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Abstract: Iterative learning control (ILC) is a high performance control technique for systems operating in a repetitive manner.
A novel design methodology is developed in this paper to incorporate optimal tracking time allocation within the point-to-
point ILC framework for discrete time systems. This leads tosignificant performance improvements compared to fixed time
points (e.g. energy reduction). An optimization problem isformulated based on the point-to-point tracking requirement and
the via-point temporal constraints. A two stage design framework is proposed to solve this problem, yielding an algorithm
based on norm optimal ILC and the coordinate descent method,which automatically minimizes control effort while maintaining
high performance tracking. The proposed algorithm is implemented on a gantry robot experimental test platform, with results
verifying its practical effectiveness in the presence of model uncertainty.
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1 Introduction

ILC is a control technique applied to high performance
systems which perform the same tracking task over a fi-
nite time horizon repetitively. The standard ILC framework
can be considered as an open-loop feedforward methodol-
ogy, which updates the input signal to improve the tracking
performance by learning from the data of the previous exe-
cutions (named trials). Unlike repetitive control, ILC hasan
initialization procedure at the end of each trial to reset the
system states to the same initial values. ILC theoretically
enables zero tracking error after sufficient historical trials,
which is superior to traditional feedback control. Becauseof
this key feature, ILC is applied to wide range of industrial
tasks which require a high accuracy level, e.g. robotic sys-
tems [1], [2], chemical batch processing [3], [4] and stoke
rehabilitation [5]. See [6] for a detailed overview of ILC.

In certain practical applications, the system output is only
critical at a subset of time instants over the whole time hori-
zon, and it is only required to attain a reference position at
these isolated time instants. An example is the robotic ma-
nipulator’s pick-and-place task, as it only concerns the pick
and place positions. A new control framework termed point-
to-point ILC is thereby formulated in [7] for these control
problems, which only enforces output tracking at these spe-
cial time instants. It removes the unnecessary output con-
straints, and releases extra freedom in control design to ad-
dress additional performance objectives. Recent research
has been made on optimal problem [8], [9], frequency anal-
ysis [7] and constrained conditions [10], [11].

In point-to-point tracking problems, the tracking times of
the critical points are typically embedded within some cost
functions (e.g. control effort), so these cost functions are
highly dependent on the tracking time allocation. There-
fore, the reallocation of the tracking times can optimize these
cost functions, and translate into significant practical bene-
fits, such as reducing the waste energy in industry, reduc-
ing the damage to machine components and increasing the
efficiency of production (i.e. throughput). This hence mo-

This work is supported by China Scholarship Council.

tivates that the point-to-point ILC framework be expanded
to allow flexibility in tracking time allocation to embed fur-
ther optimization of the desired cost function. However, an
assumption is made in all previous point-to-point ILC prob-
lem formulations that the tracking time allocation is knowna
priori, which limits the potential optimization of these cost
functions within the previous framework. Recent research
has considered the optimal tracking time allocation of point-
to-point robotic motion [12]. However, its optimal solution
is computed using a nominal model, therefore it is not robust
to model uncertainty and cannot handle high performance
tracking tasks in practice.

This paper addresses the full optimal tracking time allo-
cation problem for discrete time systems in which dynamic
interaction occurs between the critical points. Note that
preliminary results presented in [13] employed the gradient
method to address continuous time systems, but these results
cannot be applied to discrete time systems and are therefore
unsuitable for practical implementation. The main contribu-
tions of the paper are as follows:

• The optimal tracking time allocation problem is formu-
lated in Section2 including both optimization of a cost
function as well as point-to-point reference tracking.

• A two stage design framework is proposed in Section3
to solve the problem, and provides solutions to the min-
imum control effort problem within the point-to-point
ILC framework based on norm optimal point-to-point
ILC and the coordinate descent method.

• A practical implementation algorithm is then derived
from the solutions of the problem in Section4 and the
practical effectiveness of the algorithm is verified on a
gantry robot platform in Section5.

2 Formulation of the Problem

This section first introduces the system dynamics and de-
fines the point-to-point ILC framework. Then the design
problem of point-to-point ILC with optimal tracking time al-
location is formulated into an optimization problem.



2.1 System Dynamics

Consider anℓ-input, m-output discrete linear time-
invariant system given in state space form byS(A,B,C)
with unit sample time

xk(t+ 1) = Axk(t) +Buk(t), x(0) = x0

yk(t) = Cxk(t), 0 6 t 6 N, N < ∞ (1)

wheret is the time index (e.g. sample number),x(t) ∈ Rn,
u(t) ∈ Rℓ andy(t) ∈ Rm are the state, input and output
respectively;A, B andC are system matrices of compatible
dimension;0 < N < ∞ is the trial length, the subscript
k ∈ N denotes the ILC trial number. At the end of each
trial, the state is reset to initial valuex0. The system can be
represented in an equivalent operator form

yk = Guk + d, G : lℓ2[0, N ] → lm2 [0, N ]

yk, dk ∈ lm2 [0, N ], u ∈ lℓ2[0, N ] (2)

where the input and output Hilbert spaceslℓ2[0, T ] and
lm2 [0, T ] are defined with inner products and associated in-
duced norms

