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A turbulent boundary layer subjected to free-stream
turbulence is investigated in order to ascertain the
scale interactions that dominate the near-wall region.
The results are discussed in relation to a canonical
high Reynolds number turbulent boundary layer
because previous studies have reported considerable
similarities between these two flows. Measurements
were acquired simultaneously from four hot-wires
mounted to a rake which was traversed through the
boundary layer. Particular focus is given to two main
features of both canonical high Reynolds number
boundary layers and boundary layers subjected to
free-stream turbulence: (i) the footprint of the large
scales in the logarithmic region on the near-wall
small scales, specifically the modulating interaction
between these scales, and (ii) the phase difference in
amplitude modulation. The potential for a turbulent
boundary layer subjected to free-stream turbulence
to “simulate” high Reynolds number wall-turbulence
interactions is discussed. The results of this study have
encouraging implications for future investigations of
the fundamental scale interactions that take place in
high Reynolds number flows as it demonstrates that
these can be achieved at typical laboratory scales.
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1. Introduction
As the Reynolds number of a turbulent boundary layer grows, the energy signature of the large
scales encroaches on that of the near-wall turbulence [1]. In boundary layers, the large energetic
motions in the outer region, known as superstructures, carry a significant portion of the turbulent
kinetic energy, contributing to a significant amount of the Reynolds stresses in these flows [2–4].
These superstructures become more energetic and exhibit a footprint of increasing significance
in the near-wall region with increasing von Kármán number (Reτ =Uτ δ/ν) [5]. Hutchins and
Marusic [1] showed that this footprint can extend deep into the near-wall region and lead to an
increase in the near-wall streamwise turbulence intensities (in inner-scaling). They also showed
that these large scales in the outer region tend to modulate the amplitude of the small-scale
fluctuations in the near-wall region [6]. This sort of interaction between the scales has been
examined before by Bandyopadhyay and Hussain [7] for various shear flows, including boundary
layers, mixing layers, wakes and jets. They found significant coupling between these scales across
all shear flows by correlating the low-frequency component (i.e., low-pass filtered time-series data
from their hot-wire measurements) with a signal similar to the envelope of the high-frequency
component. Mathis et al. [8] expanded on the findings of Hutchins and Marusic [6] and quantified
the modulation across the boundary layer as the correlation coefficient,R, between the large-scale
streamwise fluctuating velocity and an envelope of the small-scale fluctuations. Their profiles ofR
provided supporting evidence of amplitude modulation of the near-wall small scales by the large
scales. They also noted that the modulating effect of the large scales increases with increasing
Reynolds number. While there are certainly many open questions relating to how these scale
interactions take place in high Reynolds number flows, there are also numerous limitations of
performing measurements in the near-wall region of said flows, e.g., sensor spatial and temporal
resolution, wall proximity errors [9,10]. Therefore, there is high demand for accurately predicting
the near-wall turbulence with only large-scale information input [10,11].

In an attempt to isolate the influence of the large scales, Jacobi and McKeon [12–14] and
Duvvuri and McKeon [15] introduced a single synthetic large scale into the boundary layer.
Specifically, Duvvuri and McKeon [15] found that exciting the turbulent boundary layer by a
large-scale input modifies the phase relationships naturally existing between the large and small
scales of the turbulent boundary layer. These phase relationships were quantified in their study
by the skewness of the streamwise velocity fluctuations and the amplitude modulation coefficient
as previously suggested in the literature [16,17]. As opposed to a single dominant large-scale
input, Dogan et al. [18] introduced a broadband set of large-scales centred about 10δ into their
boundary layer with tailored free-stream turbulence (FST). They generated the FST using an
active grid at the inlet of the wind tunnel test-section. They observed that the characteristics
of their turbulent boundary layer in the presence of FST and canonical high Reynolds number
turbulent boundary layers were similar with respect to the scale interactions. This is particularly
significant because the presence of FST generated higher Reτ in their facility than achievable
under canonical conditions. This implies that the introduction of FST above the boundary layer
can be used to simulate the near-wall interactions of a high Reynolds number turbulent boundary
layer without the need of a specialised (very large) boundary layer facility. In their study, Dogan
et al. [18] showed that the large scales have a modulating effect on the small scales in the near
wall region and that this effect becomes more significant with increasing FST. The increasing FST
results in more energetic large scales that simulate the increase in large-scale energy observed in
high Reynolds number flow facilities for increasing Reynolds number, Reτ . This similarity has
encouraging implications for generalising scale interactions in turbulent boundary layers and
mimicking high Reynolds number wall-flows in laboratory scale facilities. The current study
builds on that of Dogan et al. [18] by replicating the FST and boundary layer conditions and
performing measurements with multiple hot-wires simultaneously. The focus of this work is thus
understanding the modulating interaction and phase relationships between the inner and outer
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Figure 1: Schematic of the experimental set-up.

scales. Implications relating to the potential of modelling high Reynolds number wall-turbulence
interactions in laboratory experiments using large-scale FST will be discussed.

