Point-to-Point Iterative Learning Control with Optimal Tr acking
Time Allocation: A Coordinate Descent Approach

Yiyang Chen, Bing Chu, Christopher T. Freeman

1. Electronics and Computer Science, University of Soufitam Southampton, SO17 1BJ, United Kingdom
E-mail: { yc12ul2, b.chu, c} @ecs.soton.ac.uk

Abstract: Iterative learning control (ILC) is a high performance gohtechnique for systems operating in a repetitive manner.
A novel design methodology is developed in this paper toripo@te optimal tracking time allocation within the potot-
point ILC framework for discrete time systems. This leadsitmificant performance improvements compared to fixed time
points (e.g. energy reduction). An optimization problenfosnulated based on the point-to-point tracking requinetrand

the via-point temporal constraints. A two stage design éaork is proposed to solve this problem, yielding an aldonit
based on norm optimal ILC and the coordinate descent mettiuidh automatically minimizes control effort while maiirang

high performance tracking. The proposed algorithm is imm@eted on a gantry robot experimental test platform, withuits
verifying its practical effectiveness in the presence oflslaincertainty.
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1 Introduction tivates that the point-to-point ILC framework be expanded
. _ _ i to allow flexibility in tracking time allocation to embed fur
ILC is a control technique applied to high performance ther optimization of the desired cost function. However, an

systems which perform the same tracking task over a fi-ysqmption is made in all previous point-to-point ILC prob-

nite time horizon repetitively. The standard ILC framework o, formylations that the tracking time allocation is knoavn
can be considered as an open-loop feedforward methodoliqrj \hich limits the potential optimization of these cost
ogy, which updates th_e input signal to improve the_ trackinggnetions within the previous framework. Recent research
per.formance by Igarnlng fr_om the d_gta of the previous exey, 55 considered the optimal tracking time allocation of poin
.Cu.t.'or,ls (pamed trials). Unlike repetitive contrpl, ILC fers to-point robotic motion [12]. However, its optimal solutio
initialization procedure at the end of each trial to reset th is computed using a nominal model, therefore it is not robust

system states to the same initial values. ILC theoreticallyto model uncertainty and cannot handle high performance
enables zero tracking error after sufficient historicadlss;i tracking tasks in practice

which is superior to traditional feedback control. Becanise This paper addresses the full optimal tracking time allo-

this key feature, !LC is .applied to wide range of indu_strial cation problem for discrete time systems in which dynamic
tasks which require a high accuracy level, e.g. robotic sySyyeraction occurs between the critical points. Note that
tems [1], [2], chemical batch processing [3], [4] and stoke o eiminary results presented in [13] employed the gratdien
rehabilitation [S]. See [6] for a detailed overview of ILC. a4 to address continuous time systems, but thesesresult
In certain practical applications, the system outputigonl o6 e applied to discrete time systems and are therefore

critical at a _subset of tlme Instants over the whole tlm_e.-horl unsuitable for practical implementation. The main conirib
zon, and it is only required to attain a reference position ations of the paper are as follows:

these isolated time instants. An example is the robotic ma-

nipulator’s pick-and-place task, as it only concerns thek pi « The optimal tracking time allocation problem is formu-
and place positions. A new control framework termed point- lated in Sectior? including both optimization of a cost
to-point ILC is thereby formulated in [7] for these control function as well as point-to-point reference tracking.

problems, which only enforces output tracking at these spe- « A two stage design framework is proposed in Section
cial time instants. It removes the unnecessary output con-  to solve the problem, and provides solutions to the min-
straints, and releases extra freedom in control designto ad  imum control effort problem within the point-to-point
dress additional performance objectives. Recent research ILC framework based on norm optimal point-to-point

has been made on optimal problem [8], [9], frequency anal-  ILC and the coordinate descent method.

