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1 Introduction

When applied to quantum gravity, asymptotic safety is the idea that the Wilsonian renor-

malization group (RG) flow of gravitational couplings approaches a viable interacting non-

perturbative fixed point in the far ultraviolet, such that physical observables are rendered

ultraviolet finite despite perturbative non-renormalisability [1]. Ever since a functional

(a.k.a. “exact” [2]) RG equation adapted to this case, was put forward in ref. [3], a steady

increase of interest in the asymptotic safety programme for quantum gravity has produced

a wealth of results. For reviews and introductions see [4–8].

However, in order to actually calculate anything, some approximations have to be

made. A frequent approximation is to retain only a finite number of local operators in the

effective action. These ‘polynomial truncations’ can therefore can be viewed as built on

a small curvature expansion. Here ‘small’ means with respect to the effective cutoff scale

k. If we write such terms in dimensionless form using k, then such a truncation is really

only justified if these terms remain much less than one. For example writing dimensionless

(a.k.a. scaled) scalar curvature as R̄ = R̄/k2, we require R̄ � 1. (For further discussion
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on this point, see ref. [9]. R̄ is the physical curvature, while a bar indicates that the metric

ḡµν is the background metric.)

In order to go beyond this in a substantive way, it is necessary in effect to keep an

infinite number of such local operators. Then it is possible to treat them without expansion,

at least within some model approximations, and thus explore properties which are invisible

to polynomial truncations, for example singularities at finite scaled curvature, or scaling

laws or asymptotic behaviour when the scaled curvature is diverging. Asymptotic safety if

it makes sense, must also make sense in these regimes.

Here k plays the rôle of an infrared (IR) cutoff imposed by hand on the eigenvalues λ

of some appropriate modified Laplacian for fluctuation fields u:

∆̄u = λ2u . (1.1)

Schematically, ∆̄ = −∇̄2 + Ē, where Ē is some endomorphism depending on the back-

ground metric. We will initially assume that the cutoff is sharp, although we will shortly

address the general case. The problem we address arises when the minimum eigenvalue is

positive [10–13]. It will prove helpful in this case, as shown, to parametrise them as λ2,

and refer to λ (taken positive) as the eigenvalue. Then we have the properties that there

is a minimum eigenvalue λ > 0, and k and λ have the same mass dimension so can be

directly compared.

Let us now note that for a Wilsonian RG ‘step’ to be well defined, it must be possible to

lower k to any strictly positive value, without encountering singularities. The true partition

function is only recovered when the limit k → 0 is taken, removing the cutoff. The following

apparent paradox then arises in the case of interest. What meaning do we attach to a large

curvature regime where k is smaller than any eigenvalue? On the one hand the passage

k → 0 at fixed physical curvature, corresponds to exploring ever larger dimensionless

curvature, and we have already noted that the solutions must continue to be smooth for

any positive k if the RG is to remain well defined [9]. On the other hand, once k is less

than any eigenvalue there is nothing left to cut off and thus imposing smoothness criteria

on solutions at arbitrarily large dimensionless curvature would appear to be physically

meaningless [10–12].1

At first sight this appears to be just a technical conundrum, albeit without any clear

resolution. Actually, we can view it as a fundamental impasse which should never have

been encountered in a meaningful application of the Wilsonian RG. To see this, let us go

back to basics. A Wilsonian RG transformation consists of two steps: a Kadanoff blocking

transformation [14], for example of a lattice of spins to a courser one of twice the lattice

spacing, followed by a rescaling of dimensions to bring the system back to its original

size [2, 15, 16]. Universal behaviour flows from fixed points. And fixed points require that

after rescaling, the basic lattice structure itself looks exactly the same. For example we

cannot meaningfully formulate the Wilsonian RG for a strictly finite lattice (see figure 1).

1We mean smooth in the precise sense of continuously infinitely differentiable, for example with respect

to R̄.
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Figure 1. A 4×4 lattice is blocked to twice the lattice spacing. After rescaling back to the original

lattice spacing, it cannot be the same lattice, since it is now only 2 × 2. Likewise, a system with

a lowest eigenvalue λ cannot be the same after integrating out from k to k/2. After rescaling λ so

that the IR cutoff again has value k, there are less eigenvalues below k than when we started.

After Kadanoff blocking, the lattice has less cells, so no rescaling will make it look exactly

the same.2

The reader will see in figure 1 that we have an analogous issue. After a Kadanoff

blocking, e.g. k 7→ k/2, we can go from a situation where there were eigenvalues remaining

to be cutoff, to, for example, one where there are no eigenvalues remaining to be cutoff. No

rescaling will make these situations look the same. Wilsonian RG concepts such as fixed

points are thus not applicable. This is particularly glaring around the lowest eigenvalue,

but of course it is not there that from this point of view the RG ceased to have any real

meaning. It never really made sense at any finite k. For example on a compact space

with a discrete set of eigenvalues, for any finite k = k1 there is some finite number N1 of

eigenvalues remaining to be integrated out.3 On lowering k to k = k2, this number reduces

to N2 < N1, so again it impossible to rescale the blocked system to make it the same as

the one at k1.

One cannot escape this problem by working on a non-compact space such as a Eu-

clidean hyperboloid. In this case the spectrum is not discrete but there is still a lowest

eigenvalue that sets a scale and there is also an integrable density of eigenvalues ρ(λ) [19],

see also [13, 20]. The analogous situation then arises in that the dimensionless integral of

ρ(λ) over the remaining range of eigenvalues is reduced. One also cannot escape this prob-

lem by using a smooth cutoff profile that only suppresses modes with lower eigenvalues,

rather than sharply cutting off the fluctuations. After integrating out from k1 to k2, less of

the lower modes are suppressed to the same extent, reflecting the new position for k, and

again no rescaling of dimensions can untie this.

Therefore from this perspective, the Wilsonian RG itself cannot meaningfully be for-

mulated on such a space for any curvature or any value of k. While the results we report

apply to any such situation, we are particularly interested in the so-called f(R) approxi-

2Let us note in passing that in the limit of large lattices, the deviation from universality can be quantified

in certain “finite size effects”, although such technology will not be relevant here.
3We remind the reader that the IR cutoff k is equivalent to the effective UV cutoff of a Wilsonian effective

action [17, 18] and thus to integrating out modes above k.
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Figure 2. A continuous ensemble of spheres has eigenvalues λ ∝
√
R. Blocking by integrating

out from k to k/2, and then rescaling λ 7→ 2λ such that the IR cutoff is again at k, also rescales

the horizontal axis:
√
R 7→ 2

√
R. The graph therefore remains invariant, and the distribution of

eigenvalues below k is unchanged by this RG step.

mation [9–13, 21–29], where all powers of the scalar curvature are kept and summarised in

a Lagrangian of form fk(R̄). In the literature this is in fact so far the only example where

the functional form is treated without expansion. In order to understand at the intuitive

level what has gone wrong, let us recall that the curvature is that of a fixed metric, the

background metric ḡµν , chosen to be a maximally symmetric Euclidean space (we will take

the typical choice of a sphere and thus positive curvature) and the eigenvalues for fluctua-

tions of the metric, hµν , are those of the (modified) Laplacian formed from this background

metric.4 The picture on the right in figure 1, is the one we see when considering linearised

fluctuations about this fixed ḡµν . The scale of the eigenvalues λ is set by the background

curvature R̄.

As already anticipated in the conclusions of ref. [30], the problem arises because back-

ground independence is not respected. By background independence, we mean that physics

should not depend on the choice of background, but instead depend only on the full metric

gµν [31]. (Typically a linear split is considered so that gµν = ḡµν + hµν , although there

are exceptions, e.g. [12, 29]. Our arguments here are independent of how the split is

performed.) Since in the partition function, the full metric (directly or through hµν) is

integrated over, a continuous infinity of manifolds is actually included. The eigenvalues

in figure 1, correspond to just one of these. Even if we choose to restrict to Euclidean

spheres, we should still be integrating over their size. By ranging over this ensemble, the

scalar curvature R thus takes all positive values. The Laplacian formed using the full

metric, will thus yield eigenvalues that, in the ensemble, form a continuum, since they

themselves depend on the curvature. From the perspective of the full metric the situation

can be illustrated as in figure 2. As we see from the figure, the basic precondition for the

Wilsonian RG is then restored, namely that the structure of the full ensemble of eigenvalues

can look exactly the same after an RG step.