2. Experimental procedure
The experimental design used here is a deliberate duplication of the study of Dogan et al. [18],
except that we acquire data from four wires simultaneously. Full details on the facility and design
can be found in [18]. In summary, the suction-type wind tunnel has a 0.9 m × 0.6 m × 4.5 m test-
section and the boundary layer was formed on a suspended floor. Free-stream turbulence was
generated with an active grid. A schematic of the experimental design is provided in figure 1.

Data were acquired from four hot-wires simultaneously. The wires were mounted to a rake
with the probes angled into the boundary layer at 30o. The second, third, and fourth wires were
separated from the first by 7, 22, and 55 mm, respectively. This rake was then traversed using an
automated stepper system over the range 0.4 mm ≤ y≤ 223 mm. All wires were made in-house
from tungsten wire mounted to Dantec-style prongs and had a nominal sensing length of 1 mm.
The second wire in the rake was a boundary layer probe in order to position it in close proximity
to the first wire. All other wires were standard single-wire probes. The wires were operated by a
Dantec 54N82 multi-channel constant temperature anemometer at an overheat of 1.8. The wires
were calibrated in situ with 15 points fitted to a fourth-order polynomial. Data were acquired at
20.5 kHz for a minimum of 6 minutes, which is ample time to converge the relevant statistics [18].
An analog filter was set at 10 kHz, and in post-processing the data were filtered with a fifth-
order digital Butterworth filter at 7.5 kHz as it was observed that there was no meaningful signal
beyond this frequency. The data were acquired with a National Instruments (NI) PXIe-1062Q 16-
bit system. In particular, a NI TB-2709 card was employed because it allowed for simultaneous
acquisition of multiple signals with dedicated A/D converters without the need of a multiplexer,
thus ensuring no phase offset between signals.

This study replicates cases B and D from [18]; we maintain this naming convention for
consistency. These two cases are both at Rex = 2.2× 106 (with x = 0 at the leading-edge of the
suspended flat plate). Relevant parameters from the present study are provided in table 1, and
were calculated in the same manner as described in [18]. All gradient quantities were estimated
using a sixth-order centred-differencing scheme as recommended in [19]. The flow characteristics

Table 1: (Colour online) Free-stream and turbulent boundary layer parameters for the study cases
evaluated at the measurement location, x/M = 43.

FST cases U∞ (m/s) u′∞/U∞ (%) Reλ,∞ δ (m) Uτ (m/s) Reτ Reθ
B ( ) 9.9 8.1 465 0.13 0.42 3590 4500
D ( ) 10.1 12.2 630 0.16 0.43 4550 5340
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provided in table 1 agree with those presented in [18] for the same cases to within the uncertainty
margins. Furthermore, our mean profiles collapse well with the old data. Thus, the measurements
are repeatable, and our multi-wire rake and the angle of the probes do not significantly influence
the flow or measurements.

3. Amplitude modulation: Single-point measurements
Figure 2 shows spectrograms, mean profiles and variance profiles for both case B and D. The
details of the figure are given in the figure caption. The prominent feature of both spectrograms
is the presence of an outer peak similar to high Reynolds number flows [6]. This outer peak is
within the logarithmic region of the boundary layer as seen in the mean profile. The outer peak is
located close to the knee of the variance profile, where the variance starts to decrease above this
wall-normal location. These features are consistent with existing data on canonical high Reynolds
number turbulent boundary layers.

It can be seen that the energy of the outer peak grows with increasing turbulence intensity due
to the increasing energy content of the large-scales in the free-stream. These high-energy scales
in the free-stream penetrate the boundary layer and attain a local maximum within the outer
region of the boundary layer. In this sense, the increase in FST can be viewed as “simulating”
an increase in Reτ for a canonical boundary layer. It should also be noted that the peak in the
premultiplied energy spectrum occurs at length scales near 10δ, which is consistent with the
energetic scales of high Reynolds number turbulent boundary layers. This dominant scale was
in fact a deliberate choice made when establishing the scales of the FST. It is certainly possible to
change this dominant scale by altering the active-grid operation mode as well as by altering the
location of the flat plate relative to the grid. In this study, we are specifically interested in isolating
the scale interactions where the energy containing large-scales are of O(10δ) and therefore, we
chose the mode of grid operation to produce these dominant scales.

