
Noname manuscript No.
(will be inserted by the editor)

SmallClient for big data: an indexing framework towards fast
data retrieval

Aisha Siddiqa · Ahmad Karim · Victor Chang

Received: date / Accepted: date

Abstract Numerous applications are continuously gen-

erating massive amount of data and it has become crit-

ical to extract useful information while maintaining ac-

ceptable computing performance. The objective of this

work is to design an indexing framework which min-

imizes indexing overhead and improves query execu-

tion and data search performance with optimum aggre-

gation of computing performance. We propose Small-

Client, an indexing framework to speed up query execu-

tion. SmallClient has three modules: block creation, in-

dex creation and query execution. Block creation mod-

ule supports improving data retrieval performance with

minimum data uploading overhead. Index creation mod-

ule allows maximum indexes on a dataset to increase

index hit ratio with minimized indexing overhead. Fi-

nally, query execution module offers incoming queries to
utilize these indexes. The evaluation shows that Small-

Client outperforms Hadoop full scan with more than

90% search performance. Meanwhile, indexing overhead

of SmallClient is reduced to approximately 50% and

80% for index size and indexing time respectively.

Keywords Big data · Big data indexing · Big data

retrieval · Big data analytics · Query execution · Data

search performance

A. Siddiqa
Faculty of Computer Science and Information Technology,
University of Malaya, Kuala Lumpur, 50603, Malaysia
Tel.: +60-11-14391908
E-mail: aasiddiqa@gmail.com

A. Karim
Department of Information Technology, Bahauddin Zakariya
University, Multan, 60000, Pakistan

V. Chang
IBSS, Xi’an Jiaotong Liverpool University, Suzhou, 100044,
China

1 Introduction

With the evolution of big data technologies, the re-

search trends have been moved from finding massive

storage to efficient big data analytics. In todays com-

petitive world, being up-to-date has become a necessity

of every business to survive in tremendously changing

situations [1]. For this purpose, obtaining timely re-

sponses to queries plays a significant role in decision

making [2] where researchers are talking about big data

security [3][4], privacy on social network [5] and an-

alytics for internet of things [6]. Furthermore, efficient

computing resource utilization to perform analytics and

search operations on big data is also a critical aspect.

Therefore, the researchers are inclined to come up with

efficient data analytics solutions for rapidly growing

amount of data. Distributed parallel processing systems

are widely adopted by big data analytics where data

volumes have exceeded from exabytes and are still ex-

plosively growing [7][8]. For such large repositories, it

has become challenging to practice data analysis, search

and retrieval results with same performance as before

and continuous improvement to meet efficiency require-

ments is needed [9][10]. As a result, data indexing has

always been an efficient mechanism to increase query

execution and data search performance.

Contemporary big data processing technologies are ef-

ficient to perform mining operation such as CouchDB

for mining document data [11]. Similarly, text mining

[12] and data mining [13] algorithms and procedures

are also well-implemented for big data. Furthermore,

these technologies are prone to adopt feasible indexing

structures for better data analytical performance. For

instance, Hadoop which is a de facto big data processing

framework has gained 32 times improvement in task ex-



2 Aisha Siddiqa et al.

ecution with implementation of indexing [14]. However,

indexing techniques which are proven to be efficient for

traditional datasets do not perform well when applied

for big data. In addition, indexing time and size are

also very crucial for voluminous datasets. Another chal-

lenge for big data analytics is that, it is impractical to

face longer delays between data uploading and starting

data search operations [15][16]. Meanwhile, even bigger

indexes for big data do not make sense. These facts mo-

tivate us to explore more about indexing and make fur-

ther advancements in indexing procedures for big data.

Consequently, in this paper we focus on minimizing

indexing overhead and improving query execution and

search performance for voluminous datasets along with

velocity of processing needs while aggregating comput-

ing resource utilization. We consider both index cre-

ation time and index size to present minimized indexing

overhead in our work. Furthermore, to evaluate query

execution and search performance, we measure index

traversing time and data retrieval time. In order to

carry out research process, we first briefly describe the

inefficiency of contemporary big data processing frame-

works when full scan query operations on large datasets

are performed. We show that the performance of query

execution declines at Hadoop MapReduce framework

when data size grows. We further demonstrate the in-

ability of recent indexing structures to deal with large

size datasets. Additionally, we conclude that index at-

tribute set size is constrained to replication factor for

clustered indexing mechanisms [14] and with less num-

ber of indexes the chances of full scan become high.

While, non-clustered indexing mechanisms result in longer

delays to start query execution [17]. Besides index cre-

ation time, size of index is also large. Moreover, non-

clustered indexes for big data are not well structured to

retrieve data attributes other than indexed attributes

which is a serious performance bottleneck. Another as-

pect related to data retrieval is block creation policy.

File systems composed with big data processing frame-

works, HDFS as an example, creates blocks by taking

subsequent bytes from dataset to fill a block. HDFS

does not take care of contents or so called records of

dataset while creating blocks and thus record split is

common phenomenon. Split of last record in a block

increases access time to that record as next block con-

taining broken part of record may be located on distant

site in a distributed data storage environment.

We introduce SmallClient, a first non-clustered block

level indexing client for big data which offers multiple

indexes to be created on datasets regardless of available

replication factor. Unlike clustered indexing, our non-

clustered indexing approach is independent of replica-

tion factor and thus, allows more indexes to be created

than clustered indexing. Hence, larger index attribute

space than clustered indexing increases index hit ra-

tio for incoming search queries. Furthermore, the in-

troduced block level indexing concept utilizes the prop-

erties of data blocks, due to which, indexes are more

manageable than full data indexing. In comprehend, the

benefits of proposed indexing client are threefold: first,

our data block creation policy prevents record splitting

in more than one blocks and minimizes record access

time. Second, as many attributes as provided by a user

are utilized to create indexes with least indexing over-

head and improved index hit ratio. Third, our indexes

are fast enough in creation and traversal with less space

consumption which results in improved search perfor-

mance.