ysis [7] and constrained conditions [10], [11]. « A practical implementation algorithm is then derived
In point-to-point tracking problems, the tracking times of from the solutions of the problem in Sectidrand the

the critical points are typically embedded within some cost practical effectiveness of the algorithm is verified on a

functions (e.g. control effort), so these cost functions ar gantry robot platform in Sectioh

highly dependent on the tracking time allocation. There-

fore, the reallocation of the tracking times can optimizssth

cost functions, and translate into significant practicaldse 2 Fgormulation of the Problem

fits, such as reducing the waste energy in industry, reduc-

ing the damage to machine components and increasing the This section first introduces the system dynamics and de-

efficiency of production (i.e. throughput). This hence mo- fines the point-to-point ILC framework. Then the design

problem of point-to-point ILC with optimal tracking time-al

This work is supported by China Scholarship Council. location is formulated into an optimization problem.




2.1 System Dynamics is introduced to extract the output values at the trackimeti

invariant system given in state space form 84, B, C) HoR™ x ... x R™ (10)
with unit sample time —_—
M times

xp(t + 1) = Az (t) + Bug(t), z(0) = zo

with inner product and associated induced norm
yr(t) = Cap(t), 0 <t <N, N <0 1)

M
wheret is the time index (e.g. sample numberjt) € R”, o T 2
u(t) € R andy(t) € R™ are the state, inpthand output (. m)igr = D wi Qi Il = (w, whg (A1)
respectivelyA, B andC' are system matrices of compatible
dimension;0 < N < oo is the trial length, the subscript Where
k € N denotes the ILC trial number. At the end of each
trial, the state is reset to initial valug. The system can be

=1

w=w,...,wm]" €H, p=1[u,...,unm" € H;

represented in an equivalent operator form [Q] denotes the siQ:, ..., Qu}, andQ; € S, .
yr = Guy +d, G : 1[0, N] — 1[0, N] From definition (9), it follows that the ‘point-to-point out
ut’, y?, comprises a subset of plant outputs defined over the
e, di € 170, N, u € 140, N] 2 Pu.ucomp P P

tracking time allocatiom\. The dynamics of the point-to-

where the input and output Hilbert spacg$0, 7] and  point system can therefore be modelled by
1570, T are defined with inner products and associated in-

duced norms (Gu)(t1)
N Yy’ =Giu=(Gu)’ = : (12)
(w, v) g =Y w"(ORo(i), ulf=(u, u)p () (Gu)(tar)
=0
N whereGY, : 15[0, N] — H is a linear operator.
(z, y)g = ZxT(i)Sy(i), lyls = (v, v)g (@) Therefore, the point-to-point ILC design objective design
i=0 objective (6) can be equivalently described as iteratively

inwhich R € S | andS € ST, (S, denotes the set of all finding a sequence of inpit., } such that

real positive definite matrices with appropriate dimensjon lim y? =77, lim up = u* (13)
The convolution operato& and signald (representing the f—oo ¥ " koo
effect of initial condition) take the form where
t—1 ) P =[ry, ro,..., Tm] € H (14)
_ t—i— - _ t
(Gu)(t) = ZO cA Bu(i), d(t) = CA'zo  (5) To solve the problem, the point-to-point tracking erefyr=
_ b ) rP — yt is employed within the following updating law:

where, without loss of generality, the constdlit) can be
absorbed into the reference to givg= 0, d(t) = 0. ups1 = F(ug, €}) (15)
2.2 Point-to-Point ILC Framework whereF is an updating function involving the previous input

The point-to-point ILC design objective is to update the and point-to-point tracking error.
input signal,u, such that the input signaly;, converges
to a unique value and the associated outpt,ultimately
tracks the given reference positions,i = 1,..., M, ata
sub set of time instants;, i = 1,..., M, i.e.

2.3 Optimal Tracking Time Allocation Problem

In all existing point-to-point ILC frameworks, the track-
ing time allocatiom\ is assumed to be known agriori, and
the extra flexibility in tracking time allocation has not bee
Am y(t) =ri, i =1,.... M, lm u=u" (6)  fully explored. This paper aims to address tRisint-to-

Point ILC with Optimal Tracking Time Allocation Prob-
lem by proposing a design framework which automatically
provides a tracking time allocation to optimize some dekire
A=ty ta,..., ty] €O (7) cost functions, and meanwhile ensures high performance
tracking at the tracking time allocation.

