ort transcripts	Function	O94759 Channel subfamily M member 2 (1) LTrpC-2 -0.59
resence of Ca ²⁺ - transport transcripts	JGI# UniProt ID	094759
Presence of	#IDI	107737

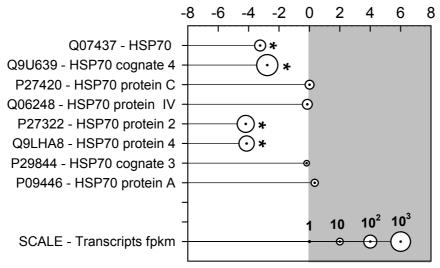
(1) Predicted protein referring to KOG definition annotation

Appendix A Table - 8: Transcripts matching calmodulin and calcium binding proteins.

KOG-Definition		Calmodulin and related proteins	Nucleolar GTPase/ATPase p130	Calmodulin and related proteins	Calmodulin and related proteins	Calmodulin and related proteins	Putative calcium binding protein	Calreticulin	Calreticulin	Calnexin	Calnexin	Calnexin	Calmodulin and related proteins	ı	Actin filament-coating protein tropomyosin						
Sig.		ou	no	ou	ou	ou	ou	ou	no	yes	no	ou	yes	yes	yes	no	yes	yes	no	yes	no
fpkm LC condition	- binding protein	18	18	_	1031	579	5	2	2	0	2	78	14	42	141	31	15	21	62	_	11
2 ^x -fold fpkm HC change condition	and Ca ²⁺ - bin	31	31	2	2539	1540	3	_	1	1	0	96	1029	310	1206	82	199	316	37	7	~
2 ^x -fold change	n (CaM) a	-0.8	8.0-	-1.4	-1.3	-1.4	0.7	1.8	1.8	-2.9	3.1	-0.3	-6.2	-2.9	-3.1	-1.4	-3.7	-3.9	0.7	-2.6	0.4
	=																				
Short	Calmodu	CaM	CaM	CaM	CaM	CaM	CLP3	CLP5	CLP5	CLP5	CLP7		GPA	ERp60	ERp60				CABP	CABP	CML37
Function Short name	Transcripts related to Calmodulin (CaM) and Ca ²⁺		Calmodulin CaM	Calmodulin CaM	Calmodulin	Calmodulin	Calmodulin-like protein 3 CLP3	Calmodulin-like protein 5 CLP5	Calmodulin-like protein 5 CLP5	Calmodulin-like protein 5 CLP5	Calmodulin-like protein 7 CLP7	Putative calmodulin-like protein 6		Calreticulin ERp60	Calreticulin ERp60	Calnexin homolog	Calnexin homolog	Calnexin homolog 2	Calcium-binding protein CABP	Calcium-binding protein (Fragment) CABP	CML37
	Transcripts related to Calmodu	Q9HFY6 Calmodulin CaM					3	5	5	5	7	Q2R1Z5 Putative calmodulin-like protein 6	saccharide associated protein			Q39817 Calnexin homolog	Q6Q487 Calnexin homolog	Q38798 Calnexin homolog 2		(Fragment)	

Appendix A Table - 9: Bicarbonate transport protein cluster


358486	Anion exchange protein 2	Bicar AE 2 AE 3 AE 3 AE 4 AE 4 AE 4 AE 4 AE 5 AE 5	1.36 3.81 1.31	Bicarbonate transport	ı		
		- AE 2 AE 2 AE 2 AE 2	3.81	3.	r		
P23347 Anion of P23347 Anion o		AE 2 AE 2 AE 2 AE 2	3.81		_	no	Sulfate/bicarbonate/oxalate exchanger SAT-
P23347 Anion of P23347 Anion o		AE 2 AE 2 AE 2 AE 2	3.81				1 and related transporters (SLC26 family)
P23347 P23347 P23347 Q9GKY1 Q9GKY1 Q8GYH8 O06984 O06984		AE 2 AE 2 AE 2	1.31	8	117	yes	Na ⁺ -independent Cl/HCO3 exchanger AE1
P23347 P23347 P23347 Q9GKY1 Q9GKY1 Q8GYH8 O06984 O06984		AE 2 AE 2 AE 2	1.31				and related transporters (SLC4 family)
P23347 P23347 Q9GKY1 Q9GKY1 Q8GYH8 O06984 O06984		AE 2 AE 2		09	150	no	Na -independent Cl/HCO3 exchanger AE1
P23347 P23347 P23347 Q9GKY1 Q9GKY1 Q8GYH8 O06984 O06984		AE 2 AE 2	-				and related transporters (SLC4 family
P23347 P23347 Q9GKY1 Q9GKY1 Q8GYH8 O06984 Q9HGM6		AE 2	2.72	39	259	yes	Na -independent Cl/HCO3 exchanger AE1
P23347 P23347 Q9GKY1 Q9GKY1 Q8GYH8 O06984 Q9HGM6		AE 2					and related transporters (SLC4 family
P23347 Q9GKY1 Q9GKY1 Q8GYH8 O06984 Q9HGM6			3.09	19	158	yes	Na ⁺ -independent Cl/HCO3 exchanger AE1
P23347 Q9GKY1 Q9GKY1 Q8GYH8 O06984 Q9HGM6							and related transporters (SLC4 family
Q9GKY1 Q9GKY1 Q8GYH8 O06984 Q9HGM6		AE 2	3.60	3	35	yes	Na ⁺ -independent Cl/HCO3 exchanger AE1
Q9GKY1 Q9GKY1 Q8GYH8 O06984 Q9HGM6							and related transporters (SLC4 family)
Q9GKY1 Q8GYH8 O06984 O06984 Q9HGM6	Anion exchange protein 4	AE 4	0.67	16	56	no	Na ⁺ -independent Cl/HCO3 exchanger AE1
Q9GKY1 Q8GYH8 O06984 Q9HGM6							and related transporters (SLC4 family)
Q8GYH8 O06984 O06984 Q9HGM6	Q9GKY1 Anion exchange protein 4	AE 4	1.25	5	12	no	Na -independent Cl/HCO3 exchanger AE1
Q8GYH8 006984 006984 Q9HGM6							and related transporters (SLC4 family)
O06984 O06984 Q9HGM6	Probable sulfate transporter 4.2	1	0.24	9	7	no	Sulfate/bicarbonate/oxalate exchanger SAT-
O06984 O06984 Q9HGM6							1 and related transporters (SLC26 family)
O06984 Q9HGM6	Putative sulfate transporter yvdB	1	1.12	137	298	no	Sulfate/bicarbonate/oxalate exchanger SAT-
O06984 Q9HGM6							1 and related transporters (SLC26 family)
	Putative sulfate transporter yvdB	1	-1.81	40	111	no	Sulfate/bicarbonate/oxalate exchanger SAT-
							1 and related transporters (SLC26 family)
	Q9HGM6 Putative transporter C543.05c	1	-7.07	276	7	yes	Na ⁺ -independent Cl/HCO3 exchanger AE1
							and related transporters (SLC4 family)
436956 Q9HGM6 Putativ	Q9HGM6 Putative transporter C543.05c	1	-2.25	06	19	no	Na -independent Cl/HCO3 exchanger AE1
				,			and related transporters (SLC4 family)
314659 Q9HGM6 Putativ	Q9HGM6 Putative transporter C543.05c	<u> </u>	-2.33	207	41	yes	Na ⁺ -independent Cl/HCO3 exchanger AE1


JGI#	UniProt ID Function		short name	2 ^x -fold change	2 ^x -fold fpkm HC fpkm LC change condition		sig.	KOG Definition (source: JGI annotation)
	CVETTOO		10	60	+			and related transporters (SLC4 family)
469783	Ų8BTY2	Q8B1Y2 Sodium bicarbonate cotransporter 3 SLC/ 4.00	SLC/	4.00	_	51	yes	Na -independent CI/HCO3 exchanger AE1 and related transporters (SLC7 family)
448706	Q09764	Q09764 Uncharacterized protein C24H6.11c SLC26	SLC26	0.57	9	6	no	Sulfate/bicarbonate/oxalate exchanger SAT-
	5000		7	-		ć		1 and related transporters (SLC26 family)
121358	Q09764	Q09/64 Uncharacterized protein C24H6.11c SLC26 -1.62	SLC26	-1.62	9	7	n0	Sulfate/bicarbonate/oxalate exchanger SA1-
	D53773	Uncharacterized vacuolar membr	9CJ IS	06 9-	10	0	VAS	I and related transporters (SECZO family) Sulfate/kicarbonate/oxalate exchanger SAT-
		protein YGR125W))	ì	>	5	1 and related transporters (SLC26 family)
460215	P53273	Uncharacterized vacuolar membr.	SLC26	1.09	4	8	n0	Sulfate/bicarbonate/oxalate exchanger SAT-
		protein YGR125W						1 and related transporters (SLC26 family)
455488	P53273	Uncharacterized vacuolar membr.	SLC26	1.98	1	2	yes	Sulfate/bicarbonate/oxalate exchanger SAT-
		protein YGR125W						1 and related transporters (SLC26 family)
			Ca	rbonic a	Carbonic anhydrase			
233460	052535	Beta-Carbonic anhydrase	CA	2.63	1	9	yes	Carbonic anhydrase
239690	053573	Beta-Carbonic anhydrase	CA	-0.31	1	1	00	Carbonic anhydrase
115240	053573	Beta-Carbonic anhydrase	CA	-0.09	С	3	no	Carbonic anhydrase
436031	Q0ZB86	Delta-carbonic anhydrase	8-CA	7.89	0	74	yes	Carbonic anhydrase
	Q50940	Carbonic anhydrase	CA	1.68	1	4	n0	Carbonic anhydrase
456048	Q50940	Carbonic anhydrase	CA	2.61	7	14	yes	Carbonic anhydrase
195575	Q6V8K7	Intracellular carbonic anhydrase	CA	1.13	11	25	no	Carbonic anhydrase

Appendix A Table - 10: Aquaporin protein cluster.

	KUG definition	trinsic protein family	trinsic protein family	ıtrinsic protein family	egulator ontains Myb-like	domains Aquaporin (major intrinsic protein family)	trinsic protein family	no Aquanorin (maior intrinsic protein family)
	KOG	no Aquaporin (major intrinsic protein family)	no Aquaporin (major intrinsic protein family)	no Aquaporin (major intrinsic protein family)	Nuclear receptor coregulator SMRT/SMRTER, contains Myb-like		no Aquaporin (major intrinsic protein family)	Aquanorin (maior in
.;	SIg.	no	ou	ou	no	no	ou	no
fpkm LC	condition	∞	46	8	29	3	7	9
short 2 ^X -fold fpkm HC fpkm LC	name change condition condition sig.	4	45	5	10	1	3	10
2 ^X -fold	change A gingm	0.84	0.05	0.01	1.55	1.51	1.27	-0.81
short	name	AP	OsTIP1:	2 OsTIP1;	OsTIP1; 1.55	GlpF	GlpF	GlpF
	Function	P42767 Aquaporin PIP-type	Q94CS9 Probable aquaporin TIP1-2	Q94CS9 Probable aquaporin TIP1-2	O82316 Aquaporin TIP4-1	Q1J3H7 Glycerol uptake facilitator GlpF,	MIP/aquaporin family (Precursor) Glycerol uptake facilitator GlpF,	MIP/aquaporin family (Precursor) P31140 Glycerol uptake facilitator protein
71	JGI# UniProt ID	P42767	Q94CS9	Q94CS9	082316	Q1J3H7	Q1J3H7	P31140
7	†IDſ	75635	458101	454880	111379	462297	424870	432761

Heat Shock Protein 70 homolog expression

Appendix A Figure 2: Transcripts related to Heat Shock Protein 70 expression found in *E. huxleyi* cells showing high and low rates of calcification (shaded grey). Positive 2^X-fold expression values indicate elevated expression in the Dark period. The sizes of the circles indicate the total abundance of transcripts found at Light and Dark period.

Appendix A Table - 11: Details of transcript abundance of heat shock protein in *E. huxleyi* cells showing high (HC) and low rates of calcification (LC).

JGI ♯	UniProt ID	Short name	2 ^X -fold change	fpkm at HC	fpkm at LC	eia
			Change			sig.
311681	Q07437	HSP 70 kDa	-3.24	42.8	4.5	yes
420962	Q9U639	HSP 70 kDa 4 cognate	-2.77	1619.2	236.8	yes
421892	P27420	HSP 70 kDa C	0.01	10.9	10.9	no
423268	Q06248	HSP 70 kDa IV	-0.14	16.2	14.7	no
441734	P27322	HSP 70 kDa 2 cognate	-4.19	408.7	22.5	yes
47896	Q9LHA8	HSP 70 kDa 4 cognate	-4.13	212.9	12.2	yes
59809	P29844	HSP 70 kDa 3 cognat	-0.18	3.4	3.0	no
62931	P09446	HSP 70 kDa A	0.35	5.0	6.4	no

Appendix A Table - 12: Selected transcripts with potential role in biomineralisation of the 1000 most abundant transcripts in the light incubation period (high calcification rate) of the cell cycle.

			fpkm in	fpkm in	2 ^X -fold		
JGI♯	UniProt ID	Function	Light	Dark	change	q_value	Sig.
442625	Q40302	Calmodulin	2539.2	1030.6	-1.3	0.5585	no
443126	Q40302	Calmodulin	1540.1	578.9	-1.41	0.3289	no
426711	P15253	Calreticulin	1206.0	141.0	-3.1	0.0043	yes
431830	Q0MYW8	GPA	1029.1	14.4	-6.16	0.0000	yes
		V-type proton ATPase					
		16 kDa proteolipid					
359783	Q43362	subunit	748.2	1460.4	0.96	0.8089	no
		Ca ^{2+/} calmodulin-					
		dependent protein kinase,					
443525	Q869W6	EF-Hand	713.0	72.0	-3.31	0.0230	yes
		Probable V-type proton					
355949	P91303	ATPase subunit G	556.2	765.2	0.46	0.7748	no
		V-type proton ATPase					
433060	Q9MB46	subunit E	411.4	525.9	0.35	0.8586	no
		V-type proton ATPase					
435128	P31408	subunit B, brain isoform	390.7	976.2	1.32	0.2916	no
44.20.40	771611	V-type proton ATPase	2.50.5	-2 0 4	4.04		
413949	P54641	subunit d	359.5	739.4	1.04	0.4089	no
420520	D54645	V-type proton ATPase	222.4	505.5	1.00	0.2052	
439538	P54647	catalytic subunit A	323.4	785.5	1.28	0.3852	no
352114	P25870	Clathrin heavy chain	320.5	443.1	0.47	0.7282	no
49942	Q38798	Calnexin homolog 2	316.2	21.1	-3.91	0.0000	yes
446255	P15253	Calreticulin	310.3	41.7	-2.9	0.0103	yes
		V-type proton ATPase		4.50.0			
432823	Q7T385	subunit C 1-A	302.8	460.8	0.61	0.7537	no
260202	D01202	Probable V-type proton	200.2	201.5	0.25	0.0055	
369392	P91303	ATPase subunit G	299.3	381.5	0.35	0.8057	no
466000	00110146	Putative transporter	275.6	2.0	7.07	0.0000	
466232	Q9HGM6	C543.05c	275.6	2.0	-7.07	0.0000	yes
265420	025000	Calcium-dependent	257.5	21.5	2.02	0.0001	
365420	Q3E9C0	protein kinase 34	257.5	31.5	-3.03	0.0091	yes
422215	001474	GTP-binding protein	255.2	102.5	1.2	0.2021	
432215	Q01474	SAR1B	255.2	103.5	-1.3	0.3831	no
127701	DC0001	Synaptosomal-associated	224.4	22.7	204	0.0500	
436781	P60881	protein 25	234.4	32.7	-2.84	0.0509	no

Appendix B – Supplementary results for Chapter 4 - The proteome of *Emiliania huxleyi* at high and low rates of calcification of the G1-phase

Appendix B Table - 1: Proteins identified in in *E. huxleyi* cells showing high (HC) and low rates of calcification (LC) with significant expression direction ratios LC: HC, and consensus sequences in phylogenetic homology analysis.

Onsensils	HAJGI222	HAJGI283	HAJGI261	HAJGI043		HAJGI382	HAJGI365	HAJGI055	HAJGI246	HAJGI177	A	A	HAJGI275	HAJGI036	HAJGI264	HAJGI029	HAJGI260	HAJGI085	HAJGI021	A	HAJGI180	HAJGI405	HAJGI167	HAJGI191	HAJGI299	HAJGI071
LC:HC_ MaxC		0.729 H.	0.763 H.	0.911 H.		0.845 H.	1.053 H.	1.131 H.	0.787 H.	1.124 H.	0.998 NA	0.772 NA	0.884 H.	0.924 H.	0.926 H.	0.937 H.	0.843 H.	0.853 H.	1.168 H.	0.805 NA	1.017 H.	0.804 H.	0.883 H.	0.955 H.	0.974 H.	0.877 H.
LC:HC_	0.433	0.447	0.487	0.416		0.565	0.387	0.470	0.544	0.430	0.479	0.653	0.522	0.568	0.489	0.538	0.540	0.589	0.295	0.594	0.577	0.630	0.604	0.498	0.596	0.573
JH:J1	0.594	0.600	0.632	0.641		0.654	0.664	0.672	0.693	0.694	669.0	0.700	0.703	0.704	0.704	0.705	0.710	0.710	0.715	0.718	0.723	0.726	0.727	0.727	0.728	0.728
Expression direction significant	HC	HC	HC	НС	ЭН				HC		НС	НС	НС	ЭН	НС	HC	НС	НС		НС		ЭН	НС	HC	ЭН	НС
Description	Chloroplast light harvesting protein isoform 12	Enolase	Chloroplast light harvesting protein isoform 12	Putative uncharacterized protein	Fucoxanthin-chlorophyll a-c binding protein,	chloroplastic	Clathrin heavy chain		Chloroplast light harvesting protein isoform 6	Predicted protein	NA	NA	Glucokinase	ADP-ribosylation factor 1	Chloroplast light harvesting protein isoform 12	Chloroplast light harvesting protein isoform 3	Predicted protein	Putative uncharacterized protein	Dihydrolipoamide acetyltransferase	NA	Dual function alcohol dehydrogenase	Putative uncharacterized protein	Chloroplast phosphoribulokinase		Chloroplast light harvesting protein isoform 7	Predicted protein
UniProt	Q2IA28	Q5UU97	Q2IA28	F0XZQ3		Q39709	C1E1W7		Q21A73	A4S0B8			D8LB65	P51821	Q2IA28	Q2IA76	C1DZ32	F0YM05	A8J7F6		0/IN8Q	F0YFF1	Q5ENS1		Q21A72	B8CFP9
Appendix B Table 1 DB ID	JGI65061	JGI281147	JGI206028	JGI66310		JGI269056	JGI407983	JGI411074	JGI62246	JGI313236	JGI109974	JG1220283	JGI103600	JGI218041	JGI67584	JGI45869	JGI104438	JGI281510	JGI62634	JGI96082	JGI61814	JGI90250	JGI275754	JGI237243	JGI67108	JGI283485

	Consensus	HAJGI125	HAJGI145	HAJGI381	HAJGI186	HAJGI025	HAJGI280	HAJGI372	HAJGI259	HAJGI035	HAJGI209	NA	HAJGI008	HAJGI136	HAJGI140	NA		HAJGI335		HAJGI027	HAJGI366		HAJGI079	HAJGI091	HAJGI397	HAJGI121	HAJGI369	HAJGI237
	0.821		1.255 I	0.870 I	0.881	I 866.0	0.861 I	1 576.0	0.870	0.945	0.953	1.012	0.845 I	0.792	1 966 [°] 0	0.961		0.950 I		0.850 I	1.006		0.855		0.880	0.887	1.745 I	I 926.0
LC:HC_	0.679	0.589	0.378	969.0	0.613	0.461	0.664	0.587	0.673	0.612	0.614	0.619	0.688	092.0	0.536	0.617		0.661		0.706	0.613		0.684	0.629	0.750	0.712	0.364	0.717
71.7	0.732	0.744	0.748	0.751	0.756	0.757	0.758	0.762	0.765	992.0	0.767	0.770	0.774	0.774	0.777	0.780		0.781		0.782	0.785		0.786	0.795	0.799	0.800	0.802	0.810
Expression direction	Significant	НС		HC	НС	HC	НС	НС	HC	HC	HC		HC	HC	HC	HC	НС		HC				HC		HC	HC		НС
	Description NA	Putative uncharacterized protein	Glutathione peroxidase		Putative uncharacterized protein	Chloroplast light harvesting protein isoform 4	Heat shock protein 70 / HSP70 (ISS)	Putative uncharacterized protein	Putative uncharacterized protein	Chloroplast light harvesting protein isoform 3	Chloroplast light harvesting protein isoform 3	NA	Chloroplast light harvesting protein isoform 3	Adenosylhomocysteinase	Putative uncharacterized protein	NA	Cytosolic glyceraldehyde 3-phosphate	dehydrogenase	Chloroplast glyceraldehyde-3-phosphate	dehydrogenase	Phosphoglycerate kinase	Plastid C1 class II fructose bisphosphate	aldolase	Argininosuccinate synthase	Putative plastid transketolase	Putative uncharacterized protein	Chaperonin 10	
1,T.	UniFiot	F0Y6E3	C1N6Z5		F0Y2W6	Q21A75	Q01AH9	G4ZP25	G5A9A0	Q2IA76	Q21A76		Q2IA76	D0NEK2	A811X3			Q84LQ0		Q2IA55	Q5ENR6		Q5QD45	A8J506	A6YAZ8	G5A9A0	A8IDN1	
Appendix B Table 1	JG188932	JGI99131	JGI195196	JGI406321	JGI120262	JGI120829	JGI122970 Q01AH9	JGI216402	JGI273928 G5A9A0	JGI103637	JGI102701	JGI68029	JGI407305	JGI271331	JGI106019	JGI112702		JGI358141		JGI230835 Q2IA55	JGI63770		JGI102901	JGI111303	JGI88203	JGI212512	JGI209610	JGI199538

