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Jiraporn Charoenvattanaporn 

The aim of this research project was to identify the factors controlling the phytoplankton 

community and primary production in the shallow temperate estuary of Christchurch 

Harbour and the two river systems flowing into the estuary. Christchurch Harbour is a 

small shallow micro-tidal enclosed estuary situated on the south coast of England. It is fed 

by the rivers Stour and Hampshire Avon, and exchanges with coastal waters through a 

narrow channel at Mudeford. An intensive programme of monitoring both the water 

quality and phytoplankton communities was undertaken at weekly intervals from April 

2013 to April 2014 at the lowest river gauging stations on the Hampshire Avon at Knapp 

Mill and the Stour at Throop plus a further station at Iford Bridge just above the tidal limit 

of the estuary. In addition a similar set of measurements were made on the same dates at 

the entrance to the estuary at Mudeford Quay at low tide. During Spring/Summer 2014 

eight estuarine surveys were conducted at fortnightly intervals with measurements of water 

quality, phytoplankton abundance, and production made at six stations along a transect 

throughout the estuary. 

The riverine phytoplankton community in terms of carbon biomass and accessory pigments 

displayed a distinctive pattern of seasonal succession. A diatom group maximum was 

observed in spring and chlorophyte peak in summer. The nano-sized diatom (2.0 – 20.0 

µm), Stephanodiscus sp., dominated the phytoplankton assemblage, reaching 4.4 × 104 

cells mL-1 and a chlorophyll concentration of 98.8 µg L-1 on the Stour river during spring 

when river discharge had reduced following the winter flow peak. The summer 

chlorophyte bloom was composed of Chlamydomonas spp., reaching 7.9 × 104 cells mL-1 

and followed the diatom spring bloom. Multivariate analysis revealed that water 

temperature, river discharge, silicate, and phosphate concentration were major factors 

controlling phytoplankton carbon biomass at all the river study sites.  

At Mudeford Quay, inorganic nutrient concentrations (nitrate, phosphate, and silicate) 

were generally low during periods of reduced river discharge, but increased during the 

winter high river flow periods. A chlorophyll a maximum was observed during the late 

spring and decreased during the autumn and winter similar to conditions on the rivers at 

Throop and Knapp Mill. Phytoplankton carbon biomass and accessory pigment 

concentration displayed a similar pattern. Diatoms dominated the phytoplankton biomass 

and community throughout most of the sampling period and were inversely correlated to 

silicate concentrations. The dinoflagellate Kryptoperidinium foliaceum was observed in 

high abundance during summer months at high salinity values and the freshwater diatom 

Stephanodiscus spp. dominated during the spring.  

During the estuarine transect surveys conducted over high tide, high chlorophyll ‘bloom’ 

events (chlorophyll up to 98 µg L-1) were detected in the middle of the estuary in waters of 

salinity values over 30. Reduced river discharge in summer months led to an increase in 



 

higher salinity water in the mid estuary with these associated peaks in phytoplankton 

abundance. Different populations of estuarine phytoplankton were observed over the 

course of the summer with dinoflagellate blooms dominated by K. foliaceum, occurring in 

the mid-estuary followed by Cryptomonas spp. blooms. Multivariate analysis revealed that 

irradiance attenuation coefficient (k), salinity, oxygen saturation, temperature, nitrate, and 

silicate were the major factors controlling phytoplankton carbon biomass during the 

transect surveys. The results of the present study have provided an improved understanding 

of the factors controlling the production and distribution of estuarine phytoplankton 

communities in the shallow temperate, Christchurch Harbour estuary. 
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CHAPTER 1                                                                                                            INTRODUCTION 

1 

Chapter 1:  Introduction 

1.1 Estuaries  

An estuary is commonly defined as “ a semi-enclosed coastal body of water which has free 

connection to the open sea, extending into the rivers as far as the limit of tidal influence 

and within which seawater is measurably diluted with freshwater derived from land 

drainage” (Dyer, 1997). Rivers concentrate discharges from the catchment area that are 

transported into the estuaries and coastal waters (Underwood and Kromkamp, 1999). 

Estuaries are valuable environments in terms of their ecology and economy and are highly 

complex aquatic systems. The morphology of an estuary can be divided into three sectors; 

a) a marine or lower estuary, in free connection with open sea; b) a middle estuary subject 

to strong salt and freshwater mixing; and c) an upper fluvial estuary, characterized by 

freshwater but subject to daily tidal action (McLusky and Elliott, 2004; Kaiser et al., 

2011). The limits between these sectors are variable, and subject to constant changes in the 

river discharge (Levinton, 2011). Freshwater discharge influences the salinity and nutrient 

variation along the estuary (Underwood and Kromkamp, 1999; Paerl and Justić, 2011). 

Spatial and temporal salinity variation has been considered to be the most important factor 

that influences the distribution and growth of estuarine organisms especially plankton 

(Kaiser et al., 2011). In addition, freshwater discharge is the main source of nutrients to an 

estuary (Gillanders and Kingsford, 2002) and macronutrients (nitrogen, phosphorus, and 

silicon) are important factors influencing phytoplankton growth and production in estuaries 

(Mann, 2000). Hence, estuaries are considered some of the world’s most productive 

ecosystems and a trophic gradient exists that decreases as salinity increases from estuarine 

to oceanic systems (Kaiser et al., 2011; Levinton, 2011).  

Estuarine ecology is influenced by the quality and quantity of riverine discharge. Most 

freshwater phytoplankton tend to dominate in the upper estuary and are gradually replaced 

by coastal or marine species in the lower estuary. Increased river flow raises organic and 

inorganic gradients into the estuary and turbidity that may affect the photosynthetic 

processes. On the other hand, low river discharge may increase residence time and reduce 

the rate of which material moves out of the estuary. In addition, estuaries are considerably 

influenced by local weather events such as flooding, droughts, and winds. Therefore, it can 

be argued that production of phytoplankton in estuarine ecosystems is influenced by 

several physical factors and biogeochemical processes. 
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1.2 Phytoplankton 

Phytoplankton are aquatic microscopic plant-like organisms that are able to convert the 

energy of sunlight to chemical energy, assimilating carbon dioxide and inorganic nutrients 

(autotrophs). These organisms exist as single cells or simple multicellular forms and they 

have a large range of cell size (1 – 400 µm) and growth rates (Harris, 1986). Phytoplankton 

also play an important role in biogeochemical cycles as they are an integral part of the 

global carbon cycle (Falkowski et al., 1998; Gregg et al., 2003).  

Phytoplankton are important components of estuarine ecosystem but rapid changes in their 

physical environment can influence the species composition (Underwood and Kromkamp, 

1999). Estuaries occur adjacent to coastal waters where freshwater inputs from land and 

oceanic sources are mixed by hydrodynamic processes. The resulting distributions have 

important effects in regulating the populations and succession of phytoplankton dynamics 

in estuaries with the phytoplankton community structure mixing between freshwater and 

coastal species along the estuary. 

1.2.1 Riverine phytoplankton 

Phytoplankton in streams and rivers are important components of primary producers 

associated with the water column (Belcher and Swale, 1979; Reynolds, 1984; Wehr and 

Descy, 1998; Dudgeon, 2007; Bellinger and Sigee, 2010) and are used as important 

indicator of river water quality (Villegas and de Giner, 1973). Phytoplankton growth can 

cause problems in rivers with high nutrient enrichment and can result in oxygen depletion 

following blooms (Hilton et al., 2006). Nevertheless, they can also provide an ecosystem 

service by improving water quality in rivers through nutrient uptake of industrial and 

agricultural contaminants (Wehr and Descy, 1998). Freshwater phytoplankton dynamics 

have been studied extensively in lakes and reservoirs, but comparatively little research has 

concentrated on factors that control phytoplankton biomass in streams and rivers 

(Reynolds, 2000; Hardenbicker et al., 2014). There is little general literature concerning 

the factors that influence phytoplanktion dynamics in river ecosystems (Wehr and Thorp, 

1997; Wu et al., 2011), but as phytoplankton respond rapidly to local weather conditions 

and changes in river flow, they are sensitive to climate change (Reynolds, 1998). 

Generally, when rivers flow through lowland areas they contain microalgae in suspension. 

In temperate regions, the addition of substances including macronutrients from agricultural 

land and sewage effluent from urban areas leads to increased algal growth in rivers leading 
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to phytoplankton blooms. Nutrients are usually in high concentration in rivers affected by 

urbanization and agriculture and accordingly rarely limit phytoplankton growth in these 

systems (Reynolds, 2006). Some biological factors like grazing can control phytoplankton 

populations in rivers (Schöl et al., 1999) but moreover, they are considered as biological 

indicators or biomarkers by their presence under particular conditions of water quality 

(Bellinger and Sigee, 2010). 

Several studies have reported that riverine phytoplankton abundance in temperate regions 

normally reach significant numbers only during the spring and summer months (Belcher 

and Swale, 1979; Phlips et al., 2000; Hardenbicker et al., 2014). The diatoms are 

predominant particular in the spring and the characteristic phytoplankton species belonging 

mainly to the centric diatom genera Stephanodiscus and Cyclotella occur in UK river 

ecosystems (Belcher and Swale, 1979). In North America, Wehr and Thorp (1997) 

reported on the planktonic organisms of the Ohio River between 1991 and 1992, observing 

the diatom Melosira spp. was abundant in summer and Cyclotella spp. in spring. 

Various possible factors regulating the phytoplankton dynamics in rivers maybe chemical 

(e.g. nutrient concentrations), hydrological (water residence time, discharge), physical 

(light, temperature), and biological (grazing) (Belcher and Swale, 1979; Reynolds, 1984; 

Wehr and Thorp, 1997; Hardenbicker et al., 2014). All these different parameters are 

known to alter phytoplankton populations in rivers, however, studies on the effect of 

conditions on phytoplankton growth in rivers are still rare (Wu et al., 2011; Hardenbicker 

et al., 2014). 

1.2.2 Estuarine phytoplankton 

Phytoplankton are described as important primary producers in estuarine planktonic food 

webs (Cloern, 2001; Harding Jr et al., 2002; Paerl and Justić, 2011). Phytoplankton 

populations are present within the drainage channels and extensive biofilms of microalgae 

e.g. diatoms and euglenoids plus cyanobacteria can be found on the surface of mudflats 

(Underwood and Kromkamp, 1999). In estuarine and coastal ecosystems, phytoplankton 

can be divided into seven main groups including; diatoms, chlorophytes, cyanophytes, 

cryptophytes, chrysophytes, prymnesiophytes, and dinoflagellates. 
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1.2.3 Distribution of the main taxonomic phytoplankton groups 

Diatoms are considered among the most abundant and productive phytoplankton in rivers, 

estuaries and oceanic waters, and support a central role in planktonic and benthic food 

webs (Tomas, 1997; Round et al., 2007; Bellinger and Sigee, 2010). The diatoms tend to 

prefer waters with moderate to productive nutrient concentrations and favour blooming 

during springtime when relatively high nutrient levels are available and when water 

residence time is reduced in estuaries (Paerl and Justić, 2011). The distribution of some 

diatom species can be used as indicators of nutrient status in estuaries (Underwood et al., 

1998; Paerl et al., 2003), and they support a key role in planktonic and benthic food webs 

(Tomas, 1997; Reynolds, 2006). In addition, diatoms can dominate summer blooms in 

some temperate estuaries (Carstensen et al., 2007; Nixon et al., 2009). Fucoxanthin is often 

used as a diagnostic photopigment of diatoms when present in both estuarine and marine 

ecosystems (Jeffrey and Vesk, 1997; Paerl et al., 2003). 

Chlorophytes or green algae are commonly found in freshwater, coastal, and ocean waters 

and are generally present in the low salinity or upper parts of estuaries (Tomas, 1997). 

They vary in size and shape and occur as coccoid cells (e.g. Chlorella), disk-shaped cells 

(e.g. Cosmarium), stacked cells (e.g. Scenedesmus), and include flagellated genera (e.g. 

Chlamydomonas) (Paerl and Justić, 2011) with chlorophyll a and b their main pigments 

(Jeffrey and Vesk, 1997). Chlorophytes have rapid growth rates and planktonic forms can 

grow in fast-flowing water with short residence time and in low salinity waters, where 

nutrients are enriched (Jeffrey and Vesk, 1997; Paerl and Justić, 2011). Chlorophytes are 

normally non-toxic although they can form blooms that may contribute to hypoxic 

conditions particularly in estuarine bottom waters after sedimention (GEOHAB, 2006). 

Cyanobacteria or cyanophytes are prokaryotic phytoplankton most commonly found in 

filamentous forms and widely occurring in freshwater and seawater environments (Jeffrey 

and Vesk, 1997; Bellinger and Sigee, 2010). They are often abundant under eutrophic 

nutrient-enriched conditions in freshwaters and estuaries (Paerl et al., 2003). Cyanophytes 

include several toxic species and some species can fix atmospheric nitrogen into 

ammonium. They contain zeaxanthin a diagnostic photopigment (Jeffrey and Humphrey, 

1975). 

Cryptophytes or cryptomonads are a well-defined group of photosynthetic nanoplanktonic 

flagellates and are similar in size to the chlorophytes (Jeffrey and Humphrey, 1975; Paerl 

and Justić, 2011). They are found both in freshwater and marine environments and are 
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common in temperate waters (Bellinger and Sigee, 2010). They prefer fresh to brackish 

nutrient enriched waters and as a result, some species are used as bioindicators of eutrophic 

status (Bellinger and Sigee, 2010). Alloxanthin is present as a main accessory pigment that 

indicates the presence of cryptophytes (Jeffrey and Vesk, 1997). 

Most chrysophytes are found in freshwater environment as unicellular, colonial, and free 

swimming forms (flagellar). Their photosynthetic pigments include chlorophyll a, c2, c3, 

fucoxanthin, 19'Butanoyloxyfucoxanthin, and diadinoxanthin; excluding violaxanthin 

mainly present in some freshwater species (Jeffrey and Vesk, 1997). They are often used as 

indicators of oligotrophic conditions in terms of water monitoring and sediment analysis in 

lakes (Bellinger and Sigee, 2010). 

Prymnesiophytes or haptophytes are photosynthetic cells possessing chlorophyll a and 

accessory pigments including diadinoxanthin and fucoxanthin (Jeffrey and Vesk, 1997; 

Bellinger and Sigee, 2010). Haptophytes of the genus Chrysochromulina form blooms that 

can cause serious aquaculture problems (Paerl and Justić, 2011). 

Dinoflagellates are often dominant in surface marine water, with only about 220 species 

found in freshwater ecosystems (Bellinger and Sigee, 2010). They are important primary 

producers in estuarine ecosystems and can sustain the grazing component of food webs and 

higher trophic levels (Paerl et al., 2003; Paerl and Justić, 2011). Dinoflagellates contain 

chlorophyll a and usually peridinin photopigments and they can form temporary cysts 

under unfavourable situation (Jeffrey and Vesk, 1997). They can form blooms and some 

form toxins that can contaminate the food chain in estuaries and may accumulate in shell 

fish. The growth rates of dinoflagellates are generally slower than diatoms, chlorophytes, 

and cryptomonads (Paerl and Justić, 2011). 

1.2.4 Temperate estuarine phytoplankton 

In temperate areas, estuarine zones are valuable ecological and economic environments 

that support fisheries, aquaculture, tourism, and recreation activities (Underwood and 

Kromkamp, 1999; De Jonge et al., 2002). In some estuaries direct impacts of human 

activities have significantly contributed to decreasing water quality including increased 

nutrient concentrations from sewage and agricultural run off. Increasing nutrient loadings 

in estuaries can enhance primary production leading ultimately to eutrophication (Nedwell 

and Raffaelli, 1999; De Jonge et al., 2002). The over enrichment of water by dissolved 

nutrients such as nitrogen and phosphorus can increase phytoplankton growth and 
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microbial production in the water column (Levinton, 2011). Through time, these changes 

will most probably be reflected at other trophic levels (Wetz et al., 2011) and some 

estuaries have undergone significant eutrophication due to organic enrichment (Marques et 

al., 2007; Wetz et al., 2011; Maier et al., 2012). Estuarine ecosystems are very dynamic 

systems where water circulation, river flow, and sewage input can induce changes in the 

distribution and structure of planktonic populations (Marques et al., 2007). Because of the 

unusually dynamic conditions experienced in estuaries, the phytoplankton distribution is 

often spatially and temporally heterogeneous (e.g. the Taw estuary in north Devon) when 

compared to other aquatic ecosystems (Maier et al., 2012). Several studies have 

investigated the environmental controls upon phytoplankton growth and primary 

production in temperate estuarine systems in recent years (Moore et al., 2006; Wetz et al., 

2011; Maier et al., 2012). The estuarine phytoplankton are an important component in 

eutrophic estuaries and have a key role in primary production in an estuary. McLusky and 

Elliott (2004) showed that high levels of primary production occur due mainly to the high 

nutrient levels in estuaries in comparison to the near shore waters or the open sea.   

1.2.5 General characteristics of temperate estuarine phytoplankton in shallow 

estuaries 

Estuarine ecosystems are very dynamic systems where water circulation river inputs and 

tides cause high variability in the distribution and structure of planktonic populations 

(Marques et al., 2007). Phytoplankton are described as the major primary producers in 

estuaries and have a dynamic influence on the estuarine planktonic food web. McLusky 

and Elliott (2004) suggest that there may be two factors, shallowness and turbidity that 

limit the production rate of phytoplankton in shallow natural estuaries. Recent evidence 

suggests that larger phytoplankton may dominate in shallow coastal systems typified by 

high nutrient concentrations (Wetz et al., 2011). Several studies investigating pico-

phytoplankton (0.2 – 2 µm), however, have found that this size fraction are the dominant 

primary producers in some temperate estuaries (Sin et al., 2000; Gaulke et al., 2010). Thus, 

the role of small phytoplankton, such as pico-phytoplankton and nano-phytoplankton in 

estuarine food webs and biogeochemical cycles is still largely unresolved and 

understanding of environmental controls upon estuarine small phytoplankton in particular 

is limited (Wetz et al., 2011). Several studies have investigated environmental control of 

phytoplankton growth and primary production in temperate estuarine systems in recent 

years (Moore et al., 2006; Wetz et al., 2011; Maier et al., 2012). These studies have 
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identified many different factors controlling phytoplankton growth and productivity in the 

temperate shallow and river-dominated estuary. 

1.2.6 Species succession and occurrence of blooms in estuaries 

Carstensen et al. (2015) demonstrated that the occurrence of phytoplankton blooms are the 

driving phenomenon of the functioning of estuarine and coastal waters. The phytoplankton 

bloom may be defined as a population explosion of a particular species which is confined 

to a definite part of the water column and can develop in the course of a few days and be 

sustained for several weeks. Phytoplankton bloom events are often visible and the water 

colour shows the characteristics of the phytoplankton species (Allen et al., 2008; Allen and 

Wolfe, 2013). An obvious spring bloom is commonly present in temperate estuarine and 

coastal systems and diatom dominated blooms in spring time are a general feature 

(Carstensen et al., 2015). The occurrence of blooms in other seasons particularly summer 

and autumn has recently achieved consideration as a consequence of their increasing 

recurrence (Nixon et al., 2009). Summer phytoplankton blooms have increased in 

magnitude and frequency in some estuarine and coastal areas (Carstensen et al., 2007; 

Nixon et al., 2009). Blooms occur at different times in different estuaries, depending on the 

environmental condition and nutrients available (Lucas et al., 1999; Pinckney et al., 1999). 

For instance, summer blooms in the shallow coastal waters of the northern Europe (the 

Kattegat strait) were consideration to be related to strong nutrients inputs from river 

discharge and resuspension from the bottom (Carstensen and Conley, 2004). In contrast, 

the occurrence of summer blooms seems to result from the germination of resting stages of 

different phytoplankton species particularly diatom and dinoflagellate species in Hakata 

Bay, Japan (Shikata et al., 2008) and in the Gullmar Fjord, Sweden (McQuoid, 2005). 

These blooms response to environment variables, for example, increase in light intensity, 

water temperature, and nitrogen availability (McQuoid, 2005; Shikata et al., 2008). In 

addition, the blooms may change the water colour, due to high chlorophyll concentration. 

Dinoflagellate blooms can result occurs in green or red colouration to the waters depending 

on the dominant species (GEOHAB, 2006). Dinoflagellate blooms often occur after 

massive rain events the coastal zone (Jeffrey and Vesk, 1997). 
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1.3 Important environmental factors influencing phytoplankton 

growth in temperate estuaries 

Estuaries have complex ecosystems that can be affected by changes in hydrology, local 

weather, and human activities. The key environmental factors controlling the diversity and 

abundance of phytoplankton in estuaries are nutrients, light, water residence time, 

freshwater discharge, salinity, temperature, and grazing.  

1.3.1 Nutrients 

About half of the world’s human populution live adjacent to estuaries leading to increasing 

levels of nutrients and sediment associated with coastal developments (Paerl et al., 2005). 

McLusky and Elliott (2004) showed that the abundance of nutrients in estuaries may limit 

the production of estuarine phytoplankton. Generally phytoplankton require the following 

nutrients for growth; carbon, nitrogen, phosphorus, silicon, metal, and trace elements 

(Paerl and Justić, 2011). Kaiser et al. (2011) found that nitrogen (nitrite, nitrate, and 

ammonia) and phosphorus most frequently limit phytoplankton growth in the sea and 

silicon is also important for diatoms and silica-scaled Prymnesiophytes. In general, nitrate 

is the major source of nitrogen utilized by phytoplankton. In estuarine ecosystems, nitrogen 

is usually the limiting nutrient in the lower estuary near the sea, while phosphorus can be 

the limiting nutrient in the upper low salinity region of the estuary (Mann, 2000). Nitrogen 

and phosphate are most significant nutrients because they are in shortly supply relative to 

demand (Gaulke et al., 2010). Nutrient concentration is higher in the upper estuary due to 

nutrients from the freshwater riverine discharge. Nedwell and Raffaelli (1999) point out 

that nutrient fluxes through estuaries to coastal waters are controlled by freshwater input 

from land, plant production, and tidal flow. Supporting this statement, Statham (2012) 

demonstrated nutrient behaviour in estuarine systems (see Figure 1-1) could be understood 

through knowledge of the underlying hydrodynamics and biogeochemical processes within 

these estuaries. As a result, the increasing nutrient levels in temperate estuaries can change 

the structure of phytoplankton community and primary productivity in the estuarine 

ecosystems.  
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Figure 1-1: Processes and exchanges influencing the macronutrients Si, P and N in 

estuarine systems, ROFI = Region of Freshwater Influence (From Statham, 

2012). 

1.3.2 Light 

Light is essentially important in controlling phytoplankton productivity and nutrient uptake 

in turbid coastal ecosystems (Lancelot and Muylaert, 2011; Paerl and Justić, 2011). In 

aquatic environments, particularly lakes and estuaries, the amount of light incident on the 

surface is rapidly decreased with depth by an exponential function. Light intensity is 

controlled largely by variations in the concentration of suspended material in the estuary 

and a threshold daily light input is needed before phytoplankton growth can commence in 

temperate regions (Paerl and Justić, 2011). The presence of suspended sediment does not 

directly affect the phytoplankton community, but indirectly affects the light intensity in the 

water column and thus microalgal growth rates. Some authors have found pico-

phytoplankton productivity and biomass in North Carolina’s Neuse River Estuary, USA 

were maximal in summer due to high suspended sediments (Gaulke et al., 2010) and a 

clear seasonal pattern to the production of the pico-phytoplankton appears to be closely 

linked to turbidity variations. Turbidity in estuaries may be caused by suspended 

sediments, coloured dissolved organic matter content, and chlorophyll and other 

phytoplankton pigments (Paerl and Justić, 2011). Ferreira et al. (2011) demonstrated that 

estuarine turbidity not only dominates phytoplankton growth but also regulates the 
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community composition, with diatoms better adapted to the turbid conditions in many 

estuaries. As a result, light availability plays an important role in influencing the activity, 

biomass, distribution, and composition of phytoplankton in temperate estuaries due to 

turbidity limiting the penetration of light into the water column. 

1.3.3 Water residence time/tide 

A considerable amount of literature has been published on the effect of tidal movement and 

water residence time on phytoplankton growth in estuaries (Iriarte and Purdie, 1994; 

Trigueros and Orive, 2001; Monsen et al., 2002; Maier et al., 2012). Residence time is 

mainly dependent on river flow, although tidal movement and volume of the estuary are 

also factors (Dyer, 1997) and it is strong determinants of where the maximum importance 

of phytoplankton biomass can develop and grow in response to nutrient inputs within the 

estuaries (Paerl and Justić, 2011). Surveys such as that conducted by Trigueros and Orive 

(2001) have showed that the development of phytoplankton blooms in the Urdaibai 

Estuary, Spain is influenced by the water residence time. In temperate estuaries, the 

residence time is primarily influenced by river discharge and varies strongly over different 

seasons  affecting development of  phytoplankton populations (Lancelot and Muylaert, 

2011). The estuarine residence time can be formulated using several methods, however, the 

basic fraction of freshwater method takes into consideration the effect of river flow and 

salinity variation on its estimation (Dyer, 1997). Many studies have argued that the spring 

and neap tidal cycle can influence net phytoplankton growth as demonstrated in the Taw 

Estuary, England (Maier et al., 2012) and San Francisco Bay Estuary (Kimmerer et al., 

2012). During the neap cycle, longer water residence times and reduced suspended 

sediment level lead to increased phytoplankton growth rates, whereas increased mixing 

during spring tides can correlate with increased diatom growth, for example in the 

Southampton Water estuary, due to reduced sinking rates of algal cells (Iriarte and Purdie, 

1994). Moreover, Howarth et al. (2000) demonstrated that dissolved inorganic nutrients are 

high in concentration throughout the year within the Lower Hudson estuary, USA, but that 

phytoplankton blooms did not occur in-spite of an availability of nutrients. It is argued that 

this finding was due to the flushing rate in the estuary, by which phytoplankton community 

is transported out to the coastal water before their division rates enable the development of 

phytoplankton blooms.  
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1.3.4 Freshwater discharge/river flow 

There are generally negative impacts on the estuarine phytoplankton community from 

freshwater discharges due to osmotic shock, flushing out of phytoplankton populations and 

increasing turbidity (McLusky and Elliott, 2004). The residence time in many estuaries is 

primarily influenced by river discharges (Lancelot and Muylaert, 2011). Freshwater input 

also directly alters the salinity and nutrient concentration in estuaries. In temperate regions, 

river discharge increases during winter and is generally reduced in summer. In estuarine 

systems, the beginning of the phytoplankton bloom in spring often occurs simultaneously 

with a reduction in river discharge (Lancelot and Muylaert, 2011) and therefore, the 

influence of freshwater discharge controls the spatial distribution of estuarine organisms 

(Levinton, 2011). In the Taw Estuary (SW England) and the Asan Bay (Korea), river flow 

rate was a physical control on diatom growth and primary production dynamics (Sin et al., 

2000; Maier et al., 2012). Kimmerer et al. (2012) found that the effect of freshwater flow 

into the San Francisco Bay Estuary (USA) also had a strong influence on primary 

production in the estuary. In Chesapeake Bay it was found that chlorophyll a concentration 

showed a significantly positive correlation with river flow in spring and summer (Adolf et 

al., 2006). In summary freshwater inputs and river flow have a significant influence on 

phytoplankton communities in estuarine systems with a particular impact on small shallow 

estuaries.  

1.3.5 Salinity 

Estuarine ecosystems include a combination of freshwater and marine organisms. 

Although the distribution of organisms within each estuary is not solely controlled by 

salinity, this environmental factor is considered to be the most important in affecting the 

survival, growth and distribution of estuarine organisms (Kaiser et al., 2011). Freshwater 

phytoplankton species experience large salinity changes during downstream transport in 

the estuary (Lancelot and Muylaert, 2011).Temporal variations of salinity in estuaries are 

influenced by seasonal changes due to freshwater discharge. Kimmerer et al. (2012) 

measured phytoplankton biomass and productivity in the San Francisco Estuary which has 

variable salinity but found no persistent patterns and only infrequent phytoplankton 

blooms. Therefore, organisms in the mid-estuary are affected by gradients in salinity 

moving between freshwater and marine waters as shown in the Remane diagram as shown 

in Figure 1-2 (Attrill and Rundle, 2002). 
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Figure 1-2: The Remane diagram with number of species plotted versus estuarine salinity 

gradient redrawn by Attrill and Rundle (2002).  

1.3.6 Temperature 

Phytoplankton growth rate is generally a function of water temperature assuming other 

factors such as light and nutrients are non-limiting. In temperate estuaries, the temperature 

normally limits plant growth in winter periods. Several previous studies have shown that 

during mid-summer, phytoplankton blooms appeared in estuaries (Eppley, 1972; Lancelot 

and Muylaert, 2011; Paerl and Justić, 2011). In summer, river flows are minimal and water 

temperature and surface light levels are high, therefore, phytoplankton growth rates are 

maximized during this productive period providing sufficient nutrients are available. 

1.3.7 Top-down control  

Top-down control of phytoplankton in estuary includes grazing by pelagic organisms (e.g. 

meso-zooplankton and micro-zooplankton) and benthic feeders (Lancelot and Muylaert, 

2011). Zooplankton grazing control directly influences phytoplankton biomass when 

grazing rates are high in estuarine habitats (Griffin and Rippingale, 2001). Lionard et al. 

(2005) have reported that in the Schelde Estuary (Belgium/The Netherlands), 

microzooplankton had a significant controlling influence on the standing crops of 

phytoplankton in this shallow temperate estuary. Moreover, grazing by zooplankton in 

spring and summer was negatively associated with phytoplankton standing stock in the 

Pearl River Estuary, China (Tan et al., 2004). Although phytoplankton is important as a 

food source for mesozooplankton in estuaries, including turbid estuaries (Kimmerer et al., 
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1998), the top-down control of mesozooplankton on phytoplankton in estuaries is generally 

low compared to other aquatic systems (White and Roman, 1992). In some estuaries, 

benthic filter-feeders may be important grazers of phytoplankton (Lucas et al., 1998), e.g. 

biomass of benthic bivalves is negatively correlated with chlorophyll a concentrations in 

Danish estuaries (Conley et al., 2000). In addition, biological interactions, such as viral and 

bacterial infections can affect phytoplankton production and growth for example as seen in 

the San Francisco Bay (Cloern, 1996). However, McLusky and Elliott (2004) suggested 

that total primary production will not change due to grazing directly, but that nutrient 

concentrations and phytoplankton species composition will change under this influence. 

Phytoplankton can also be lost from the water column in estuaries by sedimentation or 

removed by flushing of cells during increased freshwater inputs from rivers or during large 

spring tidal exchanges. 

1.4 Previous studies of phytoplankton in shallow temperate estuaries 

Several previous studies of small and medium sized shallow temperate estuaries, including 

the Uradaibai Estuary (north Spain), the upper tidal Scheldt Estuary (Belgium), and Canal 

de Mira and North Carolina's Neuse River Estuary (USA) have described the dependence 

of phytoplankton growth on river flow and thus residence times (Trigueros and Orive, 

2001; Lionard et al., 2008; Gaulke et al., 2010). In the Taw estuary (southwest England), 

researchers showed that phytoplankton biomass increased during low river flow and neap 

tides (Maier et al., 2012). Similar patterns were observed in the Southampton Water 

Estuary (Crawford et al., 1997) and the Guadiana Estuary, southwest Iberia (Domingues et 

al., 2010). It is argued that during neap tides, water residence times are longer, leading to 

enhanced primary production. In contrast, diatom production was enhanced during spring 

tides in the Solent (England) and Ria de Aveiro Estuary (western Portugal) probably due to 

a reduction in phytoplankton sinking rates (Iriarte and Purdie, 1994; Resende et al., 2005). 

Many researchers studying different temperate estuaries have appeared to reach widely 

different conclusions regarding the controls upon phytoplankton growth and primary 

production. There are a large number of potential interactions between the key variables, 

such as temperature, light, residence time, nutrients, salinity, freshwater discharge, and 

zooplankton grazing, influencing the rate of phytoplankton growth in these dynamic 

systems. Therefore, phytoplankton growth and primary production would be predicted to 

show a rise along the increasing nutrient concentrations in estuaries, either because of a 

parallel increase along salinity gradient, or because of a decrease in sedimentary particles. 
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Some shallow temperate estuaries have been well researched over many decades, in part 

because algal bloom events are thought to be a symptom of eutrophication driven by 

human activities in the watershed. Most of this research has focused on phytoplankton 

community and water quality issues. Many questions still remain about what factors 

control phytoplankton biomass in temperate estuaries particularly in shallow systems. 

There is little evidence on what is influencing phytoplankton growth and primary 

production in shallow temperate microtidal estuaries like Christchurch Harbour. 

Understanding of the processes influencing the interactions between chemical and physical 

factors on phytoplankton growth and primary production in shallow temperate estuaries 

due to recent environmental change, such as influence of storm events for example, is still 

needed. 

1.5 Christchurch Harbour and Hampshire Rivers 

The Christchurch Harbour estuary is a small, shallow natural harbour in the southern part 

of the United Kingdom situated between Poole Bay and the Solent. This estuary has 

approximately an area of 2.39 km2 and receives direct discharges of macronutrients from 

principally two rivers, the Hampshire Avon River and the Stour River, with a total 

catchment area of 2779 km2 (Nedwell et al., 2002). The two rivers combine south of 

Christchurch Priory and then discharge freshwater into the western end of the harbour. The 

combined waters of both rivers in the northwest Christchurch Harbour flow through a 

channel into the harbour and then towards the mouth (Murray, 1966). The harbour has 

extensive intertidal mudflats and saltmarshes (Murray, 1966) and is generally shallow with 

a depth of less than 2 m (Chart Datum) except in river and tidal channels (Gao and Collins, 

1994). It is a micro-tidal and semi-diurnal estuary with a unique high tide system due to the 

tidal harmonics of the English Channel (Haskoning, 2009). The mean spring and neap tidal 

range at the mouth of Christchurch Harbour are only 1.4 m and 0.8 m, respectively (Gao 

and Collins, 1994). The residence time of the harbour is estimated to be 2.7 days during the 

spring (Thompson, personal con.). 

There is little available chemical and biological data on the eutrophic status of the estuary 

and also little information on the dominant phytoplankton species present or of the 

presence of any toxic species in the estuary. Chlorophyll a concentrations have been 

measured by the Environment Agency and have been reported to reach over 50 µg L-1, 

however, data on phytoplankton blooms occurring in this estuary is rare. Thus, monitoring 

of the changes of phytoplankton species and phytoplankton production rates as well as 
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measurements of macronutrient concentrations over the biologically productive seasons are 

needed for this economically important estuary. 

1.6 Research questions 

Our understanding of the interaction between the chemical environment and phytoplankton 

populations in shallow temperate estuarine environments is still limited. Christchurch 

Harbour provides such an estuarine environment, which has not been well studied in the 

past. The Macronutrient Cycles programme (MNC) on Christchurch Harbour provided an 

excellent environment to study phytoplankton population changes and associated chemical 

conditions (see Section 1.5). What drives annual variations in phytoplankton productivity 

(up to 50 µg L-1, Environment Agency unpublished data) needs to be better understood, 

and the intensive fieldwork of the MNC provides a very good data resource for this 

phytoplankton study. 

The following specific questions are addressed in the thesis: 

 Do nutrient concentrations control estuarine phytoplankton growth in the 

Christchurch Harbour estuary? 

 Does phytoplankton abundance present a clear annual pattern related to seasonal 

variations in both the lower Hampshire Avon and Stour rivers and the estuary? 

 What are the dominant phytoplankton species present in the estuary? 

 Do toxic phytoplankton occur in this estuary? 

 How does the spatial distribution of phytoplankton change in the estuary? 

 What are the most important factors controlling the phytoplankton growth in the 

estuary? 

1.7 Aim of the thesis 

This thesis has the overall aim of ‘Identifying the factors controlling the phytoplankton 

community and primary production in the shallow temperate estuary Christchurch Harbour 

and the two river systems flowing into the estuary’.  

The main objectives of the research are as follows: 

 To monitor the annual changes in riverine phytoplankton in the lower Hampshire 

Avon and Stour Rivers in terms of species composition and cell size. This study 
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takes into account the whole phytoplankton community, in terms of its carbon 

biomass, accessory pigments and also in relation to the chlorophyll, size 

fractionated chlorophyll, and photosynthetic efficiency of phytoplankton. 

 To determine the response of the estuarine phytoplankton community to changes in 

the macronutrient inputs to the Christchurch Harbour estuary. 

 To relate variations in the lower rivers and estuarine phytoplankton community 

structure to environmental factors especially nutrients and river flow rate. 

 To apply the CytoSense flow cytometer as a tool for measuring in vivo riverine and 

estuarine phytoplankton abundance and compare estimates of cell abundance from 

both the CytoSense and microscopic techniques. 

 To evaluate the changes in phytoplankton uptake rates of nitrate and ammonium 

using stable isotope incubations conducted over the productive period at fortnightly 

intervals along a transect of the estuary. 

1.8 Plan of the thesis 

 Chapter 1 includes a review of temperate estuaries and their phytoplankton 

community, as well as the factors influencing estuarine phytoplankton growth. In 

addition a description of the study area and the main aim and objectives of this 

study are described. 

 Chapter 2 includes a description of methods and details of sampling strategy 

conducted during an annual sampling period of both rivers and the estuary. The 

statistical analysis applied to calculate and determine the correlation of 

phytoplankton and environmental factors controlling phytoplankton growth is 

described.  

 Chapter 3 includes a description of the phytoplankton community and pigments 

sampled on a weekly basis between April 2013 and April 2014 at the lowest river 

gauging stations on the Stour and Hampshire Avon Rivers. A range of 

environmental parameters were also measured to determine factors that influence 

phytoplankton populations in the rivers.  

 Chapter 4 includes a description of the phytoplankton community and pigments 

plus a range of environmental parameters sampled on weekly basis between April 

2013 and April 2014 at the entrance to the Christchurch Harbour estuary at 

Mudeford Quay at low tide. 
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 Chapter 5 presents the distribution of phytoplankton species, nutrient uptake and 

carbon production rates determined during eight two weekly transects along the 

Christchurch Harbour estuary from May to September in 2014.  

 Chapter 6 includes a summary of the main results and conclusions of the research 

plus suggestions for further study. 
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Chapter 2:  Methods 

2.1 Station locations and sampling 

2.1.1 Spot sampling April 2013 – 2014  

Four study sites were selected based on the local Environment Agency monitoring stations 

and the geo-hydromorphogical characteristics for each river section as shown in Figure 2-1 

and Figure 2-2. Dates on which spot samples were collected at low tide from those 

sampling sites between 16th April 2013 and 10th April 2014 are shown in Appendix A. 

2.1.1.1 Christchurch Harbour Estuary at Mudeford Quay 

The sampling position at the estuary entrance was at Mudeford Quay (50º 43' 4133 N, 1º 

44' 5378 W) situated on the narrow channel known as the “Run” shown in Figure 2-1 A. 

To the west of the Run, where the estuary exchanges with coastal water of Christchurch 

Bay, there are two important sandbanks (Murray, 1966). Samples were collected at low 

tide at Mudeford Quay at weekly intervals from 16th April 2013 to 10th April 2014. 

2.1.1.2 Stour River at Throop and Iford Bridge 

The Stour River enters Christchurch Harbour from the North West (see Figure 2-1). The 

river has a catchment area of 1073 km2 based on tertiary deposits that includes clay 

(Murray, 1966; Nedwell et al., 2002). Water samples were collected at Throop (Figure 2-1 

D) which is also the lowest gauging station of the Environmental Agency (50º 45' 8290 N, 

1º 50' 5158 W) on the Stour at weekly intervals from 16th April 2013 until 10th April 2014. 

Samples were additionally collected at Iford Bridge (50º 44' 4708 N, 1º 48' 3914 W) on the 

Stour which is downstream of Throop and just above the tidal limit of that branch of the 

estuary as shown in Figure 2-1 C. This position was chosen as it is directly downstream of 

the main sewage input from Holdenhurst Sewage Works. Samples were collected from 

Iford Bridge at weekly intervals from 6th June 2013 until 10th April 2014. 
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Figure 2-1: Map of Christchurch Harbour (A) and the lower reaches of the Hampshire 

Avon (B) and Stour rivers (C and D) showing four sampling sites. 
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2.1.1.3 Hampshire Avon River at Knapp Mill  

The Hampshire Avon River enters the estuary from the north. The catchment area of the 

river is 1706 km2 mainly on Chalk and derived from Chalk springs (Murray, 1966; 

Nedwell et al., 2002; Heywood and Walling, 2003; Jarvie et al., 2005b). In 2005, Jarvie et 

al. (2005a) reported the land use of the catchment area of Knapp Mill as 38.9% grazing 

land, 3.4% arable, 12% lowland pasture, 7.5% settlement and 1% urban. Water samples 

were collected at weekly intervals from 16th April 2013 until 10th April 2014 from 

immediately adjacent to the Environment Agency water gauging station at Knapp Mill (50º 

44' 8852 N, 1º 46' 8119 W) which is within the Bournemouth Water SembCorp industrial 

site as shown in Figure 2-1 B.  

 

 

Figure 2-2: Images of the four sites where water samples were collected during the 

Christchurch Harbour Macronutrients Project April 2013 – 2014. 

2.1.2 Christchurch Harbour Estuary transect sampling in 2014 

Water samples were collected during eight fortnightly transects of Christchurch Harbour at 

high tide from 27th May 2014 to 4th September 2014 using a small local boat (owned by 

Mr.Barry Childs). Six study sites were selected based on sampling positions previously 

used by the Environment Agency as show in Figure 2-3 and Figure 2-4 including; The Run 

Mudeford Quay Knapp Mill 

Iford Bridge Throop 
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at Mudeford, Ferry Pontoon, Blackberry Point, Grimbury Marsh, Christchurch Quay, and 

Tuckton Bridge (see detail in Table 2-1). 

Table 2-1: Study sites sampled during the Christchurch Harbour estuary transects in 2014. 

The distance in kilometres is from the estuary mouth. 

Study site Position Distance (km) 

Run at Mudeford (RM) 50º 43' 3995 N 1º 44' 5548 W 0.0 

Ferry Pontoon (FP) 50º 43' 1961 N 1º 44' 6223 W 0.4 

Blackberry Point (BP) 50º 43' 3465 N 1º 45' 5715 W 1.6 

Grimbury Marsh (GM) 50º 43' 6581 N 1º 46' 1374 W 2.5 

Christchurch Quay (CQ) 50º 43' 7940 N 1º 46' 8870 W 3.5 

Tuckton Bridge (TB) 50º 43' 7794 N 1º 47' 2560 W 4.0 

2.2 Water column measurements 

During the weekly spot water sampling visits to each of the four sites, vertical profiles of 

water column properties were measured using initially a YSI 6600 (25th April to 14th 

August 2013) then later a EXO2 multi-parameter sonde (20th August 2013 to 10th April 

2014) for temperature (ºC), conductivity (mS cm-1), salinity (at Mudeford Quay), pH, 

turbidity (NTU), chlorophyll a (µg L-1), oxygen saturation (%), dissolved oxygen (mg L-1), 

and depth (m). The probes were rinsed with freshwater after each measurement and the 

data from the probe imported into Excel. 

During the estuary transect sampling in 2014 the YSI 6600 was deployed to provide 

vertical profiles of environmental parameters at 0.5 m depth intervals at each station along 

the Christchurch Harbour estuary as shown in Figure 2-3. Water column profiles of 

photosynthetically available radiation (PAR unit, µmols m-2 s-1) were recorded at each site 

using a Li-COR LI-1400 data logger with both surface and depth light sensors. The data 

were recorded simultaneously from both the surface sensors (E0) and the submerged depth 

sensor at 0.2, 0.5, 1.0, 1.5 up to 2.0 metres below the water surface (Ed) dependant on the 

maximum depth at each station. Values of the vertical diffuse attenuation coefficient, k (m-

1), were determined from the regression of loge (Ed/E0) against depth. 

Surface water samples for later laboratory analyses were collected from each of the four 

sites during the spot sampling using a clean white bucket then poured into twice rinsed 

clean 5-litre plastic bottles. During the estuary transect sampling a 5 litre Niskin water 
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sampler was used with the aim of collecting a single water sample from each of the six 

sites at the depth where chlorophyll concentration (detected by the YSI 6600 fluorometer) 

was maximum. The sample bottles were placed in a dark cool box with ice packs and taken 

back to the laboratory for further processing. 

 

Figure 2-3: Map of Christchurch Harbour showing the six sampling sites along the estuary 

transects. 

2.3 Suspended particulate matter (SPM) 

The SPM data in this thesis was provided by Dr.Charlie Thompson (University of 

Southampton, National Oceanography Centre) under the NERC Christchurch Harbour 

Macronutrients Cycles Project. The SPM concentration in the water samples collected 

from each site was determined by filtering 50 – 550 mL of water through pre-weighed and 

dried 25 mm FisherbrandTM GF/F filters (pore size 0.7 µm) in triplicate. The filtered 

samples were dried overnight at 80 ºC and then re-weighed. The concentration of SPM was 

calculated using the following equation: 

SPM concentration (g L-1) = (W2 – W1) / V 

Where W1 = Pre-weight of GF/F filter after drying (in grams) 
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  W2 = Post-weight of sample plus filter after drying (in grams) 

  V = Volume of water filtered in litres 

 
 

Figure 2-4: Images of the six sites of the Christchurch Estuary transect sampling during 

2014. 

2.4 Pigment measurements 

2.4.1 Chlorophyll a by fluorescence 

Chlorophyll a concentration in the collected water samples was determined by 

measurement of fluorescence, according to the method of Parsons et al. (1984). 50 mL of 

The Run at Mudeford Ferry Pontoon 

Blackberry Point Grimbury Marsh 

Christchurch Quay Tuckton Bridge 
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water was filtered in triplicate through 25 mm FisherbrandTM GF/F filters using a syringe 

attached to an inline filter holder. The filters were folded in half and placed in a sealable 

plastic bag, labelled and stored in a -80 ºC freezer until further processing. 

To measure chlorophyll a concentration, each filter was placed in a 15 mL plastic 

centrifuge tube and 7 mL of 90% (v/v) acetone added and shaken gently to extract the 

pigments. Preparation of chlorophyll extracts was conducted under subdued light. All 

samples were immediately sonicated for 30 seconds using a Vibracell sonicator to disrupt 

phytoplankton cells. The samples were then centrifuged in a Mistral 2000 centrifuge at 

1500 rpm for 10 minutes at room temperature to remove filter debris and then the 

fluorescence of each extracted sample measured in a Turner Designs Model 10-AU Series 

fluorometer fitted with a F4T41/2B2 lamp, a 436 nm excitation filter and a 680 nm 

emission filter.  

90% acetone was used as a blank and a standard solution of chlorophyll a (Sigma) in 90% 

acetone was used to calibrate the fluorometer before each set of measurements. The 

concentration of chlorophyll a (µg L-1) was calculated using the following equation: 

Chlorophyll a concentration (µg L-1) =  C × (v/V) 

Where C =  concentration of chlorophyll in extract (in µg L-1) 

  v =  volume of acetone extract in mL 

  V = volume of seawater filtered in litres 

The Turner fluorometer was regularly calibrated using dilutions of a standard chlorophyll a 

solution (Sigma Chemical Co.) in 90% acetone. The concentration of the chlorophyll 

standard was determined by spectrophotometry using the equation given by Jeffrey and 

Humphrey (1975). 90% acetone was placed into clean 1 cm path length glass cuvettes and 

placed in the sample holder of a Cecil spectrophotometer. The absorbance was then 

measured at each of 750, 664, 647, and 630 nm wavelengths to check the two cuvettes 

were matched. A standard solution of chlorophyll was then added to the second cuvette 

and wavelength adjusted to 750 nm. The absorbance measurement of the chlorophyll 

standard was determined at wavelengths of 664, 647, and 630 nm zeroing the instrument 

on the 90% acetone cuvette each time. 