The energetic scales in the free-stream (as well as the outer region) have a footprint in the near-
wall region. There is a shift of the energy towards long wavelengths (i.e., low wavenumbers)
very near the wall. The extent of the penetration depends on the FST level and this essentially
“simulates” the effect of increasing Reynolds number. Correspondingly, the amplitude of the
near-wall peak in the variance profiles is amplified with increasing FST level. In addition to this
direct effect reaching down to the wall, the large-scales in the boundary layer under the influence
of FST have been observed to modulate the amplitude of the small-scales in the near-wall
region [18].

Dogan et al. [18] examined the above-mentioned interaction using the scale-decomposed
skewness analysis of the streamwise velocity fluctuations as previously performed in [15,20,21].
The flow was decomposed into large and small scales using a sharp spectral cut-off filter [6,8] at
a wavelength of ζ+x ≈4000. The amplitude modulation coefficient is [8]:

R=
u+L EL(u

+
S )

σu+
L
σEL(u+

S )

(3.1)

where u+L is the large-scale fluctuations, EL(u
+
S ) is the filtered envelope of the small-scale

fluctuations, ·+ indicates inner scaling, and σ is the standard deviation. This coefficient is
employed to quantify the level of modulation across the boundary layer as assessed by a single-
wire using the same cut-off filter (the horizontal dashed line in plots (i) of figure 2) to separate the
scales as large and small as the component of the energy above or below the cut-off, respectively.
For both cases, the level of correlation is high in the viscous layer of the boundary layer suggesting
a high level of modulation of small scales in the near-wall region. This correlation decreases until
a plateau is reached and then in the logarithmic region it reaches its minimum value.

The location of the minimum correlation is observed to coincide with the outer spectral peak.
For high Reynolds number canonical boundary layers, the correlation coefficient reaches zero at
the outer spectral peak location above which the correlation is reversed [6,8]. Here, the reversal
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Figure 2: (i) Contour maps of the inner-normalised pre-multiplied energy spectra of the
streamwise velocity fluctuations, kxφuu/U2

τ , for ( ) case B (left) and ( ) case D (right). The
ordinates show streamwise wavelength, ζx, in both inner (left) and outer (right) scaling. The
abscissas show the wall-normal location, y, also plotted in both inner (bottom) and outer (top)
scaling. (+) indicates inner (black) and outer (white) spectral peaks. The horizontal dashed line
represents the location of the cut-off wavelength at ζ+x ≈4000. (ii) Corresponding mean (blue
outlined marker) and variance profiles. Dashed red line: log-law with coefficients κ= 0.384 and
A= 4.4. Dot-dashed vertical lines and (+) symbols represent the locations corresponding to the
spectral peaks indicated on (i). (iii) Amplitude modulation coefficient, R

(
y+

)
, as defined in

equation 3.1. Dot-dashed vertical lines follow the corresponding outer spectral peaks.

in correlation behaviour is not observed in the presence of FST. The lack of reversal is primarily
related to a reduction in the intermittency in the outer part of the boundary layer when FST is
present. The small-scale fluctuations in a canonical boundary layer have a distinct relationship to
the large scales as they rely on these large scales for their energy and organisation. However, the
small scales in the outer region of the current study are also influenced by the small scales of the
FST. These FST-based small scales may not have any relationships to the large scales within the
boundary layer and therefore mask the correlation reversal that might exist if it were possible to
only consider the small scales that are relevant to the boundary layer. Nonetheless, the similarity
between the scale interactions in the near-wall region of the present flow and high Reynolds
number boundary layers is remarkable.

The local minimum in the buffer region is higher for the higher FST case. The increasing trend
in the local minimum correlation value, as also observed by [18] for more FST cases is similar to
the Reynolds number dependence of the modulation coefficient for a canonical boundary layer
[21], i.e., increasing FST is akin to increasing Reτ of a canonical boundary layer. Therefore, a
turbulent boundary layer under the effect of FST can be seen as one way of emulating the scale
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Figure 3: A sample of the inner-scaled fluctuating streamwise velocity signal for case B. (Top) raw
fluctuating signal, u+(y+), at y+ ≈ 20; (bottom) dashed line: large-scale fluctuating signal,
u+L (y

+), at y+ ≈ 20, solid line: large-scale fluctuating signal, u+L (y
+
o ), at y+o ≈ 210.

interactions that happen in the near-wall region of high Reynolds number turbulent boundary
layers.