Consensus	HAJGI086	HAJGI048	HAJGI098	HAJGI380	HAJGI162	HAJGI174	HAJGI387	HAJGI402	HAJGI266	HAJGI138	HAJGI042	HAJGI037		HAJGI081	HAJGI040	HAJGI197	HAJGI267	HAJGI007	HAJGI061	HAJGI054	HAJGI205	HAJGI097	HAJGI013	HAJGI019	HAJGI026	HAJGI349	HAJGI006	HAJGI242
LC:HC_ Max	1.164	0.887	0.994	0.934	0.935	1.209	0.995	0.938	0.919	0.965	1.008	0.994		0.971	1.025	1.018	0.931	0.931	1.145	1.314	0.940	0.961	1.178	0.981	966.0	0.905	1.079	0.948
LC:HC_ Min	0.566	0.751	0.670	0.724	0.723	0.598	0.725	269.0	0.724	0.739	0.722	0.703		0.681	0.513	0.677	0.726	0.726	0.617	0.562	0.773	0.695	0.604	0.671	969.0	0.751	0.665	0.787
LC:HC	0.813	0.813	0.817	0.818	0.819	0.819	0.823	0.824	0.828	0.831	0.832	0.833		0.833	0.833	0.834	0.836	0.836	0.837	0.837	0.839	0.839	0.839	0.843	0.843	0.845	0.846	0.846
Expression direction significant		НС	НС	ЭН	ЭН		НС	ЭН	НС	ЭН		ЭН		HC			НС	НС			HC	HC		НС	HC	ЭН		НС
Description	S-adenosylmethionine synthase	Vacuolar H+ ATPase V0 sector, subunit D	3 Proteasome subunit alpha type	Chloroplast light harvesting protein isoform 5	Heat shock protei		Triosephosphate isomerase		Predicted protein		D-3-phosphoglycerate dehydrogenase	Predicted protein	V-type proton ATPase catalytic subunit A, V-	ATPase subunit A	Peptidyl-prolyl cis-trans isomerase	Chloroplast light harvesting protein isoform 6		Molecular chaperone, putative	S-adenosylmethionine synthase		Putative uncharacterized protein	Nucleolar protein NOP5	S-adenosylmethionine synthase				Elongation factor-2	Chloroplast light harvesting protein isoform 12
UniProt	B8BY55	D8TKK9	Q0MYX3	Q2IA74	B9PNV8		Q15GC7	A4RW83	A8J387		D0NEX4	A4S2C6		P48414	F0YLJ3	Q2IA73	C1EIH7	C5KNV3	B8BY55	B5YMK1	G5A9A0	D0NBZ5	B8BY55	G0QQ50			Q84KQ0	Q2IA28
Appendix B Table 1 DB ID	JGI62235	JGI43077	JG1120592	JGI61340	JGI87079	JGI103121	JGI270399	JGI88977	JGI366337	JGI235106	JGI97031	JGI272624		JGI222386	JGI62038	JGI70830	JGI96943	JGI198360	JGI267646	JGI227391	JGI265597	JGI206438	1GI97087	JGI102800	JGI254140	JG1100088	JGI308724	JGI218081

	Consensus	NA	HAJGI350	HAJGI291	HAJGI338		HAJGI030	HAJGI220	HAJGI328	HAJGI377	HAJGI293	NA	HAJGI345	HAJGI166	HAJGI243	HAJGI129	HAJGI157	HAJGI355	NA	HAJGI386	HAJGI016	HAJGI347		HAJGI154	HAJGI038	HAJGI192	HAJGI378	HAJGI308	HAJGI403
LC:HC_	Max	0.949	1.041	0.969	1.053		0.910	0.994	1.004	0.951	1.000	1.082	1.037	1.021	1.006	1.031	0.969	1.015	0.970	0.979	1.215	1.015		1.353	0.962	1.167	1.015	1.014	1.152
LC:HC_	Min	602.0	0.732	0.749	602.0		908.0	225.0	0.714	0.754	669.0	6.673	299.0	889.0	0.633	0.703	0.713	0.682	0.770	0.730	0.611	0.796		0.596	0.774	0.735	0.750	0.770	0.712
	LC:HC	0.847	0.847	0.848	0.848		0.851	0.854	0.854	0.855	0.855	0.855	0.857	0.857	098.0	0.861	0.865	0.867	0.871	0.871	0.871	0.871		0.872	0.874	0.874	0.875	0.876	0.877
Expression direction	significant	HC		HC		HC		HC		HC							HC		HC	HC					HC				
	Description	NA	Violaxanthin deepoxidase	Putative uncharacterized protein	Chloroplast light harvesting protein isoform 1	LII.	40	Putative uncharacterized protein	Chloroplast light harvesting protein isoform 12	ATP synthase subunit alpha	Putative uncharacterized protein	NA	40S ribosomal protein S6	Predicted protein	3-isopropylmalate dehydrogenase	Predicted protein	Putative uncharacterized protein	Putative uncharacterized protein	NA	Glutathione reductase	Putative uncharacterized protein	Pyruvate dehydrogenase E1 beta subunit	Component of cytosolic 80S ribosome & 60S	large subunit	Putative uncharacterized protein	Putative uncharacterized protein		Putative uncharacterized protein	JGI273597 C5L4E6 Nad dependent epimerase/dehydratase, putative
	UniProt		B7FUR6	F0YD68	Q2IA78		F0XWG3	G4YJL5	Q2IA28	C1EHC0	F0YJF2		86XXLÒ	B8BVQ7	961N0Q	CIEIMS	G4Z7L2	G4ZAY2		D8LHC1	G4YS12	A8JBC6		D8TS49	F0YAX4	D7FJQ9		D8TRA0	C5L4E6
Appendix B Table 1	DB ID	JGI350570	JGI110945	JGI202968	JGI276712		JGI252355	JGI209460	JGI101140 Q2IA28	JGI402650	JGI231101	JGI99331	JGI207464	JGI65080	JGI234774	JGI86588	JGI360985	JGI68128	JGI360891	JGI99724	JGI108944	JGI87166		JGI243741	JGI272626	JGI212481	JGI105039	JGI267363	JGI273597

Consensus	HAJGI103	HAJGI147	HAJGI106	HAJGI093	HAJGI200	HAJGI305	HAJGI073	HAJGI300	HAJGI375	HAJGI092		HAJGI255	HAJG1225	HAJGI241	HAJGI202	HAJGI179	HAJGI315	HAJGI130	HAJGI184	HAJGI370	HAJGI146	HAJGI218	HAJGI367	HAJGI400	HAJGI199	NA	HAJGI323	HAJGI277
LC:HC_ Max	0.987	0.973	1.669	1.028	0.978	1.080	896.0	1.117	1.004	0.964		1.006	1.111	1.114	1.047	1.055	1.072	1.330	1.005	1.116	1.014	1.045	0.964	1.018	1.094	1.054	1.054	1.186
LC:HC_ Min	0.752	0.768	0.618	9/1/0	992.0	0.753	0.765	069.0	0.762	0.811		0.822	0.740	0.763	0.772	0.799	0.732	0.652	0.763	0.706	0.778	0.721	0.870	0.824	0.788	0.781	0.781	0.711
LC:HC	0.877	0.877	0.880	0.881	0.882	0.883	0.883	0.885	988.0	0.887		0.887	0.893	0.894	0.894	0.895	0.895	0.897	868.0	0.900	0.901	0.903	906.0	906.0	0.910	0.910	0.910	0.910
Expression direction significant	HC	HC			НС		HC			HC													HC					
Description	Putative uncharacterized protein	Phosphoglycerate kinase	Predicted protein	Putative uncharacterized protein	Thioredoxin	Chloroplast light harvesting protein isoform 13	60S ribosomal protein L3	Putative uncharacterized protein	Ribosomal protein S14	Heat shock protein 90	Chloroplast photosystem II 12 kDa extrinsic	protein	ATP-dependent Clp protease proteolytic subunit	Glycine-rich protein 2, putative	Vacuolar ATP synthase subunit E	Predicted protein	Predicted protein	Predicted protein	Ribosomal protein	Putative uncharacterized protein	40S ribosomal protein S18	Putative uncharacterized protein	ATP synthase gamma chain	Pyruvate kinase		NA	Putative uncharacterized protein	Delta-aminolevulinic acid dehydratase
UniProt	D8U3I9	QSENRS	B8BU34	D8TLB0	B8C830	Q2IA66	(E1ZDS1	89748A	Q5DK81		Q5ENP2	Q2I7V4	B6KPP5	D8U1L3	A4RTV8	C1FG28	B7FVA8	Q2IA22	E1Z343	E1Z823	E1Z8Z5	Q2IA11	D8LP24	B8BPW0		B4ZG44	Q9AR87
Appendix B Table 1 DB ID	JG1270342	JGI89571	JGI193927	1GI89087	JGI266768	JGI89311	JGI276141	JGI365947	JGI108665	JGI105420		JGI119469	JGI68146	JGI95447	JGI276075	JGI102657	JGI96608	JGI101101	JGI72905	JGI258285	JGI218536	JGI207960	JGI197716	JGI90254	JGI87271	JGI222636	JGI273308	JGI61563

	Consensus	HAJGI165	HAJGI056	HAJGI155	HAJGI134	HAJGI272	NA	HAJGI279	HAJGI083	HAJGI122	HAJGI392	HAJGI256	HAJGI139		HAJGI348	HAJGI131	HAJGI110	HAJGI117	HAJGI339	HAJGI383		HAJGI238	HAJGI404	HAJGI095	HAJGI229	HAJGI353	HAJGI033	HAJGI014	NA
LC:HC_	Max	1.047	1.029	1.149	1.068	1.280	1.075	1.001	1.399	1.065	1.437	1.080	1.171		1.144	1.010	1.122	1.073	1.126	1.261		1.311	1.032	1.049	1.138	1.067	1.142	1.189	1.015
LC:HC_	Min	0.792	0.812	0.804	162.0	0.735	0.822	0.835	0.592	9/1/0	0.664	0.791	908.0		0.704	0.864	0.759	0.781	0.756	0.751		0.593	962.0	0.758	0.812	0.822	0.741	0.720	0.835
	LC:HC	0.911	0.911	0.911	0.914	0.914	0.914	0.915	0.915	0.916	0.916	0.916	0.917		0.917	0.918	0.918	0.919	0.919	0.920		0.922	0.924	0.927	0.928	0.930	0.930	0.932	0.933
Expression direction	significant																												
	Description	GTP-binding nuclear protein Ran	Adenosylhomocysteinase	Putative uncharacterized protein	Predicted protein	Putative uncharacterized protein	NA	Putative uncharacterized protein		Plastid/chloroplast ribosomal protein L4	Putative uncharacterized protein	Ribosomal protein L18	40S ribosomal protein S12	Component of cytosolic 80S ribosome and 40S	small subunit	Acetyl-coa carboxylase	Alpha-actinin-1, putative	Predicted protein	Putative uncharacterized protein		Component of cytosolic 80S ribosome and 40S		Heat shock protein 70kDa	Luminal binding heat shock protein 70	Sulfolipid biosynthesis protein	Ribosomal protein L18	Predicted protein	Prohibitin	NA
	UniProt	F0Y053	G4ZRS7	F0YC48	C1N337	E1ZAW9		E1Z8N4		D8UEM8	G4YF15	A4S2V6	A8J9T0		D8TJL0	C1ML75	9HTN0Q	B8C070	D7FUX7			D8UHT7	C1N8B3	C1MKE9	B8C7K5	A4S2V6	C1N183	D8TNL8	
Appendix B Table 1	DB ID	JGI62864	JGI363444 G4ZRS7	JGI217140	JGI235076	JGI268670	JGI361737	JGI267344	JGI103652	JGI112185	JGI270085	JGI86826	JGI240824		JGI67049	JGI271767	JGI408848	JGI104032	JGI202270	JGI218259		JGI57264	JGI272213	JGI51375	JGI107785	JGI201657	JGI269606 C1N183	JGI201477	JGI64811

	Consensus 9 HAJG1075		1 HAJGI274	1 HAJGI105	8 HAJGI058	2 HAJGI250	0 HAJGI178	2 HAJGI257	1 HAJGI262	6 HAJGI133		4 HAJGI298	4 HAJGI087		7 HAJGI160	9 NA	6 HAJGI253	8 HAJGI089	0 HAJGI150	5 HAJGI286	6 HAJGI215	1 NA		0 HAJGI213	0 HAJGI047	1 HAJGI356	9 HAJGI017	7 HAJGI211
LC:HC	1.189	1.014	1.111	1.111	0.998	1.062	1.040	1.112	1.101	1.776	1.312	1.224	1.024	1.071	1.007	1.009	1.136	2.008	1.070	1.385	1.196	1.131		1.230	1.170	1.071	0.999	1.217
LC:HC_	0.727	0.850	0.710	0.795	0.835	0.765	0.853	0.816	0.789	0.607	0.683	0.765	0.880	0.881	0.848	0.846	0.812	0.615	9/8.0	0.567	0.845	0.819		0.754	0.804	0.772	0.929	0.726
<u> </u>	0.936	0.936	0.936	0.937	0.938	0.939	0.941	0.941	0.942	0.943	0.944	0.944	0.947	0.948	0.948	0.949	0.950	0.951	0.953	0.954	0.954	0.954		0.954	0.955	0.955	0.957	0.957
Expression direction	Significant				НС																						НС	
	Cystathionine gamma-lyase	Malate dehydrogen	D0MZZ6 Callose synthase, putative	Predicted protein	ATP synthase subunit beta	Ribosomal protein L13, putative		Putative leucine rich repeat protein	Predicted protein	Predicted protein	Predicted protein	Oxygen evolving enhancer 1	Putative uncharacterized protein	NA	ATP synthase subunit beta	NA	Chloroplast light harvesting protein isoform 12	Predicted protein	Putative uncharacterized protein	Putative uncharacterized protein	Predicted protein	NA	26S proteasome non-ATPase regulatory subunit	3	Putative uncharacterized protein	Adenylate kinase, putative	B6KVV6 Proliferation-associated protein 2G4, putative	Chloroplast light harvesting protein isoform 1
T. i.D. o.	Unit-rot D8LJS6	F2WQ20	D0MZZ6	C1E1B9	C1FE16	A7ATH4	A4RQS6	D8LHD4	A8IJG5	C1E5V7	B7FTU0	Q8L878	E1ZQ58		C1FE16		Q2IA28	B8LEJ5	F0XX48	E1ZHB0	B7S3L1			D0NVC3	F0YH74	D0P2Z9	B6KVV6	Q2IA78
Appendix B Table 1	5434	JGI61178	JGI101346	JGI96515	JGI412390	JGI63123	JGI267180	JGI271119	JGI113436	JGI105359	JGI105526	JGI265795	JGI41410	JGI268510	JGI70481	JGI109822	JGI64976	JGI96453	JGI270629	JGI274190	JGI275203	JGI96420		JGI99777	JGI76562	JGI284516	JGI97545	JGI268371

LC:HC_	Max Consensus	1.098 HAJGI169	1.078 HAJGI195	1.462 NA	1.175 HAJGI068	1.493 HAJGI090	1.112 HAJG1135	1.842 HAJGI234	1.149 HAJGI080	1.142 HAJGI112	1.098 HAJGI368	1.214 HAJGI010	1.041 HAJGI306	1.048 HAJGI053	1.340 HAJGI344	1.119 HAJGI077	1.063 HAJGI376	1.166 HAJGI049	1.361 HAJGI327	1.245 HAJGI204	1.143 HAJGI302	1.555 HAJGI052	1.144 NA	1.117 HAJGI332	1.230 HAJGI318	1.133 NA	1.218 HAJGI317	1.133 HAJGI269
LC:HC_		0.821	0.805	0.585	0.765	0.728	0.826	0.623	0.760	0.762	0.824	0.723	0.905	0.867	0.685	0.786	0.901	0.847	0.708	0.712	0.789	0.509	0.847	0.859	0.829	0.850	0.762	608.0
	LC:HC	0.958	0.959	0.959	096.0	096.0	096.0	0.962	0.962	0.962	0.963	0.963	0.964	0.965	0.965	996.0	896.0	696.0	0.970	0.971	0.971	0.972	0.973	0.973	0.973	0.974	0.975	926.0
Expression direction	significant																											
	Description	Chaperonin 60, mitochondrial	8 Predicted protein	NA	Ubiquitin conjugating enzyme, putative			3 Nucleic acid binding protein	60S ribosomal prot	A6MVX0 ELongation factor Ts, chloroplastic	EF-1 alpha-like protein	60S ribosomal protein L13	Elongation factor tu	Cell division cycle protein 48	A7YXU6 RNA recognition motif protein	Stress-induced protein stil-like protein (ISS)	Enoyl-reductase [NADH]	LRR-GTPase of the ROCO family	1 Type 1 actin		Predicted protein		NA	Predicted protein	Putative uncharacterized protein	NA	Predicted protein	Predicted protein
	UniProt	A4S3B4	C1MZG8		Q8IDD9		B4ZFX6	A1YQX3	G5AFK3	A6MVX	9IHUSQ	G5AFK3	C1EEB4	D2D4K3	A7YXU6	Q017S6	B8BXA1	D8LKS5	Q9SWQ1		C1EAX2			B8BZI8	F0Y0B9		B7FPZ8	B8C1N2
Appendix B Table 1	DB ID	JGI285186	JGI66519	JGI97618	JG1282672	JGI201465	JG1212424	JGI231985	JGI57286	JGI281076	JGI98483	JGI203980	JG1107520	JGI69320	JG1271735	JGI66249	JGI267440	JGI88834	JG1100207	JGI207878	JG1271242	JGI227764	JGI203470	JGI225524	JG1269305	JG1272248	JGI269306	JGI217316

LC:HC			1.164 HAJGI022	1.337 HAJGI390	1.200 HAJGI325	1.042 HAJGI394		1.147 HAJGI295	1.890 HAJGI393	1.142 HAJGI183	1.631 HAJGI132	1.174 HAJGI070	1.100 HAJGI359	1.199 HAJGI294	1.116 HAJGI127	1.289 HAJGI287	1.215 HAJGI148	HAJGI159	1.277 HAJGI292	HAJGI009	1.252 HAJGI109	1.233 HAJGI248	1.319 HAJGI173	HAJGI313	1.167 HAJGI371	1.332 NA	1.134 HAJGI064
LC:HC_ LC	+		0.808	0.732	0.791	0.923		0.894	0.598	0.886	0.647	0.821	0.894	0.838	0.836	0.823	0.833	0.847	0.817	0.817	0.809	0.847	0.684	0.880	0.864	0.681	0.853
OH:O1	0.978	0.978	086.0	086.0	0.981	0.981		0.982	0.982	0.983	0.983	0.984	986.0	0.988	0.991	0.991	0.992	0.992	0.993	0.993	666.0	1.000	1.001	1.001	1.004	1.006	1.007
Expression direction	Significant																										
Description	Description	Putative uncharacterized protein	Predicted protein			Glycolytic glyceraldehyde-3-phosphate dehydrogenase	Magnesium chelatase subunit H, putative	chloroplast	Protein disulfide-isomerase-like protein EhSep2	Proteasome subunit alpha type	Uroporphyrinogen decarboxylase	Putative uncharacterized protein		Putative uncharacterized protein	Glutamine synthtease III	Putative uncharacterized protein			Polyubiquitin, putative	Putative uncharacterized protein			Putative uncharacterized protein	Predicted protein	Putative mitochondrial ADP/ATP translocase	NA	Putative uncharacterized protein
ThiDrot	OIIII 101	G4YEF7	B7G9A2			004839		D7FW04	Q50KB1	D8UA34	F0YH80	F0Y5H5		G5AFG3	E7D6U3	F0Y3Y1			A7AS38	G4YSQ9			F0VF26	C1EI97	E6Y2N8		C1E4H7
Appendix B Table 1	JG1100546	JGI274007	JGI200165	JGI201257	JGI205571	JGI358143		JGI201317	JGI285672	JGI55967	JGI271180	JGI268401	JGI250666	JGI106545	JGI405060	JGI261410	JGI230942	JGI272233	JGI210921	JGI215323	JGI408844	JGI198101	JGI267345	1GI68569	JGI267273	JGI265835	JGI116551