4The utilisation of the single-metric approximation (addressed below) obscures the difference between

ḡµν and the total metric gµν . The important point here is that it is a fixed metric that we choose to input.
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To see in detail how this ensemble repairs the problem, write the lowest eigenvalue

as λ = a
√
R, where a is a pure number. The set Sk of spheres with R > k2/a2 have no

eigenmodes left to integrate out. Let us focus on a sphere s with one particular physical

curvature R = Rs. It is true that in the region a
√
Rs < k < 2a

√
Rs, a blocking k 7→ k/2

will take us from a situation where this sphere had fluctuations to integrate out, to one

where it no longer has fluctuations to integrate out. However there is now also a sphere

with curvature R = Rs/4 that after blocking and rescaling, looks exactly the same as

the original sphere s. Meanwhile under blocking, the original sphere s, together with all

spheres in the range k2/4a2 < R < k2/a2, join the now enlarged set Sk/2 of spheres with

no modes left to integrate out. Despite the addition of new members, this set is isomorphic

to the original, since under the rescaling of all mass dimensions by two, it turns back into

Sk. (Indeed the set can be described in a k-independent way by indexing the spheres by

their scaled curvature R > 1/a2 rather than their physical curvature R.)

In order to adapt the infrared cutoff employed in constructing the flow equa-

tion [17, 32, 33], and to gauge fix, the background field method is employed and this is

why the full metric gµν and background metric ḡµν are introduced [3]. We have just seen

that the confusion over the rôle of large dimensionless curvature R, and in particular

whether constraints on the solution apply to all k or only k > a
√
R, is resolved by properly

incorporating background independence. In the literature the construction of the effective

action about a general background metric ḡµν , and thus computing in effect on all back-

grounds simultaneously, is also referred to as background independence.5 If we regard the

Wilsonian RG applied to the ensemble above as effectively a Wilsonian RG applied simul-

taneously to a continuous ensemble of spheres with different background metrics –related

by overall scale, then indeed again we see we have a resolution to the conundrum. We see

that it makes no sense to give preferential treatment to a region of k < a
√
R̄, making k thus

dependent on the background metric. The Wilsonian RG framework is correctly recovered

only if all background metrics, whatever their overall scale, are treated democratically, i.e.

with the process of integrating-out being functionally independent of the value of R̄. We

thus conclude that a solution must remain smooth for all k > 0, and thus we must impose

that solutions f(R) remain smooth no matter how large R is taken.

We are forced to treat the ensemble of spheres in this way because it is required

by the full functional integral, once we recognise that treating the fluctuations hµν around

background metric ḡµν is equivalent to treating spheres with different full metrics gµν . This

equivalence is enforced by background independence in the sense we mean it [31, 39], where

in fact it is a strong extra constraint. We know in principle how to recover this requirement

through imposition of modified split Ward identities [31, 39–49]. In full gravity it is a

challenging task to satisfy the full modified split Ward identity, facing not just practical

problems but potentially problems of principle [49]. In practice it is broken by single

metric approximations of the type that give us the f(R) approximations we have just been

considering. However at the intuitive level at which we have so far been operating, we can

ignore this and regard the problem of large curvature as solved.

5As explained in ref. [34], this usage follows that in loop quantum gravity [35–38].
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In the rest of the paper we will show that nevertheless it is possible to make the argu-

ments more rigorous, even using the standard approximations, although as a consequence of

the approximations this will only be achieved in d = 6 space-time dimensions. The intuitive

argument points the way. A weaker version of background independence, one we will call

background rescaling invariance, is sufficient for our purposes. We need to use the appro-

priate modified Ward identity (mWI) to restore the link between one mode of the linearised

fluctuation, namely hµν ∝ ḡµν , and rescaling the metric and thus the size of the background

sphere. Once these ideas have been fully developed, we will be able to show that, essen-

tially, the f(R) approximations already constructed in the literature [9–13, 21–29], can be

reinterpreted in a background independent way.

Although we have in mind addressing such approximations, in particular projecting on

a maximally symmetric background and using the optimised cutoff [50, 51], we prove this

for any background metric ḡµν describing a compact space-time, and for any choice of cutoff

profiles ru (that is including different profiles for different fluctuation fields if desired).

At first sight the prospects for such a reinterpretation seem remote. Firstly, the f(R)

truncation crucially relies on the single-metric approximation, which amounts to identifying

gµν and ḡµν at an appropriate point in the calculation. In contrast, we must use the full

bi-metric approximation which retains both fields. A priori there is no reason to expect

approximations in this approach to look anything like the single-metric results. We will

see how we are able to make contact with these within an appropriate approximation.

Secondly we must face head on the problem that gauge fixing itself breaks background

independence [3], which means it cannot be recovered in general without taking k →
0 and going on-shell [31, 49]. Fortunately the mWI we are aiming for, one related to

metric rescaling, in effect only rescales the value of the gauge fixing parameter in this

sector. We will see in section 4 that since Landau gauge is taken (setting the parameter to

zero), after negotiating some subtleties, this change drops out. Thirdly, generically in any

uncontrolled approximation, the mWI will prove to be incompatible with the flow, leading

to an overconstrained system with no solutions [49]. Fortunately our mWI is sufficiently

simple to escape this danger, but only if we choose d = 6.

In the next section, we develop background rescaling invariance as an exact symmetry,

deriving and solving the corresponding Ward identity, in particular treating the fluctuation

hµν also through its York decomposition [52–55], and introducing the average physical

scalar mode h̄ which will play a crucial rôle in the arguments that follow.

Even when we break the symmetry by gauge fixing and adding cutoffs, we are able to

make progress by keeping the analysis at a high level, i.e. without specifying the form of

the background metric ḡµν , or the detailed form of the approximation. In this way, we will

see that the arguments take on a particularly clean and elegant form. In section 3 we see

one aspect of this, where we show how to compute the effects of background rescaling by

trading it for diffeomorphism invariance and dimensional analysis.

In section 4, we introduce gauge fixing. It is possible to recover background rescaling

invariance if we take the Landau gauge limit, as is commonly done. We will also handle the

determinants that arise from the change of variables to the York decomposition. We will

see that the key to extending background rescaling invariance to these sectors is assigning

appropriate background-scaling dimensions, a.k.a. indices du, to various fluctuation fields.

– 6 –
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In section 5 we introduce the IR cutoffs in the standard way considered in the liter-

ature [10–13]. Since they depend only on the background metric, they turn out to have

simple scaling behaviour under background rescaling, apart from a correction that takes

into account that the IR cutoff scale k is invariant under this.

This gives us all we need to derive the modified Ward identity (mWI) in section 6.

We see in the final equation of this section the first intimations of why d = 6 dimensions

is special for background rescaling invariance. In section 7 we explain why this is required

when uncontrolled expansions are considered, in particular why we must have compatibility

of the approximated mWI with the approximated flow equation.

In section 8 we define a suitable single-metric type approximation which however re-

tains dependence on h̄. In section 9 we prove that within this approximation the mWI

and flow equation are compatible with each other if and only if d = 6, independent of the

choice of cutoff profiles and ḡµν . In section 10 we pause for a moment to give an intuitive

explanation of the significance of d = 6 dimensions, in particular we see that if we had

based the theory on a four-derivative action (such as for Weyl gravity), d = 8 dimensions

would be singled out.

Then in section 11 we see that, in common with previous cases [31, 39, 49], the approxi-

mate flow equation and mWI can be solved simultaneously to reveal some hidden variables,

ĝµν and k̂, which in this case are independent of the overall scale of the background metric.

We then show that in terms of these variables, precisely the single-metric approximations

in the literature are recovered. A crucial element in this and the proof in section 9, is the

proof that in precisely d = 6 dimensions, the natural action for the Hessians can be shown

order by order to be independent of h̄.

Finally in section 12, we see that such variables do indeed describe the ensemble

solution to regaining the Wilsonian RG, as we sketched above.

2 Background rescaling invariance, Ward identity and solution

We start by deriving the unbroken Ward identity and then solving it by the method of

characteristics. We operate at a formal level for now, i.e. we will not worry about gauge

fixing, regularisation, and the effect of approximations. These will be added in sections 4, 5,

and 8 respectively. Our discussion in this section might seem overly expansive at points

but the reader will later see how the observations made here, and the equations derived

here, become key to understanding background rescaling invariance when all the above

complications are folded in.