The rest of the paper is organized as follows: Sec-

tion 2 discusses the work related to clustered and non-

clustered indexing and their unaddressed problems which

motivate our work. Section 3 presents the proposed

SmallClient indexing framework for big data. A B-Tree

based block level indexing mechanism for big data ana-

lytics and a detailed description of SmallClient compo-

nents is provided. Section 4 explains the experimental

setup and discusses the results. Finally, conclusion and

future work are described in Section 5.

2 Related Work

In this section, we provide a brief review and back-

ground information of state-of-the-art contribution in

the field of big data indexing. Indexing has a widespread

implication for information retrieval in an efficient man-

ner. However in the field of big data indexing, the con-

tribution of database cracking [18] is an inaugural ef-

fort. Database cracking is derived to propose clustered

indexing solutions which are implemented on Hadoop

and have shown enhanced data retrieval performance.

MapReduce programming model of Hadoop which has

become de facto for big data analytics does not per-

form well in some aspects when compared with tradi-

tional data management systems (i.e. shared nothing

databases) [19]. Therefore, a trend is started to inte-

grate these traditional systems with MapReduce to uti-

lize the benefits of both technologies. HadoopDB [20]

is one example of this integration. Due to architectural

complexities found in HadoopDB and other such sys-

tems, the idea of integration is not well-acknowledged.

Alternatively, Hadoop++ [21] has been introduced which

is simpler and an easily deployable solution. Moreover,



SmallClient for big data: an indexing framework towards fast data retrieval 3

Fig. 1 Evolution of Big Data Indexing

Table 1 Clustered and non-clustered Indexing Approaches

Features Clustered Indexing Non-Clustered Indexing

Process Physically re-orders data rows Separate structure of key-value pairs
No. of Indexes Depends on No. of replicas As much as No. of Attributes in schema
Index Size Small Index Metadata Separate index structure needs significant space
Index Updating Requires re-ordering whole data Requires traversal of data
Data write Slow(requires re-ordering) A key-value pair is inserted in each index
Data Read Fast (searches in sorted list) First traverses index then jumps to record

Hadoop++ has same or sometimes improved query ex-

ecution performance over HadoopDB. Hadoop++ pro-

poses Trojan indexing which implements the concept

of data sorting (same as database cracking) at the time

of uploading data and thus facilitates query execution

times.

As a consequence, task execution and data search per-

formance of Hadoop framework is undoubtedly improved

with Hadoop++ (i.e. 20 times). However, Trojan index

has two drawbacks: first, the index creation time of Tro-

jan index is much longer than executing a full sequential

scan operation on Hadoop. Second, Trojan index offers

only one index for a dataset and thus the performance

improvement in query execution is subject to execute

queries having only that index attribute as selection

predicate. In this case, the selection of an attribute to

create indexes is very crucial. To deal with these perfor-

mance bottlenecks, HAIL [14] utilizes data replication

rather than just providing reliability and load balanc-

ing to increasing the number of indexes. HAIL offers as

many indexes as replication factor is set for a dataset

and achieves up to 64 times improved task execution

performance. Despite from task execution performance,

the number of indexes in HAIL is constrained to repli-

cation factor and it does not make sense to create more

replicas of large datasets to increases number of indexes.

Although some improvements are proposed in HAIL yet

there is no solution independent from data replication.

This evolution of Hadoop in terms of improved data re-

trieval is elaborated in Fig. 1. Fig. 1 shows that Hadoop

was introduced with MapReduce as programming model

that performs specialized parallel processing operations

on distributed data to fasten job execution procedure.

However, the simplicity of design offered by Hadoop

has bypassed the features associated with traditional

database management systems. Therefore, HadoopDB

[20] was introduced. As we have discussed earlier, the

architectural complexities of HadoopDB have impeded

its acceptance. However, Hadoop++ [21] and HAIL [14]

have proved to be efficient clustered indexing implemen-

tations with improved indexing structures to achieve

improved search performance on big data.

As far as non-clustered data indexing is concerned, it

is available in four categories: tree-based, hashing, in-

verted and bitmap indexes. Unlike clustered approach

of indexing, physical reordering of data is not required

to create non-clustered indexes. Non-clustered indexing

has been an efficient query execution and data retrieval

mechanism for medical images [22], event stream data

[23] and for face databases [24]. In our previous work

[25], we have elaborated that non-clustered indexes are



4 Aisha Siddiqa et al.

fast in creation, robust, small in size and their compu-

tational cost is less. However, B-Tree is more feasible

as these indexes are adaptable to growing size and suit-

able for various types of data. Furthermore, the tree

based structure makes it fast in traversing as compared

to other non-clustered indexes. Recent implementations

of B-Tree indexing are on flash memory optimization

[26] and on main memory [27].Apache Lucene [34] im-

plements inverted indexes that are non-clustered in-

dexes on big data to retrieve required data by search-

ing indexes instead of whole data sets. However, the

index design implemented by Apache Lucene has few

limitations: indexing on whole data set requires a sig-

nificant size of main memory, searching data for non-

indexed attributes and searching whole row when selec-

tive attributes are indexed is not available with Apache

Lucene indexes.

We present a brief comparison of clustered and non-

clustered indexing approaches in Table 1. Table 1 shows

that both indexing approaches have their own benefits

and limitations. However, replica dependency of clus-

tered indexing is the main constraint in implementing

this approach. We have also discussed the design limita-

tions of Apache Lucene that implements non-clustered

indexing. Although Apache Lucene indexing library is

advantageous on clustered approach, these limitations

deteriorate the performance of Apache Lucene index-

ing. Consequently, we propose B-Tree based indexing

framework, a non-clustered indexing approach, that cre-

ates block level indexes and overcomes the challenges of

existing clustered and non-clustered indexing approaches.

3 SmallClient

In this section, we present our indexing framework

named as, SmallClient in detail and elaborate how it

improves search performance and increases index hit ra-

tio by enabling larger index attribute space than state-

of-the-art indexing solutions. We further describe the

achievement of SmallClient to reduce index creation

time and index size for larger size data. Fig. 2 presents

our proposed indexing client. In a systematic way, we

decompose our client into three modules: first module

is designed to create data blocks which splits data into

smaller manageable chunks and uploads these series of

chunks as data blocks to a file system. We present index

creation design as a second module of our framework

which utilizes B-Tree structure to store < key, value >

pairs extracted from data blocks. Finally, expected data

can be retrieved using query execution module which

shows improved search performance for larger datasets.