	Max Consensus	1.282 HAJGI099	1.125 HAJGI231	1.120 HAJGI078	1.359 HAJGI107	1.073 HAJGI224	1.456 HAJGI050	1.143 HAJGI290	1.166 NA	1.199 HAJGI163	1.475 HAJGI309	1.353 HAJGI374	.214 HAJGI020	.748 HAJGI258	1.136 HAJGI060	1.346 HAJGI343	1.147 HAJGI245	1.147 HAJGI176	1.497 HAJGI263	.475 HAJGI326	1.160 HAJGI114	1.274 HAJGI100	.383 HAJGI126	.208 HAJGI206	1.368 HAJGI142	.406 HAJGI230	1.294 HAJGI310	.395 HAJG1171	1.534 HAJGI065
	M	1.2	1.1	1.1	1.3	1.0	1.4	1.1	1.1	1.1	1.4	1.3	1.2	1.7	1.1	1.3	1.1	1.1	1.4	1.4	1.1	1.2	1.3	1.2	1.3	1.4	1.2	1.3	1.5
LC:HC_	Min	0.861	0.914	0.860	0.833	0.943	0.771	0.913	0.945	0.920	0.752	0.849	0.920	0.777	0.970	0.871	0.981	0.981	0.747	0.766	0.978	906.0	0.912	0.951	0.804	0.833	0.894	0.70	0.751
	LC:HC	1.007	1.016	1.018	1.023	1.024	1.024	1.024	1.025	1.032	1.040	1.047	1.047	1.051	1.058	1.058	1.060	1.060	1.063	1.064	1.066	1.066	1.068	1.069	1.071	1.075	1.077	1.078	1.080
	significant																												
	Description	Cold-shock DNA binding protein	14-3-3-like proteir	Putative uncharacterized protein		Putative uncharacterized protein		60S acidic ribosomal protein	NA		Chloroplast O-acetyl-serine lyase	Putative uncharacterized protein	SNF2 super family	60S ACIDIC ribosomal protein P2	14-3-3-like protein-related protein	Predicted protein	Peptidyl-prolyl cis-trans isomerase	Peptidyl-prolyl cis-trans isomerase	Predicted protein	Chloroplast O-acetyl-serine lyase	Predicted protein	EF-1 alpha-like protein	Dihydrolipoyl dehydrogenase		Putative uncharacterized protein		HSP90 co-chaperone, putative	Predicted protein	
	UniProt	C1N2P4	Q1WLZ5	E1ZCS2		D8TLK9		D0NVM9			Q2IA80	D8LGN4	C1E7E6	B8BTG2	Q1WLZ5	C1N4F5	F0Y2L8	F0Y4J8	B7FSL9	Q2IA80	A8J3W3	OSUHI16	D8LBF4		D7FYP5		C5KTL6	B5Y4R6	
Appendix B Table 1	DB ID	JGI277072	JGI268104	JGI118455	JGI100746	JGI216106	JGI116581	JGI72237	JGI204747	JGI282213	JGI279225	JGI58448	JGI282667	JGI275346	JGI278306	JGI108180	JGI75300	JGI111254	JGI211611	JGI357374	JGI109201	JGI78778	JGI282626	JGI269934	JGI88448	JGI270992	JGI402323	JGI68819	JGI95574

Consensus	HAJGI319	HAJGI187	HAJGI240	HAJGI357	HAJGI044	HAJGI084	HAJGI364	HAJGI190	HAJGI223	HAJGI001	NA	HAJGI281	HAJGI398	HAJGI265	HAJGI244	HAJGI252	HAJGI254	HAJG1104	HAJGI289	HAJGI354	HAJGI235	HAJGI059		HAJGI268	HAJGI032	HAJGI226	HAJGI214
LC:HC_ Max	1.205	1.256	1.362	1.546	1.613	1.183	1.560	1.318	1.404	1.379	1.656	1.894	1.383	1.422	1.776	1.422	1.370	1.209	1.267	1.305	1.312	2.278		1.259	1.957	1.439	1.866
LC:HC_	1.007	0.888	0.872	0.781	0.835	0.977	0.847	0.880	0.857	806.0	0.711	0.604	0.864	0.885	0.847	0.891	196.0	1.049	1.027	0.995	1.002	0.640		1.022	0.770	0.911	898.0
LC:HC	1.081	1.083	1.086	1.087	1.088	1.089	1.091	1.093	1.095	1.098	1.099	1.113	1.116	1.119	1.122	1.123	1.123	1.130	1.133	1.135	1.137	1.140		1.141	1.147	1.147	1.148
Expression direction significant	TC																	ТС	TC		ГС			LC			
of Description		M9 40S ribosomal protein S28	G4 Putative uncharacterized protein	B1 Protein disulfide-isomerase-like protein EhSep2	86 Chloroplast 50S ribosomal protein L12	L5 Putative uncharacterized protein	(H1 Ubiquitin, putative			Q0 Predicted protein	NA	A8 Putative uncharacterized protein	747 Predicted protein	1 Histone H2A	F0 Putative uncharacterized protein	1 Histone H2A	A4 Plastid ribosomal protein S1	Elongation factor 2		N3 3-hydroxyacyl-CoA dehyrogenase, putative		Chloroplast 50S r	Putative chloroplast 4-hydroxy-3-methylbut-2-	(96 en-1-yl diphosphate synthase		I7 Predicted protein	C2 Predicted protein
UniProt	F0YE54	D7FRM9	D0P3G4	Q50KB1	Q2IA86	B8C6L5	D0NXH1			C1EBQ0		E1Z6A8	C1MK47	Q49JJ1	D7FSF0	Q49JJ1	D7FRA4	CIEOB	F0YST3	C5L3N3	D0NEH7	Q2IA85		B6DX96	B7FZI9	C1E0T7	CIEGC
Appendix B Table 1 DB ID	JGI266878	JGI65400	JGI109593	JGI108073	JGI86748	JGI71010	JGI72427	JGI195071	JGI122468	JGI278991	JGI214274	JGI267274	JGI97560	JGI210563	JGI284352	JGI257539	JGI69183	IGH05146 C1E0B7	JGI64083	JGI109561	JGI231324	JGI110032		JGI365196	JGI116827	JGI242836 C1E0T7	JGI274290 C1EGC2

	Consensus	HAJGI311	HAJGI212	HAJGI144	NA	HAJGI074	HAJGI296	NA	HAJGI115	HAJGI208	HAJGI185	HAJGI072	HAJGI346	HAJGI210	HAJGI137	HAJGI312	HAJGI401	HAJGI384	HAJGI342	HAJGI124	HAJGI232	HAJGI143	HAJGI284	NA	NA	HAJGI379	HAJGI111	HAJGI322	HAJGI082
LC:HC_	Max	1.357	1.321	1.368	1.372	1.372	1.264	1.706	1.789	1.280	1.441	1.712	1.645	1.379	1.634	1.862	1.403	1.730	2.028	2.433	2.024	1.389	1.475	1.486	1.466	1.524	1.502	1.585	1.477
LC:HC_	Min	0.861	0.974	1.017	1.007	1.007	1.082	0.935	0.754	1.100	1.034	0.769	906.0	0.941	0.867	0.805	1.002	0.848	0.815	0.637	0.845	1.030	0.987	0.940	0.940	1.094	1.063	696.0	1.156
	LC:HC	1.148	1.157	1.161	1.161	1.161	1.165	1.167	1.168	1.168	1.170	1.173	1.175	1.179	1.185	1.199	1.207	1.222	1.227	1.239	1.240	1.244	1.246	1.267	1.277	1.277	1.281	1.303	1.305
Expression direction	significant			LC	TC	TC	LC			LC	LC						TC					TC				TC	LC		ГС
	Description	Proteasome subunit beta type		Histone H2A	NA	Predicted protein	40S ribosomal protein S3	NA			Putative uncharacterized protein		RAN binding protein, RANBP1	Putative uncharacterized protein	ER lumen protein retaining receptor		Histone H2B	Putative uncharacterized protein			D0NWQ9 Protein kinase, putative	Predicted protein	Trifunctional enzyme subunit alpha	NA	NA	Histone H4	Histone H3, putative		C1MVY5 Histone H2A
	UniProt	E1ZDT5	Q1MWL3	Q49JJ2		C1FFE2	Q1WLZ2				F0YFV2		A8IZW5	F0Y620	D8TQ04		Q013K3	E1Z2Y1			D0NWQ9	B7G0V7	D7FPP1			A4RS62	A7AT84		C1MVY5
Appendix B Table 1	DB ID	JGI65898	JGI230687	JGI95565	JGI71008	JGI279740 C1FFE2	JGI267796	JGI271880	JGI215648	JGI256830	JGI271455	JGI65368	JGI105819	JGI270764	JGI108396	JGI220968	JGI96192	JGI205593	JGI198481	JGI94767	JGI114035	JGI76377	JGI364974	JGI372283	JGI112664	JGI201707	JGI255477	JGI369217	JGI72235

	Consensus	HAJGI193	HAJGI316	HAJGI321	HAJGI116	HAJGI156	HAJGI158	HAJGI307	HAJGI271	HAJGI360		NA	TAXDB73		TAXDB68		TAXDB14	TAXDB22	, , , , , , , , , , , , , , , , , , ,	TAXDB12	TAXDB75			NA	TAXDB85			NA		TAXDB57
LC:HC_	Max	2.304	2.433	2.315	2.132	1.821	1.916	1.764	6.250	6.250		0.660	0.799		1.290		0.801	0.950		1.189	0.818			0.864	0.836			0.892		1.034
LC:HC_	Min	0.902	0.808	0.980	996.0	1.285	1.147	1.383	9/1/0	0.588		0.544	0.528		0.416		0.581	0.443	0	0.488	0.647			0.622	0.672			0.659		0.633
	LC:HC	1.327	1.333	1.456	1.475	1.476	1.550	1.577	1.700	1.795		0.598	0.647		0.673		0.681	0.691	1	0.702	0.720			0.735	0.760			0.763		0.774
Expression direction	significant					TC	TC	ГС			НС		НС			НС		НС			HC	НС			HC	HC				
	Description	Putative uncharacterized protein	Putative uncharacterized protein	Predicted protein		Alpha-tubulin		Putative uncharacterized protein	ATP synthase gamma chain	Predicted protein	Ribulose bisphosphate carboxylase large chain	(RuBisCO large subunit) (EC 4.1.1.39)	Uncharacterized protein	Ribulose 1,5-bisphosphate	carboxylase/oxygenase small subunit	Photosystem II CP43 reaction center protein	(PSII 43 kDa protein) (Protein CP-43)	Uncharacterized protein	Phospholipid-transporting ATPase (EC 3.6.3.1)	(Fragment)	Phosphoglycerate kinase (EC 2.7.2.3)	ATP synthase subunit beta, chloroplastic (EC	3.6.3.14) (ATP synthase F1 sector subunit beta)	(F-ATPase subunit beta)	ATP synthase subunit beta (EC 3.6.3.14)	ATP synthase subunit beta, chloroplastic (EC	3.6.3.14) (ATP synthase F1 sector subunit beta)	(F-ATPase subunit beta)	ATP synthase subunit alpha, chloroplastic (EC	3.6.3.14) (ATP synthase F1 sector subunit alpha)
	UniProt	F0YAR4	B8BTN5	B7G4V0		Q5G920		F0Y9S1	A8JDV9	B8CAB4		Q4G3F4	A3FQF5		Q4G3F3		Q4G396	B8C4K2		A8IVJ3	Q5ENR8			Q40612	D8TRA2			Q4G3C8		C6KIJ6
Appendix B Table 1	DB ID	JGI272682	JGI270658	JGI203946	JGI349877	JGI277202	JGI374572	1GI87697	JGI44488	JGI233632		TAXDB13	TAXDB73		TAXDB68		TAXDB14	TAXDB22		TAXDB12	TAXDB75			TAXDB81	TAXDB85			TAXDB61		TAXDB57 C6KIJ6

	Consensus		TAXDB31			NA			NA		TAXDB01		TAXDB88	TAXDB56	TAXDB67	NA	NA		TAXDB66	TAXDB90	TAXDB48	NA	NA	TAXDB84	TAXDB25	NA	TAXDB44	TAXDB89	NA	TAXDB08
TC:HC	Max		1.034			0.949			0.909		1.011		0.878	1.239	1.024	0.987	1.103		1.014	0.998	0.927	1.122	1.008	1.034	1.073	1.034	1.085	1.031	1.012	1.099
LC:HC_	Min		0.633			0.687			0.720		0.629		0.758	0.497	0.657	0.662	0.654		0.737	0.741	0.789	0.656	0.783	0.773	992.0	0.746	0.782	0.795	0.819	808.0
	LC:HC		0.774			0.797			0.798		0.805		0.808	0.810	0.820	0.841	0.848		0.853	0.865	0.867	0.876	0.877	0.879	0.881	0.888	0.893	0.911	0.914	0.917
Expression direction	significant			НС			HC						HC			HC				HC	HC									
	Description	(F-ATPase subunit alpha)	ATP synthase subunit alpha	ATP synthase epsilon chain, chloroplastic (ATP	synthase F1 sector epsilon subunit) (F-ATPase	epsilon subunit)	ATP synthase subunit alpha, chloroplastic (EC	3.6.3.14) (ATP synthase F1 sector subunit alpha)	(F-ATPase subunit alpha)	Photosystem II D2 protein (PSII D2 protein) (EC	[1.10.3.9] Photosystem Q(A) protein)	Glyceraldehyde-3-phosphate dehydrogenase (EC	1.2.1.12)	S-adenosylmethionine synthase (EC 2.5.1.6)	Phosphoglycerate kinase (EC 2.7.2.3)	Heat shock protein, putative	ATP synthase subunit delta, chloroplastic	ATP synthase subunit beta (EC 3.6.3.14)	(Fragment)	ATP synthase subunit alpha	Histone H2A	DNA-directed RNA polymerase subunit alpha	Cytochrome c-550 (Cytochrome c550)	ATP synthase subunit beta (EC 3.6.3.14)	Photosystem II CP47 reaction center protein	ATP synthase subunit b, chloroplastic	Hsp90	ATP synthase subunit beta (EC 3.6.3.14)	ATP synthase subunit b', chloroplastic	HSP90 family member
	UniProt		О9ТАН9			Q4G3C9			Q4G397		C0JWI5		Q2IA54	F0YKF4	F0Y394	8Q3X5C	Q4G398		A1E8Z5	G0QRF6	Q49JJ1	Q4G347	Q4G368	2Z60£Ò	Q4G3C5	Q4G399	V6BE	F0YFK1	Q4G3A0	B8C637
dix B	DB ID		TAXDB31			TAXDB41			TAXDB05 Q4G397		TAXDB01		TAXDB88	TAXDB56	TAXDB67	TAXNA	TAXDB50		TAXDB66	TAXDB90	TAXDB48	TAXDB42	TAXDB78	TAXDB84	TAXDB25	TAXDB23	TAXDB44	TAXDB89		TAXDB08

Consensis	TAXDB11	TAXDB20	TAXDB77		NA	TAXDB64	TAXDB33	TAXDB76	NA	NA	TAXDB27	TAXDB80	TAXDB79	TAXDB87	TAXDB58	NA	NA	TAXDB82	NA	TAXDB39	TAXDB04	TAXDB59	TAXDB07	NA	NA	TAXDB55	TAXDB32	TAXDB43
LC:HC_ Max_	1.099	1.041	0.978		1.048	1.065	1.045	1.045	1.157	1.093	1.070	1.104	1.456	1.070	1.041	1.075	1.121	1.188	1.153	1.096	1.133	1.119	1.126	1.135	1.148	1.253	1.247	1.181
LC:HC_ Min_	0.808	0.867	9/8/0		0.829	0.843	0.881	0.881	0.803	0.812	0.841	698.0	0.575	0.840	0.918	0.849	0.818	0.761	0.833	0.917	0.862	0.880	928.0	0.901	0.890	0.850	0.894	0.885
JH.J.I	0.917	0.923	0.924		0.937	0.938	0.939	0.939	0.942	0.944	0.952	0.955	0.957	696.0	0.973	0.975	0.977	0.977	0.993	0.994	0.998	0.999	1.001	1.005	1.007	1.012	1.013	1.015
Expression direction significant	D D		HC																									
Description	Heat shock protein 90 (Fragment)	Heat shock protei		Glutamine synthetase 2 isozyme (Chloroplast	(GS2)	Heat shock protein 90 (Fragment)	Heat shock protei	0 Putative uncharacterized protein	Elongation factor Tu, chloroplastic		EF-1 alpha-like protein	FerredoxinNADP reductase	Putative biotin-(Acetyl-CoA carboxylase) ligase			60 kDa chaperonin, chloroplastic	Eukaryotic transla	Flagellar associated protein	' Cytochrome f	Putative uncharacterized protein	Predicted protein		Clp protease ATP binding subunit	Chaperone proteir	Chaperone protein dnaK (HSP70)	ATP synthase subunit gamma		40S ribosomal protein S14
UniProt	Q6TP37	Q5DK79	D7FXG1		P81643	Q5DK81	D0NGK0	G4YW40	Q4G342	F0XYY5	9IHNSÒ	Q5ENS8	Q5CTI3	Q4G374	Q4G388	Q4G3D5	A8HX38	A8IFL6	Q4G3D7	F0XX48	C1NAA3	B4ZFX6	Q4G3D0	Q4G366	P30722	Q5ENU6	C1E1B9	F0YRE3
Appendix B Table 1 DB ID	TAXDB11	TAXDB20	TAXDB77		TAXDB29	TAXDB64	TAXDB33	TAXDB76	TAXDB10 Q4G342	TAXNA	TAXDB27	TAXDB80	TAXDB79	TAXDB87	TAXDB58	TAXDB37	TAXNA	TAXDB82	TAXDB38	TAXDB39	TAXDB04	TAXDB59	TAXDB07	TAXDB74 Q4G366	TAXNA	TAXDB55	TAXDB32	TAXDB43

_	HC_	Max Consensus	1.189 TAXDB51	1.176 TAXDB06	29 NA	1.577 TAXDB83	1.570 NA	1.205 TAXDB52	1.252 TAXDB34	1.252 NA	1.215 TAXDB02	39 NA	1.757 TAXDB26	1.397 TAXDB65	1.631 TAXDB19	1.524 TAXDB71	1.580 TAXDB28	1.709 TAXDB53	3.448 TAXDB72
	LC:HC_ LC:HC	Min Ma	0.918	0.914 1.1	0.814 1.429	0.806 1.5	0.727 1.5	0.984 1.2	0.995 1.2	0.995 1.2	1.010 1.2	0.974 1.339	0.878 1.7	1.052 1.3	1.076 1.6	1.181 1.5	1.280 1.5	1.242 1.7	1.484 3.4
	TC	LC:HC N	1.017 0.8	1.037 0.	1.049 0.	1.086 0.	1.097 0.	1.101 0.	1.105 0.	1.105 0.	1.107	1.135 0.	1.147 0.	1.213	1.333	1.362 1.	1.373	1.504	2.388 1.
Expression	direction	significant L									СС			TC	СС	СС	ГС	TC	CC
		UniProt Description	CAXDB51 Q9SWP8 Type 4 actin	Actin	F0Y169 Putative uncharacterized protein	Q2IA80 Chloroplast O-acetyl-serine lyase	FAXDB46 Q4G354 30S ribosomal protein S8, chloroplastic	CAXDB52 B4ZFS2 Actin (Fragment)	FAXDB34 D8UMU9 Putative uncharacterized protein	A6YGC8 50S ribosomal protein L14, chloroplastic	CAXDB02 C1FFK0 Peptidyl-prolyl cis-trans isomerase (CAXDB54 Q4G343 30S ribosomal protein S7, chloroplastic	CAXDB26 Q4G379 CbbX (Putative rubisco expression protein)	FAXDB65 F0Y8U4 Putative uncharacterized protein (Fragment)	AXDB19 A4S1C9 Histone H2B	FAXDB71 D0MWJ7 Histone H2A	CAXDB28 C1E6T8 Histone H4	AXDB53 Q5G917 Alpha-tubulin (Fragment)	FAXDB72 F0XW25 Tubulin alpha-2 chain
		UniProt	84MS6D	A6XDC6	F0Y169		Q4G354	B4ZFS2	D8UMU9	A6YGC8	C1FFK0	Q4G343	Q4G379	F0Y8U4	A4S1C9	D0MWJ7	C1E6T8	Q5G917	F0XW25
Appendix B	Table 1	DB ID	TAXDB51	TAXDB06 A6XDC6 Actin	TAXNA	TAXDB83	TAXDB46	TAXDB52	TAXDB34	TAXNA	TAXDB02	TAXDB54	TAXDB26	TAXDB65	TAXDB19	TAXDB71	TAXDB28	TAXDB53	TAXDB72

Appendix B Table - 2: Gene ontology annotations of all proteins identified in *E. huxleyi* showing highly calcifying cells of the late G1-phase.

