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Abstract

The broadband control of noise and vibration using multi-input, multi-output (MIMO) active control systems has

a potentially wide variety of applications. However, the performance of MIMO systems is often limited in practice by

high computational demand and slow convergence speeds. In the somewhat simpler context of single-input, single-

output broadband control, these problems have been overcome through a variety of methods including subband

adaptive filtering. This paper presents an extension of the subband adaptive filtering technique to the MIMO active

control problem and presents a comprehensive study of both the computational requirements and control performance.

The implementation of the MIMO filtered-x LMS algorithm using subband adaptive filtering is described and the

details of two specific implementations are presented. The computational demands of the two MIMO subband active

control algorithms are then compared to that of the standard full-band algorithm. This comparison shows that as

the number of subbands employed in the subband algorithms is increased, the computational demand is significantly

reduced compared to the full-band implementation provided that a restructured analysis filter-bank is employed. An

analysis of the convergence of the MIMO subband adaptive algorithm is then presented and this demonstrates that

although the convergence of the control filter coefficients is dependent on the eigenvalue spread of the subband Hessian

matrix, which reduces as the number of subbands is increased, the convergence of the cost function is limited for

large numbers of subbands due to the simultaneous increase in the weight stacking distortion. The performance of

the two MIMO subband algorithms and the standard full-band algorithm has then been assessed through a series of

time-domain simulations of a practical active control system and it has been shown that the subband algorithms are

able to achieve a significant increase in the convergence speed compared to the full-band implementation.
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I. INTRODUCTION

For many large scale and dynamically complex systems, the active control of broadband noise and vibration

presents a challenging problem due to both the computational demand and the slow convergence speed [1], [2].

In order to reduce both the computational demand and the convergence time compared to the widely employed

filtered-reference least mean square (filtered-x LMS) algorithm, a number of alternative control algorithms have

been proposed as summarised in [1], [2], [3]. For example, a reduction in the computational demand compared

to the filtered-x LMS algorithm has been achieved by both the filtered-error, or adjoint algorithm [4] and the

Douglas algorithm [5]. However, these algorithms do not improve the speed of convergence. This, however, can

most straightforwardly be achieved using a variable step-size LMS algorithm [6], [7]. More significant increases

in the convergence speed can be obtained by employing alternative algorithms such as the recursive least squares

(RLS) algorithm [8], which increases the convergence speed at the expense of increased computational demand.

Improvements in the convergence speed without the computational demands of the RLS algorithm have been

achieved using hybrid algorithms that combine the LMS and RLS adaptation methods [9], as well as through

the use of affine projection based algorithms [10]. The computational problem associated with large-scale active

noise control systems has also recently been addressed by exploiting the parallel processing provided by graphics

processing units [11].

An alternative approach to potentially improving both the convergence speed and computational efficiency of

active noise control systems is to employ a frequency domain processing strategy [12], [13], [14]. In general,

these methods achieve a reduction in the computational demand by converting the time domain convolution into a

frequency domain multiplication, and under certain conditions can allow frequency dependent convergence gains

[12]. Due to the block-based processing of frequency domain adaptive algorithms, a delay is introduced into the

update of the control filter coefficients [13] and this can limit performance. An alternative method of implementing

the adaptive control algorithm in frequency bands was proposed by Morgan and Thi [15] and is referred to as the

delayless subband adaptive filtering architecture. This method avoids the block delay inherent in frequency domain

algorithms by performing the subband signal processing in the time domain.

The delayless subband adaptive filtering method involves decomposition of the broadband error and reference

signals into a number of subbands; decimation of the subband signals; adaptation of the subband control filter

weights; stacking of the subband control filter weights in the frequency domain to form the fullband control filter;

inverse Fourier transformation of the fullband control filter response; and the implementation of the fullband control

filter in the time domain. In the context of active noise and vibration control, the delayless subband adaptive filtering

method has generally been investigated in the context of single-input, single-output (SISO) systems [15], [16], [17],

[18]. Although in this case it has been shown that significant improvements in the convergence speed and reductions

in the computational demand can be achieved, it has been acknowledged that the potential gains of employing a

subband method are even greater for multi-input, multi-output (MIMO) systems and the increase in convergence

speed has been investigated, for example, for the related application of room response equalisation [19].
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In the context of MIMO broadband active noise control systems, there has been limited work on the implemen-

tation and investigation of the delayless subband adaptive filtering method, perhaps due to the increased complexity

compared to the equalisation problem. A discussion of the factors concerning the implementation of a multichannel

delayless subband active noise control system has been presented in [2], [20], and in particular it has been shown

that the computational saving is significantly greater than for the SISO case. However, despite the computational

saving and the assumed increase in convergence speed, the potential improvements in performance achieved by

the delayless subband architecture have not been investigated in the context of a MIMO active control system.

Therefore, this paper investigates the performance of the MIMO subband active noise control system and presents a

comprehensive study into how the computational requirements, the control performance and the convergence speed

are affected by the number of subbands.

The MIMO filtered reference, or filtered-x LMS algorithm that is most commonly used in active noise control

applications is first detailed in Section II and the limitations of this algorithm in terms of both convergence speed

and computational demand are highlighted. In view of this, Section III-A introduces the method of implementing

delayless subband adaptive filtering within the MIMO filtered-x LMS algorithm and presents two alternative

implementations. Section III-B provides an analysis of the computational complexity of the considered subband

implementations and in Section III-C a theoretical analysis of the convergence of the MIMO subband filtered-x

LMS algorithm is presented. In Section IV a comprehensive investigation into how the computational complexity,

convergence speed and control performance are affected by the number of subbands employed in the MIMO subband

algorithms is presented for a practical active control system and comparisons are also made to the standard full-band

implementation. Finally, conclusions are drawn in Section V

II. MIMO FILTERED-x LMS

The MIMO filtered-x LMS algorithm has been widely employed in the context of active noise and vibration

control and was originally proposed as an extension to the SISO filtered-x LMS algorithm in the late 1980s [21].