〈u, v〉R =

N∑

i=0

uT (i)Rv(i), ‖u‖
2
R = 〈u, u〉R (3)

〈x, y〉S =

N∑

i=0

xT (i)Sy(i), ‖y‖
2
S = 〈y, y〉S (4)

in whichR ∈ S
ℓ
++ andS ∈ S

m
++ (S•

++ denotes the set of all
real positive definite matrices with appropriate dimensions).
The convolution operatorG and signald (representing the
effect of initial condition) take the form

(Gu)(t) =

t−1∑

i=0

CAt−i−1Bu(i), d(t) = CAtx0 (5)

where, without loss of generality, the constantd(t) can be
absorbed into the reference to givex0 = 0, d(t) = 0.

2.2 Point-to-Point ILC Framework

The point-to-point ILC design objective is to update the
input signal,uk, such that the input signal,uk, converges
to a unique value and the associated output,yk, ultimately
tracks the given reference positions,ri, i = 1, . . . ,M , at a
sub set of time instants,ti, i = 1, . . . ,M , i.e.

lim
k→∞

y(ti) = ri, i = 1, . . . ,M, lim
k→∞

uk = u∗. (6)

From the design objective (6), only the particular output at
the tracking time allocation

Λ = [t1, t2, . . . , tM ]⊤ ∈ Θ (7)

is of interest where

Θ = {Λ ∈ R
M : 0 < t1 < t2 < . . . < tM 6 N} (8)

is the admissible set of allocated tracking time instants rep-
resenting the requirements on enforcing process timing con-
straints necessary to complete the task. Hence a linear map-
pingβ ∈ lm2 [0, N ] 7→ βp ∈ H defined by

βp =






β(t1)
...

β(tM )




 (9)

is introduced to extract the output values at the tracking time
allocation. Note thatH is the Hilbert space denoted by

H = R
m × · · · × R

m

︸ ︷︷ ︸

M times

(10)

with inner product and associated induced norm

〈ω, µ〉[Q] =
M∑

i=1

ω⊤
i Qiµi, ‖ω‖2[Q] = 〈ω, ω〉[Q] (11)

where

ω = [ω1, . . . , ωM ]⊤ ∈ H, µ = [µ1, . . . , µM ]⊤ ∈ H ;

[Q] denotes the set{Q1, . . . , QM}, andQi ∈ S
m
++.

From definition (9), it follows that the ‘point-to-point out-
put’, yp, comprises a subset of plant outputs defined over the
tracking time allocationΛ. The dynamics of the point-to-
point system can therefore be modelled by

yp = Gp
Λu = (Gu)p =






(Gu)(t1)
...

(Gu)(tM )




 (12)

whereGp
Λ : lℓ2[0, N ] → H is a linear operator.

Therefore, the point-to-point ILC design objective design
objective (6) can be equivalently described as iteratively
finding a sequence of input{uk} such that

lim
k→∞

ypk = rp, lim
k→∞

uk = u∗ (13)

where
rp = [r1, r2, . . . , rM ]⊤ ∈ H (14)

To solve the problem, the point-to-point tracking errorepk =
rp − ypk is employed within the following updating law:

uk+1 = F(uk, e
p
k) (15)

whereF is an updating function involving the previous input
and point-to-point tracking error.

2.3 Optimal Tracking Time Allocation Problem

In all existing point-to-point ILC frameworks, the track-
ing time allocationΛ is assumed to be known asa priori, and
the extra flexibility in tracking time allocation has not been
fully explored. This paper aims to address thisPoint-to-
Point ILC with Optimal Tracking Time Allocation Prob-
lem by proposing a design framework which automatically
provides a tracking time allocation to optimize some desired
cost functions, and meanwhile ensures high performance
tracking at the tracking time allocation.

The problem design objective is to iteratively find a track-
ing time allocationΛk and an input,uk, with the asymptotic
property that the output values,ypk, at the tracking time allo-
cation accurately pass through a set of points,rp, i.e.

lim
k→∞

ypk = rp,

at the same time optimizing a target cost functionf(u, y)
with respect to the system input,u, and output,y, i.e.

lim
k→∞

(uk, yk, Λk) = (u∗
k, y

∗
k, Λ

∗
k)



whereu∗
k, y∗k andΛ∗

k are optimal solutions of the problem

minimize
u,y,Λ

f(u, y)

subject to rp = Gp
Λu, y = Gu, Λ ∈ Θ.

(16)

3 A Two Stage Design Framework

While the tracking time allocationΛ does not appear in
the performance functionf(u, y), they are connected by the
constraintGp

Λu = rp, making the problem (16) non-trivial.
In this section, a two stage design framework is formulated
to solve this optimization problem.