4. Amplitude modulation: Multi-point measurements
Although single-point measurements were found to provide a reasonable estimate of the degree
of amplitude modulation, multi-point synchronised measurements are preferred for the study
of interactions between the outer-region and the near-wall region because several assumptions
of the former analysis can be relaxed in place of direct observations. As such, the analysis that
follows employs the first two wires in the rake described in section 2.

A sample of the fluctuating streamwise velocity signal in inner-scaling from the inner probe
and the large-scale fluctuations from both probes are given in figure 3 for case B. The inner probe
is at y+ ≈ 20 around the near-wall peak and the outer probe is at y+o ≈ 210 in the log-region
where the energy of the large scales is dominant. A high degree of correlation is visible from the
large-scale fluctuations at the two different wall-normal locations. This correlation is found to be
∼ 80%. This is higher than 65% found in [11] for a canonical turbulent boundary layer that was
justified as a result of the footprint caused by the superstructure-type events in the log region.
The fact that the correlation is higher in FST cases supports the direct penetration of the FST large
scales into the boundary layer and down to the near-wall region (this correlation is even higher
for case D, ∼ 85%).

Given the similarities of the scale interactions with that of high Reynolds number canonical
boundary layers, there is grounds to test the predictive inner-outer model of Marusic et al. [10],
also detailed in Mathis et al. [11], for the turbulent boundary layers in the presence of FST.
This would confirm the analogy between the two flows and validate the applicability of the
model to this non-canonical case. Their model is able to predict the near-wall turbulence using
only the large-scale information input. With this input, the predicted velocity signal at a wall-
normal location is linked to a universal signal (a signal that is free from any large-scale influence)
through the model coefficients. Figure 6 shows a schematic for the mathematical formulation of
the predictive model. It should be noted here that the outer probe shifted large-scale signal in the
formulation for FST cases, u+oL(y

+
o , θL), is different compared to a canonical case because for FST

cases the large-scale signal also includes the FST large-scales that penetrate into the boundary
layer. It is also worth mentioning that the two probes in the present study are both moving
whereas only the inner probe moved with the outer probe fixed in [11]. However, here, the inner
probe moves significantly in wall units whereas the outer probe can be said to be relatively fixed
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Figure 4: Mathematical formulation of the predictive inner-outer model of Marusic et al. [10]
as given in [11]. y+: inner probe location; β: model coefficient for amplitude modulation;
u+oL(y

+
o , θL): filtered outer probe signal shifted forward in the streamwise direction for the

corresponding θL where θL is the mean inclination angle of the large-scale structures; y+o : outer
probe location; α: model coefficient for linear superposition.

relative to the main features of the flow. Therefore, this difference in the probe configuration is
not expected to affect the results.

Briefly, the predictive model incorporates four different things: (i) a universal signal that would
exist in the absence of any large-scale influences (ii) the inclination of the large-scale structures
with the wall, θL, which will lead to a time-delay in the interaction, (iii) the superposition
of the large-scale fluctuation on the near-wall region, represented by model coefficient α, and
(iv) amplitude modulation of the small scales by the superimposed large scales, represented by
model coefficient β. The details of the model and the procedure to calculate these coefficients can
be found in [11].

The three aforementioned parameters of the predictive model are given for different wall-
normal positions in figure 5 in comparison with the values from Mathis et al. [11]. The
superposition coefficient is related to the correlation between the large-scale fluctuations of the
two probes, the relation of which has already been demonstrated in figure 3 instantaneously
at one specific wall-normal location. Here, when we look at the evolution of the coefficient in
the wall-normal direction for all locations below the outer spectral peak, we can easily see a
high degree of correlation throughout. This correlation is higher for case D (higher turbulence
intensity) compared to case B (lower turbulence intensity). This confirms the observation from
the spectrograms that the energy levels that reside in the near-wall region due to the penetration
of FST increase with turbulence level in the free-stream. When compared with α values from [11]
for a canonical case, higher values are observed for FST cases. This is a result of FST scales
penetrating the boundary layer. The model takes into account the inclination angle of the large-
scale structures; therefore requires shifting the outer probe signal forward in the streamwise
direction (assuming Taylor’s hypothesis) for the corresponding time shift between the large-
scale signals from both probes. The inclination angle is typically within 12◦ and 16◦, c.f., [11]
and references therein including [22–24]. The present study exhibits similar large-scale structural
organisation with an inclination angle that is relatively constant between 11◦ < θL < 15◦ for wall-
normal locations y+ < 150. Although FST disturbs the boundary layer from outside, the fact that
it does not destroy the large-scale structural organisation in the log-region is a promising result for
establishing the analogy with high Reynolds number canonical flows. Beyond that wall-normal
location where the two probes get closer in wall-units (in physical units the probes are a set
distance apart), the angle is found to increase and reach around 20◦ as justified by the presence of
increasingly correlated small-scale structures that have higher inclination angles [11].
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Figure 5: Wall-normal evolution of the predictive inner-outer model coefficients in comparison
with Mathis et al. [11]. (Left) the superposition coefficient α and the mean inclination angle
of the large-scale structures, θL (the blue outlined markers); (right) the amplitude modulation
coefficient, β. ( ) case B, ( ) case D, and (∗) Mathis et al. [11].