The MIMO filtered-x LMS algorithm is shown in Figure 1. This system attempts to minimise the Le error signals,

e, by driving the M control sources with the Lx reference signals, x, via the bank of MLx control filters, W. The

primary path between the noise source and the error sensors is characterised by the response, P(z) and the plant,

or secondary path is characterised by the response G(z). If it is assumed that the control filters are time-invariant,

then the vector of error signals can be approximated as [1], [21]

e(n) = d(n) + R(n)w(n) (1)

where d(n) is the vector of Le disturbance signals, R(n) is the Le ×MLxI matrix of filtered reference signals

and w(n) is the vector of MLxI filter coefficients of the I-th order control filters. The disturbance signals are

generated by filtering the reference signals, x, by the primary path response, P(z), as shown in Figure 1. The

matrix of filtered reference signals is formulated from the Lx reference signals filtered by the model of the plant
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response given by Ĝ; that is,

R(n) =


rT1 (n) rT1 (n− 1) · · · rT1 (n− I + 1)

rT2 (n) rT2 (n− 1)
...

rTLe
(n) rTLe

(n− 1) · · · rTLe
(n− I + 1)

 (2)

where

rle(n) =
[
rle11(n) rle12(n) · · ·

rle1Lx(n) rle21(n) · · · rleMlx(n)
]T

(3)

and

rlemlx = ĝTlemxlx , (4)

where ĝlem is the vector of J filter coefficients of the finite impulse response (FIR) filter which models the plant

response between the le-th error sensor and the m-th control source, and xlx is the vector of the lx-th reference

signal over the previous J sample periods. The MLxI vector of control filter coefficients in (1) is constructed as

w =
[

wT
1 wT

2 · · · wT
I−1

]
(5)

where wi is the MLx vector of coefficients given by

wi =
[
wT11i wT12i · · · wT1Lxi

wT21i · · · wTMLxi

]
. (6)

Fig. 1: MIMO filtered-x LMS active control system.

In multichannel active control applications, the controller is generally adapted to minimise the cost function given

by the sum of the squared error signals. Using (1) this cost function can be written as

C = eT (n)e(n) (7)

= wT (n)RT (n)R(n)w(n) + · · ·

2wT (n)RT (n)d(n) + dT (n)d(n). (8)
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Using the method of steepest-descent, this cost function can be minimised by adapting the vector of filter coefficients

according to the update equation

w(n+ 1) = w(n)− αRT (n)e(n), (9)

where α is the convergence gain and this algorithm is generally referred to as the filtered-x LMS algorithm.

A. Convergence and Stability

A relatively straightforward analysis of the convergence of the multichannel filtered-x LMS algorithm can be

performed by assuming that the control filter coefficients are changing slowly compared with the dynamic response

of the plant. Although this assumption is generally not true in a practical implementation, it has been shown to

provide a good indication of the algorithm’s performance [22]. The convergence behaviour of the multichannel

filtered-x LMS algorithm can be analysed by first substituting (1) into (9) and using the estimated matrix of filtered

reference signals, R̂T (n), in the update equation, which gives

w(n+ 1) = w(n)− α
[
R̂T (n)d(n) + R̂T (n)R(n)w(n)

]
.

(10)

Assuming that the algorithm is stable, then it can be seen from (10) that the vector of filter coefficients will

have converged to its steady-state value when the expectation of the term in square brackets is equal to zero. The

steady-state vector of control filter coefficients is thus given by

w∞ = −
{
E
[
R̂T (n)R(n)

]}−1
E
[
R̂T (n)d(n)

]
. (11)

Assuming that the filter coefficients are statistically independent from the reference signals [1], the expectation

behaviour of the filter coefficient update equation given by (10) can then be expressed as

E [w(n+ 1)−w∞] = · · ·[
I− αE

[
R̂T (n)R(n)

]]
E [w(n)−w∞] . (12)

It can be seen from (12) that the algorithm will reach the steady-state solution if the term in square brackets is less

than unity and, therefore, the algorithm will converge provided that

0 < α <
2<(λmax)
|λmax|2

, (13)

where λmax is the largest eigenvalue of the Hessian matrix, E
[
R̂T (n)R(n)

]
. The convergence behaviour of the

filtered-x LMS algorithm can then be analysed by expressing the Hessian matrix in terms of the matrix of its

eigenvectors, Q, and the diagonal matrix of its eigenvalues, Λ, as

E
[
R̂T (n)R(n)

]
= QΛQ−1. (14)

Substituting this expansion into (12) and multiplying through by the inverse of the matrix of eigenvectors then gives

the simplified expression

v(n+ 1) = [I− αΛ]Q−1v(n), (15)
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where v(n) is the vector of transformed normalised averaged filter coefficients given by Q−1E [w(n+ 1)−w∞].

From (15) it can be seen that, since Λ is a diagonal matrix, the multichannel filtered-x LMS algorithm converges

in a series of independent modes. If the algorithm is stable then the time constants of these independent modes

are determined by the magnitudes of the real parts of the eigenvalues of the Hessian matrix, such that the mode

corresponding to the largest eigenvalue converges with the shortest time constant, while the mode corresponding

to the minimum eigenvalue converges with the longest time constant [1], [23], [22]. The eigenvalue spread, or the

ratio of the largest to the smallest eigenvalues, therefore describes the limits on the convergence of the multichannel

filtered-x LMS algorithm. The eigenvalue spread in the case of this broadband multichannel control problem is

determined by the spectral range of the reference signals; the correlation between the reference signals; and the

dynamics of the plant response between the actuators and sensors [1]. In general, the combination of these effects

can lead to a very large eigenvalue spread and, therefore, very slow convergence.

B. Computational Complexity

In addition to the slow convergence of the broadband multichannel control algorithm, since long FIR filters are

generally required for both the plant response modelling and the control filters, the computational demand quickly

becomes very large. The main contributions to the computational demand of the broadband MIMO filtered-x LMS

active control system shown in Figure 1 are the generation of the filtered reference signals, the adaptation of the

control filters and the generation of the control signals; the multiplications required for each of these processes are

summarised in Table I. In most active noise and vibration control applications, the impulse responses required to

model the plant response and to achieve broadband control are rather long [15]. This means that, since the number of

multiplications required by the broadband filtered-x LMS algorithm is a function of the number of filter coefficients

in the control filter and the plant model filter, the computational demand of a broadband active controller quickly

becomes very large.

TABLE I: The number of multiplications per sample for the MIMO full-band filtered-x LMS active control system

Operation Multiplications

Filtered-x generation MLxLeJ

Control filters update MLx(Le + 1)I

Control signals generation MLxI

Total MLxLe(J + I) + 2MLxI

III. MIMO DELAYLESS SUBBAND FILTERED-x LMS

In order to reduce the computational requirements and increase the convergence speed of the MIMO filtered-x

LMS algorithm it has been proposed that delayless subband adaptive filtering methods could be employed. The

delayless subband adaptive filtering method was originally proposed in [15] for the SISO system and its application
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to MIMO systems has been previously suggested [20]. However, although the computational requirements of the

MIMO subband filtered-x LMS algorithm have been considered [20], [2], as highlighted in the introduction, the

assumed increase in convergence speed has not been formally investigated and the influence of the number of

subbands on the control performance has not been investigated. The implementation of the MIMO filtered-x LMS

algorithm using delayless subband adaptive filtering is first described in this section; the computational requirements

are then investigated in Section III-B and the convergence behaviour is investigated in Section III-C and finally the

performance limitations are investigated and compared to the full-band implementation in Section IV.