The problem design objective is to iteratively find a track-
O={AeRM:0<t;<ty<...<ty <N} (8) ingtime allocation\; and an inputy;, with the asymptotic

is the admissible set of allocated tracking time instangs re prolperty that the output valueg,, at the tra‘?"'”g time allo-
resenting the requirements on enforcing process timing conCation accurately pass through a set of poirttsj.e.
straints necessary to complete the task. Hence a linear map-

From the design objective (6), only the particular output at
the tracking time allocation

is of interest where

lim yp =P,

ping 5 € I3[0, N] — S? € H defined by k—o0
B(t1) at the same time optimizing a target cost functj(m, y)
B — : (9) with respect to the system input, and outputy, i.e.

Bltar) Jim (e, g, M) = (e, ws A7)



whereu}, y; andA} are optimal solutions of the problem  Furthermore, an analytic solution can be obtainedifgfA)
as follows:
minimize  f(u,y)
wyA (16) Uso(A) = GRT(GRGR") 1P (24)
subjectto r’ = GRu, y = Gu, A € ©.
Note thatGR" : w € H — u € 15[0, N] is the Hilbert

3 A Two Stage Design Framework adjoint operator ot} given by
While the tracking time allocatioh does not appear in —1pT ~
t) =R 'BTp(t), p(N) =0, t; =t; — 1,
the performance functiofi(u, y), they are connected by the ult) . p(t), p(N) . .
constraintGhu = r?, making the problem (16) non-trivial. pt)=A p(t+1), t€ftiy, i, i=1,..., M,
In this section, a two stage design framework is formulated  ;(i-) = p() + CTQiws, i = 1,..., M. (25)

to solve this optimization problem.
o Proof. It follows from [8] that the final converged input,,
3.1 Framework Description of ILC update (24) provides the solution of the problem (20).
Optimization problem (16) can be equivalently written as The analytical solution of the problem (20) is obtained from
] the associated Lagrangian with Lagrange multiphier H
Rnig{min f(u,y),subjecttor? = Giu, y = Gu} (17)
e L(u) = ||u|ﬁ2 +2 <A, GRu—1P > (26)
which optimizes ovet first and then optimizes oveY. De- ] ] ] ] -
fine the functionf(A) : RM — R by which has a unique stationary poimt, = G'\" A andr? =
GRGY\. As the systenfi(A, B, C) is controllable and”

F(A) = {min f(u,y), subjecttor” = GRu, y = Gu} (18)  has full row rank, the matrixGi GR* is invertible and the

“ analytical solution is given by (24). The relevant adjoipt o
and denote a global minimizer farof the inner optimization ~ €ratorGY" is obtained from the Hilbert inner product form
problem asu..(A) : RM — 150, N]. Hence the problem

4 _ p*
(17) can be equivalently written as <w, Giu>g=< (G{w, u>g (27)
. F which gives rise to (25). O
min{ f(A) = f(uc(A)}. (19) g (29)

Remark 1. Note that the system’s state controllable condi-
The above suggests that the optimization problem (16) carion is notrestrictive asa state controllable model caragfwv
be solved by applying a two stage design framework as:  be constructed for a given system.

« Sage One: Keep the tracking time allocation fixed 2). Solution of Stage Two: Using analytical solution (24),
and solve the optimization problem optimization problem (21) can be further reduced as shown
in the next lemma.

min f(u,y), subjecttor” = Giu, y = Gu. (20) | emma1. Based on the analytical solution (24) of Stage One

optimization problem, the Stage Two optimization problem
« Stage Two: Substitute the solution (A) into the orig-  (21) can be expressed as
inal problem and then find the optimal solution
_ min |[ueo (A)||% = min (7P, (GRGR*) 1P (28)
min{f(A) i= f(use(A))}. (1)  Ae® R R (AT
S
_ _ Proof. Substituting the analytical solution (24) into the op-
Inthis paper, the control effortis selected to be the targst  timization problem (21) and using the property of adjoint