The value of β, which captures the modulation effect of the large scales on the envelope of the
small scales in the turbulent boundary layer, gives similar results to the canonical case studied in
[11] especially in the near-wall region. Nonetheless, the trend in β is observed to be similar to the
trend in R (figure 2(iii)), which was also true for the canonical case of [11]. Since R indicates how
much the signal is amplitude-modulated, β would be expected to indicate a similar trend to de-
amplitude modulate this signal in order to remove the large-scale influence as similarly justified
in [11]. This similarity also confirms that amplitude modulation of the scale interactions in the
near-wall region is reasonably well represented in this “simulated” high Reynolds number flow.
The magnitude of this coefficient is found to be smaller compared to the canonical case in [11].
When this model was applied to non-canonical cases like turbulent boundary layers subjected
to pressure gradients in [25], the β values were similarly observed to be smaller compared to
the canonical case in [11]. Agostini and Leschziner [26] claimed that although this predictive
model correctly represents the superposition effects of the large scales through the superposition
coefficient α, it does not capture entirely the asymmetry in the modulation with β coefficient.
If we interpret our β results based on their observations, these asymmetries could be said to be
stronger for a non-canonical flow and therefore additional factors might come into play when
calculating β.

Finally, the universal signal can be determined using these model parameters. Since this signal
is “universal” and thus independent of any large-scale influence, the signal for the two FST cases
would not be expected to differ significantly. This is also verified through the variance distribution
of the two signals determined as the universal signals for the two FST cases (not shown here
for brevity). Once these model parameters are established, we could predict the signal in the
near-wall region by using only large-scale signal input from a nominal peak in the outer region.
Figure 6 presents the predicted and the measured values for the variance of the near-wall peak.
Here, the aim is to validate the above model for various FST cases in addition to the two particular
cases from the present study. As such, figure 6 is composed of data from Dogan et al. [18], which
includes the present two cases and several others (see the original source for details on all cases).
The predicted values are corrected for spatial resolution using the method of Chin et al. [27]. The
prediction seems to work quite well for the FST cases with 75% R-squared value calculated for
the identity line. The discrepancies from the equality line can be mainly due to (i) the difference
in spectral filtering used for the scale separation and (ii) the limited wall-normal position range
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Figure 6: Predicted vs measured values of the inner-normalised near-wall peak variance of the
streamwise velocity fluctuations. Details for all FST cases can be found in [18].

of the calibration experiment (i.e. the present experiment to calculate the model coefficients) that
could pose an inefficiency of the method for the cases where the spectral outer peak location is out
of the calibrated range. Regardless, the validity of the model suggests that this approach could be
generalised to capture the influence of "any" large-scale influence on near-wall turbulence.

5. Phase information: Single point measurements
A phase difference between the large and small scales was found for amplitude modulation in
previous studies and it was observed to increase with increasing distance from the wall [7,16,17].
Since the amplitude modulation coefficient is a correlation coefficient between the large scales
and the envelope of the small scales, it could help define the phase relationship between them.
However, Jacobi and McKeon [14] noted the nature of the phase relationship was obscured when
examined with the correlation coefficient since the correlation is computed at zero time-lag while
a phase difference necessarily means a non-zero time-lag. Therefore, they suggested employing
the cross-correlation function itself. Following their suggestion, the time shift (or the phase
difference), relationship across the whole boundary layer is investigated in figure 7 with cross-
correlation contour maps from single point measurements. The phase difference is positive across
the whole boundary layer implying that the envelope of the small-scale fluctuations leads the
large-scale fluctuations in the boundary layer, in agreement with previous work [14,16,17]. This
phase difference is found to increase with wall-normal position, also in agreement with previous
studies [7,14,16,17,28]. However, unlike previous studies, the phase reversal is not observed for
FST cases. This might be related to the increased small-scale fluctuations in the outer region of the
boundary layer resulting from the FST. Nonetheless, the inner region phase relations are similar
to a canonical boundary layer, which is promising as it indicates that the present methodology
can be used to approximate the phase organisation of the large scales and the envelope of the
small scales in high Reynolds number flows.