The absorbance value at each wavelength was used to calculate the concentration of 

chlorophyll in the standard following the equation: 
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Chlorophyll a concentration (mg L-1 or µg mL-1) =  (11.85 × Ab664)  ̶  (1.54 × Ab647)  ̶   

(0.08 × Ab630) 

Where Ab664 = absorbance value at 664 nm 

  Ab647 = absorbance value at 647 nm 

  Ab630 = absorbance value at 630 nm 

2.4.2 Size fractionated chlorophyll a by fluorescence 

Size fractionated chlorophyll a concentration was measured by fluorescence using the 

method of Parsons et al. (1984) as described above. Chlorophyll a was size fractionated by 

initially passing 250 mL of water through 47 mm diameter nylon mesh filters with pore 

size of 20 µm filtered under gravity in triplicate. The filtrate was then passed through a 

sequence of 47 mm polycarbonate filters with pore size of 2.0 and 0.2 µm under gentle 

vacuum in triplicate. Chlorophyll a on the 20 µm net filters represents chlorophyll a 

concentration in micro-phytoplankton size fraction (> 20 µm), while chlorophyll a in nano-

phytoplankton size fraction was determined in 2.0 – 20.0 µm size and pico-phytoplankton 

size fraction in < 2.0 µm size, respectively (Sieburth et al., 1978). The filters were placed 

in a sealable plastic bag, labelled and stored in a -80 ºC freezer prior to extraction as 

described in Section 2.4.1. 

2.4.3 High Performance Liquid Chromatography (HPLC) of phytoplankton 

pigments 

Between 500 and 2000 mL of water was filtered through a 47 mm GF/F (Whatman) glass 

fibre filter on the day of sampling, giving triplicate samples from each station (except the 

Iford Bridge site), for later phytoplankton pigment analysis. The filters were stored at -80 

ºC to prevent degradation prior to laboratory analysis. The pigments were subsequently 

extracted from each filter by placing them into 9 mL of HPLC grade 90% acetone in a 15 

mL cooled centrifuge tube. The extracts were placed in a -80 ºC freezer for 10 – 20 

minutes and then sonicated for 30 seconds using a Vibracell probe in order to break up the 

cells. Following the extraction the tube was centrifuged using a MSE Mistral at 4000 rpm 

for 10 minutes to remove cellular and filter debris. The tube was placed in a cool box with 

ice packs to prevent it warming during processing. The extracts were syringe filtered 

through a 0.2 µm 10 mm diameter nylon filter and then 1 mL of the extract was transferred 
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into a small brown glass vial, closed with a cap and placed in the sample tray for high 

performance liquid chromatography analysis in the HPLC auto-sampler. An aliquot of 500 

µL of extract was mixed with 500 µL of 1M ammonium acetate and then 100 µL of the 

mixture was injected onto the HPLC column.  

HPLC was used to analyse the pigments of collected samples as described by Gibb et al. 

(2001) and Barlow et al. (1997). A Perkin Elmer column was used to analyse all samples 

from this study. The system used was a Thermo Finigan HPLC with P2000 dual solvent 

pump, vacuum degasser, AS3000 auto-sampler, UV 6000LP detector, FL3000 

fluorescence detector, and SN4000 system controller. The mobile phase consisted of a 

binary system using solvent A: 30% 1M ammonium acetate buffer and 70% methanol, 

solvent B: 100% methanol, solvent C: 1M ammonium acetate and methanol flush bottle. 

All reagents used were HPLC grade. 

The pigments were identified by comparison to known system retention times for authentic 

pigment standards: chlorophyll a, chlorophyll b and β carotene were obtained from Sigma 

Chemical Company. The others pigments including chlorophyll c3, chlorophyll c2, 

peridinin, 19'Butanoyloxyfucoxanthin, fucoxanthin, 19'Hexanoyloxyfucoxanthin, 

violaxanthin, prasinoxanthin, diadinoxanthin, alloxanthin, zeaxanthin, lutein, chlorophyll 

b, divinyl chlorophyll a, chlorophyll a, and β carotene were previously obtained from DHI, 

Denmark. The Chromquest software on a Dell 1100 computer was used for data collection 

and integration. All data was compared with those of pure standards obtained from DHI, 

Denmark. Table 2-1 lists the major pigments present in phytoplankton groups and 

according to Jeffrey and Vesk (1997) and Paerl et al. (2003) and can be used as a guide to 

taxonomic identification of phytoplankton. 

The concentration of each accessory pigment (Pc, µg L-1), calculated using the following 

equation (Barlow et al., 1993), allows for the chemo-taxonomical classification of 

phytoplankton communities: 

    Pc =  
Pa x Ve x 1000

Pr x Vi x Vf x 0.5 
 

Where Pa = the peak area at wavelength 440 nm 

Ve = the volume of extracted 90% acetone in mL 

Pr = the response factor of each pigment 

Vi = the volume injected in the column (100 µL) 
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Vf = the volume of filtered sample in litres 

0.5 = the buffer dilution factor 

Table 2-2: Pigments found in selected taxonomic phytoplankton groups according to 

Jeffrey and Vesk (1997) and Paerl et al. (2003). 

Pigments Abbreviations Designation 

Chlorophyll c3 Chl c3 Prymnesiophytes, Chrysophytes, 

Dinoflagellates, Diatoms 

Chlorophyll c2 Chl c2 Most diatoms, Dinoflagellates, 

Prymnesiophytes, Cryptophytes  

Peridinin Per Dinoflagellates 

19'Butanoyloxyfucoxanthin 19'But Some prymnesiophytes, Dinoflagellates 

Fucoxanthin Fuco Diatoms, Prymnesiophytes, Chrysophytes, 

Several dinoflagellates 

19'Hexanoyloxyfucoxanthin 19'Hex Prymnesiophytes, Several dinoflagellates 

Violaxanthin Vio Chlorophytes, Prasinophytes 

Prasinoxanthin Pra Some prasinophytes 

Diadinoxanthin Dia Diatoms, Dinoflagellates, Prymnesiophytes, 

Chrysophytes 

Alloxanthin Allo Cryptophytes 

Zeaxanthin Zea Cyanophytes, Prochlorophytes, Chlorophytes 

Lutein Lut Chlorophytes, Prasinophytes 

Chlorophyll b Chl b Chlorophytes, Prasinophytes, Euglenophytes 

Divinyl chlorophyll a DV Chl a Prochlorophytes 

Chlorophyll a Chl a All microalgae (except prochlorophytes) 

β carotene β car All groups 

2.5 Phytoplankton microscope counts 

Duplicate 100 mL screw topped water samples for phytoplankton identification and 

enumeration were placed in brown glass bottles and 1 mL of acidic Lugol’s solution added. 

The samples were kept in a dark cupboard at room temperature for later analysis of cell 

counts and species identification. 

Each Lugol’s preserved sample was gently mixed and then a 10 mL subsample transferred 

to a 10 mL sedimentation chamber using a 10 mL automatic pipette. The chambers were 
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covered with a glass plate and left to settle for at least 24 hours before placing on a Leitz 

Fluovert inverted microscope to allow cells to be counted and identified according to the 

Utermöhl method (UNESCO, 2010). Tomas (1997); Belcher and Swale (1979); Round et 

al. (2007), and Kraberg et al. (2010) were used for identification of riverine and estuarine 

phytoplankton. 

The whole base of the sedimentation chamber was initially viewed by transects under 

magnification of ×100. Cells were also counted on two cross diameters of the chambers 

under ×400 magnification (2 × 24 mm diameter × 0.43 mm wide field of view). 

(diameter of chamber × width of field of view) × number of transects =  Transect area

 (1) 

Chamber area =  𝜋 (
𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟

2
)

2

         

  (2) 

𝐶ℎ𝑎𝑚𝑏𝑒𝑟 𝑎𝑟𝑒𝑎

𝑇𝑟𝑎𝑛𝑠𝑒𝑐𝑡𝑒𝑑 𝑎𝑟𝑒𝑎
 = A          

  (3) 

Cells counted × A = cells in 10 mL        

 (4) 

The calculations below were used to extrapolate the number of cells counted to the number 

of cells per mL. The equation uses the diameter of the chamber (24 mm), width of field of 

view (0.43 mm), number of transects (2), and volume of sample (10 mL) 

(24 × 0.43)×2

𝜋(
24

2
)2

           

   (5) 

𝑐𝑒𝑙𝑙𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑 ×23.45

10
 = 𝑐𝑒𝑙𝑙𝑠 𝑝𝑒𝑟 𝑚𝐿        

  (6) 

2.6 Scanning electron microscope 

20 – 50 mL of Lugol’s sample was gently filtered onto a 25 mm diameter 0.8 µm pore size 

polycarbonate filter using a syringe filter unit to avoid damaging the phytoplankton cells. 

The filters were dried at 50 ºC overnight on a clean petri slide. Each filter was mounted on 
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an aluminium microscope stub with carbon tape and sputter coated with gold palladium 

before SEM examination. 

2.7 Phytoplankton biomass estimation 

The cell volume of each phytoplankton species was estimated using shape assimilation 

equivalent to known geometric forms and direct measurement of the main cellular 

dimensions of about 15 – 20 randomly selected individuals. Total cell volume was 

calculated by the addition of the bio-volume of each species present. Phytoplankton 

abundances were converted into cell volumes according to the different equivalent 

geometric shapes as describe by Hillebrand et al. (1999) and Sun and Liu (2003). Carbon 

biomass rather than cell number is considered a more appropriate estimate of 

phytoplankton composition as cell volume varies between species by several orders of 

magnitude. The carbon content of each species was calculated according to the carbon-to-

volume relationships given by Menden-Deuer and Lessard (2000) using the following 

equations: 

 pg C cell-1 = 0.288 × volume0.811      (1)  

pg C cell-1 = 0.216 × volume0.939      (2) 

Where equation (1) is used for diatoms and equation (2) is for taxonomically diverse 

protists including dinoflagellates. The calculation of cell biomass is complicated because 

of cell shrinkage during preservation and due to intra-species variability in cell size 

(Montagnes et al., 1994). Therefore, the carbon biomass estimates for individual 

phytoplankton species can only be considered as semi-quantitative. Within this study, the 

carbon volume of phytoplankton cells were also multiplied by 1.33 according to 

Montagnes et al. (1994) to allow for shrinkage of cells preserved in Lugol’s solution. 

2.8 Fluorescence Induction and Relaxation (FIRe) 

The FIRe fluorometer system is a bench-top instrument manufactured by Satlantic Inc. The 

FIRe technique has been used to measure the photosynthetic characteristics of 

phytoplankton in many studies in freshwater and seawater (Suggett et al., 2001; Kaiblinger 

and Dokulil, 2006). The initial fluorescence (F0), the maximum fluorescence (Fm), and the 

maximum quantum efficiency of photosystem ΙΙ (PSΙΙ) photochemistry were derived 

according to the biophysical equations of Kolber et al. (1998). The quantum efficiency of 
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PSΙΙ or the change in fluorescence was calculated from variable fluorescence (Fv = Fm – 

F0, unit-less) normalised to Fm, indicating the proportion of functional PSΙΙ reaction 

centres (Geider et al., 1993). The cross section of photosystem ΙΙ (σPSΙΙ, Å2 quanta-1), is a 

measure of the size of the light-harvesting antenna system associated with the 

photochemical reaction centre PSΙΙ. Functional absorption cross-sections of σPSΙΙ are 

obtained from the rate at which fluorescence increases from F0 to Fm. A Satlantic FIRe 

(Fluorescence Induction and Relaxation) system or Fire Fast Repetition Rate Fluorometry 

(Fire FRRF) was used to detect Fv/Fm (variable fluorescence divided by the maximum 

fluorescence, a measure of photochemical efficiency of photosystem ІІ, photochemical 

efficiency or normalised active fluorescence). Fv/Fm is a measure of the efficiency of the 

conversion of light energy into photosynthesis (Kolber et al., 1988). 

Where: Fv = variable fluorescence 

  Fm = maximum fluorescence 

Size fractionated water samples prepared for chlorophyll analysis as described above (see 

Section 2.4.2) were used for FIRe measurements. An unfiltered water sample plus filtrates 

(2 – 20 µm and 0.2 – 2 µm) for FIRe measurements were stored in a dark box prior to 

analysis. All samples were measured within 4 – 5 hours of collection. Milli-Q water was 

used as a blank and was analysed with the FIRe prior to each set of measurements 

according to Cullen and Davis (2003). Typically Fv and Fv /Fm values for Mili-Q blanks 

were <1.0 and <0.05 respectively. Each sample was placed in a clean glass cuvette 

attached to the FIRe light sensor to quantify the relative fraction of total chlorophyll 

associated with a certain size-group. The light projector provided 16 different light levels 

to the FIRe chamber. Data from the FIRe instrument were recorded and downloaded to a 

computer then analysed using MATLAB R2011a software. The photosynthetic parameters 

calculated from the FIRe profiles were based on the biophysical model of Kolber et al. 

(1988). 

2.9 CytoSense flow cytometry 

50 mL of discrete unfiltered water samples from the spot and estuary transect sampling 

was preserved with 1% final concentration of a 20% paraformaldehyde solution in a clean 

chemical reagent bottle. The fixed sample was stored in a laboratory fridge at -5 ºC for 20 

minutes and then moved to a freezer at -80 ºC to prevent degradation prior to laboratory 

analysis. The frozen samples were subsequently defrosted in a dark cool box. The fixed 
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phytoplankton cells were analysed with a CytoSense Benchtop pulse-shape recording 

scanning flow cytometer (SFCM, Cytobouy b.v., The Netherlands), with a laser excitation 

wavelength of 488 nm, 20 mW. A range of sample volumes (50 – 100 µL) was initially 

analysed with the CytoSense to assess the optimal sample volume which was then set to 50 

µL to process all collected samples. Individual cells were identified according to their 

different optical features: sideward angle scatter (SWS), forward scatter (FWS), red (FLR), 

orange (FLO), and yellow (FLY) fluorescence. Each cell flows through the laser beam (5 

µm width) at a rate at 2 m s-1. The CytoSense can analyse a wide size range of 

phytoplankton cells from 1 – 800 µm. Fluorescence beads of 3 µm (Cyto-CalTM) and 10 

µm (Polybead®) in diameter were used before fully analysing the phytoplankton samples. 

Data recording was triggered on the red fluorescence signal at 15 mV for 5 – 10 minutes. A 

small magnetic stirrer was used to keep the fixed sample sufficiently mixed during 

analysis. CytoSense data was later analysed with the CytoClus© software. 

Clusters of points on the cytograms were selected by taking into account the amplitude and 

the shape of the different optical signals. In addition to 5 average signal heights for forward 

scatter (FWS), sideward scatter (SWS), and for three fluorescence signals: red (FLR), 

orange (FLO), and yellow (FLY), some simple mathematical parameters were assigned to 

each signal shape: inertia fill factor, asymmetry, number of peaks, length, apparent size 

(Dubelaar et al., 2004).  

2.10 Nutrient uptake by stable isotope incubations  

2.10.1 Incubation experiments and isotope analysis 

Following each estuary transect survey during the summer months in 2014, a series of 

incubations were conducted in the laboratory to determine uptake rates of nutrients (nitrate 

and ammonium) and inorganic carbon by the natural estuarine phytoplankton populations. 

Water was divided into 2 sets of separate 500 mL polycarbonate bottles per station. To one 

500 mL bottle 0.1 mL of a stock solution of 0.1µmol L-1 of 15N-nitrate tracer (K15N 99 

atom % 15N) was added and 0.1 mL of a 0.1 mmol L-1 of 13C-carbon tracer (NaH13CO3 98 

atom % 13C) was added. To the other 500 mL bottle 0.1 mL of a stock solution 0.1 µmol L-

1 of 15N-ammonium tracer (15NH4Cl 99 atom % 15N) was added. The incubated bottles 

were gently mixed after the tracer additions then incubated in a Mercian cooled incubator 

at incubation light level about 35 µmols m-2 s-1 for 4 hours generally starting between 

13:00 – 14:15 hours (BST) at simulated in situ water temperature (15 to 20 ºC). All 



CHAPTER 2                                                                                                                       METHODS 

33 

incubations were terminated after 4 hours by filtration onto 25 mm pre-combusted (500 ºC, 

4 hours) GF/F Whatman filters. 100 mL of incubated water was then filtered in duplicated 

at low vacuum (< 150 mm Hg). Filters were rinsed with pre-filterer estuarine water from 

the respective station to remove the excess tracer, and then stored frozen and in duplicate 

in clean labelled petri slides. 

The filters were dried within the petri slides at 50 ºC for 24 hours. Each filter was cut in 

half and then packed into tin capsules (pressed, standard weight 8 × 5 mm). Isotopic 

composition and particulate nitrogen (PN) concentrations were determined using an 

Elemental Analyser Isotope Ratio Mass Spectrometry (EA-IRMS) at a commercial 

laboratory (Iso-Analytical Limited, Cheshire, UK). 

2.10.2 Calculation of nitrogen and carbon uptake rates 

The absolute nutrient uptake rates (ρ in µmol L-1 h-1) were calculated according to the 

equation in Dugdale and Wilkerson (1986), where the PON concentration is measured at 

the end of the incubation period. Uptake rates were not corrected for the effects of isotopic 

dilution as these are expected to be minimal during the 4 hour incubation used in this study 

(Harrison and Harris, 1986). 

Nitrogen uptake rate (nitrate and ammonium) 

Nitrogen uptake rate (ρ in µmol L-1 h-1) =  [PON]  ×  (
PN𝑎𝑡%

DIN𝑎𝑡% × 𝑡
) : 

Where: PON   = the concentration of particulate organic nitrogen. 

PNat%  = the concentration of N label (atom % 15N) in each sample 

determined by mass spectrometry minus the natural isotopic 

abundance of 15N (0.3663%) 

DINat%  = the concentration of N label (atom % 15N) in the dissolved phase 

after 4 hours incubation. 

  t   = incubation period (4 hours) 

The calculation can be demonstrated with the following example. During a 4 hour 

incubation experiment a given volume of estuarine water sample was enriched to a 

concentration of 0.1 µmol L-1 with 15N enriched (99%) K15N. The measured NO3
̶  

concentration of the sample was 156.72 µmol L-1. The concentration of PON collected by 
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filtration at the end of the incubation was 1.26 µmol L-1 and was 0.3706% enriched with 

15N as determined by mass spectrometry. The calculation proceeded as follows, 

ρ =  1.26 × (
0.3706−0.3663

(
(156.72 ×0.3663)+ (0.1 ×99)

156.72+0.1
−0.3663) ×4

) = 0.02 

The nitrate uptake rate in this example is 0.02 µmol-N L-1 h-1. 

The ammonium uptake rate was calculated using a similar equation as the nitrate uptake 

rate. 

Carbon uptake rate 

The carbon uptake rate was calculated using the same equation used to calculate the 

nitrogen uptake rate. In this study the particulate organic carbon concentration [POC] of 

the sample collected by the filtration at the end of incubation replaced the [PON] in the 

equation above and the 13C atom % enrichment, as determined by mass spectrometry, 

replaced PNat%. The 13C atom % enrichment of the dissolved fraction in turn replaced the 

DINat%. The natural abundance (atom percent) of 13C used for this calculation was 

1.092% (Bury et al., 1995). The [DIC] was not directly measured in water collected from 

each site in the estuary but is usually conservative with salinity and shows a small range of 

[DIC] in most river domiated estuaries (Liu et al., 2014). The concentration of total 

dissolved inorganic carbon [DIC] was estimated to be 2000 µmol L-1 in calculating carbon 

fixation rates from all incubations (Stoll et al., 2001; Ji et al., 2009). 

2.11 Nutrients 

Nitrate, phosphate, and silicate concentration data presented in this report was provided by 

a team from the University of Portsmouth in the NERC Christchurch Harbour 

Macronutrients Cycles Project. Freshly collected water samples were filtered through 0.7 

µm glass fibre filters into clean plastic vials and then 20 mL samples preserved with 5 µL 

per mL of sample of a 4 g L-1 mercuric chloride solution (HgCl2). Kirkwood (1992) 

recommended the addition of mercuric chloride to preserve an effective concentration of 

nitrate, phosphate, and silicate in water samples. All preserved samples were stored in a 

dark cupboard prior to analysis. All inorganic nutrients were determined using a QuAAtro 

segmented flow analysis system (Seal Analytical, UK) at the University of Portsmouth 

laboratory. Detection limits of nutrients were analysed as three times the standard 

deviation of measurements of 5 Milli-Q ultrapure water samples. Detection limits of 
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nitrate, phosphate, and silicate were 0.06, 0.01, and 0.05 µmol L-1, respectively (Couceiro 

et al., 2013).  

2.12 Statistical method  

Data analysis was undertaken using Excel 2010, Sigma Plot 12.5, PRIMER-E 7 (Plymouth 

Routines In Multivariate Ecological Research) and CANOCO 4.5 software (CANOCO, 

Microcomputer Power, Ithaca, NY). Excel was used to organise, display and complete 

simple data analyses tasks. Sigma Plot was applied to create graphs, including scatter, area, 

and line plots of environmental variables and stack plots of phytoplankton data. Parametric 

linear regressions were also performed using Sigma Plot statistical software. PRIMER-E 

was used for cluster analysis and non-metric multidimensional scaling (nMDS) to resolve 

the complexity of the phytoplankton community in terms of abundance, carbon biomass 

and pigment concentration, including environment variables. CANOCO software was used 

in this study to analyse the effect of environmental parameters on the phytoplankton 

species biomass and pigments. 

PRIMER software 

The principle of the multivariate techniques by the PRIMER-E programme used in this 

study included hierarchical clustering and a non-matric multidimensional scaling (nMDS). 

These were employed to attempt to reduce the complexity of the high dimensional 

phytoplankton community and environmental parameters by taking a low dimensional 

view of the structure it exhibits (Clarke and Warwick, 1994; Clarke et al., 2014). The 

PRIMER-E version 7 was used to perform these analyses following the recommendations 

of Clarke et al. (2014). 

Phytoplankton carbon biomass and accessory pigments data  

The cluster analysis and the nMDS start from a triangular matrix of similarity coefficients 

computed between every pair of samples. The coefficient of similarity is a measure of how 

similar two samples are. The Bray-Curtis coefficient was used for the phytoplankton data 

(carbon biomass and accessory pigment), as it is a satisfactory coefficient for biological 

datasets on community structure (Clarke and Warwick, 1994; Clarke et al., 2014). The 

Bray-Curtis coefficient reflects differences between two samples due both to differing 

community composition and differing total abundance. 
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Data transformation in community analysis is used to weight the contributions of common 

and rare species or concentrations in the non-parametric multivariate representations. It is 

acknowledged that the selection of which transformation to use can have a significant 

effect on the final ordination or clustering demonstration. The Christchurch Harbour 

estuary data were therefore the fourth-root transformed to down weight the importance of 

very abundant species/concentration so that the less dominant species/concentrations 

contributed something to the definition of similarity. The retention of some information on 

the prevalence of a species/concentration ensures that the common species/concentrations 

are generally given greater weight than the rare ones. 

The cluster analysis is used to find natural grouping of samples such that samples within a 

group are more similar to each other than samples in different groups. It is appropriate for 

delineating groups with distinct community structure with different characteristic patterns 

of abundance found consistently in different groups (Clarke and Warwick, 1994; Clarke et 

al., 2014). The outcome of a cluster analysis is represented by a dendrogram with the x 

axis defining the full set of samples and the y axis representing a similarity level at which 

two samples or groups are considered to have fused. For two different sample groups 

identified as the result of a cluster analysis, the species that primarily accounted for the 

observed assemblage difference were identified by a decomposition of the Bray-Curtis 

similarity into contributions from each species. The overall percentage contribution each 

species makes to the average dissimilarity between two groups is established and then the 

species are listed in decreasing order of their importance in discriminating the two sets of 

samples. 

The nMDS aims to construct a configuration of the samples in a specified number of 

dimensions which attempt to satisfy all the conditions imposed by the rank similarity 

matrix (James and McCulloch, 1990; Clarke et al., 2014). The nMDS plots can be arbitrary 

scaled, located, rotated or inverted as only relative similarity between samples can be 

interpreted. The nMDS diagram chooses a configuration of points which minimises this 

degree of stress. The combination of clustering and ordination analysis can be an effective 

way of checking the suitability and common consistency of both representations (Clarke et 

al., 2014). The strength of the ordination is in displaying a gradation of community 

composition across a set of samples.  

For each type of analysis, the similarity percentage analysis (SIMPER) was performed to 

calculate the percentage similarity of each sample group and the dissimilarity between each 
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pair of groups. Moreover, this analysis was used to identify the contributions from each 

taxon to the average overall similarity within group at similarity of 90% cumulative 

contribution. An analysis of similarities (one-way ANOSIM) was also applied to determine 

whether groups were statistically significantly different from each other in terms of their 

taxonomic composition. 

A bubble plot was constructed in the nMDS plots to identify the associations between the 

peak of chlorophyll a events and some physical parameters. For this output, an average of 

chlorophyll a concentrations above 15 µg L-1 for each group was applied to define a peak 

chlorophyll event at all study sites as undesirable Maier et al. (2009). A shade plot is an 

alternative to line plots undertaken with PRIMER-E. This plot displays in the form of the 

data matrix itself, with rows being species/concentrations and columns the samples and the 

entries rectangles whose grey shading deepens with high abundant species 

biomass/concentration. A white rectangle indicates absence of that species or biomass in 

that sample and full black represents the maximum abundance in the matrix (Clarke et al., 

2014). 

Environmental variables 

The environmental variables including, river flow, water temperature, oxygen saturation, 

suspended particulate matter, nitrate, phosphate, silicate concentration, irradiance 

attenuation coefficient (k), and turbidity were used as variables in the multivariate analysis. 

Irradiance attenuation coefficient (k) and turbidity data were not available for the 

multivariate analysis during the spot sampling in 2013 to 2014. 

There are important differences between environmental variables and species or biomass 

data. Abiotic data are often on mixed measurement scales and the Bray-Curtis coefficient 

that assumes a common measurement scale is not relevant. Different transformations may 

be needed for different variables but in general it is preferable to use a common form of 

transformation for a variable of particular type (Clarke and Warwick, 1994).  

Normalisation manages most effective when the environmental data are near as possible to 

normality. In general, the transformation is desirable to use a common form for a variable 

of a particular style and different transformation forms may be needed for different 

variables (Clarke et al., 2014). Environmental variables of the Christchurch Harbour 

estuary data were log (x + 1) transformed. 
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Cluster and non-metric MDS analyses were performed using log transformed data and 

normalised Euclidean distances. The result of a cluster analysis is indicated by the 

dendrogram with the x axis defining the samples and the y axis indicating a Euclidean 

distance at which two samples or groups considered to have integrated. The nMDS plots 

can be an arbitrary distance between samples and choose a configuration of points which 

minimises the degree of stress as phytoplankton analysis. 

For each type of analysis, the SIMPER analysis was used to calculate the average squared 

distance of each sample group and between each pair of groups. This analysis was 

indicated to identify the contributions from each environmental factor to the average 

overall similarity within group at similarity of 90% cumulative contribution using 

Euclidean distance. 

CANOCO software 

To assess interactions between environmental parameters and phytoplankton carbon 

biomass, a redundancy analysis (RDA) was carried out using the CANOCO 4.5 software 

package (Ter Braak and Šmilauer, 2002). This analysis determines the environmental 

variables (explanatory variables) that best explain the distribution of the main selected 

taxonomic groups, by selecting the linear combination of environmental variables that 

yields the smallest total residual sum of squares in the taxonomic data (Peterson et al., 

2007). Detrending canonical correspondence analysis (DCCA) was used a priori to 

determine whether the data ordination method was linear and suitable for RDA analysis or 

unimodal that is suitable for Caconical correspondence analysis (CCA). A relatively small 

gradient length (< 2.5 of standard deviation units according to DCCA analysis output) 

revealed that the ordination was linear-based and that the RDA analysis was suitable for 

the data (Lepš and Šmilauer, 2003). A posteriori analysis or forward-selection was used to 

identify a subset of environmental variables that significantly explained taxonomic 

distribution and community structure when analysed as single factor (λ1, marginal effects) 

or included in the model where other forward-selected variables were analysed together 

(λa, conditional effects). Phytoplankton carbon biomass data were transformed by log 

(x+1) and Monte Carlo permutation test (n = 999), reduced model was applied to test the 

statistical significance (P < 0.05) of each of the forward-selected variables considered in 

the RDA. 
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Chapter 3:  Contrasting the annual pattern of two 

riverine phytoplankton communities in 

Hampshire Rivers 

3.1 Abstract 

Seasonal dynamics in the riverine phytoplankton community were investigated at the 

lowest gauging stations of the Stour and Hampshire Avon Rivers and at one additional site 

at Iford Bridge on the Stour River which is located between Throop and Christchurch 

Harbour (Southern UK) with regard to some major physical and chemical variables during 

an annual cycle. The riverine phytoplankton community in terms of carbon biomass and 

accessory pigments displayed a distinctive pattern of seasonal succession. The diatom 

group maxima were observed in spring and chlorophytes maxima in summer. The nano-

sized diatom (2.0 – 20.0 µm), Stephanodiscus sp., dominated the assemblages, reaching 4.4 

× 104 cells mL-1 and a chlorophyll a concentration of 98.8 µg L-1 on the Stour River during 

the 2013 spring bloom. This diatom bloom was observed during a period of decreasing 

river discharge of between 8.4 and 8.8 m3 s-1 on the Stour and was also the blooming 

species during the same period on the Avon but was lower in cell numbers in comparison. 

A summer chlorophyte bloom on the Stour, composed of Chlamydomonas spp., reached 

7.9 × 104 cells mL-1 and followed the diatom spring bloom. The nano-phytoplankton 

component was dominant in biomass and production during the spring-summer period in 

both rivers. Principal component analysis suggested that the structure of the phytoplankton 

communities in both rivers was determined by a variety of parameters including hydrology 

(river flow, suspended particulate matter, temperature, and oxygen saturation), and 

nutrients (nitrate, phosphate, and silicate concentrations). Multivariate analysis revealed 

that water temperature, river discharge, silicate, and phosphate concentration were major 

factors controlling phytoplankton carbon biomass at the three study sites. The results of the 

present study provide improved understanding into the composition and dynamics of 

phytoplankton communities on the Stour and Hampshire Avon Rivers immediately before 

the water passes into the shallow temperate, Christchurch Harbour estuary. 



CHAPTER 3 

40 

3.2 Introduction 

The Stour and Hampshire Avon Rivers are principally a main sources of freshwater and 

nutrients to the Christchurch Harbour estuary. Both rivers have been variably affected by 

agriculture, urbanisation, and input from sewage treatment works (Jarvie et al., 2005a). 

The rivers differ in their channel forms and in the extent to which hydrology is altered by 

both natural and artificial structures. During this study intensive surveys were investigated 

at the lowest gauging stations of both rivers and one additional position on the Stour at 

Iford Bridge to characterise seasonal changes in phytoplankton populations. The aims of 

this study were to describe the changes in species composition, biomass, and pigments of 

phytoplankton in the lower River Stour and Avon, and to investigate the relationship 

between phytoplankton populations and environmental variables. 

3.3 Results 

3.3.1 Environmental data 

The hydrographic environment at Throop gauging station and Iford Bridge site on the 

Stour and Knapp Mill gauging station within the Bournemouth Water SembCorp site on 

the Avon River are described in this chapter (see the sampling dates in Appendix A). 

Average physical factors (suspended particulate matter, river flow, water temperature, and 

oxygen saturation) and nutrient concentrations (nitrate, phosphate, and silicate) were 

measured at these three study sites regularly by weekly between mid-April 2013 and mid-

April 2014 as summarised in Table 3-1. 

3.3.1.1 River flow 

Freshwater discharge from the Stour River at Throop and the Avon River at Knapp Mill 

between mid-April 2013 and mid-April 2014 (week 1 to 51) are shown in Figure 3-1. Both 

river flow records were provided by the Environment Agency. The average annual river 

flow at Throop was 20 m3 s-1 meanwhile at Knapp Mill it was 28 m3 s-1. The combined 

average annual flow of both rivers was 24 m3 s-1. The minimum values were recorded 

between July and mid-October 2013 (mean = 3 m3 s-1 at Throop, 7 m3 s-1 at Knapp Mill) 

and the maximum flows were observed in the winter between mid-December 2013 and 

mid-March 2014 (mean = 60 m3 s-1 at Throop, 75 m3 s-1 at Knapp Mill). An increase in 

flow also occurred between these minimum and maximum flows in November 2013 
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recorded in both rivers (mean = 20 m3 s-1). The river discharge observed in the Stour and 

Hampshire Avon Rivers shows a similar pattern with a decrease to a minimum (< 3 m3 s-1 

at Throop and < 7 m3 s-1 at Knapp Mill) in August and October 2013 (week 18 to 26), 

respectively followed by a sudden winter peak up to 112 and 94 m3 s-1 (January 2014, 

week 38). This large increase in river flow caused widespread flooding along the lower 

reaches of both rivers as shown in Figure 3-2. 
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Figure 3-1: Daily average river flow (m3 s-1) from the Stour and the Hampshire Avon River 

for April 2013 to April 2014, obtained from the Environment Agency. 

3.3.1.2 Suspended particulate matter 

The annual pattern of suspended particulate matter (SPM) was influenced by the changes 

in river flow on both the rivers as shown in Figure 3-3. SPM concentration at Throop was 

normally below 0.003 g L-1 and progressively increased up to 0.135 g L-1 during the 

massive flooding event in winter (Figure 3-3 B). On the Hampshire Avon,  SPM values at 

Knapp Mill were typically lower than at Throop and ranged from 0.001 – 0.038 g L-1 

(Figure 3-3 C). However, a maximum SPM concentration at Knapp Mill also occurred at 

the beginning of the high flow event in late December 2013 (week 36).  
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Figure 3-2: Images of the four sites where water samples were collected during the winter 

flood. 
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Figure 3-3: Suspended particulate matter (SPM) concentrations at Throop on the Stour 

River (A and B) and Knapp Mill on the Hampshire Avon River (A and C). 
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3.3.1.3 Chemical parameters: Inorganic nutrients 

The concentration of the major inorganic nutrients, phosphate, nitrate, and silicate at the 

three river stations in general followed a pattern of relatively high concentrations in 

summer and autumn 2013 (week 8 to 28) and lower concentrations during winter and 

spring 2014 (week 30 to 51) as shown in Figure 3-4, Figure 3-5, and Table 3-1. 

The mean concentration of nitrate, phosphate, and silicate on the Stour at Throop 

throughout the sampling period were 470 ± 75 (n=49), 10 ± 7 (n=49), and 109 ± 41 (n=49) 

µmol L-1, respectively all being well above detection levels throughout the sampling 

period. Nitrate concentrations ranged from 315 µmol L-1 (February 2014, week 42) to 611 

µmol L-1 (May 2013, week 6), phosphate concentrations ranged from 2 µmol L-1 at the end 

of April 2013 (week 2) to 25 µmol L-1 at the end of September 2013 (week 24), and silicate 

from 6 µmol L-1 (May 2013, week 3) to 216 µmol L-1 (October 2013, week 28) as shown 

in Figure 3-4. The highest nitrate, phosphate, and silicate concentrations were found in 

autumn months when riverine flow rate was less than 20 m3 s-1 at this station. 

The Iford Bridge sampling site is downstream of Throop on the Stour and just above the 

tidal limit of that branch of the estuary. Phosphate and nitrate were generally detected at 

higher concentration than at Throop (Figure 3-4 A and B) but the concentration of silicate 

was very similar (Figure 3-4 C). Phosphate concentrations ranged from 3 µmol L-1 in mid-

February 2014 (week 44) to 49 µmol L-1 in mid-October 2013 (week 27), nitrate from 332 

µmol L-1 (January 2014, week 38) to 824 µmol L-1 (October 2013, week 27), and silicate 

from 48 µmol L-1 (June 2013, week 8) to 191 µmol L-1 (October 2013, week 28). The 

mean concentration of phosphate, nitrate, and silicate at Iford Bridge during the sampling 

period were 17 ± 12 (n=44), 543 ± 111 (n=44), and 113 ± 32 (n=44) µmol L-1, 

respectively. The highest nitrate and silicate concentrations were found in autumn months 

when riverine flow rate measured at Throop was less than 20 m3 s-1.  

The distribution of inorganic nutrients in the Hampshire Avon at Knapp Mill in general 

followed a pattern of relatively high concentrations in summer and autumn months and 

reduced concentrations during high winter river flow rates as shown in Figure 3-5. The 

mean concentration of phosphate, nitrate, and silicate concentrations at Knapp Mill during 

the sampling period were 2 ± 1 (n=50), 382 ± 56 (n=50), and 136 ± 68 (n=50) µmol L-1, 

respectively. All three inorganic nutrients were above detection level at Knapp Mill 

throughout the sampling period. Phosphate concentrations ranged from ~0.1 µmol L-1 at 

the end of April 2013 (week 2) to 4 µmol L-1 in early January 2014 (week 38), nitrate from 
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272 µmol L-1 (December 2013, week 36) to 493 µmol L-1 (March 2014, week 48), and 

silicate from 4 µmol L-1 (February 2014, week 45) to 240 µmol L-1 (October 2013, week 

29). The maximum phosphate and silicate concentrations were found in both the Avon and 

the Stour in autumn when river flow rates were less than 20 m3 s-1. The mean phosphate 

concentration in the Hampshire Avon at Knapp Mill was about sevenfold lower compared 

to the concentration in the Stour River at Throop. 

Table 3-1: Mean environmental variables measured during the five study periods between 

spring 2013 and spring 2014 at Throop (Thr), Iford Bridge (IB), and Knapp 

Mill (KM). 

 Spring 2013  Summer 2013  Autumn 2013  Winter  2013  Spring 2014 

Variables Thr IB KM  Thr IB KM  Thr IB KM  Thr IB KM  Thr IB KM 

Physical factors                    

SPM (g L-1) 0.010 - 0.015  0.004 - 0.004  0.011 - 0.011  0.025 - 0.008  0.008 - 0.008 

River flow (m3s-1) 9.6 - 19.1  3.7 - 8.6  7.3 - 9.8  56.1 - 99.0  24.1 - 45.4 

Temperature (ºC) 13.3 - 13.0  18.7 18.5 18.9  12.6 12.8 12.2  7.6 7.7 7.3  9.8 9.9 9.9 

Oxygen saturation 119.1 - 103.8  94.2 84.3 111.6  89.5 86.2 93.9  89.6 89.9 99.2  98.3 97.2 103.5 

                    

Nutrients(µmol L-1)                   

Nitrate 562 - 430  482 593 364  493 543 358  419 455 368  394 607 458 

Phosphate 6 - 1  14 26 2  16 23 2  4 7 2  3 7 1 

Silicate 47 - 99  95 93 125  152 144 194  110 108 118  109 97 105 

The nitrate to phosphate ratios (N:P) generally ranged between 20 and 485 at Throop 

(Figure 3-6 A). Meanwhile, on the same river at Iford Bridge the N:P ratios range was 15 – 

136. These ratios are significantly greater than the Redfield ratio of 16 for typical marine 

waters. Silicate to phosphate ratios (Si:P) were generally between 2 and 40 at Throop, and 

2 and 25 at Iford Bridge. The nitrate to silicate ratios (N:Si) were between 2 and 98 at 

Throop, and 2 and 14 at Iford Bridge. Both N:P and Si:P ratios at Throop increased to 380 

and 40, respectively during the winter flood, when the lowest phosphate and nitrate 

concentrations were observed. By contrast, the N:Si ratios did not vary significantly at this 

time (Figure 3-6 B).  

The N:P ratio at Knapp Mill generally ranged between 82 and 2,980 (Figure 3-7), 

significantly greater than both the Redfield ratio of 16 for typical marine waters and the 

N:P ratio on the Stour River. The Si:P ratios were generally between 12 and ~495. The 

N:Si ratios were between 1 and 86. Both N:P and Si:P ratio on the Hampshire Avon were 

greater than the ratios on the Stour River during the winter flood, when the lowest 
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phosphate and silicate concentrations were observed. Meanwhile, the highest N:Si ratio 

occurred at this time (Figure 3-7). 
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Figure 3-4: Surface nutrient concentrations (µmol L-1) at Throop and Iford Bridge on the 

Stour River (A) nitrate, (B) phosphate, and (C) silicate. Symbols in lower panel 

apply to all panels. 
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Knapp Mill: nitrate
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Figure 3-5: Surface nutrient concentrations (µmol L-1) at Knapp Mill on the Hampshire 

Avon River (A) nitrate, (B) phosphate, and (C) silicate. Symbols in upper panel 

apply to all panels. 
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Figure 3-6: Si:P, N:P, and N:Si ratio at Throop and Iford Bridge on the Stour River. 

Symbols in upper panel apply to all panels. 
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Figure 3-7: Si:P, N:P, and N:Si ratio at Knapp Mill on the Hampshire Avon River. 
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3.3.2 Phytoplankton pigments 

3.3.2.1 Total chlorophyll a and chlorophyll a size fractions 

Changes in total surface chlorophyll a concentrations and chlorophyll a size fractions are 

shown in Figure 3-8. Total chlorophyll a values ranged from 0.7 µg L-1 in December 2013 

(week 34 and 35) to 98.8 µg L-1 in May 2013 (week 4) at Throop, with larger peaks of  ~65 

to ~99 µg L-1 in May 2013 (week 3, 4, 5) during the spring bloom event, followed by three 

small peaks of ~19 to ~29 µg L-1 during May – July 2013 (week 7, 9, 12), and two final 

small peaks at the end of March (week 49) and in April 2013 (week 51) as shown in Figure 

3-8 A. Meanwhile, total chlorophyll a concentrations at Iford Bridge showed the same 

pattern as the total chlorophyll concentration at Throop. The changes of total surface 

chlorophyll a values at Iford Bridge are presented in Figure 3-8 B. Total chlorophyll a 

concentrations ranged from 0.6 µg L-1 in December 2013 (week 34) to 43.7 µg L-1 in mid 

June 2013 (week 9), followed by a small peak of ~22 µg L-1 at the end of June 2013 (week 

12), and a final peak at the end of March 2014 (week 49). 

The seasonal distribution of total chlorophyll a concentration at Knapp Mill is shown in 

Figure 3-8 C. Total chlorophyll a concentrations ranged from 0.9 µg L-1 in January 2014 

(week 39) to 35.5 µg L-1 in May 2013 (week 3), with a large peak of 35.5 µg L-1 at the 

early of May 2013 (week 3), followed by three small peaks throughout the weekly 

sampling in June 2013, February, and April 2014 (week 10, 42, 50). The highest 

chlorophyll a concentration at Knapp Mill was measured a week after the bloom event 

occurred at Throop. Chlorophyll a events (peaks) are numbered in series for each study site 

in Figure 3-8, Throop (T1 – 8), Iford Bridge (I1 – 3), and Knapp Mill (K1 – 4).  
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Figure 3-8: Seasonal distribution of total chlorophyll a at Throop (A), Iford Bridge (B), 

and Knapp Mill (C) and size fractionated chlorophyll a (< 0.2, 0.2 – 2.0, and > 

20 µm) at Throop (A) and Knapp Mill (C) from week 3 to 24 only. The 

numbers and dash lines shown above the chlorophyll a curve identify each of 

the peak chlorophyll events. Symbols in upper panel apply to all panels. 
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Figure 3-9: Distributions of chlorophyll a size fractions at Throop during the high 

productive period (A) and distributions of chlorophyll a size fractions 

expressed as percentages (B). 

The distribution of the chlorophyll a size fractions at Throop on the Stour River is 

illustrated in absolute units and as percentages in Figure 3-9. The mean percentages for 

each size fraction were: > 20 µm, 20% (maximum 49% in week 23); 2 – 20 µm 70% 

(maximum 93% in week 5); < 2 µm 10% (maximum 20% in week 22). 
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Figure 3-10: Distributions of chlorophyll a size fractions at Knapp Mill during the high 

productive period (A) and distributions of chlorophyll a size fractions 

expressed as percentages (B). 

The distribution of the chlorophyll a size fractions at Knapp Mill on the Avon River is 

shown in absolute units and as percentages in Figure 3-10. The mean percentages for each 

size fraction were: > 20 µm, 27% (maximum 54% in week 10); 2 – 20 µm 63% (maximum 

85% in week 14); < 2 µm 10% (maximum 20% in week 22). 
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Figure 3-11: Total chlorophyll a and percentages of 2 – 20 µm chlorophyll a fraction at 

Throop (A) and Knapp Mill (B). 

Figure 3-9 and Figure 3-10 indicate that the 2 – 20 µm size fraction was the dominant 

group at both sites. The mean percentage of the 2 – 20 µm fraction were found to be 70% 

(range 42 – 93%), and 62% (range 38 – 84%) in the Stour and the Hampshire Avon Rivers, 

respectively (Figure 3-11). The correlation between total chlorophyll a and the 2 – 20 µm 

gave R2 = 0.99 (n = 22) at Throop and R2 = 0.91 (n = 22) at Knapp Mill. 

There was good agreement between the sum of the total chlorophyll a and three size 

fractions at both Throop and Knapp Mill, with slopes of 0.93 and 1.07, and an R2 value of 
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0.99 and 0.97, respectively. This result gave confidence that the size fractionation 

procedure from the two sampling sites was not associated with significant loss of 

phytoplankton cells (Figure 3-12).  
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Figure 3-12: Correlation between total chlorophyll a and sum of the size fractions at (A) 

Throop and (B) Knapp Mill. The dash lines represent the 1:1 agreement line. 

The relationship between phytoplankton biomass (chlorophyll a) and nutrient 

concentrations at all riverine stations are shown in Figure 3-13 for Throop and Iford Bridge 

and Figure 3-14 for Knapp Mill. Silicate and phosphate concentrations reduced during high 

chlorophyll concentrations in both rivers but not a clear pattern at Iford Bridge (Figure 

3-13 B, C, E, F and Figure 3-14 B, C). It is probably water samples at this site have been 

collected later the spring bloom as occurred at Throop and Knapp Mill in May 2013 while 

nitrate concentrations did not show a correlation with the chlorophyll a concentrations 

from all study sites (Figure 3-13 A and Figure 3-14 A). 
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Figure 3-13: Relationship between inorganic nutrients and chlorophyll a concentration at 

Throop and Iford Bridge on the Stour, (A and D) nitrate, (B and E) phosphate, 

(C and F) silicate. 
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Figure 3-14: Relationship between inorganic nutrients and chlorophyll a concentration at 

Knapp Mill on the Hampshire Avon, (A) nitrate, (B) phosphate, (C) silicate. 

3.3.2.2 Phytoplankton accessory pigment 

A High Performance Liquid Chromatography (HPLC) method was used to determine the 

concentration of a number of phytoplankton accessory pigments including chlorophyll a in 

sample collected from Throop on the Stour and Knapp Mill on the Avon. Chlorophyll a 
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concentrations measured by HPLC were consistently lower than the concentration 

measured by fluorescence (Figure 3-15 A and B). It has been previously reported that 

lower HPLC concentrations may reflect interference by accessory pigments in the 

determination of chlorophyll a by fluorescence (Trees et al., 1985; Trees et al., 2000).  

The discrepancy between chlorophyll a concentrations determined by fluorescence and 

HPLC analysis in riverine samples seems to be magnified at high chlorophyll a 

concentrations. This is clearly seen on the five days of peak chlorophyll a concentrations 

over 20 µg L-1 at Throop during the diatom bloom and on the two days of high 

concentrations at Knapp Mill due to high abundance of the diatom, Stephanodiscus 

species. The HPLC chlorophyll a concentrations were lower than the fluorescence 

determination by around threefold.  
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Figure 3-15: Comparison of chlorophyll a measurements by HPLC and fluorometer during 

April 2013 to April 2014 at (A) Throop and (B) Knapp Mill. The solid lines 

represent the linear regression for each set of data and equation for this line and 

correlation coefficient are shown. The dash lines represent the 1:1 agreement 

line. 

In this study, the HPLC method detected up to 16 pigments some of which can be used as 

biomarkers to distinguish between phytoplankton groups as described in Table 2-2. As also 

shown by Trees et al. (2000) and Ali (2003), there were good correlations between 

chlorophyll a and both total pigment concentrations (all pigments including chlorophyll a) 

or total accessory pigment concentrations (without chlorophyll a), as shown in Figure 3-16 
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and Figure 3-17, which were irrespective of phytoplankton composition and pigment 

content.  