A. MIMO Subband Implementation

The MIMO formulation of the original SISO delayless subband adaptive filtering architecture proposed by Morgan

and Thi [15] is shown in Figure 2 for the filtered-x LMS algorithm. From this block diagram it can be seen that the

control signal generation and the filtering of the reference signals by the model of the plant are still both performed

as in the broadband controller shown in Figure 1, however, the filter weight adaptation is now performed in K

subbands. This subband adaptation requires that the broadband filtered reference and error signals are first filtered

by an analysis filter-bank, h(z), to generate the K subband components of these signals. The subband signals

are then decimated by a factor D, which is possible due to the reduced bandwidth of the signals and provides a

significant computational saving. In each of the subbands the subband filter coefficients, wSAF
k , can then be updated

according to the multichannel filtered-x LMS algorithm as

wSAF
k (n+ 1) = wSAF

k (n)− αkRH
k (n)ek(n), (16)

where wSAF
k is the vector of MLxISAF filter coefficients corresponding to the ISAF -th order control filter for

the k-th subband, αk is the convergence gain in the k-th subband, Rk is the Le ×MLxISAF matrix of filtered

reference signals in the k-th subband, and ek is the vector of Le error signals in the k-th subband. Each of the

MLx control filter impulse responses in each of the K subbands is then Fourier transformed and the frequency

responses of these subband control filters are combined via a weight stacking method to form the responses of the

broadband control filters in the frequency domain. The MLx frequency responses of the broadband control filters

are then inverse Fourier transformed to give the impulse responses of the broadband control filter, which is formed

as a vector of MLxI coefficients as described by (5) and (6).

In addition to the significant computational saving that is achieved through the subband filtering structure shown

in Figure 2, a further computational saving can be achieved by implementing the reference signal filtering in each

of the subbands, as shown in Figure 3. This alteration to the original delayless subband algorithm was proposed by

Park et al for a SISO system[16], and means that the plant model filtering is implemented at the decimated sampling

rate and that the subband-decomposed plant response models can be implemented with significantly shorter impulse

responses. In [16] the reduction in computational complexity achieved by this restructuring of the filtered-x subband

architecture is considered in the context of a SISO system, however, the computational saving will be investigated

in Section III-B for a multichannel active control system.
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Fig. 2: MIMO filtered-x LMS delayless subband active control system.

Fig. 3: MIMO filtered-x LMS delayless subband active control system with subband plant modelling.
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1) Analysis Filter-bank and Decimation: As shown in both Figures 2 and 3, the implementation of the subband

active control system requires an analysis filter-bank, signal decimation and complimentary weighting stacking

process. There are a number of different methods of implementing these components of the subband adaptive

filtering systems and these different methods have been discussed in the context of both active control [15], [16],

[17] and more generally for adaptive signal processing [24], [25], [26], [27]. In general the different methods provide

a trade-off between computational complexity, spectral leakage, delay and aliasing effects. In the context of active

noise control, Morgan and Thi [15] propose the use of a polyphase FFT technique to implement the analysis filter-

bank, in which a prototype linear-phase FIR filter is designed and modulated to produce the filter-bank. However,

since this prototype filter is designed to reduce the spectral leakage between the subbands, a high-order filter is

required and this introduces a significant delay into the system. Milani et al [17] show that this additional delay has

a higher impact on the performance of the subband active control system than the spectral leakage and they propose

an alternative method employing a simple Uniform Discrete Fourier Transform Modulated (UDFTM) filter-bank

and complementary weight stacking method [17]. In the case of the SISO system this method has been shown to

allow a higher number of subbands compared to the method of Morgan and Thi [15] and therefore reduces the

computational demand whilst achieving comparable levels of control [17].

The UDFTM filter-bank employed in [17] consists of K subband filters, where the transfer function of the k-th

filter is given by

Hk(z) = H0(ze
−j2πk/K), (17)

where H0 is the prototype low-pass FIR filter with K coefficients given by

H0(z) = 1 + z−1 + · · ·+ z−K+1. (18)

The full bank of K filters is then constructed as

h(z) =
[
H0(z) H1(z) · · · HK−1(z)

]
. (19)

The UDFTM filter-bank is the simplest FIR perfect reconstruction filter-bank [24] and the transfer functions of the

full bank of K filters, h(z), can in fact be expressed in terms of the K-th order discrete Fourier transform (DFT)

matrix, F, as

h(z) =
1

K
F∗


1

z−1

...

z−K+1

 , (20)

where ∗ denotes the complex conjugate operator and is present due to the definition of the DFT matrix [24]. In

practice, this filter-bank can be implemented using a tapped delay line with K taps followed by an inverse Fourier

transform [17] and is, therefore, relatively straightforward to implement.

As shown in Figures 2 and 3, the subband signals output from the analysis filter-bank are decimated by a factor of

D. The appropriate choice of decimation factor is dependent on the level of attenuation provided by the side-lobes
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of the subband analysis filters, since the resulting out-of-band signals will cause aliasing through the decimation

process. The UDFTM filter-bank has a lower level of sideband attenuation than provided by the analysis filter-bank

employed by Morgan and Thi [15] and, therefore, in order to limit the effects of aliasing Milani et al [17] propose

a decimation factor of D = K
4 , which is half of that employed in [15]. This means that the computational demand

of the method proposed by Milani et al, and outlined here, has a slightly higher computational demand than the

original method proposed in [15] when the same number of subbands is used in both methods. However, it is

possible to implement the method proposed by Milani et al with a significantly higher number of subbands than

the original Morgan and Thi method, which provides a significant computational saving and ultimately means that

this method can outperform the original method.

The block diagram showing the practical implementation of the analysis filter-bank and decimation process

proposed by Milani et al [17] for a single input channel is shown in Figure 4a. From this block diagram it can be

seen that the input signal is passed through a tapped delay line of length K. This K×1 vector of delayed input signals

is then inverse Fourier transformed and then decimated by the decimation factor, D. This means that the output

of the IFFT block is actually only used once every D samples and this leads to a large computational overhead.

This, however, can be significantly reduced by restructuring the analysis filter-bank and decimation process using

the Noble identity [24] and this leads to the equivalent implementation shown in Figure 4b. In this case the IFFT is

computed at the decimated sample rate and the computational demand is thus reduced by the decimation factor. It

should be highlighted that the Noble identity is not an approximation and, therefore, although the decimation now

occurs before the IFFT, this restructuring does not introduce additional aliasing. That is, because the tapped delay

is longer than the number of samples removed by the decimation factor, no information is lost by interchanging the

two blocks. The Noble identity is not employed in [17], but it facilitates a significant reduction in the computational

demand, particularly when implementing a multichannel adaptive control system in which an analysis filter-bank

is required for at least each error signal and each reference signal.