Duvvuri and McKeon [15] showed that the phase relations naturally existing in the flow
between the scales can be modified by introducing a synthetic large scale. They suggested that
the envelope of all small scales can be in-phase or out-of-phase with the synthetic large scale
depending on its location with respect to the location of the critical layer (this is the layer where
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the wave speed of the disturbance is equal to the local mean velocity). They interpreted the zero-
crossing location of their amplitude modulation coefficient as an indication of phase reversal,
which in turn could point to the presence of the critical layer. The present amplitude modulation
coefficient plots (figure 2) do not cross zero. This suggests that the critical layer tends to move
towards the free-stream for higher intensity disturbances (and/or disturbances that are over a
range of scales). This also implies that for broadband, high intensity forcing in the free-stream, it
might not be possible to match the wave speed of a given disturbance to the mean velocity within
the boundary layer and therefore the small- and large-scales remain in-phase. It must be noted
that the wave speed of the disturbances in these FST cases is not known. However, if we assume
Taylor’s hypothesis for FST, the energetic motions that are injected by the active grid in the free-
stream would be expected to advect at the mean velocity of the free-stream. If this is the case,
then, it would not be possible for the local mean within the boundary layer to match the “wave
speed” of the external disturbance. It is also plausible that a penetrated FST disturbance might
travel within the boundary layer at a “wave speed” between the local mean and the free-stream
velocity. In this case, one would expect to find a critical layer inside the boundary layer. However,
since the disturbances have a broadband spectrum, the critical layer of each disturbance would
be expected to be weak and therefore would result in a smeared collection of critical layers across
which the phase can change only gradually. Since both explanations could lead to lack of phase
reversal, further extensive work on phase relationships in the presence of broadband forcing is
needed for any firmer conclusions.

6. Conclusions
This study has expanded on that of Dogan et al. [18] by complementing their work with
simultaneous multiple-wire measurements in a turbulent boundary layer subjected to FST. The
focus was on the similarities of the present flow with canonical high Reynolds number turbulent
boundary layers. Adding FST results in more energetic large scales that simulate the increase
in large-scale energy observed in high Reynolds number flow facilities for increasing Reynolds
number, Reτ . The potential to “simulate” high Reynolds number flows without requiring very
large boundary layer facilities has been explored in detail by comparing the two flows specifically
in terms of interactions and phase organisation between the scales.



11

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

The FST imposes a spectral peak in the outer region that resembles the naturally occurring
spectral peak in canonical high Reynolds number boundary layers. These large scales were
observed to modulate the amplitude of the near-wall small scales. This modulation was quantified
by a modulation coefficient as previously done in the literature [8]. The scale interactions observed
in the boundary layer subjected to FST resembled those of a high Reynolds number boundary
layer. The predictive inner-outer model of Marusic et al. [10] was implemented for the present
cases in order to test the analogy between these flows. The analogy was confirmed by comparing
the present model coefficients to those of high Reynolds number flows. Since the aim of the model
is to be able to predict the near-wall turbulence with only large-scale input, this analogy implies
there is some universality, even under extreme free-stream conditions, of the large-scale influence
on the near-wall turbulence.

It was also found that the envelope of the small-scale fluctuations led the large-scale
fluctuations in the boundary layer as previously found for a canonical boundary layer [14,16,17].
The inner region phase relations of a canonical boundary layer were well captured here indicating
the ability of the FST cases to maintain the phase organisations observed in canonical high
Reynolds number flows.

The near-wall turbulence has significant relevance in an engineering context since drag-
reducing control strategies are usually based on manipulating the near-wall structures [5]. Any
factors that influence these structures, including the footprint of the large-scale structures in
the log-region of the boundary layer as we explored here, should be taken into consideration
for effective control strategies. Therefore, the potential to model high Reynolds number near-
wall turbulence in laboratory scales using FST has encouraging implications towards developing
robust flow control techniques needed for these high Reynolds number flows.
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