The temporal successions of eight major pigments, namely chlorophyll a (Chl a), peridinin 

(Peri), fucoxanthin (Fuco), alloxanthin (Allo), lutein (Lut), chlorophyll b (Chl b), 

diadinoxanthin (Dia), and β carotene (β caro) at Throop and Knapp Mill (Figure 3-18 and 

Figure 3-20) as well as eight minor pigments chlorophyll c3 (Chl c3), chlorophyll c2 (Chl 

c2), 19'Butanoyloxyfucoxanthin (19' But), 19'Hexanoyloxyfucoxanthin (19' Hex), 

violaxanthin (Vio), prasinoxanthin (Pra), divinyl chlorophyll a (DV Chl a), and zeaxanthin 

(Zea) from both study sites are shown in Figure 3-19 and Figure 3-21. Variations in the 

ratios of accessory pigments to chlorophyll a (Figure 3-22 to Figure 3-25) reflected 

changes in the taxonomic composition of the phytoplankton population. 
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Figure 3-16: Relationship of chlorophyll a concentration to total HPLC pigments and total 

HPLC accessory pigments at Throop on the Stour River during April 2013 to 

April 2014. 
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Figure 3-17: Relationship of chlorophyll a concentration to total HPLC pigments and total 

HPLC accessory pigments at Knapp Mill on the Hampshire Avon River during 

April 2013 to April 2014. 

Throop, River Stour 

Temporal changes of HPLC determined chlorophyll a concentration at Throop (Figure 

3-18) generally followed distributions described previously for fluorometric determination 

(see Figure 3-8 A), although absolute concentration varied (Figure 3-18 A). Fucoxanthin, 

diadinoxanthin, and β carotene pigments displayed a similar seasonal distribution to 

chlorophyll a, with maxima of 55.0, 12.7, 4.1 µg L-1 on 10th May 2013 (week 4) followed 

by 45.5, 11.5, and 3.6 µg L-1 on 3rd May 2013 (week 3) respectively (Figure 3-18 C, G, H). 

The diadinoxanthin and β carotene pigments showed considerably lower concentration 

close to zero during autumn and winter months and concentrations of fucoxanthin were 

also much reduced (Figure 3-18 G, H). Alloxanthin, lutein, and chlorophyll b 

concentrations showed maxima peaks during the early chlorophyll a events (T1 – 6) in 

weeks 3, 7, and 9 (Figure 3-18 D, E, F). Concentration of lutein closely followed those of 

chlorophyll b and both pigments showed a high concentration in week 9 (T5), however, the 

highest concentration of lutein was presented on 30th October 2013 (week 29) with 

concentration of 2.9 µg L-1 as shown in Figure 3-18 E and F. Maximum concentration of 

peridinin was observed in week 28 and 29 (24th and 30th October 2013) with a 

concentration of 0.4 µg L-1 while concentrations were close to zero during the rest of year 

(Figure 3-18 B). 
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Some of the other eight minor accessory pigments, Chl c2, 19'But, violaxanthin, and 

divinyl Chl a showed a similar seasonal distribution, peaking during the early chlorophyll 

events (T1 – 6), with maxima of 1.9, 0.6, 1.2, and 1.3 µg L-1 on 3rd May 2013 (week 3) 

except violaxanthin which peaked on 14th June 2013 (week 9) as shown in Figure 3-19 B, 

C, E, and G. These pigments were often undetectable during the rest of year until spring 

2014. However, Chl c3, prasinoxanthin, and zeaxanthin were detected at maximum 

concentration on 30th October 2013 (week 29), but with concentrations < 1.0 µg L-1 (Figure 

3-19 A, F, H). 19'Hex concentration was low throughout the whole sampling period but did 

reach 0.4 µg L-1 on 27th March 2014 (week 50, T7) as illustrated in Figure 3-19 D. 

Knapp Mill, River Hampshire Avon 

Temporal changes of HPLC analysed chlorophyll a concentration at Knapp Mill (Figure 

3-20 A) showed some differences to the distribution measured by fluorometer analysis (see 

Figure 3-8 C). Fucoxanthin, diadinoxanthin, and β carotene pigments displayed a similar 

seasonal distribution to Chl a by fluorescence determination, with maxima of 16.5, 3.8, 1.2 

µg L-1 on 3rd May 2013 (week 3) followed by 13.2, 3.0, and 0.9 µg L-1 on 10th May 2013 

(week 4) respectively (Figure 3-20 C, G, H). A high fucoxanthin concentration was 

detected on 3rd May 2013 at this site but about threefold lower than the concentration at 

Throop on the same day. The diadinoxanthin and β carotene pigments showed 

considerably higher concentration compared with the distribution at Throop. Fucoxanthin 

concentration was measureable throughout the sampling period (Figure 3-20 C). Lutein 

and Chl b concentrations showed maximum peak concentrations after the chlorophyll a 

events in July 2013, with maximum of 0.6 and 0.8 µg L-1 in week 13 and 15 respectively 

followed by 0.5 and 0.4 µg L-1 in November 2013 (Figure 3-20 E, F). Peridinin showed a 

small concentration (< 0.4 µg L-1) from week 19 onwards as shown in Figure 3-20 B. 

Throughout the rest of the sampling period alloxanthin concentration was close to zero at 

this site, and only observed peak maxima concentrations during the K3 and K4 events 

(week 42 and 50), with concentration of 0.7 and 0.6 µg L-1 respectively (Figure 3-20 D). 

In general, the concentration of minor accessory pigments (Chl c3, Chl c2, 19'But, 

violaxanthin, prasinoxanthin, and divinyl Chl a) at Knapp Mill were below 1 µg L-1, while 

19'Hex and zeaxanthin pigments were undetectable throughout the sampling period (Figure 

3-21). Chl c3 concentrations varied between zero and 0.08 µg L-1 (Figure 3-21 A) and Chl 

c2 and 19'But were generally present at level below 0.5 µg L-1 (Figure 3-21 B, C). These 

peaks were observed at the same time as the maximum chlorophyll a by fluorescence then 
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decreased considerably and were close to zero throughout April 2014. Low concentrations 

of violaxanthin were observed at Knapp Mill with concentrations close to zero except for 

in July 2013 when concentrations > 0.2 µg L-1 were detected (Figure 3-21 E). 

Prasinoxanthin was not detected in samples collected during April to December 2013 

(week 1 – 41), but did increase during both later chlorophyll events (K3 and K4) where 

concentrations of 0.01 and 0.02 µg L-1 were respectively measured (Figure 3-21 F). 19'Hex 

and zeaxanthin pigments were not detected in samples collected at this site (Figure 3-21 D, 

H). 
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Figure 3-18: Temporal distributions of chlorophyll a and major accessory pigments at 

Throop on the Stour River. The numbers and dash lines shown above the 

HPLC pigment plots identify a series of chlorophyll events. Accessory pigment 

abbreviations are as in Table 2-2. 
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Figure 3-19: Temporal distributions of chlorophyll a and minor accessory pigments at 

Throop on the Stour River. The numbers and dash lines shown above the 
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HPLC pigment plots identify a series of chlorophyll events. Accessory pigment 

abbreviations are as in Table 2-2. 
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Figure 3-20: Temporal distributions of chlorophyll a and major accessory pigments at 

Knapp Mill on the Hampshire Avon River. The numbers and dash lines shown 

above the HPLC pigment plots identify a series of chlorophyll events. 

Accessory pigment abbreviations are as in Table 2-2. 
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Figure 3-21: Temporal distributions of chlorophyll a and minor accessory pigments at 

Knapp Mill on the Hampshire Avon River. The numbers and dash lines shown 

above the HPLC pigment plots identify a series of chlorophyll events. 

Accessory pigment abbreviations are as in Table 2-2. 

Throop, River Stour 

Considering ratios of major accessory pigments to chlorophyll a (Chl a) for all samples 

from Throop, peridinin to Chl a ratio (Peri:Chl a) showed small values from September to 

November 2013, and was below 0.2, while ratios were zero during the rest of year (Figure 

3-22 A). The fucoxanthin to Chl a ratio (Fuco:Chl a) showed consistently high values from 

May 2013, and were above 1, and up to 1.4 initially in this month and later up to 2.9 on 

27th March 2014 (Figure 3-22 B). These high fucoxanthin to Chl a ratios were consistent 

with a high biomass of Stephanodiscus sp., that developed during spring 2013. 

Diadinoxanthin to Chl a ratios (Dia:Chl a) followed the same temporal distribution as 

fucoxanthin to Chl a ratios, indicating that diatoms were the dominant group associated 

with this pigment at Throop (Figure 3-22 F). Alloxanthin to Chl a ratios (Allo:Chl a) were 

low during most of the sampling period reaching peak values of 0.14 occasionally e.g. on 

20th June 2013 (week 10, Figure 3-22 C). Lutein to Chl a ratios (Lut:Chl a) were lower 

than 1 throughout the sampling period, except on 17th December 2013 and 15th January 

2014 (week 36 and 39, 1.7 and 1.3 respectively) and coincided with high abundances of 

chlorophytes (Figure 3-22 D). Chl b to Chl a ratios varied between zero and 0.8 and were 

in general higher in June 2013 (Figure 3-22 E) during the chlorophyll event of T4 and T5 

at Throop. β carotene to Chl a ratios were in general lower than 0.3, except on 17th 

December 2013 (week 36), when this ratio was 0.5 (Figure 3-22 G). 

In general, the ratio of minor accessory pigments to Chl a for all samples at this site were 

low as shown in Figure 3-23. Chl c3 to Chl a ratios were low during most part of the 

sampling period and reached peak values of 0.3 occasionally e.g. on 9th December 2013 

and 23rd January 2014 (week 35 and 40, Figure 3-23 A). Chl c2 to Chl a ratios were lower 

than 0.2 while peak values occurring at the same time as the chlorophyll events, where this 

ratio was 0.2 and 0.1 and coincided with high abundance of diatoms (Figure 3-23 B). 

19'But to Chl a ratios were quite variable at Throop (Figure 3-23 C). 19'Hex to Chl a ratios 

were generally zero, although one peak was observed of 0.1 on 27th March 2014 (week 49, 

Figure 3-23 D). Violaxanthin to Chl a (Vio:Chl a) and divinyl Chl a to Chl a (DV Chl 

a:Chl a) ratios were quite variable but were higher on similar dates (Figure 3-23 E, G). 



CHAPTER 3 

69 

Prasinoxanthin to Chl a (Pra:Chl a) and zeaxanthin to Chl a (Zea:Chl a) ratios were only 

detected from September to November 2013 (week 22 – 32, Figure 3-23 F, H). 

Knapp Mill, River Hampshire Avon  

The ratio of accessory pigments to Chl a for all samples at Knapp Mill showed lower 

values than at Throop, except fucoxanthin to Chl a ratios (Fuco:Chl a) that showed high 

values during each chlorophyll event (Figure 3-24). The peridinin to Chl a ratios showed 

values of zero from April 2013 to March 2014 (week 50) as shown in Figure 3-24 A. Peaks 

in Fucoxanthin to Chl a ratios followed the chlorophyll events (K2 – 4), when the ratio 

value was over 2, coinciding with an abundance of diatoms (Figure 3-24 B). Alloxanthin to 

Chl a ratios ranged between zero and 0.4 throughout the sampling period at this site, and 

higher values were detected during the K3 and K4 events (Figure 3-24 C). Lutein to Chl a 

and Chl b to Chl a ratios ranged between zero and 0.3, and were on average 0.04 and 0.6 

respectively (Figure 3-24 D, E). Diadinoxanthin to Chl a ratios ranged between 0.04 and 

0.5 throughout the sampling period. Between 28th June 2013 and 13rd March 2014 (week 

11 – 47) this ratio was quite constant at below 0.2 (Figure 3-24 F). β carotene to Chl a 

ratios varied during most of the period studied, and maximum values were found at the 

same time as the peak chlorophyll events occurred (Figure 3-24 G). 

The high values of ratios of minor accessory pigments to Chl a were generally detected 

following the four chlorophyll peak events (K1 – 4), however, the highest values of each 

pigment to Chl a ratios showed different timing with the events (Figure 3-25). In contrast 

to Throop, Chl c3 to Chl a ratios showed similar patterns and the ratios considerably 

increased in December 2013 with a peak value of 0.2 detected on 2nd December 2013 

(week 34) as shown in Figure 3-25 A. Chl c2 to Chl a and 19'But to Chl a ratios had 

maximum values of 0.16 and 0.18 respectively on 18th November 2013 (week 32, Figure 

3-25 B, C). Violaxanthin to Chl a and divinyl Chl a to Chl a ratios ranged between zero 

and 0.08, and zero and 0.2 respectively (Figure 3-25 E, G). Prasinoxanthin to Chl a ratios 

had small values during the K3 and K4 events (Figure 3-25 F). 19'Hex and zeaxanthin to 

Chl a ratios were zero as these pigments were undetected throughout the study period at 

Knapp Mill (Figure 3-25 D, H). 
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Figure 3-22: Temporal and spatial distributions of major accessory pigment to chlorophyll 

a ratios at Throop. The numbers and dash lines shown above the HPLC 

pigment plots identify a series of chlorophyll events. Accessory pigment 

abbreviations are as in Table 2-2. 
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Figure 3-23: Temporal and spatial distributions of minor accessory pigment to chlorophyll 

a ratios at Throop. The numbers and dash lines shown above the HPLC 
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pigment plots identify a series of chlorophyll events. Accessory pigment 

abbreviations are as in Table 2-2. 
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Figure 3-24: Temporal and spatial distributions of major accessory pigment to chlorophyll 

a ratios at Knapp Mill. The numbers and dash lines shown above the HPLC 

pigment plots identify a series of chlorophyll events. Accessory pigment 

abbreviations are as in Table 2-2. 
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Figure 3-25: Temporal and spatial distributions of minor accessory pigment to chlorophyll 

a ratios at Knapp Mill. The numbers and dash lines shown above the HPLC 

pigment plots identify a series of chlorophyll events. Accessory pigment 

abbreviations are as in Table 2-2. 
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3.3.3 Phytoplankton taxonomic data 

Cell counts of separate phytoplankton can provide useful data on the community of 

individual organism genera or species, and can be used to monitor the seasonal change in a 

particular species distribution. Species counts give information on phytoplankton 

abundance which can be converted to bio-volume (µm3) and the cell carbon (µg C) as an 

approximate for phytoplankton biomass in the water column. In the present study the 

microscopic cell count (cells mL-1), bio-volume (µm3 mL-1), and phytoplankton carbon 

biomass (µg C L-1) were used to investigate the changes in the annual pattern of riverine 

phytoplankton community in the lower reaches of on the Stour and Hampshire Avon 

Rivers. 

3.3.3.1 Phytoplankton cell abundance 

Riverine phytoplankton abundance on both rivers during the sampling period from April 

2013 to April 2014 consisted of at least 37 diatom species, 13 chlorophytes, 2 

cryptophytes, 2 cyanophytes, 2 chrysophytes, ~1 photosynthetic dinoflagellate species, and 

3 ciliates. A gradient of increasing total abundance was observed from spring to summer. 

The phytoplankton abundances are respectively shown in Figure 3-26, Figure 3-28, and 

Figure 3-29 as percentage values of total cell count throughout the sampling period at 

Throop and Iford Bridge on the Stour River and Knapp Mill on the Hampshire Avon River.   

Throop, River Stour 

The dominant phytoplankton group was generally the diatoms, except during summer 

months (week 8 to 18) when chlorophytes represented the dominant group and accounted 

for over 50% of the total phytoplankton as shown in Figure 3-26 B. During the spring 

bloom events in May 2013, when the chlorophyll a concentration was > 60 µg L-1 (week 3 

to 5), the centric diatom Stephanodiscus sp. was the dominant species with a cell density of 

over 4.4 × 104 cells mL-1 (Figure 3-27). A high abundance of cyanophyte species occurred 

after the spring diatom bloom and these were the dominant group in week 6 and 7. The 

small chlorophyte species, Chlamydomonas spp., occurred in high abundance (1.9  7.9 × 

104 cells mL-1) after this diatom and cyanophyte bloom during the summer months and 

then the diatom group again became the main phytoplankton at Throop. In general, 

particularly cryptophytes, ciliates, and chrysophytes occurred together; these groups 

dominated from the late summer months in small proportions. Dinoflagellate populations 
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were found on some sampling dates after the chlorophyte bloom in summer (Figure 3-34 

B). 

In spring samples (week 1 – 7 and 46 – 51), the range of total phytoplankton abundance 

were 1.6 – 46.4 × 103 and 0.5 – 5.3 × 103 cells mL-1 (spring 2013 and 2014) respectively. 

The monospecific bloom of the diatom Stephanodiscus sp. showed peaks in week 3 to 5 or 

chlorophyll events T1 – 3, reaching 44.0 × 103 cells mL-1 as shown in Figure 3-26 A and 

then a marked increase of cyanophyte species in week 6 to 7 was observed reaching 28.4 × 

103 cells mL-1. From mid-April to end of March 2013, the range of total abundance was 1.6 

– 46.4 × 103 cells mL-1 while from early March to mid-April 2014, lower total cell 

abundances were observed between 0.5 – 5.3 × 103 cells mL-1. During spring 2014, a 

bloom of the diatom Stephanodiscus sp. reached a cell abundance up to 3.3 × 103 cells mL-

1 (week 49, T7). This bloom was of a much lower abundance than the spring bloom in 

2013, but this diatom was still the dominant species. 

In summer samples (week 8 – 20), the total abundance varied between 0.9 × 103 and 85.1 × 

103 cells mL-1. The highest abundance was higher than the spring peak by around twofold. 

The contribution of chlorophyte species became more important as a dominant group 

throughout most of the summer but at the end of the summer months, the diatom 

population again dominated together with the chlorophytes. As phytoplankton replicate in 

time scales ranging from hours to days then over the space of a week many changes in the 

composition may have occurred and subsequently might be missed in a weekly survey. 

From early June to mid-July 2013 (week 8 – 14), a chlorophyte bloom of Chlamydomonas 

sp. ranged in density from 19.3 – 79.9 × 103 cells mL-1. Two chlorophyll events (T5 and 

T6) were also observed in this season in week 9 and 12 with total abundances of 36.8 × 103 

and 85.1 × 103 cells mL-1, respectively. Rhodomonas sp. was observed along with other 

dominant species at the same time as this Chlamydomonas sp. bloom with densities 

between 0.3 × 103 and 4.9 × 103 cells mL-1. Following the last week of July 2013 (week 8 

– 15), a much lower total cell abundance was observed although chlorophyte and 

cryptophyte groups were still the dominant populations at that time. Following this these 

groups were replaced by the diatom population between week 16 and 20. 

In the autumn samples (week 21 – 33), total abundance was monitored with a range of 0.2 

– 2.5 × 103 cells mL-1. The diatom population was still the dominant group but with a 

lower density during this season. No bloom abundance of species was observed in any of 
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the autumn samples. Some phytoplankton species were absent several times during the 

autumn period, particularly dinoflagellate species.  

In the winter samples (week 34 – 45), total density reached a lowest overall abundance of 

28 cells mL-1 on 30th December (week 37) and a peak cell abundance of only 569 cells mL-

1. Diatoms were still the most abundant species followed by cryptophytes, chlorophytes, 

and cyanophytes, respectively. The spring diatom bloom Stephanodiscus sp. showed 

gradually increasing cell numbers from 7 cells mL-1 in week 34 to 72 cells mL-1 in week 

45. This monitoring period occurred during the high river discharge that started in week 36 

at 51 m3 s-1 and up to 112 m3 s-1 on 17th December 2013 (week 38). 
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Figure 3-26: Distributions of abundance and cell count percentage for main phytoplankton 

groups at Throop during April 2013 – April 2014. The letters and numbers 

shown above the abundance bars identify a series of chlorophyll a events. 
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Figure 3-27: Images of the centric diatom Stephanodiscus sp. as observed by (A and B) 

scanning electron microscopy and (C) light microscopy. Scale bars are 1, 2, 

and 50 µm respectively. 

Iford Bridge, River Stour  

Iford Bridge on the Stour River is between Throop and the estuary and was chosen as it is 

directly downstream of the main sewage input into the river. This site was sampled at 

weekly intervals from 6th June 2013. The pattern of phytoplankton community at this site 

was generally similar to Throop but the percentage of cryptomonad and cyanophyte groups 

were found to be higher than at Throop (Figure 3-28). 

In the spring samples (week 46 – 51), the range of total phytoplankton abundance were 0.4 

– 4.5 × 103 cells mL-1 and the abundance variability was similar to Throop during this 

period. The centric diatom, Stephanodiscus sp. was the dominant species during spring 

2014, apart from 27th March 2014 (week 49, I3), when its density was 2.5 × 103 cells mL-1. 

The pennate diatom, Navicula gracilis was the second most abundance organism at 749 

cells mL-1. On this day, high abundances of Rhodomonas sp. (249 cells mL-1) were 

recorded as well as Cryptomonas sp. (130 cells mL-1). Dinobryon sp. was also observed at 

around 200 cells mL-1 in week 49 and 50.  

In the summer samples (week 8 – 20, Figure 3-28 A), the total cell abundance varied 

between 0.9 × 103 and 79.5 × 103 cells mL-1. The chlorophyte, Chlamydomonas sp. was the 

dominant species during this season, reaching 73.4 × 103 cells mL-1 on 4th July 2013 (week 

12, I3) as shown in Figure 3-28 A. A small chlorophyte cell, Chlorella sp. was also 

abundant (3.7 × 103 cells mL-1) in week 11. A large chlorophyte, Scenedesmus spp. was 

abundant (2.6 × 103 cells mL-1) on 23rd July 2013 (week 15). The first chlorophyll event on 

14th June 2013 (week 9, I1) was dominated by Chlamydomonas sp., Rhodomonas sp., and 

Stephanodiscus sp. (24.7, 8.1, and 4.1× 103 cells mL-1), respectively. Rhodomonas sp. was 

found in high numbers on 14th and 20th June 2013 (week 9 and 10), reaching 8.1 and 9.1 × 

103 cells mL-1 respectively, while Cryptomonas sp. peaked in week 10 with an abundance 

(C) (B) (A) 
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of 1.9 × 103 cells mL-1. The total abundance of summer samples sharply decreased from 

24.6 × 103 to 5.0 × 103 cells mL-1 after week 15.  

In the autumn samples (week 21 – 33), the range of phytoplankton abundance was between 

0.2 × 103 and 3.0 × 103 cells mL-1. Diatom and chlorophyte species continued to be the 

dominant populations during week 21 to 27. Several pennate diatoms were dominant 

particularly Navicula genera and cryptomonads were still observed with low abundance. A 

high abundance of the cyanophyte, Pseudo-anabaena sp. occurred at about 1.4 × 103 cells 

mL-1 on 9th December 2013 (week 28). By 24th October 2013 (week 28), total cell number 

was higher at 1.0 × 103 cells mL-1, but on 30th October 2013 a much lower phytoplankton 

abundance was observed (488 cells mL-1). 
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Figure 3-28: Distributions of abundance and cell count percentage for main phytoplankton 

groups at Iford Bridge during June 2013 – April 2014. The letters and numbers 

shown above the abundance bars identify a series of chlorophyll a events. 
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In the winter samples (week 34 – 45) total abundance varied between 21 and 723 cells mL-

1. A high percentage of cyanophyte community was found in this period compared with 

others season (Figure 3-28 B). Cryptophyte populations were a higher percentage of the 

total population in the winter. The spring diatom bloom of Stephanodiscus sp. showed low 

cell numbers when compared to Throop during this time. 

Knapp Mill, River Hampshire Avon  

In general, at Knapp Mill the dominant group was the diatoms, representing over 60% of 

the total phytoplankton counted, followed by the chlorophyte and cryptophyte populations. 

The chlorophyte group became the main phytoplankton group during the summer months 

as was also found at Throop and Iford Bridge on the River Stour. The cryptomonad 

community was more abundant in the summer period than during the other seasons as 

shown in Figure 3-29 A and B. Stephanodiscus sp. was also the bloom species as it was at 

Throop during spring 2013, but was lower in cell numbers in comparison. 

In the spring samples (week 1 – 7 and 46 – 51), the range of total phytoplankton abundance 

was 1.9 – 6.2 × 103 cells mL-1 and 1.0 – 3.3 × 103 cells mL-1 (spring 2013 and 2014) 

respectively. Total abundance showed lower cell numbers than at Throop during both 

spring periods. The centric diatom, Stephanodiscus sp. was also the dominant species in 

spring 2013 as at Throop with a range of 1.3 – 3.8 × 103 cells mL-1 during week 1 to 5. The 

first chlorophyll event was on 3rd May 2013 (week 3, K1) with the highest dominance of 

Stephanodiscus sp. at 3.8 × 103 cells mL-1. The Stephanodiscus sp. density at this sampling 

site was however around sixfold lower compared to its density at Throop. The next 

chlorophyll event during the spring season was found on 4th April 2014 (week 50, K4) with 

a total abundance of 3.0 × 103 cells mL-1. During the spring months in 2013, Rhodomonas 

sp. and Scenedesmus spp. were observed at around 217 and 245 cells mL-1, while 

Scenedesmus spp. became a rare species during spring 2014 and Rhodomonas sp. was still 

found in abundances close to those of spring 2013. 

In the summer samples (week 8 – 20), the total abundance varied between 1.1 × 103 and 

22.8 × 103 cells mL-1. The abundance of the chlorophyte Scenedesmus spp. was over 1.0 × 

103 cells mL-1 in July 2013 (week 12 – 15) and Coelastrum sp. was also over 1.0 × 103 

cells mL-1 in week 14 to 15. On 20th June 2013 (week 10, K2) was the second chlorophyll 

event with a total phytoplankton abundance of 3.0 × 103 cells mL-1. Navicula gracilis, 

Navicula spp., and Stephanodiscus sp. became the dominant diatom species in week 10. 
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On 17th July 2013 (week 14), the centric diatom Stephanodiscus sp. was counted at 17.8 × 

103 cells mL-1 but total chlorophyll a was relatively low in concentration about 9.5 µg L-1.  

In the autumn samples (week 21 – 33), the range of phytoplankton abundance was 0.8 – 

2.1 × 103 cells mL-1. The diatom species were the dominant population followed by the 

chlorophyte and cryptophyte populations, respectively. The abundance of Cocconeis spp., 

Navicula gracilis, and Navicula spp. showed these were the main diatom species with a 

density less than 500 cells mL-1. 
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Figure 3-29: Distributions of abundance and cell count percentage for main phytoplankton 

groups at Knapp Mill during April 2013 – April 2014. The letters and numbers 

shown above the abundance bars identify a series of chlorophyll a events. 

In the winter samples (week 34 – 45) total abundance ranged from 196 – 1654 cells mL-1. 

The diatoms were still the most abundant species followed by cryptophytes, chlorophytes, 
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and cyanophytes respectively as was observed at Throop. This survey period coincided 

with the high river discharge that started in week 37 at 54 m3 s-1 and reached up to 94 m3 s-

1 on 7th January 2014 (week 38). 

3.3.3.2 Phytoplankton bio-volume and carbon biomass 

Phytoplankton carbon biomass (µg C L-1) was calculated from cell volumes for the main 

species present in the rivers (see Section 2.7). Table 3-2 lists the length and width 

measurements, cell bio-volume and carbon content of species from the Stour and 

Hampshire Avon Rivers. The distribution of carbon biomass during the whole monitoring 

period at all riverine stations is shown in Figure 3-30, Figure 3-31, and Figure 3-32. These 

analyses show that the larger cells are more important when considered in terms of carbon 

biomass than indicated by the microscopic cell counts alone. The increase in diatom carbon 

biomass was accompanied by increases in the other large cells (cryptophytes) and also by 

higher total biomass, as measured by chlorophyll. 

Measured chlorophyll a concentration and estimated phytoplankton carbon were positively 

correlated (Figure 3-33). Total carbon biomass was observed at all stations, and the best fit 

was found to be between total chlorophyll and total carbon biomass as shown in Figure 

3-33. The slopes of the relationship give total carbon to chlorophyll a ratios of 38.7 as 

shown in Figure 3-33 and are similar to a range of 10 – 70 reported for the Southampton 

Water (Ali, 2003; Altisan, 2006), but the ratio of this study is lower than from what would 

be expected from the literature (e.g. The ratio is 51 at San Francisco Bay, Wienke and 

Cloern (1987)).  

Stephanodiscus sp. was among the most abundant species at Throop during the spring 

bloom (week 3 – 5) as shown in Figure 3-30. Although this species was an important 

component of the phytoplankton population, it does not contribute highly to the 

phytoplankton carbon in other periods because of its small size (Table 3-2). Phytoplankton 

with cell sizes of over 20 µm in length were not important in terms of abundance, however, 

contribute greatly to the total bio-volume and carbon biomass. As an example Diatoma 

vulgare was less abundant than Stephanodiscus sp. but because of its larger size, 

contributes greatly to the total carbon (Table 3-2). 
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Table 3-2: Examples of linear dimensions, cell bio-volume (µm3) and carbon content of 

main phytoplankton species from the rivers. 

Species Length (µm) Width (µm) 
Bio-volume 

(µm3) 
µg C cell-1 

Bacillariophyta     

Amphora sp. 19.4 10.0 916 73 

Centric diatoms 5.8 15.8 883 71 

Cocconeis sp. 20.3 12.9 773 63 

Diatoma vulgare 42.5 18.8 10009 505 

Melosira sp. 20.6 20.0 6280 346 

Nitzschia acicularis 20.1 4.6 109 13 

Pennate diatoms 22.5 10.0 19625 873 

Stephanodiscus sp. 11.9 10.2 1227 92 

Cyanophyta     

Merismopedia sp. 7.5 7.5 281 43 

Pseudo-anabaena sp. 4.0 2.5 8 2 

Cryptophyta     

Cryptomonas sp. 17.6 11.1 1022 145 

Rhodomonas sp. 7.5 5 184 29 

Chrysophyta     

Dinobryon sp. 11.6 5.0 164 26 

Synura sphagnicola 11.1 8.6 294 45 

Chlorophyta     

Chlamydomonas sp. 4.6 2.5 100 16 

Chlorella sp. 2.8 2.8 30 5 

Scenedesmus spp. 10.4 4.4 212 33 

Throop, River Stour 

Total carbon biomass varied between 7 and 4542 µg C L-1 and the mean value was 490 ± 

979 µg C L-1 (n=51). High phytoplankton biomass was observed on the Stour River, 

mainly because of the Stephanodiscus sp. bloom in May 2013. After this diatom bloom, a 

considerably lower phytoplankton biomass was recorded, however, the diatom community 

was still a dominant population throughout the monitoring programme. The increase in 

chlorophyte biomass was accompanied by an increase in other large cells particularly 

cryptophytes and also by higher total biomass as measured by chlorophyll as shown in 

Figure 3-30.  
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Figure 3-30: Distributions of carbon biomass and percentage for main phytoplankton 

groups at Throop during April 2013 – April 2014. The letters and numbers 

shown above the abundance bars identify a series of chlorophyll events. 

Iford Bridge, River Stour 

At this monitoring site, total carbon biomass varied from 2 to 1420 µg C L-1 with a mean 

value of 249 ± 363 µg C L-1 (n=44). The first peak of carbon biomass on 14th June 2013 

was composed of diatoms, cryptomonads, and chlorophytes, while the second peak on 4th 

July 2013 (week 12, I2) was dominated by high biomass of chlorophyte species, 

Chlamydomonas sp. The last peak of biomass was measured on 27th March 2014 (week 49, 

I3) and consisted of two main diatom species, Stephanodiscus sp. and Navicula gracilis.  
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Figure 3-31: Distributions of carbon biomass and percentage for main phytoplankton 

groups at Iford Bridge during June 2013 – April 2014. The letters and numbers 

shown above the abundance bars identify a series of chlorophyll events. 

Knapp Mill, River Avon 

In general, total carbon biomass ranged from 24 to 1915 µg C L-1 and the mean value was 

263 ± 331 µg C L-1 (n=51). The first peak of carbon biomass was observed on 3rd May 

2013 (week 3, K1) and was mainly composed of the diatoms, Diatoma vulgare and 

Stephanodiscus sp., while the next peak in carbon biomass on 20th June 2013 (week 10, 

K2) is due to the pennate diatom, Navicula gracilis. On 17th July 2013 (week 14) a high 

peak of biomass was observed comprised of the centric diatom Stephanodiscus sp. but did 

not coincide with a high concentration of chlorophyll. It may be that the chlorophyll a 

concentration was underestimated at that time. The third and last peaks of carbon biomass 

were observed in the late winter and in spring 2014 (week 42 and 50) and were dominated 

by the diatom population. 
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Figure 3-32: Distributions of carbon biomass and percentage for main phytoplankton 

groups at Knapp Mill during April 2013 – April 2014. The letters and numbers 

shown above the abundance bars identify a series of chlorophyll events. 
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Figure 3-33: Correlation between total carbon biomass and total chlorophyll a 

concentration at three riverine sites. 

3.3.3.3 Phytoplankton species composition 

At Throop, five out of the eight chlorophyll events identified in Figure 3-8 A included 

samples with a chlorophyll concentration greater than 20 µg L-1. The phytoplankton cell 

counts and biomass values for these samples are summarised in Table 3-3. Phytoplankton 

cell counts at Iford Bridge during the chlorophyll events are also shown in Table 3-3. The 

most numerous cell types were diatoms in most chlorophyll events (spring months), except 

in week 9 and 12 (summer) each with a single dominant species, Stephanodiscus. The 

other chlorophyll events (week 9 and 12) included a mixed assemblage of phytoplankton 

species. Cryptophytes and chlorophytes had a greater number of species contributions 

together than in other weeks, although some species appeared at only one time, while 

others appeared in many weeks.  

The phytoplankton cell types identified at Knapp Mill are summarised in Table 3-4 for the 

four chlorophyll events. The most numerous cell types were the diatoms as on the Stour 

River. The diatom populations were dominated by several species but on one occasion 
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(week 3), Stephanodiscus sp. was present in appreciable numbers. The diatom cell 

numbers tended to decrease from spring samples to late winter. The other dominant diatom 

species, Diatoma vulgare, was present during the spring bloom at this station. Furthermore, 

chlorophyte numbers were very variable with a similar seasonal trend as observed on the 

Stour River.  

When phytoplankton cell numbers are converted to bio-volume (µm3) or carbon (µg C) 

biomass (Table 3-5 and Table 3-6) a different picture emerges of the community 

composition. The phytoplankton biomass contributions to the different chlorophyll events 

are shown in terms of the highest species contributors within the group, and the dominant 

group within similar samples. The diatoms were highly dynamic in terms of shifting from 

one species to another over the sampling period. The diatom carbon biomass was high, but 

varied from time to time. The diatoms were composed of Stephanodiscus sp., 

Coscinodiscus spp., Diatoma vulgare, Navicula gracilis, and Melosira sp. The highest 

biomass was obtained during the spring bloom and was dominated by Stephanodiscus sp. 

(T1 – T3, K1 chlorophyll events). The cryptomonads contributed to almost all peaks at 

different biomass values and times and were dominated by Cryptomonas sp. and 

Rhodomonas sp. during the chlorophyll events during summer months (week 9 and 12) on 

the Stour River. Other groups, such as the chlorophyte group were present with 

comparable biomass values at the same time as the cryptophyte group was peaking.  



CHAPTER 3 

88 

Table 3-3: Phytoplankton species counts (cells mL-1) for the high chlorophyll samples at 

Throop (T1 – 8) and Iford Bridge (I1 – 3) on the Stour River. All species 

counted from settled 10 mL samples are listed. 

Chlorophyll a events T1 T2 T3 T4 T5 I1 T6 I2 T7 I3 T8 

weeks 3 4 5 7 9 12 49 51 

Chlorophyll a (µg L-1) 85.4 98.8 65.0 28.9 35.9 43.7 18.7 22.3 15.0 16.5 14.7 

Bacillariophyta           

Amphora spp. 16 14 14 35 81 60 40 39 64 48 45 

Bacillaria paxillifer - - - 12 23 29 35 23 12

5 

11

1 
54 

Cocconeis spp. - 6 13 46 82 77 171 206 8 8 25 

Coscinodiscus spp. 1,722 225 - - 16 5 11 22 1 - 1 

Diatoma vulgare 557 318 77 95 38 35 9 11 7 5 7 

Licmorphora sp. 22 7 13 15 26 29 19 38 35 22 19 

Melosira sp. 158 23 21 11 15 15 8 11 11 11 32 

Navicula gracilis 695 152 101 63 68 54 30 26 53

9 

74

9 

60

1 Navicula spp. -  54 102 168 256 172 134 154 54 57 15

1 Nitzschia acicularis 552 271 185 67 93 19 21 26 10

6 
97 19 

Nitzschia sp. 29 29 36 40 63 45 43 63 32 22 43 

Pennate diatoms 175 38 39 8 19 14 20 13 27 21 19 

Pleurotaenium sp. 49 36 40 15 6 5 2 4 25 26 16 

Stephanodiscus sp. 22,252 44,020 35,113 3,094 3,559 4,050 204 168 3,397 2,536 19

5 
Cryptophyta           

Cryptomonas sp. 110 27 304 998 1,137 394 294 215 14

9 

13

0 
33 

Rhodomonas sp. 789 841 865 963 4,932 8,116 1,188 1,821 38

0 

27

9 

13

5 
Chrysophyta           

Dinobryon sp. 109 -  18 433 - - - - 18

5 

13

7 
11 

Synura sphagnicola 18 28 5 9 7 2 - - 4 20 6 

Chlorophyta            

Actinastrum sp. -  25 102 108 924 768 - - - - 5 

Ankistrodesmus sp. 66 30 72 467 374 319 215 223 16 6 9 

Chlamydomonas ssp. -  19 -  - 19,664 24,658 79,902 73,410 - - 1 

Chlorella sp. - - - - 4,722 - 301 727 - 1 7 

Coelastrum sp. - - - - 40 137 645 692 - 4 - 

Kirchneriella sp. - 12 32 - 131 96 344 626 1 - 1 

Pediastrum sp. -   - 20 - - - - - - - 19 

Scenedesmus sp. 82 38 94 258 403 416 1,409 912 16 21 16 
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Table 3-4: Phytoplankton species counts (cells mL-1) for the high chlorophyll samples at 

Knapp Mill on the Hampshire Avon River. All species counted from settled 10 

mL samples are listed. 

Chlorophyll a events K1 K2 K3 K4 

weeks 3 10 42 50 

Chlorophyll a (µg L-1) 35.5 17.3 11.9 14.7 

Bacillariophyta     

Amphora spp. 57 46 18 168 

Bacillaria paxillifer 18 41 - 40 

Cocconeis spp. - 132 5 95 

Coscinodiscus spp. 38 7 - 11 

Diatoma vulgare 732 155 25 90 

Licmorphora sp. 94 176 21 80 

Melosira sp. 104 25 59 208 

Navicula gracilis 181 439 11 346 

Navicula spp. 8 485 23 157 

Nitzschia acicularis 291 12 169 68 

Nitzschia sp. 8 29 35 68 

Pennate diatoms 205 4 15 32 

Pleurotaenium sp. 154 7 77 39 

Stephanodiscus sp. 3,821 399 30 985 

Cryptophyta     

Cryptomonas sp. - 64 50 33 

Rhodomonas sp. 170 236 395 141 

Chrysophyta     

Dinobryon sp. - - - 1 

Synura sphagnicola 49 1 100 52 

Chlorophyta     

Actinastrum sp. - - - 23 

Ankistrodesmus sp. 22 22 7 18 

Chlamydomonas sp. 20 69 - - 

Chlorella sp. - 50 - - 

Coelastrum sp. - 63 - - 

Kirchneriella sp. - 38 - 2 

Pediastrum sp. 13 - - 9 

Scenedesmus sp. 98 464 - 53 
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Table 3-5: Phytoplankton species biomass (µg C L-1) for the high chlorophyll samples at 

Throop (T1 – 8) and Iford Bridge (I1 – 3) on the Stour River. 

Chlorophyll a 

events 
T1 T2 T3 T4 T5 I1 T6 I2 T7 I3 T8 

weeks 3 4 5 7 9 12 49 51 

Chlorophyll a (µg L-

1) 
85.4 98.8 65.0 28.9 35.9 43.7 18.7 22.3 15.0 16.5 14.7 

Total carbon (µg C L-1)  4,27

4 

4,54

4 

3,46

1 
666 1,18

0 

1,21

6 

1,52

8 

1,42

4 
543 504 249 

Bacillariophyta           

Amphora spp. 1 1 1 3 6 4 3 3 5 3 3 

Bacillaria paxillifer - - 0 - 1 1 1 1 4 3 4 

Cocconeis spp. - 0 1 3 5 5 11 13 1 1 2 

Coscinodiscus spp. 1,47

9 
193 - - 14 4 9 19 - - - 

Diatoma vulgare 282 161 39 48 19 18 5 5 4 3 4 

Licmorphora sp. 1 0 0 0 1 1 0 1 1 1 0 

Melosira sp. 55 8 7 4 5 5 3 4 4 4 11 

Navicula gracilis 173 38 25 16 17 13 8 6 134 186 149 

Navicula spp. - 1 2 3 4 3 2 3 1 1 2 

Nitzschia acicularis 7 4 2 1 1 1 0 0 1 1 0 

Nitzschia sp. 3 3 3 3 4 4 4 6 1 1 1 

Pennate diatoms 152 33 34 7 16 12 17 11 24 18 16 

Pleurotaenium sp. 16 12 13 5 2 2 1 1 8 9 5 

Stephanodiscus sp. 2,05

0 

4,05

5 

3,23

4 
285 328 373 19 15 313 234 18 

Cryptophyta            

Cryptomonas sp. 16 4 44 144 165 57 43 31 22 19 5 

Rhodomonas sp. 23 24 25 28 143 235 34 53 11 8 4 

Chrysophyta            

Dinobryon sp. 3 - 0 11 - - - - 5 4 0 

Synura sphagnicola 1 1 0 0 0 0 - - 0 1 0 

Chlorophyta            

Actinastrum sp. - 1 5 5 46 38 - - - - 0 

Ankistrodesmus sp. 6 3 7 43 34 29 20 20 2 1 1 

Chlamydomonas sp. - 0 - - 315 395 1,27

8 

1,17

5 
- - 0 

Chlorella sp. - - - - 25 - 2 4 - 0 0 

Coelastrum sp. - - - - 0 1 7 8 - 0 - 

Kirchneriella sp. - 0 - - 1 0 1 3 0 - 0 

Pediastrum sp. - - 12 - - - - - - - 12 

Scenedesmus sp. 3 1 3 9 13 14 47 30 1 1 1 
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Table 3-6: Phytoplankton species biomass (µg C L-1) for the high chlorophyll samples at 

Knapp Mill (K1 – 4) on the Hampshire Avon River. 

Chlorophyll a events K1 K2 K3 K4 

weeks 3 10 42 50 

Chlorophyll a (µg L-1) 35.5 17.3 11.9 14.7 

Total carbon (µg C L-1) 1,105 316 119 408 

Bacillariophyta     

Amphora spp. 4 3 1 12 

Bacillaria paxillifer 1 1 - 1 

Cocconeis spp. - 8 0 6 

Coscinodiscus spp. 32 6 - 9 

Diatoma vulgare 370 78 12 46 

Licmorphora sp. 2 5 1 2 

Melosira sp. 36 9 20 72 

Navicula gracilis 45 109 3 86 

Navicula spp. - 8 0 3 

Nitzschia acicularis 4 0 2 1 

Nitzschia sp. 6 6 1 2 

Pennate diatoms 179 3 13 28 

Pleurotaenium sp. 51 2 26 13 

Stephanodiscus sp. 352 31 3 91 

Cryptophyta     

Cryptomonas sp. - 9 7 5 

Rhodomonas sp. 5 7 11 4 

Chrysophyta     

Dinobryon sp. - - - 0 

Synura sphagnicola 2 0 4 2 

Chlorophyta     

Actinastrum sp. - - - 1 

Ankistrodesmus sp. 2 2 1 2 

Chlamydomonas sp. 0 1 - - 

Chlorella sp. - 0 - - 

Coelastrum sp. - 1 - - 

Kirchneriella sp. - 0 - 0 

Pediastrum sp. 8 - - 6 

Scenedesmus sp. 3 15 - 2 
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3.3.3.4 Seasonal succession of phytoplankton taxa and pigments 

Phytoplankton seasonal successions in terms of carbon biomass on the Stour and 

Hampshire Avon Rivers are shown in Figure 3-34 and Figure 3-35. They show the 

absolute contribution of different phytoplankton groups, over the whole sampling period, 

with the eight chlorophyll events indicated by dashed lines at Throop. The diatom, 

cryptomonad and chlorophyte populations are represented by the species data in Table 3-5 

and Table 3-6. The main biomass peaks on the River Stour for diatoms (chlorophyll events 

T1 – T3, Stephanodiscus sp.) were earlier than the peaks for chrysophytes (T4, Dinobryon 

sp.), while cryptomonads (T4, T5, I1, Cryptomonas sp. and Rhodomonas sp.) and 

chlorophytes (T6 and I2) occurred in the summer period. Meanwhile, the phytoplankton 

seasonal succession at Knapp Mill shows a different pattern to Throop or Iford Bridge. 

Subsequently, group succession is present as phytoplankton species carbon biomass as 

shown in Table 3-5 and Table 3-6. The phytoplankton succession was initiated by the 

small diatom Stephanodiscus sp., in late spring, with three peaks and also the highest 

diatom biomass peaks at that time. The cryptomonad group peaked in early summer, 

followed by chlorophyte peaks. At all study sites, the summer peaks were comprised of 

cryptomonads and chlorophytes together with Cryptomonas sp. and Chlamydomonas sp.  
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Figure 3-34: The succession of phytoplankton groups at Throop and Iford Bridge on the 

Stour River. Symbols in upper panel apply to all panels. 
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Figure 3-35: The succession of phytoplankton groups at Knapp Mill on the Hampshire 

Avon River. 

3.3.4 Measurements of Fv/Fm 

A bench-top Fluorescence Induction and Relaxation (FIRe) was used to measure the 

photosynthetic physiological parameters (Fv/Fm) both in total and size fractionated 

populations in riverine samples. The FIRe instrument was used to study the size fractions 

of phytoplankton only during spring and summer 2013, but total populations were 
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investigated throughout the sampling period as described in the method chapter (see 

Section 2.8).  

The change of Fv/Fm ratios of water samples from the three sites (Throop, Iford Bridge, 

and Knapp Mill) are shown in Figure 3-36 D – F compared with the annual concentration 

of chlorophyll a (Figure 3-36 A – C). The range of total Fv/Fm efficiency was 0.02 – 0.71, 

0.2 – 0.72, and 0.11 – 0.65 at Throop, Iford Bridge, and Knapp Mill respectively. Figure 

3-36 D and F shows the Fv/Fm values in the 2.0 – 20.0 µm range were greater and 

contributed most to the total Fv/Fm ratio as this size fraction also contributed greater to the 

total concentration of chlorophyll at Throop and Knapp Mill as shown in Figure 3-36 A 

and C. The mean Fv/Fm efficiency of nano-phytoplankton was 0.46 ± 0.17 (n = 13) at 

Throop and 0.45 ± 0.12 (n = 13) at Knapp Mill, while the pico-phytoplankton community 

(0.2 – 2 µm) had the mean of Fv/Fm values of 0.11 ± 0.06 (n = 13) and 0.15 ± 0.08 (n = 12) 

at Throop and Knapp Mill, respectively. 

The high values of Fv/Fm efficiency occurred at the same time as the maximum surface 

chlorophyll concentration in both spring periods. Broadly, Fv/Fm decreases sharply from 

summer to winter and then increase again in spring at all study sites. The nano-

phytoplankton (2 – 20 µm) was the main community on the Stour and Hampshire Avon 

Rivers, which supports the size-fractionated chlorophyll results. Although the pico-

phytoplankton population does not vary obviously in Fv/Fm during the highly productive 

bloom period, this cell size shows a slight increase in photosynthetic energy conversion 

efficiency during periods of high chlorophyll concentration at Throop (Figure 3-36 D). 
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Figure 3-36: Chlorophyll a concentration in µg L-1 (A – C) and photosynthetic energy 

conversion efficiency (Fv/Fm, unit-less) (D – F). The numbers and dash lines 

shown above the chlorophyll a and the photosynthetic efficiency curve identify 

each chlorophyll event from the three study sites. Symbols in upper panel 

apply to all panels. 

3.3.5 Phytoplankton abundance and total red fluorescence by flow cytometry 

Preserved samples from both rivers were analysed with a CytoSense flow cytometer. The 

measurements for the three stations were exported using the CytoClus software to Excel 

and all plots were composed using this programme. The CytoSense results from each of 

total fluorescence (FLR and FLO) are illustrated in Figure 3-37. 