We begin by expanding the full quantum metric gµν in terms of the background metric

ḡµν and fluctuation field hµν as

gµν = ḡµν + hµν , (2.1)

so that the partition function takes the form:

Z[ḡµν , J
αβ ] =

∫
Dhµν exp

{
−S0[ḡµν+hµν ] +

∫
Jµνhµν

}
. (2.2)

– 7 –



J
H
E
P
1
1
(
2
0
1
6
)
1
6
0

(Here S0 is the bare action. We work in d dimensional space-time with Euclidean signature.

By
∫

on its own we mean
∫
ddx. We have absorbed the

√
ḡ factor into our definition of

the source Jµν which is thus a tensor density of weight -1. The reader may prefer to keep

the
√
ḡ factor explicit at the expense of some extra terms at intermediate stages. Since J

disappears in the end, the end result is the same.)

We are interested in implementing background rescaling invariance, i.e. making explicit

the fact that under a rescaling of the background metric,

ḡµν 7→ (1− 2ε) ḡµν , (2.3)

the total metric (2.1), and thus also the physics, does not change, if at the same time we

compensate by changing the fluctuation field as follows:

hµν 7→ hµν + 2ε ḡµν . (2.4)

For our purposes we need only the case where ε is space-time independent, and furthermore

we take it infinitesimal. (The factor 2 is immaterial but will prove convenient later.) Since

each term in the background Levi-Civita connection Γ̄µαβ contains one background metric

and its inverse, Γ̄µαβ is then invariant under (2.3). Thus the background Riemann and Ricci

curvatures are also invariant, while the background scalar curvature transforms to

R̄ 7→ (1 + 2ε) R̄ . (2.5)

Choosing a space of constant scalar curvature (typically a Euclidean sphere), the transfor-

mations (2.3) and (2.4) thus have the desired effect of making explicit that physics should

not depend on the value of this background curvature.

From here on we clean up the notation and write background rescaling invariance more

simply as

δḡµν = −2 ḡµν , (2.6)

where it is to be understood that the r.h.s. (right hand side) is multiplied by an arbitrary

constant infinitesimal proportionality factor (ε) which then drops out of the final formulae.

Similarly we write

δhµν = +2 ḡµν (2.7)

and

δR̄ = 2 R̄ . (2.8)

Writing W = lnZ, we thus have that a change of background in form (2.6), compensated

by a change of integration variable as in (2.7), leads only to a shifted source term in (2.2)

and thus

−
∫
ḡµν

δW

δḡµν
=

∫
Jµµ (2.9)

(where the index on J is lowered using the background metric). Introducing the Legendre

effective action Γ[ḡµν , hµν ] via

W = −Γ +

∫
Jµνhµν , (2.10)

– 8 –
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where δΓ/δhµν = Jµν and hµν now refers to the classical field hµν = δW/δJµν , we thus

find the Ward identity ∫
ḡµν

(
δΓ

δhµν
− δΓ

δḡµν

)
= 0 . (2.11)

This equation can be solved by the method of characteristics. Thus from∫ (
δhµν

δΓ

δhµν
+ δḡµν

δΓ

δḡµν

)
− δΓ = 0 , (2.12)

we identify the normal to the solution surface to be the vector[
δΓ

δhµν
,
δΓ

δḡµν
,−1

]
, (2.13)

and thus the vector field that generates characteristic curves depending on some auxiliary

parameter t to be (again we keep a factor 2 for later convenience):

∂

∂t
Γ = 0 , (2.14)

∂

∂t
ḡµν(x, t) = −2 ḡµν(x, t) (2.15)

and
∂

∂t
hµν(x, t) = 2 ḡµν(x, t). (2.16)

These equations are easily solved to obtain that Γ is t-independent,

ḡµν(x, t) = e−2t ḡµν(x, 0) (2.17)

and

hµν(x, t) = gµν(x)− ḡµν(x, t) . (2.18)

In the above solution we have recognised that the x dependent integration constant can

appropriately be called the classical total metric. Thus (see also ref. [49] and the appendix

to ref. [31]) we deduce that Γ must only be a functional of the t-independent combination

gµν(x) = ḡµν(x, t) + hµν(x, t) . (2.19)

Of course we knew this all along, but it is encouraging to see that such a global background

rescaling invariance (2.6), (2.7) alone is already sufficient to enforce this.

In reality we are not interested in working directly with hµν , but following common

practice we want to make a York (a.k.a. transverse traceless) decomposition [52–55]:

hµν = hTµν + ∇̄µξν + ∇̄νξµ + ∇̄µ∇̄νσ +
1

d
ḡµνh , (2.20)

where ξµ and σ are the gauge degrees of freedom to be distinguished from the physical

traceless-transverse mode hTµν and physical scalar mode h, ∇̄α is the background-covariant

derivative, and

hT µµ = 0 , ∇̄µhTµν = 0 , ∇̄µξµ = 0 , h = hµµ − ∇̄2σ . (2.21)

– 9 –
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While such a decomposition is important in the computations we will study, a price to pay

is that (2.19) will no longer be the only background rescaling invariant combination. We

see that in terms of the York decomposition, the fluctuation transformation (2.7) becomes

δh = 2 (h+ d) (2.22)

We already see that the other terms in (2.20) are invariant, clearly so for hTµν but also for the

gauge degrees of freedom6 since ∇̄α is invariant. Either by change of variables using (2.20),

or repeating the initial analysis, we find that the Ward identity is replaced by:∫ (
(d+ h)

δΓ

δh
− ḡµν

δΓ

δḡµν

)
= 0 , (2.23)

and thus, solving this, (2.14) and (2.15) remain the same but (2.16) is replaced by

∂

∂t
h(x, t) = 2d+ 2h(x, t) . (2.24)

This equation has general solution

h(x, t) = −d+ (h(x, 0) + d) e2t . (2.25)

Using (2.17), this implies that(
1 +

h(x, t)

d

)
ḡµν(x, t) =

(
1 +

h(x, 0)

d

)
ḡµν(x, 0) (2.26)

is an invariant. Adding in the other manifest invariants from (2.20), we see again that

gµν(x) is also invariant. Thus we see that, as a result of the York decomposition, we now

have several invariant variables, namely hTµν , ξµ, σ and the combination (2.26).

When we choose the background to be of finite volume (a sphere for example), h(x) has

a normalisable constant mode h̄, the zero mode of the Laplacian −∇̄2. We can decompose

h as

h(x) = h̄+ h⊥(x) , (2.27)

where h⊥ is orthogonal to h̄, i.e. h̄
∫√

ḡ h⊥ = 0. The characteristic (2.25) then also de-

composes as h⊥(x, s) = h⊥(x, 0) e2t, that scales multiplicatively, while h̄ keeps the non-

homogeneous pieces in (2.25):

h̄(t) = −d+
(
h̄(0) + d

)
e2t , (2.28)

or equivalently
∂

∂t
h̄(t) = 2d+ 2h̄(t) . (2.29)

In terms of this decomposition, we therefore have that

δh⊥ = 2h⊥ and δh̄ = 2 (h̄+ d) . (2.30)

6This will change however as a result of the gauge fixing in section 4.
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And we have the invariant combinations ḡµν h
⊥ and(

1 +
h̄

d

)
ḡµν . (2.31)

It is this last combination that will prove most useful. Its background rescaling invariance

is most transparent if we recognise that from (2.30),

δ

(
1 +

h̄

d

)
= 2

(
1 +

h̄

d

)
(2.32)

transforms homogeneously.

Taking the Einstein-Hilbert action as an example, the background rescaling invariant

version is arrived at by replacing ḡµν with (2.31) in
√
ḡR̄, giving

√
ḡR̄

(
1 +

h̄

d

)d/2−1

=
√
ḡR̄+

d− 2

2d

√
ḡR̄h̄+

(d− 2)(d− 4)

8d2

√
ḡR̄h̄2

+
(d− 2)(d− 4)(d− 6)

48d3

√
ḡR̄h̄3 +O(h̄4) . (2.33)

We see that for general d, background rescaling invariance, (2.6) and (2.30), requires in-

finitely many interactions. The h̄ independent part scales as δ(
√
ḡR̄) = (2 − d)

√
ḡR̄ un-

der (2.6), but this is cancelled by the inhomogeneous part of the transformation of the

O(h̄) part. Indeed using (2.6) and (2.30), the O(h̄) part transforms as

d− 2

2d
δ(
√
ḡR̄h̄) = (d− 2)

√
ḡR̄− (d− 2)(d− 4)

2d

√
ḡR̄h̄ . (2.34)

Likewise, the homogeneous part of this transformation is cancelled by the inhomogeneous

part coming from the O(h̄2) term and so on.