(a) Standard implementation.

(b) Alternative implementation using the Noble identity.

Fig. 4: Block diagrams of two alternative implementations of the UDFTM analysis filter-bank and signal decimation.

2) Weight Stacking Method: In order to form the full-band control filters, w, from the K subband control filters,

wSAF
k , it is necessary to employ a synthesis filter-bank, or weight stacking procedure, that is complementary to the
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analysis filter-bank [24], [25]. As such, a variety of different synthesis filter-banks have been proposed, however,

the method put forward in [17] will be outlined here since it is complementary to the analysis filter-bank described

in the previous section.

It is first important to highlight that the subband signals output from the analysis filter-bank described in the

previous section are complex and, therefore, the subband filter adaptation described by (16) is a complex LMS

algorithm. However, since the full-band signals are real-valued and the analysis filter-bank response is complex

conjugate symmetric, only the first K/2 + 1 subbands need to be processed [15], [17], [25]. The first stage in the

weight stacking procedure is to calculate the 2ISAF point FFT of each of the subband filters by using zero padding

to give the Discrete Fourier Transform (DFT) coefficients for each of the subbands. This process produces the

MLx × 2ISAF matrix WSAF
k , which contains the 2ISAF DFT coefficients for each of the MLx channels in the

multichannel control system. The full-band control filter matrix of DFT coefficients, W, is then constructed from

these subband DFT coefficients. Specifically, the MLx × 2I matrix of full-band coefficients can be constructed by

extending the single channel formulation presented by Milani et al [17] to give

Wmlx [i] =WSAF
mlx((b iK2I c))K

[
((i)) 8I

K

]
for i ∈ [0, I],

Wmlx [i] =W ∗mlx [2I − i] for i ∈ [I, 2I] (21)

where Wmlx [i] is the i-th DFT bin of the full-band control filter corresponding to the m-th control source and

the lx-th reference signal,
((
b iK2I c

))
K

determines which subband the DFT coefficient should be taken from, and[
((i)) 8I

K

]
determines the index of the subband DFT coefficient. ((· · · ))K indicates the modulo-K operation and

b· · · c indicates the floor operation. The second line in (21) indicates that the second half of the full-band control

filter responses is formed in complex conjugate symmetry to the first half of their responses. This weight stacking

method requires that the number of filter coefficients in each of the subband adaptive filters, ISAF , should be greater

than or equal to 4I/K. Finally, as shown in Figures 2 and 3 the full-band filter coefficients are obtained by taking

the inverse FFT of the weight stacked full-band DFT responses, W. These filter coefficients are then structured as

the vector of MLxI coefficients as described by (5) and (6).

B. MIMO Subband Computational Complexity

One of the main motivations for the subband adaptive processing method is the potentially significant computa-

tional saving and this may be particularly significant for the multichannel implementation. This has been discussed in

[2], [20] for the MIMO control system with a single [20] and multiple [2] reference signals, however, a comparison

between the standard full-band method and the specific subband implementations described in Section III will be

compared here in terms of the number of multiplications required per sample. In particular, the difference in the

computational requirements for the two multichannel subband active noise control architectures shown in Figures

2 and 3 will be compared and the significance of employing the Noble identity to restructure the analysis filter

bank implementation on the overall computational demand will be demonstrated. Furthermore, a clear graphical

comparison of the full-band and subband algorithms will be presented, which will provide insight into the trade-off
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between the computational demand and the performance, which has not previously been investigated for the MIMO

system.

1) Reference signal filtering: The generation of the filtered reference signals is central to the implementation of

the filtered-x LMS algorithm. For the standard subband architecture proposed in [15] and shown in Figure 2, the

matrix of filtered reference signals, R, is generated at the full sample rate, Fs, by filtering the Lx reference signals

using the MLe models of the plant response, Ĝ. If the MIMO model of the plant response is implemented using

a bank of FIR filters of length J , as described in Section II, then the number of multiplications per sample is

c1 =MLeLxJ. (22)

It is typical that the length for the plant modelling filters, J , to be several hundred coefficients long in order to

provide accurate modelling for acoustic and structural systems. Therefore, the computational demand of calculating

the filtered reference signals rapidly increases as the number of channels in the control system increases.

This problem can be limited by implementing the multichannel subband control system as shown in Figure 3,

where the subband reference signals are filtered by subband plant models. Although this modification requires

complex filtering due to the subband reference signals being complex, it has two benefits in terms of computational

complexity. Firstly, the reference signal filtering is implemented at the decimated sample rate, Fs/D, and secondly,

the subband plant model filters, Ĝk, must only be accurate over the bandwidth of the corresponding subband signals.

This means that the number of coefficients required for each subband plant model filter, JSAF , can be reduced as

the bandwidth of the subbands is reduced. The number of multiplications required per sample at the full sample

rate of Fs for this implementation is then

c′1 = 3MLeLxJSAF

(
K/2 + 1

D

)
, (23)

where the factor of (K/2 + 1) is due to the subband plant model filtering being implemented in the K/2 + 1

subbands corresponding to the real part of the frequency spectrum, the factor of 3 is due to the filtering process

being complex, and the decimation factor is D = K/4, which gives the computational demand as

c′1 = 3MLeLxJSAF

(
2 +

4

K

)
. (24)

2) Subband filtering and decimation: The subband filtering and signal decimation process can be implemented

using two different formulations, as shown in Figure 4. The analysis filter-bank and decimation process in Figure

4a requires one K-point inverse FFT per sample at the full sample rate of Fs, which corresponds to K log2K

multiplications per sample. For the subband implementation shown in Figure 2, an analysis filter-bank and decimator

are required for each of the MLeLx filtered reference signals and the Le error signals and this results in a total

number of multiplications per sample at the full sample rate of

c2,a = (Le +MLeLx)K log2K. (25)

However, by using the Noble identity to restructure the analysis filter-bank as shown in Figure 4b, a K-point inverse

FFT is only required once per sample at the decimated sample rate of Fs/D. The number of multiplications per
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sample for the subband implementation in Figure 2 is then reduced by a factor of D to give

c2,b = (Le +MLeLx)
K log2K

D
(26)

= (Le +MLeLx) 4 log2K. (27)

For the alternative implementation of the subband active control system shown in Figure 3, due to the reordering

of the plant model filtering and the analysis filter-banks, a significant reduction in the number of analysis filter-banks

is achieved. In this implementation an analysis filter-bank and decimator are only required for the Lx reference

signals and the Le error signals, such that the number of multiplications per sample for the standard analysis

filter-bank in Figure 4a is reduced to

c′2,a = (Le + Lx)K log2K, (28)

and for the restructured analysis filter-bank in Figure 4b is reduced to

c′2,b = (Le + Lx) 4 log2K. (29)