Phytoplankton pattern was investigated throughout the sampling period from all study sites 

(Throop, Iford Bridge, and Knapp Mill) on the Stour and Hampshire Avon Rivers. The 

results from the CytoSense revealed a sharp change in abundance at low spatial scale from 
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week 5 to 6 on both rivers (Figure 3-37 A and C). The highest values in total red 

fluorescence, used as a proxy for phytoplankton chlorophyll a content, were observed at all 

riverine sites (Figure 3-37) during spring with a maximum of 24 × 108, 2.4 × 108, and 2.6 × 

108 a.u. mL-1 at Throop, Iford Bridge, and Knapp Mill respectively. The highest values at 

Throop and Knapp Mill were mainly observed during the Stephanodiscus spring bloom 

(week 3 and 4), but at Iford Bridge were observed in spring 2014 (week 49), although no 

samples were taken from this site during weeks 1 – 7. In terms of total orange fluorescence 

a maximum of 6.7 × 107, 1.6 × 107, and 1.5 × 107 a.u. mL-1 was observed at Throop, Iford 

Bridge, and Knapp Mill respectively. Spring samples corresponded to the highest values 

the mean total red fluorescence at all sites (Table 3-7) confirming the importance of the 

spring bloom of Stephanodiscus sp. to the total chlorophyll concentration and HPLC 

pigments in particular at Throop followed by Iford Bridge and Knapp Mill, which was 

characterized by the lowest total red fluorescence in almost every season except in winter. 

Phytoplankton abundance estimates by microscopy and CytoSense flow cytometry were 

compared as shown in Figure 3-37. As expected, recorded flow cytometry abundance and 

microscopic counting were positively a weak correlated as the CytoSense flow cytometer 

can discriminate between wide quantities of cells in a broad size range (1 – 800 µm) based 

on their optical properties (Dubelaar and Jonker, 2000). The microscopic technique is 

limited with cell sizes < 10 µm and fixation may change phytoplankton shape, particularly 

in fragile organism and flagellar species. This present study used acid Lugol’s iodine 

solution to preserve all microscopic samples therefore the fixation may have instantly 

caused phytoplankton cells to shrink (Montagnes et al., 1994). The correlation of 

abundance estimate between the CytoSense and the traditional microscopy is shown in 

Figure 3-38.  
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Figure 3-37: Seasonal distribution of red and orange fluorescence and phytoplankton 

abundance at Throop (A), Iford Bridge (B), and Knapp Mill (C). The solid line 

and black circles symbol are flow cytometric analysis. The dash line and green 

circles symbol are microscopic analysis. Note different scale in A on both y 

axes. Symbols in upper panel apply to all panels. 
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Table 3-7: Mean red and orange fluorescence (a.u. mL-1), with standard deviation, for each 

season. 

 Mean values (106) ± standard deviation (106) 

 spring summer autumn winter 

Throop: 

total red fluorescence 

total orange fluorescence 

 

155.03 ± 36.08 

5.9 ± 4.7 

 

21.04 ± 14.69 

4.08 ± 4.98 

 

4.75 ± 4.37 

0.92 ± 1.42 

 

6.34 ± 8.28 

2.08 ± 3.68 

Iford Bridge: 

total red fluorescence 

total orange fluorescence 

 

60.36 ± 88.05* 

2.63 ± 2.37* 

 

14.11 ± 9.79 

1.43 ± 1.29 

 

4.36 ± 2.12 

0.40 ± 0.23 

 

8.28 ± 12.79 

3.29 ± 6.32 

Knapp Mill: 

total red fluorescence 

total orange fluorescence  

 

24.88 ± 53.12 

2.01 ± 2.85 

 

9.12 ± 6.03 

1.89 ± 1.51 

 

3.62 ± 2.07 

0.96 ± 0.70 

 

8.26 ± 8.12 

0.89 ± 0.60 

* = only spring 2014 values 
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Figure 3-38: Correlation between flow cytometry abundance and microscopic cell count at 

Throop, Iford Bridge, and Knapp Mill. 

Cytograms were determined by CytoSense according to the optical properties of cells or 

particles and attributed to different species from the three study sites as shown in Figure 

3-39, Figure 3-40, and Figure 3-41. Cytograms were defined for every chlorophyll a event. 
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Red circles indicate red fluorescence (a.u.) area per cell versus FWS length per cell (a.u.) 

in a cytogram the Stephanodiscus sp. bloom during springtime (week 3, 4, 5, and 49), 

while green circles show a cytogram with a dominance of chlorophytes particularly 

Chlamydomonas spp. during early summer (week 7, 9, and 12 on the Stour River).  

Diatoms showed the higher FLR and FWS signals because this group contains large cells 

with high chlorophyll a per cell (Figure 3-39 and Figure 3-40) as previous flow cytometry 

studies in marine water have also found (Rutten et al., 2005; Bonato et al., 2015). 

 

 

Figure 3-39: CytoSense cytograms defined for each chlorophyll event at Throop, in which 

red fluorescence area per cell (a.u.) versus FWS length per cell (a.u) 

cytograms. (x axis is length (µm) and y axis shows total red fluorescence at 

488 nm). 

(H) 

(B) (A) 

(D) 

(C) 

(G) 

(F) (E) 

Stephanodiscus sp. 

Chlamydomonas sp. 

Stephanodiscus sp. 
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Figure 3-40: CytoSense cytograms defined for each chlorophyll event (week 9, 12, 49, and 

51) at Iford Bridge, in which red fluorescence area per cell (a.u.) versus FWS 

length per cell (a.u) cytograms. (x axis is length (µm) and y axis shows total 

red fluorescence at 488 nm). 

       

 

Figure 3-41: CytoSense cytograms defined for each chlorophyll event (week 3, 10, 42, and 

50) at Knapp Mill, in which red fluorescence area per cell (a.u.) versus FWS 
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(D) (C) 
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length per cell (a.u) cytograms. (x axis is length (µm) and y axis shows total 

red fluorescence at 488 nm). 

 
 

Figure 3-42: Right: “Scenedesmus” type colony of 4 asymmetrical cells (photo under 

inverted microscope). Middle: The colony image by CytoSense camera. Left: 

signal course of the measured scatter and fluorescence emission of particle by 

CytoSense measurements. 

3.3.6 Multivariate data analysis and interpretation 

The environmental (physical and chemical) data and biological (carbon biomass and 

accessory pigments) data collected during April 2013 to April 2014 were analysed by 

multivariate analysis. The analyses were carried out in several steps; first, grouping of 

environmental parameters by similarity or dissimilarity using Euclidean distance; second, 

grouping of phytoplankton species using the Bray-Curtis Similarity Index using the 

PRIMER-E software; and third, correlation of environmental variables to phytoplankton 

groups was performed using the CANOCO software.  

Two types of analysis have been carried out, dendrogram for hierarchical clustering of 

samples and a non-matric multidimensional scaling (nMDS) to indicate group similarity 

and distance between sample groups in two-dimensional space. The stress level for each 

nMDS ordinal plot is used as an indicator of how the plot organises the distribution. Stress 

levels of < 0.1 indicated good ordination, 0.1 – 0.2 a useful two-dimensional display of 

clusters, and > 0.2 a random placement in two dimensions (see Clarke et al. (2014) for 

further details). SIMPER analysis was used to calculate the percentage similarity of each 

sample group and the dissimilarity between each pair of groups using the PRIMER-E 

version 7.0 software (Clarke et al., 2014). 
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3.3.6.1 Environmental data analyses 

Cluster and nMDS analysis of environmental parameters were performed on a normalised 

Euclidean distance with previous log (x+1) transformation. The environmental variables 

including; river flow, water temperature, oxygen saturation, suspended particulate matter, 

nitrate, phosphate, and silicate concentrations were clustered to give groups with the lowest 

distance between pairs of samples. 

Throop, River Stour 

Groups A - F were defined from the dendrogram for hierarchical clustering as shown in 

Figure 3-43. The Euclidean distance between most of the groups A – F ranged from 2.6 – 

3.3. A majority of samples are in group E followed by C, F, D, A, and B. The data were 

then analysed by nMDS to provide a two-dimensional distance plot in Figure 3-44 which 

shows more clearly how samples are grouped. The plot stress (0.11) indicated a good two-

dimensional representation of the data (Clarke et al., 2014). A seasonal pattern to group 

distribution can be distinguished from the plot: group E represents mainly the summer and 

early autumn samples, group C a mixture of the late autumn and winter, group F a mixture 

of the late autumn and early winter. Group D was mainly the late spring, while group A 

includes two spring samples. 

 

  

Figure 3-43: Dendrogram for hierarchical clustering of Throop samples defined by 

environmental parameters. Numbers indicate the sample weeks. 

Groups 

E D C F B A 
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Figure 3-44: nMDS plot of environmental parameter groups at Throop on the Stour River. 

Numbers indicate the sample weeks. Dash line is 3.3 of the Euclidean 

distance and solid line indicates 2.6 of the distance. 

Silicate and phosphate concentrations were the most important environmental parameters 

for defining the sample group during the spring bloom (week 3, 4, and 5) including the 

peak chlorophyll event in the early summer (week 7) as shown in Table 3-8. Several 

environmental factors were subsequently the majority factors to group definition at 

Throop. Seasonal changes in nitrate concentration and river flow rate were the dominant 

parameters in defining the environmental group during the winter 2013 to the early spring 

2014 months. Group B was characterised by increasingly high SPM values and river flow 

rate. During the flooding event from week 36, nitrate was generally high concentration, 

silicate was relatively low and river flow continued to decrease. All the high chlorophyll 

samples were in group A, C, D, and F when the levels of river flow were less than 30 m3 s-

1. In the summer (group E) the river flow was < 20 m3 s-1, and phosphate concentrations 

were beginning to increase, probably phosphate diluted by high river flows as it tends to 

come from point sources such as sewage treatment works and slurry. 
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Table 3-8: Main characteristics of sample groups defined by environmental parameters at 

Throop on the Stour River. The peak chlorophyll samples in Table 3-3 are 

indicated by sample weeks in bold. 

Group Sample week no. Parameter % contribution 
Average square 

distance 

A 3, 4 silicate (73), phosphate (14),  

oxygen saturation (13) 

3.16 

B 29, 36 SPM (85), river flow (8) 5.17 

C 37, 38, 39, 40, 41, 

42, 43, 44, 45, 46, 

47, 49, 50, 51 

nitrate (50), river flow (13) 2.07 

D 2, 5, 7, 8, 48 

 

phosphate (44), nitrate (19),  

silicate (16), temperature (12) 

2.25 

E 6, 9, 10, 11, 12, 

13, 14, 15, 16, 17, 

18, 19, 20, 21, 22, 

23, 24, 25, 26, 27 

oxygen saturation (35), nitrate (17), 

phosphate (16), temperature (15), 

silicate (15) 

1.76 

F 28, 30, 31, 32, 33, 

34, 35 

nitrate (37), temperature (33),  

river flow (11) 

1.43 

Iford Bridge, River Stour 

The environmental variables showing a pattern as present at Throop, except SPM data 

which was not included at Iford Bridge, were clustered to give groups with the lowest 

distance between pairs of samples. The cluster dendrogram shows separation at a 

normalised distance of 2.6 into six groups (A – F) as shown in Figure 3-45. Group C had 

17 samples followed by group D, E, F, B, and A respectively. All winter samples were in 

group E, almost all summer and early autumn samples in group C, almost all spring 2014 

samples in group F, and late autumn and early winter in group D. Group A has only one 

sample from week 8, while group B includes two samples from weeks 25 and 27. The 

results indicate a high distance of environmental factors in week 8 from all other weeks.  

The nMDS plot of the Iford Bridge data provides a two-dimensional distance plot (Figure 

3-46) which shows more clearly how the samples were grouped. A stress of 0.1 indicated a 

good representation of the environmental parameters as at Throop. A seasonal pattern to 

group distribution can be distinguished from the plot: group E represents the winter 
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samples, group F the spring 2014 samples, group C the early summer samples, and group 

D the late autumn and early winter samples. Group C was the summer and a mixture from 

the early autumn samples. 

 

 

Figure 3-45: Dendrogram for hierarchical clustering of Iford Bridge samples defined by 

environmental parameters. Numbers indicate the sample weeks. 

 

Figure 3-46: nMDS plot of environmental parameter groups at Iford Bridge on the Stour 

River. Numbers indicate the sample weeks and solid line is 2.6 of the 

Euclidean distance. 

Group specifications are summarised in Table 3-9. Oxygen saturation and silicate 

concentration were the most important environmental parameters for defining the sample 
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group during the summer 2013 bloom (week 9 and 12), while the peak chlorophyll events 

in the spring (week 49 and 51) also occurred with these environment contributions. The 

oxygen saturation value was subsequently the majority factor to group definition at Iford 

Bridge site during the autumn – winter (group D and E). Otherwise, seasonal change in the 

silicate and nitrate concentrations were the dominant parameters in defining the 

environmental groups in almost every other sample week excluding during spring 2014 

(group F). Group B was characterised by increasing nitrate concentration. All the high 

chlorophyll samples were in group C, D, and F when the levels of river flow were less than 

30 m3 s-1. 

Table 3-9: Main characteristics of sample groups defined by environmental parameters at 

Iford Bridge on the Stour River. The peak chlorophyll samples in Table 3-3 are 

indicated by sample weeks in bold. 

Group Sample week no. Parameter % contribution 
Average square 

distance 

A 8 single sample - 

B 25, 27 nitrate (45), oxygen saturation (41) 1.79 

C 9, 10, 11, 12, 13, 

14, 15, 16, 17, 18, 

19, 20, 21, 22, 23, 

24, 26 

oxygen saturation (36),  

silicate (27), nitrate (18), phosphate 

(10) 

2.34 

D 28, 29, 30, 31, 32, 

33, 34, 35, 37, 51 

oxygen saturation (20),  

water temperature (16), river flow (15), 

silicate (12) 

1.95 

E 36, 38, 39, 40, 41, 

42, 43, 44, 45 

oxygen saturation (68), nitrate (17) 1.80 

F 46, 47, 48, 49, 50 

 

silicate (45), nitrate (23),  

oxygen saturation (13),  

water temperature (10) 

1.25 

Knapp Mill, River Avon  

Seven groups (A – G) were defined by the dendrogram for hierarchical clustering as shown 

in Figure 3-47. The Euclidean distance between groups at Knapp Mill was 2.8. Group E 

was a mixed sample and the largest, with 17 samples followed by group C with 9 samples. 

Group A had 7 samples and the others between 5 and 6 samples. Group E included mixed 
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samples from spring 2013, summer, and the early autumn. Group A samples were almost 

all from winter, while group B samples represented the spring 2013 and 2014. Group C 

included all seasons except summer samples. Group G corresponded to samples in autumn, 

while group F had only one sample from week 38.  

The nMDS analysis of the environmental data provide a two-dimensional distance plot 

(Figure 3-48) which shows more clearly how the samples are grouped at Knapp Mill. The 

plot stress was 0.13 which indicated a very good two-dimensional representation of the 

data. The plot distinguishes the samples of group D, E, and G before the flooding event, 

while group A samples indicate weeks after the flooding event. 

 

 

Figure 3-47: Dendrogram for hierarchical clustering of Knapp Mill samples defined by 

environmental parameters. Numbers indicate the sample weeks. 

The group specifications are shown in Table 3-10. Four samples from the chlorophyll 

events are indicated in bold. Nonspecific environmental factors were the most important 

factor in defining the groups at this station. Chlorophyll concentration was high in spring 

and summer (group B, C, and E), but not in autumn. River flow rate became the main 

environmental parameter that influenced a grouping during high flow rates (group C). The 

SPM concentration showed as the major factor that influenced grouping either the 

decreasing river flow (group B) or a small peak river flow in group G. 

Groups 

F

F 
E C

C 

A D

D 

B

C 

G 



CHAPTER 3 

109 

A 

B 

C 

E 

F 

G 

D  

Figure 3-48: nMDS plot of environmental parameter at Knapp Mill on the Hampshire 

Avon River. Numbers indicate the sample weeks and solid line indicates 2.8 of 

the Euclidean distance. 

Table 3-10: Main characteristics of sample groups defined by environmental parameters at 

Knapp Mill on the Hampshire Avon River. The peak chlorophyll samples in 

Table 3-4 are indicated by sample weeks in bold. 

Group Sample week no. Parameter % contribution 

Average 

square 

distance 

A 40, 41, 42, 43, 

44, 

45, 46 

oxygen saturation (40), silicate (40) 3.09 

B 2, 3, 4, 47, 48 

 

SPM (35), phosphate (16), river flow (14), 

silicate (11), oxygen saturation (11) 

2.64 

C 32, 33, 34, 35, 

37, 

39, 49, 50, 51 

river flow (40), water temperature (16), 

nitrate (15), SPM (15) 

2.01 

D 8, 13, 15, 17, 19, 

21 

nitrate (34), phosphate (27),  

oxygen saturation (17) 

1.08 

E 5, 6, 7, 9, 10, 11, 

12, 14, 16, 18, 

20, 

oxygen saturation (21), nitrate (16),  

water temperature (13) 

1.82 

Knapp Mill-environment

Non-metric MDS
Transform: Log(X+1)

Normalise

Resemblance: D1 Euclidean distance

Distance
2.8

group
a

b

c

d

e

f

g

23

4

5

6 7

8

9

10

11

12

13

14 15

16

17

18

19

20

21

22
23

2425

26
27

2829

30

31
32

33

34
35

36

37

38

39

40

41

4243

44

45

46
47

48

49

50 51

2D Stress: 0.13



CHAPTER 3 

110 

22, 23, 24, 25, 

26, 

27 

F 38 single sample - 

G 28, 29, 30, 31, 36 SPM (65), nitrate (10) 1.59 

3.3.6.2 Phytoplankton taxa and biomass data analyses 

The phytoplankton carbon biomass data (µg C L-1) were transformed to the fourth root 

before illustrating by simple shade plot. Bray-Curtis similarity was performed between 

each pair of samples and clustering of this matrix to represent the similarity association in 

the cluster and nMDS plots. A one-way ANOSIM analysis comparing each group 

suggested that they were significantly different in composition. 

Throop, Stour River 

Figure 3-49 gives the shade plot for the most important species contributing to carbon 

biomass for Throop samples. The diatom species show a clear pattern of large biomass 

group followed by the cryptophyte and chlorophyte biomass groups. The highly dominant 

diatom species, Stephanodiscus sp., gave the most weight in the late spring 2013 (week 3, 

4, and 5), while the chlorophyte species; Chlamydomonas sp. contributed most to biomass 

after the diatom bloom (week 8 – 14). The crytophyte species, Cryptomonas sp. and 

Rhodomonas sp. distinguished highly during summer time. Low phytoplankton biomass 

was observed during the winter months.  

Cluster analysis of phytoplankton carbon biomass from Throop samples during April 2013 

to April 2014 demonstrated six major clusters of samples (A – F) with a similarity level 

range of about 60 – 62% (Figure 3-50). The nMDS analysis showed a two-dimensional 

spatial representation of the similarities within sampled weeks based on the composition 

and biomass values (Figure 3-51). The plot with a stress of 0.11 indicates a good 

ordination and no real prospect of misinterpretation, which is not surprising, as many 

species are closely distributed over time as defined in Clarke et al. (2014). The one-way 

ANOSIM analysis comparing each group suggested that they were significantly different 

in composition with permutation numbers of 999 (P = 0.001, R statistic from pairwise tests 

varied 0.63 to 1), and that the clustered groups are well separated, given that the R sample 

statistic values are close to 1 (Clarke et al., 2014). Taxonomic cumulative contribution 

approximated 90% of the average similarity within each group is shown in Table 3-11. 
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The groups follow a seasonal pattern: group A and F consist of winter samples during the 

high river flow, group B and E contain almost entirely samples in spring of 2013 and 2014, 

group C is a set of early summer samples, and group D and F overlap all seasons. The 

lowest dissimilarity was between groups C and D at 32%, and the highest dissimilarity was 

between groups A and C at 81%. The average dissimilarity between the seasonal groups 

was 42%, for spring-summer (B and C), and 41% for the mixed groups (D and F). 

 

Figure 3-49: Shade plot indicating carbon biomass of each phytoplankton species (4th-root 

transformed data on a log scale) for Throop samples. Numbers indicate the 

sample weeks. 

The results of the SIMPER analysis at Throop are summarised in Table 3-11 and show 

how the groups are distinguished in terms of the carbon biomass of particular species. The 
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E 

F 

A 

D 

B 

C 

and the centric diatom, Cocconeis, were the main species. Group C is characterised by 

summer samples with a high component of chlorophyte and cryptophyte species and a low 

component of diatoms. Phytoplankton species during the late summer to the early autumn 

(group D) included various combinations of the diatom group. Another notable feature is 

the significant contribution of Stephanodiscus in group B 

 

 

 Figure 3-50: Dendrogram for hierarchical clustering of samples defined by phytoplankton 

carbon biomass at Throop on the Stour River. Numbers indicate the sample 

weeks.  
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Figure 3-51: nMDS plot of samples defined by phytoplankton species/taxon carbon 

biomass at Throop on the Stour River. Numbers indicate the sample week. 

Dash line is 62% of the similarity and solid line indicates 60%. 

Table 3-11: All characteristics of sample groups by phytoplankton species at Throop on the 

Stour River. The peak chlorophyll events in table are identified by sample 

weeks in bold. 

Group Sample week no. 
Species average carbon biomass as % 

contribution 

% of 

similarity 

A 37 single sample - 

B 1, 2, 3, 4, 5 Stephanodiscus (17), Pennate diatom (11), 

Navicula gracilis (9) 

67.3 

C 8, 9, 10, 11, 12, 

13,14 

Chlamydomonas (12), Cryptomonas (6), 

Rhodomonas (6) 

81.9 

D 15, 16, 17, 18, 

19, 

20, 21, 22, 23, 

24, 

25, 26, 27, 28, 29 

Navicula gracilis (7), Pennate diatom (7),   

Cocconeis (6) 

77.4 

E 6, 7, 41, 42, 43, 

44, 45, 46, 47, 

48, 49, 50, 51 

Pennate diatom (8), Stephanodiscus (7),   

Navicular gracilis (7) 

72.5 

F 30, 31, 32, 33, 

34, 35, 36, 38, 

39, 40 

Navicula gracilis (9), Cocconeis (8), 

Pennate diatom (8) 

69.3 

 spring Stephanodiscus (10), Pennate diatom (9),   67.4 

 summer Cryptomonas (7), Rhodomonas (6) 75.1 

 autumn Navicula gracilis (8), Pennate diatom (8) 73.0 

 winter Pennate diatom (10), Cocconeis (9) 60.7 

Phytoplankton were present at Throop throughout the sampling period, but some of them 

increased rapidly to become dominant species in particular weeks. The phytoplankton 

species successions are not clear between the phytoplankton species groups. However, 

Stephanodiscus which contributed most to peak chlorophyll concentrations was grouped in 

both B and E, and could be considered as a spring species that was associated with the 

environmental spring groups A and D (Table 3-8). Chlamydomonas and Cryptomonas 
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contributed highly to group C and are classified as summer species, and associated with the 

environmental group E in Table 3-8, which is characterised by high nutrients and low river 

flow in spring-summer period. Other groups overlap in terms of time and numbers of 

important species. Group A contained no samples with high chlorophyll levels and had 

different important species to the other groups, but the diatoms were the dominant 

phytoplankton type. The conclusion is that the diatom group was the main phytoplankton 

population throughout the monitoring programme at this station. 

Iford Bridge, Stour River 

The chlorophyte group show a clear pattern as the largest group at Iford Bridge followed 

by the cryptomonad and diatom species because the sampling programme at this site 

started after the spring diatom bloom during week 3 to 5 at Throop. The highly dominant 

diatom species, Stephanodiscus sp., gave the most weight in the early summer 2013 (week 

9 and 11) and the spring 2014 (week 47 – 51), while Chlamydomonas sp. contributed most 

to biomass after the diatom bloom (week 8 – 15). Cryptomonas sp. and Rhodomonas sp. 

were distinguished highly during the summer period at the same time as the population of 

chlorophytes was increasing (Figure 3-52). During winter months (week 34 – 41) the 

phytoplankton carbon biomass was lower than during other seasons. 

The results of phytoplankton carbon biomass at this station from the hierarchical clustering 

analysis are illustrated in the dendrogram (Figure 3-53). The one-way ANOSIM analysis 

comparing each group suggested that they were significantly different in composition with 

permutation numbers of 999 (P = 0.001, R statistic from pairwise tests varied 0.64 to 1). 

There are five groups (A – E). There was also 1 single sample (group A). Group B is 

represented by summer samples from week 8 – 15, while almost all spring samples are in 

group D (week 43 – 51). Group C and E present combined samples. 

The two-dimensional nMDS plot in Figure 3-54 has a low stress of 0.08, which indicates 

good ordination and no real prospect of misinterpretation. Group B represents all the 

phytoplankton biomass in the summer period, while group C was mixed within the late 

summer and the early autumn samples. Almost all the spring 2014 samples are represented 

in group D. Group E samples are from mixed seasons. Group A has only one sample from 

week 38 that was collected during the highest winter river flow rate on the Stour River as 

recorded at Throop. 
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Figure 3-52: Shade plot indicating carbon biomass of each phytoplankton species (4th-root 

transformed data on a log scale) for Iford Bridge samples. Numbers indicate 

the sample weeks. 

Further analysis of the groups was based on species carbon biomass using SIMPER test, 

which determines the dominant species of each group, using percentage contribution and 

mean biomass in a similar way as at Throop. The results are summarised in Table 3-12. 

The contribution and biomass at Iford Bridge showed a similar pattern to Throop. Diatoms 

were the major contributors to most of the groups for almost every season except in 

summer. The chlorophyte and cryptophyte groups (Chlamydomonas, Cryptomonas, and 

Rhodomonas) made a high contribution and were present mainly in the summer period and 

peak chlorophyll events in week 9 and 12. Meanwhile, the other events in week 49 and 51 

(I3 and I4) occurred in group D with a dominance of diatoms species. 

8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

Tetrastrum sp.

Staurodesmus sp.

Scenedesmus sp.

Pediastrum sp.

Kirchneriella sp.

Coelastrum sp.

Closterium sp.

Chlorella sp.

Chlamydomonas sp.

Ankistrodesmus sp.

Actinastrum sp.

unidentified dinoflagellate

Synura sphagnicola

Dinobryon sp.

Rhodomonas sp.

Cryptomonas sp.

Pseudo-anabaena sp.

Merismopedia sp.

Thalassiora sp.

Surirella sp.

Stephanodiscus sp.

Skeletonema spp.

Rhoicosphenia abbreviata

Raphoneis sp.

Plagiogramma sp.

Pennate diatom

Nitzschia sp.

Nitzschia acicularis

Navicula spp.

Navicula gracilis

Meridion sp.

Melosira sp.

Licmorphora sp.

Gyro/Pleurosigma

Gomphonema sp.

Fragilaria sp.

Diploneis sp.

Diatoma sp.

Diatoma vulgure

Cymbella sp.

Cyclotella sp.

Coscinodiscus sp.

Cocconeis spp.

centric diatom

Bacillaria sp.

Asterionella sp.

Amphora sp.

Achnanthes sp.

p
h
y
to

p
la

n
k
to

n
 s

p
ec

ie
s

0

4

8 season

Spring

Summer

Autumn

Winter

4
th

-r
o

o
t 



CHAPTER 3 

116 

A

C 

B

C 
C

C 

D

C 

E

C 

 

 

Figure 3-53: Dendrogram for hierarchical clustering of samples defined by phytoplankton 

carbon biomass at Iford Bridge. Numbers indicate the sample weeks. 

 

Figure 3-54: nMDS plot of samples defined by phytoplankton species/taxon carbon 

biomass at Iford Bridge on the Stour River. Numbers indicate the sample week 

at 70% similarity  
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Table 3-12: Main characteristics of sample groups by phytoplankton species at Iford 

Bridge. The peak chlorophyll events in table are identified by sample weeks in 

bold. 

Group Sample week no. 
Species average carbon biomass as % 

contribution 

% of 

similarity 

A 38 single sample - 

B 8, 9, 10, 11, 12, 

13, 14, 15 

Chlamydomonas (12), Cryptomonas (6),  

Rhodomonas (6) 

79.7 

C 16, 17, 18, 19, 

20, 21, 22, 23, 

24, 25, 

26, 27, 28 

Pennate diatom (8), Navicula gracilis (6), 

Cocconeis (6), Cryptomonas (6), 

Rhodomonas (6) 

79.9 

D 43, 44, 45, 46, 

47, 

48, 49, 50, 51 

Pennate diatom (8), Stephanodiscus (7), 

Navicula gracilis (7) 

76.5 

E 29, 30, 31, 32, 

33, 

34, 35, 36, 37, 

39, 40, 41, 42  

Pennate diatom (9), Navicula gracilis (6), 

Melosira (7), Cryptomonas (7) 

73.6 

 spring Pennate diatom (8), Stephanodiscus (7)  75.9 

 summer Cryptomonas (7), Pennate diatom (6),  

Rhodomonas (6) 

74.1 

 autumn Pennate diatom (8), Navicula gracilis (8), 

Cocconeis (7) 

75.8 

 winter Pennate diatom (12), Cryptomonas (9) 63.8 

Knapp Mill, Avon River 

The shade plot of Knapp Mill phytoplankton samples shows some differences to the Stour 

River stations. The chlorophytes and cryptophytes were not the dominant group in summer 

time as they were at both sampling sites on the Stour River, however, the diatom species 

were the major group throughout the sampling period. The diatoms Stephanodiscus sp., 

Navicula gracilis, and Navicula gracilis were the dominant species on the Avon River as 

shown in Figure 3-55. 
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The hierarchical clustered analysis is plotted as a dendrogram in Figure 3-56 to indicate the 

species similarity distribution. Most groups were defined with a similarity level of 72% (B 

– E) with each group containing ≥ 8 samples. Group A contained three samples with a 

similarity level of 65%. The low similarity of this group can be attributed to the presence 

of rare species. 

A two-dimensional nMDS plot (Figure 3-57) with a stress of 0.13 gives an acceptable 

representation of the data. Group distribution follows seasonal patterns: group A are winter 

samples during the flooding period, group B samples are mixed late summer-early winter 

communities, group C is almost entirely summer samples, and D and E are spring season 

groups.  

 

Figure 3-55: Shade plot indicating carbon biomass of each phytoplankton species (4th-root 

transformed data on a log scale) for Knapp Mill samples. Numbers indicate the 

sample weeks. 
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Figure 3-56: Dendrogram for hierarchical clustering of samples defined by phytoplankton 

carbon biomass at Knapp Mill station. Numbers indicate the sample weeks. 

 

Figure 3-57: nMDS plot of samples defined by phytoplankton species/taxon carbon 

biomass at Knapp Mill. Numbers indicate the sample week. Dash line is 65% 

of the similarity and solid line indicates 72%. 
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D) mainly contained Stephanodiscus sp. as did the diatom bloom at Throop. In the mixed 

group E, diatoms were present and it included the cryptomonads species, Rhodomonas sp. 

The chlorophyte species, Scenedesmus spp. contributed especially highly to the summer 

group C. 

Table 3-13: Main characteristics of sample groups by phytoplankton species at Knapp Mill 

on the Hampshire Avon River. The peak chlorophyll events in table are 

identified by sample weeks in bold. 

Group Sample week no. 
Species average carbon biomass as % 

contribution 

% of 

similarity 

A 37, 38, 39 Pennate diatom (13), Diatoma vulgare (8), 

Stephanodiscus (7), Cocconeis (7) 

70.1 

B 18, 19, 20, 21, 22, 

23, 24, 25, 26, 27, 

28, 29, 30, 31, 32, 

33, 34, 35, 36 

Navicula gracilis (8), Pennate diatom (8), 

Cocconeis (7), Diatoma vulgare (7) 

79.4 

C 6, 7, 8, 9, 10, 11, 

12, 13, 14, 15, 16, 

17 

Navicula gracilis (7), Pennate diatom (6), 

Diatoma vulgare (6), Stephanodiscus (6), 

Scenedesmus (6) 

78.7 

D 1, 2, 3, 4, 5 Stephanodiscus (13), Pennate diatom (12), 

Diatoma vulgare (9) 

77.2 

E 40, 41, 42, 43, 44, 

45, 46, 47, 48, 49, 

50, 51 

Pennate diatom (7), Melosira (7),  

Plagiogramma (7), Rhodomonas (6) 

76.9 

 spring Stephanodiscus (8), Pennate diatom (8), 

Pleurotaenium (7), Navicula gracilis (6) 

71.6 

 summer Navicula gracilis (7), Pennate diatom (6), 

Cocconeis (6), Scenedesmus (6) 

80.1 

 autumn Navicula gracilis (9), Pennate diatom (8), 

Cocconeis (7), Navicula gracilis (7) 

80.5 

 winter Pennate diatom (10), Diatoma vulgare (9), 

Navicula gracilis (7), Melosira (6) 

71.2 
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3.3.6.3 Accessory pigment analyse 

Data for the accessory pigments were normalised by fourth root transformation before 

illustrating by simple shade plot as for the carbon biomass data, calculated using the Bray-

Curtis Similarity Index, and hierarchical clustering used to define groups with similarities.  

The similarity percentage analysis (SIMPER) routine was also used to explore the 

similarities within groups of samples. No HPLC pigment data from Iford Bridge station are 

present in this study. 

Throop, Stour River 

The shade plot of Throop samples shows representations of the pigment data matrices. The 

matrix indicates with full black the weighted pigment and white representing absence of 

the pigment as for the phytoplankton carbon biomass in Section 3.3.6.2. Chlorophyll a and 

fucoxanthin were the main accessory pigments at this station. The highest fucoxanthin 

concentration occurred during the spring Stephanodiscus sp. bloom (week 3, 4, and 5) as 

shown in Figure 3-58. Diadinoxanthin and chlorophyll c2 are biomarkers of several 

phytoplankton groups, and were simultaneously high during the spring bloom. It seems 

that many phytoplankton groups were growing together to form the bloom based on the 

high concentrations of these pigments. 

The hierarchical clustering used to define groups with similarities ranged from 77 – 79%. 

The results of hierarchical cluster analysis demonstrated as a dendrogram (Figure 3-59), 

showed seven phytoplankton groups (A – G). All groups had ≥ 3 samples. Group G had all 

winter samples during the high winter flood period, while the samples from high 

chlorophyll events (week 3 – 5) were present in group B. Group D is large with a number 

of mixed samples (13 samples). Group E is also a combination of spring and summer 

seasons. 

The two-dimensional nMDS plot in Figure 3-60 with a stress of 0.09 indicates a good 

ordination and no real prospect of misinterpretation, which is not surprising, as many 

pigments are closely distributed over time. The groups follow a seasonal pattern: group A 

and G consist of winter samples during the flooding event, group C and F are all samples 

in spring, group B is all samples during the spring bloom of 2013, group D overlap all 

seasons. 
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Figure 3-58: Shade plot indicating accessory pigments (4th-root transformed data on a log 

scale) for Throop samples. Numbers indicate the sample weeks. 
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Figure 3-59: Dendrogram for hierarchical clustering of Throop samples defined by HPLC 

pigments at 77 and 79% of similarity level. Numbers indicate the sample 

weeks. 

 

Figure 3-60: nMDS plot of samples defined by HPLC pigments at Throop on the Stour 

River. Numbers indicate the sample week. Dash line is 79% of the similarity 

and solid line indicates 77%. 

The group specifications are summarised in Table 3-14. Group B samples were 

characterised by fucoxanthin concentration in week 3, 4, and 5 during the Stephanodiscus 

bloom. The source of the fucoxanthin in samples at that time is not readily distinguished 
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from the cell count data (Figure 3-34), and this anomaly may be indicative of under 

sampling of large diatoms in the relatively small volume (10 mL) water samples used for 

cell counts compared to the large volumes (500 – 1000 mL) used for HPLC analysis. 

Group D contained a large number of sampling weeks, while the other group E are similar 

with fucoxanthin as the main accessory pigment followed by lutein as a biomarker of 

chlorophytes. 

Table 3-14: Main characteristics of sample groups in terms of photosynthetic pigment 

composition at Throop on the Stour River. The peak chlorophyll events in table 

are identified by sample weeks in bold. 

Group Sample week no. Pigments (% contribution) 
% of 

similarity 

A 34, 35, 39, 40 chlorophyll a (31), fucoxanthin (23),  

lutein (22) 

83.3 

B 3, 4, 5 fucoxanthin (16), chlorophyll a (15), 

diadinoxanthin (12), β carotene (9), 

chlorophyll b (9), chlorophyll c2 (7),  

lutein (7) 

95.2 

C 22, 23, 24, 25,  

27, 28, 29, 30, 

31 

chlorophyll a (14), fucoxanthin (12),  

β carotene (8), zeaxanthin (7),  

chlorophyll b (7), 19'But (7), peridinin (7), 

diadinoxanthin (7) 

87.4 

D 6, 8, 14, 15, 16, 

17, 19, 20, 21, 

42, 44, 46, 47 

chlorophyll a (19), fucoxanthin (15), 

lutein (10), diadinoxanthin (8),  

β carotene (9), violaxanthin (7),  

chlorophyll b (7) 

86.8 

E 1, 2, 7, 9, 10, 

11, 12, 13, 18, 

48, 49, 50 

chlorophyll a (17), fucoxanthin (15),  

diadinoxanthin (10), β carotene (9),  

lutein (9), divinyl chlorophyll a (8), 

violaxanthin (7) 

84.8 

F 26, 35, 39 chlorophyll a (16), fucoxanthin (13),  

lutein (13), β carotene (11), 19'But (8), 

chlorophyll c2 (7) 

87.6 

G 36, 41, 43, 45 chlorophyll a (25), fucoxanthin (21),  

lutein (19), β carotene (14) 

82.3 
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Knapp Mill, Avon River 

The shade plot of accessory pigment samples shows representations of the pigment data 

matrices. Chlorophyll a and fucoxanthin concentrations were again the main accessory 

pigments at this station. The highest fucoxanthin concentration occurred during spring 

2013 as shown in Figure 3-61. Diadinoxanthin, a biomarker of several phytoplankton 

groups, was simultaneously high during the spring bloom as it was at Throop. It seems that 

many phytoplankton groups were growing together and blooming from the high 

concentration of this pigment. 19'Hex, prasinoxanthin, and zeaxanthin showed low 

concentrations throughout the sampling period. 

The hierarchical clustering used to define groups with similarities produced results in the 

range of 76%. The results of hierarchical clustered analysis demonstrated as a dendrogram 

(Figure 3-62), showed seven phytoplankton groups (A – G). Each group had ≥ 3 samples, 

except group B with just one sample from week 32. Group A had all winter samples during 

the high winter flood period. The samples in the peak chlorophyll events (week 3 and 10, 

K1 and K2) were presented in group C that includes a mixture of seasons, while the other 

chlorophyll events in week 42 and 50 (K3 and K4) occurred in group E. Group F is large 

with a number of mixed samples (21 samples).  
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Figure 3-61: Shade plot indicating accessory pigments (4th-root transformed data on a log 

scale) for Knapp Mill samples. Numbers indicate the sample weeks. 

The two-dimensional nMDS plot in Figure 3-63 with a stress of 0.08 indicates a good 

ordination and no real prospect of misinterpretation, which is not surprising, as many 

pigments are closely distributed over time. The groups follow a seasonal pattern: group E 

and F consist of winter samples during the massive flooding event, group A is all samples 

in spring 2014 (week 42 and 50), group B, C, and D overlap all seasons. 
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Figure 3-62: Dendrogram for hierarchical clustering of Knapp Mill samples defined by 

HPLC pigments at 76% of similarity level. Numbers indicate the sample 

weeks. 

 

Figure 3-63: nMDS plot of samples defined by HPLC pigments at Knapp Mill on the 

Hampshire Avon River. Numbers indicate the sample week at 76% of 

similarity level. 

The group specifications of accessory pigments at this station are summarised in Table 

3-15. Group A and E samples were characterised by fucoxanthin concentration in the peak 

chlorophyll events (week 3, 4, 42, and 50). The source of the fucoxanthin in samples at that 
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time is not readily distinguished from the cell count data (Figure 3-35), and this anomaly 

may be indicative of under sampling of large diatoms in the relatively small volume (10 

mL) water samples used for cell counts compared to the large volumes (500 – 1000 mL) 

used for HPLC analysis. Group F has a large number of sampling weeks, while group A, 

D, and G are similar with chlorophyll a as the main pigment followed by fucoxanthin as a 

biomarker of diatoms. 

Table 3-15: Main characteristics of sample group in terms of photosynthetic pigment 

composition at Knapp Mill on the Hampshire Avon River. The peak 

chlorophyll events in table are identified by sample weeks in bold. 

Group Sample week no. Pigments (% contribution) 
% of 

similarity 

A 34, 35, 39 chlorophyll a (37), fucoxanthin (29),  

lutein (11) 

88.7 

B 32 single sample - 

C 2, 3, 4, 5, 10 fucoxanthin (26), chlorophyll a (23), 

diadinoxanthin (11), β carotene (7)  

86.7 

D 40, 41 chlorophyll a (45), fucoxanthin (29) 80.2 

E 28, 42, 50 fucoxanthin (30), chlorophyll a (21), 

alloxanthin (10), divinyl chlorophyll a (8), 

chlorophyll b (7) 

82.1 

F 1, 6, 7, 8, 9, 11, 12, 

13, 14, 15, 16, 29, 

30, 43, 44, 45, 46, 

47, 48, 49, 51 

chlorophyll a (32), fucoxanthin (23), 

diadinoxanthin (8), β carotene (7),  

chlorophyll b (6) 

83.7 

G 17, 18, 19, 20, 21, 

22, 23, 24, 25, 26, 

27, 31, 33, 36 

chlorophyll a (30), fucoxanthin (22), 

diadinoxanthin (7), β carotene (7),  

lutein (7) 

84.4 

3.3.6.4 Relation of environmental and biological parameters 

Multivariate analysis based on environmental parameters and on phytoplankton 

characteristics have shown how samples are grouped in terms of similarity. Examination of 

the two phytoplankton characteristics including species carbon biomass and accessory 

pigments gave a different grouping. Seasonal changes could be clearly distinguished on the 

basis of environmental factors, but were less well defined by the phytoplankton data. To 
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address more directly the question of how environmental conditions affected the 

phytoplankton community, a further analysis was performed using the CANOCO software 

as described under statistical analysis in Chapter 2. 

Throop, River Stour 

Environmental variables that explained the variance (explanatory variables) in the carbon 

biomass of phytoplankton taxa at Throop were investigated using RDA. The ordination 

diagram in Figure 3-64 revealed associations between each taxon and the explanatory 

variables. Proximity of taxa to the environmental variables (arrows) in the same or 

opposite direction suggests negative or positive correlations, whereas no proximity suggest 

a weak or no correlation and the longer the arrow the stronger the correlation. 

The associations in the ordination diagram (Figure 3-64) show that the carbon biomass of 

riverine diatoms (Bacillariophyta) was correlated positively with water temperature and 

phosphate concentration and high biomass occurred during summer months. Chrysophyta 

and cyanophyta groups dominate in water where nitrate concentrations were high. 

Meanwhile, cryptophyta and chlorophyta were found in relatively warmer waters with high 

oxygen saturation. Dinoflagellate biomass was positively correlated with phosphate 

concentrations. All phytoplankton biomass was negatively correlated with river flow, 

SPM, and silicate concentrations at Throop. River discharge was inversely correlated with 

water temperature that led to a phosphate maximum in summer, probably the phosphate 

maximum was more related to low river flow as this would have reduced its dilution. 

The x axis of the analysis explained most of the variance (eigenvalue = 48.9%, cumulative 

percentage variance between biomass and environmental parameters = 89.6%), whereas all 

canonical axes explained 99.9% of the variance as shown in Figure 3-64 and Table 3-16. 

This means a) the arrows displayed closer to the x axis explained most of the variability in 

the data and b) the environmental variables explained almost 100% of the variation of the 

taxa, when all four axes were analysed together. 

Forward selection indicated that from all seven environmental parameters (Table 3-16) 

included in the analysis, only four environmental factors explained the variance in the 

phytoplankton carbon biomass when analysed together. When all the forward selected 

variables were analysed together (conditional effects, referred as λa, Table 3-16), the water 

temperature value was the most significant explanatory variable (λa = 0.44, P = 0.001), 

followed by silicate concentration (λa = 0.04, P = 0.006), Although there was no significant 
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difference (λa = 0.03, P = 0.086 and λa = 0.02, P = 0.057), river flow and phosphate 

concentrations also had a slight influence as explanatory variables (Table 3-16). Other 

environmental factors (nitrate, oxygen saturation, and SPM) were not significantly 

explanatory variables and possibly did not influence the phytoplankton carbon biomass 

pattern at Throop on the Stour River.  

 

Figure 3-64:  Ordination diagram generated from redundancy analysis (RDA) at Throop. 

Triplot represents taxa carbon biomass (blue thin lines), the significant 

explanatory variables (black thick lines) and weekly sampling (closed colour 

symbols; blue = spring, red = summer, green = autumn, pink = winter). 

The nMDS plot of phytoplankton group biomass was not clearly correlated with the 

environmental factors to show how different parameters influence biomass pattern (Figure 

3-65). The patterns of seasonality with river flow rate (early winter) and water temperature 

(summer and autumn) are clearly shown. Highest phytoplankton carbon biomass was 

found in spring because of the centric diatom Stephanodiscus bloom, followed by the 

samples in summer time. Both periods of high biomass were presented during low river 

discharge as shown in Figure 3-65 A and D. 

 



CHAPTER 3 

131 

Table 3-16: Eigen factor (λ) of each explanatory variable in order of the variance explained 

when analysed as single factor (λ1, marginal effects) or when included in the 

model where other forward selected variables are analysed together (λa, 

conditional effects). Significant P-values (*P < 0.1) and (** P < 0.05) 

represent the variables that together explain the variation in the analysis at 

Throop. 

Marginal Effects  Conditional Effects    

Variable  λ1 Variable λa P F  

temperature 0.44 temperature 0.44 0.001** 37.26  

river flow  0.24 silicate 0.04 0.006** 3.72  

silicate  0.10 river flow 0.03 0.086* 2.12  

%oxygen  0.09 phosphate 0.02 0.057* 2.56  

phosphate  0.08 nitrate 0.01 0.695 0.53  

SPM  0.07 %oxygen 0.00 0.765 0.42  

nitrate  0.06 SPM 0.01 0.972 0.12  

        

Axes                                1 2 3 4 Total variance 

 Eigenvalues : 0.489 0.038 0.015 0.003 1 

 biocarbon-environment correlations : 0.851 0.656 0.322 0.254  

 Cumulative percentage variance      

    of biocarbon data : 48.9% 52.7% 54.2% 54.5%  

    of biocarbon-environment relation: 89.6% 96.6% 99.3% 99.9%  

 Sum of all eigenvalues       

      

       

                1 

 Sum of all canonical eigenvalues       

      

       

                0.546 
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Figure 3-65: nMDS plot representing the mean biomass values in terms of carbon biomass 

(A), water temperature (B), silicate concentration (C) and river flow (D) at 

Throop. The bubble sizes represent the value of the environmental parameter. 

Iford Bridge, River Stour 

At this sampling point, the associations in the ordination diagram (Figure 3-66) show that 

the carbon biomass of riverine diatoms was strongly and positively correlated with nitrate 

concentrations and found highest biomass during summer months as at Throop. In 

addition, the diatom biomass was negatively related to the river discharge and silicate 

concentrations. Chrysophyta and cyanophyta groups showed no relationship with 

environmental factors. Meanwhile, cryptophyta and chlorophyta were found in relatively 

warmer waters with high oxygen saturation and in particular chlorophyte biomass was 

strongly and positively correlated with temperature. Dinoflagellate biomass was correlated 

with phosphate concentration as was seen at Throop.  

The x axis of the analysis explained most of the variance (eigenvalue = 65.8%, cumulative 

percentage variance between biomass and environmental parameters = 89.5%), whereas all 

canonical axes explained 100% of the variance as shown in Figure 3-66 and Table 3-17.  

Forward selection indicated that of all six environmental parameters (as no SPM values 

(Table 3-17) were included in the analysis), three environmental parameters explained the 

variance in the phytoplankton carbon biomass when analysed together as described at 

(A) 

(B) (D) 

(C) 
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Throop. When all the forward selected variables were analysed together (conditional 

effects, referred as λa, Table 3-17), the water temperature value was the most significant 

explanatory variable (λa = 0.60, P = 0.001) as at Throop, followed by river flow (λa = 0.05, 

P = 0.005), and silicate concentrations (λa = 0.02, P = 0.072). River flow and phosphate 

concentration also had a slight influence as explanatory variables (Table 3-16). Other 

environmental factors (nitrate, phosphate, and oxygen saturation) were not significant 

explanatory variables and possibly did not influence the phytoplankton carbon biomass 

pattern at the Iford Bridge site on the Stour River. River flow was inversely correlated with 

concentration of nitrate that led to high nitrate values in late summer and autumn at this 

site. 