We remark that for d a positive even integer, there are in fact only finitely many

interactions. In d = 2 dimensions, there are no h̄ interactions. This reflects the fact that∫√
ḡR̄ is then a topological quantity (the Euler characteristic). In d = 4 dimensions the

series stops at O(h̄), reflecting the fact that the higher order interactions for the physical

scalar mode always contain at least one derivative. In d = 6 dimensions, we see that

all cubic and higher terms in h̄ vanish. The significance of this observation will become

clear later.

3 Relation to diffeomorphism invariance and dimensions

It will prove useful to notice that we can intertwine the metric rescaling (2.6) with two other

symmetries which are actually preserved exactly, namely (background) diffeomorphism

invariance and the rescaling symmetry corresponding to dimensional assignments.7 Using

diffeomorphism invariance, the rescaling (2.6) can be achieved, within some coordinate

patch, by rescaling the coordinates:

δxµ = xµ (3.1)

7The interrelation of these symmetries has been also been discussed in refs. [24, 31].
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(together with a change in the argument of the field). Indeed, diffeomorphism invariance

in this case induces the tensor transformation

δT
β1···βp
α1···αq = (p− q)T β1···βp

α1···αq . (3.2)

However we can untie (3.1) (and also return the argument of the field back to xµ) by

recognising that we also have a multiplicative symmetry in theory space as a statement

of mass dimensions. The fact that all the equations must be dimensionally correct tells

us that

δQ = [Q]Q (3.3)

must also be an invariance of the flow equations and modified Ward identities, where Q is

any quantity, and [Q] is its mass dimension.

Thus for any quantity whose field dependence is restricted to that of the background

metric, rescaling the background metric while leaving the coordinates alone, as in (2.6), is

equivalent to applying the diffeomorphism (3.2) followed by the dimensional rescaling (3.3).

For example, applied to a scalar quantity such as the background scalar curvature,

only the latter transformation operates. This is why (2.8) is the same result we would

obtain from using (3.3) and recognising that R̄ is dimension two.

A less trivial example is furnished by the modified Laplacian operator ∆̄. In general

this takes the form of the appropriate tensor operator on the modes u we are considering

(for example the Lichnerowicz Laplacian in the case of symmetric tensor modes) plus

further modifications as desired (the endomorphism piece [10–13]). However since such an

operator ∆̄ is a map from the space of modes u back into the same space, and is furthermore

constructed using only the background metric field, these operators behave like scalars as

far as this discussion is concerned. Indeed, if they carry indices, they carry an equal number

p = q of upper and lower indices. It follows that their transformation law under (2.6), also

merely reflects dimensional assignments, and thus:

δ∆̄ = 2 ∆̄ . (3.4)

4 Background rescaling with gauge fixing and auxiliary fields

The exact type and number of fluctuation fields u, depends on the details of the implemen-

tation [10–13, 23, 26], however generically these include versions of the component fields

in (2.20), together with ghosts, and with auxiliary fields that arise from the change of

variables to (2.20), or ultimately a subset of all these.

We have established in section 2, the form of the background rescaling invariance,

generated by (2.6) with (2.7) — or equivalently with (2.22) or (2.30). However we ignored

the infrared cutoff terms, gauge fixing, and auxiliary fields. In this section we show how

the framework generalises when the latter two are taken into account.

Since the auxiliary fields arise from characterising the measure (Jacobians) for fluctua-

tions around ḡµν , their action is bilinear and transforms only as induced by ḡµν itself. The

transformation does not depend on hµν or the rest of the action. In practice gauge fixing is

– 12 –



J
H
E
P
1
1
(
2
0
1
6
)
1
6
0

chosen to depend on ḡµν and hµν alone (rather than being dependent on the detailed form

of the action for example) and to be linear in hµν . (This is discussed in more detail below.)

Therefore like the auxiliary fields, the ghost action is also bilinear and its transformation

law depends only on ḡµν itself, and not on hµν or the rest of the action. It follows that the

discussion of section 3 applies and the kernels in these actions transform homogeneously.

We can then define the transformation laws of the ghosts and auxiliary fields to cancel this

and make these actions invariant.

The reader can verify these statements on their own favourite implementation of the

ghost and auxiliary sectors. To make these considerations concrete here, we consider as an

example the ghost and auxiliary fields on a maximally symmetric background as described

in ref. [23]. The ghost action is written there as:

Sgh =

∫ √
ḡ

{
C̄Tµ

(
∇̄2 +

R̄

d

)2

CTµ + 4

(
d− 1

d

)2

c̄

(
∇̄2 +

R̄

d− 1

)2 (
−∇̄2

)
c

+BT µ

(
∇̄2 +

R̄

d

)2

BT
µ + 4

(
d− 1

d

)2

b

(
∇̄2 +

R̄

d− 1

)2 (
−∇̄2

)
b

}
, (4.1)

where the CTµ and c are complex Grassmann fields, while BT
µ and b are real fields, and the

index T denotes transverse vectors,8 while the action for auxiliary fields reads:

Saux−gr =

∫ √
ḡ

{
2χ̄T µ

(
− ∇̄2 − R̄

d

)
χTµ +

(
d− 1

d

)
χ̄

(
∇̄2 +

R̄

d− 1

)
∇̄2χ

+2ζTµ
(
− ∇̄2 − R̄

d

)
ζTµ +

(
d− 1

d

)
ζ

(
∇̄2 +

R̄

d− 1

)
∇̄2ζ

}
, (4.2)

where the χTµ and χ are complex Grassmann fields, while ζTµ and ζ are real fields. Finally

the Jacobian for the transverse decomposition of the ghost action is given by

Saux−gh =

∫ √
ḡ φ
(
−∇̄2

)
φ . (4.3)

We can either apply (2.6) directly or recognise that, by the discussion of section 3, the

kernels transform according to their dimension together with a correction from (3.2) when

indices are raised (for example on C̄Tµ ). Either way, we readily read off the transformation

law for the auxiliary and ghost fields that leaves these actions invariant. Writing

δu =
d− du

2
u (4.4)

where the first factor takes care of the volume term, we see that for this implementation

all the ghosts in (4.1) have dghost = 6, all the auxiliary fields in (4.2) have daux−gr = 4 and

the ghost auxiliary in (4.3) has dφ = 2.

In general the gauge fixing term

SGF =
1

2α

∫ √
ḡ ḡµνFµFν , (4.5)

8We have however rescaled the ghost fields to absorb an overall factor of Zk/α. Compared to ref. [23],

the same should be done for the gauge dependent component fields ξµ and σ. The gauge parameter α is

discussed below.
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breaks background rescaling invariance. However the hµν transformation (2.7) drops out of

any legitimate gauge fixing,9 since ∇̄αḡµν = 0. Therefore only (2.6) makes a difference. If

we furthermore restrict to gauges where Fµ scales homogeneously under (2.6) (this includes

all the usual gauges) then background rescaling effectively just changes the gauge parameter

α in (4.5).

It will be useful to make the typical choice which is that of De Witt gauge,

refs. [10, 11, 21, 23, 26, 55]:

Fµ = ∇̄ρhρµ −
1

d
∇̄µhρρ . (4.6)

We see easily that this is indeed invariant under (2.7). Thus using (2.6), noting the inverse

metric hidden in Fµ, we have that δFµ = 2Fµ. Therefore altogether background rescaling

has the effect of changing the gauge fixing term (4.5) as

δSGF = (6− d)SGF , (4.7)

and this in turn can be regarded as a change in the gauge fixing parameter: δα = (d −
6)α. Since in the literature, Landau gauge is chosen by sending α → 0 at a point in the

calculation when this limit is unambiguous (see e.g. [23, 26]), it would appear that this

actually has no effect, and thus for this gauge, background rescaling invariance is actually

respected by the gauge fixing term. This last statement is actually true, however in treating

this limit carefully we will see that we have to alter the transformation laws for the gauge

degrees of freedom ξµ and σ.

Substituting the York decomposition (2.20), the physical fields hTµν and h drop out

of (4.6), leaving only dependence on ξµ and σ. Turning our attention to the rest of the ac-

tion, we note that at the linearised level, a diffeomorphism invariant action does not depend

on ξµ and σ since they parameterise linearised gauge transformations. However since they

parametrise only the linearised piece of the gauge transformations, beyond the linearised

level such an action does depend on ξµ and σ. Furthermore after gauge fixing, in reality

neither the rest of the bare action nor the rest of the effective action is diffeomorphism

invariant if this is expressed through hµν , since this is replaced by BRST invariance.10 We

have seen in section 2 that for the York decomposition to be able to respect background

rescaling invariance we require ξµ and σ to be invariant. However in the limit of very small

α, all dependence on ξµ and σ can be neglected in comparison to that coming from (4.5).