3) Subband weight adaptation: The adaptation of the K/2 + 1 complex subband control filter weights is

performed according to equation (16) for both of the subband system implementations shown in Figures 2 and 3. The

update equation given by equation (16) requires LeMLxISAF complex multiplications for the matrix multiplication

RT
k (n)ek(n), and a further MLxISAF complex-real multiplications as the complex vector given by RT

k (n)ek(n)

is multiplied by the real-valued convergence gain, αk. The multiplication of two complex numbers can be achieved

using a minimum of 3 real multiplications, while the multiplication of a complex number by a scalar requires 2

real multiplications. For the (K/2 + 1) subband update algorithms operating at the decimated sample rate, D, the

total number of real multiplications is thus given by

c3 = (3LeMLxISAF + 2MLxISAF )
K/2 + 1

D
. (30)

If the number of subband adaptive filter coefficients is set to the minimum required by the weight stacking method

outlined in Section III-A2, which is ISAF = 4I/K, then the number of multiplications per sample required by the

subband weight adaptation is given by

c3 =MLx (3Le + 2)
8I

K

(
1 +

2

K

)
. (31)

4) Weight stacking: The weight stacking process, which is described in Section III-A2, requires a 2ISAF -point

FFT for each of the complex subband control filters and a 2I-point inverse FFT of the weight stacked full-band

control filters. Each of the 2ISAF -point complex FFT requires about 4ISAF log2 (2ISAF ) real multiplications [15]

and the 2I-point inverse FFT requires 2I log2 2I real multiplications. The total number of real multiplications per

sample is thus given by

c4 =
MLx
D

[(
K

2
+ 1

)
4ISAF log2 2ISAF + 2I log2 2I

]
.

(32)
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If it is again assumed that ISAF = 4I/K and D = K/4 this can be simplified to give

c4 =
8MLxI

K

[(
4 +

8

K

)
log2

8I

K
+ log2 2I

]
. (33)

5) Full-band control signal generation: The final significant operation in the implementation of the subband active

control systems is the generation of the output control signals. As can be seen from Figures 2 and 3 this filtering

process is performed in the time-domain on the full-band reference signals, and is identical to the implementation

in the full-band standard MIMO active control system shown in Figure 1. The number of multiplications required

per sample is given by

c5 =MLxI. (34)

In order to understand how the individual computational operations contribute to the overall computational re-

quirement, compare the two alternative implementations outlined in Figures 2 and 3, and demonstrate the significant

computational gain achieved by restructuring the analysis filter-bank as shown in Figure 4, an example multichannel

control system will be considered in Section IV.

C. MIMO Subband Convergence Analysis

Although a primary motivation for the implementation of subband algorithms is the reduced computational

complexity compared to the broadband alternative, a significant increase in convergence speed is also potentially

possible [15]. It has been highlighted in the literature that this is expected to be even greater for the MIMO subband

active noise control system, however, the convergence behaviour of the MIMO subband filtered-x LMS algorithm

has not been analysed in the literature. Therefore, following the convergence and stability analysis presented in

Section II-A, the convergence and stability of the subband filtered-x LMS algorithm will be analysed.

Firstly, by assuming, as in the full-band case, that the subband control filter coefficients are changing slowly

compared with the dynamic response of the plant, the error signal in the k-th subband can be expressed as

ek(n) = dk(n) + Rk(n)w
SAF
k (n) (35)

where dk(n) is the disturbance signal in the k-th subband. The convergence behaviour of the multichannel subband

filtered-x LMS algorithm can then be analysed by substituting (35) into (16) and using the matrix of subband

filtered reference signals estimated via the plant model, R̂T
k (n), which gives

wSAF
k (n+ 1) = · · ·

wSAF
k (n)− αk

[
R̂H
k (n)dk(n) + R̂H

k (n)Rk(n)w
SAF
k (n)

]
. (36)

Assuming that the algorithm is stable, then it can be seen from (36) that the control coefficients corresponding

to the k-th subband will have converged to their steady-state values when the expectation of the term in square

brackets is zero. The steady-state vector of control filter coefficients in the k-th subband can then be written as

wSAF
k,∞ = −

{
E
[
R̂k

T
(n)Rk(n)

]}−1
E
[
R̂T
k (n)dk(n)

]
. (37)
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Making the same independence assumptions that were made in the full-band case, the expectation behaviour of the

subband filter coefficient update equation can then be expressed using the steady-state vector of subband control

filter coefficients as

E
[
wSAF
k (n+ 1)−wSAF

k,∞
]
= · · ·[

I− αkE
[
R̂H
k (n)Rk(n)

]]
E
[
wSAF
k (n)−wSAF

k,∞
]
. (38)

The Hessian matrix corresponding to the k-th subband can then be written using the eigenvalue decomposition as

E
[
R̂T
k (n)Rk(n)

]
= QkΛkQ

−1
k , (39)

where Qk is the matrix of eigenvectors and Λk is the diagonal matrix of eigenvalues, both corresponding to the

k-th subband Hessian matrix. Substituting this expansion into (38) and multiplying through by Q−1k then gives the

vector of transformed normalised averaged subband filter coefficients as

vk(n+ 1) = [I− αkΛk]vk(n), (40)

where v(n) = Q−1k E
[
wSAF
k (n+ 1)−wSAF

k,∞

]
. Since Λk is diagonal, it can be seen that (40) represents a series

of independent equations, which are associated with the independent modes of convergence of the k-th subband

adaptive algorithm.

From (40) it can also be seen that the control filter coefficients in the k-th subband adaptive algorithm will converge

towards their steady-state value if the term in square brackets is less than unity and, therefore, the algorithm will

be stable provided that the convergence gain in each subband can be set such that

0 < αk <
2<(λkmax

)

|λkmax
|2

, (41)

where λkmax is the maximum eigenvalue of the Hessian matrix in the k-th subband, R̂H
k (n)Rk(n). Once again, it

should be highlighted that, since this is stability limit is based on the assumption that the control filter coefficients

are changing slowly compared with the dynamic response of the plant, this limit can only be used as a relative

guide and in practice the convergence gain is generally set below the upper limit indicated by this expression.

However, the equivalent full-band stability limit has been widely shown to provide a useful guide in practice.

Nevertheless, assuming that the convergence gain has been set such that the subband adaptive algorithm is stable,

which also requires that the real parts of all of the eigenvalues are positive, then the subband algorithm will

converge in a series of independent modes with time constants determined by the magnitude of the real part of

the corresponding eigenvalue. The mode corresponding to the largest eigenvalue converges with the shortest time

constant (1/(αk|λkmax
|)) and that corresponding to the smallest eigenvalue converges with the longest time constant

(1/(αk|λkmin
|)). If the plant model is perfect and, therefore, R̂k(n) = Rk(n), all of the eigenvalues of the Hessian

matrix will be positive real, and the slowest mode of convergence will have a time constant that is proportional to

λkmax/λkmin , or the eigenvalue spread of the Hessian matrix.