Appendix B Table -2	
Gene Ontology – biological process [GO IDs] (non significantly	Number of
higher expressed)	Peptides
Translation [GO:0006412]	29
Photosynthesis; light harvesting [GO:0009765]; protein-chromophore linkage [GO:0018298]	7
Protein folding [GO:0006457]	6
ATP hydrolysis coupled proton transport [GO:0015991]; ATP synthesis	0
coupled proton transport [GO:0015986]	6
Protein folding [GO:0006457]; response to stress [GO:0006950]	6
Glycolytic process [GO:0006096]	4
one-carbon metabolic process [GO:0006730]; S-adenosylmethionine	
biosynthetic process [GO:0006556]	4
ATP synthesis coupled proton transport [GO:0015986]	4
Protein refolding [GO:0042026]	3
Ubiquitin-dependent protein catabolic process [GO:0006511]	2
L-serine biosynthetic process [GO:0006564]	2
Pyridoxal phosphate biosynthetic process [GO:0042823]; vitamin B6	
biosynthetic process [GO:0042819]	2
tRNA aminoacylation for protein translation [GO:0006418]	2
Leucine biosynthetic process [GO:0009098]	2
Photosynthesis [GO:0015979]; photosystem II stabilization [GO:0042549]	2
Tetrapyrrole biosynthetic process [GO:0033014]	2
Regulation of transcription; DNA-templated [GO:0006355]	2
Cell redox homeostasis [GO:0045454]; protein folding [GO:0006457]	2
Fatty acid metabolic process [GO:0006631]	2
Photosynthetic electron transport in photosystem II [GO:0009772]; protein-	
chromophore linkage [GO:0018298]	2
ATP synthesis coupled proton transport [GO:0015986]; methylglyoxal	
catabolic process to D-lactate [GO:0019243]; photorespiration	
[GO:0009853]; proteasome core complex assembly [GO:0080129];	
response to misfolded protein [GO:0051788]; response to misfolded protein	
[GO:0051788]; ubiquitin-dependent protein catabolic process	1
[GO:0006511]; Cortical microtubule organization [GO:0043622]; gluconeogenesis	1
[GO:0006094]; glycolytic process [GO:0006096]; protein folding	
[GO:0006457]; response to cadmium ion [GO:0046686]; response to	
cadmium ion [GO:0046686]; response to salt stress [GO:009651];	1
Intracellular protein transport [GO:0006886]; vesicle-mediated transport	1
[GO:0016192]	1
Glycyl-tRNA aminoacylation [GO:0006426]	1
Response to oxidative stress [GO:0006979]	1
One-carbon metabolic process [GO:0006730]	1
Glucose metabolic process [GO:0006006]	1
Arginine biosynthetic process [GO:0006526]; nucleotide biosynthetic	1
process [GO:0009165]	1
ATP hydrolysis coupled proton transport [GO:0015991]	1
Phospholipid metabolic process [GO:0006644]	1
Branched-chain amino acid metabolic process [GO:0009081]	1
F	-

Appendix B Table -2 Gene Ontology – biological process [GO IDs] (non significantly higher expressed)	Number of Peptides
GMP biosynthetic process [GO:0006177]	1
Cytoskeleton organization [GO:0007010]	<u>-</u> 1
Acetyl-CoA biosynthetic process from pyruvate [GO:0006086]	1
Folic acid-containing compound biosynthetic process [GO:0009396]	1
rRNA processing [GO:0006364]	1
Tricarboxylic acid cycle [GO:0006099]	<u>-</u> 1
Formation of translation preinitiation complex [GO:0001731]; regulation of translational initiation [GO:0006446]	1
Porphyrin-containing compound biosynthetic process [GO:0006779]	1
Intracellular protein transport [GO:0006886]; nucleocytoplasmic transport [GO:0006913]	1
Proteolysis [GO:0006508]	1
Fatty acid biosynthetic process [GO:0006633]	1
carbohydrate metabolic process [GO:0005975]; malate metabolic process [GO:0006108]	1
(1->3)-beta-D-glucan biosynthetic process [GO:0006075]	1
Regulation of protein catabolic process [GO:0042176]	1
Protein ubiquitination [GO:0016567]; ubiquitin-dependent protein catabolic	
process [GO:0006511]	1
Cell division [GO:0051301]	1
Small GTPase mediated signal transduction [GO:0007264]	1
Pteridine-containing compound metabolic process [GO:0042558]	1
'de novo' pyrimidine nucleobase biosynthetic process [GO:0006207]	1
Chlorophyll biosynthetic process [GO:0015995]	1
Protoporphyrinogen IX biosynthetic process [GO:0006782]	1
Nitrogen compound metabolic process [GO:0006807]	1
Transmembrane transport [GO:0055085]	1
Ribosome biogenesis [GO:0042254]	1
Translational elongation [GO:0006414]	1
Protein catabolic process [GO:0030163]	1
Cell redox homeostasis [GO:0045454]	1
Actin filament depolymerization [GO:0030042]	1
Threonyl-tRNA aminoacylation [GO:0006435]	1
Proteolysis involved in cellular protein catabolic process [GO:0051603]	1
Intracellular transport [GO:0046907]	1
Protein retention in ER lumen [GO:0006621]; protein transport [GO:0015031]	1
Transcription; DNA-templated [GO:0006351]	1
Cytochrome c-heme linkage [GO:0018063]; photosynthesis, light reaction [GO:0019684]	1
Nitrogen fixation [GO:0009399]	1
Cellular protein modification process [GO:0006464]	1
Chlorophyll biosynthetic process [GO:0015995]; photosynthesis [GO:0015979]	1
Oxidation-reduction process [GO:0055114]; photosynthesis [GO:0015979]	1

Appendix B Table - 3: Gene ontology annotations of all proteins identified in *E. huxleyi* showing low calcification rates in the early G1-phase

Gene Ontology – cellular component [GO IDs] (non significantly higher expressed)	Number of Peptides
Ribosome [GO:0005840]	21
Cytoplasm [GO:0005737]	14
Chloroplast [GO:0009507]	11
Chloroplast [GO:0009507]; integral component of membrane [GO:0016021];	11
photosystem II [GO:0009523]	7
intracellular [GO:0005622]	5
Large ribosomal subunit [GO:0015934]	5
Proton-transporting ATP synthase complex, catalytic core F(1)	
[GO:0045261]	4
Chloroplast thylakoid membrane [GO:0009535]; proton-transporting ATP	<u> </u>
synthase complex, catalytic core F(1) [GO:0045261]	3
Cytosol [GO:0005829]	3
Chloroplast [GO:0009507]; ribosome [GO:0005840]	2
Chloroplast thylakoid membrane [GO:0009535]; integral component of	
nembrane [GO:0016021]; proton-transporting ATP synthase complex,	
oupling factor F(o) [GO:0045263]	2
Endoplasmic reticulum [GO:0005783]; endoplasmic reticulum lumen	
GO:0005788]	2
Nucleosome [GO:0000786]; nucleus [GO:0005634]	2
Nucleus [GO:0005634]	2
Small ribosomal subunit [GO:0015935]	2
,3-beta-D-glucan synthase complex [GO:0000148]	1
3-isopropylmalate dehydratase complex [GO:0009316]	1
Actin cytoskeleton [GO:0015629]	1
Cell [GO:0005623]	1
Cell wall [GO:0005618]; chloroplast [GO:0009507]; mitochondrial proton-	
ransporting ATP synthase complex [GO:0005753]; nucleolus [GO:0005730];	
proton-transporting ATP synthase complex, catalytic core F(1) [GO:0045261]	1
Chloroplast [GO:0009507]; integral component of membrane [GO:0016021];	
hotosystem II [GO:0009523]; thylakoid membrane [GO:0042651]	1
Chloroplast [GO:0009507]; large ribosomal subunit [GO:0015934]	1
Chloroplast [GO:0009507]; mitochondrion [GO:0005739]	1
Chloroplast [GO:0009507]; small ribosomal subunit [GO:0015935]	1
Chloroplast envelope [GO:0009941]; mitochondrion [GO:0005739]	1
Chloroplast stroma [GO:0009570]	1
Chloroplast thylakoid membrane [GO:0009535]; integral component of	
nembrane [GO:0016021]; photosystem II [GO:0009523]	1
Chloroplast thylakoid membrane [GO:0009535]; integral component of	
hylakoid membrane [GO:0031361]	1
Chloroplast thylakoid membrane [GO:0009535]; photosystem II	
GO:0009523]	1
Clathrin coat of coated pit [GO:0030132]; clathrin coat of trans-Golgi	
network vesicle [GO:0030130]	1
Cullin-RING ubiquitin ligase complex [GO:0031461]	1

Appendix B Table 3	
Gene Ontology – cellular component [GO IDs] (non significantly	Number of
higher expressed)	Peptides
Cytoplasm [GO:0005737]; nucleus [GO:0005634]; proteasome core complex	
[GO:0005839]	1
Cytoplasm [GO:0005737]; nucleus [GO:0005634]; proteasome core complex,	
alpha-subunit complex [GO:0019773]	1
Cytosol [GO:0005829]; prefoldin complex [GO:0016272]	1
Endoplasmic reticulum membrane [GO:0005789]; integral component of	
membrane [GO:0016021]	1
Eukaryotic 43S preinitiation complex [GO:0016282]; eukaryotic 48S	
preinitiation complex [GO:0033290]; eukaryotic translation initiation factor 3	
complex [GO:0005852]	1
Extrinsic component of membrane [GO:0019898]; integral component of	
membrane [GO:0016021]; photosystem II oxygen evolving complex	
[GO:0009654]	1
Extrinsic component of membrane [GO:0019898]; photosystem II oxygen	
evolving complex [GO:0009654]	1
Integral component of membrane [GO:0016021]	1
Integral component of membrane [GO:0016021]; mitochondrial inner	
membrane [GO:0005743]	1
Membrane [GO:0016020]	1
Mitochondrion [GO:0005739]; proton-transporting ATP synthase complex,	
catalytic core F(1) [GO:0045261]	1
Motile cilium [GO:0031514]	1
Phosphopyruvate hydratase complex [GO:0000015]	1
Proteasome complex [GO:0000502]	1
Proton-transporting two-sector ATPase complex, catalytic domain	
[GO:0033178]	1

Appendix B Table - 4: Peptides matching the most recent E. huxleyi genome (Read et al., 2013)

Appendix B Table 4 <i>E. hux</i> JGI gene ID	E Value	Score	Hit Sim. in %
100546	0	1667	100
102999	2.00E-129	365	100
105039	0	598	100
106019	4.00E-124	350	100
107385	4.00E-134	377	100
107385	4.00E-134	377	100
107385	5.00E-108	310	87
108180	0	572	100
109848	0	2969	100
109848	0	2969	100
113427	0	2357	100
114964	4.00E-80	234	100
116827	0	607	66
118474	0	4175	100
124604	4.00E-97	279	100
196702	4.00E-139	391	99
198024	0	2243	100
198360	0	764	100
199538	0	925	100
200700	0	535	100
200700	0	535	100
206438	0	713	100
216021	0	841	100
216021	0	835	100
220968	7.00E-69	205	100
227764	3.00E-152	425	100
237243	4.00E-95	274	100
243741	3.00E-163	454	100
245546	1.00E-108	310	100
246130	3.00E-69	206	100
246253	0	869	82
251065	2.00E-71	211	100
251065	2.00E-71 2.00E-71	211	100
257439	2.00E-71 2.00E-91	265	100
258285	3.00E-108	308	100
312577	0	1599	100
	0		
312577 317426	0	1599	100
	0	2635	
317426		2635	100
317426	0 5.00E 152	2629	100
317615	5.00E-153	427	100
317615	7.00E-153	427	100
317615	1.00E-148	416	100
318009	0	701	100
318009	0	701	100
349981	0	558	100

Appendix B Table 4 <i>E. hux</i> JGI gene ID	E Value	Score	Hit Sim. in %
351077	0	562	100
351077	0	505	91
351077	0	505	91
351730	2.00E-134	378	100
351730	2.00E-134	378	100
351730	2.00E-127	360	96
352634	0	532	100
352634	0	507	96
354741	8.00E-173	480	100
354741	8.00E-173	480	100
354741	9.00E-173	480	100
354741	9.00E-173	480	100
356661	0	941	100
356661	0	941	100
361737	0	608	75
361737	0	793	100
361737	0	793	100
362112	0	900	100
362112	0	900	100
362534	3.00E-180	504	68
362722	1.00E-63	191	100
363772	1.00E-151	424	100
363772	1.00E-151	424	100
363772	3.00E-144	405	98
364889	0	515	94
365175	0	833	100
365175	0	833	100
365175	0	833	100
365947	3.00E-108	309	100
369392	3.00E-70	209	100
369392	3.00E-70	209	100
369392	3.00E-70 3.00E-70	209	100
369425	0	803	85
369425	0	944	100
369425	0	944	100
369425	0	944	100
372394	0	671	91
372663	0	533	100
	3.00E-66	197	100
373699		239	
374282 374282	7.00E-82	239	100
	7.00E-82		100
374282	7.00E-82	239	100
414178	2.00E-143	402	100
414178	2.00E-143	402	100
414772	8.00E-153	427	100
414772	7.00E-150	420	100
415031	3.00E-109	312	100
415405	0	913	100
415433	4.00E-122	346	91

Appendix B Table 4 E. hux JGI gene ID	E Value	Score	Hit Sim. in %
415729	0	516	100
415729	0	516	100
415729	0	516	100
415940	2.00E-151	423	100
415940	2.00E-151	423	100
416424	0	918	100
416424	0	918	100
416950	0	1315	100
416950	0	1315	100
416955	1.00E-95	275	100
417078	0	1602	100
417078	0	1602	100
417078	0	1602	100
417351	5.00E-106	314	36
417468	0	539	31
417537	0	525	100
417537	0	525	100
417537	0	525	100
417816	1.00E-88	257	97
418142	9.00E-100	286	100
418229	0	779	63
418599	0	548	47
418599	0	555	47
419966	2.00E-102	294	100
419966	2.00E-102	294	100
419966	4.00E-92	267	90
420527	0	1715	100
420527	0	1672	98
421023	0	2216	95
421349	0	1038	98
421356	0	1711	99
421356	0	1660	97
421960	0	1581	100
422643	0	560	100
422643	0	560	100
422643	3.00E-104	303	53
423073	0	2655	100
423073	0	2655	100
423357	4.00E-166	488	27
423968	0	771	100
423968	0	771	100
423968	4.00E-166	468	60
424731	4.00E-100	739	100
424731	0	739	100
424731	6.00E-135	387	51
426056	0.00E-133	525	86
426056	0	614	100
426056	0	614	100
420030	0	014	100

Appendix B Table 4 E. hux JGI gene ID	E Value	Score	Hit Sim. in %
426711	0	846	100
426711	0	846	100
427020	0	520	56
427625	0	1307	100
427625	0	719	56
427625	0	1266	98
427625	0	1132	90
428226	0	1041	54
429671	7.00E-142	397	100
429767	0	624	86
430738	2.00E-174	487	74
431703	6.00E-150	419	100
431703	6.00E-150	419	100
431703	3.00E-119	339	80
431800	8.00E-103	295	92
431974	0	583	81
431974	0	723	100
431974	0	723	100
432120	8.00E-77	226	100
432120	1.00E-76	226	100
432120	1.00E-76	226	100
432385	0	733	100
432385	0	733	100
432606	0	978	100
432636	0	521	69
432636	0	759	100
432636	0	759	100
432636	0	759	100
432765	2.00E-165	459	100
432765	3.00E-165	459	100
432765	3.00E-165	459	100
432765	3.00E-165	459	100
432823	0	748	100
432823	0	748	100
432864	0	552	69
432864	0	795	100
432864	0	795	100
432864	0	784	99
432900	5.00E-107	308	73
433142	0	1037	99
433142	0	1050	100
433142	0	1050	100
433142	0	1050	100
433309	0	744	100
433309	0	750	100
433309	0	750	100
433456	4.00E-61	187	66
433847	0	562	100
433847	0	562	100

Appendix B Table 4	E Volue	Saara	Hit Cim in 0/
E. hux JGI gene ID	E Value	Score	Hit Sim. in %
433847	4.00E-140	396	69
433854	2.00E-132	373	100
434108	2.00E-149	418	100
434108	2.00E-149	418	100
434108	2.00E-124	353	83
434239	0	2522	100
434239	0	2522	100
434239	0	1522	90
434513	0	538	61
434648	0	517	83
434648	0	625	100
434648	0	625	100
434751	0	740	100
434751	0	719	98
435222	2.00E-175	487	100
435222	2.00E-175	487	100
435222	3.00E-161	449	91
435472	0	521	100
435472	0	521	100
435472	0	521	100
436026	0	565	39
436026	0	1337	100
436026	0	1337	100
436026	0	1337	100
436026	1.00E-10	54	3
436143	0	548	100
436409	3.00E-167	465	100
436495	0	573	72
436495	0	794	100
436495	0	794	100
436528	0	1214	100
436615	0	504	100
436903	6.00E-179	496	100
436903	6.00E-179	496	100
436903	2.00E-167	466	95
437052	0	920	100
437052	0	920	100
437052	0	879	97
437374	6.00E-141	395	100
437374	7.00E-141	395	100
437557	4.00E-137	388	88
437959	0	786	57
437959	0	1395	100
437959	0	1395	100
437959	0	1395	100
438040	0	928	100
438040	0	928	100
438194	0	1037	100

Appendix B Table 4 <i>E. hux</i> JGI gene ID	E Value	Score	Hit Sim. in %
438194	0	1037	100
438194	0	858	88
438265	0	541	100
438462	0	541	100
438462	0	541	100
438462	0	541	100
438462	1.00E-179	498	94
439359	0	600	38
439359	0	1582	100
439359	0	1582	100
439359	0	1573	100
439359	8.00E-163	474	30
439486	5.00E-102	292	100
439486	5.00E-102	292	100
439486	5.00E-102	292	100
439486	5.00E-88	256	86
439538	0	1209	100
439538	2.00E-121	359	29
439544	0	1544	100
439544	2.00E-180	522	34
439617	0	816	100
439617	0	816	100
439617	0	701	88
439617	8.00E-174	489	60
439725	2.00E-174	483	100
439725	2.00E-174	483	100
439906	0	1098	82
439906	0	631	45
440119	0	729	74
440119	0	986	100
440119	0	986	100
440242	0	1400	100
440242	0	1400	100
440362	0	536	96
440362	0	560	100
440362	0	560	100
440362	0	560	100
440893	1.00E-89	281	17
440922	0	612	100
440922	0	612	100
440922	1.00E-111	323	52
441453	4.00E-111	406	100
441818	3.00E-122	350	83
441919	0	717	100
441919 441919	0	717	100
441919 441919	0	675	93
	+		
441942	0	756	100
442074	0	986	100

Appendix B Table 4 E. hux JGI gene ID	E Value	Score	Hit Sim. in %
442074	0	986	100
442074	2.00E-168	478	48
442074	0	1285	100
442092	0	1285	100
442092	0	1371	100
442209	0	1371	100
	0	1291	
442340	0		100
442340		1291	37
442340	4.00E-169	486	
442429	9.00E-157	437	100
442429	1.00E-151	424	98
442429	2.00E-151	424	98
442547	0	514	54
442547	0	953	100
442547	0	953	100
442547	0	946	100
442739	2.00E-168	475	57
443305	0	529	100
443320	0	890	100
443778	0	1395	100
443778	0	1395	100
443778	0	1400	100
443778	1.00E-176	507	37
443828	2.00E-109	312	100
443828	2.00E-109	312	100
443828	2.00E-109	312	100
443878	3.00E-160	446	100
443878	3.00E-160	446	100
443878	3.00E-160	446	100
443878	3.00E-160	446	100
444144	5.00E-99	301	23
444382	0	976	100
444382	0	976	100
444382	2.00E-174	493	50
444779	8.00E-154	429	100
444876	2.00E-174	484	100
444895	0	954	100
444895	0	954	100
444895	0	928	99
444895	3.00E-138	399	42
444955	1.00E-173	482	100
444955	1.00E-171	477	99
445002	4.00E-101	294	68
445073	6.00E-85	247	98
445255	5.00E-83	243	88
445439	0	891	62
445439	0	891	62
445566	6.00E-129	363	97

	KATLOOI	THE GI-THMOL	ı
Appendix B Table 4 <i>E. hux</i> JGI gene ID	E Value	Score	Hit Sim. in %
445703	0	1545	100
445703	0	1545	100
445703	0	1404	93
445703	1.00E-167	487	32
446067	8.00E-107	484	99
446067	9.00E-173	464	98
446099	6.00E-107	485	100
446206	0.00E-173	522	100
446206	4.00E-178	495	97
446237	1.00E-131	371	94
446255	0	511	61
446310	1.00E-154	431	100
446406	1.00E-166	464	100
446406	2.00E-111	321	68
446942	0	586	63
447219	6.00E-160	445	100
447219	7.00E-160	445	100
447219	7.00E-160	445	100
447219	3.00E-159	443	100
447372	2.00E-136	394	64
447695	0	566	60
448062	0	807	100
448062	0	807	100
448062	0	719	89
448193	0	1662	100
448193	0	1662	100
448193	3.00E-162	474	29
448569	0	688	100
448569	9.00E-157	442	65
448960	0	707	100
448960	0	707	100
448960	0	707	100
449047	2.00E-174	483	100
449047	2.00E-174	483	100
449865	0	1793	100
450336	0	1043	100
450336	0	1043	100
450594	2.00E-180	520	35
450615	0	1987	100
450615	0	1987	100
450615	0	1972	100
452198	0	569	74
452198	0	761	100
452198	0	761	100
452198	0	761	100
452284	1.00E-166	475	47
453068	6.00E-143	402	90
453373	0	672	100
453373	0	672	100

Appendix B Table 4 E. hux JGI gene ID	E Value	Score	Hit Sim. in %
454897	0	1457	100
454897	0	1457	100
455078	0	1662	100
455078	0	1662	100
455280	0	3069	100
455280	5.00E-176	529	17
455300	1.00E-178	496	100
455406	0	803	100
455406	0	803	100
456187	3.00E-125	353	100
456239	0	1311	100
456254	0	602	98
457572	1.00E-125	355	100
457856	8.00E-170	472	100
458081	5.00E-108	310	95
458081	1.00E-81	241	72
458122	0	798	100
458122	0	750	95
459601	5.00E-159	443	100
459601	6.00E-159	443	100
459601	6.00E-159	443	100
459601	9.00E-144	404	94
459734	0	837	100
459734	0	837	100
459736	0	546	29
459736	0	1874	100
459736	0	1874	100
459873	0	966	100
460004	1.00E-129	367	74
460492	0	885	100
460492	0	885	100
461181	0	829	100
461699	0	657	97
461699	0	678	100
461699	0	678	100
462385	0	507	74
462385	0	681	99
462385	0	681	99
462385	0	689	100
462433	4.00E-134	377	100
462452	4.00E-134 0	2905	100
462452	0	2905	100
462452	0	2905	100
462457	0	973	100
	0	975	100
462457	1		
462457 462645	0 0	975 593	100
	0		
462645	0	593	100

Appendix B Table 4 <i>E. hux</i> JGI gene ID	E Value	Score	Hit Sim. in %
463036	0	666	92
463429	0	935	90
463837	0	2722	90
463837	0	3181	100
464103	0	778	99
464103	0	783	100
464103	0	783	100
464103	0	702	92
464599	0	1691	100
464599	0	1691	100
464599	0	1619	96
464740	0	4036	100
464740	0	4036	100
464972	0	514	89
464972	0	588	100
464972	0	588	100
465288	0	727	100
465288	0	727	100
465364	0	1316	100
465364	0	1279	99
465373	0	927	100
465373	5.00E-177	499	55
465509	0	1215	100
465509	0	1215	100
465509	0	1174	97
465547	0	628	100
465547	0	628	100
465547	1.00E-131	375	64
465676	0	1167	100
465926	8.00E-139	407	75
	+		
465926	3.00E-94	283	29
466230	0	783	87
466469	0	2164	58
466469	0	3430	93
466778	0	591	89
466893	0	1835	100
466893	0	1818	100
466893	2.00E-163	482	27
468608	6.00E-143	401	100
468608	6.00E-143	401	100
468689	0	671	96
470712	0	541	100
470712	0	541	100
470997	0	1500	100
49364	6.00E-52	159	100
54552	0	608	100
61467	6.00E-172	478	100
61745	8.00E-137	384	100
61745	8.00E-137	384	100