Q"

function to exemplify the approach, i.ef(u,y) = Hu||é. operator gives

This guarantees the existence of a unique global minimizer ,

for u within (20). min luso (M7 = min (Uoo(A), Uss(A)) g

3.21) SSct))llllJJEtli?): (()):‘ tgt(;gzn())rr)]?esgr: rgi(\a/\;vr?/r\k Stage One is = g ((GR(GRGR) 1P, G (GRGR) 1P
: ) ' — mi D (XP* (2P (xPF)—1 D P —1

a point-to-point ILC design problem with minimum control = s (GRGY(GRGY) P, (GREY) Tp>[Q]

effort requirement. This can be solved using a norm optimal — min (", (G% GP*)—lrp>

point-to-point ILC algorithm as shown in the next theorem. Aeo V7 ATATA (@]

Theorem 1. If the SySterﬂS(A, B7 C) iS Con'[r0||ab|e andj Wh|Ch Comp|etes the proof_ O

has full row rank, the solution of Stage One problem (20) is ) o ) o
given byu.., which can be found using the norm-optimal This optimization problem, however, is non-trivial except

point-to-point ILC algorithm for thg special case af/ = 1, i.e. there i§ only one fcrack-
ing point, where the solution can be obtained analyticaly,
U1 = u + GR(I + GﬁGﬁ*)*leﬁ (22) shown in the following theorem.
) S Theorem?2. When there is only one tracking point, optimiza-
proposed in [8] with initial input,y = 0 such that tion problem (28) has analytical solution
Uoo(A) = lim uy. (23) A* = N,

k—o0



The corresponding minimum energy is Proof. The coordinate descent method divides the optimiza-
tion problem (28) into a number of intermediate trials. At

min [uco (M)]|7 = (P, ‘I’fvlTp>[Q} each trial, it performs a local optimization (34) to update a
single time point; ; with other points keeping the same val-
where , ues. Therefore, it follows that the sequed¢éA ;)} mono-
v, — Z CA™ BR-VCA BT tonically decreases as
=t (A1) < F(A). (35)

Proof. In this case, the optimization problem (28) becomes N addition, as the functiorf(A) is bounded below, the se-
quence{ f(A;)} converges to a non-negative valfre O

min (r?, \If;lrp>[Q] , subject tot € [1, N]. (29)

Remark 2. Although blind search is still used in each co-

) ) » ordinate descent trial to update a single time pojntthe

Itis clear that¥, is a positive operator such that coordinate descent method requires much less computation
time than the pure blind search method over the whole set
© to provide an optimal solution to the same optimization
problem. This is because of the desirable property of the co-
ordinate descent method which splits the original problem

Vt < N. (31) into several sub-problems.

Remark 3. In most optimization problems the coordinate de-
It follows thatt = N is the global optimizer of the problem scent method does not guarantee a global optimal solution,
(29), which completes the proof. O but yields a suitable local optimal solution which approxi-
mates the global optimal solution [14].

U, < Uy, Vi< N (30)
which hence yields

<Tp, \Iljvlrp>[Q] < <7’p, W;lrp>[Q] ,

Theorem 2 shows that whel = 1, A* = N is always ) )
the optimal choice in terms of minimizing the control input Remark 4. Gradient method can be applied to problem (28)

energy - this is not surprising as this allows the system outl" the case of continuous time systems [13]. However, the

put to change gradually to the desired position. However,gradien,t i§ unav_ailable in discrete time systems, so this ap
whenM > 1, i.e. there is more than one tracking point, the proachis infeasible.
cost function is generally non-linear and non-convex with Remark 5. The coordinate descent method described in (32)
respect to the time point sét. These aspects lead to the updates a single time instant at each trial, however, myltip
difficulties in obtaining an analytical solution of the ptein number of time instants can be also considered for updating.
(28) atgeneral cases. o 4 Implementation of the Design Approach