From the above analysis it is clear that the convergence of each of the subband adaptive filters is governed by

the corresponding subband Hessian matrix, E
[
R̂H
k Rk

]
. Due to the inherently smaller bandwidth within a subband
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algorithm compared to the full-band implementation, the subband Hessian matrix will generally have a lower

spectral range than the full-band equivalent and, therefore, the subband control filter coefficients will converge to

their steady-state values with a shorter time constant. Also, since the convergence gain in each subband, αk, can

be set independently, the speed of convergence in each band will only be limited by its own eigenvalue spread.

However, due to the weight stacking processing required to translate the subband control filter coefficients into the

full-band control filter coefficients, it is not completely clear from this analysis how any distortion introduced by the

weight stacking process [18] will affect the performance and convergence in terms of the sum of the squared errors

cost function. Therefore, the effect of the number of subbands on the eigenvalue spread, the control performance

and convergence speed will be investigated in the following section for a practical control problem.

IV. PERFORMANCE INVESTIGATION

In order to provide a comparison between the performance of the multichannel filtered-x LMS algorithm, shown

in Figure 1, and the two multichannel subband algorithms, shown in Figures 2 and 3, the practical control system

in Figure 5 will be investigated. This system represents the structural problem of controlling the transmission of

vibration through a beam-like structure into a wall or plate. The primary disturbance in the experimental setup is

provided by an inertial actuator mounted on the beam and the single reference signal is obtained from the signal

driving this actuator. In the following investigation the primary actuator is driven by broadband stationary white

noise; this presents a challenging test case for active noise control systems due to the unpredictability of the white

noise signal. If the signal was coloured then its predicability would increase and the level of control performance

would increase accordingly. The control system consists of three tri-axial accelerometer error sensors and five

inertial actuator control sources, which are shown by the small cubes and cylinders in Figure 5 respectively. The

five control actuators are arranged to allow control of five degrees of freedom of the plate. The MIMO control

system thus consists of M = 5 control sources, Le = 9 error sensors and Lx = 1 reference sensor. In the following

sections, the performance of the different MIMO algorithms has been calculated via offline predications using the

measured responses. This allows a significant number of system configurations to be considered and, therefore,

facilitates an understanding of the performance limitations of the two subband algorithms compared to the standard

fullband controller. It is worth highlighting that, as already indicated by the description of the subband algorithms in

Section III, in a practical implementation the subband algorithms require multi-rate processing which can generally

be implemented on standard signal processing boards.

Figure 6 shows two examples of the frequency response of the structure shown in Figure 5. Figure 6a shows the

frequency response between the primary source and one error sensor and Figure 6b shows the response between

one control actuator and the same error sensor. From these plots it can be seen that the system is characterised by a

large number of lightly damped resonances and, therefore, presents a significant challenge to typical multichannel

broadband active control systems. In order to model these dynamics in the full-band controller, the plant model

has been implemented using J = 512 coefficient FIR filters at the full sample rate of Fs = 2.2 kHz. The full-band

control filters have also been implemented with I = 512 coefficient FIR filters, as further increases in the control
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Tri-axial accelerometers

Inertial actuators

Primary vibration source

Fig. 5: Test structure representing the transmission of vibration through a beam-like structure into a wall or plate. The

control system consists of 5 inertial actuators, shown by the cylindrical objects, and three tri-axial accelerometers,

shown by the small cubes on the plate. The primary disturbance is generated by a vibrating source attached to the

end of the beam.

filter length did not achieve a significant increase in the level of control.

A. Comparison of the Computational Complexity

Following on from the computational complexity analysis presented in Section III-B, the computational demand

required by the different subband implementations and the full-band controller applied to the MIMO control system

described above will be investigated. Figure 7 shows the number of multiplications per sample for the individual

operations involved in the different multichannel subband active control implementations, as described in Sections

III-B1 through to Section III-B5.

Figure 7a shows the number of multiplications required per sample for the generation of the filtered reference

signals versus the number of subbands, K. The solid line shows the computational demand given by equation

(22) when the plant modelling filters operate on the full-band signals, as shown in Figure 2, and the dashed line

shows the computational demand given by equation (24) when the plant modelling filters operate on the subband

signals, as shown in Figure 3. It is assumed that the length of the subband plant modelling filters is given by

JSAF = 4J/K, which is consistent with the subband control filter length reduction. From this plot it can be seen
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(a) Example primary path response between the primary actu-

ator and error sensor 1.
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(b) Example plant response between control actuator 1 and error

sensor 1.

Fig. 6: The frequency responses of the primary path (a) and the plant, or secondary path (b).

that the computational demand for the full-band plant modelling implementation is independent of the number

of subbands, whereas when the subband plant modelling implementation is employed the computational demand

decreases as the number of subbands is increased. The computational demand is higher for the subband plant

modelling method when the number of subbands is less than 5, but as the number of subbands employed is

increased the computational saving becomes very large. For example, for K = 1024 the subband implementation

only requires 90 multiplications per sample, whereas the full-band implementation requires 23040 multiplications.

These characteristics are consistent with the observations for the SISO case presented in [16].

Figure 7b shows the number of multiplications required per sample for the subband filtering and decimation

process versus the number of subbands. The solid lines show the computational demand for the system shown in

Figure 2 and the dashed lines show the computational demand for the system shown in Figure 3; the grey lines

show the computational demand when the standard analysis filter-bank in Figure 4a is utilised, whereas the black

lines show the computational demand when the restructured analysis filter-bank shown in Figure 4b is employed.

From this plot it can be seen that the computational demand in all four implementations increases with the number

of subbands, which is due to the increase in the number of points required in the inverse FFT. However, it can be

seen, by comparing the black and grey lines, that by restructuring the analysis filter-bank using the Noble identity
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(d) Weight stacking.

Fig. 7: The number of multiplications required per sample for the individual computational operations in the subband

control systems implemented according to Fig. 2 (solid lines) and Fig. 3 (dotted lines).

significantly limits the increase in the computational demand that occurs when increasing the number of subbands.

It can also be seen from Figure 7b that by employing the subband plant modelling a significant reduction in the

computational demand is also achieved, and for the considered system a reduction in the computational demand

of 5.4 times the full-band plant modelling implementation is achieved. This computational saving is dependent on

the number of control sources, error sensors and reference signals employed in the system. For example, if two

reference signals are employed in the MIMO control system the computational reduction is increased to a factor

of 9.