Appendix B Table 4			
E. hux JGI gene ID	E Value	Score	Hit Sim. in %
63832	0	830	100
64238	0	513	100
66170	1.00E-82	241	100
68547	0	835	93
68856	0	1446	100
68856	0	1446	100
68856	0	1446	100
69198	0	891	100
69198	0	891	100
69198	0	891	100
69773	5.00E-104	298	100
69773	5.00E-104	298	100
69773	5.00E-104	298	100
74095	0	501	100
74095	0	501	100
74335	4.00E-93	268	100
77411	0	658	100
77411	0	658	100
77411	0	658	100
77826	1.00E-152	426	96
78752	2.00E-175	487	100
78752	2.00E-175	487	100
78806	6.00E-58	176	100
79310	9.00E-131	368	100

References

- Alabadí, D.; Oyama, T.; Yanovsky, M. J.; Harmon, F. G.; Más, P.; Kay, S. A. (2001) Reciprocal Regulation Between TOC1 and LHY/CCA1 Within the Arabidopsis Circadian Clock. *Science*, 293 (5531), 880–883.
- Addadi, L.; Raz, S.; Weiner, S. (2003) Taking Advantage of Disorder: Amorphous Calcium Carbonate and Its Roles in Biomineralization. *Adv. Mater.*, 15 (12), 959–970.
- Alcolombri, U.; Ben-Dor, S.; Feldmesser, E.; Levin, Y.; Tawfik, D. S.; Vardi, A. (2015) Identification of the algal dimethyl sulfide-releasing enzyme: A missing link in the marine sulfur cycle. *Science*, 348 (6242), 1466–1469.
- Alwine, J. C.; Kemp, D. J.; Stark, G. R. (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. *Proc. Natl. Acad. Sci. U.S.A.*, 74 (12), 5350–5354.
- Anders, S.; Huber, W. (2010) Differential expression analysis for sequence count data. *Genome Biol.*, 11 (10)
- Anderson, L.; Seilhamer, J. (1997) A comparison of selected mRNA and protein abundances in human liver. *Electrophoresis*, 18 (3-4), 533–537.
- Anderson, N. L.; Anderson, N. G. (1998) Proteome and proteomics: New technologies, new concepts, and new words. *Electrophoresis*, 19 (11), 1853–1861.
- Andrulis, E. D.; Guzman, E.; Doering, P.; Werner, J.; Lis, J. T. (2000) High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation. *Genes & Development*, 14 (20), 2635–2649.
- Anning, T.; Nimer, N.; Merrett, M. J.; Brownlee, C. (1996) Costs and benefits of calcification in coccolithophorids. *Journal of Marine Systems*, 9 (1-2), 45–56.
- Arai, H.; Pink, S.; Forgac, M. (1989) Interaction of anions and ATP with the coated vesicle proton pump. *Biochemistry*, 28 (7), 3075–3082.
- Araki, Y.; Gonzalez, E. L. (1998) V- and P-type Ca²⁺-stimulated ATPases in a calcifying strain of *Pleurochrysis sp.* (Haptophyceae). *J Phycol*, 34 (1), 79–88.
- Archer, D.; Winguth, A.; Lea, D.; Mahowald, N. (2000) What caused the glacial/interglacial atmospheric pCO₂ cycles? *Rev. Geophys.*, 38 (2), 159–189.
- Arias, J. L.; Fernández, M. S. (2008) Polysaccharides and Proteoglycans in Calcium Carbonate-based Biomineralization. *Chem. Rev.*, 108 (11), 4475–4482.
- Armstrong, R. A.; Lee, C.; Hedges, J. I.; Honjo, S.; Wakeham, S. G. (2001) A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. *Deep-Sea Res. Part II-Top. Stud. Oceanogr.*, 49(1), 219–236.

- Arnaudeau, S. (2002) Calreticulin Differentially Modulates Calcium Uptake and Release in the Endoplasmic Reticulum and Mitochondria. *J Biol Chem*, 277 (48), 46696–46705.
- Ateweberhan, M.; Feary, D. A.; Keshavmurthy, S.; Chen, A.; Schleyer, M. H.; Sheppard, C. R. C. (2013) Climate change impacts on coral reefs: Synergies with local effects, possibilities for acclimation, and management implications. *Palaeogeography, Palaeoclimatology, Palaeoecology*.
- Bach, L. T.; Mackinder, L. C. M.; Schulz, K. G.; Wheeler, G.; Schroeder, D. C.; Brownlee, C.; Riebesell, U. (2013) Dissecting the impact of CO₂ and pH on the mechanisms of photosynthesis and calcification in the coccolithophore *Emiliania huxleyi*. *J Phycol*, 199 (1), 121–134.
- Badger, M. R.; Price, G. D. (1994) The Role of Carbonic Anhydrase in Photosynthesis. *Annu. Rev. Ecol. Evol. Syst.*, 45 (1), 369–392.
- Baker, K. E.; Condon, C. (2004) Under the Tucson sun: a meeting in the desert on mRNA decay. *RNA*, Vol. 10, 1680–1691.
- Balch, W. M.; Drapeau, D. T.; Fritz, J. J. (2000) Monsoonal forcing of calcification in the Arabian Sea. *Deep-Sea Res. Part II-Top. Stud. Oceanogr.*, 47 (7-8), 1301–1337.
- Balch, W. M.; Holligan, P. M.; Kilpatrick, K. A. (1992a) Calcification, photosynthesis and growth of the bloom-forming coccolithophore, *Emiliania huxleyi*. *Continental Shelf Research*, 12 (12), 1353–1374.
- Balch, W. M.; Holligan, P. M.; Kilpatrick, K. A. (1992b) Calcification, photosynthesis and growth of the bloom-forming coccolithophore, *Emiliania huxleyi*. *Continental Shelf Research*, 12 (12), 1353–1374
- Baumann, K. H.; Böckel, B.; Frenz, M. (2004) Coccolith contribution to South Atlantic carbonate sedimentation. In: *Coccolithophores: from molecular processes to global impact* (H. R. Thierstein & J. Young, eds.); Berlin: Springer.
- Beardall, J.; Young, E.; Roberts, S. (2001) Approaches for determining phytoplankton nutrient limitation. *Aguat. sci.*, 63 (1), 44–69.
- Bellantuono, A. J.; Granados-Cifuentes, C.; Miller, D. J.; Hoegh-Guldberg, O.; Rodriguez-Lanetty, M. (2012) Coral thermal tolerance: tuning gene expression to resist thermal stress. *PLoS ONE*, 7 (11).
- Bengal, E.; Flores, O.; Krauskopf, A.; Reinberg, D.; Aloni, Y. (1991) Role of the mammalian transcription factors IIF, IIS, and IIX during elongation by RNA polymerase II. *Mol. Cell. Biol.*, 11 (3), 1195–1206.
- Beniash, E.; Aizenberg, J.; Addadi, L.; Weiner, S. (1997) Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. *Proceedings of the Royal Society of London. Series B: Biological Sciences*, 264 (1380), 461–465.

- Benjamini, Y.; Hochberg, Y. (1995) Controlling the False Discovery Rate a Practical and Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society Series B-Methodological*, 57 (1), 289–300.
- Bentov, S.; Weil, S.; Glazer, L.; Sagi, A.; Berman, A. (2010) Stabilization of amorphous calcium carbonate by phosphate rich organic matrix proteins and by single phosphoamino acids. *Journal of Structural Biology*, 171 (2), 207–215.
- Berridge, M. J. (2002) The endoplasmic reticulum: a multifunctional signaling organelle. *Cell Calcium*, 32 (5), 235–249.
- Beyenbach, K. W.; Wieczorek, H. (2006) The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. *J. Exp. Biol.*, 209 (Pt 4), 577–589.
- Bhattacharya, D.; Medlin, L. (1995) Phylogeny of plastids A review based on comparisons of small subunit ribosomal RNA coding regions. *J Phycol*.
- Birol, I.; Jackman, S. D.; Nielsen, C. B.; Qian, J. Q.; Varhol, R.; Stazyk, G.; Morin, R. D.; et al. (2009) De novo transcriptome assembly with ABySS. *Bioinformatics*, 25 (21), 2872–2877.
- Bisova, K.; Krylov, D. M.; Umen, J. G. (2005) Genome-wide annotation and expression profiling of cell cycle regulatory genes in *Chlamydomonas reinhardtii*. *Plant Physiol.*, 137 (2), 475–491.
- Blackstock, W. P.; Weir, M. P. (1999) Proteomics: quantitative and physical mapping of cellular proteins. *Trends in Biotechnology*, 17 (3), 121–127.
- Bonaldo, M. F.; Lennon, G.; Soares, M. B. (1996) Normalization and subtraction: two approaches to facilitate gene discovery. *Genome Res.*, 6 (9), 791–806.
- Borman, A. H.; Jong, E. W.; Huinzinga, M.; Kok, D.; Westbroek, P.; BOSCH, L. (1982) The role in CaCO₃ crystallization of an acid Ca²⁺-Binding polysaccharide associated with coccoliths of *Emiliania huxleyi*. *Eur J Biochem*, 129 (1), 179–183.
- Bown, P. R.; Lees, J. A.; Young, J. R. (2004) Calcareous nannoplankton evolution and diversity through time. *Coccolithophores-from molecular processes to global impact.-Berlin* (Springer), 481–508.
- Brenner, S.; Johnson, M.; Bridgham, J.; Golda, G.; Lloyd, D. H.; Johnson, D.; Luo, S.; et al. (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. *Nat. Biotechnol.*, 18 (6), 630–634.
- Bricker, T. M.; Roose, J. L.; Fagerlund, R. D.; Frankel, L. K.; Eaton-Rye, J. J. (2012) Biochimica et Biophysica Acta. *BBA Bioenergetics*, 1817 (1), 121–142.
- Briegel, C.; Seto, J. (2012) Single Amino Acids as Additives Modulating CaCO₃ Mineralisation. In: *Advanced Topics in Biomineralization* (J. Seto, ed.), 1–16.

- Brodsky, J. L.; Skach, W. R. (2011) Protein folding and quality control in the endoplasmic reticulum: Recent lessons from yeast and mammalian cell systems. *Curr. Opin. Cell Biol.*, 23 (4), 464–475.
- Brownlee, C.; Davies, M.; Nimer, N.; Dong, L.; Merrett, M. (1995) Calcification, photosynthesis and intracellular regulation in *Emiliania huxleyi*. *Bulletin de l'Institut Oceanographique (Monaco)*, 14, 19–35.
- Brownlee, C.; Taylor, A. (2004) Calcification in coccolithophores: A cellular perspective. In: *Coccolithophores: from molecular processes to global impact* (H. R. Thierstein & J. Young, eds.); Berlin: Springer.
- Buitenhuis, E. T.; De Baar, H. J. W.; Veldhuis, M. J. W. (1999) Photosynthesis and calcification by *Emiliania huxleyi* (Prymnesiophyceae) as a function of inorganic carbon species. *J Phycol*, 35 (5), 949–959.
- Buitenhuis, E. T.; Van Bleijswijk, J.; Bakker, D.; Veldhuis, M. J. W. (1996) Trends in inorganic and organic carbon in a bloom of *Emiliania huxleyi*. *Mar Ecol-Prog Ser*, 143, 271–282.
- Cardone, L.; Sassone-Corsi, P. (2003) Timing the cell cycle. *Nature Cell Biology* 5(10),859–861.
- Carretero-Paulet, L.; Galstyan, A.; Roig-Villanova, I.; Martínez-García, J. F.; Bilbao-Castro, J. R.; Robertson, D. L. (2010) Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. *Plant Physiology*, 153 (3), 1398–1412.
- Charlson, R. J.; Lovelock, J. E.; Andreae, M. O.; Warren, S. G. (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. *Nature*, 326 (6114), 655–661.
- Chen, C.-M.; Shih, T.-H.; Pai, T.-W.; Liu, Z.-L.; Chang, M. D.-T. (2012) RNA-seq coverage effects on biological pathways and GO tag clouds, 240–245; IEEE.
- Chen, G.; Gharib, T. G.; Huang, C.-C.; Taylor, J. M. G.; Misek, D. E.; Kardia, S. L. R.; Giordano, T. J.; et al. (2002) Discordant Protein and mRNA Expression in Lung Adenocarcinomas. *Molecular & Cellular Proteomics*, 1 (4), 304–313.
- Chen, M. (2008) Phytochrome nuclear body: an emerging model to study interphase nuclear dynamics and signaling. *Current Opinion in Plant Biology*, 11 (5), 503–508.
- Chen, Z.; McKnight, S. L. (2007) A conserved DNA damage response pathway responsible for coupling the cell division cycle to the circadian and metabolic cycles. *Cell cycle*, 6(23), 2906–2912.
- Chiang, P.; Gordon, R.; Tal, J.; Zeng, G.; Doctor, B.; Pardhasaradhi, K.; McCann, P. (1996) S-Adenosylmethionine and methylation. *The FASEB Journal*, 10 (4), 471–480.
- Chisholm, S. W.; Vaulot, D.; Olson, R. J. (1984) Cell cycle control in phytoplankton: comparative physiology and ecology. In: *Cell cycle clocks* (L. N. J. Edmunds, ed.), 365–394; New York (USA).

- Choe, L.; D'Ascenzo, M.; Relkin, N. R.; Pappin, D.; Ross, P.; Williamson, B.; Guertin, S.; et al. (2007) 8-Plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer's disease. *Proteomics*, 7 (20), 3651–3660.
- Choi, Y. W.; Park, S. A.; Lee, H. W.; Kim, D. S.; Lee, N. G. (2008) Analysis of growth phase-dependent proteome profiles reveals differential regulation of mRNA and protein in *Helicobacter pylori. Proteomics*, 8 (13), 2665–2675; WILEY-VCH Verlag.
- Chou, J. J.; Li, S.; Klee, C. B.; Bax, A. (2001) Solution structure of Ca²⁺ calmodulin reveals flexible hand-like properties of its domains. *Nature*, 8 (11), 990–997;
- Chou, K.-C.; Shen, H.-B. (2010) A New Method for Predicting the Subcellular Localization of Eukaryotic Proteins with Both Single and Multiple Sites: Euk-mPLoc 2.0. (D. P. Martin, Ed.)*PLoS ONE*, 5 (4), e9931.
- Claquin, P.; Kromkamp, J. C.; Martin-Jezequel, V. (2004) Relationship between photosynthetic metabolism and cell cycle in a synchronized culture of the marine alga *Cylindrotheca fusiformis* (Bacillariophyceae). *European Journal of Phycology*, 39 (1), 33–41.
- Corstjens, P. L. A. M.; Araki, Y.; Gonzalez, E. L. (2001) A coccolithophorid calcifying vesicle with a vacuolar-type ATPase proton pump: cloning and immunolocalization of the V0 subunit C. *J Phycol*, 37 (1), 71–78.
- Corstjens, P. L. A. M.; van der Kooij, A.; Linschooten, C.; Brouwers, G.-J.; Westbroek, P.; de Vrind-de Jong, E. W. (1998) GPA, a calcium-binding protein in the coccolithophorid *Emiliania huxleyi* (Prymnesiophyceae). *J Phycol*, 34 (4), 622–630.
- Cusack, M.; Freer, A. (2008) Biomineralization: Elemental and Organic Influence in Carbonate Systems. *Chem. Rev.*, 108 (11), 4433–4454.
- Dassow, von, P.; Ogata, H.; Probert, I.; Wincker, P.; Da Silva, C.; Audic, S.; Claverie, J.-M.; et al. (2009) Transcriptome analysis of functional differentiation between haploid and diploid cells of *Emiliania huxleyi*, a globally significant photosynthetic calcifying cell. *Genome Biol.*, 10 (10), R114.
- de Jong, E. W.; Bosch, L.; Westbroek, P. (1976) Isolation and characterization of a Ca²⁺ binding polysaccharide associated with coccoliths of *Emiliania huxleyi* (Lohmann) Kamptner. *Eur J Biochem*, 70, 611–621.
- de Vargas, C.; Aubry, M.; Probert, I.; Young, J. (2007) *Origin and evolution of coccolithophores: From coastal hunters to Oceanic farmers*. (P. Falkowski & A. Knoll, Eds.), 251–285.
- DeCoursey, P. J.; Walker, J. K.; Smith, S. A. (2000) A circadian pacemaker in free-living chipmunks: essential for survival? *J. Comp. Physiol. A*, 186 (2), 169–180.

- Denoeud, F.; Aury, J.-M.; Da Silva, C.; Noel, B.; Rogier, O.; Delledonne, M.; Morgante, M.; et al. (2008) Annotating genomes with massive-scale RNA sequencing. *Genome Biol.*, 9 (12), R175.
- Deutscher, M. P. (2006) Degradation of RNA in bacteria: comparison of mRNA and stable RNA. *Nucleic Acids Research*, 34 (2), 659–666.
- Dixon, G. K.; Brownlee, C.; Merrett, M. J. (1989) Measurement of internal pH in the coccolithophore *Emiliania huxleyi* using 2',7'-bis-(2-carboxyethyl)-5(and-6) carboxyfluorescein acetoxymethylester and digital imaging microscopy. *Planta*, 178 (4), 443–449.
- Dodd, A. N.; Salathia, N.; Hall, A.; Kévei, E.; Tóth, R.; Nagy, F.; Hibberd, J. M.; et al. (2005) Plant Circadian Clocks Increase Photosynthesis, Growth, Survival, and Competitive Advantage. *Science*, 309 (5734), 630–633.
- Dolphin, A. C. (2009) Calcium channel diversity: multiple roles of calcium channel subunits. *Curr. Opin. Neurobiol.*, 19 (3), 237–244.
- Donnan, L.; Carvill, E. P.; Gilliland, T. J.; John, P. C. L. (1985) The cell cycles of *Chlamydomonas* and *Chlorella*. *New Phytol*, 99 (1), 1–40.
- Drescher, B.; Dillaman, R. M.; Taylor, A. R. (2012) Coccolithogenesis in *Scyphosphaera apsteinii* (Prymnesiophyceae). *J Phycol*,48 (6) 1343-1361.
- Dyczkowski, J.; Vingron, M. (2005) Comparative analysis of cell cycle regulated genes in eukaryotes. *Genome Informatics Series*.
- Dyhrman, S. T.; Haley, S. T.; Birkeland, S. R.; Wurch, L. L.; Cipriano, M. J.; McArthur, A. G. (2006) Long serial analysis of gene expression for gene discovery and transcriptome profiling in the widespread marine coccolithophore *Emiliania huxleyi*. *Appl. Environ*. *Microbiol.*, 72 (1), 252–260.
- Dyhrman, S. T.; Jenkins, B. D.; Rynearson, T. A.; Saito, M. A.; Mercier, M. L.; Alexander, H.; Whitney, L. P.; et al. (2012) The Transcriptome and Proteome of the Diatom *Thalassiosira pseudonana* Reveal a Diverse Phosphorus Stress Response. (P. Santos, Ed.)*PLoS ONE*, 7 (3), e33768.
- Eberhardy, S. R.; Farnham, P. J. (2002) Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. *J. Biol. Chem.*, 277 (42), 40156–40162.
- Eddy, S. R. (2001) Non-coding RNA genes and the modern RNA world. *Nat Rev Genet*, 2 (12), 919–929.
- Edmunds, L. N. J.; Adams, K. J. (1981) Clocked cell cycle clocks. Science, 211, 1002-1012.
- Edwards, R. J.; Moran, N.; Devocelle, M.; Kiernan, A.; Meade, G.; Signac, W.; Foy, M.; et al. (2007) Bioinformatic discovery of novel bioactive peptides. *Nat Chem Biol*, 3 (2), 108–112.

- Emery, L.; Whelan, S.; Hirschi, K. D.; Pittman, J. K. (2012) Protein Phylogenetic Analysis of Ca²⁺/cation Antiporters and Insights into their Evolution in Plants. *Front Plant Sci*, 3, 1.
- Engel, A.; Szlosek, J.; Abramson, L.; Liu, Z. F.; Lee, C. (2009) Investigating the effect of ballasting by CaCO₃ in *Emiliania huxleyi*: I. Formation, settling velocities and physical properties of aggregates. *Deep-Sea Res. Part II-Top. Stud. Oceanogr.*, 56 (18), 1396–1407.
- Fabry, V. J. (2008) Marine calcifiers in a high-CO₂ ocean. Science, 320 (5879), 1020–1022.
- Fagerbakke, K. M.; Heldal, M.; Norland, S.; Heimdal, B. R.; Båtvik, H. (1994) *Emiliania huxleyi*. Chemical composition and size of coccoliths from enclosure experiments and a Norwegian fjord. *British Phycological Journal*; Taylor & Francis Group.
- Falkowski, P. (2000) The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. *Science*, 290 (5490), 291–296.
- Falkowski, P. G. (2004) The Evolution of Modern Eukaryotic Phytoplankton. *Science*, 305 (5682), 354–360.
- Falkowski, P. G.; Kolber, Z. (1995) Variations in Chlorophyll Fluorescence Yields in Phytoplankton in the World Oceans. *Functional Plant Biol.*, 22 (2), 341–355.
- Fankhauser, C.; Chen, M. (2008) Transposing phytochrome into the nucleus. *Trends in Plant Science*, 13 (11), 596–601.
- Farre, E. M. (2012) The regulation of plant growth by the circadian clock. *PLANT BIOLOGY*, {14} ({3}), {401–410}.
- Feder, M. E.; Hofmann, G. E. (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. *Annu. Rev. Physiol.*, 61, 243–282.
- Field, C. B.; Behrenfeld, M. J.; Randerson, J. T. (1998) Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. *Science*.
- Finazzi, G.; Moreau, H. (2010) Genomic insights into photosynthesis in eukaryotic phytoplankton. *Trends in Plant Science*.
- Finbow, M. E.; Harrison, M. A. (1997) The vacuolar H+-ATPase: a universal proton pump of eukaryotes. *The Royal Society*, 324 (Pt 3), 697–712.
- Findlay, C. S.; Giraudeau, J. (2000) Extant calcareous nannoplankton in the Australian Sector of the Southern Ocean (austral summers 1994 and 1995). *Marine Micropaleontology*, 40 (4), 417–439.
- Forgac, M. (2000) Structure, mechanism and regulation of the clathrin-coated vesicle and yeast vacuolar H+-ATPases. *J. Exp. Biol.*, 203 (1), 71–80.
- Frankignoulle, M.; Canon, C.; Gattuso, J.-P. (1994) Marine calcification as a source of carbon dioxide: positive feedback of increasing atmospheric CO₂. *Limnol. Oceanogr.*, 39 (2), 458–462.