Since (4.5) is bilinear in ξµ and σ, but actually divergent in the limit α→ 0, it thus follows

that to restore background rescaling invariance we must actually choose ξµ and σ to trans-

form homogeneously so as to absorb the change (4.7). We thus see that in Landau gauge,

ξµ and σ transform as δu = (d− 6)u/2, i.e. they satisfy (4.4) with dgauge = dghost = 6.

Finally, the physical component fields in (2.20) remain with the transformation laws we

already established in section 2. Thus they also satisfy (4.4) but with dhTµν = d (thus making

it invariant), and dh = dh̄ = d − 4, except that also δh and δh̄ have the inhomogeneous

9Imposing Fµ = 0 should project out gauge transformations only. This is only possible if all terms

contain covariant derivatives of hµν .
10Once the IR cutoffs are in place even this is broken. Invariance is then expressed through modified

Ward identities.
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parts in (2.22) and (2.30). Unlike the auxiliary and ghost fields, and the gauge degrees

of freedom in Landau gauge, the du for these component fields are not there to ensure

that the bilinear terms are invariant. Rather in this case, the higher order h̄ interactions

restore invariance. At the exact level this is achieved along the lines discussed at the end

of section 2. At the modified level this is achieved in the way we are about to derive.

5 IR cutoff terms under background rescaling

In the literature [10–13], the IR cutoff k is implemented through replacing the appropriate

Laplacian ∆̄ with

Pk(∆̄) = ∆̄ + k2r(∆̄/k2) . (5.1)

Here r(z) is a dimensionless cutoff profile, which suppresses modes with z < 1. Since

∆̄ transforms as (3.4), we can quantify the breaking of background rescaling invariance.

Writing RG time as t = ln(k/µ) with µ some fixed physical scale, we have:

δPk(∆̄) = 2Pk(∆̄)− ∂tPk(∆̄) . (5.2)

Since Pk(∆̄) is still a map from the space of fluctuations u back into itself, it follows that

its transformation law merely reflects dimensional assignments (as explained in section 3).

Indeed if we allowed k to transform as

δk = k , (5.3)

only the first term would have appeared. The second term is therefore there in effect to

untie this transformation on k and thus leave k invariant.

The actual infrared (IR) cutoff R̄, which is added by hand to the bilinear terms, involves

further dependence on k and ḡµν , and is constructed to implement the replacement (5.1)

in the Hessian Γ̄
(2)
u for each type of fluctuation u. Following standard practice, we have

introduced the shorthand

Γ(2)
u :=

1√
ḡ(x)
√
ḡ(y)

δ2Γ

δu(x) δu(y)
, (5.4)

and treat it as a differential operator in the following. The bar over the Hessian, as in

Γ̄
(2)
u , denotes the further standard step that this is evaluated on the background, i.e. all

fluctuation fields are then set to zero. In other words, the cutoff is given by

R̄u = Γ̄(2)
u (Pk)− Γ̄(2)

u (∆̄) . (5.5)

The label u on the cutoff serves as a reminder that not only the form of the cutoff but

also the form of the Hessian, the cutoff profile ru in (5.1), and the Laplacian ∆̄, will in

general depend on the choice of fluctuation field. In particular the Hessian, and thus also

the IR cutoff, carry indices as appropriate for the given fluctuation field u, which we do not

display explicitly. Again by the arguments of section 3 and above, we know that R̄, like
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the Hessian Γ̄(2) itself when evaluated on the background, scales homogeneously together

with a correction for the k dependence:

i.e. δΓ̄(2)
u = (dR̄u − ∂t)Γ̄(2)

u and δR̄u = (dR̄u − ∂t)R̄u . (5.6)

And again by (3.2), the index dR̄u differs from the dimension if Γ̄(2) carries indices:

dR̄u = [Γ̄(2)
u ] + pu − qu , (5.7)

where [Γ̄
(2)
u ] is the mass dimension of the Hessian, and pu and qu the number of upper and

lower indices respectively.

For the auxiliary, gauge and ghost fields this works out to be nothing but dR̄u = du, as

was in effect arranged above to be the case by requiring background scale invariance. For

the graviton hTµν , the result is fixed in all cases in the literature by factoring out Newton’s

constant so that [Γ̄(2)] = 2. Taking into account the four upstairs indices (a.k.a. two ḡµν)

that are required to contract indices on a pair of hTµν , we see that this implies that the index

dR̄hTµν = 6. From (2.20) we see that for ξµ, we increase [Γ̄(2)] by 2 but lose two contravariant

indices, and again for σ we increase [Γ̄(2)] by 2 and lose two contravariant indices. Thus

the index we would deduce for these gauge degrees of freedom is also dR̄u = 6. In fact the

transformation law for these fields has already been determined in section 4 by requiring

invariance of the gauge fixing term in the Landau gauge limit, where however we also found

dR̄u = 6. Finally for h, we just lose all contravariant indices, implying dR̄h = 2. This last

index could also have been read off from the O(h̄2) part of the example (2.33).

Putting all this together we have thus shown that in Landau gauge, the IR cutoff terms

SR̄ =
1

2

∫ √
ḡ
∑
u

uR̄uu (5.8)

(where the sum is over all fluctuation fields) are the only terms that violate background

scaling invariance. We have shown that, for all the implementations in the literature, they

transform as

δSR̄ = 2d

∫ √
ḡ R̄hh +

1

2

∫ √
ḡ
∑
u

u (dR̄u − du − ∂t)R̄u u

= 2d

∫ √
ḡ R̄hh −

1

2

∫ √
ḡ
∑
u

u ˙̄Ru u+
6− d

2

∑
u=hTµν ,h

∫ √
ḡ uR̄uu . (5.9)

In the first line we have used (2.6), (2.22), (4.4) and (5.6). In the second line we have written

∂t as an over-dot, and recognised that dR̄u−du is non-vanishing only for the physical fields

where in both cases we find dR̄u − du = 6− d.

6 The modified Ward identity

Having established the transformation laws for the fields in section 2 and 4, and the way

that the invariance is broken by IR cutoffs, as displayed in (5.9), the derivation of the broken

(a.k.a. modified) Ward identity is standard and straightforward. We sketch the steps.
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The partition function (2.2) needs to be replaced by one that includes the York de-

composition (2.20), and the gauge fixing term (4.5), and thus all the ghost and auxiliary

fields that follow from this — in whatever implementation the reader prefers. Again using

u to denote all the fluctuation fields, the source term in (2.2) now appears schematically

as
∑

u

∫
Juu. Rescaling the background metric by (2.6), and compensating through trans-

forming the fluctuation fields via (2.22) and (4.4), we see that background rescaling is

equivalent to transformation of the source terms and IR cutoff terms. Thus:

−2

∫
ḡµν

δW

δḡµν
= 2d

∫
Jh +

1

2

∑
u

(d− du)

∫
Ju
δW

δJu
− 2d

∫ √
ḡ R̄h

δW

δJh

+
1

2

∫ √
ḡ
∑
u

δW

δJu
˙̄Ru
δW

δJu
+
d− 6

2

∑
u=hTµν ,h

∫ √
ḡ
δW

δJu
R̄u

δW

δJu

+
1

2

∑
u

tr

(
˙̄Ru

δ2W

δJuδJu

)
+
d− 6

2

∑
u=hTµν ,h

tr

(
R̄u

δ2W

δJuδJu

)
. (6.1)

In the last line we represent the space-time trace of the product of two kernels in effectively

the standard way through the DeWitt shorthand. Now we transform to the Legendre

effective action

Γtot = −W +
∑
u

∫
Juu , (6.2)

where now u = δW/δJu is the classical field, and split off the cutoff terms:

Γtot = Γ +
1

2

∫ √
ḡ
∑
u

uR̄uu . (6.3)

Under the transformation (5.9), the latter term reproduces the middle line of (6.1), and

thus we derive:

2

∫
ḡµν

δΓ

δḡµν
− 2d

∫
δΓ

δh
− 1

2

∑
u

(d− du)

∫
u
δΓ

δu

=
1

2

∑
u

tr
[
(Γ(2)
u + R̄u)−1 ˙̄Ru

]
+
d− 6

2

∑
u=hTµν ,h

tr
[
(Γ(2)
u + R̄u)−1 R̄u

]
, (6.4)

where the Hessian (with non-vanishing fluctuation fields) is defined in (5.4). Notice that

since dh = d − 4, the l.h.s. (left hand side) of (6.4) contains the unbroken Ward iden-

tity (2.23). Therefore (6.4) is indeed the hoped-for mWI, namely the Ward identity modi-

fied by the addition of terms involved in the gauge fixing and regularisation.