The final two subplots in Figure 7 show the number of multiplications required for the subband weight adaptation,

c3, and the weight stacking process, c4, versus the number of subbands. These two processes are equivalent for

the two subband architectures and the number of multiplications per sample are given by equations (31) and (33)

respectively. It can be seen that the computational demand for both operations follows a similar trend and decreases

as the number of subbands is increased.

The total number of multiplications per input sample for the different implementations of the MIMO filtered-x
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LMS active controller with M = 5, Le = 9, Lx = 1, I = 512 and J = 512 are shown in Figure 8. The total number

of multiplications per sample for the full-band implementation, as detailed in Table I, is due to the generation of the

filtered reference signals; the control filter adaptation; and the generation of the control signals. The computational

demand for the full-band system is shown in Figure 8 as the dotted line and this provides a comparison for the

computational complexity of the subband implementations. The solid lines in Figure 8 show the computational

demand for the subband system shown in Figure 2 and the dashed lines show the computational demand for the

system shown in Figure 3; the grey lines show the computational demand when the standard analysis filter-bank

in Figure 4a is utilised, whereas the black lines show the computational demand when the restructured analysis

filter-bank shown in Figure 4b is employed.
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Fig. 8: The number of multiplications required per sample for the MIMO filtered-x LMS active controller

implemented using the standard full-band (FB) architecture shown in Fig. 1 (dotted line), the subband (SB)

architecture with full-band plant modelling shown in Fig. 2 (solid line), and the subband architecture with subband

plant modelling shown in Fig. 3 (dashed line).

From the results in Figure 8 it can be seen that for both subband implementations using the standard analysis

filter-bank (Fig. 4a) the computational demand is only lower than the full-band implementation for a relatively

narrow range of number of subbands. This range is consistent with the number of subbands employed in both [15],

[16] and, therefore, it is possible that this problem was not observed in those investigations. However, it can be

seen from the black solid and dashed lines that by employing the restructured analysis filter-bank (Fig. 4b), the

computational demand decreases as the number of subbands employed is increased, such that the computational

demand is lower than the MIMO full-band algorithm when the number of subbands is greater than around 17 for

the system in Figure 2 and 14 for the system in Figure 3. It should be highlighted that these crossover points are

dependent on the size of the control system and the length of the control and plant modelling filters, however, the

presented results demonstrate the importance of employing the restructured analysis filter-bank, particularly when
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a large number of subbands is employed.

It can also be seen from the solid and dashed black lines in Figure 8 that the difference in the computational

demand between the two subband implementations increases with the number of subbands. Specifically, it can

be seen that the subband implementation with subband plant modelling, as shown in Figure 3, significantly

outperforms the subband implementation with full-band plant modelling, as shown in Figure 2. For example, for

K = 1024 subbands, although the system shown in Figure 2 reduces the number of multiplications compared to

the standard full-band controller by a factor of 2.66, the subband implementation shown in Figure 3 reduces the

number of multiplications by a factor of 12.88. This highlights the computational benefit of employing the subband

implementation shown in Figure 3, however, the performance of the two systems will be compared in the following

section.

B. The effect of the number of subbands on performance

It has been shown in Section III-C that the convergence of each of the subband control filters in the MIMO

filtered-x LMS algorithm is dependent on the eigenvalue spread of the Hessian matrix in that subband. It has been

shown for the SISO subband filtered-x LMS algorithm that the average eigenvalue spread across all subbands reduces

as the number of subbands is increased [18], however, it has not been shown directly whether this translates into a

consistent increase in the convergence of the error signals and has also not been studied for the MIMO structure.

Therefore, for MIMO case, the effect of the number of subbands on both the eigenvalue spread and the convergence

speed for the control system outlined above will be investigated.

For the MIMO system considered in this section, the eigenvalue spread of the Hessian matrix, [RH
k (n)Rk(n)], in

each subband has been calculated and Figure 9 shows the mean and the standard deviation of the eigenvalue spread

across all of the subbands for different numbers of subbands. From these results it can be seen that, as expected,

both the mean and standard deviation of the eigenvalue spread decrease as the number of subbands is increased.

This result is consistent with the SISO results reported in [18] and according to the convergence analysis presented

in Section III-C will result in faster convergence of the subband control filter coefficients.

Although it has been shown that the subband control filter coefficients will converge with time constants that are

proportional to the eigenvalue spread of the subband Hessian matrix, and that the average value of the eigenvalue

spread reduces as the number of subbands is increased, it is not possible in the case of the subband processing

method to then directly infer that this leads to an increase in the convergence of the cost function. This is due to the

additional processing on the subband control filter coefficients that is necessary to transform them into the full-band

filter coefficients; this is achieved using the weight stacking process described in Section III-A2. This limitation

has previously been investigated for a SISO system in [18] and it was shown that the level of attenuation versus

the number of subbands generally has a convex upwards relationship, such that the level of control is limited for

both small and large numbers of subbands. The convergence of the sum of the squared error signals will therefore

be investigated here for the MIMO system.

Figure 10 shows the time taken for the MIMO subband filtered-x LMS algorithm applied to the system shown in
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Fig. 9: The mean and standard deviation of the eigenvalue spread of the subband Hessian matrix, [R(
kn)Rk(n)],

versus the number of subbands.

Figure 5 to achieve 10 dB of attenuation in the sum of the squared error signals for different numbers of subbands.

In each case, the subband convergence gains, αk, have been set in proportion to the upper limit given by (41), such

that the fastest convergence is achieved in each case. From this plot it can be seen that as the number of subbands

is increased from the full-band case (i.e. a single subband) the speed of convergence increases, which is consistent

with the subband filter weights convergence analysis and the decrease in the eigenvalue spread with an increasing

number of subbands. However, it can also be seen from Figure 10 that as the number of subbands increases beyond

K = 512, the convergence speed reduces. This performance behaviour is consistent with the SISO active noise

control systems investigated in [18], [28], where the reduced performance for large numbers of subbands has been

linked to the increased distortion due to the weight stacking process.

The frequency response of the ideal weighting stacking process is a brick-wall bandpass filter given by [18]

Hideal
k (ω) =

{
1 |ω − 2kπ

M | <
π
M

0 |ω − 2kπ
M | >

π
M

. (42)

However, in practice, due to the finite length of the DFT used in the weight stacking process, as described in

Section III-A2, the response of the weight stacking process will not form a perfect brick-wall filter. The weight

stacking will therefore introduce distortion into the system and ultimately limit the control performance. Milani et

al [28] have proposed a measure of the weight stacking distortion, which is given by the summation over the K

subbands of the convolution of the weight stacking response with the ideal response given by (42), and this can be

expressed as

T (z) =

K−1∑
k=0

Hk(z)H
ideal
k (z). (43)

When the response of the weight stacking process is equal to the ideal response, there is no distortion, and

December 6, 2016 DRAFT



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING , VOL. ??, NO. ??, MONTH YEAR 23

Number of subbands

10
0

10
1

10
2

10
3

τ
1
0

 d
B

, 
se

c

0

10

20

30

40

50

60

Fig. 10: The time taken for the MIMO subband filtered-x LMS algorithm shown in Figure 2 to achieve 10 dB of

attenuation in the cost function versus the number of subbands.