- Frith, M. C.; Pheasant, M.; Mattick, J. S. (2005) Genomics: The amazing complexity of the human transcriptome. *Nature*, 13 (8), 894–897.
- Fritz, J. J. (1999) Carbon fixation and coccolith detachment in the coccolithophore *Emiliania huxleyi* in nitrate-limited cyclostats. *Mar Biol*, 133 (3), 509–518.
- Fritz, J. J.; Balch, W. M. (1996) A light-limited continuous culture study of *Emiliania huxleyi*: determination of coccolith detachment and its relevance to cell sinking. *Journal of Experimental Marine Biology and Ecology*, 207 (1), 127–147.
- Fujiwara, S.; Hirokawa, Y.; Takatsuka, Y.; Suda, K.; Asamizu, E.; Takayanagi, T.; Shibata, D.; et al. (2007) Gene Expression Profiling of Coccolith-Bearing Cells and Naked Cells in Haptophyte *Pleurochrysis haptonemofera* with a cDNA Macroarray System. *Mar Biotechnol*, 9 (5), 550–560.
- Fujiwara, T.; Misumi, O.; Tashiro, K.; Yoshida, Y.; Nishida, K.; Yagisawa, F.; Imamura, S.; et al. (2009) Periodic Gene Expression Patterns during the Highly Synchronized Cell Nucleus and Organelle Division Cycles in the Unicellular Red Alga Cyanidioschyzon merolae. *DNA Res.*, 16 (1), 59–72.
- Gehlenborg, N.; O'Donoghue, S. I.; Baliga, N. S.; Goesmann, A.; Hibbs, M. A.; Kitano, H.; Kohlbacher, O.; et al. (2010) Visualization of omics data for systems biology. *Nature Publishing Group*, 7 (3s), S56–S68.
- Geider, R. J.; Roche, J.; Greene, R. M.; Olaizola, M. (1993) Response of the photosynthetic apparatus of *Phaeodactylum tricornutum* (Bacillariophyceae) to nitrate, phosphate, or iron starvation1. *J Phycol*, 29 (6), 755–766.
- Geider, R.; Macintyre; Graziano, L.; McKay, R. M. (1998) Responses of the photosynthetic apparatus of *Dunaliella tertiolecta* (Chlorophyceae) to nitrogen and phosphorus limitation. *European Journal of Phycology*, 33 (4), 315–332.
- Gould, S. B.; Waller, R. F. (2008) Plastid evolution. Annu Rev Plant Biol.
- Grabherr, M. G.; Haas, B. J.; Yassour, M.; Levin, J. Z.; Thompson, D. A.; Amit, I.; Adiconis, X.; et al. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nat. Biotechnol.*, 29 (7), 644–652.
- Green, J. C.; Course, P. A.; Tarran, G. A. (1996) The life-cycle of *Emiliania huxleyi*: A brief review and a study of relative ploidy levels analysed by flow cytometry. *Journal of Marine Systems*, 9 (1-2), 33–44.
- Green, R. M.; Tingay, S.; Wang, Z.-Y.; Tobin, E. M. (2002) Circadian rhythms confer a higher level of fitness to Arabidopsis plants. *Plant Physiol.*, 129 (2), 576–584.
- Gregg, W. W.; Casey, N. W. (2007) Modeling coccolithophores in the global oceans. *Deep-Sea Res. Part II-Top. Stud. Oceanogr.*, 54 (5), 447–477.
- Guillard, R. R. L. (1975) Culture of phytoplankton for feeding marine invertebrates. In: *Culture of marine invertebrates* (W. Smith & M. Chanley, eds.), 26–60.

- Hagiwara, S.; Bolige, A.; Zhang, Y. L.; Takahashi, M.; Yamagishi, A.; Goto, K. (2002) Circadian gating of photoinduction of commitment to cell-cycle transitions in relation to photoperiodic control of cell reproduction in Euglena. Photchemistry and Photobiology, (76/1), (105–115).
- Harbers, M. M.; Carninci, P. P. (2005) Tag-based approaches for transcriptome research and genome annotation. *Nat Methods*, 2 (7), 495–502.
- Haugan, P. M.; Drange, H. (1996) Effects of CO₂ on the ocean environment. *Energy Conversion and Management*, 37 (6-8), 1019–1022.
- Hegg, D. A.; Ferek, R. J.; Hobbs, P. V.; Radke, L. F. (1991) Dimethyl sulfide and cloud condensation nucleus correlations in the northeast Pacific Ocean. *J. Geophys. Res.*, 96, 13189–13191.
- Henriksen, K.; Stipp, S. L. S.; Young, J. R.; Marsh, M. E. (2004) Biological control on calcite crystallization: AFM investigation of coccolith polysaccharide function. *ammin*, 89 (11-12), 1709–1716.
- Herfort, L.; Loste, E.; Meldrum, F.; Thake, B. (2004) Structural and physiological effects of calcium and magnesium in *Emiliania huxleyi* (Lohmann) Hay and Mohler. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 148 (3), 307–314.
- Herfort, L.; Thake, B.; Roberts, J. (2002) Acquisition and use of bicarbonate by *Emiliania huxleyi*. New Phytol. 156, 427-456
- Ho, T.-Y.; Quigg, A.; Finkel, Z. V.; Milligan, A. J.; Wyman, K.; Falkowski, P. G.; Morel, F. M. M. (2003) The elemental composition of some marine phytoplankton. *J Phycol*, 39 (6), 1145–1159.
- Holligan, P. M.; Fernandez, E.; Aiken, J.; Balch, W. M.; Boyd, P.; Burkill, P. H.; Finch, M.; et al. (1993) A biogeochemical study of the coccolithophore, *Emiliania huxleyi*, in the North Atlantic. *Global Biogeochem Cy*, 7 (4), 879–900.
- Horton, P.; Park, K.-J.; Obayashi, T.; Fujita, N.; Harada, H.; Adams-Collier, C. J.; Nakai, K. (2007) WoLF PSORT: protein localization predictor. *Nucleic Acids Research*, 35 (Web Server issue), W585–7.
- Houck, K. A.; Ferrara, N.; Winer, J.; Cachianes, G.; Li, B.; Leung, D. W. (1991) the vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of rna. *Molecular Endocrinology*, 5 (12), 1806–1814.
- Houghton, R. A. (2007) Balancing the Global Carbon Budget. *Annu. Rev. Earth Planet. Sci.*, 35 (1), 313–347.

- Humphery-Smith, I.; Cordwell, S. J.; Blackstock, W. P. (1997) Proteome research: Complementarity and limitations with respect to the RNA and DNA worlds. *J Phycol*, 18 (8), 1217–1242.
- Huntley, R. P.; Sawford, T.; Mutowo-Meullenet, P.; Shypitsyna, A.; Bonilla, C.; Martin, M. J.; O'Donovan, C. (2015) The GOA database: Gene Ontology annotation updates for 2015. *Nucleic Acids Research*, 43 (D1), D1057–D1063.
- Hüttenhofer, A.; Vogel, J. (2006) Experimental approaches to identify non-coding RNAs. *Nucleic Acids Research*, 34 (2), 635–646.
- Iglesias-Rodriguez, M. D.; Brown, C. W.; Doney, S. C.; Kleypas, J.; Kolber, D.; Kolber, Z.; Hayes, P. K.; et al. (2002) Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids. *Global Biogeochem Cy*, 16 (4), –.
- Iglesias-Rodriguez, M. D.; Halloran, P. R.; Rickaby, R. E. M.; Hall, I. R.; Colmenero-Hidalgo, E.; Gittins, J. R.; Green, D. R. H.; et al. (2008) Phytoplankton Calcification in a High-CO₂ World. *Science*, 320 (5874), 336–340.
- Iglesias-Rodriguez, M. D.; Schofield, O. M.; Batley, J.; Medlin, L. K.; Hayes, P. K. (2006) Intraspecific genetic diversity in the marine coccolithophore *Emiliania huxleyi* (Prymnesiophyceae): The use of microsatellite analysis in marine phytoplankton population studies. *J Phycol*, 42 (3), 526–536.
- Inouye, I.; Chihara, M. (1980) Laboratory culture and taxonomy of *Hymenomonas coronata* and *Ochrosphaera verrucosa* (Class Prymnesiophyceae) from the Northwest Pacific. *Bot Mag Tokyo*, 93 (3), 195–208.
- Inzé, D.; De Veylder, L. (2006) Cell cycle regulation in plant development 1. *Annu. Rev. Genet.*, 40, 77–105.
- Isenberg, H. D.; Lavine, L. S.; Weissfellner, H. (1963) The suppression of mineralization in a coccolithophorid by an inhibitor of carbonic anhydrase. *J Eukaryotic Microbiology*, 10 (4), 477–479.
- Izban, M. G.; Luse, D. S. (1991) Transcription on nucleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific pausing. *Genes & Development*, 5 (4), 683–696.
- Jackowiak, P.; Nowacka, M.; Strozycki, P. M.; Figlerowicz, M. (2011) RNA degradome--its biogenesis and functions. *Nucleic Acids Research*, 39 (17), 7361–7370.
- Jain, C. (2002) Degradation of mRNA in Escherichia coli. J Phycol, 54 (6), 315–321.
- Jang, M. K.; Mochizuki, K.; Zhou, M.; Jeong, H.-S.; Brady, J. N.; Ozato, K. (2005) The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. *Mol. Cell*, 19 (4), 523–534.
- Jayadev, R.; Kuk, C. Y.; Low, S. H.; Murata-Hori, M. (2014) Calcium sensitivity of α-actinin is required for equatorial actin assembly during cytokinesis. *Cell Cycle*, 11 (10), 1929–1937.

- John, L. M.; Lechleiter, J. D.; Camacho, P. (1998) Differential modulation of SERCA2 isoforms by calreticulin. *J. Cell Biol.*, 142 (4), 963–973.
- Johnson, C. H.; Golden, S. S.; Ishiura, M.; Kondo, T. (1996) Circadian clocks in prokaryotes. *Molecular Microbiology*, 21 (1), 5–11.
- Jones, B. M.; Edwards, R. J.; Skipp, P. J.; O'Connor, C. D.; Iglesias-Rodriguez, M. D. (2011) Shotgun Proteomic Analysis of *Emiliania huxleyi*, a Marine Phytoplankton Species of Major Biogeochemical Importance. *Mar Biotechnol*, 13 (3), 496–504.
- Jones, B. M.; Iglesias-Rodriguez, M. D.; Skipp, P. J.; Edwards, R. J.; Greaves, M. J.; Young, J. R.; Elderfield, H.; et al. (2013) Responses of the *Emiliania huxleyi* Proteome to Ocean Acidification. *PLoS ONE*, 8 (4), e61868.
- Jordan, R. W.; Chamberlain, A. H. L. (1997) Biodiversity among haptophyte algae. *Biodiversity and Conservation*, 6 (1), 131–152.
- Joubert, C.; Piquemal, D.; Marie, B.; Manchon, L.; Pierrat, F.; Zanella-Cléon, I.; Cochennec-Laureau, N.; et al. (2010) Transcriptome and proteome analysis of *Pinctada margaritifera* calcifying mantle and shell: focus on biomineralization. *BMC Genomics*, 11 (1), 613–.
- Kalia, A.; Gupta, R. P. (2005) Proteomics: A Paradigm Shift. *Critical Reviews in Biotechnology*, 25 (4), 173–198.
- Kane, P. M. (1995) Disassembly and reassembly of the yeast vacuolar H⁺-ATPase in vivo. *J Biol Chem.*, 270 (28), 17025–17032.
- Kanesaki, Y.; Imamura, S.; Minoda, A.; Tanaka, K. (2012) external light conditions and internal cell cycle phases coordinate accumulation of chloroplast and mitochondrial transcripts in the red alga cyanidioschyzon merolae. *DNA Res.*, 19 (3), 289–303.
- Kaniewska, P.; Anthony, K.; Sampayo, E. M. (2013) Implications of geometric plasticity for maximizing photosynthesis in branching corals. *Mar Biol.* DOI 10.1007/s00227-013-2336-z
- Kanno, T.; Huettel, B.; Mette, M. F.; Aufsatz, W.; Jaligot, E.; Daxinger, L.; Kreil, D. P.; et al. (2005) Atypical RNA polymerase subunits required for RNA-directed DNA methylation. *Nature*, 37 (7), 761–765.
- Karako-Lampert, S.; Katcoff, D. J.; Achituv, Y.; Dubinsky, Z.; Stambler, N. (2004) Do clades of symbiotic dinoflagellates in scleractinian corals of the Gulf of Eilat (Red Sea) differ from those of other coral reefs? *Journal of Experimental Marine Biology and Ecology*, 311 (2), 301–314.
- Katoh, K.; Toh, H. (2008) Recent developments in the MAFFT multiple sequence alignment program. *Briefings in Bioinformatics*, 9 (4), 286–298.
- Keeling, P. J. (2004) Diversity and evolutionary history of plastids and their hosts. *Am. J. Bot.*, 91 (10), 1481–1493.

- Keeling, P. J. (2009) Chromalveolates and the Evolution of Plastids by Secondary Endosymbiosis. *Journal of Eukaryotic Microbiology*, 56 (1), 1–8.
- Keller, E. B.; Noon, W. A. (1984) Intron splicing: a conserved internal signal in introns of animal pre-mRNAs. *Proc. Natl. Acad. Sci. U.S.A.*, 81 (23), 7417–7420.
- Kettenberger, H.; Armache, K.-J.; Cramer, P. (2004) Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. *Mol. Cell*, 16 (6), 955–965.
- King, N. L.; Deutsch, E. W.; Ranish, J. A.; Nesvizhskii, A. I.; Eddes, J. S.; Mallick, P.; Eng, J.; et al. (2006) Analysis of the *Saccharomyces cerevisiae* proteome with PeptideAtlas. *Genome Biol.*, 7 (11), R106.
- Kirchhausen, T. (2000) Clathrin. Annu. Rev. Biochem., (69), 699-727.
- Kirk, K. L. (1997) life-history responses to variable environments: starvation and reproduction in planktonic rotifers. *Ecology*, 78 (2), 434–441.
- Kitao, Y.; Harada, H.; Matsuda, Y. (2008) Localization and targeting mechanisms of two chloroplastic beta-carbonic anhydrases in the marine diatom *Phaeodactylum tricornutum*. *Physiol Plant*, 133 (1), 68–77.
- Klaas, C.; Archer, D. E. (2002) Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. *Global Biogeochem Cy*, 16 (4), 1116; AGU.
- Klaveness, D. (1972) *Coccolithus huxleyi* (Lohmann) Kamptner. 1. Morphological investigations on the vegetative cell and the process of coccolith formation. *Protistologica (Paris. 1965)*, 8 (3).
- Klaveness, D. (1976) Emiliania huxleyi (Lohmann) Hay and Mohler 3. Mineral deposition and origin of matrix during coccolith formation. *Protistologica*, 12, 217–224.
- Kodzius, R.; Kojima, M.; Nishiyori, H.; Nakamura, M.; Fukuda, S.; Tagami, M.; Sasaki, D.; et al. (2006) CAGE: cap analysis of gene expression. *Nat Methods*, 3 (3), 211–222.
- Koenig, T.; Menze, B. H.; Kirchner, M.; Monigatti, F.; Parker, K. C.; Patterson, T.; Steen, J. J.; et al. (2008) Robust prediction of the MASCOT score for an improved quality assessment in mass spectrometric proteomics. *J Proteome Res*, 7 (9), 3708–3717.
- Kolber, Z. S.; Barber, R. T.; Coale, K. H.; Fitzwateri, S. E.; Greene, R. M.; Johnson, K. S.; Lindley, S.; et al. (1994) Iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. *Nature*, 371 (6493), 145–149.
- Kolber, Z.; Zehr, J.; Falkowski, P. (1988) Effects of Growth Irradiance and Nitrogen Limitation on Photosynthetic Energy Conversion in Photosystem II. *Plant Physiol.*, 88 (3), 923–929.
- Kondorosi, E.; Roudier, F.; Gendreau, E. (2000) Plant cell-size control: growing by ploidy? *Palaeogeography, Palaeoclimatology, Palaeoecology*, 3 (6), 488–492.

- Krause, G. H.; Weis, E. (1991) Chlorophyll fluorescence and photosynthesis: the basics. *Annu Rev Plant Biol*, 42 (1), 313–349.
- Krause, G. H.; Winter, K.; Krause, B.; Virgo, A. (2015) Light-stimulated heat tolerance in leaves of two neotropical tree species, Ficus insipida and *Calophyllum longifolium*. *Functional Plant Biol.*, 42 (1), 42.
- Kruskopf, M.; Flynn, K. J. (2005) Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. *New Phytol*, 169 (3), 525–536.
- La Claire, J. W. (2006) Analysis of Expressed Sequence Tags from the Harmful Alga, *Prymnesium parvum* (Prymnesiophyceae, Haptophyta). *Mar Biotechnol*, 8 (5), 534–546.
- La Roche, J.; Geider, R. J.; Graziano, L. M.; Murray, H.; Lewis, K. (1993) Induction of specific proteins in eukaryotic algae grown under iron-, phosphorus-, or nitrogen-deficient conditions. *J Phycol*, 29 (6), 767–777.
- Lam, C. M. C.; Chong, C.; Wong, J. T. Y. (2001) A dinoflagelalte mutant with higher frequency of multiple fission. *Prtoplasma*, 216, 75–79.
- Langer, G.; Geisen, M.; Baumann, K.-H.; Klà s, J.; Riebesell, U.; Thoms, S.; Young, J. R. (2006) Species-specific responses of calcifying algae to changing seawater carbonate chemistry. *Geochem. Geophys. Geosyst.*, 7, 1-12.
- Langer, G.; Nehrke, G.; Probert, I.; Ly, J.; Ziveri, P. (2009) Strain-specific responses of *Emiliania huxleyi* to changing seawater carbonate chemistry. *Biogeosciences*, 6 (11), 2637–2646.
- Leonardos, N.; Read, B.; Thake, B.; Young, J. R. (2009) No mechanistic dependence of photosynthesis on calcification in the coccolithophorid *Emiliania huxleyi* (Haptophyta). *J Phycol*, 45 (5), 1046–1051.
- Levine, M.; Tjian, R. (2003) Transcription regulation and animal diversity. *Nature*, 424 (6945), 147–151.
- Lewin, D. A.; Mellman, I. (1998) Sorting out adaptors. *Biochim. Biophys. Acta*, 1401 (2), 129–145.
- Liu, H.; Aris-Brosou, S.; Probert, I.; de Vargas, C. (2010) A time line of the environmental genetics of the haptophytes. *Mol. Biol. Evol.*, 27 (1), 161–176.
- Llopis, J.; McCaffery, J. M.; Miyawaki, A.; Farquhar, M. G.; Tsien, R. Y. (1998) Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. *Proc Natl Acad Sci U S A*, 95 (12), 6803–6808.
- Lohbeck, K. T.; Riebesell, U.; Reusch, T. B. H. (2012) Adaptive evolution of a key phytoplankton species to ocean acidification. *Nature Geosci*, advance online publication.

- Lohbeck, K. T.; Riebesell, U.; Reusch, T. B. H. (2014) Gene expression changes in the coccolithophore *Emiliania huxleyi* after 500 generations of selection to ocean acidification. *Proceedings of the Royal Society B: Biological Sciences*, 281 (1786), 20140003–20140003.
- Lorenzen, H. (1957) Synchrone Zellteilungen von Chlorella bei verschiedenen Licht-Dunkel-Wechseln. *Flora (Jena)*, 144, 473–496.
- Lowenstam, H. (1981) Minerals formed by organisms. Science, 211 (4487), 1126–1131.
- Lowenstam, H. A.; Weiner, S. (1989) On Biomineralization; Oxford University Press.
- López, J. L. (2007) Applications of proteomics in marine ecology. *Mar Ecol-Prog Ser*, 332, 275–279.
- Mackinder, L.; Wheeler, G.; Schroeder, D.; Dassow, von, P.; Riebesell, U.; Brownlee, C. (2011) Expression of biomineralization-related ion transport genes in Emiliania huxleyi. *Environ. Microbiol.*, 13 (12), 3250–3265.
- Mackinder, L.; Wheeler, G.; Schroeder, D.; Riebesell, U.; Brownlee, C. (2010) Molecular Mechanisms Underlying Calcification in Coccolithophores. *Geomicrobiology Journal*, 27 (6), 585–595.
- Mann, M.; Wilm, M. (1995) Electrospray mass spectrometry for protein characterization. *Trends in Biochemical Sciences*, 20 (6), 219–224.
- Manton, I.; Leedale, G. F. (1969) Observations on the Microanatomy of *Coccolithus Pelagicus* and *Cricosphaera Carterae*, With Special Reference to the Origin and Nature of Coccoliths and Scales. *J. Mar. Biol. Ass.*, 49 (01), 1–16.
- Marsh, M. E. (1986) Biomineralization in the presence of calcium-binding phosphoprotein particles. *J. Exp. Zool.*, 239 (2), 207–220.
- Marsh, M. E. (1994) Polyanion-mediated mineralization assembly and reorganization of acidic polysaccharides in the Golgi system of a coccolithophorid alga during mineral deposition. *Protoplasma*.
- Marsh, M. E. (2003) Regulation of CaCO3 formation in coccolithophores. *Comp Biochem Physiol B Biochem Mol Biol*, 136 (4), 743–754.
- Marsh, M. E.; Chang, D. K.; King, G. C. (1992) Isolation and characterization of a novel acidic polysaccharide containing tartrate and glyoxylate residues from the mineralized scales of a unicellular coccolithophorid alga *Pleurochrysis carterae*. *J Biol Chem*, 267 (28), 20507–20512.
- Marsh, M. E.; Dickinson, D. P. (1997) Polyanion-mediated mineralization mineralization in coccolithophore (*Pleurochrysis carterae*) variants which do not express PS2, the most abundant and acidic mineral-associated polyanion in wild-type cells. *Protoplasma*, 199 (1-2), 9–17.