In the case of discrete time systems, the&étas a finite . _ . o _
number of elements and this permits the use of a blind search This section develops an algorithm to efficiently imple-
over the whole set. However, this carries a high computament the two stage framework.
tional load especially when the num_ber of track!ng points4 1 Implementation of Stage One
M becomes large. Therefore, an efficient alternative method

is proposed in the next theorem to give an approximate s,olu{h The genira:; Zplu“tclm Of_ Sta;ge Onel l:_smlg (2I2t)' canzt:le el-
tion of the Stage Two problem (28), er computed directly using the analytical solution (24) o

) _ . implemented experimentally using a combined feedback and
Theorem 3. Consider the coordinate descent method with feedforward solution illustrated in the next proposition.

initial estimateA . .
nifial estimateio Proposition 1. The ILC update (22) can be implemented us-

Ajy1=C(A;) (32) ing the feedforward plus feedback implementation

o ) _ —1pT _
with A; = [t],43,.. ., t{w]T, j € N denotes the coordinate k1 (t) = uk(t) + RTB pe(t), £ =0,.... N (36)

descent trial number and each time point is updated by theyith
functionC as
; p(t) = —-K@t)(I+BR'BTK(t)'A
7, i =(j+1) mod M
bijer = {t; . (j+1) mo (39) (w1 (8) = ak(t) + Geialt)  (3D)
7, else
whereK (t) denotes the Riccati feedback matrix

wheret!” is the optimizer of the optimization problem K(t) = ATK(t+1)(I+BRBTK(t+1))"'A,

minimize (r?, (GgGﬁ*)*lrw[Q] K(N)=0, K(f;)=K({#H) +0TQ.C (38)
subjectto A=[t],..., t]_, t,tl.1,.... t),]", (34  and&, (t) denotes the predictive feedforward term at the
t c (t{—lv tz+1) (k + 1)th ILC trial

~ t)=(I+ K@{t)BR*BT)™1AT t+1),
The sequencéf(A;)} based on the coordinate descent up- Sre1(0) = ( Q )~+ &CTH( )
date (32) converges downward to a linfit. Ger1(N) = 0, e (t7) = Gera (1) + O Qien(ti)- (39)



Proof. The ILC update (22) can be equivalently written into Algorithm 1 Two Stage Design Framework Implementation
. Dk p Import: Ao, S(A,B,C),r?,©
uk+1(t) = un(t) + (GF ek 1)(2)- (40) 1: initialization: Coordinate descent trial numbge= 0
Note that(GL"el_,)(t) can be computed according to the 2 Implement Stage One update (22) with= Ao experimentally
costate equation (25), and hence (40) give rise to (36). unt|I convergence, i.elle}|| < ¢/|r"||; record converged input
When assuming full state knowledge, a causal implemen- _ s (Ao) and input energy’(Ao).

t
tation is derived by transforming the costate equation (25) repea P e (A
into (37). Then use the method proposed in [15] to derive Ismflemenisltage Two update (32) with = Gy, usc (A;).
ety — .

the discrete Matrix Riccati equatioli (¢) and the optimal

predictoré,, 1 (t) as shown in (38) and (39). Substitute Implement Stage One update (22) with= A; experimen-

tally until convergence, i.e.|le;|| < ¢||7?||; record con-
ek-{-l(fi) = ek(fi) - C($k+1 (2?1) — Tk (1?1)) (41) verged inpumgﬁ(AJ’) and inpUt energ)f(Aj)'

7: until [ F(A;) = F(A;-1)] < 8| F(A;-1)
8: return A; andugl (A;)

into the jump condition at; in costate equation (25), and it
follows that bothi (t) and¢y.+1 (t) have the jump conditions
att; fori = 1,..., M shown in (38) and (39). O 5 Experimental Verification on a Gantry Robot

The experimental implementation of norm-optimal ILC ~ The proposed design framework is now validated experi-
using feedback and feedforward solution provides an opti-mentally on a three-axis gantry robot test facility to demon
mal solution to Stage One problem (20) based on real planstrate its effectiveness on a widely used industrial pfatfo
dynamics. Due to the real time state feedback at the curre
ILC trial, this implementation method has a certain degree
of robustness against model uncertainties.

rg 1 Test Platform Specification

4.2 Implementation of Stage Two

The coordinate descent method introduced in Theorem 3
re-arranges the tracking time allocation to minimize the-co
trol effort. It starts from an initial tracking time allogah

Ao =[t9,19,..., t3,]7 € ©. (42)

At each coordinate descent trial, it only updates a singie ti
point ¢} by solving the optimization problem (34). This is
equivalent to finding the optimal element along the finite in-
terval(t]_,, /. ,) with respect to a cost function. Therefore, ~ The multi-axis gantry robot shown in Figure 1 is em-

Fig. 1: Multi-axis Gantry Robot Test Platform.