SmallClient is a generalized framework for big data

indexing that is implementable on any distributed file

system. SmallClient works as an intermediate layer be-

tween user and distributed file system and offers data

uploading and query execution mechanism. SmallClient

offers indexes to facilitate search operations on data. We

present the architecture for SmallClient in Fig. 3 that

comprises three layers: (1) User Interface (UI) layer, (2)

SmallClient layer and (3) File System layer. User initi-

ates data uploading and index creating operations via

UI layer. User also sumbits queries on UI layer and the

results of indexed search are returned by SmallClient

on UI. SmallClient layer accepts data uploading and

indexing instructions from UI and invokes block cre-

ation to store data on file system and index creation

to create indexes on stored/storing data. SmallClient

layer also takes queries as input from UI layer, invokes

indexed search on data that is stored in file system and

returns the required data to user via UI. File System

layer is responsible to accommodate data blocks and

specified replicas on available storage. File System layer

also stores block metadata, schema of data set, indexes,

index metadata and query log. SmallClient utilizes dif-

ferent procedures associated with file system in order

to store, load and retrieve files on file systems. For in-

stance, file path, live nodes and capacity are HDFS in-

formation involved to carry out data storage and re-

trieval operations.

3.1 Block Creation

Contemporary big data processing systems offer dis-

tributed storage for big data where data reliability is

enforced with the help of data replication. Meantime,

a lot of debate is available in literature to signify data

chunk storage instead of storing data as a whole. There-

fore, each big data storage system has its own data

splitting mechanism where block size and placement in

file system is decided. Generally, block size is fixed for

a file and last record faces breakage when splitting data

into fixed size blocks. These blocks are then placed on

any allocated site in distributed file system regardless of

taking care of accessing broken records. As a result, ac-

cessing more than one site to retrieve that broken record

increases overall data load time. However, in order to

decrease time required to access resulting records, each

record should be accessed as a whole from a single site.

That is, we introduce block creation in a way that last

record in each block is never split, presented in Fig. 4.

During block creation phase, records are read and stored

in a block until the block reaches its storage limit. We

offer block size which is adjustable according to normal



SmallClient for big data: an indexing framework towards fast data retrieval 5

Fig. 2 Illustration of SmallClient components over a File System

Fig. 3 The Architecture for SmallClient

Fig. 4 Block Creation Process



6 Aisha Siddiqa et al.

Algorithm 1 createBlocks(file)

1: block limit = DefaultBloockSize
2: has capacity = true
3: block number = 0
4: while reading records not reached end of file do
5: if block has capacity(block limit) then
6: add record in block
7: else
8: uploadBlock(block, block number)
9: block number = block number + 1

10: has capacity = true
11: end if
12: end while
13: uploadBlock(block, block number)

record size in data or the default block size of a file

system. Suppose, the dataset is represented as D and

comprises x records (as shown in Eq. 1), k blocks will

be created from the dataset (as shown in Eq. 2). Each

block will contain mi records and some free space. The

performance analysis as presented in Fig. 7 data over-

head motivates our design of block creation and shows

that this overhead decreases as data size grows. The re-

sults show that block creation process is negligible for

large datasets and it takes few bytes more than the orig-

inal dataset size. The process of block creation is pre-

sented in Algorithm 1. Block size is adjustable in Small-

Client. However, we utilize HDFS default block size (i.e.

64MB) for implementation and evaluation. Block cre-

ation takes place before data uploading in a distributed

file system and divides data into smaller blocks. Each

block is then uploaded with adjustable replication fac-

tor into file system. The next step is to create indexes.

D =

x∑
c=1

recordc (1)

B′
i =

mi∑
c=1

recordc + α (2)

where B′ denotes the created blocks and size of each

block is SB′ = l

3.2 Index Creation

Index creation process takes place after data is up-

loaded to file system and indexes will be created to

improve data retrieval time. We need to create fast

traversable indexes for big data so that data search

time against queries is minimized. Moreover, there is

also a need to reduce the overhead caused by index

creation so that not only the delay between data up-

loading and starting query execution is minimized but

the extra space consumed by indexes is also reduced. In-

dex creation process using SmallClient reduces this size

Algorithm 2 runIndex(file name, file schema,

index attr list)

1: if index attr list is empty then
2: write err message
3: exit
4: end if
5: compare index attr list with file schema & remove un-

matched attributes from index attr list
6: calculate index attr offset list from updated

index attr list
7: get block locations
8: for all blocks do
9: createIndexes(file, block locations,

index attr offset list)
10: for all indexes do
11: storeIndexindex, file name, index attr
12: get & update index metadata
13: end for
14: end for

Algorithm 3 createIndex(file, block locations,

index attr offset list)

1: for all index attr do
2: create empty BTree
3: end for
4: value = block offset
5: while reading records not reached end of block do
6: for all index attr do
7: key = contentsatindex attr offset
8: add < key, value > in its BTree
9: end for

10: end while
11: store each BTree
12: store index metadata of each BTree

and time overhead by utilizing B-Tree structure for in-

dexing. During index creation phase, separate indexes

are created for each block and for each index attribute.
SmallClient takes the contents from a record for each

index attribute as key and the location of that record

as value. Fig 5 depicts the process of obtaining two tu-

ple record as < key, value > pairs from data blocks and

storing them in B-Tree. More than one occurrences of a

key in a block are stored as list of values in B-Tree. The

results presented in later sections will show the perfor-

mance of index creation with less index size and index

creation time.