 

Figure 3-66: Ordination diagram generated from redundancy analysis (RDA) at Iford 

Bridge site. Triplot represents taxa carbon biomass (blue thin lines), the 

significant explanatory variables (black thick lines) and weekly sampling 

(closed colour symbols; blue = spring, red = summer, green = autumn, pink = 

winter). 
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Table 3-17: Eigen factor (λ) of each explanatory variable in order of the variance explained 

when analysed as single factor (λ1, marginal effects) or when included in the 

model where other forward selected variables are analysed together (λa, 

conditional effects). Significant P-values (*P < 0.1) and (** P < 0.05) 

represent the variables that together explain the variation in the analysis at 

Iford Bridge. 

Marginal Effects  Conditional Effects    

Variable  λ1 Variable λa P F  

temperature 0.60 temperature 0.60 0.001** 62.35  

river flow  0.32 river flow 0.05 0.005** 6.15 

 

 

phosphate  0.25 silicate 0.02 0.072* 2.48  

nitrate  0.20 phosphate 0.01 0.330 1.10  

silicate  0.09 nitrate 0.01 0.381 0.97  

%oxygen  0.07 %oxygen 0.01 0.368 1.03  

        

Axes                                1 2 3 4 Total variance 

 Eigenvalues : 0.658 0.031 0.004 0.003 1 

 biocarbon-environment correlations : 0.895 0.556 0.319 0.491  

 Cumulative percentage variance      

    of biocarbon data : 65.8% 68.9% 69.3% 69.6%  

    of biocarbon-environment relation: 94.5% 99.0% 99.5% 100%  

 Sum of all eigenvalues       

      

       

                1 

 Sum of all canonical eigenvalues       

      

       

                0.697 

 
The nMDS plot of phytoplankton group biomass at Iford Bridge was not clearly correlated 

with the environmental factors to show how different parameters influence biomass pattern 

(Figure 3-67). The patterns of seasonality with river flow rate (early winter) are clearly 

shown. However highest phytoplankton carbon biomass was found in summer months, 

followed by the samples in spring 2014. Both periods of the high biomass were present 

during low river discharge as shown in Figure 3-67 A and C as seen above at Throop. 
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Figure 3-67: nMDS plot representing the mean biomass values in terms of carbon biomass 

(A), water temperature (B), river flow (C), and phosphate concentration (D) at 

Iford Bridge. The bubble sizes represent the value of the environmental 

parameter. 

Knapp Mill, River Hampshire Avon 

The associations in the ordination diagram (Figure 3-68) show that the carbon biomass of 

riverine diatoms was slightly positively correlated with oxygen saturation, phosphate, and 

silicate concentration. In addition, the diatom biomass showed a negative relationship with 

river discharge as was seen on the Stour River. Chrysophyte biomass showed a strong 

relationship with river discharge. Meanwhile, cryptomonad biomass was found to correlate 

negatively with high SPM concentrations. Chlorophyte biomass was correlated with water 

temperature. Nitrate concentrations from this spot sampling do not show any relationship 

with phytoplankton groups. 

The x axis of the analysis explained most of the variance (eigenvalue = 27.4%, cumulative 

percentage variance between biomass and environmental parameters = 82.3%), whereas all 

canonical axes explained 100% of the variance as shown in Figure 3-68 and Table 3-18. 

Forward selection indicated that of all seven environmental parameters (Table 3-18) 

included in the analysis, three environmental factors explained the variance in the 

(A) 

(B) 

(C) 

(D) 



CHAPTER 3 

136 

phytoplankton carbon biomass when analysed together. When all the forward selected 

variables were analysed together (conditional effects, referred as λa, Table 3-18), the water 

temperature was the most significant explanatory variable (λa = 0.25, P = 0.001), followed 

by silicate concentration (λa = 0.12, P = 0.001), and river flow had a slight influence as an 

explanatory variable (λa = 0.04, P = 0.045). Other environmental factors (nitrate, 

phosphate, SPM, and oxygen saturation) were not significant explanatory variables and 

possibly did not influence the phytoplankton carbon biomass pattern at Knapp Mill 

gauging station on the Hampshire Avon River. 

 

Figure 3-68: Ordination diagram generated from redundancy analysis (RDA) at Knapp 

Mill site. Triplot represents taxa carbon biomass (blue thin lines), the 

significant explanatory variables (black thick lines) and weekly sampling 

(closed colour symbols; blue = spring, red = summer, green = autumn, pink = 

winter). 
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Table 3-18: Eigen factor (λ) of each explanatory variable in order of the variance explained 

when analysed as single factor (λ1, marginal effects) or when included in the 

model where other forward selected variables are analysed together (λa, 

conditional effects). Significant P-values (*P < 0.1) and (** P < 0.05) 

represent the variables that together explain the variation in the analysis at 

Knapp Mill. 

Marginal Effects  Conditional Effects    

Variable  λ1 Variable λa P F  

temperature 0.25 temperature 0.25 0.001** 15.82  

river flow  0.22 silicate 0.12 0.001** 9.14  

silicate  0.12 river flow 0.04 0.045** 3.16  

%oxygen  0.08 nitrate 0.02 0.315 1.15  

phosphate  0.07 phosphate 0.01 0.364 1.00  

SPM  0.06 SPM 0.01 0.490 0.78  

nitrate  0.02 %oxygen 0.00 0.822 0.29  

        

Axes                                1 2 3 4 Total variance 

 Eigenvalues : 0.274 0.134 0.0444 0.001 1 

 biocarbon-environment correlations : 0.823 0.774 0.382 0.120  

 Cumulative percentage variance      

    of biocarbon data : 27.4% 40.7% 45.1% 45.2%  

    of biocarbon-environment relation: 60.5% 90.1% 99.8% 100%  

 Sum of all eigenvalues       

      

       

                1 

 Sum of all canonical eigenvalues       

      

       

                0.452 

 
The nMDS plot of phytoplankton group biomass at Knapp Mill site was not clearly 

correlated with the environmental factors to show how different parameters influence 

biomass pattern (Figure 3-69). The patterns of seasonality with river flow rate are clearly 

shown as on the Stour River. Highest phytoplankton carbon biomass was found in spring 

and summer months as was as at Throop and were also present during low river discharge 

as shown in Figure 3-69 A and C. 
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Figure 3-69: nMDS plot representing the mean biomass values in terms of carbon biomass 

(A), water temperature (B), silicate concentration (C), and river flow (D) at 

Knapp Mill. The bubble sizes represent the value of the environmental 

parameter. 

3.4 Discussion 

In this chapter, the seasonal pattern of biological parameters (phytoplankton species 

abundance, pigments, and estimated species biomass), environmental parameters (water 

temperature, suspended particulate matter, oxygen saturation, and river flow), and 

chemical parameters (nitrate, phosphate, and silicate concentrations) at Throop and Iford 

Bridge on the Stour River and the Hampshire Avon Rivers at Knapp Mill during April 

2013 to April 2014 were described. The water samples were collected at weekly intervals 

from the three sites on the two main rivers discharging freshwater into the Christchurch 

Harbour estuary. Multivariate analysis was used to establish relationships between 

biological and environmental factors. The objective of this study was to monitor the 

seasonal changes in both riverine phytoplankton on both rivers in terms of species 

composition and cell size. This study takes into account the whole phytoplankton 

community, in terms of its carbon biomass, accessory pigments and also in relation to the 

chlorophyll, size fractionated chlorophyll, and photosynthetic efficiency of phytoplankton. 

(A) 

(B) 

(C) 

(D) 
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The seasonal distribution of riverine phytoplankton on the Hampshire Avon and Stour 

Rivers is similar to that in other temperate rivers, for example in the St. Lawrence River 

(Basu et al., 2000), the Humber and the Thames (Neal et al., 2006), and the Rhine and 

Elbe Rivers (Hardenbicker et al., 2014). The biomass of chlorophyll a and carbon are 

relatively high in spring and summer up to 98.8 µg L-1 and low in autumn and winter < 1.0 

µg L-1 while temperature is low and river discharge is high (Montesanto et al., 2000; Neal 

et al., 2006; Phlips et al., 2010; Hardenbicker et al., 2014). 

Phytoplankton biomass response to nutrients 

In addition to river discharge, riverine phytoplankton biomass may be strongly related to 

nutrient concentrations (Basu et al., 2000; Sabater et al., 2008). In the present study it was 

shown that phosphate and nitrate concentrations were important chemical factors 

controlling the phytoplankton dynamics in the Stour River both at Throop and Iford 

Bridge, while in the Hampshire Avon River at Knapp Mill only the phosphate 

concentration was significant. According to Reynolds (1984) nitrate concentrations in 

rivers are high due to receiving considerable inputs of drainage from agriculture soils, 

groundwater or treated sewage effluent. However, phosphate concentrations were depleted 

in both rivers when chlorophyll registered the peak concentrations. The observed depletion 

of phosphorus is commonly observed in large eutrophic rivers during mass phytoplankton 

growth e.g. the Middle Loire (Picard and Lair, 2005). An obvious consequence is that the 

arrival of higher phosphate concentrations to the Stour River could further enhance 

phytoplankton biomass of the river. In some rivers, for example in the Thames, phosphate 

is not a limiting factor due to the high concentration (Whitehead et al., 2015). Silicate 

availability showed a strong negative correlation with phytoplankton carbon biomass in 

particular in the Stour as indicated by the CANACO and was low in concentration in both 

rivers during the spring diatom bloom. Several studies have reported that decreased silicate 

availability is often a factor in the termination of diatom blooms and as diatoms are 

dominating phytoplankton communities in both the Stour and Hampshire Avon Rivers, 

silicate concentrations could have temporarily limited phytoplankton growth as was 

reported by van Steveninck et al. (1992) for the Rhine River and by Whitehead et al. 

(2015) for the Thames. In contrast to lakes where nutrient concentrations are of high 

importance for the regulation of phytoplankton, they are of low importance in rivers as 

they are typically present in non limiting concentrations. Therefore, the observed increase 

in mean chlorophyll a concentrations in the Stour River was mainly a consequence of 

higher nutrient concentrations in particular phosphate concentration. In the Hampshire 
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Avon River, however, where nutrient concentrations were lower, chlorophyll a 

concentrations were also considerably lower. 

Phytoplankton biomass response to hydrodynamics 

The reduction in river discharge was the most important regulating factor for 

phytoplankton spring bloom dynamics in both rivers. The data show that the decrease in 

discharge was partially related to the spring increase in both phytoplankton in the Stour 

and Hampshire Avon Rivers, whereas increasing water temperature (and an associated 

increase in light availability) was a stronger predictor for the maximum concentration of 

chlorophyll a during the spring-summer. In the Stour, the occurrence of the maximum of 

the diatom spring bloom was significantly correlated to the end of the high winter flow rate 

period. Therefore, the reduction in discharge explained the maximum spring biomass in the 

Stour River. The mean annual dischange in 2013 (April – December) and 2014 at Knapp 

Mill were 13.7 and 30.5 m3 s-1, respectively, whereas the mean annual discharge during 

1969 to 2000 was 15.2 m3 s-1 at Fordingbridge on the Hampshire Avon River (Heywood 

and Walling, 2003). For the Knapp Mill gauging station, the discharge in 2014 exceeded a 

high range of flow due to the storm which occurred in January 2014 with the highest daily 

flow rate reaching up to 101.6 m3 s-1. Increasing retention times mainly improve the 

conditions for the planktonic development in riverine ecosytems (Reynolds, 2000; Lucas et 

al., 2009). The discharge increases the dilution effect as well as the decline in light climate, 

and the shorter residence time of rivers also reduces the phytoplankton abundance in the 

river ecosystem (Everbecq et al., 2001). Negative correlations between river flow rate and 

chlorophyll a have also been reported concerning seasonal short term development of 

phytoplankton in rivers of eastern England (Neal et al., 2006), the Mississippi River in the 

USA (Bukaveckas et al., 2011), and long term in German rivers (Hardenbicker et al., 

2014). A contrasting river discharge was found in the Stour, the lower flow during the high 

productive period had mostly higher phytoplankton biomass than the Hampshire Avon. 

In the present study, water temperature was an important factor controlling the 

phytoplankton community both in the Stour and the Hampshire Avon. This suggests that 

the direct effect on phytoplankton is of high importance and should be a main focus 

concerning plankton regulation in lotic habitats together with discharge conditions and 

nutrient availability. A dynamic phytoplankton model reported by Whitehead et al. (2015) 

showed temperature is a limitation to phytoplankton growth in the Thames whereas, 

temperature has a minor effect on phytoplankton development in larger rivers such as in 
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the Rhine and the Elbe (Hardenbicker et al., 2014). Typically, maximum rates of 

phytoplankton biomass in terms of chlorophyll concentration and abundance occur when 

water temperature and nutrient inputs are both high leading to spring bloom conditions as 

observed at Throop and Knapp Mill. High chlorophyll concentrations also occurred at 

Iford Bridge, where the higher nitrate concentrations than seen at Throop upstream on the 

Stour River were related to the main sewage input from Holdenhurst Sewage Works thus 

further favouring phytoplankton development before flowing into the Christchurch 

Harbour estuary. 

Comparing the suspended particulate matter (SPM) load and its influence on 

phytoplankton biomass dynamics in both rivers there was no significant effect on 

phytoplankton biomass, neither in the Stour at Throop, nor in the Hampshire Avon at 

Knapp Mill. This suggests that the direct effect of SPM on phytoplankton is of less 

importance and the main focus concerning phytoplankton regulation in rivers has to be on 

discharge conditions (Hardenbicker et al., 2014). SPM concentration in the Avon River 

within the upper and middle catchments at Fordingbridge gauging station were reported at 

a maximum of 0.232 g L-1 during a large magnitude storm in December 1999 (Heywood 

and Walling, 2003), while from this study SPM maxima was measured of 0.038 g L-1 at 

Knapp Mill (week 36) and 0.135 g L-1 at Throop on the Stour River. The maximum SPM 

concentrations from all study sites were recorded when the river flow rate was over 100 m3 

s-1 in winter 2013.  

Changes in phytoplankton taxa and biomass 

In the present study the size distribution of chlorophyll a in both rivers were examined 

during the productive period (May – September 2013). Nano-phytoplankton (2 – 20 µm in 

diameter) were the dominant group in terms of biomass followed by pico-phytoplankton (< 

0.2 µm) and micro-phytoplankton size (> 20 µm), respectively. The pico-sized 

phytoplankton were found to be greatest importance in the Thames by Read et al. (2014) 

using a flow cytometry measurements throughout the summer period. This indicates that 

the smaller phytoplankton are important organism in these riverine ecosystems although 

the population size differs in other studies. 

High chlorophyll concentrations detected in the Stour at Throop compare to occasional 

measurements made by the Environment Agency at this site but phytoplankton counts are 

not routinely made. The present study has shown that the phytoplankton community in 

lower reaches of the Stour and Hampshire Avon is a typical riverine diatom community 
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dominated by species of Stephanodiscus, Coscinodiscus, Diatoma, Navicula, and Melosira. 

Similar species have been reported in a German lowland river, the Kielstau catchment (Wu 

et al., 2011) but with different dominant species. The highest abundance of phytoplankton 

in both rivers occurred between April and May for diatoms and between June and July for 

the other phytoplankton groups as reported by Read et al. (2014) and Whitehead et al. 

(2015) in the Thames. The chlorophytes dominated the community throughout the summer 

period at all study sites as well as in the Thames at Wallingford (Read et al., 2014).  

The centric diatom Stephanodiscus sp. is considered a common diatom in eutrophic 

freshwaters of Europe and this diatom is capable of intense spring blooms (Stoermer et al., 

1972; Krammer and Lange-Bertalot, 1991), both references cited by Hawryshyn et al. 

(2012). It seems that the Stour River may be considered to be eutrophic during low spring 

discharge when Stephanodiscus sp. abundance was observed at over 4.4 × 104 cells mL-1 

with 98.8 µg L-1 of chlorophyll a at Throop. Major diatom blooms in spring and summer, 

correlated with depletion of soluble reactive phosphate and silicate concentrations. The 

small chlorophyte species, Chlamydomonas spp., was observed in high density (1.9  7.9 × 

104 cells mL-1) and was the dominant species during early summer months on the Stour 

River. In both rivers, the diatoms were the main phytoplankton groups during the autumn-

winter time with a low abundance during high river discharge. 

The uses of HPLC and flow cytometry to monitoring riverine phytoplankton community 

Inverted optical microscopy is the reference tool to assess the community composition of 

major phytoplankton groups such as diatoms, cryptomonads, chlorophytes, and 

dinoflagellates. This technique has limitations for cells that are less than 10 µm or fragile 

cells, however, that could be lost during the preservation process. Within this study acid 

Lugol’s iodine solution was used to preserve all microscopic samples. Because the 

identification of phytoplankton species often relies on features that cannot be seen in 

preserved samples due to loss of pigmentation, it is recommended that a qualitative fresh 

water sample from the same river is viewed (if possible) before the actual count to 

determine which groups of phytoplankton are dominant. Pigment analysis using HPLC 

provides useful data about whole community diversity and the contribution of each 

phytoplankton pigment group. In particular, accessory pigments quantified by HPLC 

analysis is a useful tool with which to investigate phytoplankton community structure from 

their marker pigments. However some pigments are common to more than one group of 

phytoplankton limiting the diagnostic value of those pigments in mixed communities. For 
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example peridinin is often stated as a indicator pigment for dinoflagellates however some 

dinoflagellate species are known to contain fucoxanthin rather than peridinin. In the 

present study, the spring bloom on the Stour River was comprised of a combination of 

pigments including fucoxanthin, diadinoxanthin, and chlorophyll b that indicate several 

phytoplankton groups were present and not only the diatoms. The centric diatom 

Stephanodiscus sp. was the dominant species from the microscopic observation whilst 

other species were observed in low abundance. Microscopy and the preservation have 

limitations for small phytoplankton cells or fragile cells that could be lost during the cell 

counting. 

The CytoSense flow cytometer is a useful instrument to estimate phytoplankton abundance 

and is less time consuming than microscopy. The CytoSense also measures phytoplankton 

cell size from 1 µm up to 800 µm and was demonstrated to be a viable alternative approach 

for monitoring the changing seasonal patterns of abundance and composition of 

phytoplankton in both rivers. In the present study, flow cytometry showed distinct 

variation in cell density throughout the sampling period, with a general pattern of high 

abundance during the spring to summer period and lower abundance during autumn to 

winter at all study sites as was reported by Read et al. (2014) for the Thames. Sharp shifts 

in phytoplankton abundance were observed during the spring 2013 and 2014. These results 

were marked by an increase in phytoplankton abundance and red fluoresence as shown in 

Section 3.3.5. The total abundance from CytoSense data correlated with a low significance 

(R2 = 0.39) with the microscopic counts (Figure 3-38), suggesting that the traditional 

counting method underestimates the phytoplankton abundance. Nevertheless, in contrast to 

marine and estuarine systems where phytoplankton communities are well established 

(Moreira-Turcq et al., 2001; Lin et al., 2012; Bonato et al., 2016), its application to 

freshwater ecosystems is less and has almost thoroughly been focused on lakes and 

reservoirs (Dubelaar et al., 2004; Read et al., 2014). Read et al. (2014) pointed out that 

flow cytometry has the potential to become a routine monitoring technique to replace some 

of the current water quality monitoring parameters required in the future. 

The production of riverine phytoplankton 

In the present study, photosynthetic energy conversion efficiency (Fv/Fm) using a bench-

top Fluorescence Induction and Relaxation (FIRe) was investigated at all study sites 

throughout the sampling period and size-fractions were also analysed during a productive 

period in 2013. The rates of photosynthesis for the three riverine stations showed similar 
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seasonal patterns. The highest values occurred during the spring and decreased through 

summer with the nano-phytoplankton community showing to be the most efficient cells in 

the population. Several previous studies have reported maximum phytoplankton 

photosynthetic efficiency (Fv/Fm) occurred during thermal stratification, for example in the 

Salzkammergut lake-distrct in Austria (Kaiblinger and Dokulil, 2006). Measurement of 

Fv/Fm using the FIRe is a convenient and relatively inexpensive method with a wide range 

of past and future ecophysiological applications (Parkhill et al., 2001). In contrast to 

published results, continuous measurements of riverine samples showed that values of 

Fv/Fm were close to measurements of culture experiments and remained constant (~0.6 – 

0.7) during the spring period as reported by Parkhill et al. (2001). The Hampshire Avon 

River at Knapp Mill had a lower efficiency than at Throop and Iford Bridge on the Stour 

River during the spring bloom, however, in general all efficiencies from the three sites 

showed the same pattern following the chlorophyll concentrations throughout the sampling 

period. 

Hierarchical cluster and CANOCA analysis revealed the presence of any distinct spatial 

patterns, although, distinct phytoplankton communities were recorded during the different 

sampling periods. The species abundance in terms of carbon biomass and pigment content 

were highest in the spring-summer, decreasing from autumn to winter particularly during 

the winter flood period at all sites. The results of the study provide important insights into 

the various parameters that influence riverine phytoplankton population composition in 

both the lower Stour and Avon Rivers. Canonical correspondence analysis can be used to 

determine whether variables such as hydrology or nutrients are important in controlling 

phytoplankton populations. For example, total phosphate and dissolved inorganic nitrogen 

were of equal importance in controlling the variation in structure of riverine phytoplankton 

assemblages in a German lowland river, the Kielstau catchment (Wu et al., 2011). 

However, in large rivers e.g. the Rhine and Elbe Rivers the same methods have indicated 

that climate related factors such as discharge or light conditions have a high potential to 

regulate phytoplankton spring bloom dynamics (Hardenbicker et al., 2014). 

As a result, seasonality plays an important role in the control of phytoplankton growth and 

community composition and the relationship between phytoplankton biomass and 

environmental parameters shows that river discharge and water temperature represent the 

main factors controlling the carbon biomass in the Stour and Avon rivers. Lower summer 

river discharges leading to a longer water residence times resulted in higher phytoplankton 

biomass. Nutrient concentration, particularly silicate and phosphate, were also implicated 
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in controlling phytoplankton growth particularly on the Stour River. In particular, 

phosphate concentration was a main chemical factor influencing phytoplankton during the 

spring when the low river discharge and high temperature occurred at Throop, compared at 

Knapp Mill. The diatoms were the main community of riverine phytoplankton in both the 

Stour and Hampshire Avon Rivers in particular during the spring-summer, however, the 

chlorophytes and cryptophytes became dominant groups during the summer from both 

rivers.  

3.5 Conclusion 

In summary, this study has demonstrated the occurrence of spring diatom blooms in the 

Stour River at Throop with high chlorophyll a concentration suggesting that the Stour 

River should be considered to be a eutrophic river. It can be concluded that despite the 

interaction of complex regulation mechanisms in the Stour and Hampshire Avon, the main 

factors influencing the riverine phytoplankton community was related to both nutrient 

availabilily and the optimal climate conditions. Furthermore, the changes in river flow and 

nutrient concentration on the Stour and Hampshire Avon Rivers which directly flow into 

the Christchurch Harbour estuary potentially affect the phytoplankton community in the 

estuary during low tide. The annual dynamic of river discharge could imply potential 

changes to the estuarine phytoplankton community through its impact on the nutrient 

delivery to the estuary supporting high levels of phytoplankton productivity. The potential 

impact of a change in estuarine phytoplankton population is to be discussed in later 

chapters. 
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Chapter 4:  The response of the estuarine 

phytoplankton community to change in 

macronutrients input to in a shallow 

temperate estuary, Christchurch Harbour, 

UK 

4.1 Abstract 

The influence of changes in the nutrient inputs from the Stour and Hampshire Avon Rivers 

discharges on the annual response of phytoplankton community at Mudeford Quay at the 

estuary entrance to Christchurch Harbour were investigated at weekly intervals from April 

2013 to April 2014. It is important to understand the response of different phytoplankton 

groups to nutrient concentrations and other hydrological parameters during different 

seasons. There are significantly several potential environmental factors controlling the 

phytoplankton biomass including salinity, oxygen saturation, river discharge, temperature, 

and silicate concentrations. Inorganic nutrient concentrations were generally much higher 

during low river discharge, but decreased during the winter flood. The chlorophyll a 

maximum was observed during the late spring and decreased during the autumn and winter 

similar to that detected at Throop on the Stour. Phytoplankton carbon biomass and 

accessory pigments displayed a similar pattern at those in the rivers. This suggests that 

nutrient availability and river discharge could have been important in determining the 

variation in phytoplankton biomass and composition in the estuary. Diatoms were a 

dominant component of the phytoplankton biomass and community throughout the 

sampling period and positively related to silicate concentrations. Dinoflagellates e.g. 

Kryptoperidinium foliaceum were observed in high abundance at higher salinity values 

during summer months and spring blooms of nano-sized phytoplankton occurred in low 

salinity water dominated by Stephanodiscus sp. This suggests that the river discharge is 

important factor influencing the phytoplankton community and primary production in the 

microtidal shallow Christchurch Harbour estuary.
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4.2 Introduction 

The Christchurch Harbour estuary receives freshwater from principally two rivers, the 

Stour and the Hampshire Avon. Results from the previous chapter showed that the riverine 

phytoplankton populations in the lowest reaches of both rivers were present a high 

abundance and biomass during spring-summer and it was shown that phosphate and nitrate 

concentrations were important chemical factors controlling the phytoplankton dynamics in 

both rivers. In this study environmental factors controlling phytoplankton abundance and 

biomass at the estuary entrance was investigated on the same sampling dates as samples 

were collected from the three riverine sites in order to better understand the condition 

influence estuarine phytoplankton populations at the estuary entrance during low tide. 

4.3 Results 

4.3.1 Environmental data 

Weekly sampling was carried out at, Mudeford Quay, at low tide on the same days as the 

three riverine stations (Figure 2-1), between April 2013 and April 2014 (see the sampling 

date in Appendix A). Observations of physical factors, inorganic nutrients, total 

chlorophyll a, chlorophyll a size fractions, phytoplankton abundance, phytoplankton 

production, and phytoplankton pigments are presented in this chapter. 

4.3.1.1 Salinity 

The annual change in surface water salinity at Mudeford Quay, at the entrance of 

Christchurch Harbour is shown in Figure 4-1. The estuarine surface salinity determined 

using a YSI 6600 multiprobe ranged 0.2 – 22.5 and showed generally high salinity values 

over of 15 between 4th July and 16th October 2013 (week 12 – 27), when daily river flow 

rates at both lowest gauging stations on the River Stour and Avon was under 10 m3 s-1. The 

salinity decreased from values of 22.5 (23rd July 2013, week 15) in the summer month, 

down to 0.2 during the high river flows in the winter period when daily river flow rate was 

over 20 m3 s-1. The seasonal changes in salinity indicated that the estuarine water was 

directly impacted on by the river discharge from both rivers. Salinity values suggest that 

stratification at the mouth of the estuary is mainly driven by the input of the riverine water, 

as indicated by the lower surface salinity values during the winter flood period. 
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Figure 4-1: Change of surface salinity values at Mudeford Quay and daily Stour and 

Hampshire Avon River flow form April 2013 to April 2014. Red solid line 

indicates a daily Stour River flow and blue solid line shows a daily Avon River 

flow. 

4.3.1.2 Suspended particulate matter 

The range of suspended particulate matter (SPM) at Mudeford Quay at low tide was 0.005 

– 0.141 g L-1. The maximum SPM value was in November 2013 (week 30) and the 

minimum SPM was in February 2014 (week 45) as shown in Figure 4-2. Although the 

SPM varied throughout the sampling at this sampling site, the SPM values increased 

predictably towards the autumn months and decreased towards the winter. The SPM 

average value at Mudeford Quay was higher (0.025 g L-1) than at Throop and Knapp Mill 

(0.012 and 0.009 g L-1). During week 29 to 33, the range of both river flow rates was 12 – 

18 m3 s-1, SPM values were sharply increase up to 0.141 g L-1 (week 30) and down to 

0.010 g L-1 (week 33) when the flow rate decreased to ~10 m3 s-1. The next peak of SPM 

occurred in the early winter flood up to 0.123 g L-1 then decreased during the following 

high flow period. It should be note that the high SPM concentrations at Mudeford Quay 

followed the rate of river flow into the estuary during the study period.  
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Figure 4-2: The change of suspended particulate matter (SPM) concentrations at Mudeford 

Quay compare to daily Stour and Avon River flows. Red solid line indicates a 

daily Stour River flow and blue solid line shows a daily Avon River flow 

4.3.1.3 Chemical parameters: Inorganic nutrients 

The changes in the major inorganic nutrients, nitrate, phosphate, and silicate concentrations 

at the Christchurch Harbour estuary entrance, at Mudeford Quay, were determined at low 

tide on weekly collected samples from the same days as the three river stations. The 

seasonal mean concentrations of each nutrient are presented in Table 4-1. 

In general, the surface nitrate concentration showed a consistent seasonal pattern (Figure 

4-3 A), concentrations with reduced in summer from high concentrations in the spring, and 

increased again in the autumn. Phosphate concentrations showed a different pattern to 

nitrate with, concentrations increased from low values in the spring to high concentrations 

in the summer and autumn and decreased again during the winter flood (Figure 4-3 B). In 

terms of silicate change, concentration gradually increased from spring to winter and the 

highest concentration was measured with river flow was high then dropped follow the river 

flow decrease (Figure 4-3 C). 
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The mean concentration of nitrate, phosphate, and silicate at this site during the sampling 

period were 338 ± 98 (n=50), 6 ± 3 (n=49), and 87 ± 46 (n=49) µmol L-1, respectively. 

Nitrate concentration ranged from 148 µmol L-1 (July 2013, week 15) to 541 µmol L-1 

(December 2013, week 34), phosphate concentration ranged from 1 µmol L-1 at the end of 

February 2014 (week 44) to 11 µmol L-1 in October 2013 (week 25), and silicate 

concentration ranged from 24 µmol L-1 (February 2014, week 44) to 189 µmol L-1 

(December 2013, week 37) as shown in Figure 4-3. 

Inorganic nutrient concentrations at Mudeford Quay showed a similar pattern to the river 

stations particularly in comparison to both study sites (Throop and Iford Bridge) on the 

Stour River. This difference may relate to nutrients in the Stour having a higher 

concentration than in the Hampshire Avon as described in previous chapter (see Section 

3.3.1.3). 

Nitrate and silicate concentrations generally showed a decrease as salinity increased, but 

phosphate concentrations had a positive scatter with salinity (Figure 4-4). The maximum 

concentrations of nitrate were twofold higher in the low salinity (0 – 5) compared to the 

high salinity (> 20) water as shown in Figure 4-4 A. 
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Figure 4-3: Surface inorganic nutrient changes at Mudeford Quay, Christchurch Harbour 

(A) nitrate, (B) phosphate, and (C) silicate. Red solid line indicates the daily 

Stour River flow and blue solid line shows the daily Avon River flow. Symbols 

in lower panel apply to all panels. 
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Figure 4-4: Relationship between inorganic nutrient concentrations and YSI salinity 

measurements at Mudeford Quay, (A) nitrate, (B) phosphate, (C) silicate. 
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Table 4-1: The seasonal means of nitrate, phosphate, and silicate concentrations (µmol L-1) 

at Mudeford Quay. 

 mean values ± standard deviation (µmol L-1) 

Inorganic nutrients spring summer autumn winter 

Nitrate 338 ± 98 276 ± 90 273 ± 57 388 ± 72 

Phosphate 6 ± 3 8 ± 2 8 ± 2 3 ± 2 

Silicate 87 ± 46 63 ± 12 107 ± 40 100 ± 63 

The silicate to phosphate (Si:P), nitrate to phosphate (N:P), and nitrate to silicate (N:Si) 

ratio at Mudeford Quay are shown in Figure 4-5 and the seasonal means of these surface 

ratios are illustrated in Table 4-2. The N:P and N:Si ratios for this study site tended to 

decrease gradually from spring to winter, and increase sharply during the winter flood 

between week 38 and 47. The Si:P ratio fluctuated most widely between the late autumn to 

spring 2014 (week 28 – 51), and also the high ratios occurred during that period. The 

highest value of the N:P ratio occurred on 13rd March 2014 (week 46), while the peak 

nitrate to silicate ratio was determined on 3rd May 2013 (week 3).  

The N:P generally ranged between 23 and 350. These ratios are significant greater than the 

Redfield ratio of 16 for typical marine waters similar to that observed for the riverine N:P 

ratio. The N:Si and Si:P varied generally 1 – 20 and 4 – 53, respectively.   

Nutrient ratio can indicate which particular nutrient might affect phytoplankton growth and 

succession, but the river flow rate or the water residence time perhaps mainly controlled 

the variation of nutrient ratios in this estuary. Christchurch Harbour is a small shallow 

estuary and the Stour and Hampshire Avon Rivers flow directly into the estuary and at low 

tide until flush out towards the English Channel. The water samples were collected from 

the surface at low tide to estimate nutrient flow through the estuary. The nutrient ratio in 

the water can be compared with the Redfield ratio for N:P of 16:1 also for Si:P of 16:1. 

The high N:P and Si:P ratios were observed in early spring 2014 (week 47 and 49, 

respectively) indicate that relatively low phosphate concentrations may be the reason for 

high ratio at the estuary entrance. The N:Si ratio was 20 on 3rd May 2013 (week 3) due to 

high concentration of nitrate (508 µmol L-1) was measured on that day. Residence time of 

the Christchurch Harbour estuary is estimated to be 65.9 hours or 2.7 days during the 

spring following the formulas of Dyer (1997) (Charlie Thompson, personal 

communication). 
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Figure 4-5: Si:P, N:P, and N:Si ratio at Mudeford Quay. Red solid line indicates a daily 

Stour River flow and blue solid line shows a daily Avon River flow. Symbols 

in upper panel apply to all panels. 
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Table 4-2: The seasonal means of surface nitrate to phosphate ratio (N:P), nitrate to silicate 

ratio (N:Si), and silicate to phosphate ratio (Si:P) at Mudeford Quay. 

 mean values ± standard deviation  

Ratio spring summer autumn winter 

N:P 96 ± 89 36 ± 10 40 ± 16 165 ± 91 

N:Si 5 ± 4 4 ± 1 3 ± 1 6 ± 5 

Si:P 20 ± 15 8 ± 2 16 ± 10 31 ± 15 

4.3.2 Phytoplankton pigments 

4.3.2.1 Total chlorophyll a and chlorophyll a size fractions 

Annual changes in total surface chlorophyll a concentrations and size fractions for the 

estuarine station are illustrated in Figure 4-6. The numbers (M1 – 9) and dash lines are 

shown above the chlorophyll a curve to identify chlorophyll events when chlorophyll a 

concentration was over of 15 µg L-1. Total chlorophyll a concentrations ranged from 0.9 

µg L-1 (15th January 2014, week 39) to 44.0 µg L-1 (3rd May 2013, week 3) coinciding with 

the spring diatom bloom event at Throop on the Stour River, followed by three small peaks 

of ~15 to ~22 µg L-1 (week 6, 11, 19), and one small peak at the early April 2014 (week 

50). The distribution showed a similar pattern with the total chlorophyll a concentrations at 

all riverine stations as the highest concentration occurred during the spring months. 

The distributions of chlorophyll a size fractions at this study site during the productive 

period are illustrated on Figure 4-6 with total chlorophyll a concentration. A good 

agreement between total sum chlorophyll a and chlorophyll size fractions is shown in 

Figure 4-7, with slope 0.81, and an R2 value of 0.96, pronouncing confidence that the size 

fraction procedure from this site was not associated with significant loss of phytoplankton 

cells.  

The pattern of the chlorophyll a size fractions distribution during the productive period at 

the estuary entrance is illustrated in absolute units and as percentages in Figure 4-8. The 

mean percentages for each size fraction were: > 20 µm, 24% (maximum 47% in week 23); 

2 – 20 µm 62% (maximum 86% in week 5); < 2 µm 15% (maximum 35% in week 21). 

The maximum percentage of each size fraction occurred the same sampling days as the 

riverine size fractions particularly at Throop on the Stour River.  
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Figure 4-6: Seasonal distribution of total chlorophyll a and three sizes fractionated 

chlorophyll a concentrations at Mudeford Quay. The numbers and dash lines 

shown above the chlorophyll a curve identify a series of chlorophyll events. 
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Figure 4-7: Correlation between total chlorophyll a and sum size fractions at Mudeford 

Quay. The dash line represents the 1:1 agreement line. 
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The three size fraction classes shown in Figure 4-8 indicate the 2 – 20 µm size (nano-

phytoplankton) fractions was the highest group than the others, corresponding to this cell 

range identifiable under the light inverted microscope. The mean percentage of the 2 – 20 

µm fraction was observed to be 62% (range 37 – 86%), with the correlation between total 

chlorophyll a and the 2 – 20 µm gave R2 = 0.96 (n = 22) at this site. 
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Figure 4-8: Distributions of chlorophyll a size fractions during the high productive period 

(A) and distributions of chlorophyll a size fractions expressed as percentages 

(B) at Mudeford Quay. 
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Figure 4-9: Total chlorophyll a and percentages of 2 – 20 µm chlorophyll a fraction at 

Mudeford Quay. 

The relationship between chlorophyll concentrations and nutrients at Mudeford Quay are 

shown in Figure 4-10. No obvious relationships have in evident from the data. 
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Figure 4-10: Relationship between inorganic nutrients and chlorophyll a concentration at 

Mudeford Quay, (A) nitrate, (B) phosphate, (C) silicate. 
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4.3.2.2 Phytoplankton accessory pigment 

High performance liquid chromatography (HPLC) method was used to measure the 

concentration of a number of estuarine phytoplankton accessory pigments as sampled from 

both riverine stations at Throop and Knapp Mill on the Stour and Hampshire Avon Rivers. 

Chlorophyll a concentrations measured by HPLC at Mudeford Quay were consistently 

lower than concentration measured by fluorescence (Figure 4-11 C). The discrepancy 

between chlorophyll a concentrations determined by fluorescence and HPLC analysis in 

estuarine samples seems to be magnified at high chlorophyll a concentrations as seen for 

riverine samples in the previous chapter. This is clearly seen on the three days of peak 

chlorophyll a concentrations over 20 µg L-1 during the diatom bloom.  

In the present study, the HPLC method detected up to 16 pigments some of which can be 

used as biomarkers to distinguish between phytoplankton groups as described in Table 2-2. 

There were good correlations between chlorophyll a and both total pigment concentrations 

(all pigments including chlorophyll a) or total accessory pigment concentrations (without 

chlorophyll a), as shown in Figure 4-11, which were irrespective of phytoplankton 

composition and pigment content. 

The temporal successions of eight major pigments, namely chlorophyll a (Chl a), peridinin 

(Peri), fucoxanthin (Fuco), alloxanthin (Allo), lutein (Lut), chlorophyll b (Chl b), 

diadinoxanthin (Dia), and β carotene (β caro) at Mudeford Quay (Figure 4-12) as well as 

eight minor pigments chlorophyll c3 (Chl c3), chlorophyll c2 (Chl c2), 

19'Butanoyloxyfucoxanthin (19'But), 19'Hexanoyloxyfucoxanthin (19'Hex), violaxanthin 

(Vio), prasinoxanthin (Pra), divinyl chlorophyll a (DV Chl a), and zeaxanthin (Zea) from 

Mudeford Quay is shown in Figure 4-13. Variations in the ratio of accessory pigments to 

chlorophyll a (Figure 4-14 to Figure 4-15) reflected changes in the taxonomic composition 

of the phytoplankton population similar to the riverine samples. 
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Figure 4-11: Relationship of total fluorescence chlorophyll a to total HPLC pigments and 

total HPLC accessory pigments (A and B), and HPLC chlorophyll a (C) at 

Mudeford Quay. The solid lines represent the linear regression for each set of 

data and equation for this line and correlation coefficient shown. The dash lines 

represent the 1:1 agreement line on figure C. 

Similar to the riverine samples, HPLC determined chlorophyll a concentration at Mudeford 

Quay (Figure 4-12) generally followed distributions described previously for fluorometric 

determination (see Figure 4-6), although absolute concentration varied (Figure 4-12 A). 

Fucoxanthin and diadinoxanthin showed a similar seasonal distribution to Chl a, with 

maxima of 9.9 and 2.9 µg L-1 on 3rd May 2013 (week 3) followed by 7.7 and 2.5 µg L-1 on 

17th May 2013 (week 5) respectively (Figure 4-12 C and G). Low concentrations of 

peridinin were observed between week 17 and week 32 (6th August to 18th November 

2013) with concentrations below 0.05 µg L-1 while concentrations were close to zero 

during the rest of year (Figure 4-12 B). Alloxanthin, lutein, and chlorophyll b 



CHAPTER 4 

163 

concentrations showed maxima peaks during the early chlorophyll a events (M1 – M6) in 

weeks 4, 7, and 5 (Figure 4-12 D, E, F). Concentration of chlorophyll b closely followed 

those of lutein but both pigments showed a high concentration during the early chlorophyll 

events, however, the highest concentration of chlorophyll b was present on 17th May 2013 

(week 5) with concentration of 2.6 µg L-1 as shown in Figure 4-6 E and F. Maximum 

concentration of β carotene was detected in week 30 (4th November 2013) with 

concentration of 1.3 µg L-1 while concentrations were below 1.0 µg L-1 during the rest of 

year (Figure 4-6 H). 

Low concentrations of chlorophyll c3 were observed at the Mudeford Quay during 2013 – 

2014 (Figure 4-13 A). This pigment was present a highest concentration on 31st May 2013 

(week 7, M6) at ~0.2 µg L-1, and several small peaks were measured at this study site until 

the end the sampling period. Chlorophyll c2 was found in high concentrations in samples 

in May 2013, both maxima of 0.6 µg L-1 (Figure 4-13 B). 

On 4th November 2013 (week 30) high concentration of 19'But was detected of 1.2 µg L-1, 

that did not relate to chlorophyll events (Figure 4-13 C). However, this pigment presented 

high concentrations during the spring months in 2013; concentrations were below 0.4 µg L-

1 during the rest of year. 19'Hex was generally present in high concentrations from 10th 

May to 31st June 2013 (week 4 – 16), and after that zero and close to zero concentrations 

were measured (Figure 4-13 D). 

Violaxanthin maximum concentrations were detected during the summer period of 0.4 µg 

L-1 (Figure 4-13 E), and after that the concentrations were measured below 0.2 µg L-1 

during the rest of year. Prasinoxanthin was generally undetectable, except from 11st 

September to 18th November 2013 (week 22 – 32) low concentrations were observed 

(Figure 4-13 F).  

Divinyl chlorophyll a was always present throughout the sampling period, and varied 

between zero and 0.6 µg L-1 (Figure 4-13 G). Some peaks in divinyl chlorophyll a were 

observed in samples relative to chlorophyll events. Peak concentration of this pigment was 

detected at the same day with 19'But and prasinoxanthin peaks on 4th November 2013, with 

concentration of 0.6 µg L-1. Low concentration of zeaxanthin was observed during 6th 

August to 24th October 2013 (week 17 – 28), and varied between 0.1 and 0.3 µg L-1 after 

that the concentrations increased to 1.3 µg L-1 on 4th November 2013 (Figure 4-13 H). This 

pigment was detected below 0.2 µg L-1 during the rest of year. 
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Considering the accessory pigment to chlorophyll a (Chl a) ratios, peridinin to Chl a ratio 

showed much lower values than in both riverine samples. This ratio peaked on 11st 

November 2013 (week 31), when it was around 0.01 (Figure 4-14 A). Peridinin to Chl a 

ratios were zero during most part of the sampling period. 

Fucoxanthin to Chl a ratios were higher during the spring period in 2014, and relative to 

the chlorophyll events (Figure 4-14 B). This ratio varied between 0.2 and 0.9 and 

maximum value was detected on 3rd May 2013 (week 3, M3). Low values of alloxanthin to 

Chl a ratios showed during 16th April to 31st July 2013 (week 1 – 16), and after that several 

small peaks occurred until the end of sampling (Figure 4-14 C). 

Lutein to Chl a ratios were generally lower 0.1 until 18th November 2013 (week 32), then 

increased up to 0.4 on 17th December 2013 (week 36) as shown in Figure 4-14 D. This 

ratio was close to zero in February 2014. Chlorophyll b to Chl a ratios were quite constant 

from 3rd May to 18th November 2013, around 0.1, and after that zero and close to zero 

during the rest of year (Figure 4-14 E). 

Diadinoxanthin to Chl a ratios ranged between 0.04 and 0.25 (Figure 4-14 F). Maximum 

values of ~0.3 and 0.2 were found on 3rd and 17th May 2013 (week 3 and 5, M2 and 4). β 

carotene to Chl a ratios showed an increase towards April and December 2013 at 

Mudeford Quay, reaching a peak of 0.2 on 17th December 2013, and after that this ratio 

decreased until the end of sampling (Figure 4-14 G). 
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Figure 4-12: Temporal distributions of phytoplankton chlorophyll a and major accessory 

pigments at Mudeford Quay, Christchurch Harbour. The numbers and dash 

lines shown above the HPLC pigment plots identify a series of chlorophyll 

events. 
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Figure 4-13: Temporal distributions of phytoplankton chlorophyll a and minor accessory 

pigments at Mudeford Quay, Christchurch Harbour. The numbers and dash 

lines shown above the HPLC pigment plots identify a series of chlorophyll 

events. 
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Figure 4-14: Temporal and spatial distributions of major accessory pigment to chlorophyll 

a ratios at Mudeford Quay. The numbers and dash lines shown above the 

HPLC pigment plots identify a series of chlorophyll events. 
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Figure 4-15: Temporal and spatial distributions of minor accessory pigment to chlorophyll 

a ratios at Mudeford Quay. The numbers and dash lines shown above the 

HPLC pigment plots identify a series of chlorophyll events. 
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4.3.3 Phytoplankton taxonomic data 

4.3.3.1 Phytoplankton cell abundance 

The estuarine phytoplankton groups are shown in Figure 4-16 A as absolute values and in 

Figure 4-16 B as percentage values for cell counts throughout the sampling period at low tide 

from April 2013 to April 2014 at Mudeford Quay. The most abundant group was the diatom 

group contributing between 5% and 98% of the total phytoplankton population, followed by 

chlorophyte and cryptomonad groups contributing 0 – 89%  and 0 – 69%, respectively, while 

the other groups together represented the remaining proportions at this study site. The spring 

period had the highest diatom contribution similar to the riverine stations. 
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Figure 4-16: Distributions of abundance and cell count percentage for main phytoplankton 

groups at Mudeford Quay, Christchurch Harbour during April 2013 – April 

2014. The letters and numbers shown above the abundance bars identify a 

series of chlorophyll a events. 
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4.3.3.2 Phytoplankton bio-volume and carbon biomass 

Phytoplankton cell abundance was converted to carbon biomass and percentage 

distribution calculated for the major phytoplankton groups as shown in Figure 4-17. The 

diatoms gave the highest biomass values, with percentages up to 100% on 30th December 

2013 (week 37), followed by dinoflagellate, chlorophyte and cryptomonad groups with 

percentage ranging up to 80, 58, and 56%, respectively (Figure 4-17 B). Diatoms were 

important throughout the sampling period, with the percentages between 9% (14th August 

2013, week 18) and 100% (week 37). The chlorophyte group occurred as the main carbon 

biomass during the early summer (week 8 – 15), followed by the dinoflagellate group until 

the early autumn. The cryptomonad group increased in proportion during the chlorophyte 

and dinoflagellate maxima. Other phytoplankton groups (cyanophyte and chrysophyte) 

were relatively unimportant at this study site.  
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Figure 4-17: Distributions of carbon biomass and percentage for main phytoplankton groups 

at Mudeford Quay during April 2013 – April 2014. The letters and numbers 

shown above the abundance bars identify a series of chlorophyll a events. 
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The correlation between total chlorophyll a concentration and carbon biomass at the 

estuary entrance is shown in Figure 4-18. (Equation was y = 41.3x – 6.4 and R2 value was 

0.64). Total carbon biomass to chlorophyll ratio was 41. 
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Figure 4-18: Correlation between total carbon biomass and total chlorophyll a 

concentration at Mudeford Quay. 