T (ω,M) = 1. The distortion due to the weight stacking process described in Section III-A2 averaged over the full

bandwidth is shown in Figure 11 in decibels for a range of numbers of subbands. From this plot it can be seen that

the weight stacking distortion increases as the number of subbands increases and indicates why the convergence

speed, shown in Figure 10, is limited for large numbers of subbands.
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Fig. 11: The weight stacking distortion versus the number of subbands.
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C. Direct Comparison of the Two Subband Implementations

From the investigation presented in the previous two sections, it is clear that although the computational demand

significantly decreases as the number of subbands is increased, the expected increase in convergence speed only

occurs up to a certain number of subbands. That is, although, as expected, the average eigenvalue spread of the

Hessian matrix reduces as the number of subbands is increased, the convergence of the cost function is limited by

the increase in the weight stacking distortion with the number of subbands. As a result, there is a clear trade-off

between the computational demand and the convergence speed. For the practical system considered here, the fastest

convergence is achieved with K = 512 subbands and, compared to the full-band controller, this corresponds to

a 62% reduction in the computational demand for the subband implementation shown in Figure 2 and a 91%

reduction for the subband system shown in Figure 3, assuming the subband control filters have a length given by

JSAF = 4J/K. The performance of the two alternative subband systems using K = 512 subbands will, however,

be compared in more detail in this section along with the full-band controller.

The performance of the three multichannel algorithms has been assessed for the case when the length of the

full-band control filters is I = 512, and the subband algorithms have been implemented with K = 512 subbands,

subband control filters of length ISAF = 4, and a decimation factor of D = 128. The convergence gain of all

three algorithms has been set to give the maximum convergence speed in each case. The convergence gain for

each subband, αk, in the two subband algorithms has been set in proportion to 2<(λkmax )
|λkmax |2

with the scalar constant

of proportionality being set for all subbands such that maximum convergence speed is obtained. The subband

convergence gains are presented against frequency in Figure 12, and it is clear from this plot that the subband

implementation allows a significant range of convergence gains to be selected over the control bandwidth. The

full-band implementation, however, only allows a single convergence gain to be selected and this is limited by the

maximum eigenvalue of the full-band Hessian matrix as described by (13).
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Fig. 12: The subband convergence gains versus frequency.
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The spectrum of the cost function, given by the sum of the squared error signals, before control and after the

three control algorithms have been adapting for 20 seconds is shown in Figure 13. From this plot it can be seen

that the two subband algorithms achieve almost identical broadband attenuation, while the full-band algorithm

achieves a lower level of attenuation. The full-band algorithm achieves a broadband average attenuation of 5.6 dB,

while the two subband algorithms achieve 12.6 dB of broadband attenuation. The convergence of the cost function

for the three algorithms is shown in Figure 14. From this plot it can be seen that the two subband algorithms,

as expected, converge significantly faster then the full-band algorithm. The two subband algorithms have almost

identical convergence behaviour, with the small variation being attributed to small differences between the outputs

of the full-band and subband plant models used in the two algorithms due to the influence of the out-of-band

subband plant modelling error and the fact that the subband filtering does not provide perfect brick-wall filtering.

Nevertheless, it is clear that the multichannel subband algorithms are capable of achieving a significant increase

in the convergence speed compared to the full-band algorithm, whilst also achieving significant reductions in the

computational demand.
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Fig. 13: The spectrum of the cost function, given by the sum of the squared error signals, before control (thin solid

black line) and after 20 seconds of convergence using the full-band algorithm (thin dotted black line), the subband

algorithm with full-band plant modelling (thick solid black line) and the subband algorithm with subband plant

modelling (thin solid grey line).

V. CONCLUSIONS

The performance and practical applications of broadband multichannel active noise and vibration control systems

are limited by both the large computational demand and the slow convergence speed. These limitations have been

addressed in the case of SISO control systems using subband adaptive algorithms, and this paper has presented a

thorough investigation of the extension of these algorithms to multichannel active control systems. In particular,
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Fig. 14: The convergence envelope of the cost function, given by the sum of the squared error signals, for the

full-band algorithm (thin dotted black line), the subband algorithm with full-band plant modelling (thick solid black

line) and the subband algorithm with subband plant modelling (thin solid grey line)

two successful SISO subband adaptive algorithms have been extended to the MIMO application. The first of these

MIMO subband filtered-x LMS algorithms implements the plant model using a bank of full-band FIR filters, whilst

the second implementation, proposed by Park et al [16], decomposes the plant response into subband models which

are implemented at the decimated sample rate.

The computational complexity of these two MIMO implementations has firstly been compared to the standard

full-band MIMO controller and it has been shown that in both cases the computational saving increases as the

number of subbands employed is increased. However, this is only the case if the Noble identity is utilised to

restructure the subband analysis filter bank and decimation process, which has not previously been highlighted.

Additionally, the computational saving achieved in the multichannel case by the subband algorithm with subband

plant modelling is significantly greater than the standard subband algorithm with full-band plant modelling, which

was originally proposed by Morgan and Thi [15].

In addition to the computational saving, it has been suggested in the literature that the MIMO subband active

noise control algorithm could provide an increase in the convergence speed, however, no analysis of the convergence

behaviour or investigation into the practical improvements has been presented. Therefore, an analysis of the

convergence of the MIMO subband control filter coefficients has been presented and it has been shown that the

convergence in each subband is dependent on the spread of the eigenvalues of the subband Hessian matrix. It has

then been shown for a practical, MIMO active vibration control system that the mean and standard deviation of the

subband eigenvalue spread decreases as the number of subbands is increased. However, it has then been shown that

this does not in fact translate into an increase in the convergence speed as the number of subbands is increased.

It has been shown that this is due to the increase in the distortion introduced by the weight stacking process as
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the number of subbands is increased. As a result, there is a trade-off between the computational demand and the

control performance.

Finally, the overall performance of the practical active vibration control system has been assessed for the two

subband algorithm implementations and the standard full-band algorithm. In this case the subband algorithms have

both been implemented using the K = 512 subbands, which gives the fastest convergence speed for the considered

system. It has then been shown that the two subband implementations significantly outperform the standard full-

band implementation in terms of the speed of convergence and, therefore, the level of control after a fixed period

of convergence time. Importantly, it has also been shown that the MIMO subband algorithm employing a subband

plant model achieves identical performance to the less computationally efficient algorithm that employs a fullband

plant model.
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