The process of index creation is elaborated in Algo-

rithm 2 and 3. Algorithm 2 shows the pre-index cre-

ation steps involved in getting verified index attribute

set (aI) according to provided schema (aD) of that

dataset. Offset addresses of index attributes are also

obtained from schema which are helpful to jump to con-

tents as keys in a record. Later, index creation phase

is invoked. Eq. 3 shows that index attributes set a is

a subset of data attributes set aD as given in schema



SmallClient for big data: an indexing framework towards fast data retrieval 7

Fig. 5 Index Creation Process

of dataset. We define an index I for a block i having m

records in Eq. 4.

aI ⊆ aD (3)

Iattr,i =

mi∑
c=1

< keyattrc , valuec > (4)

where attr ∈ aI

We also introduce i-SmallClient to initialize index cre-

ation process in parallel to block creation which reduces

cost of loading data blocks into memory for index cre-

ation. User provides list of attributes for index creation

along with disk location of data files. In this situation,

block creation module of SmallClient takes data as in-

put, reads records line by line to create data blocks and

sends each records to index creation module which ex-

tracts two tuple < key, value > pair from that record.

i-SmallClient saves the time to load data blocks and

perform record reading operation and therefore it is bet-

ter than SmallClient when index attributes are known

at the time of data uploading.

3.3 Query Execution

The final and decisive module of our indexing frame-

work is query execution. Based on results taken from

the execution of queries, we will be able to show the

performance of data search operation using SmallClient

and how much the ultimate goal of indexing is achieved.

As we have described earlier that indexing, which plays

a significant role in big data processing, results in some

overhead. However, the search performance gains from

indexing must be more than the overhead caused by

index creation process. Here, we present our query ex-

ecution module that utilizes indexes created during in-

dex creation stage. This module retrieves data (i.e. sel

Algorithm 4 runQuery(query)

1: if analyze(query) is not successful then
2: write err message
3: exit
4: end if
5: get provided file name from query
6: get sel data list from query
7: get sel data offset list from file schema
8: get selection predicates as attr list from query to load

respective indexes
9: if indexes are not available for attr list then

10: go for full scan()
11: else
12: get attr value list as keys from query
13: get block locations
14: for all blocks do
15: load respective index(es)
16: search keys & fetch sel data list if keys are found
17: end for
18: end if

data) for those queries having the same attributes as

selection predicates (i.e. index attr list) for which in-

dexes were previously created.Query execution module

performs indexed search and retrieves both indexed and

non-indexed attributes successfully. The fault-tolerance

and availability of data blocks depends upon under-

lying file system. Therefore, query execution module

of SmallClient exhibits successful execution as long as

stored data blocks and indexes are accessible from the

underlying file system. Furthermore, the accomplish-

ment of query execution and data retrieval process us-

ing this module is subject to selection predicates in

queries. Queries having non-indexed attributes as se-

lection predicates are not served by query execution

module.

Algorithm 4 describes the process of executing queries

using indexes. Initially, we analyze incoming query to

validate its syntax and verify the parameters specified



8 Aisha Siddiqa et al.

in query. The system discards queries having typos, syn-

tax error or not matching any file residing in file sys-

tem after displaying a respective error message. With

successful analysis of query string, we ensure the avail-

ability of indexes for a query (full scan operation is

recommended only when indexes are not available for

selection predicates of a query). We load and traverse

the respective indexes to find location of records. Fi-

nally, the data is fetched from file by directly accessing

the location of expected records. The results to show

the performance of search operation are presented in

next section.

4 Evaluation

In this section, we demonstrate a detailed evaluation of

experiments for our work as discussed in previous sec-

tion. We prove that SmallClient which is an indexing

client for big data reduces indexing overhead and the

delay between data uploading and starting query exe-

cution. We show that index hit ratio of our indexing

framework is higher than state-of-the-art clustered in-

dex mechanisms. Furthermore, indexing overhead is less

than available non-clustered indexing approaches. We

evaluate the performance of SmallClient presented in

this paper and compare it with indexes designed using

Apache Lucene library [28] to measure indexing over-

head and search performance. Moreover, we compare

the performance with full scan approach of MapReduce

programming model [29] adopted by Hive [30]. In ad-

dition, we measure the performance of block creation

module by comparing it with data uploading process of

Hadoop Distributed File System (HDFS) [31]. As far

as index hit ratio is concerned, we compare our non-

clustered SmallClient indexing with HAIL, a clustered

approach presented to create one index on each replica.

Precisely, along with our proposed indexing framework

we measure the performance of following systems: (1)

HDFS and Hive for block creation and full scan, (2)

Apache Lucene for indexing overhead and search per-

formance and (3) HAIL for index hit ratio.

All the modules and relative algorithms proposed in

this paper are developed in java using Eclipse IDE un-

der latest Ubuntu stable release. We use a physical four-

node cluster where each node has 8GB RAM, 4x250GB

Hard Drives and Processor. The size of records in cho-

sen datasets for experimental evaluation is much smaller

than default block size of HDFS. Therefore we used de-

fault block size of HDFS in block creation phase (repli-

cation factor is also set to default). However, block size

is still customizable according to nature of datasets and

replication factor is also adjustable in our system. We

use default node selection policy of Hadoop to access

data where Hive will execute full scan queries using

MapReduce processing and SmallClient will use indexes

for query execution. In order to evaluate indexing over-

head and search performance we used up to five at-

tributes from each dataset to create indexes on Lucene

and the same attributes are used by SmallClient so that

exact differences can be found. Finally, our objective is

to increase index hit ratio so that maximum incoming

queries are served by using indexes. Therefore, we cal-

culate and compare index hit ratio of SmallClient with

HAIL.

In order to see the effect of increasing size of data, we

use varying size real datasets downloaded from Spatial-

Hadoop repository [32], which are originally extracted

from US Census Bureau TIGER files. The schema pro-

vided along with each dataset is used by algorithms

to verify input lists of attributes for indexing and for

queries. We downloaded 10 datasets from repository

with varying size data and varying number of records.

These features of a dataset effect data upload overhead,

indexing overhead and ultimately search performance.

However, number of attributes is used to present index

hit ratio when these attributes have equal probability

to be queried. We chose datasets with varying values

for these features in our experiment to show the effect

of dataset size i.e. volume of data. Moreover, we show

No. of blocks for each dataset when uploaded via HDFS

in Table 2. SmallClient also creates same No. of blocks

when data is uploaded by using block creation module.