- Marsh, M. E.; Ridall, A. L.; Azadi, P.; Duke, P. J. (2002) Galacturonomannan and Golgiderived membrane linked to growth and shaping of biogenic calcite.
- Martin, J. A.; Wang, Z. (2011) Next-generation transcriptome assembly. *Nature*, 12 (10), 671–682.
- Matsuda, Y.; Nakajima, K.; Tachibana, M. (2011) Recent progresses on the genetic basis of the regulation of CO₂ acquisition systems in response to CO₂ concentration. *Photosynthesis Research*, 109 (1-3), 191–203.
- Mattick, J. S.; Makunin, I. V. (2006) Non-coding RNA. *Hum. Mol. Genet.*, 15 Spec No 1, R17–29.
- Más, P. (2008) Circadian clock function in *Arabidopsis thaliana*: time beyond transcription. *Trends Cell Biol.*, 18 (6), 273–281.
- McKew, B. A.; Lefebvre, S. C.; Achterberg, E. P.; Metodieva, G.; Raines, C. A.; Metodiev, M. V.; Geider, R. J. (2013) Plasticity in the proteome of *Emiliania huxleyi* CCMP 1516 to extremes of light is highly targeted. *New Phytol*, 200 (1), 61–73.
- McMahon, H. T.; Mills, I. G. (2004) COP and clathrin-coated vesicle budding: different pathways, common approaches. *Curr. Opin. Cell Biol.*, 16 (4), 379–391.
- Medini, D.; Donati, C.; Tettelin, H.; Masignani, V.; Rappuoli, R. (2005) The microbial pangenome. *Current Opinion in Genetics & Development*, 15 (6), 589–594.
- Medlin, L. K.; Barker, G. L. A.; Campbell, L.; Green, J. C.; Hayes, P. K.; Marie, D.; Wrieden, S.; et al. (1996) Genetic characterisation of *Emiliania huxleyi* (Haptophyta). *Journal of Marine Systems*, 9 (1,Äì2), 13–31.
- Meldolesi, J.; Pozzan, T. (1998) The endoplasmic reticulum Ca²⁺ store: a view from the lumen. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 23 (1), 10–14.
- Menges, M.; Hennig, L.; Gruissem, W.; Murray, J. A. H. (2002) Cell cycle-regulated gene expression in Arabidopsis. *J. Biol. Chem.*, 277 (44), 41987–42002.
- Milliman, J. D. (1974) Marine carbonates. Recent sedimentary carbonates; Springer.
- Milliman, J. D. (1993) Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state. *Global Biogeochem Cy*, 7 (4), 927–957; AGU.
- Milliman, J.; Droxler, A. (1996) Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss. *Geologische Rundschau*, 85 (3), 496–504.
- Mitchison, J. M. (1971) The biology of the cell cycle; CUP Archive.
- Mitton, B.; Kranias, E. G. (2003) Proteomics: Its potential in the post-genome era. *Hellenic J Cardiol*.

- Montsant, A.; Allen, A. E.; Coesel, S.; Martino, A. D.; Falciatore, A.; Mangogna, M.; Siaut, M.; et al. (2007) Identification and comparative genomic analysis of signaling and regulatory components in the diatom *Thalassiosira pseudonana*. *J Phycol*, 43 (3), 585–604.
- Moore, C. M.; Suggett, D. J.; Hickman, A. E.; Kim, Y.-N.; Tweddle, J. F.; Sharples, J.; Geider, R. J.; et al. (2006) Phytoplankton Photoacclimation and Photoadaptation in Response to Environmental Gradients in a Shelf Sea. *Limnol. Oceanogr.*, 51 (2), 936–949.
- Moriyama, Y.; Maeda, M.; Futai, M. (1992) The role of V-ATPase in neuronal and endocrine systems. *J. Exp. Biol.*, 172, 171–178.
- Morris, R. M.; Nunn, B. L.; Frazar, C.; Goodlett, D. R.; Ting, Y. S.; Rocap, G. (2010) Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction. *Isme J*, 4 (5), 673–685.
- Muggli, D. L.; Harrison, P. J. (1997) Effects of iron on two oceanic phytoplankters grown in natural NE subarctic pacific seawater with no artificial chelators present. *Journal of Experimental Marine Biology and Ecology*, 212 (2), 225–237.
- Muggli, D. L.; Lecourt, M.; Harrison, P. J. (1996) Effects of iron and nitrogen source on the sinking rate, physiology and metal composition of an oceanic diatom from the subarctic Pacific. *Mar Ecol-Prog Ser*, 132, 215–227.
- Mullin, M. M.; Sloan, P. R.; Eppley, R. W. (1966) Relationship Between Carbon Content, Cell Volume, and Area in Phytoplankton. *Limnol. Oceanogr.*, 11 (2), 307–311.
- Muse, G. W.; Gilchrist, D. A.; Nechaev, S.; Shah, R.; Parker, J. S.; Grissom, S. F.; Zeitlinger, J.; et al. (2007) RNA polymerase is poised for activation across the genome. *Nature*, 39 (12), 1507–1511.
- Müller, M. N.; Antia, A. N.; LaRoche, J. (2008) Influence of cell cycle phase on calcification in the coccolithophore *Emiliania huxleyii*. *Limnol. Oceanogr.*, 53 (2), 7.
- Nagai, K.; Yotsukura, N.; Ikegami, H.; Kimura, H.; Morimoto, K. (2008) Protein extraction for 2-DE from the lamina of *Ecklonia kurome* (Laminariales): recalcitrant tissue containing high levels of viscous polysaccharides. *Electrophoresis*, 29 (3), 672–681.
- Nagaraj, S. H.; Gasser, R. B.; Ranganathan, S. (2006) A hitchhiker's guide to expressed sequence tag (EST) analysis. *Briefings in Bioinformatics*, 8 (1), 6–21.
- Nash, P. D.; Opas, M.; Michalak, M. (1994) Calreticulin: not just another calcium-binding protein. *Mol Cell Biochem*, 135 (1), 71–78.
- Nazareth Bastajian, H. F. B. J. A. (2013) Bck2 Acts through the MADS Box Protein Mcm1 to Activate Cell-Cycle-Regulated Genes in Budding Yeast. *PLoS Genet*, 9 (5)

- Näär, A. M.; Lemon, B. D.; Tjian, R. (2001) Transcriptional cactivator complexes. *Annu. Rev. Ecol. Evol. Syst.*, 70 (1), 475–501.
- Nguyen, B.; Bowers, R. M.; Wahlund, T. M.; Read, B. A. (2005) Suppressive Subtractive Hybridization of and Differences in Gene Expression Content of Calcifying and Noncalcifying Cultures of *Emiliania huxleyi* Strain 1516. *Appl. Environ. Microbiol.*, 71 (5), 2564–2575.
- Nieduszynski, C. A.; Liti, G. (2011) From sequence to function: Insights from natural variation in budding yeasts. *BBA General Subjects*, 1–8.
- Nimer, N. A.; Dixon, G. K.; Merrett, M. J. (1992) Utilization of inorganic carbon by the coccolithophorid *Emiliania huxleyi* (Lohmann) Kamptner. *New Phytol*, 120 (1), 153–158.
- Nimer, N. A.; Iglesias-Rodriguez, M. D.; Merrett, M. J. (1997) Bicarbonate utilization by marine phytoplankton species. *J Phycol*, 33 (4), 625–631.
- Nimer, N. A.; Merrett, M. J. (1991) Calcification and utilization of inorganic carbon by the coccolithophorid *Emiliania huxleyi* Lohmann. *New Phytol*, 121 (2), 173–177.
- Nimer, N. A.; Merrett, M. J. (1993) Calcification rate in *Emiliania huxleyi* Lohmann in response to light, nitrate and availability of inorganic carbon. *New Phytol*, 123 (4), 673–677.
- Nishiyama, Y.; Allakhverdiev, S. I.; Murata, N. (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 1757 (7), 742–749.
- Nookaew, I.; Papini, M.; Pornputtapong, N.; Scalcinati, G.; Fagerberg, L.; Uhlen, M.; Nielsen, J. (2012) A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in *Saccharomyces cerevisiae*. *Nucleic Acids Research*, 40 (20), 10084–10097.
- Nunez, R. (2001) DNA measurement and cell cycle analysis by flow cytometry. *Current issues in molecular biology*, 3, 67–70.
- Nunn, B. L.; Aker, J. R.; Shaffer, S. A.; Tsai, S.; Strzepek, R. F.; Boyd, P. W.; Freeman, T. L.; et al. (2009) Deciphering diatom biochemical pathways via whole-cell proteomics. *Aquat. Microb. Ecol.*, 55 (3), 241–253.
- O'Connor, C. D. C.; Adams, P. P.; Alefounder, P. P.; Farris, M. M.; Kinsella, N. N.; Li, Y. Y.; Payot, S. S.; et al. (2000) The analysis of microbial proteomes: strategies and data exploitation. *Electrophoresis*, 21 (6), 1178–1186.
- O'Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. *J. Biol. Chem.* 1975, 250:4007-4021.
- Oehlen, L. J.; McKinney, J. D.; Cross, F. R. (1996) Ste12 and Mcm1 regulate cell cycle-dependent transcription of FAR1. *Mol. Cell. Biol.*, 16 (6), 2830–2837.
- Oliva, A.; Rosebrock, A.; Ferrezuelo, F.; Pyne, S.; Chen, H.; Skiena, S.; Futcher, B.; et al.

- (2005) The Cell Cycle–Regulated Genes of *Schizosaccharomyces pombe*. *PLoS Biol*, 3 (7), e225.
- Olsen, J. V.; Blagoev, B.; Gnad, F.; Macek, B.; Kumar, C.; Mortensen, P.; Mann, M. (2006) Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks. *Cell*, 127 (3), 635–648.
- Olson, R. J.; Vaulot, D.; Chisholm, S. W. (n.d.) Effects of Environmental Stresses on the Cell Cycle of Two Marine Phytoplankton Species.
- Onodera, Y.; Haag, J. R.; Ream, T.; Costa Nunes, P.; Pontes, O.; Pikaard, C. S. (2005) Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. *Cell*, 120 (5), 613–622.
- Orci, L.; Malhotra, V.; Amherdt; Serafini, T.; Rothman, J. E. (1986) Dissection of a single round of vesicular transport: sequential intermediates for intercisternal movement in the Golgi stack. *Cell*, 56 (3), 357–368.
- Orr, J. C.; Fabry, V. J.; Aumont, O.; Bopp, L.; Doney, S. C.; Feely, R. A.; Gnanadesikan, A.; et al. (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. *Nature*, 437 (7059), 681–686.
- Outka, D. E.; Williams, D. C. (1971) Sequential Coccolith Morphogenesis in Hymenomonas carterae. *J Eukaryotic Microbiology*, 18 (2), 285–297.
- Outka, D. E.; Williams, D. C. (1973) Green Algae Carole A. Lembi Google Books. *Green algae*.
- Paasche, E. (1962) Coccolith Formation. Nature, 193 (4820), 1094-1095.
- Paasche, E. (1963) The Adaptation of the Carbon-14 Method for the Measurement of Coccolith Production in *Coccolithus huxleyi*. *Physiol Plant*, 16 (1), 186–200; Blackwell Publishing Ltd.
- Paasche, E. (1965) The Effect of 3-(p-Chlorophenyl)-1,1-Dimethylurea (CMU) on Photosynthesis and Light-Dependent Cocoolith Formation in *Coccolithus huxleyi*. *Physiol Plant*, 18 (1), 138–145.
- Paasche, E. (1966) Adjustment to Light and Dark Rates of Coccolith Formation. *Physiol Plant*, 19 (2), 271–278.
- Paasche, E. (1967) Marine Plankton Algae Grown with Light-Dark Cycles. I. Coccolithus huxleyi. *Physiol Plant*, 20 (4), 946–956
- Paasche, E. (1998) Roles of nitrogen and phosphorus in coccolith formation in *Emiliania huxleyi* (Prymnesiophyceae). *European Journal of Phycology*, 33 (1), 33–42.

- Paasche, E. (2002) A review of the coccolithophorid *Emiliania huxleyi* (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. *Phycologia*, 40 (6), 503–529
- Paasche, E.; Brubak, S. (1994) Enhanced calcification in the coccolithophorid *Emiliania huxleyi* (Haptophyceae) under phosphorus limitation. *Phycologia*, 33 (5), 324–330.
- Parkhill, J.-P.; Maillet, G.; Cullen, J. J. (2001) Fluorescence-based maximal quantum yield for PSII as a diagnostic of nutrient stress. *J Phycol*, 37 (4), 517–529;
- Patterson, S. D.; Aebersold, R. (1995) Mass spectrometric approaches for the identification of gel-separated proteins. *Electrophoresis*, 16 (10), 1791–1814.
- Perales, M.; Más, P. (2007) A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock. *Plant Cell*, 19 (7), 2111–2123.
- Pockley, A. G. A. (2003) Heat shock proteins as regulators of the immune response. *Lancet*, 362 (9382), 469–476.
- Pokhariyal, R.; Basnet, B.; Gupta, A. K.; Sehrawat, U.; Jain, S. K.; Hariprasad, G. (2014) Effect of Lipid on Gel Based Electrophoretic Proteomic Experiments. *Journal of Proteins & Proteomics*, 5 (2).
- Post, A. F.; Eijgenraam, F.; Mur, L. R. (1985) Influence of light period length on photosynthesis and synchronous growth of the green alga *Scenedesmus protuberans*. *British Phycological Journal*, 20 (4), 391–397.
- Poulton, A. J.; Charalampopoulou, A.; Young, J. R.; Tarran, G. A.; Lucas, M. I.; Quartly, G. D. (2010) Coccolithophore dynamics in non-bloom conditions during late summer in the central Iceland Basin (July-August 2007). *Limnol. Oceanogr.*, 55 (4), 1601–1613.
- Price, L. L.; Yin, K.; Harrison, P. J. (1998) Influence of continuous light and L:D cycles on the growth and chemical composition of Prymnesiophyceae including coccolithophores. *Journal of Experimental Marine Biology and Ecology*, 223 (2), 223–234.
- Price, M. N.; Dehal, P. S.; Arkin, A. P. (2009) FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix. *Mol. Biol. Evol.*, 26 (7), 1641–1650.
- Quinn, P.; Bowers, R. M.; Zhang, X.; Wahlund, T. M.; Fanelli, M. A.; Olszova, D.; Read, B. A. (2006) cDNA Microarrays as a Tool for Identification of Biomineralization Proteins in the Coccolithophorid *Emiliania huxleyi* (Haptophyta). *Appl. Environ. Microbiol.*, 72 (8), 5512–5526.
- Ragni, M.; Airs, R. L.; Leonardos, N.; Geider, R. J. (2008) Photoinhibition of PSII in *Emiliania huxleyi* (Haptophyta) under high light stress: the roles of photoacclimation, photoprotection, and photorepair. *J Phycol*, 44 (3), 670–683.

- Ramos-Silva, P.; Kaandorp, J.; Huisman, L.; Marie, B.; Zanella-Cléon, I.; Guichard, N.; Miller, D. J.; et al. (2013) The Skeletal Proteome of the Coral *Acropora millepora*: The Evolution of Calcification by Co-Option and Domain Shuffling. *Mol. Biol. Evol. 30 (9) pp. 2099-2112*
- Rasmussen, E. B.; Lis, J. T. (1993) In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. *Proc. Natl. Acad. Sci. U.S.A.*, 90 (17), 7923–7927.
- Raven, J.; Caldeira, K.; Elderfield, H.; Hoegh-Guldberg, O.; Liss, P.; Riebesell, U.; Shepherd, J.; et al. (2005) Ocean acidification due to increasing atmospheric carbon dioxide. *The Royal Society*.
- Rayko, E.; Maumus, F.; Maheswari, U.; Jabbari, K.; Bowler, C. (2010) Transcription factor families inferred from genome sequences of photosynthetic stramenopiles. *J Phycol*, 188 (1), 52–66.
- Read, B. A.; Kegel, J.; Klute, M. J.; Kuo, A.; Lefebvre, S. C.; Maumus, F.; Mayer, C.; et al. (2013) Pan genome of the phytoplankton Emiliania underpins its global distribution. *Nature*, 499 (7457), 209–213; Nature Publishing Group.
- Reynaud, S.; Leclercq, N.; Romaine-Lioud, S.; Ferrier-PagËs, C.; Jaubert, J.; Gattuso, J.-P. (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. *Global Change Biol*, 9 (11), 1660–1668.
- Richier, S.; Kerros, M. E.; de Vargas, C.; Haramaty, L.; Falkowski, P. G.; Gattuso, J. P. (2009) Light-dependent transcriptional regulation of genes of biogeochemical interest in the diploid and haploid life cycle stages of *Emiliania huxleyi*. *Appl. Environ. Microbiol.*, 75 (10), 3366–3369.
- Riebesell, U.; Koertzinger, A.; Oschlies, A. (2009) Sensitivities of marine carbon fluxes to ocean change. *Proc Natl Acad Sci U S A*, 106 (49), 20602–20609.
- Riebesell, U.; Zondervan, I.; Rost, B.; Tortell, P. D.; Zeebe, R. E.; Morel, F. M. M. (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. *Nature*, 407 (6802), 364–367.
- Riegman, R.; Stolte, W.; Noordeloos, A. A. M.; Slezak, D. (2000) Nutrient Uptake and Alkaline Phosphatase (Ec 3:1:3:1) Activity of Emiliania Huxleyi (PRYMNESIOPHYCEAE) During Growth Under N and P Limitation in Continuous Cultures. *J Phycol*, 36 (1), 87–96.
- Robbens, S.; Khadaroo, B.; Camasses, A.; Derelle, E.; Ferraz, C.; Inzé, D.; Van de Peer, Y.; et al. (2005) Genome-wide analysis of core cell cycle genes in the unicellular green alga *Ostreococcus tauri. Mol. Biol. Evol.*, 22 (3), 589–597.
- Robertson, J. E.; Robinson, C.; Turner, D. R.; Holligan, P.; Watson, A. J.; Boyd, P.; Fernandez, E.; et al. (1994) The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991. *Deep-Sea Res Pt I*, 41 (2), 297–314.

- Robinson, A.; van Oijen, A. M. (2013) Bacterial replication, transcription and translation: mechanistic insights from single-molecule biochemical studies. *Nat. Rev. Microbiol.*, 11 (5), 303–315.
- Ronning, O. W.; Lindmo, T. (1983) Progress through G1 and S in relation to net protein accumulation in human NHIK 3025 cells. *Experimental Cell Research*, 144 (1), 171–179.
- Rose, S. L.; Fulton, J. M.; Brown, C. M.; Natale, F.; Van Mooy, B. A. S.; Bidle, K. D. (2014) Isolation and characterization of lipid rafts in *Emiliania huxleyi*: a role for membrane microdomains in host-virus interactions. *Environ. Microbiol.*, 16 (4), 1150–1166.
- Rosenwasser, S.; Graff van Creveld, S.; Schatz, D.; Malitsky, S.; Tzfadia, O.; Aharoni, A.; Levin, Y.; et al. (2014) Mapping the diatom redox-sensitive proteome provides insight into response to nitrogen stress in the marine environment. *Proc. Natl. Acad. Sci. U.S.A.*, 111 (7), 2740–2745.
- Ross, P. L. (2004) Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Aminereactive Isobaric Tagging Reagents. *Molecular & Cellular Proteomics*, 3 (12), 1154–1169.
- Rost, B.; Riebesell, U.; Burkhardt, S.; Sültemeyer, D. (2003) Carbon Acquisition of Bloom-Forming Marine Phytoplankton. *Limnol. Oceanogr.*, 48 (1), 55–67.
- Rustici, G.; Mata, J.; Kivinen, K.; Lió, P.; Penkett, C. J.; Burns, G.; Hayles, J.; et al. (2004) Periodic gene expression program of the fission yeast cell cycle. *Nat Genet*, 36 (8), 809–817.
- Rymarquis, L. A.; Kastenmayer, J. P.; Hüttenhofer, A. G.; Green, P. J. (2008) Diamonds in the rough: mRNA-like non-coding RNAs. *Trends in Plant Science*, 13 (7), 329–334.
- Sabine, C. L.; Feely, R. A.; Gruber, N.; Key, R. M.; Lee, K.; Bullister, J. L.; Wanninkhof, R.; et al. (2004) The Oceanic Sink for Anthropogenic CO2. *Science*, 305 (5682), 367–371.
- Saez, A. G.; Probert, I.; Young, J. R.; Edvardsen, B.; Eikrem, W.; Medlin, L. K. (2004) A review of the phylogeny of the Haptophyta. In "Coccolithophores: from Molecular Processes to Global Impact". *Coccolithophores-from molecular processes to global impact* . -Berlin (Springer).
- Sanders, D.; Pelloux, J.; Brownlee, C.; Harper, J. F. (2002) Calcium at the crossroads of signaling. *Plant Cell*, 14, 401–417.
- Sanger, F.; Nicklen, S.; Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors. *Proc. Natl. Acad. Sci. U.S.A.*, 74 (12), 5463–5467.
- Schroeder, D. C.; Biggi, G. F.; Hall, M.; Davy, J.; Martínez, J. M.; Richardson, A. J.; Malin, G.; et al. (2005) A genetic marker to separate *Emiliania huxleyi* (Prymnesiophyceae) morphotypes. *J Phycol*, 41 (4), 874–879.
- Schulze, W. X.; Usadel, B. (2010) Quantitation in Mass-Spectrometry-Based Proteomics. *Annu Rev Plant Biol*, 61 (1), 491–516.