7 Compatibility of the mWI after approximation

In this section we address the extent to which the mWI (6.4) is compatible with the exact

RG flow equation [17, 32, 33] which in this context [3] and this notation, takes the form:

Γ̇ =
1

2

∑
u

tr
[
(Γ(2)
u + R̄u)−1 ˙̄Ru

]
, (7.1)
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where again we use (5.4). By compatibility we mean the following [49]. Write the mWI in

the form W = 0 and assume that this holds at some scale k. Computing Ẇ by using the

flow equation, we say that the mWI is compatible if Ẇ = 0 then follows at scale k without

further constraints.

Since the mWI and the exact RG flow equation are both derivable consequences from

the path integral representation of the partition function augmented by adding to the action

the generic IR cutoff terms (5.8), they are formally11 guaranteed to be compatible.

On the other hand to make progress we need to approximate the mWI and flow equa-

tion. Then their compatibility is far from guaranteed. For example it was shown in ref. [49]

in the context of conformally truncated gravity, that after approximating by nothing more

than a derivative expansion, background independence as expressed through the modified

shift Ward identity, is compatible with the flow equation if and only if a power-law cutoff

profile is used. Although a priori an incompatible system of mWI and flow equation could

still have solutions [49], we also showed that in practice there are no consistent solutions

to the system in this case. Therefore before we can make further progress and analyse

the consequences of imposing (6.4), we need to show that it can be compatible with (7.1)

within some suitable approximation.

As seen in ref. [49], the exact compatibility relies on the symmetry of some two loop

diagrams, where one of the loops contains the kernel ˙̄R from the r.h.s. of the flow equation

and the other loop contains the kernel from the r.h.s. of the modified Ward identity and

thus also involves the undifferentiated R̄. The problem is that the symmetry of the two loop

diagram is generically broken by uncontrolled approximations,12 including the derivative

expansion itself. The symmetry was recovered there by choosing power law cutoff profile

because as a consequence of ˙̄R ∝ R̄, the kernels themselves then become proportional as

functions of the implied internal momenta (that is the internal momentum that is integrated

over in forming the space-time trace and in the two loop diagrams).

We can therefore anticipate that, after approximation, compatibility here will also

require that the r.h.s. of (6.4) and (7.1) become proportional.13 If d 6= 6, we see already

that we will have a problem. If, as in ref. [49], we try to tackle this by choosing a power law

cutoff profile ru so that ṙu ∝ ru for the physical fields (u = hTµν , h), we see this cannot solve

the problem since here the infrared cutoff (5.5) also depends on t through the terms in the

Hessian. This rules out a solution using power-law cutoff profile even for the scheme used in

ref. [26] where only the physical fields themselves make a contribution to the flow equation.

For other schemes [12, 13, 23] it furthermore cannot make the full r.h.s. proportional

because the contribution from all the other fluctuation fields (auxiliary, gauge and ghosts)

already appear in exactly equal ways on the r.h.s. of both (6.4) and (7.1). Thus we see that

11I.e. to the extent that this functional integral actually makes sense without further modifica-

tion/regularisation.
12By uncontrolled approximation we mean one where O(1) terms are neglected. By contrast a Taylor

expansion in a small quantity, e.g. a coupling, is a controlled approximation. The symmetry would then be

preserved order by order in this small quantity.
13Indeed since only bilinear dependence on the ghosts and auxiliary fields is kept (as recalled in the next

section), they propagate only in one of the two loops. This already breaks the symmetry.
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the only way to make these r.h.s. proportional, and thus compatible in an uncontrolled

approximation [49], is to choose space-time dimension d = 6. Remarkably however, since

d = 6 is already sufficient to make the r.h.s. identical, compatibility turns out to be

guaranteed whatever cutoff profile ru is used and almost whatever further approximation

we impose in computing the right hand sides!

8 Single metric approximation

Let us now use the standard approximations [3]. Then in section 9 we will prove that indeed

the mWI remain compatible with the flow equation if and only if d = 6. We must first

define what we mean by these approximations in this context. As usual we will take the

ghost and auxiliary effective actions to be given by their bare ones (i.e. ansatz that they do

not flow) and after forming the Hessians, discard dependence on these fields. This therefore

just defines the contributions from these fields to the r.h.s. of (7.1), and similarly now also

the r.h.s. of (6.4). It also means that the corresponding u δΓ/δu terms now vanish on the

l.h.s. of (6.4). In the literature, for metric fluctuations the single-metric approximation is

made, which amounts to replacing

δ2Γ

δhµνδhαβ
7→ δ2Γ

δḡµνδḡαβ
(8.1)

on the r.h.s. of (7.1), followed by discarding all dependence on hµν (or its York decomposi-

tion). This is the one place where we will be slightly less drastic. We will retain dependence

on one small part of the physical fluctuation field only, namely h̄, the constant part of h.

Since we still make the single-metric step (8.1), this dependence does not alter the form

of the r.h.s. of (6.4) and (7.1). On the l.h.s. of (6.4) it means we discard all fluctuation

field derivatives except those relating to h̄. To derive what remains, note that from (2.27)

we have
∂Γ

∂h̄
=

∫
δΓ

δh
. (8.2)

We can also invert the relation (2.27) to get:

h̄ =
1

V

∫ √
ḡ h , h⊥ = h− 1

V

∫ √
ḡ h , where V :=

∫ √
ḡ . (8.3)

Since
δΓ

δh(x)
=

∫
y

δh⊥(y)

δh(x)

δΓ

δh⊥(y)
+

δh̄

δh(x)

∂Γ

∂h̄
, (8.4)

(where
∫
y ≡

∫
ddy) we thus find

δΓ

δh(x)
=

√
ḡ

V

∂Γ

∂h̄
+

δΓ

δh⊥(x)
−
√
ḡ

V

∫
y

δΓ

δh⊥(y)
. (8.5)

Thus we confirm (8.2) and also find∫
h
δΓ

δh
= h̄

∂Γ

∂h̄
+

∫
h⊥

δΓ

δh⊥
. (8.6)
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Since we discard dependence on h⊥, we find finally that the l.h.s. of the mWI (6.4) col-

lapses to:

2

∫
ḡµν

δΓ

δḡµν
− 2d

∂Γ

∂h̄
− 2h̄

∂Γ

∂h̄
= · · · , (8.7)

where Γ is now only a functional of ḡµν and a function of h̄ and k. This is exactly what

we would expect to find, given that (apart from an overall sign) it generates the rescaling

transformations (2.6) and (2.30).

9 Compatibility in single metric approximation

In preparation for the proof of compatibility let us call the linear operator that generates

background rescaling, ω, so that the l.h.s. of (8.7) is merely −ωΓ. Let us write the r.h.s.

compactly also so that, on taking the l.h.s. over to the r.h.s. , the mWI as a whole can be

written:

0 =W := ωΓ +
1

2
tr[4K] . (9.1)

Here we write the kernel for the mWI as:

Ku = ˙̄Ru + (d− 6)R̄uδu=phys , (9.2)

recognising that the correction in (6.4) is non-vanishing only for physical fields h and hTµν .

We write the full propagator as

4u := (Γ(2)
u + R̄u)−1 (9.3)

(where the use of the triangle symbol, 4, is not to be confused with ∆ as in the background

Laplacian ∆̄). Similarly we write the flow equation (7.1) more compactly as

Γ̇ =
1

2
tr[4 ˙̄R] . (9.4)

Finally the reader should understand that all terms in the space-time trace carry a u label

which is summed over. We drop this label because the cancellations we are about to see

actually happen for each species separately, so this extra structure will play no rôle.

In fact we will shortly be interested in the further approximation that comes about from

choosing a compact maximally symmetric background space (the Euclidean four-sphere).