We present the details of used datasets in Table 2. Ta-

ble 2 presents that we have included small datasets as

well as big datasets in evaluation of SmallClient. Small-

Client has performed well for small datasets. Further-

more, the objective of designing an indexing framework

with less indexing overhead and improved search per-

formance is efficiently achieved for big datasets. The

results show that SmallClient outperforms better exist-

ing methods for larger volume big text datasets.

These datasets are downloaded and extracted at local

disk. There is no preprocessing required to upload these

datasets and thus we input dataset location at local disk

to our block creation module to create blocks for these

datasets and upload blocks on underlying file system.

We execute index creation to create indexes which ver-

ifies provided index attributes with available schema of

a dataset. We finally execute selection queries to gather

query execution time results. SmallClient supports fol-

lowing selection queries:

1. SELECT attr FROM data WHERE attr = value



SmallClient for big data: an indexing framework towards fast data retrieval 9

Table 2 Datasets

Datasets Data Size (MB) No of Records No. of Attributes No. of Blocks

Primary Roads 77.1 13373 10 2
Area Landmark 406 121960 15 7
Tabulation Area 1,600 33144 15 25
Area Hydrography 6,460 2298808 16 104
All Edges Combined (I) 16,220 19291957 37 260
Linear Hydrography 18,270 5857442 11 293
All Edges Combined (II) 23,180 70000000 24 363
All Edges Combined (III) 62,000 72700000 37 969
All Nodes 96,000 2700000000 4 1500
Road Network 137,000 717000000 9 2141

2. SELECT attr FROM data WHERE attr1 = value1

OR attr2 = value2

3. SELECT attr FROM data WHERE attr1 = value1

AND attr2 = value2

4. SELECT ∗ FROM data WHERE attr = value

Our SmallClient query execution module efficiently

works for each of these queries and we are able to gather

query execution time results when any of these queries

is executed. However, indexes created using existing

Apache Lucene library have certain limitations in se-

lecting attributes for queries. Unlike SmallClient, these

indexes store offset of an attribute value instead of stor-

ing offset of a record. Therefore, indexes only contain

offset addresses of indexed attributes and only indexed

attributes can be accessed using Lucene indexes. Due

to this reason, accessing whole record (i.e. Query : 4)

or accessing non-indexed attribute is not possible with

Lucene indexes. In our setup for SmallClient, we are

creating indexes of up to five attributes whereas Lucene

needs all attributes to be indexed in order to retrieve

whole record. We use sel data list for data attr(s) to

be retrieved from file and the attr(s) provided as selec-

tion predicate(s) will be used to decide query execution

with full scan or using indexes if they are available. The

parameter values provided in selection predicate will be

used as keys which are to be searched in indexes.

4.1 Data Upload Overhead

As we have already discussed that state-of-the-art big

data processing systems offer their own data storage

plan. We are using Hadoop framework which has HDFS

to store data. Configurable block size and replication

factor can be used for uploading files on HDFS. How-

ever, in the process of creating blocks of provided block

size for a file, HDFS simply splits the data bytes to

fill up the container named as block. In this way, the

last record of each block is split which results in in-

creased time to retrieve one record when it resides on

more than one physical location. For this reason, we in-

troduce our block creation module with never splitting

records policy. At the same time, block creation and

data uploading should have minimum overhead while

using data-intensive systems. This overhead increases

the delay to start query execution [15]. Fig. 6 shows the

results of data uploading size overhead whereas Fig. 7

shows the results of data uploading time. We observe

that SmallClient has negligible size overhead over stan-

dard HDFS which is decreasing (˜1%) for larger size

datasets (Eq. 5 presents the size of data when it is up-

loaded with our block creation module and Eq. 6 shows

the size overhead). Data upload time is also decreasing

when we have larger size files and the overhead is also

minimized (˜11%). Data upload time and overhead are

shown in Eq. 7 and 8

SD′ = k × l (5)

where SD′ − SD < l

Odatasize =
SD′ − SD

SD
× 100 (6)

TblockCreation =

k∑
c=1

(Tcreate(B
′
c) + Tupload(B′

c)) (7)

Odataupload =
TblockCreation − TuploadData

TuploadData
× 100 (8)

The results of dataset size as presented in Fig. 6 show

that dataset size remains almost same when we up-

load data by using SmallClient. Size overhead results

show that the overhead becomes negligible for large

size datasets which proves better data upload perfor-

mance of SmallClient for large size datasets. Similarly,

data upload time overhead is also reduced for large

size datasets. However, there are several factors effect-

ing data upload time. For instance, number of records

in a dataset effects data upload time of SmallClient.

HDFS adopts conventional policy to create blocks and

fills block container with required number of bits from



10 Aisha Siddiqa et al.

Fig. 6 Data Size and Size Overhead by SmallClient

data as specified in block size. The purpose of design-

ing block creation module in SmallClient is not only to

manage contiguous records in the form of a block but

also to avoid record split. Therefore, during block cre-

ation, each record of a dataset is read which shows that

a dataset having more number of records faces more

data uploading overhead than other datasets. However,

intervening data uploading overhead by SmallClient is

only one time and results in data blocks where records

are not split. Consequently, the record access delay caused

by record split is avoided by SmallClient.

4.2 Indexing Overhead

We will first observe and compare the overhead of index

size and later we see the index creation time for both

Lucene and SmallClient. For this purpose, we consider

one index and then see the effect of increasing number of

indexes. We vary the number of indexes from 1 to 5 us-

ing both Lucene and SmallClient. However, we did not

use Lucene to create indexes for our last dataset (out

of memory error after ˜30 mins). The results of index

size presented in Fig. 8 show that indexes created using

SmallClient are smaller in size than the indexes which

are created using Lucene. Thus, indexing overhead in

terms of size is clearly reduced for SmallClient (˜50%).