- Sciandra, A.; Harlay, J.; Lefèvre, D.; Lemée, R.; Rimmelin, P.; Denis, M.; Gattuso, J.-P. (2003) Response of coccolithophorid *Emiliania huxleyi* to elevated partial pressure of CO2 under nitrogen limitation. *Mar Ecol-Prog Ser*, 261.
- Sekino, K.; Shiraiwa, Y. (1994) Accumulation and Utilization of Dissolved Inorganic Carbon by a Marine Unicellular Coccolithophorid, *Emiliania huxleyi*. *Plant and Cell Physiology*, 35 (3), 353–361.
- Sekino, K.; Shiraiwa, Y. (1996) Evidence for the Involvement of Mitochondrial Respiration in Calcification in a Marine Coccolithophorid, *Emiliania huxleyi*. *Plant and Cell Physiology*, 37 (7), 1030–1033.
- Shatkin, A. J. (1976) Capping of eucaryotic mRNAs. Cell, 9 (4), 645–653; Cell Press.
- Shi, D.; Xu, Y.; Morel, F. M. M. (2009) Effects of the pH/pCO2 control method on medium chemistry and phytoplankton growth. *Biogeosciences*, 6 (7), 1199–1207.
- Shiraiwa, Y. (2003) Physiological regulation of carbon fixation in the photosynthesis and calcification of coccolithophorids. *Comp Biochem Physiol B Biochem Mol Biol*, 136 (4), 775–783.
- Shiraki, T.; Kondo, S.; Katayama, S.; Waki, K.; Kasukawa, T.; Kawaji, H.; Kodzius, R.; et al. (2003) Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. *Proc Natl Acad Sci U S A*, 100 (26), 15776–15781.
- Siegenthaler, U.; Sarmiento, J. L. (1993) Atmospheric carbon dioxide and the ocean. *Nature*, 119–125.
- Skipp, P.; Robinson, J.; O'Connor, C. D.; Clarke, I. N. (2005) Shotgun proteomic analysis of *Chlamydia trachomatis*. *Proteomics*, 5 (6), 1558–1573.
- Snustad, D. P.; Simmons, M. J. (2000) Principles of Genetics; John Wiley and Sons, Inc.
- Soto, A. R.; Zheng, H.; Shoemaker, D.; Rodriguez, J.; Read, B. A.; Wahlund, T. M. (2006) Identification and Preliminary Characterization of Two cDNAs Encoding Unique Carbonic Anhydrases from the Marine Alga *Emiliania huxleyi*. *Appl Environ Microbiol*, 72 (8), 5500–5511.
- Spudish, J. L.; Sager, R. (1980) Regulation of the Chlamydomonas cell cycle by light and dark. *J. Cell Biol.*, 85, 136–145.
- Stadler, R.; Wolf, K.; Hilgarth, C.; Tanner, W.; Sauer, N. (1995) Subcellular localization of the inducible Chlorella HUP1 monosaccharide-H+ symporter and cloning of a co-induced galactose-H+ symporter. *Plant Physiol.*, 107 (1), 33–41; Am Soc Plant Biol.
- Sterling, D.; Alvarez, B. V.; Casey, J. R. (2002) The extracellular component of a transport metabolon. Extracellular loop 4 of the human AE1 Cl-/HCO3- exchanger binds carbonic anhydrase IV. *J Biol Chem*, 277 (28), 25239–25246.

- Suffrian, K.; Schulz, K. G.; Gutowska, M. A.; Riebesell, U.; Bleich, M. (2011) Cellular pH measurements in Emiliania huxleyi reveal pronounced membrane proton permeability. *New Phytol*, 190 (3), 595–608.
- Suggett, D. J.; Le Floc'H, E.; Harris, G. N.; Leonardos, N.; Geider, R. J. (2007) Different strategies of photoacclimation by two strains of *Emiliania huxleyi* (Haptophyta) 1. *J Phycol*, 43 (6), 1209–1222.
- Suggett, D. J.; Moore, C. M.; Hickman, A. E.; Geider, R. J. (2009) Interpretation of fast repetition rate (FRR) fluorescence: signatures of phytoplankton community structure versus physiological state. *Mar Ecol-Prog Ser*, 376, 1–19.
- Takei, K.; Haucke, V. (2001) Clathrin-mediated endocytosis: membrane factors pull the trigger. *Trends Cell Biol.*, 11 (9), 385–391.
- Tambutte, E.; Tambutte, S.; Segonds, N.; Zoccola, D.; Venn, A.; Erez, J.; Allemand, D. (2011) Calcein labelling and electrophysiology: insights on coral tissue permeability and calcification. *Proceedings of the Royal Society B: Biological Sciences*, 279 (1726), 19–27.
- Tambutté, S.; Holcomb, M.; Ferrier-PagËs, C.; Reynaud, S.; Tambutté, É.; Zoccola, D.; Allemand, D. (2011) Coral biomineralization: from the gene to the environment. *Journal of Experimental Marine Biology and Ecology*, 408 (1), 58–78.
- Tan, S.; Conaway, R. C.; Conaway, J. W. (1995) Dissection of transcription factor TFIIF functional domains required for initiation and elongation. *Proc. Natl. Acad. Sci. U.S.A.*, 92 (13), 6042–6046.
- Taylor, A. R.; Chrachri, A.; Wheeler, G.; Goddard, H.; Brownlee, C. (2011) A voltage-gated H+ channel underlying pH homeostasis in calcifying coccolithophores. *PLoS Biol*, 9 (6), e1001085.
- Taylor, A. R.; Russell, M. A.; Harper, G. M.; Collins, T. F. T.; Brownlee, C. (2007) Dynamics of formation and secretion of heterococcoliths by *Coccolithus pelagicus ssp. braarudii*. *European Journal of Phycology*, 42 (2), 125–136.
- Thierstein, H. R.; Geitzenauer, K. R.; Molfino, B.; Shackleton, N. J. (1977) Global synchroneity of late Quaternary coccolith datum levels Validation by oxygen isotopes. *Geology*, 5 (7), 400–404.
- Thomas, M. C.; Chiang, C.-M. (2006) The general transcription machinery and general cofactors. *Crit. Rev. Biochem. Mol. Biol.*, 41 (3), 105–178.
- Tian, Q.; Stepaniants, S. B.; Mao, M.; Weng, L.; Feetham, M. C.; Doyle, M. J.; Yi, E. C.; et al. (2004) Integrated Genomic and Proteomic Analyses of Gene Expression in Mammalian Cells. *Molecular & Cellular Proteomics*, 3 (10), 960–969.
- Tirichine, L.; Bowler, C. (2011) Decoding algal genomes: tracing back the history of photosynthetic life on Earth. *Plant J*, 66 (1), 45–57.

- Tomanek, L.; Zuzow, M. J. (2010) The proteomic response of the mussel congeners *Mytilus galloprovincialis* and *M. trossulus* to acute heat stress: implications for thermal tolerance limits and metabolic costs of thermal stress. *Journal of Experimental Biology*, 213 (20), 3559–3574.
- Tomanek, L.; Zuzow, M. J.; Ivanina, A. V.; Beniash, E.; Sokolova, I. M. (2011) Proteomic response to elevated pCO₂ levles in eastern oysters, *Crassostrea virginica*: eveidence for oxidative stress. *Journal of Experimental Biology*, 214, 1836–1844.
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D. R.; Pimentel, H.; et al. (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. *Nature*, 7 (3), 562–578.
- Trimborn, S.; Langer, G.; Rost, B. (2007) Effect of varying calcium concentrations and light intensities on calcification and photosynthesis in *Emiliania huxleyi*. *Limnol*. *Oceanogr*., 52 (5), 2285–2293.
- Tyrell, T.; Merico, A. (2004) *Emiliania huxleyi*: bloom observations and the conditions that induce them. In: *Coccolithophores: from molecular processes to global impact*. (H. R. Thierstein & J. R. Young, eds.).
- Tyrrell, T.; Young, J. R. (2009) *COCCOLITHOPHORES*. (J. H. Steele & K. K. Turekian, Eds.), 2nd ed., 606–614; Elsevier.
- Urizar, N. L.; Dowhan, D. H.; Moore, D. D. (2000) The farnesoid X-activated receptor mediates bile acid activation of phospholipid transfer protein gene expression. *J. Biol. Chem.*, 275 (50), 39313–39317.
- Van Bleijswijk, J. D. L.; Kempers, R. S.; Veldhuis, M. J.; Westbroek, P. (1994) Cell and growth characteristics of types a and b of *Emiliania huxleyi* (Prymnesiophyceae) as determined by flow cytometry and chemical analyses. *J Phycol*, 30 (2), 230–241.
- van Bleijswijk, JDL; Veldhuis, M. (1995) In situ gross growth rates of *Emiliania huxleyi* in enclosures with different phosphate loadings revealed by diel changes in DNA content. *Mar Ecol-Prog Ser*, 121, 271–277.
- van Bleijswijk, Judith; Wal, P.; Kempers, R.; Veldhuis, M.; Young, J. R.; Muyzer, G.; Vrind-de Jong, E.; et al. (1991) Distribution of two types of *Emiliania huxleyii* (Prymnesiophyzeae) in the northeast Atlantic region as determined by immunofluorescence and coccolith morphology. *J Phycol*, 27 (5), 566–570.
- van den Heuvel, S.; Harlow, E. (1993) Distinct roles for cyclin-dependent kinases in cell cycle control. *Science*, 262 (5142), 2050–2054.
- van der Wal, P.; de Jong, E. W.; Westbroek, P.; de Bruijn, W. C.; Mulder-Stapel, A. A. (1983) Polysaccharide localization, coccolith formation, and golgi dynamics in the coccolithophorid *Hymenomonas carterae*. *Journal of Ultrastructure Research*, 85 (2), 139–158;

- van der Wal, P.; de Vrind, J. P. M.; de Vrind-de Jong, E. W.; Borman, A. H. (1987) Incompleteness of the coccosphere as a possible stimulus for coccolith formation in *Pleurochrysis carterae* (Prymnesiophyceae). *J Phycol*, 23 (1), 218–221.
- van der Wal, P.; Jong, E. W.; Westbroek, P.; Bruijn, W. C.; Mulder-Stapel, A. A. (1983) Ultrastructural polysaccharide localization in calcifying and naked cells of the coccolithophorid *Emiliania huxleyi*, 118 (2), 157–168.
- Van Emburg, P. R. (1989, September 8) Coccolith formation in *Emiliania huxleyi*.
- Van Emburg, P. R.; de Jong, E. W.; Daems, W. T. (1986) Immunochemical localization of a polysaccharide from biomineral structures (coccoliths) of *Emiliania huxleyi*. *Journal of Ultrastructure and Molecular Structure Research*, 94 (3), 246–259.
- Vandenbussche, F.; Verbelen, J. P.; Van Der Straeten, D. (2005) Of light and length: regulation of hypocotyl growth in Arabidopsis. *Bioessays*, 27 (3), 275–284; Wiley Online Library.
- VanGuilder, H. D.; Vrana, K. E.; Freeman, W. M. (2008) Twenty-five years of quantitative PCR for gene expression analysis. *Biotechniques*, 44 (5), 619–626.
- Velculescu, V. E.; Zhang, L.; Vogelstein, B.; Kinzler, K. W. (1995) Serial analysis of gene expression. *Science*, 270 (5235), 484–487.
- Venn, A.; Quinn, J.; Jones, R.; Bodnar, A. (2009) P-glycoprotein (multi-xenobiotic resistance) and heat shock protein gene expression in the reef coral *Montastraea franksi* in response to environmental toxicants. *Aquat. Toxicol.*, 93 (4), 188–195.
- Venn, A.; Tambutté, É.; Holcomb, M.; Allemand, D.; Tambutté, S. (2011) Live Tissue Imaging Shows Reef Corals Elevate pH under Their Calcifying Tissue Relative to Seawater. *PLoS ONE*, 6 (5), e2001.
- Verardo, D. J.; Froelich, P. N.; McIntyre, A. (1990) Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 analyzer. *Deep Sea Research Part A. Oceanographic Research Papers*, 37 (1), 157–165.
- Verret, F.; Wheeler, G.; Taylor, A. R.; Farnham, G.; Brownlee, C. (2010) Calcium channels in photosynthetic eukaryotes: implications for evolution of calcium-based signalling. *New Phytol*, 187 (1), 23–43.
- Vierling, E. (1991) The roles of heat shock proteins in plants. *Annu Rev Plant Biol*, 42 (1), 579–620.
- Vince, J. W.; Reithmeier, R. A. (2000) Identification of the carbonic anhydrase II binding site in the Cl(-)/HCO(3)(-) anion exchanger AE1. *Biochemistry*, 39 (18), 5527–5533.
- Vliegenthart, J.; van Halbeek, H.; Dorland, L. (1981) The aplicability of 50-Mhz high-resolution 1h-NMR spectroscopyfor the structure determination of carbohydrates derived from glycoproteins. *Pure and Applied Chemistry*, 53, 45–77.

- Volk, T.; Hoffert, M. I. (1985) Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO₂ changes. In: *The Carbon Cycle and Atmospheric CO₂: Natural Variations Archean to Present*, Vol. 32, 99–110.
- Volkman, J. K.; Eglinton, G.; Corner, E. D. S.; Sargent, J. R. (1980) Novel unsaturated straight-chain C37 C39 methyl and ethyl ketones in marine sediments and a coccolithophore *Emiliania huxleyi. Palaeogeography, Palaeoclimatology, Palaeoecology*, 12, 219–227.
- Wahlund, T. M.; Hadaegh, A. R.; Clark, R.; Nguyen, B.; Fanelli, M.; Read, B. A. (2004) Analysis of Expressed Sequence Tags from Calcifying Cells of Marine Coccolithophorid (*Emiliania huxleyi*). *Mar Biotechnol*, 6 (3), 278–290.
- Wahlund, T. M.; Zhang, X.; Read, B. A. (2004) Expressed sequence tag profiles from calcifying and non-calcifying cultures of *Emiliania huxleyi. micropalaeontology*, 50 (Suppl 1), 145–155.
- Wang, W.; Vinocur, B.; Shoseyov, O.; Altman, A. (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. *Trends in Plant Science*, 9 (5), 244–252; Elsevier.
- Wang, Z.; Gerstein, M.; Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. *Nat Rev Genet*, 10 (1), 57–63.
- Warnecke, F.; Hess, M. (2009) A perspective: Metatranscriptomics as a tool for the discovery of novel biocatalysts. *Journal of Biotechnology*, 142 (1), 91–95.
- Wasinger, V. C.; Cordwell, S. J.; Cerpa-Poljak, A.; Yan, J. X.; Gooley, A. A.; Wilkins, M. R.; Duncan, M. W.; et al. (1995) Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. *J Phycol*, 16 (1), 1090–1094.
- Weiner, S.; Dove, P. M.; De Yoreo, J. J. (2003) *Biomineralization*. (J. J. Rosso, Ed.) *Reviews in Mineralogy and Geochemistry* Reviews in Mineralogy and Geochemistry, Vol. 54.
- Weiner, S.; Levi-Kalisman, Y.; Raz, S.; Addadi, L. (2003) Biologically Formed Amorphous Calcium Carbonate. *Connective Tissue Research*, 44 (1), 214–218.
- Weiner, S.; Traub, W.; Parker, S. B. (1984) Macromolecules in mollusc shells and their functions in biomineralization. *Philosophical Transactions of the Royal Society London B Biological Science*, 304, 425–434.
- Weiss, I. M.; Tuross, N.; Addadi, L.; Weiner, S. (2002) Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. *Journal of Experimental Zoology*, 293 (5), 478–491.
- Welschmeyer, N. A. (1994) Fluorometric Analysis of Chlorophyll a in the Presence of Chlorophyll b and Pheopigments. *Limnol. Oceanogr.*, 39 (8), 1985–1992.
- Westbroek, P.; Young, J. R.; Linschooten, K. (1989) Coccolith Production (Biomineralization) in the Marine Alga *Emiliania huxleyi*. *Journal of Eukaryotic Microbiology*, 36 (4), 368–373.

- Wijnen, H.; Young, M. W. (2006) Interplay of circadian clocks and metabolic rhythms. Annual Review of Genetics, 40, 409–448.
- Wilbur, K. M.; Watabe, N. (1963) Experimental Studies on Calcification in Molluscs and the Alga Coccolithus Huxleyi. *J Phycol*, 109 (1), 82–112.
- Wilkins, M. R.; Pasquali, C.; Appel, R. D.; Ou, K.; Golaz, O.; Sanchez, J.-C.; Yan, J. X.; et al. (1996) From Proteins to Proteomes: Large Scale Protein Identification by Two-Dimensional Electrophoresis and Arnino Acid Analysis. *Nat. Biotechnol.*, 14 (1), 61–65.
- Wittwer, C. T.; Herrmann, M. G.; Moss, A. A.; Rasmussen, R. P. (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. *Biotechniques*, 22 (1), 130–1–134–8.
- Woeller, F. H. (1961) Liquid scintillation counting of C-14-labelled CO2 with phenethylamine. *Anal Biochem*, 2, 508–511.
- Wurch, L. L.; Bertrand, E. M.; Saito, M. A.; Van Mooy, B. A. S.; Dyhrman, S. T. (2011) Proteome Changes Driven by Phosphorus Deficiency and Recovery in the Brown Tide-Forming Alga *Aureococcus anophagefferens*. *PLoS ONE*, 6 (12), e28949;
- Yalovsky, S.; Paulsen, H.; Michaeli, D.; Chitnis, P. R.; Nechushtai, R. (1992) Involvement of a chloroplast HSP70 heat shock protein in the integration of a protein (light-harvesting complex protein precursor) into the thylakoid membrane. *Proc. Natl. Acad. Sci. U.S.A.*, 89 (12), 5616–5619.
- Yoo, S. H.; Lewis, M. S. (1992) Effects of pH and Ca2+ on monomer-dimer and monomer-tetramer equilibria of chromogranin A. *J Biol Chem*.
- Yoon, H. S.; Hackett, J. D.; Ciniglia, C.; Pinto, G.; Bhattacharya, D. (2004) A molecular timeline for the origin of photosynthetic eukaryotes. *Mol. Biol. Evol.*, 21 (5), 809–818.
- Young, J. N. (1994) Functions of coccoliths. In: *Coccolithophores* (A. Winter & W. Siesser, eds.), 63–82; Cambridge University Press.
- Young, J. R.; Andruleit, H.; Probert, I. (2009) Coccolith function and morphogenesis: insights from appendage-bearing coccolithophores of the family Syracosphaeraceae (Haptophyta). *J Phycol*, 45 (1), 213–226.
- Young, J. R.; Davis, S. A.; Bown, P. R.; Mann, S. (1999) Coccolith Ultrastructure and Biomineralisation, 126 (3), 195–215.
- Young, J. R.; Didymus, J. M.; Brown, P. R.; Prins, B.; Mann, S. (1992) Crystal assembly and phylogenetic evolution in heterococcoliths. *Nature*, 356 (6369), 516–518.
- Young, J. R.; Henriksen, K. (2003) Biomineralization Within Vesicles: The Calcite of Coccoliths. *Reviews in Mineralogy and Geochemistry*, 54 (1), 189–215.
- Zeebe, R.; Ridgwell, A. (2011) Past changes in ocean carbonate chemistry. In: *Ocean Acidification* (J. P. Gattuso, ed.), 21–40; Oxford University Press.

- Zondervan, I. (2007) The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores, A review. *Deep-Sea Res. Part II-Top. Stud. Oceanogr.*, 54 (5), 521–537.
- Zondervan, I.; Rost, B.; Riebesell, U. (2002) Effect of CO₂ concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths. *Journal of Experimental Marine Biology and Ecology*, 272 (1), 55–70.
- Zondervan, I.; Zeebe, R. E.; Rost, B.; Riebesell, U. (2001) Decreasing marine biogenic calcification: a negative feedback on rising atmospheric pCO2. *Global Biogeochem Cy*, 15 (2), 507–516.

Bibliography

- Jones, B., 2010. The proteome of *Emiliania huxleyi* and its responses to CO₂ induced ocean acidification. University of Southampton, August 2010
- Rehm, H. (2006) Protein biochemistry and proteomics; Elsevier.
- Snustad, D.P. & Simmons, M.J., 2000. Principles of Genetics, John Wiley and Sons, Inc.
- Tyrrell, T. & Young, J.R., 2009. *Coccolithophores* 2nd ed. J. H. Steele & K. K. Turekian, eds., Elsevier.
- Weiner, S., Dove, P.M. & De Yoreo, J.J., 2003a. *Biomineralization J. J. Rosso*, ed., Mineralogical Society of America.
- Zachleder, V., Bisova, K., Vitova, M., 2016. The Cell Cycle of Microalgae. In: *The Physiology of Microalgae*. M.A. Borowitzka, J. Beardall, J.A. Raven, eds., Springer. pp. 3–46.