In this case the expressions can be further simplified by summing over the eigenmodes of

the appropriate Laplacians. However the domain of compatibility of the mWI with the

flow equation is unchanged by this specialisation so we will furnish the proof for a general

background metric. Note also that we make no assumption on the form of the cutoff profile

ru in the following. Again the domain of compatibility is unchanged by this choice. In

practice, since we want to adopt the flow equations derived in the literature we will typically

be interested in the optimised cutoff profile [50, 51].

Finally, taking the RG time derivative of the mWI (9.1) and substituting the flow

equation (9.4), we get

Ẇ =
1

2
ωtr[4 ˙̄R] +

1

2
tr[4K̇]− 1

2
tr[4(Γ̇(2) + ˙̄R)4K] . (9.5)
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We can evaluate the action of the linear operator ω on the first term, since by (5.6) we

have ω ˙̄R = (dR̄ − ∂t) ˙̄R and

ω4 = −4(ωΓ(2) + ωR̄)4 = −dR̄4+4
(

[dR̄ − ω]Γ(2) + ˙̄R
)
4 . (9.6)

Note that from (5.6) we have that [dR̄ − ω]Γ(2) = Γ̇(2) whenever the Hessian contains only

the background metric, i.e. Γ(2) = Γ̄(2). However this latter equality is in general not true

for the physical fluctuations since there we retain dependence on h̄. Collecting terms we

thus have that

Ẇ=
1

2
tr
[
4(K̇− ¨̄R)

]
− 1

2
tr
[
4 ˙̄R4

(
K− ˙̄R

)]
+

1

2
tr
[
4
(

[dR̄−ω]Γ(2)
)
4 ˙̄R

]
− 1

2
tr
[
4Γ̇(2)4K

]
.

(9.7)

According to our definition of compatibility (cf. section 7) this must evaluate to zero without

further conditions. By substituting for ωΓ(2) and Γ̇(2), using the mWI and flow equation

respectively, we would be led to the approximated two-loop diagrams discussed in section 7,

which we have already seen will fail to cancel unless K = ˙̄R. On the other hand, we see

from above that if K = ˙̄R, then Ẇ = 0 will follow, provided that it can be shown that

[dR̄ − ω]Γ(2) = Γ̇(2). In section 11 we will see that this is indeed a consequence, since the

equations imply that the solution satisfies Γ(2) = Γ̄(2). We will have thus shown that the

mWI and the flow equation are compatible if and only if K = ˙̄R. By (9.2) this means they

are compatible if and only if we work in d = 6 space-time dimensions.

10 The significance of six

In this section we pause for a moment to give an intuitive explanation for the need to impose

d = 6 dimensions from here on. Although, as discussed in section 7, the exact flow equation

and exact mWI for background rescaling invariance, are automatically compatible, we

emphasise that this is typically no longer true when we make uncontrolled approximations.

In fact we have seen that once such approximations are made, the mWI and flow equation

will be compatible if and only if we choose d = 6 spacetime dimensions.

The price we pay for working within an uncontrolled approximation scheme is that

we must set d = 6. If we do not maintain compatibility within the approximation scheme

itself then, as discussed in section 7 and in ref. [49], we would find no solutions at all to

the combined system of mWI and flow equations.

In section 4 we saw that, after suitable choices of background scaling dimension du, all

fluctuation fields, apart from the physical fields, have Hessians whose actions are invariant

under background rescaling. (This is true for the gauge degrees of freedom ξµ and σ only

after the Landau gauge limit is taken.) In contrast the action for the Hessian for physical

fluctuations transforms with no homogeneous part only in d = 6 dimensions, as we will

prove in the next section. This is why the difference between the r.h.s. of the mWI (6.4)

and flow equation (7.1) disappears in precisely d = 6 dimensions. To understand intuitively

why six dimensions is singled out, consider a term of the form

1

2

∫ √
ḡ ḡαµḡβνhTαβ(−∇̄2)hTµν , (10.1)
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where of course ∇̄2 = ḡσρ∇̄σ∇̄ρ. Counting powers of the background metric we see indeed

that invariance under (2.3) requires exactly d = 6 dimensions. (hTµν itself is invariant as

established below (2.22).) The analysis in sections 3, 4 and 5 then establishes there is no

homogeneous part whatever the form of the Hessian, provided only that Newton’s constant

is factored out, as is always done in the literature. Factoring out Newton’s constant ensures

that the dimension of the Hessian is [Γ̄(2)] = 2 and results in a theory based on second order

derivative terms as illustrated above. In contrast for example, had we based the theory

on a four-derivative action such as in Weyl gravity, we would find that d = 8 is singled

out instead.

11 Simultaneous solution and scale independent variables

Since we need compatibility to make further progress (cf. the discussion in section 7 and the

last section), from now on we specialise to the case of d = 6 dimensions. It is remarkable

that compatibility is regained in this case, and even more remarkable that this is so for

almost any approximation.

Indeed although we wish to apply these results to the standard procedures and ap-

proximations in the literature, in particular for the optimised cutoff [50, 51] and forming

f(R) approximations by projecting on a maximally symmetric background metric, we saw

in section 9, that compatibility will hold in d = 6 dimensions whatever cutoff profiles ru
we choose, and whatever background metric we choose, provided only that the background

space-time is compact (has finite volume) so that h̄ is well defined, e.g. through (8.3). We

will now see that the solution of the mWI in terms of new scale independent variables

is sufficiently powerful that it also holds independent of the choice of cutoff profile and

independent of the choice of ḡµν .

We set up in section 8 a slightly extended version of the single-metric approximation,

in that we keep also dependence on h̄. Having shown that the mWI remains compatible

with the flow equation in this case we now show that under these circumstances we can

solve these two equations simultaneously to derive background scale independent variables.

These steps are inspired by the discovery of background independent variables in previous

cases [31, 39, 49] but due to the much weaker nature of the mWI we impose, we obtain

not background independence here but only independence from the overall scale of the

background metric.

Again the key is to combine the mWI and flow equation by eliminating the non-

linear pieces on the r.h.s., after which the linear equation may be solved by the method

of characteristics. Combining the flow and mWI we have, by (8.7), the linear partial

differential equation:

Γ̇ + 2d
∂Γ

∂h̄
+ 2h̄

∂Γ

∂h̄
− 2

∫
ḡµν

δΓ

δḡµν
= 0 . (11.1)

The first term implies that its characteristic curves can be parametrised by the RG time

t itself.14 After this the vector field generating the characteristic curves is just the one

14Had we parametrised with s say, then the first term would imply dt/ds = 1.
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we derived in the unbroken case, namely (2.14), (2.15) and (2.29). Thus the solution is

again that Γ is constant for the characteristics defined by (2.17) and (2.28). However,

now that the characteristic curve auxiliary parameter is endowed with extra meaning,

being identified with the RG time, we need to interpret them differently. Indeed the left

hand side of (11.1) is ω̂Γ, where the extended background rescaling operator ω̂ = ω + ∂t
just generates background rescaling transformations such that k now also participates as

in (5.3). Following the appendix to ref. [31], and also following ref. [49], we thus rewrite

the integration constant for h̄(t) in (2.28) as an integration constant

t̂ = t− 1

2
ln(1 + h̄/d) (11.2)

for t (where strictly now d = 6). This then defines the background rescaling invariant

version of cutoff scale k̂ as:

k̂ = k/
√

1 + h̄/d . (11.3)

Remembering that k now also transforms, and using (2.30), we see that indeed this new

form of cutoff scale is invariant under background rescaling. From (2.17) or directly

from (2.31), we can define the background rescaling invariant version of the background

metric as:

ĝµν(x) =

(
1 +

h̄

d

)
ḡµν(x) . (11.4)

Then the solution Γ ≡ Γk[ḡµν ](h̄) to (11.1) can be written in terms of a new functional Γ̂

that is invariant along the characteristics:

Γ = Γ̂k̂[ĝµν ] , (11.5)

in which all explicit reference to h̄ has disappeared. By differentiating this with respect

to h̄, and using the definitions (11.2) and (11.4), it is straightforward to verify that this

does indeed solve (11.1). Since their l.h.s. now agree and their r.h.s. are anyway equal (in

d = 6), this immediately implies that the flow equation (7.1) and mWI (6.4) reduce to the

same equation for Γ̂.

To find this equation, we note that the l.h.s. follows from the equality:

∂t|h̄,ḡµνΓ = ∂t̂|ĝµν Γ̂ . (11.6)

On the r.h.s. we use the fact that the change of variables (11.3) and (11.4) is in the

form of a (h̄-dependent) finite background rescaling transformation where now k actively

participates: the corresponding infinitesimal transformations being (2.6) and (5.3).