SmallClient for big data: an indexing framework towards fast data retrieval 11

Fig. 7 Data Upload Time and Upload Time Overhead by SmallClient

The second observation to evaluate indexing overhead

is index creation time. Fig. 9 presents the results of

time consumed in creating one index for Lucene and

SmallClient. SmallClient outperforms Lucene in index

creation and takes upto 85% less time than Lucene. An-

other important result which is observed during creat-

ing more than one index using Lucene and SmallClient

is shown in Fig. 10 as index creation overhead. When

up to five indexes are created, SmallClient takes very

less time than Lucene. The results of index size for up

to five indexes as presented in Fig. 8 show that size of

indexes grows with size of dataset and with number of

index attributes. However the size for SmallClient in-

dexes is smaller than Lucene indexes. Index size over-

head shows that the overhead of indexing on dataset

size is less than 15% for all datasets except Edges (II)

dataset. The number of records in a certain size dataset

plays a significant role in index size overhead. Edges

(II) dataset contains large number of records and thus

index size overhead is also very high. Other datasets,

for instance, Edges (III) dataset has almost same num-

ber of records as Edges (II) dataset whereas the size

of Edges (III) dataset is much larger than Edges (II)



12 Aisha Siddiqa et al.

Fig. 8 Index Size Overhead by Lucene and SmallClient

dataset. Therefore, index size overhead is increased for

Edges (II) dataset.

Similarly, indexing time results show that indexing

time varies with dataset size and number of index at-

tributes (see Fig. 9 and Fig. 10). SmallClient achieves

reduced indexing time when same indexes are created

using Lucene library. However the effect of number of

number index attributes on indexing time is less than

dataset size. Furthermore, the indexing time with i-

SmallClient is much improved as i-SmallClient creates

indexes during block creation and thus time required to

access data blocks and loading into memory is saved.

Indexing time overhead in Fig. 9 shows that there is a

clear difference between Lucene and SmallClient index-

ing overhead. SmallClient reduces indexing overhead

from 40 − 95% to 15 − 35%. The indexing overhead

results also show that the overhead is high for dataset

having large number of records (i.e. All Edges Com-

bined (II) dataset).

4.3 Search Performance

Our third objective is to improve search performance

of executing queries on different size datasets. Hive exe-

cutes full scan operations to retrieve results from stored

data. For this purpose, MapReduce model divides and

combines data search task on more than one site to per-



SmallClient for big data: an indexing framework towards fast data retrieval 13

Fig. 9 Indexing Overhead by Lucene and SmallClient

form parallel execution and to minimize search time.

However, full scan takes longer time (i.e. TFS) for

large datasets. Therefore, indexing is intended to im-

plement on file systems so that full scan operations

are avoided. We present the results of executing same

queries on Hive using full scan and using indexes cre-

ated with Lucene and SmallClient. Fig. 11 shows the

results of query execution and search performance im-

provement achieved by indexes. Query execution time

using indexes TQ comprises of time to traverse an in-

dex TT at all k blocks and to fetch data TF from the

position(s) obtained in value from traversing the in-

dex (as shown in Eq. 9). There is a remarkable dif-

ference between query execution times with and with-

out indexing. At the same time, SmallClient executes

queries faster than Lucene. The search performance (in

Eq. 10 where Psearch denotes search performance) gains

of both Lucene and SmallClient are shown in Fig. 11.

Although the difference becomes very small yet overall,

SmallClient has achieved improved search performance.



14 Aisha Siddiqa et al.

Fig. 10 Indexing Overhead for up to five indexes by Lucene and SmallClient

TQ =

k∑
c=1

(TTattr,c(key) + TFsel data(value)) (9)

where TTattr,c(key) = O(logn) and TFsel data(value) =

Svalue

Psearch =
TFS − TQ

TFS
× 100 (10)

4.4 Index Hit Ratio

Another significant benchmark in our experimental eval-

uation is index hit ratio. Index hit ratio describes the

probable rate of incoming queries which are executed

using indexes. This ratio can only be increased when

it is possible to create more indexes. We have set of

attributes provided as schema of data set i.e. aD from

which we have chosen up to five attributes for index

creation. We denote the set of index attributes as aI.

Furthermore, SaD and SaI denote the size of aD and

aI respectively. We define index ratio mathematically

as below:

HR =
SaI

SaD
× 100 (11)

HAIL, an indexing library presented in [14], uses clus-

tered approach to create indexes. In this way, HAIL de-

pends upon replication factor to create indexes and it is

impossible to create indexes more than available repli-

cation factor. Meanwhile, whenever there is a need to

create new index, whole dataset is replicated once more.

In contrast, SmallClient is not constrained to replica-

tion factor of a dataset or file system to increase number

of indexes. In case of SmallClient, indexes are separate

small objects which can be created any time when user

demands to execute his queries on some attributes as

selection predicates. We have already discussed index-

ing overhead of increasing number of indexes in Fig. 9.

Now we present the effect of number of indexes over in-

dex hit ratio in Fig 12. The grey area shows where index

hit ratio becomes static for HAIL when default repli-

cation factor is used which is 3 in HAdoop. With de-

fault replication factor, HAIL cannot create more than

three indexes and index hit ratio becomes constant af-

ter three indexes. While, SmallClient can create more

indexes and thus index hit ratio is growing with number

of indexes.

5 Discussion

We introduce SmallClient as an indexing framework for

big text data to improve performance of indexing and

search performance for large volume datasets. Small-

Client focuses on growing volume and velocity of pro-

cessing big datasets. This framework improves query

execution and data search performance, and offers max-

imum number of indexes for datasets regardless of num-

ber of replicas. SmallClient also ensures minimized in-

dex creation overhead in terms of both index size and

indexing time. We present the results obtained from

execution of several modules of SmallClient which are:

block creation, index creation and query execution. We

use varying size datasets in our experiments and the re-

sults show that though processing time of SmallClient

for large datasets is high, the overall indexing overhead

is not high. Similarly, search performance results show



SmallClient for big data: an indexing framework towards fast data retrieval 15

Fig. 11 Query Execution and Search Peroformance using SmallClient

that SmallClient is efficient not only for small datasets

(i.e. 77.1MB) but also for big datasets (i.e. 137,000MB).

However, the features of datasets such as number of

records, number of attributes in schema affect the per-

formance of an indexing and query execution frame-

work.

Block creation module introduces procedure to cre-

ate blocks having contiguous records instead of bits

which minimizes cost of accessing broken records. The

data uploading overhead with block creation module is

very low on both dataset size and data uploading time.