4.3.3.3 Phytoplankton species composition 

The phytoplankton species cell counts and carbon concentration from maximum the 

chlorophyll a events (M 1 – 9) expressed as absolute values are shown in Table 4-3 and 

Table 4-4. In terms of species abundance, the chlorophyll events are quite similar. The 

diatom population contributed higher abundances than other groups and were the most 

abundant during the spring and the early summer, due to the high contribution of 

Stephanodiscus sp. and Navicula spp. The dinoflagellate group was less numerous at 

Mudeford Quay during the peak chlorophyll events, but most abundant during the summer 

months. Cryptomonas sp. and Rhodomonas sp. were common genera present during the 

high chlorophyll peak and the chlorophyte group particularly Chlamydomonas sp. was 

dominant during the late spring and summer (week 6, 7, and 11). 
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The phytoplankton biomass gave a different aspect of species contribution, particularly for 

the chlorophyte group, which represent an annual mean of 7% of total biomass. A 

noteworthy species was Stephanodiscus sp., present as a dominant species and carbon 

biomass at the same time as Throop during the spring diatom bloom. The highest biomass 

for Stephanodiscus sp. at Mudeford Quay was on 3rd May 2013 (week 3) with the 

abundance of 9.9 × 103 cells mL-1 and the biomass of 909 µg C L-1. The chlorophyte 

species, Chlamydomonas sp., occurred with high abundance during the early summer 

particularly on 28th June 2013 (week 11) up to 4.1 × 103 cells mL-1 but had a low biomass 

due to its small size. Skeletonema sp. and Navicula spp. contributed high values during the 

summer months at this study site. 

Kryptoperidinium foliaceum was the most abundant dinoflagellate species during the 

summer to autumn with up to 1.2 × 103 cells mL-1 but they do not show in Table 4-3. This 

dinoflagellate species was not presented in the winter and spring months.  
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Table 4-3: Phytoplankton species counts (cells mL-1) for the peak chlorophyll samples at 

Mudeford Quay (M1 – 9). All species counted from settled 10 mL samples are 

listed. 

Chlorophyll a 

events 
M1 M2 M3 M4 M5 M6 M7 M8 M9 

weeks 1 3 4 5 6 7 11 19 50 

Chlorophyll a (µg L-1) 16.2 44.3 15.4 18.4 20.4 17.4 22.0 15.6 15.7 

Bacillariophyta 
         

Amphora spp. 5 18 19 21 36 23 48 26 152 

Cocconeis spp. - - 8 15 36 61 120 161 79 

Diatoma vulgare 5 401 150 52 225 164 39 15 122 

Licmorphora sp. 21 40 11 15 32 48 35 95 53 

Melosira sp. - 73 8 11 36 38 21 4 192 

Navicula gracilis 21 159 64 46 150 166 161 110 476 

Navicula spp. - - 777 1,010 1,094 1,022 589 328 318 

Nitzschia acicularis 15 244 137 104 23 68 21 5 42 

Nitzschia sp. 5 - - 6 13 48 7 8 127 

Pennate diatoms 313 521 73 47 77 43 23 88 33 

Pleurotaenium spp. 8 88 5 12 49 16 7 5 20 

Pseudo-nitzschia 

spp. 
- 46 14 22 33 27 39 18 6 

Skeletonema spp. 45 29 - 69 19 56 21 81 16 

Stephanodiscus sp. 653 9,871 3,816 5,311 348 843 2,833 32 1,153 

Dinophyta          

Kryptoperidinium sp. - - - - - - - 386 - 

Cryptophyta         

Cryptomonas spp. - 89 115 22 15 74 667 749 19 

Rhodomonas spp. 15 322 422 367 152 205 896 424 100 

Chrysophyta 
        

Dinobryon spp. - 7 5 1 - - - - 127 

Synura sphagnicola 

spp. 
- 11 32 - - - - - - 

Chlorophyta 
         

Actinastrum spp. - - 19 5 - 48 5 - - 

Ankistrodesmus spp. - 45 15 32 34 100 161 13 13 

Chlamydomonas spp. 20 182 66 - 958 3,330 4,154 - - 

Chlorella sp. - - - - - - 319 5 - 

Coelastrum spp. - 50 - - - - 122 - - 

Kirchneriella spp. - 22 - 13 95 158 220 11 2 

Scenedesmus spp. 26 70 26 94 98 129 678 98 66 
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Table 4-4: Phytoplankton species biomass (µg C L-1) for the peak chlorophyll samples at 

Mudeford Quay (M1 – 9). 

Chlorophyll a events M1 M2 M3 M4 M5 M6 M7 M8 M9 

weeks 1 3 4 5 6 7 11 19 50 

Chlorophyll a (µg L-

1) 
16.2 44.3 15.4 18.4 20.4 17.4 22.0 15.6 15.7 

Bacillariophyta          

Amphora spp. 0 1 1 2 3 2 3 2 11 

Cocconeis spp. - - 1 1 2 4 8 10 5 

Diatoma vulgare 2 203 76 26 114 83 20 8 62 

Licmorphora sp. 1 1 0 0 1 1 1 2 1 

Melosira sp. - 25 3 4 13 13 7 1 67 

Navicula gracilis 5 40 16 11 37 41 40 27 118 

Navicula spp. - - 13 17 18 17 10 5 5 

Nitzschia acicularis 0 3 2 1 0 1 0 0 1 

Nitzschia sp. 0 - - 0 0 2 0 0 4 

Pennate diatoms 273 454 63 41 68 38 20 77 29 

Pleurotaenium spp. 3 29 2 4 16 5 2 2 7 

Pseudo-nitzschia spp. - 5 1 2 3 3 4 2 1 

Skeletonema spp. 1 0 - 1 0 1 0 1 0 

Stephanodiscus spp. 60 909 352 489 32 77 261 3 106 

Dinophyta          

Kryptoperidinium sp. - - - - - - - 394 - 

Cryptophyta 
        

Cryptomonas spp. - 13 17 3 2 11 97 108 3 

Rhodomonas spp. 0 9 12 11 4 6 26 12 3 

Chrysophyta 
        

Dinobryon spp. - 0 0 0 - - - - 3 

Synura sphagnicola 

spp. 
- 0 1 - - - - - - 

Chlorophyta  
        

Actinastrum spp. - - 1 0 0 2 0 - - 

Ankistrodesmus spp. - 4 1 3 3 9 15 1 1 

Chlamydomonas spp. 0 3 1 - 15 53 66 - - 

Chlorella sp. - - - - - - 2 0 - 

Coelastrum spp. - 1 - - - - 1 - - 

Kirchneriella spp. - 0 - 0 0 1 1 0 0 

Scenedesmus spp. 1 2 1 3 3 4 22 3 2 

4.3.3.4 Seasonal succession of phytoplankton taxa and pigments 

Phytoplankton seasonal succession is shown in Figure 4-19. as absolute biomass 

contributions from different phytoplankton groups, over the whole sampling period, with 
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the nine chlorophyll a events indicated by letters over vertical dashed lines and numbers 

indicating relative pigment signature. 

The phytoplankton species counts are represented in Table 4-3. Higher diatom numbers 

were present during the second chlorophyll event (M2) and the highest diatom carbon 

(Stephanodiscus sp.) was also detected at that time. Cryptomonad and chlorophyte biomass 

followed the diatom peaks, associated with the seventh chlorophyll event. The peak of 

dinoflagellate biomass occurred during the high biomass peak of cryptomonads, but the 

peak was presented later the chlorophyte peak. As see in Figure 4-19, the highest biomass 

peak of cryptomonad and chlorophyte groups were not associated with the chlorophyll 

events that it seems to be the main group of the peak of chlorophyll events was the diatom 

group. 

These peaks of diatom and dinoflagellate were associated with a peak of fucoxanthin, the 

fucoxanthin to chlorophyll a ratios are indicated with the peak numbers. The peak of 

dinoflagellate at Mudeford Quay was not associated with the peridinin concentration due to 

the dominant species, Kryptoperidinium foliaceum, contains fucoxanthin rather than 

peridinin as general biomarker of this group. 

The biomass of cryptomonad group was high from the summer to autumn months (week 9 

– 27) and in good agreement with the alloxanthin concentrations supporting the 

microscopic cell counts. The chlorophyte biomass was high during the early summer 

(week 8 – 15) but the biomass did not show a good agreement with the chlorophyll b 

concentration. It was indicated that there are other chlorophyll b continuing organisms, as 

the microscopic analysis showed that there were many small chlorophyte and the other 

flagellate organisms.  
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Figure 4-19: The succession of the phytoplankton group biomass, related to the chlorophyll 

events at Mudeford Quay. The numbers and dash lines shown above the 

chlorophyll a curve identify a series of chlorophyll events. 
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4.3.4 Measurements of Fv/Fm 

The changes in Fv/Fm ratio of water samples collected from the estuary entrance at 

Mudeford Quay are shown in Figure 4-20 B comparing with the annual concentration of 

chlorophyll a (Figure 4-20 A). The range of total Fv/Fm efficiency was 0.14 – 0.68 which 

were higher values than all riverine samples (see Section Error! Reference source not 

ound.), but the maximal efficiency was less than the riverine sites. As the plot in Figure 

4-20 A shows, the Fv/Fm efficiency of cells in the 2.0 – 20.0 µm (nano-phytoplankton) 

range was greatest and contributed most to the total Fv/Fm ratio, as this size fraction also 

contributed greater to the total concentration of chlorophyll similar to that measured at the 

river sites. The mean Fv/Fm efficiency of nano-phytoplankton size was 0.56 ± 0.09 (n = 

12), while pico-phytoplankton community had the mean of Fv/Fm values of 0.19 ± 0.08 (n 

= 13). 

The higher values of Fv/Fm efficiency occurred at the same time as the maximum surface 

chlorophyll concentration during both spring periods. Broadly, Fv/Fm decreases sharply 

from the summer to winter and then increases again in the spring at this study site. The 

nano-phytoplankton was the main community at the estuarine entrance, which supports the 

size fractionated chlorophyll results. Although, the pico-phytoplankton population does not 

obviously increase in Fv/Fm during the bloom, this cell size shows a slight increase in 

photosynthetic energy conversion efficiency during periods of high chlorophyll 

concentration at Mudeford Quay as were measured at the riverine stations. 



CHAPTER 4 

178 

 

Mudeford Quay

week 2013   2014
0 10 20 30 40 50

F
v
/F

m

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
M1

M5

M2M4M6 M9M7 M8

M3

Mudeford Quay

week 2013   2014

0 10 20 30 40 50

C
h
lo

ro
p

h
y
ll 

a
 c

o
n
c
en

tr
at

io
n
 (

g
 L

-1
)

0

10

20

30

40

50

Total chlorophyll a 

Chl >20.0 µm 

Chl 2.0-20.0  µm

Chl <2.0  µm

(A)

(B)

 

Figure 4-20: Photosynthetic energy conversion efficiency (Fv/Fm, unit-less) (A) chlorophyll 

a concentration in µg L-1 (B). The numbers and dash lines shown above the 

photosynthetic efficiency curve and the chlorophyll a identify a series of 

chlorophyll events. 

4.3.5 Phytoplankton abundance and total red fluorescence by flow cytometry  

All estuarine samples were measured with the CytoSense flow cytometer throughout the 

sampling period. The analysis of total fluorescence by the flow cytometry was shown in 

Table 4-5 and Figure 4-21. The total red fluorescence of estuarine samples generally 

follows the seasonal phytoplankton abundance, associating the highest value of total red 

fluorescence was analysed in the spring months up to 7 × 108 a.u. mL-1 followed by the 

summer, autumn, and winter months respectively. Total orange fluorescence showed 
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similar pattern to total red fluorescence and also the highest fluorescence was observed 

during the spring period (Table 4-5). In order to compare a microscopic cell count with the 

CytoSense counting, all analysis was plotted and the flow cytometry abundances were 

higher the microscopic abundance throughout the sampling period as seen from the results 

of riverine samples (see in Section 3.3.5). The correlation between microscopic and 

CytoSense flow cytometry abundance at Mudeford Quay is shown in Figure 4-22. Mudeford Quay: Bew's sample
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Figure 4-21: Seasonal distribution of red and orange fluorescence (a.u. mL-1) and 

phytoplankton abundance (cells mL-1) at Mudeford Quay. The solid line and 

black circles symbol are flow cytometry abundance. The dotted line and green 

circles are microscopic abundance. 

Table 4-5: Mean red and orange fluorescence (a.u. mL-1), with standard deviation, for each 

season; mean (bold) and range of variation (parentheses). 

 mean values (106) ± standard deviation (106) 

 spring summer autumn winter 

total red fluorescence 

 

total orange 

fluorescence  

46.73 ± 108.90 

(1.17 – 704.19) 

2.16 ± 2.69 

(0.16 – 15.81) 

43.49 ± 22.09 

(14.68 – 84.94) 

2.53 ± 0.88 

(0.75 – 3.98) 

11.23 ± 9.14 

(1.93 – 29.37) 

1.52 ± 1.46 

(0.22 – 4.93) 

2.77 ± 2.54 

(0.59 – 7.34) 

0.37 ± 0.52 

(0.07 – 1.73) 
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Figure 4-22: Correlation between flow cytometry abundance and microscopic cell count at 

Mudeford Quay. 

4.3.6 Multivariate data analysis and interpretation 

The environmental (physical and chemical) data and biological (carbon biomass and 

accessory pigments) data collected at Mudeford Quay during April 2013 to April 2014 

were analysed by multivariate analysis as was examined the three riverine stations. The 

analyses were carried out in several steps; first, grouping of environmental parameters by 

similarity or dissimilarity using Euclidean distance; second, grouping of phytoplankton 

species using the Bray-Curtis Similarity Index using the PRIMER-E software; and third, 

correlation of environmental variables to phytoplankton groups was performed using the 

CANOCO software.  

Two types of analysis have been carried out first a dendrogram analysis for hierarchical 

clustering of samples and non-matric multidimensional scaling (nMDS) to indicate group 

similarity and distance between sample groups in two-dimensional space. The stress level 

for each nMDS ordinal plot is used as an indicator of how the plot organises the 

distribution. Stress levels of < 0.1 indicated good ordination, 0.1 – 0.2 are useful 2-

dimensional display of clusters, and > 0.2 a random placement in two dimensions (see 

Clarke et al. (2014) for further details). SIMPER analysis was used to calculate the 
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percentage similarity of each sample group and the dissimilarity between each pair of 

groups using the PRIMER-E version 7.0 software (Clarke et al., 2014). 

4.3.6.1 Environmental data analyses 

Cluster and nMDS analysis of environmental data are based on a normalised Euclidean 

distance with previous log transformation of the data. The cluster and nMDS included the 

variables nitrate, phosphate, silicate, SPM, river flow rate, water temperature, oxygen 

saturation, salinity, and turbidity (Figure 4-23 and Figure 4-24). The stress of nMDS was 

0.15. corresponding to a good ordination with no real propect of a misleading 

interpretation (Clarke et al., 2014). The cluster dentrogram shows separation at a 

normalised Euclidean distance of 3.1 into six major groups (Group A – F, Figure 4-23). 

These results indicate high percentage contribution of environmental parameters in week 

30, 31, and 36 from other sampling weeks (group C, Figure 4-23 and Figure 4-24) 

indicating SPM, river flow rate, and salinity data by the SIMPER analysis as shown in 

Table 4-6. Group A included late winter 2013 and early spring 2014 (week 41 – 47) 

considering a high percentage contribution of silicate concentration and water temperature. 

Group B corresponded to early winter 2013 and spring 2014 samples and also included two 

high peak chlorophyll samples in week 1 and 51 (Table 4-6). Group D refers to “autumn” 

samples at Mudeford Quay (week 20 – 35), considering by high contribution of nitrate 

concentration and water temperature. Whereas group E is composed of samples from 

summer months and also included a high peak chlorophyll sample in week 19. Group F of 

both cluster and nMDS included late spring and early summer 2013 samples and also 

included a large number of peak chlorophyll events in this group (week 3, 4, 5, 6, and 11). 

All inorganic nutrients (nitrate, phosphate, and silicate concentrations) showed an 

important parameter of high percentage contributions in group F as shown in Table 4-6. 
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Figure 4-23: Dendrogram for hierarchical clustering of Mudeford Quay samples defined by 

environmental parameters. Numbers indicate the sample weeks. 

 

Figure 4-24: nMDS plot of environmental parameter groups at Mudeford Quay. Numbers 

indicate the sample weeks and solid line is 3.1 of the Euclidean distance. 
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Table 4-6: Main characteristics of sample groups defined by environmental parameters at 

Mudeford Quay. The peak chlorophyll samples in Table 4-3 are indicated by 

sample weeks in bold.  

Group Sample week no. Parameter % contribution 
Average square 

distance 

A 41, 42, 43, 44, 45, 

46, 47 

 

silicate (26), water temperature (21), 

turbidity (18), oxygen saturation (13), 

nitrate (10) 

1.0 

B 1, 29, 37, 38, 39, 

40, 48, 49, 50, 51 

 

oxygen saturation (20), SPM (11), 

water temperature (11), river flow 

(11), turbidity (10) 

3.4 

C 30, 31, 36 SPM (44), salinity (19), river flow 

(13)  

2.1 

D 20, 22, 23, 24, 25, 

26, 27, 28, 32, 33, 

34, 35 

nitrate (27), water temperature (26), 

silicate (12), oxygen saturation (8) 

3.0 

E 12, 13, 14, 15, 16, 

17, 18, 19, 21 

oxygen saturation (30), nitrate (23), 

turbidity (21), phosphate (10) 

2.1 

F 2, 3, 4, 5, 6, 7, 

8, 9, 10, 11 

 

silicate (22), phosphate (18),  

oxygen saturation (16), nitrate (13), 

SPM (12), salinity (10) 

3.1 

4.3.6.2 Phytoplankton taxa and biomass data analyses 

A shade plot indictes the most important species contributing to carbon biomass at 

Mudeford Quay in the Christchurch Harbour estuary is shown in Figure 4-25. In general, 

the diatom species show a clear pattern of larger groups followed by the cryptophyte and 

chlorophyte groups throughout the sampling period. The high abundance of diatom 

species, Stephanodiscus sp., gave the most weight in the late spring 2013 (week 3, 4, and 

5), and the pennate diatoms showed the weight in week 1 – 3 with the chlorophyte species; 

Chlamydomonas sp. contributed most to biomass after the diatom bloom (week 8 – 15). 

During week 12 to 27, the dinoflagellate, Kryptoperidinium foliaceum, had the most 

weight comparing with other weeks during the sampling period. The crytophyte species, 

Cryptomonas sp. and Rhodomonas sp. distinguished highly between late spring and mid-

autumn, whereas Scenedesmus spp. presented a high abundance during the summer months 
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more than the other seasons. Low phytoplankton biomass was observed during the winter 

months particularly the chlorophytes group (Figure 4-25). 

 

Figure 4-25: Shade plot indicating carbon biomass of each phytoplankton species (4th-root 

transformed data on a log scale) for Mudeford Quay samples. Numbers 

indicate the sample weeks. 

Cluster and nMDS analysis of phytoplankton biomass taxa are based on Bray-Curtis 

similarities as shown in Figure 4-26 and Figure 4-27. The stress of nMDS was 0.13, which 

indicated a potential useful 2-dimensional picture, though too much reliance should not be 

placed on the detail of the plot, and cross-check of any conclusions should be made against 

those from an alternative method, like the superimposition of cluster groups (Clarke et al., 

2014). Seven groups can be identified at 60 – 62% Bray-Curtis similarity level on cluster 

as shown in Figure 4-26. Two groups are composed of two samples, group A (week 38 and 

39) and group B (week 1 and 2) and correspond to samples when pennate diatoms was 
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dominant, a percentage contribution of species average carbon biomass was 14 and 21% by 

SIMPER analysis (Table 4-7). Group C represents samples from weeks during the late 

autumn to early winter 2013. Similar to the species contribution of group A and B, pennate 

diatoms were a main contribution of carbon biomass. Group D refers to the late winter 

2013 and spring 2014 samples. Group E is composed of three peaks of chlorophyll events 

(week 3, 4, and 5) in spring 2013. Stephanodiscus sp. is the dominant species in group E 

followed by pennate diatom and Diatoma vulgare. 

 

 

Figure 4-26: Dendrogram for hierarchical clustering of samples defined by phytoplankton 

carbon biomass at Mudeford Quay. Numbers indicate the sample weeks. 

Group F includes samples from the late summer and early autumn 2013 and Cryptomonas 

spp., pennate diatom, and Kryptoperidinium foliaceum are the important biomass taxa to 

contribute this group. Group G is formed by summer samples and two samples of spring 

2013, considering Chlamydomonas sp. and several diatom species were the most biomass 

taxa of the grouping. 
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Figure 4-27: nMDS plot of samples defined by phytoplankton species/taxon carbon 

biomass at Mudeford Quay. Numbers indicate the sample week. Dash line is 

62% of the similarity and solid line indicates 60%. 
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Table 4-7: All characteristics of sample groups by phytoplankton species. The peak 

chlorophyll events in table are identified by sample weeks in bold. 

Group Sample week no. 
Species average carbon biomass as % 

contribution 
% of similarity 

A 38, 39 Pennate diatom (14), Navicula gracilis (13), 

Diatoma vulgare (11), Melosira sp. (8), 

Diploneis sp. (8), Cryptomonas spp. (8), 

Cocconeis sp. (7), Licmorphora sp. (7), 

Navicula spp. (7) 

64.4 

B 1, 2 Pennate diatom (21), Stephanodiscus sp. 

(15), Pleurotaenium sp.(7), Diatoma vulgare 

(7), Navicula gracilis (7) 

69.8 

C 28, 29, 30, 31, 

32, 

33, 34, 35, 36, 

37, 

40 

Pennate diatom (8), Navicula gracilis (8), 

Diatoma vulgare (7), Melosira sp. (7), 

Cocconeis sp. (6), Amphora sp. (5) 

74.6 

D 41, 42, 43, 44, 

45, 

46, 47, 48, 49, 

50, 51 

 

Pennate diatom (7), Melosira sp. (7), 

Pleurotaenium sp. (6), Stephanodiscus sp. 

(6), Navicula gracilis (5), Cryptomonas spp. 

(5), Rhodomonas sp.(5) 

74.5 

E 3, 4 , 5 Stephanodiscus sp. (15), Pennate diatom (9), 

Diatoma vulgare (8), Navicula gracilis (6) 

74.0 

F 16, 17, 18, 19, 

20, 

21, 22, 23, 24, 

25, 26, 27 

 

Cryptomonas spp.(7), Pennate diatom (7), 

Kryptoperidinium foliaceum (7),  

Navicula gracilis (6), Cocconeis sp.(5), 

Rhodomonas sp. (5) 

80.0 

G 6, 7, 8, 9, 10, 11, 

12, 13, 14, 15 

 

Chlamydomonas sp. (6), Pennate diatom (6), 

Navicula gracilis (6), Stephanodiscus sp. (6), 

Diatoma vulgare (5), Cryptomonas spp.(5), 

Rhodomonas sp. (5) 

77.7 
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4.3.6.3 Relation of environmental and biological parameters 

A RDA analysis (Figure 4-28) shows the occurrence of main phytoplankton carbon 

biomass in relation to the selected environmental variables (nitrate, phosphate, silicate, 

SPM, river flow rate, water temperature, oxygen saturation, salinity, and turbidity). The 

first axis (x-axis) of the analysis explained most of the variance (eigenvalue = 12.9%, 

cumulative percentage variance between taxa and environmental parameters = 37.8%), 

whereas all canonical axes explained 92.4% of the variance (axis 1, P < 0.001; all axes, P 

< 0.001). This means that the arrows displayed closer to x-axis explained most of the 

variability in the data and environmental variables explained almost 100% of the variation 

of the selected taxa biomass when all four axes were analysed together. 

 

Figure 4-28: Result of RDA analysis, relationships between carbon biomass of main 

phytoplankton group and selected environmental variables at Mudeford Quay 

in the Christchurch Harbour estuary during spring 2013 to spring 2014. Triplot 

represents taxa carbon biomass (blue thin lines), the significant explanatory 

variables (black thick lines) and weekly sampling (closed colour symbols; blue 

= spring, red = summer, green = autumn, pink = winter). 
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Forward seletion showed that of all nine environmental parameters (Table 4-8) included in 

the RDA analysis, only three environmental factors (salinity, oxygen saturation, and river 

flow rate) explained the variance in the phytoplankton taxa biomass when analysed 

together. All the forward-selected variables were analysed together (conditional effects, 

referred to λa in Table 4-8), salinity was the most significant explanatory variable (λa = 

0.09, P = 0.001), followed by oxygen saturation (λa = 0.05, P = 0.024) and river flow (λa = 

0.05, P = 0.015) as shown in Table 5-8. Although not significantly (P < 0.05) different (λa 

= 0.04, P = 0.065), silicate concentrations also had a minor influence as an explanatory 

variable (Table 4-8). Nutrient concentrations (nitrate and phosphate), turbidity, SPM, and 

water temperature were not significant explanatory variables in this analysis. 

Table 4-8: Eigen factor (λ) of each explanatory variable in order of the variance explained 

when analysed as single factor (λ1, marginal effects) or when included in the 

model where other forward selected variables are analysed together (λa, 

conditional effects). Significant P-values (*P < 0.1) and (** P < 0.05) 

represent the variables that together explain the variation in the analysis at 

Mudeford Quay. 

Marginal Effects  Conditional Effects    

Variable  λ1 Variable λa P F  

salinity  0.09 salinity 0.09 0.001** 4.53  

temperature 0.08 %oxygen 0.05 0.024** 2.65  

phosphate  0.07 silicate 0.04 0.065* 2.13  

nitrate  0.06 river flow 0.05 0.015** 2.78  

river flow  0.06 phosphate 0.03 0.180 1.45  

silicate  0.05 turbidity 0.02 0.358 1.12  

%oxygen  0.04 SPM 0.02 0.244 1.30  

turbidity  0.03 temperature 0.01 0.598 0.79  

SPM  0.02 nitrate 0.01 0.763 0.52  

        

Axes                                1 2 3 4 Total variance 

 Eigenvalues : 0.129 0.088 0.068 0.029 1 

 biocarbon-environment correlations : 0.745 0.625 0.588 0.449  

 Cumulative percentage variance      

    of biocarbon data : 12.9% 21.7% 28.6% 31.5%  

    of biocarbon-environment relation: 37.8% 63.7% 83.8% 92.4%  

 Sum of all eigenvalues       

      

       

                1 

 Sum of all canonical eigenvalues       

      

       

                0.341 

 
The nMDS plot of phytoplankton group biomass was not clearly correlated with the 

environmental factors to show how different parameters influence biomass pattern (Figure 

4-27). The patterns of seasonality with the river flow rate and salinity are clearly shown as 

bubble plots (Figure 4-29). High phytoplankton carbon biomass was found in the spring 
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because of the diatom community, followed by the samples in the summer months (Figure 

4-29 A).  

 

Figure 4-29: nMDS plot representing the mean biomass values in terms of carbon biomass 

(A), oxygen saturation (B), salinity (C) and river flow (D) at Mudeford Quay. 

The bubble sizes represent the value of the environmental parameter 

4.4 Discussion 

In this chapter, the seasonal pattern of biological parameters (phytoplankton species 

abundance, pigments, and estimated species biomass), environmental parameters (salinity, 

water temperature, suspended particulate matter, oxygen saturation, and river flow), and 

chemical parameters (nitrate, phosphate, and silicate concentrations) at the estuary entrance 

Mudeford Quay during mid-April 2013 to mid-April 2014 are described. Multivariate 

analysis was used to establish relationships between biological and environmental factors. 

The objective of this study was to investigate the factors influencing the phytoplankton 

populations at the entrance to Christchurch Harbour at the low tide over an annual period. 

Phytoplankton biomass response to nutrients 

Nutrients in estuaries are generally supplied by river discharge which supports 

phytoplankton growth (Saeck et al., 2013; Sin et al., 2013). In the present study, the nitrate 

and silicate concentrations were much higher in the low salinity water than at higher 

(A) 

(B) (D) 

(C) 
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salinities (Figure 4-4). This suggests that riverine nutrients are important sources of 

nutrients for phytoplankton in the estuary, and at some periods of the year dominated in 

Christchurch Harbour particularly during low tide.  

In the present study, there were no consistent patterns of phytoplankton biomass 

(chlorophyll a) associated with the nutrient concentrations at Mudeford Quay. However, 

silicate concentrations had a minor influence on phytoplankton carbon biomass and 

particularly the diatom biomass when all selected environmental factors were analysed 

together by the RDA analysis (Figure 4-28). When chlorophyll a and fucoxanthin 

concentrations peaked (44.0 and 9.9 µg L-1 respectively) on 3rd May 2013, Stephanodiscus 

sp. cell counts were at a maximum of 9.9 × 103 cells mL-1 and the silicate concentration 

was low. Paerl and Justić (2011) stated that diatoms being strongly depend on silicon for 

growth can be limited by its availability in estuaries. 

In general, riverine nutrients are important sources for new production of phytoplankton in 

estuaries (Lancelot and Muylaert, 2011). In estuarine systems, nitrogen and phosphorus 

can stimulate phytoplankton growth because growth of freshwater phytoplankton is general 

limitied by phosphorus, while nitrogen often limits the growth of marine phytoplankton 

(Hecky and Kilham, 1988; Howarth and Marino, 2006). The relative abundance of 

nitrogen to phosphorus (N:P ratio) has been shown to affect phytoplankton biomass. In the 

present study N:P ratios reached over 200 in the low salinity water during late winter and 

varied from 23 to 36 in summer slightly above the Redfield ratio of 16:1. Paerl and Justić 

(2011) indicated that the Redfield ratio of N:P can be greatly exceeded when freshwater 

runoff tend to be N enriched and lead to strong P limitation. During spring and summer 

blooms, the ratio of N:P reached 128:1 (chlorophyll concentration of 44.0 µg L-1, 10th June 

2013) and down to 56:1 when the concentration decreased < 20.0 µg L-1 (31st June 2013). 

In Tolo Harbour in Hong Kong Anderson et al. (2002) reported that the dinoflagellate cell 

numbers increased as the annually averaged N:P ratio fell from 20:1 to 11:1 between 1982 

and 1989.  

Phytoplankton biomass response to hydrodynamics 

In the present study the salinity was strongly correlated with phytoplankton carbon 

biomass and in particularly with the dinoflagellate biomass and showed negatively a strong 

relationship with nitrate concentration (Figure 4-28). The dinoflagellates were present 

during the summer months under low river discharge conditions and at high salinity values. 

Paerl and Justić (2011) demonstrated that some non-toxic dinoflagellate blooms in 
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temperate estuaries are linked to seasonal pattern of freshwater, salinity, and light 

availability. While the diatom biomass showed positive a correlation with silicate, SPM, 

and both river flow rates and had a negative strong relation with water temperature, 

indicating the diatoms at the harbour entrance at low tide were mainly freshwater diatom 

species e.g. the centric diatom Stephanodiscus sp. was dominant during the late spring and 

the early summer 2013. This species was also in high abundance in the Stour River and it 

could be considered that the river discharges this diatom into the estuary during low tide. 

Moreover, this centric diatom species is a freshwater planktonic diatom (Bellinger and 

Sigee, 2010), and it is a common diatom species in eutrophic freshwater of Europe region 

(Belcher and Swale, 1979). In the present study the nano-phytoplankton were observed as 

a main component size during the summer months, in agreement with Sin et al. (2015) in 

the Youngsan River estuary where it was reported that the nano-phytoplankton blooms 

developed in freshwater dominated by Stephanodiscus sp. 

Freshwater discharged from the Stour and Hampshire Avon Rivers was suggested to be the 

main source of nutrients in the estuary based on the high nutrient concentrations and 

salinity collected throughout the sampling period. The river discharge was a hydrodynamic 

factor controlling the phytoplankton carbon bimass from the RDA analysis. The river 

discharge was positively correlated with diatom and cyanophyte biomass and also showed 

a negative correlation with water temperature, suggesting carbon biomass was high during 

high flow rates.   

Changes phytoplankton taxa and biomass 

Phytoplankton blooms generally developed during the late spring to summer which were 

composed of the nano-phytoplankton in particularly the centric diatom Stephanodiscus sp. 

(Figure 4-6). A small autumn bloom was observed only in week 30 (3rd November 2013) 

with a chlorophyll concentration of < 15 µg L-1. Depletion of silicate concentration may 

have contributed to the termination of the diatom blooms in May 2013. Ha et al. (2003) 

and Sin et al. (2015) also reported that diatoms favour freshwater at low temperates and a 

high silicate concentration. Chlorophytes, chrysophytes, and cryptophytes were positively 

correlated with turbidity, confirming the dependence on light available to these 

phytoplankton groups.  

At Mudeford Quay, late spring blooms developed in April and May and were composed of 

the diatom Stephanodiscus sp., and other diatoms which favour coldwater. The percentage 

contributions of diatom to total phytoplankton abundances changed from high (95%) in 
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April to low (12%) in June. This caused an increase in the phytoplankton community 

structure from diatoms in the spring to chlorophytes in the summer. The spring bloom of 

Stephanodiscus sp. was also reported for the Youngsan River estuary (Sin et al., 2015), and 

opimal growth of Stephanodiscus sp. was in < 7 ºC in freshwater with low river discharge 

of < 100 m3 s-1 for the Nakdong River (Ha et al., 2003). The dominance of diatoms 

continued until May (41%), although the total abundance of phytoplankton and chlorophyll 

a concentration decreased to as low as 6.3 × 103 cells mL-1 and 5.0 µg L-1, respectively on 

4th June 2013. Nutrients, especially nitrate, were almost depleted in June (week 12, Figure 

4-3), suggesting that phytoplankton growth was limited by nutrients. Dinoflgellates, 

primarily Kryptoperidinium foliaceum (10 – 27%), increased in August when salinity was 

high and low river discharge continued, their abundance peaked in mid-August. Increased 

salinity, temperature, and longer water residence times during the summer months may be 

important in initialling K. foliaceum developement. Salinity increased to as high as 20 due 

to a reduction of freshwater discharge down to 2 and 6 m3 s-1 during K. foliaceum growth 

period, suggesting that the species favours higher salinity water and additionally it is 

species known to favour high water temperatures (Figueroa et al., 2009). 

Although diatoms (carbon biomass) displayed a relationship with SPM and river flow 

similar to that of cyanophyte (Figure 4-28), the changes of diatoms to total abundances 

increased during the summer 2013 to the spring 2014 (Figure 4-16 B), whereas the 

contributions of cyanophytes were observed only occasionally during the autumn and 

winter. The increase in taxonomic composition in the summer months may have affected 

the optimal conditions of phytoplankton development. As a result of almost all accessory 

pigment concentration increases during the summer (Figure 4-12 and Figure 4-13), 

indicating that most phytoplankton groups competed and had a rapid growth during that 

time. The abundance of flagellate groups (chlorophyte, chrysophyte, and cryptophyte) 

were closely related to turbidity and oxygen saturation in the estuary, and inversely 

correlated with diatoms. Increased flushing in the estuary may also have affected the 

gradients of phytoplankton production by changing light availability through tidally driven 

resuspension of sediments in the microtidal estuary. Byun et al. (2007) reported the effect 

of tidally driven resuspension of sediments on light availability in the macrotidal estuary of 

Youngsan River Bay. 

The volume of river discharged during the sampling was less than 20 m3 s-1 during April to 

November 2013 from both river gauging stations but with high volume in December 2013 

to February 2014. Salinity also decreased close to zero with high discharge over 60 m3 s-1 
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at Mudefor Quay in January and February 2014 (Figure 4-1). Concentrations of 

chlorophyll a, accessory pigment, carbon biomass, and changes in the contributions of 

taxonomic groups, also differed between normal flow and flood conditions, suggesting that 

the response of phytoplankton and water characteristics to river discharges depend on the 

volumn of discharge into the Christchurch Harbour estuary. However, the total chlorophyll 

a, accessory pigment, carbon biomass, and the dominant diatom and dinoflagellate peaks 

during the spring-summer low flow period were similar to several other temperate 

estuaries. This suggests that the river discharge is an important factor influencing the 

phytoplankton community and primary production in microtidal and shallow estuaries like 

Christchurch Harbour. 

4.5 Conclusion 

In conclusion hydrological conditions strongly affected annual phytoplankton abundance 

and composition at the entrance in the shallow estuarine system. However, from this data 

set, a significant correlation between the chlorophyll a concentration and freshwater 

discharge from the combined Stour and Hampshire Avon Rivers was observed. This 

increase in chlorophyll a concentration during low flow periods was found to be associated 

with an increase in the abundance of the dinoflagellate population in the summer months. 

These temporal changes in the phytoplankton community were not explained by 

environmental factors at one station. An estuary transect sampling programme was then 

considered to determine the distribution of summer estuarine phytoplankton during low 

river discharge period. The increase in salinity moving into Chirstchurch Harbour was also 

considered an influence on phytoplankton distribution, confirming a shift to summer 

dinoflagellates in the Christchurch Harbour estuary.
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Chapter 5:  Distribution and succession of estuarine 

phytoplankton during high productivity 

periods in Christchurch Harbour 

5.1 Abstract 

The factors controlling the spatial and temporal patterns of summer phytoplankton 

populations occurring in Christchurch Harbour, a shallow temperate UK south coast 

estuary, have been investigated. Water samples were collected from six sites corresponding 

to the upper, middle, and lower reaches of the estuary at fortnightly intervals at high tide 

between May and September 2014. Water samples were analysed for nitrate, phosphate, 

and silicate concentrations plus chlorophyll concentration and phytoplankton abundance. 

High chlorophyll ‘bloom’ events were detected in the middle of the estuary during these 

high tide surveys, increasing from early to late summer. Reduced river discharge in 

summer months led to an increase in higher salinity water in the mid estuary with 

associated peaks in phytoplankton abundance. Different populations of estuarine 

phytoplankton were observed over the course of the summer with dinoflagellate blooms 

dominated by Kryptoperidinium foliaceum, occurring in the mid estuary. Multivariate 

analysis revealed that irradiance attenuation coefficient (k), salinity, oxygen saturation, 

temperature, nitrate, and silicate were major factors controlling phytoplankton carbon 

biomass from the transect sampling. The results of the present study provide improved 

understanding into the distribution of estuarine phytoplankton communities in the shallow 

temperate, Christchurch Harbour estuary during the summer. 
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5.2 Introduction 

In the two previous chapters an intensive programme of monitoring both water quality and 

phytoplankton communities at weekly intervals from April 2013 to April 2014 at three 

stations in the Stour and Hampshire Avon Rivers and during low tide at the estuary 

entrance at Mudeford Quay is presented. The influence of reduced river discharge rates, 

and increased water residence times in the estuary during summer 2014 was then 

investigated. In order to further investigate the factors controlling the pattern of summer 

phytoplankton populations occurring in Christchurch Harbour fortnightly surveys were 

conducted at high tide between May and September 2014. The aim of this study was to 

quantify the estuarine phytoplankton collected from six sites along the salinity gradient and 

investigate how they would respond to changes in river inputs. Changes in natural 

estuarine phytoplankton uptake rates of nitrogen (nitrate and ammonium) and bicarbonate 

using stable isotope incubation experiments were conducted throughout the sampling 

period. The same physical and chemical parameters were measured as previously at the 

three stations in the rivers and the estuary entrance. In this chapter, results from eight 

surveys of the six sampling sites in Christchurch Harbour are presented and discussed in 

terms of the factors influencing summer phytoplankton populations within the estuary.  

5.3 Results 

5.3.1 Environmental data 

Eight fortnightly samplings transect were conducted at high tide during summer months of 

2014 (May to September) throughout the Christchurch Harbour estuary. The six estuarine 

stations were similar to those sampled previously by the local Environmental Agency i.e. 

The Run at Mudeford (RM, 0 km), Ferry Pontoon (FP, 0.4 km), Blackberry Point (BP, 1.6 

km), Grimbury Marsh (GM, 2.5 km), Christchurch Quay (CQ, 3.5 km), and Tuckton 

Bridge (TB, 4.0 km) see Figure 2-3. The objective of conducting these surveys was to 

investigate the effect of phytoplankton growth on the water quality and nutrient cycling 

throughout the estuary during spring and summer months. 

The Christchurch Harbour estuary is characterized by shallow waters (depth = 1.3 – 3.0 m 

along the whole transect at the time of sampling). The estuarine study sites are defined as: 

lower – RM and FP; middle – BP and GM; upper – CQ and TB in this chapter. A map of 
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the estuary showing the location of the sampling stations is presented in Chapter 2 (see 

Section 2.1.2, Figure 2-3). 

5.3.1.1 River flow 

Daily mean of river flow rates in 2014 from both lowest gauging stations on the Stour and 

Hampshire Avon Rivers which discharge freshwater into the estuary are presented in 

Figure 5-1. In general, both discharge rates followed a seasonal pattern, with the high flow 

period from winter months decreasing later in the year. The Avon River had mostly higher 

flow rates than the Stour River at Throop, except during mid-October to mid-December 

2014 where the Stour had a high discharge (Figure 5-1 A). The lowest discharge (< 20 m3 

s-1) was recorded during summer months and when the transect sampling was conducted in 

Christchurch Harbour (Figure 5-1 B). 

5.3.1.2 Salinity 

During the summer months of 2014, salinity profiles were determined at each station at 

high tide and data is illustrated in Figure 5-2. Salinity increased with depth, displaying 

maximum values near the bottom and increased towards the lower-estuarine sites. The 

salinity ranged from 0.2 to 34.5, with the expected trend ranging from high coastal water 

salinity at the Run at Mudeford (RM) to brackish water at Tuckton Bridge (TB). The 

values increased at all stations in August 2014 particularly near the bottom and then 

decreased towards the estuarine entrance in September 2014. Ferry Pontoon (FP) showed a 

wide range in salinity, from 2.5 to 34.4 (Figure 5-3), while Tuckton Bridge (TB) had the 

narrowest range, from 0.2 to 21.3. Values at TB were generally similar to those at 

Christchurch Quay (CQ), whilst Ferry Pontoon (FP) values corresponded with the Run at 

Mudeford (RM). During this time Grimbury Marsh (GM) and Blackberry Point (BP) 

values were intermediate. The high salinity values during the summer months in 2014 

observed at TB are related to lower freshwater input and the water being measured at high 

tide.  

Salinity at the depth of Niskin water samples is shown as a pink circle in each plot (Figure 

5-2). These salinity values were measured later using a refractometer in the NOCS 

laboratory. Sub-surface salinity reached a maximum in August 2014 at the lower-estuarine 

stations (RM and FP). However, relatively low salinity water (~0) was detected at the 

upper-estuarine station due to inputs from the river. 
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River flow 2014: Avon and Stour Rivers
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Figure 5-1: Mean daily flow (m3 s-1) of the Stour River (red solid line) and the Hampshire 

Avon River (blue solid line) in 2014 (Environmental Agency). B shows river 

flow during the sampling described here and dash lines represent each of the 

sampling date. 
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Figure 5-2: Vertical distribution of salinity at the six estuarine stations during the summer 

months of 2014 around high water. Pink circles show the water sampling 

depths and white circles where measurements using the YSI 6600 multiprobe. 
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Figure 5-3: Salinity observations along the Christchurch Harbour estuary from May to 

September 2014 using the YSI 6600 multiprobe. 

5.3.1.3 Water temperature 

Vertical water temperatures at the different locations in the Christchurch Harbour estuary 

are shown in Figure 5-4 and, follow the normal seasonal pattern. The maximum 

temperature recorded was 21.7 ºC in July 2014 (Figure 5-4 E) at the surface and the 

minimum temperature was 8.4 ºC in May 2014 (Figure 5-4 A) at the upper-estuarine 

stations (TB and CQ). In terms of the surface temperatures all stations were similar, apart 

from 24th July 2014, when the RM station temperatures (~20 ºC) at the entrance of the 

estuary were about 2 ºC higher than in the other parts of the estuary. Thermal homogeneity 

of the water column was observed throughout the sampling period due to the shallowness 

of the estuary (maximum depth 3.0 m at TB) and tidal mixing. 
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Figure 5-4: Vertical distribution of temperature (ºC) at the six estuarine stations during the 

summer months of 2014 around high water. Pink circles show the water 

sampling depths and white circles where the vertical measurements were made 

using the YSI 6600 multiprobe. 
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5.3.1.4 Oxygen saturation 

In general, oxygen saturations were high at the mid- to lower-estuarine stations as shown 

in Figure 5-5. Oxygen saturation values varied between 47.8 and 146.5%. The distribution 

of oxygen saturation values from the YSI 6600 multiprobe measurements showed a 

consistent seasonal pattern; saturation increased from the lower-estuarine reaches towards 

to the mid-estuary in July 2014, and decreased from the mid-estuary towards to the upper 

estuary in August 2014. The BP station had the highest saturation value at 1.5 m on 10th 

July 2014 and the TB station showed the lowest value at 2.3 m on 4th September 2014.  

The higher oxygen saturation values were found (> 100%) in the sub-surface, 

corresponding with the higher temperatures measured particular in the middle and lower 

reaches. The GM and BP sites showed the highest oxygen saturation concentration during 

the sampling period (Figure 5-5 C – D), later microscopic analysis revealed this was 

related to a dinoflagellate (Kryptoperidinium foliaceum) bloom (Figure 5-5 D).  
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Figure 5-5: Vertical distribution of oxygen saturations at the six estuarine stations during 

the summer months of 2014 around high water. Pink circles show the water 

sampling depths and white circles present the depth of measurements from the 

YSI 6600 multiprobe. 



CHAPTER 5 

204 

5.3.1.5 Turbidity 

During the transect surveys in 2014, turbidity varied between zero and 80 NTU. Turbidity 

values were generally observed to be < 30 NTU (Figure 5-6), except close to the bottom 

where up to 80 NTU were observed at upper and mid-estuarine stations on 7th August and 

4th September 2014 (Figure 5-6 F and H). The likely reason for this the upper estuary high 

turbidity is due to influence of the turbid water discharge from the Stour River. On 4th 

September 2014, the higher turbidity values in the mid estuary may be due to the shallow 

water depth with suspended sediment stirred up from the estuarine benthos. 
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Figure 5-6: Vertical distribution of turbidity (NTU) at the six estuarine stations during the 

summer months of 2014 around high water. Pink circles show the water 

sampling depths and white circles present the depth of measurements from the 

YSI 6600 multiprobe. 
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5.3.1.6 Chemical parameters: Inorganic nutrients 

In general, the distributions of the major inorganic nutrients, nitrate, phosphate, and silicate 

showed consistently high concentrations in the upper-estuarine reaches (CQ and TB) as 

shown in Figure 5-7. The highest concentration of inorganic nutrients concentration varied 

with time and location in the estuary. The CQ and TB stations had generally the highest 

concentration of inorganic nutrients and the concentrations at RM were the lowest. 

Nitrate 

Higher nitrate concentrations were generally observed at the TB, CQ, and GM stations 

throughout the sampling period, particularly in July 2014. Mean nitrate concentrations at 

the TB, CQ, and GM stations were 480 ± 126 (n=8), 489 ± 129 (n=8), and 303 ± 133 (n=8) 

µmol L-1 respectively. Comparing mean concentrations for the BP, FP, and RM stations 

were much lower 191 ± 136 (n=8), 142 ± 101 (n=8), 119 ± 101 (n=8) µmol L-1 

respectively as shown in Figure 5-7 A. During the transect sampling, nitrate concentrations 

at TB and CQ stations peaked initially on 10th July 2014 (~703 µmol L-1), then decreased 

to around 300 µmol L-1 on 7th August 2014, and rose again in September 2014. During 

survey on 10th July 2014, a concentration of 297 µmol L-1 of nitrate was recorded at the 

GM station where the dinoflagellate bloom of Kryptoperidinium foliaceum occurred. In 

contrast, the BP, FP, and RM stations had nitrate concentrations between 135 and 216 

µmol L-1. 

 Nitrate concentration versus salinity plots for each sampling day showed that in general 

higher nitrate concentrations were observed in the low salinity measured end of the estuary 

(the TB and CQ stations) as shown in Figure 5-9 and Appendix B. On most dates nitrate 

removal led to non-conservative behaviour. On the first sampling day (27th May 2014), 

samples were only collected at the surface and showed little change in concentration over a 

limited range of salinity (0.5 – 4). The bloom of Kryptoperidinium foliaceum on 10th July 

2014 and of Cryptomonas sp on 24th July 2014 had a small impact on the nitrate 

concentrations at the mid estuary sites (see Appendix B). It is clear that high nitrate 

concentrations were associated with the river water particularly from the Stour River, as 

shown by high nitrate concentrations measured at the TB and CQ stations. 