Explicitly, consider any quantity Q̄ := Q(ḡµν , k) that under these infinitesimal trans-

formations, transforms homogeneously as δQ̄ = dQ Q̄. Under the change of variables (11.3)

and (11.4), Q̄ thus becomes

Q̄ = Q̂

(
1 +

h̄

d

)dQ/2
, (11.7)

– 23 –



J
H
E
P
1
1
(
2
0
1
6
)
1
6
0

where by Q̂ we mean simply15

Q̂ := Q(ĝµν , k̂) . (11.8)

Examples are of course k and ḡµν themselves. Recalling the explanation below (5.2), we

also see that Pk(∆̄) now scales homogeneously. From (5.1) we thus find

Pk(∆̄) = Pk̂(∆̂)

(
1 +

h̄

d

)
. (11.9)

Carrying this through to the IR cutoffs R̄ and Hessians evaluated on the background, we

see that they too now transform homogeneously:

Γ̄(2)
u = Γ̂(2)

u

(
1 +

h̄

d

)dR̄u/2
and R̄u = R̂u

(
1 +

h̄

d

)dR̄u/2
. (11.10)

However on the r.h.s. of the flow equation/mWI, these h̄-dependent powers just cancel

between
˙̂R and the inverse of [Γ̂(2) + R̂].

This deals with all the contributions from all the auxiliary fluctuation fields and ghost

fields since their Hessians are automatically evaluated on the background, i.e. have no other

field dependence, and also with the gauge degrees of freedom since in the Landau gauge

limit their Hessians also have no other field dependence.

This leaves the Hessians Γ
(2)
u for the physical degrees of freedom u = hTµν , h, since a

priori (8.1) still depends on both ḡµν and h̄. Recalling that the Hessians are being regarded

as differential operators it is helpful to think of them as embedded in an action

1

2

∫ √
ḡ
∑

u=phys

uΓ(2)
u u , (11.11)

in order to understand their transformation properties under background rescaling.

If we replace Γ
(2)
u by Γ̄

(2)
u , i.e. set h̄ = 0:

1

2

∫ √
ḡ
∑

u=phys

u Γ̄(2)
u u , (11.12)

then this transforms into a h̄ one-point vertex from the transformation (2.22) on the explicit

hs, or equivalently from the transformation (2.30) on the explicit h̄s. However we now prove

that the homogeneous part of the transformation has index 6−d = 0, i.e. vanishes. We have

basically already demonstrated this below (5.9). Recall that in section 2, see also section 4,

we established that the graviton hTµν is invariant, while h transforms with index 2; then

in section 5 we established that Γ̄
(2)
u transforms homogeneously, with index dR̄u = 6 and

2 respectively. The t-derivative correction shown in (5.6) is once again no longer required

since k now actively participates. Taking into account that from (2.6),
√
ḡ transforms with

index −d, and adding up all the contributions, we confirm that overall the action (11.12)

transforms with index 6− d = 0, i.e. with no homogeneous part.

15We will see at the end of this section how this definition of a hatted quantity is actually consistent with

Γ̂ as already defined in (11.5).
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Next we prove that the interaction term involving one extra h̄ must vanish. The

reasoning basically follows that surrounding eq. (2.34). Indeed, if the interaction term

did not vanish, since the h̄ transformation in (2.30) is inhomogeneous, it would yield a

bilinear term which has nothing to cancel, because we have already shown that the bilinear

terms (11.12) transform with no homogeneous part.

Having proved there is no h̄uu interaction, we can similarly show that there is no h̄2uu

interaction, for if there was, under (2.30) it would transform into a h̄uu piece. This piece

can only cancel the homogeneous part of a transformed h̄uu interaction. Since the latter

does not exist we conclude there is no h̄2uu interaction either. Proceeding iteratively, we

have thus proved that in d = 6 dimensions and as a consequence of the combined mWI

and flow equation, viz. (11.1), the Hessian for physical fluctuations actually has no h̄

dependence, and thus in this case Γ
(2)
u = Γ̄

(2)
u even for the physical fluctuations.

It immediately follows then that in d = 6 dimensions, the Hessians for all fluctua-

tions transform as in (11.10) and thus the one remaining equation for Γ̂, which we may

legitimately identify as the background scale independent flow equation, simply reads:

∂t̂Γ̂ =
1

2

∑
u

tr
[
(Γ̂(2)
u + R̂u)−1 ∂t̂R̂u

]
. (11.13)

We remind the reader that here the Hessians themselves are defined by the standard suite

of approximations [3]. In particular there is no longer the distinction set out in section 8

for the physical fluctuations: their Hessians too are evaluated on the background. All that

is further required to construct the above equation is simply to replace ḡµν by ĝµν and k

by k̂ on the r.h.s. . On the l.h.s. , we can see this as taking the h̄-dependent Γ ≡ Γk[ḡµν ](h̄)

and using the equality (11.6). However, since the r.h.s. is now identical to the standard

(single-metric) approximations, we see that actually the solution is then guaranteed to be

the same as a single-metric approximation solution Γk[ḡµν ], with ḡµν replaced by ĝµν and

k replaced by k̂. In other words, we have proved from the flow equation that the change

to background scale independent variables just amounts to replacing ḡµν with ĝµν and k

with k̂.

From here, finally, we can further approximate by retaining only certain operators, for

example all powers of R̂, as subsumed in the function fk̂(R̂). Of course the solutions are

therefore identical to those fk(R̄) that would have been obtained originally. All that has

happened is that ḡµν is replaced by ĝµν and k replaced by k̂.

12 Conclusions

From the previous section, we therefore see that we arrive at precisely the same flow equa-

tion as in the single metric approximation, except that now the background metric ḡµν and

the cutoff scale k are replaced by ĝµν and k̂ respectively. Nevertheless the interpretation

of these quantities is crucially different.

Since k̂ depends, through (11.3), on part of the dynamical field hµν , the value of k̂

depends on the physical situation. The fact that h̄ depends on the physical situation is

the analogue for the expectation value, of the fact that in the partition function, h̄ must

– 25 –



J
H
E
P
1
1
(
2
0
1
6
)
1
6
0

integrated over all acceptable values. Similarly, the background metric ḡµν is replaced by

ĝµν which, through dependence on h̄, is now actually a dynamical quantity. We therefore

cannot think of ĝµν as fixed but rather must solve with an ensemble of values in mind.

Background rescaling invariance is now built in. From (11.4) and (11.3), exactly the

same solution refers in fact to an infinite ensemble of background space-times related by

an arbitrary finite rescaling ḡµν 7→ ḡµν/α
2, since this can be compensated by h̄ 7→ −d +

(h̄ + d)α2 and k 7→ kα, thus leaving ĝµν and k̂ alone. Since this map changes h̄, we also

see explicitly how the overall scales of the full metric and background metric get identified

with each other after solving for the mWI.

At first sight, we still have an option to treat preferentially the region where there

are no eigenvalues left to integrate out, namely to do so using k̂ < a
√
R̂, i.e. use the

modified Laplacian on the manifold built with ĝµν . Ranging over α as defined above,

this corresponds to setting the infrared cutoff k to be different on manifolds of different

background curvature. Indeed in the picture of figure 2, it corresponds to choosing a

ray k = κ
√
R̄ for some proportionality constant κ, instead of a horizontal line. The

problem is that now when κ is lowered, corresponding to integrating out, the picture

changes irrevocably. In particular if κ > a before and κ < a after, then again we go from a

situation where there were eigenvalues to integrate out to one where there are none. Once

again no rescaling can return it to its original form. Therefore we cannot arrange the IR

cutoff k in this fashion without again destroying the Wilsonian RG.

Instead we realise mathematically the Wilsonian RG picture we set out in figure 2. As

we have just reviewed, the basic condition for the Wilsonian RG to make sense is that k

must be treated as independent of the background metric ḡµν . We cannot impose conditions

on the solution that depend on comparing k to a particular choice of ḡµν without violating

a precondition for the Wilsonian RG which is that after lowering k and rescaling back

to the original size, the same ensemble of space-times plus fluctuations can be recovered.

Treating k as independent however, means that under background rescaling k̂ is now active:

k̂ 7→ k̂/α. We thus recover in the f(R̂) type approximations we have now formulated, the

fact that solutions must remain smooth over the full range of k̂, or equivalently over all

R̂ = R̂/k̂2 no matter how large.
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