Dataset size overhead become negligible for large vol-

ume of data (i.e. less than 1%) whereas data uploading

time overhead also decreases with size of data. Data

uploading time of block creation not only depends on

size of dataset but also on number of records. Datasets

having large number of records, for instance Edges (II)

dataset, have high data upload overhead.



16 Aisha Siddiqa et al.

Fig. 12 Index Hit Ratio of HAIL and SmallClient

Index creation module achieves less indexing overhead

for big datasets than Lucene indexing library. The re-

sults show that indexing depends on dataset size and

number of records in a dataset. Both indexing time and

index size are high for large size datasets and for large

number of records of a dataset. Index size also increases

with number of index attributes whereas indexing time

slightly increases with number of index attributes. In-

dexing time is reduced when indexes are created dur-

ing data uploading (i.e. i-SmallClient). Overall indexing

overhead of SmallClient is less than Lucene indexes.

The results of query execution module present the

achievement of improved search performance of Small-

Client. Query execution time of SmallClient is less than

contemporary Lucene library and overall search perfor-

mance is improved. We execute same queries using both

indexes and found that SmallClient takes less time in

data search and retrieval. Another advantage of Small-

Client is that, indexes store the address of record in-

stead of instance of an attribute in a record which makes

it possible to access non-indexed attributes via queries.

We also present that SmallClient improves index hit

ratio. We show that with replication factor of 3, HAIL

allows three indexes. However, SmallClient is indepen-

dent of replication factor settings. SmallClient offers as

much indexes on a dataset as needed. Therefore, for

upto three indexes in our experimental setup, index hit

ratio of HAIL and SmallClient are same. For increased

number of indexes SmallClient keeps improving index

hit ratio whereas HAIL become unable to create indexes

more than number of replicas.

Precisely, SmallClient indexing framework efficiently

works for small and big datasets with minimum data

upload and indexing overhead in terms of size and time.

The evaluation proves that both increasing volume and

velocity in processing for big data are well handled by

SmallClient. SmallClient outperforms in index creation

and offers maximum number of indexes for a dataset

as SmallClient works independent of number of repli-

cas. SmallClient also exhibits decreased query execution

time and improved search performance when compared

with existing Apache Hive and Apache Lucene searches.

6 Conclusion and Future Work

We have presented SmallClient to provide non-clustered

indexing solution for big data. SmallClient introduces

block creation mechanism such that last record of each

block can be accessed from single site. Consequently,

SmallClient offers customizable block size and repli-

cation factor and thus becomes a generalized index-

ing framework with faster data access. Besides data

upload policy, SmallClient, outperforms in index cre-

ation when compared with Lucene indexing library and

shows minimized delays between data upload and start-

ing query execution. Apart from faster index creation,

size of SmallClient indexes is also smaller than Lucene

indexing approach. Furthermore, query execution and

data search time is drastically reduced by SmallClient

when compared with full sequential scan behavior Hadoop

MapReduce processing framework and is evidently less

than Lucene. Another noteworthy achievement of Small-

Client over Lucene is that, Lucene needs all attributes

to be indexed in order to retrieve whole records. How-

ever, this is not the case with SmallClient. It is pos-

sible with SmallClient to retrieve whole data records

even when only one attribute is indexed. The evaluation

on small and big datasets has proved that the perfor-

mance of SmallClient improves with increasing volume

of data. We have also compared our indexing client with

HAIL, which is a clustered approach of indexing, and

show that SmallClient offers more feasible index cre-

ation mechanism than HAIL. Therefore, index hit ra-

tio can easily be improved with SmallClient. As far as

size overhead of separate indexes associated with non-

clustered mechanism is concerned, crating small index

objects to serve more queries is preferable to creating

replicas of data which is the only option HAIL has.

As a future work, we are working to implement prob-

abilistic machine learning algorithm in collaboration

with B-Tree indexing. The probabilistic modeling in our

work aims to achieve adaptive index creation through

predicting query workload and updating index attribute

set accordingly. Furthermore, we are implementing Dis-

aster Recovery [33] to improve fault-tolerance of big

data distributed storage systems and ensure restoring.



SmallClient for big data: an indexing framework towards fast data retrieval 17

References

1. Vera-Baquero, A., Colomo-Palacios, R., Molloy, O.: Mea-
suring and Querying Process Performance in Supply
Chains: An Approach for Mining Big-Data Cloud Storages.
Procedia Computer Science 64, 1026-1034 (2015).

2. Suthaharan, S.: Big Data Analytics. In: Machine Learn-
ing Models and Algorithms for Big Data Classification, vol.
36. Integrated Series in Information Systems, pp. 31-75.
Springer US, (2016).

3. Karim, A., Salleh, R., Khan, M.K., Siddiqa, A., Choo,
K.-K.R.: On the Analysis and Detection of Mobile Botnet
Applications. Journal of Universal Computer Science 22(4),
567-588 (2016).

4. Ahmad Karim, S.A.A.S., Rosli Salleh, Muhammad Arif,
Rafidah Md Noor, Shahaboddin Shamshirband: Mobile
Botnet Attacks an Emerging Threat: Classification, Re-
view and Open Issues. KSII Transactions on Internet and
Information Systems 9(4) (2015).

5. Yaqoob, I., Chang, V., Gani, A., Mokhtar, S., Hashem,
I.A.T., Ahmed, E., Anuar, N.B., Khan, S.U.: Information
fusion in social big data: Foundations, state-of-the-art, ap-
plications, challenges, and future research directions. Inter-
national Journal of Information Management (2016).

6. Hashem, I.A.T., Chang, V., Anuar, N.B., Adewole,
K., Yaqoob, I., Gani, A., Ahmed, E., Chiroma, H.:
The role of big data in smart city. International Jour-
nal of Information Management 36(5), 748-758 (2016).
doi:http://dx.doi.org/10.1016/j.ijinfomgt.2016.05.002

7. Kambatla, K., Kollias, G., Kumar, V., Grama, A.: Trends
in big data analytics. Journal of Parallel and Distributed
Computing 74(7), 2561-2573 (2014).