Phosphate 

There was a clear gradient in phosphate concentration along the estuary, with higher 

concentrations found at the TB and CQ stations and reduced concentrations at the GM, BP, 
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FP, and RM stations as shown in Figure 5-7 B. Average concentrations of phosphate for 

the sampling period were 16 ± 5 (TB), 16 ± 6 (CQ), 5 ± 4 (GM), 3 ± 4 (BP), 3 ± 2 (FP), 

and 2 ± 2 (RM) µmol L-1. A pattern of variation was observed, particularly at TB, CQ, 

GM, and BP, with a peak in phosphate concentrations in September 2014. At the FP and 

RM stations, phosphate concentrations were lower. 

Phosphate concentration versus salinity plots for each day of sampling showed that higher 

phosphate concentrations were associated with the lowest salinities as with nitrate, at the 

TB and CQ stations (Figure 5-9 and Appendix C). In general, phosphate concentrations 

markedly decreased with salinities above 15 (particular the RM and FP stations), 

suggesting a marked removal between the GM and BP stations. On 4th September 2014 a 

marked removal of phosphate occurred between the BP and FP stations (see Appendix C). 

Silicate 

Silicate concentrations varied between 8 and 183 µmol L-1 as shown in Figure 5-7 C. High 

silicate concentrations were observed at the TB, CQ, and GM stations throughout the 

sampling period, with the highest concentration of 183 µmol L-1 at the GM on 27th May 

2014. A marked increase in silicate concentration was observed at all stations during the 

first survey that then decreased sharply in following surveys. It is possible that as only the 

surface water sample was collected at each station and not at the maximum fluorescence 

depth as on the other sample dates removal processes may have been missed. The silicate 

concentrations peaked again on 4th September 2014 along the estuary but not at the FP and 

RM stations, probably reflecting the increased river discharge (Figure 5-1 B) before the 

last transect and the input of silicate into the estuary. 

Silicate concentration versus salinity plots showed that high silicate concentrations were 

associated with the less saline water, indicating the pronounced freshwater input at upper 

estuary stations (Figure 5-9 and Appendix D). Silicate concentration generally decreased 

following the salinity gradient, due primarily to dilution with saline water. On same dates 

(10th July, 24th July, and 7th August 2014) silicate concentrations at GM were above the 

dilution line (see Appendix D) suggesting summer silicate concentrations in the Avon 

River water which flows into the harbour between CQ and GM was higher than in the 

Stour. 
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Nutrient ratios 

The nitrate to phosphate, silicate to phosphate, and nitrate to silicate ratios are shown in 

Figure 5-8. In general, the N:P and Si:P ratios for all stations tended to decrease gradually 

from May to September 2014, and peaked suddenly on 10th July 2014 particularly at the 

GM and BP stations, although the N:Si ratio showed a reverse pattern. The highest values 

of the N:P and Si:P ratios were found at the mid-estuarine stations (GM and BP) as shown 

in Figure 5-8 A and B, while the highest value of the N:Si ratio was observed at the upper-

estuarine stations (TB and CQ) on the same day that the highest value of N:P ratio 

occurred at GM. The N:Si ratios were high at the upper-estuarine stations (TB and CQ) on 

10th July 2014, and tended to decrease towards September 2014, perhaps because of lower 

silicate on that day. 

Nutrient ratios can indicate which particular nutrient might influence phytoplankton 

growth and succession. The nutrient ratios in the water column can be compared with the 

Redfield ratio for N:P of 16:1 and also for Si:P of 16:1. The high N:P and Si:P ratios 

measured on 27th May and 10th July 2014 indicate that relatively low phosphate 

concentrations may be the reason for high ratios at the upper-estuary stations (TB and QC) 

in May 2014, while relatively high nitrate and silicate concentrations could be the reason 

for high ratios at the mid-estuarine stations (GM and BP). The N:Si ratios were generally < 

4 at the mid- and lower-estuarine stations and > 4 at the upper stations on the same day, 

perhaps due to higher concentrations of nitrate at the upper stations than the lower stations 

due to freshwater inputs. 
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Figure 5-7: Inorganic nutrient distributions (µmol L-1) at the six estuarine stations during 

the summer months in 2014, (A) nitrate, (B) phosphate, and (C) silicate. 
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Figure 5-8: Changes in N:P, Si:P, and N:Si ratio distributions at the six estuarine stations 

during the summer months in 2014. 
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Figure 5-9: Inorganic nutrient distribution (µmol L-1) versus salinity for each day of 

sampling at the six estuarine stations during the summer months in 2014, (A) 

nitrate, (B) phosphate, and (C) silicate. 
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5.3.1.7 Irradiance 

The irradiance attenuation coefficient (k) was calculated for all stations throughout the 

sampling period from in situ measurements as shown in Figure 5-10 and Table 5-1. The 

mean k values from the transect stations were generally over 1 m-1, except the RM station 

and showed no clear temporal variation trend. The highest k value was 3.9 m-1 on 10th July 

at the GM station and was associated with the high chlorophyll a concentration.  

Table 5-1: Irradiance attenuation coefficient (k) values at the six estuarine stations in 

Christchurch Harbour during the summer months in 2014; mean (bold) and 

range of values (parentheses). 

Station k (m-1) 

Run at mudeford 0.7     (0.4 – 0.9) 

Ferry Pontoon 1.0     (0.7 – 1.4) 

Blackberry Point 0.9     (0.5 – 1.7) 

Grimbury Marsh 1.6     (0.9 – 3.9) 

Christchurch Quay 1.3     (1.1 – 1.8) 

Tuckton Bridge 1.2     (0.9 – 1.7) 
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Figure 5-10: Pattern of attenuation coefficient (k) for the six estuarine stations during the 

summer months in 2014. 
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5.3.2 Phytoplankton pigments 

5.3.2.1 Total chlorophyll a  

Contour plots of vertical profiles of chlorophyll a concentration determined from the YSI 

6600 multiprobe are shown in Figure 5-11. High concentrations were generally detected 

near the bottom, with the highest value at 2 m (96 µg L-1) at the GM station on 10th July 

2014 as shown in Figure 5-11 D. High values of > 20 µg L-1 were firstly observed at 1.5 m 

at the mid-estuarine station (GM) on 25th June 2014 and continued to be detected at this 

station until 21st August 2014 (Figure 5-11 C – G). High chlorophyll values were detected 

at the lower estuarine stations on the final sampling day in September 2014 (Figure 5-11 

H). 

A good agreement between measurements of acetone extracted chlorophyll a concentration 

from the water samples collected at each site during the eight transects and the chlorophyll 

fluorescence detected at the same depth using the YSI 6600 multiprobe is shown in Figure 

5-12 A with an R2 value of 0.86 and a slope of 0.9. 

Chlorophyll a concentrations measured in the collected water samples from each estuarine 

station are illustrated in Figure 5-13. The chlorophyll a concentration varied between 1.8 

and 93.0 µg L-1 with mean concentrations of 3.8 ± 2.3 (RM), 4.3 ± 2.9 (FP), 9.3 ± 4.1 (BP), 

26.4 ± 29.3 (GM), 10.5 ± 5.1 (CQ), and 13.6 ± 9.7 (TB) µg L-1. 

The high chlorophyll a concentration (93.0 µg L-1) in the sample collected at 1.5 m at the 

GM station on 10th July 2014 was dominated by the dinoflagellate, Kryptoperidinium 

foliaceum and the next chlorophyll peak that occurred on 21st August 2014 at the mid- and 

upper estuary was dominated by Cryptomonas species. The high chlorophyll a 

concentrations of 36.9 and 21.0 µg L-1 detected at the TB and CQ stations on 21st August 

2014 also contained high abundance of cryptophytes. Lower chlorophyll a concentrations 

were generally measured between the RM and BP stations throughout the sampling period. 

Lower chlorophyll a concentrations were also measured at the TB, CQ, and GM stations 

between 27th May and 25th June 2014 (Figure 5-13).  
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Figure 5-11: Vertical distribution of chlorophyll a concentration (µg L-1) derived from the 

YSI 6600 multiprobe at the six estuarine stations during the summer months in 

2014 around high water. Pink circles show the water sampling depths and 

white circles present the vertical measurements from the multiprobe. Note 

change of contour scale on D. 
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Figure 5-12: Comparison of chlorophyll a concentration determined from the YSI 6600 

multiprobe and from acetone extracts of water samples collected at each site 

(A) and comparison between HPLC chlorophyll a and total fluorescence 

chlorophyll a at the six estuarine stations is shown in B. 
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Figure 5-13: Distribution of total chlorophyll a at the six estuarine stations during summer 

in 2014. 
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5.3.2.2 Phytoplankton accessory pigment 

As previously observed from the samples collected each week from Mudeford Quay in 

2013 – 2014 (close the transect station of the Run at Mudeford (RM) as described in 

Section 4.3.2.2). Fucoxanthin was the main accessory pigment but peridinin also detected 

during the summer and autumn months. However, the spot samples collected in 2013 – 

2014 were from the surface at low tide and, probably reflected the pigment contained the 

river phytoplankton populations. 

Values of chlorophyll a measured by fluorescence were higher than values of chlorophyll a 

measured by HPLC, although there was a correlation between the two measurements 

(Figure 5-12 B), with an R2 value of 0.8 and a slope of 0.5. Based on the HPLC data, the 

fluorescence chlorophyll a was highly correlated to both total HPLC pigment and total 

accessory pigment, giving R2 values of 0.94 and 0.98 and slopes of 1.2 and 0.7 respectively 

(Figure 5-14). 
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Figure 5-14: Relationships of fluorescence chlorophyll a to (A) total HPLC pigment and 

(B) total HPLC accessory pigments at the six estuarine stations during the 

transect sampling in 2014. 

All HPLC phytoplankton pigments from the estuarine transect stations are compared in 

Figure 5-15 and Figure 5-16, and variations in the pigment to chlorophyll a ratios are 

shown in Figure 5-17 and Figure 5-18. 

The temporal changes in HPLC determined chlorophyll a followed those described 

previously for fluorescence derived chlorophyll a (see Figure 5-13), although absolute 
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values varied (Figure 5-15 A). Peridinin, fucoxanthin, diadinoxanthin, β carotene, 

chlorophyll c2, and zeaxanthin displayed a similar trend to chlorophyll a, with maxima at 

the GM station of 0.8, 41.5, 9.9, 3.4, 4.7, and 2.0 µg L-1 on 10th July 2014 respectively 

(Figure 5-15). These pigments showed considerably lower values at the other stations. 

Concentrations of fucoxanthin closely followed those of diadinoxanthin and zeaxanthin, 

and these pigments peaked at the GM station on 10th July 2014 (Figure 5-15 C, G, and 

Figure 5-16 H). At the BP station the same temporal trend of high values was observed on 

the same day with lower concentrations. High fucoxanthin, diadinoxanthin, and zeaxanthin 

concentrations were observed at the GM station. At the other stations these pigments 

peaked on different days while concentrations were close at the GM station except during 

the dinoflagellate bloom on 10th July 2014. Fucoxanthin, peridinin, diadinoxanthin, β 

carotene, chlorophyll c2, and zeaxanthin concentrations peaked sharply at the GM station 

on 10th July 2014, indicating several phytoplankton populations developed at the same 

time.  

Chlorophyll b showed a different pattern, peaking mostly at the TB and CQ stations on 21st 

August 2014, with maxima at the TB of 2.6 µg L-1 and the CQ of 1.1 µg L-1 (Figure 5-15 

F). This pigment was often found to be 0.5 µg L-1 lower than the other stations in the 

estuary. 

Peridinin concentration was low throughout the whole estuary, except the GM station 

during the phytoplankton bloom on 10th July 2014, with a peak concentration of 0.8 µg L-1 

(Figure 5-15 B). While at the other stations, values were generally observed > 0.4 µg L-1 

throughout the sampling period. 

Increased amounts of alloxanthin were measured after the phytoplankton bloom on 21st 

August 2014 at the GM, TB, and CQ stations with peak concentration of 11.1, 6.2, and 3.1 

µg L-1 respectively (Figure 5-15 D). Low concentrations of alloxanthin (< 0.1 µg L-1) were 

detected occasionally at the RM and FP stations.  

Lutein showed a different trend to chlorophyll a with peaks on 26th July 2014 at the TB 

and CQ stations of 0.7 µg L-1 (Figure 5-15 E). 

Violaxanthin was generally present at concentration below 0.4 µg L-1 (Figure 5-16 E) with 

peaks at the upper stations (TB and CQ) on 26th July 2014, when 0.3 µg L-1 was detected. 

Several other smaller peaks were detected at the BP and CQ stations. Divinyl chlorophyll a 

showed a different temporal pattern to the other pigments along the estuary, with 
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maximum concentration measured on 4th September 2014 at the FP station of 2.5 µg L-1 

(Figure 5-16 G). 

Low concentrations of 19'But and prasinoxanthin were detected throughout the estuary 

with 19'But undetectable from 10th July 2014 (Figure 5-16 C), while prasinoxanthin was 

detected at some stations and sampling days (Figure 5-16 F). Prasinoxanthin was often 

detected at the FP station with low concentration (< 0.1 µg L-1). 19'Hex pigment was 

undetectable in all samples collected during the transect surveys in 2014 (Figure 5-16 D). 

Considering ratios of accessory pigment to chlorophyll a (Chl a) for all transect samples, 

fucoxanthin to Chl a ratios showed consistently high values throughout the sampling 

period for all transect samples, and was up to 1.2 initially at the BP station on 10th July 

2014 (Figure 5-17 B). This high fucoxanthin to Chl a ratio was consistent with the high 

biomass of Kryptoperidiniun foliaceum, which developed in the mid-estuary, then moved 

down estuary in July 2014 thus indicating that dinoflagellates were the main group 

associated with this pigment in the estuary. This ratio varied from 0.1 to 1.2 during the 

summer months. 

Peridinin to Chl a ratios varied between zero to 0.05 and in general were higher in the mid 

estuary towards the lower estuary (Figure 5-17 A). In July 2014 during K. foliaceum bloom 

in the GM station, this ratio presented consistently low values and were quite variable in 

the estuary. 

Alloxanthin to Chl a ratios were quite variable and were high on some occasions and 

followed the temporal pattern of alloxanthin concentration, with the TB, CQ, and GM 

stations having consistently high values on 21st August 2014 and sharply decreasing on the 

next sampling day (Figure 5-17 C). Before the peak day the ratio was low and it is possible 

that there was low numbers of cryptophytes present during the dinoflagellate bloom. 

Lutein to Chl a ratios were lower than 0.1 during the summer months (Figure 5-17 D). 

Peak values occurred in July 2014 particularly at the TB and CQ stations and coinciding 

with a high abundance of the chlorophyte group. 

Chlorophyll b to Chl a ratios varied between zero and 0.5 (Figure 5-17 E) and followed the 

temporal pattern of chlorophyll b concentration. Peak values were observed to sharply 

increase on 21st August 2014 at the CQ station. 
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Diadinoxanthin to Chl a ratios were < 0.2 during the sampling period except on 21st 

August 2014 at the BP station, where this ratio was 0.4 (Figure 5-17 F). β carotene to Chl a 

ratios were generally lower than 0.1 (Figure 5-17 G), except on 10th July 2014 and 21st 

August 2014 at the mid- and upper estuarine stations when the ratio increased to > 0.2. 

Considering the ratios of minor accessory pigment to Chl a for samples collected along the 

Christchurch Harbour estuary, chlorophyll c3 to Chl a ratios showed much lower values 

than the other pigments to Chl a ratios (Figure 5-18 A). This ratio peaked at the RM and 

GM stations on 7th August 2014, with values of 0.018 and 0.015 respectively. Chlorophyll 

c2 to Chl a ratios varied between zero and 0.24 and two peaks occurred at the TB station 

on 10th July and 21st August 2014, with values of 0.15 and 0.24 respectively (Figure 5-18 

B). 

19'But to Chl a ratios were observed in May and July 2014, with low values at some 

stations particular at the upper and mid estuary (Figure 5-18 C). 19'Hex was undetectable 

at all stations during the transect sampling and so ratios of this pigment to Chl a were zero 

(Figure 5-18 D). 

Violaxanthin to Chl a ratios varied between zero and 0.06 and were detected at all stations 

(Figure 5-18 E). The high values occurred often in the upper and mid estuary, however, a 

value of zero was detected on 10th July 2014 at the GM station during the dinoflagellate 

bloom. It is possible that no phytoplankton group associated with this pigment were 

present at this station. Prasinoxanthin to Chl a ratios were quite low along the estuary 

(Figure 5-18 F) with maximum values of 0.04 on 25th June 2014 at the FB station. 

Divinyl chlorophyll a to Chl a ratios ranged between zero and 0.45 (Figure 5-18 G). At the 

BP station this ratio peaked on 10th July 2014, with value of 0.45 and at the FP station on 

4th September 2014, with a similar value. Zeaxanthin to Chl a ratios were quite constant 

along the estuary, with values below 0.04 except on 10th July 2014 at the BP station, when 

this ratio was 0.15 (Figure 5-18 H). 
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Figure 5-15: Temporal and spatial distributions of major accessory pigments at the six 

estuarine stations along the Christchurch Harbour estuary during the summer 

months in 2014. Symbols in upper panel apply to all panels. 
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Figure 5-16: Temporal and spatial distributions of minor accessory pigments at the six 

estuarine stations in the Christchurch Harbour estuary during the summer 

months in 2014. Symbols in upper panel apply to all panels. 
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Figure 5-17: Temporal and spatial distributions of major accessory pigments to chlorophyll 

a ratios at the six estuarine stations in the Christchurch Harbour estuary during 

the summer months in 2014. Symbols in lower panel apply to all panels. 
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Figure 5-18: Temporal and spatial distributions of minor accessory pigments to chlorophyll 

a ratios at the six estuarine stations in the Christchurch Harbour estuary during 

the summer months in 2014. Symbols in upper panel apply to all panels. 
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5.3.3 Phytoplankton taxonomic data 

5.3.3.1 Phytoplankton cell abundance 

In general, estuarine phytoplankton abundance showed a similar pattern to chlorophyll a 

concentrations. A gradient of increasing total abundance and biomass was observed at all 

stations from the RM to TB station. The sampling stations along the estuary showed 

differences in the temporal pattern of species dominance and composition during the 

productive period in 2014. Chlorophyte dominance generally occurred in the upper estuary 

(TB and CQ), while dinoflagellates with cryptomonads, and diatoms dominanted in the 

mid (GM and BP) and lower estuary (FP and RM) respectively during the summer months 

in 2014 (Figure 5-19). 

At the RM station, the abundant species (Chaetoceros spp., Guinardia delicatula, Navicula 

spp., and Nitzschia spp.) were mainly diatoms, peaking on 7th August 2014 (Chaetoceros 

spp. up to 5.9 × 103 cells mL-1 (Figure 5-19 A). Guinardia delicatula was the dominant 

species on 4th September 2014 (1.2 × 103  cells mL-1), and the chlorophyll a peak showed a 

higher concentration than the peak on 7th August 2014 due to the dominant diatom, G. 

delicatula having a larger cell size compared with Chaetoceros spp. Moreover, the total 

abundance was up to 7.9 × 103 cells mL-1 on 7th August 2014, while on 4th September 2014 

at this station it was only 2.0 × 103 cells mL-1. All the cryptophytes (Cryptomonas, 

Rhodomonas, and Teleaulax spp.) were observed at high abundance (> 300 cells mL-1) 

throughout the sampling period, while a lower cell abundance of dinoflagellates were 

found (< 100 cells mL-1) at this station. On 10th July 2014, an exceptional bloom of the 

dinoflagellate Kryptoperidinium foliaceum (Figure 5-20) reached cell abundance up to 18.3 

× 103 cells mL-1 at the GM station. This bloom seems not to have been concentrated 

towards the RM station by tidal advection on this date, possibly because the sample was 

collected at high tide. Chlorophyte abundance was above 500 cells mL-1 from May to July 

2014 and then dropped below 50 cells mL-1 on 21st August 2014 at this station. The 

chlorophyte species Chlorella spp. was the dominant species in May and July 2014 and 

was followed by Pyramimonas sp. and Scenedesmus spp. later in July 2014. The diatoms 

were the dominant population at this station and ranged between 26 and 85% of the total 

number of cells followed by cryptophyte and chlorophyte populations with a range of 6 – 

49% and 2 – 29%  respectively (Figure 5-19 G). 

At the FP station, lower cell numbers were observed relative to the RM station, although 

the phytoplankton abundance had a similar temporal pattern to the RM station (Figure 5-19 
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B). Total phytoplankton abundance varied between 1 × 103 and 6.9 × 103 cells mL-1 

throughout the summer months. The diatom population was also the main percentage of 

population at this station followed by cryptophytes and chlorophytes respectively (Figure 

5-19 H). From 27th May to 24th July 2014, the diatoms population ranged 0.8 – 1.8 × 103 

cells mL-1 followed by the cryptophyte and chlorophyte populations that varied 166 – 802 

and 249 – 661 cells mL-1 respectively. The pennate diatoms showed high cell abundances 

in May to July 2014 particularly Navicula spp. The centric diatom Chaetoceros spp. was 

dominant on 7th August 2014 (4.4 × 103 cells mL-1) as well as at the RM station then 

during the next two sampling dates, 21st August 2014 and 4th September 2014, this species 

decreased down to 79 and 5 cells mL-1 respectively. On 4th September 2014, Guinardia 

delicatula was present at 1.1 × 103 cells mL-1 with chlorophyll concentration of 11.0 µg L-

1. Among the dinoflagellates cell abundances range 0 – 278 cells mL-1 and high abundance 

occurred on 7th August 2014, while the chlorophyte group ranged from 39 to 769 cells mL-

1. The highest chlorophyte population was observed on 25th June 2014, with Chlorella spp. 

abundance of 624 cells mL-1. The cryptophyte group occurred throughout the sampling 

period with high abundance up to 1.2 × 103 cells mL-1 on 7th August 2014 following the 

dinoflagellate bloom at the GM station on 10th July 2014. 

Higher cell numbers occurred at the BP station, relative to the previous two stations in the 

lower estuary (RM and FP) as shown in Figure 5-19 C. Low phytoplankton abundance was 

observed from 27th May to 25th June 2014 and 21st August to 4th September 2014, and total 

cell numbers varied between 1.6 × 103 and 5.1 × 103 cells mL-1. Cryptophytes were the 

dominant group during this period, and pennate diatoms followed in abundance. On 10th 

July 2014, total phytoplankton abundance increased to 9.7 × 103 cells mL-1 and was 

characterised by a mixed assemblage of chlorophyte, cryptophyte, and dinoflagellate 

species, including Pyramimonas sp. (4.2 × 103 cells mL-1), Cryptomonas spp. (1.7 × 103 

cells mL-1), and Kryptoperidinium foliaceum (1.5 × 103 cells mL-1). Rhodomonas spp. (573 

cells mL-1) was also abundant on this day and Teleaulax spp. was found at this station 

during all sampling dates except for 27th May 2014, showing abundance that varied 

between 16 (4th September 2014) and 2.2 × 103 cells mL-1 (12nd June 2014). On 10th July 

2014 an increase in K. foliaceum abundance was observed, and this may have been caused 

by the concentration of this dinoflagellate moving downwards from the GM station. K. 

foliaceum abundance at this station was highest on 24th July 2014 (1.6 × 103 cells mL-1) 

and sharply decreased on 7th August 2014 (106 cells mL-1). On 24th July 2014, 

Rhodomonas spp. was present in high abundance (6.6 × 103 cells mL-1). The centric diatom 
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Chaetoceros spp. became the dominant species on 7th August 2014 (5.9 × 103 cells mL-1) 

with Stephanodiscus sp. also present at 2.1 × 103 cells mL-1. 

At the GM station, phytoplankton abundance varied between 1.2 × 103 and 26.3 × 103 cells 

mL-1 (Figure 5-19 D). The dinoflagellate species Kryptoperidinium foliaceum was the main 

species present on 10th July 2014 (18.3 × 103 cells mL-1) followed by Rhodomonas spp. on 

24th July 2014 (13.7 × 103 cells mL-1) and Cryptomonas spp. on 21st August 2014 (10.9 × 

103 cells mL-1) respectively. On 24th July 2014 the chlorophytes Pyramimonas sp., 

Scenedesmus spp. and other chlorophytes were the most abundant species (5 × 103 cells 

mL-1). However, on the next sampling date, on 7th August 2014, high densities of 

cryptomonads were observed (11.9 × 103 cells mL-1), together with a mixed assemblage of 

diatoms including Chaetoceros spp. and Stephanodiscus sp. (1.5 × 103 and 1.8 × 103 cells 

mL-1). K. foliaceum was extremely abundant (18.3 × 103 cells mL-1) with total chlorophyll 

concentration of 93 µg L-1 on 10th July 2014. On the next sampling date (24th July 2014) 

the small cryptophyte Rhodomonas spp. was most abundant (15.4 × 103 cells mL-1, 20.9 µg 

Chl a L-1). In June 2014 the chlorophyte species presented high abundance up to 3.3 × 103 

and 2.4 × 103 cells mL-1 and then sharply decreased during the dinoflagellate bloom on 10th 

July 2014 and increased again on the next sampling date (24th July 2014) 5 × 103 cells mL-

1. On 27th May 2014 the diatoms dominated at this station (79%) followed by the 

cholorophyte group in June 2014 with 70 and 45% respectively (Figure 5-19 J). On 10th 

July 2014 the dinoflagellate community showed the highest proportion of phytoplankton 

representing 71% of the total abundance and then later sampling dates the cryptophyte 

group was the dominant phytoplankton (62 – 84%). 

At the CQ station, lower cell numbers were observed on 25th May 2014, relative to the 

previous stations (Figure 5-19 E). High chlorophyte abundances occurred in June 2014 and 

total cell numbers varied between 25.1 × 103 and 39.6 × 103 cells mL-1. Chlorella spp. was 

the dominant chlorophyte species during this period. On 10th July 2014, total 

phytoplankton abundance decreased to 2.1 × 103 cells mL-1 and rose again on 24th July 

2014 with a high abundance of cryptophyte cells (2.2 × 103 cells mL-1). Following this day 

cryptophytes were dominant followed by diatoms throughout the sampling period. 

Chaetoceros spp. and Stephanodiscus sp. were observed at 1.5 × 103 and 3.2 × 103 cells 

mL-1 on 7th August 2014 at this station (Figure 5-2 F). 

At the TB station, total phytoplankton abundance was comparable to the CQ station and 

ranged between 1.6 × 103 and 39.6 × 103 cells mL-1 (Figure 5-19 F). Freshwater 
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chlorophytes were more numerous in June and July 2014 and included Chlorella spp. on 

12nd and 25th June 2014, Coelastrum spp. and Scenedesmus spp. (1.1 × 103 and 1.2 × 103 

cells mL-1) on 24th July 2014. On 7th August 2014 high diatom cell abundance was 

observed, with Chaetoceros spp. and Stephanodiscus sp. dominant species, suggesting 

mixing of freshwater from the Stour River and coastal water at this station. On this 

sampling date the cryptophytes Cryptomonas spp. and Rhodomonas spp. were also the 

dominant species, representing 1.4 × 103 and 1.1 × 103 cells mL-1 respectively. On the next 

sampling date (21st August 2014) Cryptomonas spp. increased in cell numbers to 2.9 × 103 

cells mL-1, while Rhodomonas spp. was 368 cells mL-1. The proportion of each 

phytoplankton group showed a similar pattern to the CQ station as shown in Figure 5-19 L. 

The chlorophyte group showed a high percentage of phytoplankton abundance in June and 

July 2014 (60 – 94%) and then on 7th August 2014 the diatoms increased in proportion 

(55%). On 21st August and 4th September 2014 the cryptophyte population became the 

major percentage of phytoplankton cell numbers, representing 81 and 80% respectively. 
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Figure 5-19: Phytoplankton abundance in cells mL-1 (A – F) and percentages (G – L) for 

the main phytoplankton groups at the six estuarine stations during the transect 

sampling in 2014. Bar colours in upper panel apply to all panels. 
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Figure 5-20: The dinoflagellate species, Kryptoperidinium foliaceum, at Grimbury Marsh 

on 10th July 2014, Lugol’s fixation (A) and live cell (B). 

5.3.3.2 Phytoplankton bio-volume and carbon biomass 

Phytoplankton cell numbers were converted to carbon biomass and percentage distribution 

(Figure 5-21) following published equations (see Section 2.7). 

Kryptoperidinium foliaceum and Cryptomonas spp. were among the most abundant species 

in the estuary, particularly in the mid and upper estuary zones during the summer months 

in 2014. These species are an important component of the phytoplankton community and 

they also contribute significantly to phytoplankton carbon biomass due to their large size. 

Smaller species (< 20 µm long), that are important in terms of cell abundance; do not 

contribute greatly to the carbon component, e.g. Chaetoceros spp. and Rhodomonas spp. 

Some species, such as Guinardia delicatula was less abundant than Chaetoceros spp., but 

they contributed significantly to the total carbon biomass due to their larger size. 

High phytoplankton biomass was observed during July to August 2014 in the estuary, 

mainly due to the K. foliaceum and Cryptomonas spp. bloom at the GM and BP stations. In 

May and June 2014, considerably lower phytoplankton biomass occurred, except in the 

upper estuary. While in the lower estuary (RM and FP) higher carbon biomass was present 

on the last sampling date. 

The correlation between chlorophyll a and carbon biomass for the estuarine stations is 

shown in Figure 5-22. The carbon biomass to chlorophyll ratio was 171, which is 

comparable to that observed with the spot sampling at Mudeford Quay in 2013 – 14 in the 

previous chapter.  

Phytoplankton carbon biomass varied between 106 µg C L-1 on 12nd June 2014, and 606 µg 

C L-1 on 7th August 2014 at the RM station (Figure 5-21 A) and between 107 µg C L-1 on 
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27th May 2014, and 524 µg C L-1 on 7th August 2014 at the FP station (Figure 5-21 B). The 

first peak of carbon biomass from both sites was observed on 7th August 2014 due to 

Chaetoceros spp., while the later peak on 4th September 2014 reflected the high biomass of 

Guinardia delicatula. 

At BP, the carbon biomass ranged between 268 µg C L-1 on 27th May 2014 and 2.1 × 103 

µg C L-1 on 24th July 2014 (Figure 5-21 C). Two peaks of phytoplankton carbon biomass 

in July 2014 were 1.9 × 103 and 2.1 × 103 µg C L-1 when K. foliaceum was the main 

contributor followed by the cryptophyte carbon biomass. At the GM station, the 

dinoflagellate K. foliaceum represented nearly 96% of the carbon biomass on 10th July 

2014 (18.7 × 103 µg C L-1). The carbon content at this station varied between 125 µg C L-1 

on 27th May 2014 and 19.6 × 103 µg C L-1 on 10th July 2014. 

At CQ, the phytoplankton carbon biomass varied between 196 µg C L-1 on 4th September 

2014 and 913 µg C L-1 on 7th August 2014 (Figure 5-21 E). Diatoms composed the main 

carbon biomass in May 2014 (Navicula sp. and Diatoma vulgare) and then the chlorophyte 

carbon biomass was dominated by Chlorella spp. and Pediastrum spp.in June and July 

2014. 

At the Stour River end of the estuary (TB station), the total carbon biomass varied between 

163 µg C L-1 on 10th July 2014 and 1.4 × 103 µg C L-1 on 21st August 2014 (Figure 5-21 F). 

The freshwater chlorophytes such as Pediastrum spp., Scenedesmus spp., and small 

Chlorella spp. were important contributors to the total biomass from May to July 2014. On 

7th August 2014 the diatoms and cryptophytes were dominant, representing 352 and 184 µg 

C L-1. 
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Figure 5-21: Phytoplankton carbon biomass in µg C L-1 (A – F) and percentages (G – L) 

for the main phytoplankton groups at the six estuarine stations during the 

summer period in 2014. Note change of y scale on D. 
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The ratio of carbon biomass to chlorophyll a varied between 20 and 211 along the estuary 

during the summer months in 2014 (Figure 5-23). The highest value was associated with 

the K. foliaceum bloom at the GM station on 10th July 2014. The bloom of cryptophytes 

presented a lower carbon:Chl a ratio compared to K. foliaceum. The highest carbon to chl a 

ratio at the lower and upper estuary (RM, FP, TB, and CQ) was observed in August 2014, 

while the mid estuarine stations (GM and BP) presented the highest values in July 2014. 

transect sampling

y = 171x  962

R
2
 = 0.80

n = 48

total chlorophyll a ( g L
-1

)

0 20 40 60 80 100

ca
rb

o
n 

b
io

m
as

s 
(1

0
3
 

gC
 L

-1
)

0

5

10

15

20

25

total chlorophyll vs carbon biomass 

Plot 1 Regr

 

Figure 5-22: Correlation between total phytoplankton carbon biomass (µg C L-1) and total 

chlorophyll a (µg L-1) for the six estuarine stations during the summer months 

in 2014. 
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Figure 5-23: Carbon biomass to chlorophyll a ratio during the transect sampling in the 

Christchurch Harbour estuary. 
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5.3.3.3 Phytoplankton species composition 

The phytoplankton species cell counts and carbon biomass for three of the transect 

sampling stations are given in Table 5-2 and Table 5-3. In terms of species abundance, the 

stations are quite different as described in Sections 5.3.3.1 and 5.3.3.2. The species 

contribution was shown to differ depending on the sampling location and salinity value. 

The freshwater phytoplankton populations generally occurred in the surface water and the 

upper-estuarine stations (TB and CQ), while at the other stations (RM and FP) there was a 

combination of freshwater and marine species. In addition dinoflagellates were most 

abundant at the GM station, due to the high contribution of Kryptoperidinium foliaceum. 

The cryptomonad, (Crpytomonas and Rhodomonas) were also present during the K. 

foliaceum blooms at the GM station and these increased after the dinoflagellate bloom 

decreased. The coastal diatom species, Chaetoceros spp. and Skeletonema spp, were 

mainly observed in August 2014 as high salinity values moved towards the upper estuary 

(see Section 5.3.1.1). 

The phytoplankton biomass values give a different perspective on the species 

contributions, particularly for diatoms, which had a total biomass less than that of 

dinoflagellates. A noteworthy species was Chaetoceros spp., that was present at almost all 

stations but with high contributions at the FP and GM stations particularly in August 2014. 

Skeletonema sp. was only found at the FP and RM stations. Cryptomonas and Rhodomonas 

sp. contributed the highest biomass at the GM, CQ, and TB stations. 

The diatom species, Chaetoceros spp., was observed in high abundance up to 4.4 × 103 

cells mL-1 at the FB station but represented only a small amount of carbon biomass 338 µg 

C L-1 due to this species having a small cell size. 
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Table 5-2: Example of phytoplankton abundance (cells mL-1) at three estuarine stations 

during the transect sampling in 2014. Stations are selected to represent the 

lower (FP), mid (GM), and upper (TB) parts of the estuary. 

date 12nd June 2014 10th July 2014 7th August 2014 21st August 2014 

station FP GM TB FP GM TB FP GM TB FP GM TB 

Chlorophyll a (µg L-1) 2.9 6.9 8.8 3.0 93.0 3.6 6.1 16.5 10.0 2.2 49.0 36.9 

Bacillariophyta 
            

Amphora spp. 19 61 60 38 40 46 5 15 13 4 2 12 

Bacillaria paxillifer - 40 4 11 15 41 - - 82 - - - 

Chaetoceros spp. 12 - - 77 12 - 4,400 1,509 1,199 79 53 12 

Cocconeis spp. 18 162 79 77 89 137 40 225 212 19 59 156 

Diatoma vulgare 5 57 6 9 22 5 - 11 7 - 2 5 

Gomphonema spp. 9 106 61 42 53 45 7 39 46 6 15 18 

Guinardia 
delicatula 

7 - - 14 - - 5 2 - 170 174 43 

Licmorphora sp. 4 83 22 20 46 30 5 2 9 - - 20 

Melosira sp. 9 18 18 7 16 5 - 12 9 9 7 9 

Navicula sp1. 30 104 77 100 91 74 19 84 183 19 62 102 

Navicula spp. 235 91 129 397 225 82 60 152 137 27 63 281 

Nitzschia acicularis 76 6 2 64 16 5 193 62 25 15 5 5 

Nitzschia sp. 7 53 28 34 29 18 - 18 137 - 7 281 

Pennate diatoms 20 34 19 26 45 15 13 27 32 7 9 16 

Pseudo-nitzschia 79 21 12 - 14 - 49 15 13 7 16 14 

Skeletonema spp. - - - - - - 5 - - - - - 

Stephanodiscus sp. 14 88 122 9 6 7 2 - 23 - 5 38 

Dinophyta             

K. foliaceum - 4 - 79 18,306 2 26 326 8 8 1,113 91 

Cryptophyta            

Cryptomonas spp. 102 28 50 101 4,822 47 174 2,344 1,131 84 10,877 7,842 

Rhodomonas spp. 310 29 23 163 1,435 32 579 9,364 410 55 54 533 

Chrysophyta 
           

Dinobryon spp. - - 2 - - 2 - - - - - - 

Synura sphagnicola - 49 2 5 - - - - - - - - 

Chlorophyta 
            

Ankistrodesmus spp. 6 63 19 63 22 64 63 33 63 27 5 8 

Chlamydomonas 

spp. 
5 39 109 39 2 179 39 188 511 8 18 172 

Chlorella sp. 155 23 
18,58

6 
23 26 177 23 - 2 - - - 

Coelastrum spp. 23 106 246 106 70 141 106 106 23 70 - 13 

Kirchneriella spp. 5 28 11 28 20 46 28 29 45 14 2 15 

Pyramimonas sp. - - - 158 123 - 158 86 54 32 5 29 

Scenedesmus spp. 9 206 218 206 158 366 206 220 501 117 19 103 
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Table 5-3: Example of phytoplankton carbon biomass (µg C L-1) at three estuarine stations 

during the transect sampling in 2014. Stations are selected to represent the 

lower (FP), mid (GM), and upper (TB) parts of the estuary. 

date 12nd June 2014 10th July 2014 7th August 2014 21st August 2014 

station FP GM TB FP GM TB FP GM TB FP GM TB 

Chlorophyll a (µg L-1) 2.9 6.9 8.8 3.0 93.0 3.6 6.1 16.5 10.0 2.2 49.0 36.9 

Bacillariophyta 
            

Amphora spp. 1 4 4 3 3 3 0 1 1 0 0 1 

Bacillaria paxillifer - 1 0 0 0 - - - 2 - - - 

Chaetoceros spp. 1 - - 6 1 - 338 116 92 6 4 1 

Cocconeis spp. 1 10 5 5 6 9 3 14 13 1 4 10 

Diatoma vulgare 2 29 3 5 11 2 - 21 4 1 15 2 

Gomphonema spp. 1 6 3 2 3 2 0 2 2 0 1 1 

Guinardia delicatula 2 - - 5 - - 2 1 - 57 58 14 

Licmorphora sp. 0 2 1 1 1 1 0 0 0 - - 1 

Melosira sp. 3 6 6 3 6 2 - 4 3 3 2 3 

Navicula sp1. 8 26 19 25 23 18 5 21 45 5 15 25 

Navicula spp. 4 2 2 7 4 1 1 3 2 0 1 5 

Nitzschia acicularis 1 0 0 1 0 0 3 1 0 0 0 0 

Nitzschia sp. 0 2 1 1 1 1 - 1 0 - 0 0 

Pennate diatoms 1 2 1 2 3 1 1 2 2 0 1 1 

Pseudo-nitzschia 8 2 1 - 1 - 5 2 1 1 2 1 

Skeletonema spp. - - - - - - 0 - - 1 - - 

Stephanodiscus sp. 1 8 11 1 1 1 1 - 2 1 0 3 

Dinophyta             

K. foliaceum - 4 - 80 18,715 2 26 333 8 8 1,138 94 

Cryptophyta 
           

Cryptomonas spp. 15 4 7 15 698 7 25 339 164 12 1,573 1,134 

Rhodomonas spp. 15 1 1 8 72 2 29 469 21 3 3 27 

Chrysophyta 
           

Dinobryon spp. - - 0 - - 0 - - - - - - 

Synura sphagnicola - 2 0 0 - - - - - - - - 

Chlorophyta 
            

Ankistrodesmus spp. 1 2 6 6 2 6 2 3 6 1 0 1 

Chlamydomonas spp. 0 1 1 0 0 2 0 2 5 0 0 2 

Chlorella sp. 1 15 98 0 0 1 - 2 0 - 0 - 

Coelastrum spp. 0 1 3 1 1 2 1 1 0 0 - 0 

Kirchneriella spp. 0 0 0 0 0 0 0 0 0 0 0 0 

Pyramimonas sp. 0 0 - 1 1 - 0 1 0 0 0 0 

Scenedesmus spp. 0 8 7 7 5 12 4 7 17 1 1 3 
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5.3.3.4 Succession of phytoplankton taxa and pigments 

Phytoplankton succession over the summer period in 2014 is shown in Figure 5-24 as 

absolute contributions of carbon for different phytoplankton groups. High dinoflagellate 

numbers were observed on 10th July 2014 at the GM station and the highest dinoflagellate 

carbon biomass of Kryptoperidinium foliaceum was on the same day (Figure 5-24 B). The 

diatom carbon biomass followed the dinoflagellate peak at all stations due to Chaetoceros 

spp. and Guinardia spp. being the dominant populations (Figure 5-24 A). The next most 

dominant was the cryptophyte biomass peaking at the GM and TB stations (Figure 5-24 

C). The chlorophyte biomass was highest in the upper-estuarine stations as shown in 

Figure 5-24 D. 

These peaks in dinoflagellate and diatom biomass were associated with a peak of the 

peridinin and fucoxanthin (Figure 5-15 B and C). However, the peak in dinoflagellate 

biomass on 10th July at the GM station was not associated with a high peridinin 

concentration as K. foliaceum contains fucoxanthin rather than peridinin as a biomarker 

pigment.  

The cryptomonad biomass was higher at GM and the upper estuary stations after the 

dinoflagellate bloom. The peaks in biomass at these stations showed good agreement with 

the alloxanthin concentration, as this is a marker pigment for Cryptomonads. The 

chlorophyll b concentrations from the transect sampling did not show good agreement with 

the chlorophyte biomass, suggesting that small flagellates may not have been effectively 

enumerated in Lugols samples.  
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Figure 5-24: The succession of the phytoplankton group biomass at the six estuarine 

stations. Symbols in upper panel apply to all panels. 
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5.3.4 Phytoplankton abundance and total red fluorescence by flow cytometry 

Total red and orange fluorescence of phytoplankton samples were measured using the 

CytoSense flow cytometer (Figure 5-25), and average red and orange fluorescence values 

for all estuarine samples are given in Table 5-4. The highest values of total red 

fluorescence was detected at the GM station, with a maximum of 245 × 107 a.u. mL-1 on 

10th July 2014 during the dinoflagellate bloom (Figure 5-25 D). The highest value in total 

orange fluorescence was also observed at the same site and sampling day, with a maximum 

of 8.8 × 107 a.u. mL-1. The RM station had the lowest averages of both total red and orange 

fluorescence, while the highest fluorescences were observed at GM during the transect 

sampling.  

Cell counts derived from CytoSense analysis where significantly higher than cell counts 

estimated from Lugol’s preserved samples. This is due to the many small cells (< 5 µm) 

that are counted by the CytoSense not generally visible by microscopic counts 

Table 5-4: Mean red and orange fluorescence (107 a.u. mL-1) by the CytoSense flow 

cytometer, with standard deviation for six estuarine stations. 

 Mean values (107) ± standard deviation (107) 

Station total red fluorescence total orange fluorescence 

Run at Mudeford 16.5 ± 6.5 1.0 ± 0.4 

Ferry Pontoon 100.8 ± 21.2 9.9 ± 23.4 

Blackberry Point 42.9 ± 44.2 2.4 ± 1.9 

Grimbury Marsh 411.1 ± 904.9 16.1  ± 31.9 

Christchurch Quay 69.2 ± 68.7 5.9  ± 9.0 

Tuckton Bridge 77.4 ± 101.3 11.5 ± 21.1 
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Figure 5-25: Distribution of red and orange fluorescence (107 a.u. mL-1) and phytoplankton 

abundance (cells mL-1) for the six estuarine stations. The solid line and black 

circles symbol are flow cytometry abundance. The dotted lines and green 

symbols are microscopic abundance. Note change of scale on all second y axis 

and y axis on figure D. 
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5.3.5 Nutrients uptake rates 

Uptake rates of nitrogen (ammonium and nitrate) and carbon by the natural estuarine 

phytoplankton in the Christchurch Harbour estuary during the summer transects in 2014 as 

estimated by stable isotope uptake are shown in Table 5-5 and Figure 5-26. No nutrient 

uptake rates were measured on samples collected from the first estuarine transect sampling. 

In general, the nitrate and carbon uptake rates followed the chlorophyll concentrations 

observed (Figure 5-13, Figure 5-26 A and C), while the highest uptake rates were most 

significantly at the GM station during the dinoflagellate bloom on 10th July 2014. Uptake 

rates of ammonium were consistently higher than uptake rates of nitrate (Table 5-5) in all 

incubations. Both nitrogen and carbon uptake rates also tended to be higher in less saline 

water (CQ and TB), and mid-estuarine waters (BP and GM) than in more saline samples 

(RM and FP). 

The uptake rates of nitrateand carbon were particularly high for the Kryptoperidinium 

foliaceum-dominated sample from the GM station on 10th July 2014 (8.63 µmol-N L-1 h-1, 

and 15.88 µmol-C L-1 h-1, respectively) The next peak of  carbon uptake was also at GM 

coincident with a  peak of chlorophyll on 21st August 2014 although nitrate uptake rates 

were lower. The upper estuarine stations (TB and CQ) had lower nitrate uptake rates than 

GM and uptake generally followed the pattern of chlorophyll concentration (Figure 5-26). 

The lower estuarine stations (RM and FP) had rates of < 0.4 µmol-N L-1 h-1 and < 3.0 

µmol-C L-1 h-1 of nitrogen and carbon respectively throughout the sampling. 

During the sampling period, the nitrogen uptake rates for nitrate and ammonium were 

generally < 2 and 0.5 µmol-N L-1 h-1, respectively, except on 10th July 2014 at the GM 

station (Figure 5-26 A and B). The carbon uptake rates were generally < 5 µmol-C L-1 h-1 

at all study sites, except the GM site on two sampling days which corresponded to high 

nitrate uptake (Figure 5-26 C). Figure 5-27 shows scatter plots of nitrate, ammonium and 

carbon uptake rates compared with chlorophyll and cell carbon concentrations for all 

incubations. Carbon uptake rates  (µmol-C L-1 h-1) compared with fluorescence derived 

chlorophyll concentrations (µg L-1) and phytoplankton carbon biomass (µg C L-1)  for all 

stations on each of the sampling days (except for the first sampling date) showed a positive 

relationship (Figure 5-27 E and F). In contrast, however, similar plots comparing nitrate 

and ammonium uptake rates with chlorophyll and carbon biomass concentration showed 

more scatter (Figure 5-27 A– D). 
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Table 5-5: Nitrogen and carbon uptake rates in the Christchurch Harbour estuary; mean 

(bold) and range of variation (parentheses) during the productive summer 

period in 2014. 

 Nitrate Ammonium Carbon 

Station µmol-N L-1 h-1 µmol-C L-1 h-1 

Run at mudeford 0.14 0.09 0.72 

 (0.04 – 0.27) (0.04 – 0.21) (0.26 – 1.89) 

Ferry Pontoon 0.21 0.09 0.83 

 (0.08 – 0.34) (0.04 – 0.14) (0.39 – 2.58) 

Blackberry Point 0.43 0.08 1.23 

 (0.04 – 1.04) (0.03 – 0.11) (0.00 – 3.44) 

Grimbury Marsh 2.13 0.17 4.54 

 (0.54 – 8.63) (0.02 – 0.43) (0.48 – 15.88) 

Christchurch Quay 0.98 0.23 1.32 

 (0.44 – 1.38) (0.11 – 0.47) (0.44 – 2.85) 

Tuckton Bridge 1.00 0.21 1.48 

 (0.41 – 1.81) ( 0.09 – 0.29) (0.23 – 4.16) 
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Figure 5-26: Nitrogen and carbon uptake rates (A) nitrate, (B) ammonium, and (C) carbon 

during transect sampling in the Christchurch Harbour estuary for the six 

estuarine stations. 
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Figure 5-27: Relationship between nutrients uptake rates and fluorescence derived 

chlorophyll a concentrations (A – C), and carbon biomass (D – E) during 

summer 2014 along the Christchurch Harbour estuary. 
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5.3.6 Multivariate data analysis and interpretation 

In order to better understand linkages between variable multivariate analysis that provides 

statistical methods for the study of the cooperative relationships of variables in data that 

contain inter-correlations was used. The patterns of relationships between samples can be 

described by ordination (nMDS) or by cluster analysis. CANOCO was used identify any 

temporal pattern of phytoplankton community change in the Christchurch Harbour estuary. 