10 Yi+1
blind search methods can be applled to this problem with eployed as test platform. The control design objective iss® u
total computation numbey; = (¢7,, tffl 1). the z-axis {n = 1) to perform a point-to-point ILC tracking

dtask during the given tracking timB = 2s with only five

Remark 6. As the solution of the coordinate descent metho
special tracking points\/ = 5) given as

is a local solution, it is necessary to choose a suitabl&init
tracking time allocatior\ to give a solution which approxi- P =[0.0048, 0.0029, — 0.0029, — 0.0048, 0]T  (43)
mates the global one, especially when the system is complex.

If no information is availableA, can be chosen arbitrarily, which are shown in Figure 3. The priori tracking time
and alternatively it can be selected using different meshod allocation is given ad.,. = [20, 60, 100, 140, 180] .

such as performing grid search with a large sample time. 5.2 Experimental Results using an Inaccurate Model

4.3 An iterative implementation algorithm In industrial environments obtaining an accurate model is

Combining the implementation of Stage One and Stagegenerally infeasible and we hence assume that only an ap-
Two designs leads to an iterative implementation of the twoproximate model is available for the z-axis as follows:
stage design framework - Algorithm 1. Note thg§ is a A 0.03
suitably chosen initial tracking time allocation, aad> 0, G,(s) = — (44)

0 > 0 are small scalars which depend on the tracking preci- 8
sion requirement and performance requirement, respéctive with a 150 proportional feedback controller which is sam-
pled with a zero-order hold &t01s.

In Algorithm 1, we require that Stepand6 (i.e. norm- A 30 coordinate descent trial updating procedure of Al-
optimal ILC algorithm) is implemented experimentally and gorithm 1 is performed on the gantry robot platform with
Step4 uses real data..(A;) obtained from experiments. initial tracking time allocationA\;, = A,. For implemen-
These requirements are not necessary when an accurate syational simplicity, the weighting matrices in St@pand 6
tem model is known. However when there exists model mis-are taken as); = ¢/ andR = rI where q and r are pos-
matches/uncertainties, the proposed algorithm will have a itive scalars which satisfy/r = 1,000, 000. From the ex-
tractive robustness properties as the algorithm ‘leanieri periment, an experimental optimal tracking time alloaatio
mation about the real plant dynamics through use of experdzo = [54, 59, 128, 137,200] " is obtained.
imental data. This will be demonstrated using experimental The input energy‘( ;) at each trial is plotted in Figure
results in the next section. 2, which shows that the input energy converges to a limit



energyf(Asp) = 1053.4 along the trial. From the figure, The experimental results demonstrate the effectiveness of
the limit input energyf‘(Ago) is 27.4% less than the input the algorithm in practice, but a rigorous robustness analy-
energyf‘(AT) at A,., which confirms the robustness of the sis on the algorithm is needed. In addition, system con-
algorithm against model uncertainties. The theoreticéit op straints can be incorporated into the proposed design frame
mal tracking time allocatior\* = [48, 58,130, 140, 200] " work. Furthermore, in principle the proposed design frame-
is computed in simulation using the system model, and thevork can be extended to optimize other cost functions be-
corresponding operation energfjA*) = 1102.1 at A* is sides control effort. All these constitute part of our figur
also plotted in Figure 2 as the dashed magenta line. Note thaesearch and will be reported separately.

the experiential energy squtigﬁA%) is 4.4% less than the
theoretical ongf (A*), which demonstrates the advantage of
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