8. Siddiqa, A., TargioHashem, I.A., Yaqoob, I., Marjani, M.,
Shamshirband, S., Gani, A., Nasaruddin, F.: A Survey of
Big Data Management: Taxonomy and State-of-the-Art.
Journal of Network and Computer Applications (2016).

9. Siddiqa, A., Karim, A., Gani, A.: Big data storage tech-
nologies: a survey. Frontiers of Information Technology &
Electronic Engineering 1 (2016).

10. Chang, V., Wills, G.: A model to compare cloud and non-
cloud storage of Big Data. Future Generation Computer
Systems 57, 56-76 (2016).

11. Lomotey, Richard K., and Ralph Deters.: Unstructured
data mining: use case for CouchDB. International Journal
of Big Data Intelligence 2, no. 3 (2015): 168-182.

12. Yu, Shanshan, Jindian Su, Pengfei Li, and Hao Wang.
”Towards High Performance Text Mining: A TextRank-
based Method for Automatic Text Summarization.” Inter-
national Journal of Grid and High Performance Computing
(IJGHPC) 8, no. 2 (2016): 58-75.

13. Yu, Kun-Ming, Sheng-Hui Liu, Li-Wei Zhou, and Shu-
Hao Wu. ”Apriori-based High Efficiency Load Balancing
Parallel Data Mining Algorithms on Multi-core Architec-
tures.” International Journal of Grid and High Performance
Computing (IJGHPC) 7, no. 2 (2015): 77-99.

14. Dittrich, J., Quian, J.-A., Quian-Ruiz, Richter, S., Schuh,
S., Jindal, A., Schad, J.: Only aggressive elephants are fast
elephants. Proc. VLDB Endow. 5(11), 1591-1602 (2012).

15. Idreos, S., Alagiannis, I., Johnson, R., Ailamaki, A.: Here
are my Data Files. Here are my Queries. Where are my
Results? In: Proceedings of 5th Biennial Conference on In-
novative Data Systems Research, No. EPFL-CONF-161489
2011, vol. EPFL-CONF-161489 (2011).

16. Gandomi, A., Haider, M.: Beyond the hype: Big data
concepts, methods, and analytics. International Journal of
Information Management 35(2), 137-144 (2015).

17. Richter, S., Quian-Ruiz, J.-A., Schuh, S., Dittrich, J.: To-
wards zero-overhead adaptive indexing in Hadoop. arXiv
preprint arXiv:1212.3480 (2012).

18. Idreos, S., Kersten, M.L., Manegold, S.: Database Crack-
ing. In: CIDR 2007, pp. 1-8 (2007)

19. Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt,
D.J., Madden, S., Stonebraker, M.: A comparison of ap-
proaches to large-scale data analysis. In: Proceedings of the
2009 ACM SIGMOD International Conference on Manage-
ment of data, pp. 165-178 (2009).

20. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silber-
schatz, A., Rasin, A.: HadoopDB: an architectural hybrid
of MapReduce and DBMS technologies for analytical work-
loads. Proc. VLDB Endow. 2(1), 922-933 (2009).

21. Jens, D., Jorge-Arnulfo, Q.-r., Alekh, J.: Hadoop++:
Making a Yellow Elephant Run Like a Cheetah. In: (2010).

22. Zhuang, Y., Jiang, N., Wu, Z., Li, Q., Chiu, D.K.W.,
Hu, H.: Efficient and robust large medical image retrieval in
mobile cloud computing environment. Information Sciences
263, 60-86 (2014).

23. Wang, M., Holub, V., Murphy, J., OSullivan, P.: High vol-
umes of event stream indexing and efficient multi-keyword
searching for cloud monitoring. Future Generation Com-
puter Systems 29(8), 1943-1962 (2013).

24. Kaushik, V.D., Umarani, J., Gupta, A.K., Gupta, A.K.,
Gupta, P.: An efficient indexing scheme for face database
using modified geometric hashing. Neurocomputing 116,
208-221 (2013).

25. Gani, A., Siddiqa, A., Shamshirband, S., Hanum, F.:
A survey on indexing techniques for big data: taxonomy
and performance evaluation. Knowl Inf Syst 46(2), 241-284
(2016).

26. Jin, R., Cho, H.-J., Chung, T.-S.: A group round robin
based b-tree index storage scheme for flash memory devices.
Paper presented at the Proceedings of the 8th International
Conference on Ubiquitous Information Management and
Communication, Siem Reap, Cambodia (2014).

27. Chi, P., Lee, W.-C., Xie, Y.: Making B¡sup¿+¡/sup¿-tree
efficient in PCM-based main memory. Paper presented at
the Proceedings of the 2014 international symposium on
Low power electronics and design, La Jolla, California, USA
(2014).

28. McCandless, M., Hatcher, E., Gospodnetic, O.: Lucene in
Action: Covers Apache Lucene 3.0. Manning Publications
Co., (2010).

29. Dean, J., Ghemawat, S.: MapReduce: simplified data pro-
cessing on large clusters. Commun. ACM 51(1), 107-113
(2008).

30. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P.,
Anthony, S., Liu, H., Wyckoff, P., Murthy, R.: Hive: a ware-
housing solution over a map-reduce framework. Proceedings
of the VLDB Endowment 2(2), 1626-1629 (2009).

31. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The
hadoop distributed file system. In: Mass Storage Systems
and Technologies (MSST), 2010 IEEE 26th Symposium on
2010, pp. 1-10 (2010).

32. Eldawy, A., Mokbel, M.F.: Spatial Hadoop: A MapRe-
duce Framework for Spatial Data. In: 2015 IEEE 31st In-
ternational Conference on Data Engineering 2015, pp. 1352-
1363. IEEE:1352-1363 (2015).

33. Chang, V.: Towards a Big Data system disaster recovery
in a Private Cloud. Ad Hoc Networks 35, 65-82 (2015).
doi:http://dx.doi.org/10.1016/j.adhoc.2015.07.012

34. McCandless, Michael, Erik Hatcher, and Otis Gospod-
netic: Lucene in Action: Covers Apache Lucene 3.0. Man-
ning Publications Co., (2010).