5.3.6.1 Environmental data analyses 

Cluster and nMDS analysis of environmental data are based on a normalised Euclidean 

distance after previous log transformation of the data. The cluster and nMDS analysis 

included the variables nitrate, phosphate, silicate, salinity, irradiance attenuation 

coefficient (k), water temperature, oxygen saturation, and turbidity (Figure 5-28 and Figure 

5-29). The stress of nMDS was 0.13. corresponding to a good ordination with no real 

prospect of a misleading interpretation (Clarke et al., 2014). The cluster dentrogram shows 

separation at a normalised Euclidean distance of 2.9 into seven major groups (Figure 5-28).  

 

 

Figure 5-28: Dendrogram for hierarchical clustering of fortnightly transect samples defined 

by selected environmental parameters. The abbreviation of each marker refers 

to the station names, followed by the fortnightly sample. 
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Figure 5-29: nMDS plot of environmental parameter groups for fortnightly transect 

sampling. The abbreviation of each marker refers to the station name, followed 

by the fortnightly sample. 

These results indicate no average square distance of environmental parameters at Tuckton 

Bridge (TB) and Grimbury Marsh (GM) stations from other stations on 10th July and 4th 

September 2014 (group A and E) and low square distance of samples collect on 27th May 

2014 at all stations using SIMPER analysis, considering k, salinity, and phosphate data, as 

those samples were grouped together in group F as shown in Table 5-6. Indeed, all samples 

in group F were collected only from the surface and not at the depth of the highest 

fluorescence as done on other sampling days. Group G corresponds to samples from the 

upper and middle estuarine stations throughout the sampling period except on 27th May 

2014, with grouping by turbidity, oxygen saturation, temperature, and phosphate variables 

(see Table 5-6). Group B includes the lower stations (RM and FP) on 25th June and 24th 

July 2014, while group C contains samples of these stations plus BP and GM from June to 

July 2014. Group D is mostly composed of samples from August to September 2014 at the 

middle and lower estuarine stations with grouping by k, temperature, salinity, and nitrate 

variables (see Table 5-6). The k variable was an important parameter assembling the 

samples in group B, C, D, and F. 
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Table 5-6: Main characteristics of sample groups defined by selected environmental 

parameters for fornightly transect sampling. The abbreviation of each marker 

refers to the station name, followed by the fortnightly sample. 

Group Station & Sample  Parameter % contribution 
Average square 

distance 

A GM-4 single sample - 

B RM-3, RM-5, FP-3, 

FP-5 

k (39), silicate (21),  

temperature (12), nitrate (10) 

1.90 

C RM-2, RM-4, FP-2, 

FP-4, BP-2, BP-3, 

BP-4, BP-5, GM-5 

k (38), temperature (23),  

oxygen saturation (17) 

2.75 

D RM-6, RM-7, RM-8, 

FP-6, FP-7, FP-8, 

BP-6, BP-7,GM-7  

k (28), temperature (21), salinity (19), 

nitrate (14) 

2.44 

E TB-8 single sample - 

F RM-1, FP-1, BP-1, 

GM-1, CQ-1, TB-1 

k (56), salinity (23), phosphate (10) 1.20 

G BP-8, GM-2, GM-3, 

GM-6, GM-8, CQ-2, 

CQ-3, CQ-4, CQ-5, 

CQ-6, CQ-7, CQ-8, 

TB-2, TB-3, TB-4, 

TB-5, TB-6, TB-7 

turbidity (42), oxygen saturation (18), 

temperature (12), phosphate (11) 

2.89 

5.3.6.2 Phytoplankton taxa and biomass data analyses 

A shade plot (Figure 5-30) indictes the most important species for carbon biomass from 

transect samples. The cryptomonad and dinoflagellate groups show a clear pattern 

followed by the diatom and chlorophyte groups from May to September in 2014. The 

abundant dinoflagellate species, Kryptoperidinium foliaceum, gave the most weight in July 

particularly in the mid-estuary, while the cryptomonads species, Cryptomonas sp. and 

Rhodomonas sp. was the major biomass after the dinoflagellate bloom in August 2014. The 

cryptophyte species, Cryptomonas sp. and Rhodomonas sp. were most dominant during the 

summer time. The riverine diatom species Diatoma vulgare had the most biomass in the 

samples from May to June 2014, whereas, the coastal diatom species such as Chaetoceros 
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spp. and Guinardia delicatula had a significant biomass as salinity increased mid-estuary 

in August and September 2014. The carbon biomass of the pennate diatom Navicula sp.1 

had a high weighting throughout the sampling period. 

 

Figure 5-30: Shade plot indicating carbon biomass of each phytoplankton species (4th-root 

transformed data on a log scale) for transect samples. The abbreviation of each 

marker refers to the station name, followed by the fortnightly sample. 

Cluster and nMDS analysis of phytoplankton species carbon biomass are based on Bray-

Curtis similarities. The stress of nMDS was 0.16, which indicates a potential useful 2-

dimensional picture, though too much reliance should not be placed on the detail of the 

plot, and cross-checks of any conclusions should be made against those from an alternative 

method, like the superimposition of cluster groups (Clarke et al., 2014). Four biomass 

groups can be identified at 69% Bray-Curtis similarity level in the clusters (Figure 5-31) 

and on the nMDS analysis (Figure 5-32). 
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Group A is composed of all samples that were collected on 27th May 2014 plus the samples 

at the TB and CQ stations between June and July 2014, considering several phytoplankton 

species were group together using the SIMPER analysis (Table 5-7). Group B represents 

samples from the middle and lower estuarine stations on 21st August and 4th September 

2014, while group D is mainly composed of the high biomass samples from the RM and 

FP stations between June and mid-August 2014. Furthermore, these two groups were close 

on the 2D nMDS plot as shown in Figure 5-32 and the samples in group B had the highest 

percentage of similarity (Table 5-7). Group C mostly represents samples from the mid- and 

upper estuary throughout the sampling period except the samples collected on 27th May 

2014 and the dinoflagellate bloom sample (GM-4) is included with this group. 

 

 

Figure 5-31: Dendrogram for hierarchical clustering of samples defined by phytoplankton 

carbon biomass for transect samples. The abbreviation of each marker refers to 

the station name, followed by the fortnightly sample. 
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Figure 5-32: nMDS plot of samples defined by phytoplankton species/taxon carbon 

biomass for transect samples. The abbreviation of each marker refers to the 

station name, followed by the fortnightly sample. 

Some temporal changes are entering to note. Species in the mid- and upper estuary from 

group A, initially present in the first sampling day on 27th May 2014 were not replaced by 

the other species at these stations. Whereas, the lower estuary changed from cryptomonads 

and dinoflagellate species from group C and D during June to the mid-August 2014. These 

biomass species assemblages were later observed to be abundant in the middle estuary and 

were probably flushed out from the estuary during this period. A major species from group 

B in the mid- and lower estuary on 21st August and 4th September 2014 was the marine 

species Guinardia delicatula and this gave up to a 9.3% contribution as shown in Table 

5-7. 

Rhodomonas spp., Cryptomonas spp., and Kryptoperidinium foliaceum were important 

contributors to several groups. Some groups are differentiated by the species associated 

with these biomass species and others by the percentage of contribution of these species, 

that peak at group C. Their cell sizes are large compared with other species and occurred in 

high abundance during the sampling period. Cryptomonas spp. and K. foliaceum are the 

important biomass contributors in the groups. 
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Table 5-7: All characteristics of sample groups by phytoplankton species for transect 

samples during the high productive period of 2014 in the Christchurch Harbour 

estuary. 

Grou

p 
Station and sample  

Species average carbon biomass as % 

contribution 

% of 

similarity 

A RM-1, FP-1, BP-1, 

GM-1, CQ-1, TB-1, 

GM-2, CQ-2, TB-2, 

CQ-3, TB-3, CQ-4, 

TB-4, CQ-5, TB-5  

Navicula sp.1 (4.9), Scenedesmus spp. (4.4), 

Rhizosolenia spp. (4.4), Cocconeis spp.(3.9), 

Melosira spp. (3.8), Stephanodiscus spp. 

(3.8), Amphora spp. (3.6) 

75.9 

B RM-7, FP-7, BP-7, 

GM-7, RM-8, FP-8  

Guinardia delicatula (9.3),  

Cryptomonas spp. (6.4),  

Kryptoperidinium foliaceum (5.9),  

Navicula sp.1 (5.3), Coscinodiscus sp. (4.5), 

Teleaulax spp. (4.1), Rhizosolenia spp. (4) 

78.3 

C BP-2, BP-3, GM-3, 

FP-4, BP-4, GM-4, 

BP-5, GM-5, GM-

6, CQ-6, TB-6, 

CQ-7, TB-7, BP-8, 

GM-8, CQ-8, TB-8  

Cryptomonas spp. (7.8), Kryptoperidinium 

foliaceum (7.5), Navicula sp.1 (5),  

Rhodomonas spp. (4.4), Cocconeis spp. (3.9), 

Scenedesmus spp.(3.5),  

Rhizosolenia spp. (3.5) 

73.8 

D RM-2, FP-2, RM-3, 

FP-3, RM-4, RM-5, 

FP-5, RM-6, FP-6, 

BP-6 

 

Rhodomonas spp. (5.5),  

Cryptomonas spp.(5.5),  

Kryptoperidinium foliaceum (4.7),  

Navicula sp.1 (4.7),  

unidentified dinoflagellate (4.2),  

Teleaulax spp. (4.2), Chaetoceros spp. (4.1), 

Navicula spp. (3.5), Cocconeis spp. (3.5) 

72.1 
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5.3.6.3 Relation of environmental and biological parameters 

 

Figure 5-33: Result of RDA analysis, relationships between carbon biomass of main 

phytoplankton groups and selected environmental variables in the Christchurch 

Harbour estuary during the summer months in 2014. The plot represents taxa 

carbon biomass (blue thin lines), the significant explanatory variables (black 

thick lines) and fortnightly sampling (closed colour symbol; blue = 1st, green = 

2nd, yellow = 3rd, pink = 4th, purple = 5th, brown = 6th, red = 7th, grey = 8th). 

Constrained CANOCO RDA analysis (see Section 2.12, Figure 5-33) shows the 

occurrence of the main phytoplankton carbon biomass in relation to the selected 

environmental variables (nitrate, phosphate, silicate, water temperature, oxygen saturation, 

salinity, turbidity, and irradiance attenuation coefficient (k)) throughout the Christchurch 

Harbour estuary. The first axis (x-axis) of the analysis explained most of the variance 

(eigenvalue = 72.8%, cumulative percentage variance between taxa and environmental 

parameters = 93.0%, whereas all canonical axes explained 100% of the variance (axis 1, P 

< 0.001; all axes, P < 0.001). This means that the arrows displayed closer to the x-axis 

explained most of the variability in the data and environmental variables explained 100% 

of the variation of the selected taxa biomass when all four axes were analysed together. 
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Table 5-8: Eigen factor (λ) of each explanatory variable in order of the variance explained 

when analysed as single factor (λ1, marginal effects) or when included in the 

model where other forward selected variables are analysed together (λa, 

conditional effects). Significant P-values (*P < 0.1) and (** P < 0.05) 

represent the variables that together explain the variation in the analysis for the 

transect sampling in 2014. 

Marginal Effects  Conditional Effects    

Variable  λ1 Variable λa P F  

k  0.47 k 

salinity 

%oxygen  

phosphate 

temperature 

nitrate 

silicate 

turbidity 

0.47 0.001** 40.41  

salinity  0.09 salinity 0.20 0.001** 27.49  

%oxygen  0.08 %oxygen 0.04 0.008** 5.38  

phosphate  0.05 nitrate 0.03 0.004** 6.13  

temperature  0.05 temperature 0.02 0.034** 3.56  

nitrate  0.03 silicate 0.02 0.026** 3.52  

silicate  0.02 phosphate 0.01 0.235 1.39  

turbidity  0.02 turbidity 0.01 0.230 1.43  

        

Axes                                1 2 3 4 Total variance 

 Eigenvalues : 0.728 0.037 0.016 0.015 1 

 biocarbon-environment correlations : 0.930 0.695 0.612 0.637  

 Cumulative percentage variance      

    of biocarbon data : 72.8% 76.5% 78.1% 79.6%  

    of biocarbon-environment relation: 91.4% 96.1% 98.1% 100.0%  

 Sum of all eigenvalues       

      

       

                1 

 Sum of all canonical eigenvalues       

      

       

                0.796 

 
Forward selection showed that of all eight environmental parameters (Table 5-8) included 

in the RDA analysis, six environmental factors (k, salinity, oxygen saturation, nitrate, 

temperature, and silicate) explained the variance in the phytoplankton taxa biomass when 

analysed together. All the forward-selected variables were analysed together (conditional 

effects, referred to λa in Table 5-8), and k was the most significant explanatory variable (λa 

= 0.47, P = 0.001), followed by salinity (λa = 0.20, P = 0.001), oxygen saturation (λa = 

0.04, P = 0.008), nitrate concentrations (λa = 0.03, P = 0.004), water temperature (λa = 

0.02, P = 0.034), and silicate concentrations (λa = 0.02, P = 0.026) as shown in Table 5-8. 

Phosphate concentrations and turbidity were not significant explanatory variables in this 

analysis. 

5.4 Discussion 

In this chapter the distributions of biological parameters (total chlorophyll a, accessory 

pigments, phytoplankton species abundance by microscope and flow cytometry, carbon 
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biomass, and nutrient uptake rates), physical parameters (salinity, water temperature, 

oxygen saturation, turbidity, and irradiance attenuation coefficient (k)), and chemical 

parameters (inorganic nutrients nitrate, phosphate, and silicate) were compared at eight 

fortnightly intervals for six sampling stations (Run at Mudeford, Ferry Pontoon, 

Blackburry Point, Grimbury Marsh, Christchurch Quay, and Tuckton Bridge) in the 

Christchurch Harbour estuary during summer months in 2014. Statistical multivariate 

programmes (PRIMER and CANOCO) were used to investigate relationships between the 

biological and environmental parameters. 

The objective was to investigate how estuarine phytoplankton populations collected from 

the six sites along the nutrient and salinity gradients would respond to changes in the Stour 

and Hampshire Avon River inputs. The two rivers had a large influence on the abiotic 

conditions in the Christchurch Harbour estuary and also influenced phytoplankton 

distributions by altering both nutrient concentration and salinity. 

Nutrient distribution in the estuary 

Nutrients mainly enter the Christchurch Harbour estuary from the Stour and Hampshire 

Avon Rivers. The upper estuary at Tuckton Bridge and Christchurch Quay had the highest 

nutrient concentrations and lowest salinity values reflecting the influence of the Stour river 

inputs. The lower estuary stations at the Run and Ferry Pontoon in contrast showed the 

lowest concentrations of all nutrients and at high salinity values. 

The input of nitrate, phosphate, and silicate showed similar a pattern during the productive 

period in 2014. From July to August 2014, saline water reached the middle estuary during 

high tide surveys and nitrate concentrations were reduced due to dilution with low nutrient 

seawater and natural estuarine phytoplankton uptake. However, higher concentrations at 

Tuckton Bridge and Christchurch Quay stations were observed and the low concentration 

of nitrate detected at the Grimbury Marsh station was reduced in July 2014 following 

growth of the dinoflagellate Kryptoperidinium foliaceum, and then in August 2014 by the 

cryptomonad bloom. This decrease in nutrient availability could lead to a collapse of the 

phytoplankton bloom, as discussed by Cebrián and Valiela (1999) for temperate 

ecosystems. In the present study, the average nitrate concentration in the river water was 

~500 µmol L-1, which is high when compared with other major river systems, such as the 

Rhine (< 310 µmol L-1), the Colne Estuary (~400 µmol L-1), and the Pearl River (~100 

µmol L-1) (van Bennekom and Wetsteijn, 1990; Underwood et al., 1998; Dai et al., 2006) 

but similar to other UK south coast estuaries (Nedwell et al., 2002). 
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Phosphate concentrations remained low at Grimbury Marsh during the phytoplankton 

growth periods and were below the dilution line (see Appendix C) on 10th and 24th July and 

7th August 2014. A peak in phosphate concentration in September 2014 may have been 

caused by the input of freshwater moving down to the middle estuary. Although in 

estuaries nitrogen is often identified as the most limiting nutrient, nitrogen and phosphorus 

co-limitation is also regularly observed in particular in the low salinity zone of estuaries 

(Paerl and Justić, 2011). However, it is unlikely that phosphate concentration is a limiting 

factor for phytoplankton growth in the Christchurch Harbour estuary as concentrations 

were high throughout the sampling period.  

Silicate concentrations decreased with salinity but with an indication that the Avon River 

was adding silicate to the estuarine system below Christchurch Quay when river flow rates 

were low as evidenced by the silicate values at Grimbury Marsh plotting above the dilution 

line on 10th and 24th July and 7th August 2014 (see Appendix D). The base river flow of the 

Stour is generally less than that for the Avon in summer months (see Figure 5-1 B) and the 

Avon silicate concentration can be higher than the Stour. 

Nutrient uptake rates 

The use of stable isotopes provides an understanding of estuarine food webs and ecosystem 

function (Bouillon et al., 2011). In the present study, the highest phytoplankton biomass 

and nutrient uptake rates were consistently recorded in the middle reaches of the estuary at 

Grimbury Marsh. These finding are in agreement with those of Kotsedi et al. (2012) in the 

Sundays Estuary and Dalu et al. (2015) in the Kowie Estuary, South Africa, while the 

macrotidal Southampton Water estuary showed high nutrient uptake rates in both upper 

and middle areas of the estuary (Torres-Valdés and Purdie, 2006). High nitrate and 

ammonium uptake rates of up to 0.47 and 8.63 µmol-N L-1 h-1, respectively measured in 

the middle estuary are close to those measured by Torres-Valdés and Purdie (2006) in the 

inner Southampton Estuary of 3.97 and 5.15 µmo-N L-1 h-1 for nitrate and ammonium, 

respectively. Uptake rates from the middle of the Christchurch Harbour estuary are higher 

than uptake rates observed in other European estuaries by Middelburg and Nieuwenhuize 

(2000a), and are also higher than some other UK estuaries such as the Thames estuary 

(Middelburg and Nieuwenhuize, 2000b), the Tweed estuary (Shaw et al., 1998a), and the 

Humber estuary (Shaw et al., 1998b). Kotsedi et al. (2012) attributed the high biomass in 

the Sundays estuary to the geo-hydro-morphological state of the middle reaches, which 

were turbid, with the intertidal sediment consisting of clay and sand. Similar sediment 
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characteristics (SPM) were observed in the upper and middle reaches of the Christchurch 

Harbour estuary, suggesting a similar situation may apply. 

A wide range of carbon uptake rates by the natural estuarine phytoplankton was measured 

along the estuary Table 5-5. In this study, the lowest carbon uptake rate was observed in 

the lower reaches of the Christchurch Harbour estuary, while the highest rate occurred in 

the mid-estuary at Grimbury Marsh where high nitrogen uptake rates were measured. 

These finding are in agreement with Matson and Brinson (1990) for the Pamlico Estuary 

and Neuse Rivers, USA. Primary production can be estimated based on nutrient uptake 

(Han et al., 2012) and it seems that the mid-estuary of Christchurch Harbour was an 

important zone of phytoplankton growth during the summer during high tide. 

Phytoplankton response to salinity and nutrient 

The concentration of chlorophyll a using the YSI 6600 multiprobe measurement peaked 

(93 µg L-1) in waters with salinity of about 32 – 33 in the mid-estuary at Grimbury Marsh 

at high tide on 10th July 2014 (Figure 5-34). Estuarine chlorophyll a concentration is often 

highest in waters of lower salinity (Boynton et al., 1982; Putland et al., 2014). For 

example, although peak concentrations vary (e.g., 5 to 60 µg L-1), chlorophyll a 

concentrations were highest in lower salinity waters (typically below 20) of Apalachicola 

Bay, USA (Putland et al., 2014), the estuary of Mundaka, Spain (Ruiz et al., 1998), and the 

Schelde Estuary, the Netherlands (Kromkamp and Peene, 1995).  

Phytoplankton need many chemical elements for growth but two critical ones are nitrogen 

and phosphorus (Paerl and Justić, 2011). However, canonical correspondence analysis 

indicated that some phytoplankton carbon biomass shows a positive correlation with nitrate 

and silicate concentrations particularly for chlorophytes, chrysophytes, and cyanophytes 

throughout the sampling period but had a negative with other groups (diatoms and 

cryptomonads). Thus nutrient concentrations are not likely to be limiting phytoplankton 

growth (bloom conditions) during the summer due to the nutrient availability in the 

estuary. Lancelot and Muylaert (2011) stated that the response of phytoplankton to nutrient 

loads differs from estuary to estuary, from time to time, and from segment to segment 

within any part of an estuary. 
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YSI salinity

0 5 10 15 20 25 30 35

Y
S

I 
ch

lo
ro

p
hy

ll 
a
 (

g 
L

-1
)

0

20

40

60

80

100
27 May 14
12 Jun 14
25 Jun 14 
10 Jul 14
24 Jul 14
7 Aug 14
21 Aug 14
4 Sep14

 

Figure 5-34: Relationship between vertical chlorophyll a concentrations and salinity using 

the YSI 6600 multiprobe measurements during summer 2014 along the 

Christchurch Harbour estuary. 

Phytoplankton response to hydrodynamics 

In the present study, water temperature varied from 8.4 – 21.7 ºC and positively correlated 

to the dinoflagellate and cryptomonad communities in the estuary during the summer 

blooms, suggesting they are the phytoplankton groups with a strong response to warmer 

temperatures. These two groups showed a reverse correlation with nutrients in the RDA 

analysis, suggesting that they are the phytoplankton groups with a strong response to 

riverine inputs of nutrients and have a high potential to use nutrient sources during 

photosynthesis and also have the highest nitrogen and carbon uptakes rates during their 

bloom periods. What controls the phytoplankton community in the estuary is not yet clear. 

However, such a change in the community may have impacts on other organisms in the 

food web as well as the water quality of the estuary. The temperature optimum for the 

dinoflagellate bloom of Kryptoperidinium foliaceum (in the range of 17 – 21 ºC) and high 

fucoxanthin concentration (42 µg L-1) are in general agreement with those of Figueroa et 

al. (2009) and Manuel et al. (2012) that reported fucoxanthin-containing dinoflagellates 

had the highest division rates at the temperatures tested (19 and 23 ºC). Diatom and 

cryptomonad groups were also positively associated with the water temperature in the 

RDA analysis.  



CHAPTER 5 

257 

In this study, turbidity values were generally observed to be < 30 NTU and had negative 

correlations with freshwater phytoplankton groups (chlorophytes, chrysophytes, and 

cyanophytes) during the sampling period. Cloern (1987) pointed out that turbidity has been 

considered as the main factor controlling light availability and phytoplankton growth in 

estuaries. The main phytoplankton biomass groups (cryptomonads and diatoms) were 

positively correlated with the turbidity and also the irradiance coefficient (k) was high (3.9 

m-1) during the dinoflagellate bloom in the middle estuary. The spring tidal currents did not 

obviously cause increased estuarine turbidity and probably the narrow entrance (~40 

metres long) and microtidal nature of the estuary (< 2 metres tidal range) had some impact. 

Furthermore, in macrotidal estuaries the dinoflagellates are usually more abundant in the 

summer during reduced periods of turbidity (Valdes-Weaver et al., 2006).  

In the previous chapter it is shown that the river flow significantly influenced the 

phytoplankton population at the entrance of the estuary at low tide (see Section 4.3.6.3). 

This factor is an important mechanism in controlling vertical stratification of the water 

column in the estuary because it increases the water residence time. During the summer of 

2014, the river discharge was < 20 m3 s-1 from the Stour and Hampshire Avon Rivers 

leading to salinity intrusion into the mid-estuary and an increase in water residence times 

providing good conditions for growth of flagellates. 

Estuarine phytoplankton taxonomic composition  

In the present study diatoms, cryptomonads, and dinoflagellates have shown a positive 

correlation with salinity because these groups are adapted to dynamic estuarine 

environments (Lionard et al., 2005). The salinity gradient had a direct influence on the 

composition of the phytoplankton population (Figure 5-35). Diatoms were abundant in 

waters with salinity between 10 and 35, and dinoflagellates and cryptomonads were also 

important in this salinity range (Figure 5-35 A, D, and E). However, the highest abundance 

of dinoflagellates was observed at a salinity of 12 (Figure 5-35 D). The chlorophytes, 

chrysophytes, and cyanophytes dominated at low salinity and may have been riverine 

species entering the upper estuary (Figure 5-35 B, C, and F). Due to the nutrient-enriched 

nature of estuaries, chlorophytes and cyanophytes are typically considered to be common 

features in low salinity waters (Carstensen et al., 2015) 



CHAPTER 5 

258 

2D Graph 1

B
a
c
ill

a
ri

o
p
h
y
ta

 (
1
0
3
 c

e
lls

 m
L

-1
)

0

2

4

6

8

10

RM

FP

BP

GM

CQ

TB

2D Graph 1

D
in

o
p
h
y
ta

 (
1
0
3
 c

e
lls

 m
L

-1
)

0

2

15

20

2D Graph 1

C
h
lo

ro
p
h
y
ta

 (
1
0
3
 c

e
lls

 m
L

-1
)

0

10

20

30

40
2D Graph 1

C
ry

p
to

p
h
y
ta

 (
1
0
3
 c

e
lls

 m
L

-1
)

0

5

10

15

20

2D Graph 1

Salinity

0 10 20 30 40

C
h
ry

so
p
h
y
ta

 (
1
0
1
 c

e
lls

 m
L

-1
)

0

2

4

6

8

10
2D Graph 1

0 10 20 30 40

C
y
a
n
o
p
h
y
ta

 (
1
0
2
 c

e
lls

 m
L

-1
)

0

2

4

6

8

10

(A)

(B)

(C)

(D)

(E)

(F)

 

Figure 5-35: Abundance (cells mL-1) of (A) bacillariophyta, (B) chlorophyta, (C) 

chrysophyta, (D) dinophyta, (E) cryptophyta, (F) cyanophyta during the 

Christchurch Harbour transect sampling in 2014. 

This is the first comprehensive study of phytoplankton communities in the Christchurch 

Harbour estuary. The lower estuary was dominated by marine waters and the 

phytoplankton assemblages showed the same structure and temporal dynamic as those of 

coastal waters. During the current investigation, the dinoflagellate species, 

Kryptoperidinium foliaceum, occurred mainly in the middle reaches of the estuary, 

suggesting that this species can survive in relatively high salinity waters. The bloom was 

initiated at Grimbury Marsh on 10th July 2014 (18.3 × 103 cells mL-1), resulting in a 

chlorophyll a peak value of 93.0 µg L-1 with a temperature of 17.3 ºC and the irradiance 

attenuation coefficient was 3.9 m-1. K. foliaceum forms non-toxic red tide blooms in the 

Indian River Lagoon in the USA (Phlips et al., 2011) and it has the highest growth rate 

between 19 and 23 ºC (Figueroa et al., 2009). This bloom was not observed at other 

stations or sampling days in Christchurch Harbour although it is possible samples were not 

always collected where maximum chlorophyll levels were present. In some shallow coastal 

ecosystems blooms can develop only when the river discharge decreases to a level at which 

the water residence time is longer than the phytoplankton population doubling time 
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(Cloern, 1996). Phytoplankton growth rates have been estimated by combining carbon 

uptake rates and cell carbon concentrations for each incubation. Cell growth rates ranged 

from 0.4 to 1.5 day-1 during summer months when river flow rates were reduced (Figure 

5-36). Estimates of summer water residence times in the estuary under these conditions 

were greater than 2 days indicating that phytoplankton net growth could potentially occur 

in the mid estuary as was seen at Grimberry Marsh during July and August 2014. The 

reduced river discharge shifts the salinity gradients in river-dominated estuaries which 

indicate the importance of salinity changes to estuarine ecology (Attrill and Rundle, 2002). 

In the Taw estuary (SW England), it was shown that the major factors influencing the 

phytoplankton blooms in the upper and middle estuary during the summer in 2008 were 

two hydrodynamic processes, river flow and tidal amplitude (Maier et al., 2012). 

In the upper and middle estuary the cryptophyte group was the main phytoplankton species 

following the dinoflagellate bloom. Rhodomonas spp. and Cryptomonas spp. were 

respectively observed in significant numbers at Grimbury Marsh on 24th July 2014 (13.7 × 

103 cells mL-1, 20.9 µg L-1) and 21st August 2014 (10.9 × 103 cells mL-1, 49.0 µg L-1), 

when temperature and salinity ranged 15.5 – 21.6 ºC and 30.2 – 33.7, respectively. In the 

summer period it seems that coastal water moved further into the estuary due to reduced 

riverine input and with increasing water temperature providing favourable conditions for 

the development of cryptomonads in the estuary with sustained high abundances over a 

period of several weeks in the middle estuary. Cryptomonads are an important components 

of phytoplankton ecosystems (Hill, 1991) and are common in freshwater ecosystem and 

often forms blooms in eutrophic lakes (Weng et al., 2007). This genus also grows widely 

in the Chinese coastal areas and is known as a HAB species (Hu et al., 2002). However, 

cryptomonad bloom events did not appear to affect other estuarine organisms in the 

Christchurch Harbour estuary.  
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Figure 5-36: Phytoplankton growth rate (day -1) at the six estuarine stations during the 

Christchurch Harbour transect sampling in 2014. 
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Estuarine HPLC pigment composition 

Few studies of HPLC phytoplankton pigments have been performed in estuaries and rivers 

(Lionard et al., 2005; Lionard et al., 2008). Overall, accessory pigment composition was a 

good descriptor of changes observed in the phytoplankton community in Christchurch 

Harbour. In the present study the pigments were variable within and among sampling sites, 

and there were changes in pigment composition during the sampling period. In samples 

from the estuary transect, microscopic observations revealed that the peaks of chlorophyll 

a and of fucoxanthin at Grimbury Marsh on 10th July 2014 were associated with biomass 

of the dinoflagellate Kryptoperidinium foliaceum of 18.7 × 103 µg C L-1. This species was 

recently observed as a fucoxanthin-containing dinoflagellate by Manuel et al. (2012) and 

does not contain peridinin which is often used as an indicator pigment for dinoflagellates. 

This dinoflagellate species contains a tertiary plastid from a diatom endosymbiont 

(Kempton et al., 2002; Imanian and Keeling, 2007; Imanian et al., 2010). the In contrast, 

fucoxanthin has been reported as the dominant accessory pigment in the Urdaibai estuary, 

where it was attributed to diatoms (Ansotegui et al., 2001) and similarly in the Tagus 

estuary (Gameiro et al., 2007). There are a several advantages with the HPLC method, for 

example, it can be used to analyse a large number of samples over an extended aquatic area 

and has been employed particularly in marine ecosystems (Goericke, 1998) and eutrophic 

estuary systems (Paerl et al., 2005). However, the combined use of HPLC analysis and 

microscopic enumeration is still required for accurate assessment of phytoplankton 

communities since some pigments are found in more than one group of microalge e.g. 

fucoxanthin is present in diatoms, chrysophytes, and a few dinoflagellates. As stated by 

Millie et al. (1993) and Ansotegui et al. (2001) pigment analysis coupled with microscopic 

technique provides the most accurate characterisation of phytoplankton assemblages. 

5.5 Conclusion 

In this study it was found that most of the bloom species experienced strong, tidally-driven, 

longitudinal displacements during high tide, and that daily variations in the rate of vertical 

mixing by tidal stirring (Cloern, 1991) might control phytoplankton bloom dynamics. 

Different populations of estuarine phytoplankton were observed over the course of the 

summer in 2014 with blooms occurring in the middle of Christchurch Harbour often in 

associated with low salinity water. 
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Chapter 6:  Synthesis and conclusions 

6.1 Synthesis of data and comparison with previous years 

The main freshwater inputs into the Christchurch Harbour estuary occur through the rivers 

Stour and Hampshire Avon. River flow rates over a fourteen year period show clear 

seasonal variations in both rivers, with increased flow rates occurring in winter months and 

reduced flow rates in summer (Figure 6-1). The summer base flow rates in both rivers was 

similar for most of the fourteen year record shown in Figure 6-1 with the Avon base flow 

sustained at a slightly higher level than the Stour due it being fed by the chalk aquafer 

(Murray, 1966). The river Stour differs from the Hampshire Avon in winter by showing 

rapid increases followed by decreses in flow (i.e. flashy behaviour) due to the rapid run off 

from its tertiary catchment, The period of sampling undertaken during the current project 

coincided with a summer period of low flows (similar to previous years) in both rivers 

followed by sustained high rates of flow from December 2013 to March 2014 caused by 

high levels of winter rain fall. These exceptionally high flow rates were unusual when 

compared with winter flows from most of the previous years apart from the winters of 

2000/2001 and 2002/2003. Seasonal changes in river flow rates will play a dominant role 

in controlling the water residence time within the Christchurch Harbour estuary. Estimates 

of water residence times calculated for the period April 2013 to April 2014 using the 

method of Dyer (1997) range from 1.5 to 2.5 days during summer months and decreased to 

between 0.3 and 0.5 days during the high flow period (December 2013 to March 2014; 

week 34 to 49; Figure 6-2; Appendix E). Measurements of chlorophyll concentration at 

Mudeford Quay over this period show that concentrations were >5 µg L-1 when water 

residence times were more than 1.5 days during late spring and summer 2013 suggesting 

phytoplankton populations were showing net growth in this period. 
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Figure 6-1: Mean daily flow (m3 s-1) of the Hampshire Avon River (A) and the Stour River 

(B) from 2000 to 2014 by the Environmental Agency. 

Some chlorophyll a concentration data recorded by the Environment Agency was available 

in the Hampshire Avon at Knapp Mill, and within the estuary (Christchurch Quay, 

Grimberry Marsh, and the Run at Mudeford) for the period 1990 – 2003 (Figure 6-3). Peak 

concentration of chlorophyll were typically detected by the EA at Knapp Mill in some 

years during April (Figure 6-3 D) which was in agreement with the high concentrations 

detected in April 2013 during the current study (Figure 3-8 C). At Mudeford the EA data 

also showed similar seasonal changes in chlorophyll a to those detected during the weekly 

sampling from April 2013 to April 2014 (Figure 6-3 C and Figure 4-6). In the mid estuary 

at Grimmberry Marsh and Christchurch Quay the EA data indicated spring and summer 

chlorophyll concentrations were typically >50 µg L-1 which compares to peak values 

detected during summer 2014 surveys of the estuary during this work (Figure 6-3 A, B and 

Figure 5-11). The European Union Water Framework Directive (C.E.C., 2000) defines a 

range of chlorophyll levels used in establishing the phytoplankton biological quality in all 

waters. In this study, some spring-summer concentrations of chlorophyll were detected 

over the generic thresholds (>10 µg L-1)  in both riverine and estuarine samples indicating 

(A) 

(B) 
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the Christchurch Harbour estuary and the Rivers Stour and the Hampshire Avon can be 

considered to be a risk boundary condition, according to classificated by Devlin et al. 

(2007). 

 

Figure 6-2: Water residence time (day) in the Christchurch Harbour estuary and 

concentration of chlorophyll a (µg L-1) at Mudeford Quay during April 2013 to 

April 2014. 
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Figure 6-3: Chlorophyll a concentrations at Christchurch Quay (A), Grimbury Marsh (B), 

the Run at Mudeford (C), and Knapp Mill (D) during 1990 – 2003 by the 

Environment Agency. 

6.2 Conclusions and main findings of this research 

The results in this thesis have been used to determine the response of the estuarine 

phytoplankton community to changes in macronutrient input to the Christchurch Harbour 

estuary, and their role in cycling of macronutrients between aqueous and particulate forms. 

In Chapter 3, it was demonstrated that the riverine phytoplankton population in the Stour 

River at Throop and Iford Bridge peaked during the spring period with the diatom 

Stephanodiscus sp. dominanting followed by chlorophyte species being most abundant in 

summer months. The nano-phytoplankton (2.0 – 20.0 µm in diameter) was the main 

component of phytoplankton biomass during the productive period in both rivers but with 

lower abundance and biomass in the Hampshire Avon River compared to the Stour. All 
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inorganic nutrients (nitrate, phosphate, and silicate) were found to be in high concentration 

in the Stour indicating this river can be considered to be eutrophic during productive 

periods of the year. The river discharge and water temperature were the main 

environmental factor controlling the changes in phytoplankton community at both rivers 

sites. 

In Chapter 4, the changes estuarine phytoplankton community at the estuary entrance was 

reported for a year from April 2013 to April 2014. The pattern of changes in chlorophyll 

concentration and phytoplankton abundance was similar to the results for the river sites for 

high flow periods of the year when low salinity waters were detected at low tide at 

Mudeford Quay. Several environmemtal parameters were shown to be influencing the 

phytoplankton communities in the outer estuary during the year with the river discharge 

and salinity particularly important factors. The nano-sized phytoplankton were the main 

component of phytoplankton biomass during the productive period of the year – similar to 

results from the river sites. 

In Chapter 5, it was demonstrated that the dinoflagellate Kryptoperidinium foliaceum 

formed blooms in the middle estuary at high tide in July 2014 followed by high abundance 

of cryptomonads in August 2014. The majority of freshwater phytoplankton species in 

terms of abundance did not penetrate saline water. The mid-estuary showed the highest 

nitrate and ammonium uptake rates with high rates of carbon uptake by the natural 

estuarine phytoplankton. Nitrate showed little evidence of non conservative behaviour in 

Christchurch Harbour on most sampling dates however (Appendix B) despite high uptake 

rates detected at mid estuary stations in July and August 2014. The irradiance attenuation 

coefficient (k) and salinity were important environmental parameters influencing the 

distribution of estuarine phytoplankton populations together with the high levels of nutrient 

availability that promoted eutrophic conditions in the middle estuary.  

The following is a list of main findings from this research: 

 The lower reaches of the Stour River at Throop and Iford Bridge prior to river 

entering the Chrischurch Harbour estuary can be considered eutrophic based on the 

level of macronutrients, annual mean of chlorophyll a concentration, and 

phytoplankton biomass results from the weekly surveys. This is in contrast to lower 

reaches of the Hampshire Avon River that has much lower concentrations of 

nutrients and consequently less chlorophyll is detected in these waters. 

Phytoplankton show seasonal changes in abundance and production in the Stour 
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and Hampshire Avon Rivers with increases particularly during the spring-summer 

period. In contrast, in the winter period, low chlorophyll a concentration and 

phytoplankton abundance was measured during periods of high river flow. 

 Blooms of the diatom Stephanodiscus sp. observed during the late spring and early 

summer at Throop on the Stour River are caused by rich nutrient conditions due to 

winter or early spring input through rainfall and runoff and the ability of this 

species to grow rapidly and acclimate to light conditions that would be limiting for 

other phytoplankton species. 

 The Christchurch Harbour estuary can be considered to be potentially eutrophic on 

the basis of high summer levels of chlorophyll a, phytoplankton biomass, and 

nutrients that were measured during the estuarine transects. The estuary receives a 

high nutrient loading from the river discharges into the system but with reduced 

flows in summer the increased estuarine residence time provides good conditions 

for growth of photosynthetic flagellates in saline waters of the mid estuary. The 

distribution of nutrients, chlorophyll, accessory pigments, and phytoplankton 

abundance at the mouth of the estuary at Mudeford Quay reflected the conditions in 

the rivers when sampled at low tide during high river flow periods of the year.  

 Accessory pigments detected by HPLC analysis from the riverine and estuarine 

samples were in general a good descriptor of changes observed in the 

phytoplankton communities. The bloom of cryptomonads was confirmed by high 

levels of alloxanthin and diatoms mostly indicated from fucoxanthin concentration. 

In contrast, though the presence of the dinoflagellate K. foliaceum correlated with 

peaks in fucoxanthin rather than the usual dinoflagellate indicator pigment of 

peridinin containing. The use of microscopic observation of phytoplankton samples 

therefore must be used in combination with HPLC pigment analysis to confirm the 

presence of some species. 

 The abundance of phytoplankton using microscopic techniques from both rivers 

and the estuary were shown to underestimate total cells detected by the CytoSense 

flow cytometer due to the smaller phytoplankton being omitted from the 

microscope counts. 

6.3 Recommendations and future work 

The results of this thesis have demonstrated that the lower reaches of the Stour River and 

the Christchurch Harbour estuary can be considered to be eutrophic systems. There have 
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been only intermittent previous data on chlorophyll and nutrient concentrations in 

Christchurch Harbour collected by the Environment Agency. It is suggested therefore that 

it is important to continue monitoring the water quality, phytoplankton species, and 

abundance in the estuary, particularly in the middle estuary to establish a longer temporal 

dataset. This dataset will help better understand the conditions promoting blooms of 

different phytoplankton species and it will be important to establish if any toxic species 

exist in the estuary. The discharge of river water to the estuary is a major source of 

nutrients that has little impact in non-productive months when the estuary contains little 

saline water. However, it has been shown that in summer months during reduced river flow 

conditions high water residence times in the estuary lead to development of extensive 

blooms of dinoflagellates that reduce the water quality of the estuary. The top-down 

control of phytoplankton populations in the estuary was not assessed in this research but it 

is likely there is minimal benthic grazing by marine filter feeders (e.g. shell fish) due to the 

freshwater nature of the harbour during winter. The top-down control of estuarine 

phytoplankton through grazing by zooplankton, benthic filter feeders, and juvenile fish 

would be an important future area of research as these could be important in a shallow 

estuary. The data sets obtained through this research could be used to validate a coupled 

hydrodynamic and simple phytoplankton growth model to provide a prediction of the 

effect of future drier summers or wetter winters on the eutrophication status of the estuary. 
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Appendix A  

 Dates on which spot samplings were collected from the three sampling stations between 

16th April 2013 and 10th April 2014. 

 

week 

Station 

Date 

Throop, 

Stour River 

Iford Bridge, 

Stour River 

Knapp Mill, 

Avon River 

Mudeford Quay 

Christchurch H. 

1 16-Apr-13  -   

2 25-Apr-13  -   

3 03-May-13  -   

4 10-May-13  -   

5 17-May-13  -   

6 23-May-13  -   

7 31-May-13  -   

8 06-Jun-13      

9 14-Jun-13      

10 20-Jun-13      

11 28-Jun-13      

12 04-Jul-13      

13 10-Jul-13      

14 17-Jul-13      

15 23-Jul-13      

16 31-Jul-13      

17 06-Aug-13      

18 14-Aug-13      

19 20-Aug-13      

20 27-Aug-13      

21 03-Sep-13      

22 11-Sep-13      

23 16-Sep-13      

24 24-Sep-13      

25 01-Oct-13      

26 11-Oct-13      

27 16-Oct-13      

28 24-Oct-13      

29 30-Oct-13      

30 04-Nov-13      

31 11-Nov-13      

32 18-Nov-13      

33 24-Nov-13      

34 02-Dec-13      
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week 

Station 

Date 

Throop, 

Stour River 

Iford Bridge, 

Stour River 

Knapp Mill, 

Avon River 

Mudeford Quay 

Christchurch H. 

35 09-Dec-13      

36 17-Dec-13      

37 30-Dec-13         

38 07-Jan-14         

39 15-Jan-14      

40 23-Jan-14      

41 30-Jan-14      

42 06-Feb-14      

43 13-Feb-14      

44 21-Feb-14      

45 27-Feb-14      

46 07-Mar-14      

47 13-Mar-14      

48 19-Mar-14      

49 27-Mar-14      

50 04-Apr-14      

51 10-Apr-14      

 Spot samples collected. 

- Samples not collected 

* No HPLC experiment 
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Appendix B  

Nitrate (µmol L-1) versus salinity plots for each day of sampling throughout the 

Christchurch Harbour estuary during the summer months in 2014. Note change of scales 

on the x axis. 
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Appendix C  

Phosphate (µmol L-1) versus salinity plots for each day of sampling throughout the 

Christchurch Harbour estuary during the summer months in 2014. Note change of scales 

on the x axis. 
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Appendix D  

Silicate (µmol L-1) versus salinity plots for each day of sampling throughout the 

Christchurch Harbour estuary during the summer months in 2014. Note change of scales 

on the x axis.
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Appendix E  

Water residence time (day) in the Christchurch Harbour estuary during April 2013 to April 

2014 using the formulation of Dyer (1997). 

 

week 

 

Date 

Throop, 

Stour River 

flow (m3 s-1) 

Knapp Mill, 

Avon River 

flow (m3 s-1) 

Salinity at 

Mudeford Quay 
Residence time 

(day) 

1 16-Apr-13 16.4 26.8 - - 

2 25-Apr-13 10.7 21.8 12.8 0.9 

3 03-May-13 8.8 18.7 1.3 1.5 

4 10-May-13 8.4 18.3 13.2 1.0 

5 17-May-13 8.7 18.0 8.7 1.2 

6 23-May-13 7.0 15.0 5.2 1.7 

7 31-May-13 7.3 14.9 6.1 1.6 

8 06-Jun-13 5.5 12.1 3.6 2.2 

9 14-Jun-13 5.3 12.1 13.7 1.5 

10 20-Jun-13 4.8 11.2 10.5 1.9 

11 28-Jun-13 4.3 10.4 8.8 2.2 

12 04-Jul-13 4.0 9.4 16.3 1.8 

13 10-Jul-13 3.3 8.0 14.0 2.3 

14 17-Jul-13 3.0 7.1 12.7 2.8 

15 23-Jul-13 2.8 6.7 22.5 1.7 

16 31-Jul-13 3.7 7.6 19.9 1.7 

17 06-Aug-13 3.3 7.8 16.1 2.1 

18 14-Aug-13 2.5 6.6 20.7 2.0 

19 20-Aug-13 2.7 6.9 13.9 2.8 

20 27-Aug-13 2.5 6.3 16.5 2.6 

21 03-Sep-13 2.4 5.8 16.7 2.8 

22 11-Sep-13 2.6 6.1 18.4 2.4 

23 16-Sep-13 2.9 7.6 20.3 1.8 

24 24-Sep-13 2.5 6.5 16.9 2.5 

25 01-Oct-13 2.7 6.6 9.5 3.5 

26 11-Oct-13 2.5 6.1 16.5 2.7 

27 16-Oct-13 3.8 7.4 18.7 1.8 

28 24-Oct-13 12.2 12.2 12.9 1.1 

29 30-Oct-13 18.6 14.5 2.9 1.2 

30 04-Nov-13 13.2 16.9 9.3 1.1 

31 11-Nov-13 16.3 16.2 11.7 0.9 

32 18-Nov-13 7.7 11.1 12.7 1.5 

33 24-Nov-13 7.0 10.2 10.9 1.8 

34 02-Dec-13 5.3 9.7 4.6 2.6 

35 09-Dec-13 4.7 9.2 18.0 1.5 
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week 

 

Date 

Throop, 

Stour River 

flow (m3 s-1) 

Knapp Mill, 

Avon River 

flow (m3 s-1) 

Salinity at 

Mudeford Quay 
Residence time 

(day) 

36 17-Dec-13 51.1 26.9 2.6 0.5 

37 30-Dec-13 42.6 54.2 0.9 0.4 

38 07-Jan-14 111.7 94.3 0.2 0.2 

39 15-Jan-14 60.7 87.0 0.3 0.3 

40 23-Jan-14 63.8 80.5 0.3 0.3 

41 30-Jan-14 57.2 84.6 0.3 0.3 

42 06-Feb-14 83.6 85.0 0.3 0.3 

43 13-Feb-14 75.4 93.3 0.3 0.3 

44 21-Feb-14 65.4 87.9 0.3 0.3 

45 27-Feb-14 51.3 79.8 0.3 0.3 

46 07-Mar-14 35.5 69.4 0.3 0.4 

47 13-Mar-14 26.9 60.6 0.3 0.5 

48 19-Mar-14 21.4 46.2 5.1 0.6 

49 27-Mar-14 19.9 36.6 - - 

50 04-Apr-14 20.1 30.6 1.41 0.8 

51 10-Apr-14 20.8 29.0 0.4 0.9 
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