3.1 Framework Description

Optimization problem (16) can be equivalently written as

min
Λ∈Θ

{min
u

f(u, y), subject torp = Gp
Λu, y = Gu} (17)

which optimizes overu first and then optimizes overΛ. De-
fine the functionf̃(Λ) : RM → R by

f̃(Λ) = {min
u

f(u, y), subject torp = Gp
Λu, y = Gu} (18)

and denote a global minimizer foru of the inner optimization
problem asu∞(Λ) : RM → lℓ2[0, N ] . Hence the problem
(17) can be equivalently written as

min
Λ∈Θ

{f̃(Λ) := f(u∞(Λ))}. (19)

The above suggests that the optimization problem (16) can
be solved by applying a two stage design framework as:

• Stage One: Keep the tracking time allocationΛ fixed
and solve the optimization problem

min
u

f(u, y), subject torp = Gp
Λu, y = Gu. (20)

• Stage Two: Substitute the solutionu∞(Λ) into the orig-
inal problem and then find the optimal solution

min
Λ∈Θ

{f̃(Λ) := f(u∞(Λ))}. (21)

In this paper, the control effort is selected to be the targetcost
function to exemplify the approach, i.e.f(u, y) = ‖u‖

2
R.

This guarantees the existence of a unique global minimizer
for u within (20).

3.2 Solution of the Proposed Framework

1). Solution of Stage One: For a givenΛ, Stage One is
a point-to-point ILC design problem with minimum control
effort requirement. This can be solved using a norm optimal
point-to-point ILC algorithm as shown in the next theorem.

Theorem 1. If the systemS(A,B,C) is controllable andC
has full row rank, the solution of Stage One problem (20) is
given byu∞, which can be found using the norm-optimal
point-to-point ILC algorithm

uk+1 = uk +Gp∗
Λ (I +Gp

ΛG
p∗
Λ )−1epk (22)

proposed in [8] with initial inputu0 = 0 such that

u∞(Λ) = lim
k→∞

uk. (23)

Furthermore, an analytic solution can be obtained foru∞(Λ)
as follows:

u∞(Λ) = Gp∗
Λ (Gp

ΛG
p∗
Λ )−1rp. (24)

Note thatGp∗
Λ : ω ∈ H → u ∈ lℓ2[0, N ] is the Hilbert

adjoint operator ofGp
Λ given by

u(t) = R−1B⊤p(t), p(N) = 0, t̃i = ti − 1,

p(t) = A⊤p(t+ 1), t ∈ [ti−1, t̃i], i = 1, . . . ,M,

p(t̃−i ) = p(t̃+i ) + C⊤Qiωi, i = 1, . . . ,M. (25)

Proof. It follows from [8] that the final converged inputu∞

of ILC update (24) provides the solution of the problem (20).
The analytical solution of the problem (20) is obtained from
the associated Lagrangian with Lagrange multiplierλ ∈ H

L(u) = ‖u‖
2
R + 2 < λ, Gp

Λu− rp >[Q] (26)

which has a unique stationary pointu∞ = Gp∗
Λ λ andrp =

Gp
ΛG

p∗
Λ λ. As the systemS(A,B,C) is controllable andC

has full row rank, the matrixGp
ΛG

p∗
Λ is invertible and the

analytical solution is given by (24). The relevant adjoint op-
eratorGp∗

Λ is obtained from the Hilbert inner product form

< ω, Gp
Λu >[Q]=< (Gp∗

Λ ω, u >R (27)

which gives rise to (25).

Remark 1. Note that the system’s state controllable condi-
tion is not restrictive as a state controllable model can always
be constructed for a given system.

2). Solution of Stage Two: Using analytical solution (24),
optimization problem (21) can be further reduced as shown
in the next lemma.

Lemma 1. Based on the analytical solution (24) of Stage One
optimization problem, the Stage Two optimization problem
(21) can be expressed as

min
Λ∈Θ

‖u∞(Λ)‖2R = min
Λ∈Θ

〈
rp, (Gp

ΛG
p∗
Λ )−1rp

〉

[Q]
. (28)

Proof. Substituting the analytical solution (24) into the op-
timization problem (21) and using the property of adjoint
operator gives

min
Λ∈Θ

‖u∞(Λ)‖2R = min
Λ∈Θ

〈(u∞(Λ), u∞(Λ)〉R

= min
Λ∈Θ

〈
(Gp∗

Λ (Gp
ΛG

p∗
Λ )−1rp, Gp∗

Λ (Gp
ΛG

p∗
Λ )−1rp

〉

R

= min
Λ∈Θ

〈
Gp

ΛG
p∗
Λ (Gp

ΛG
p∗
Λ )−1rp, (Gp

ΛG
p∗
Λ )−1rp

〉

[Q]

= min
Λ∈Θ

〈
rp, (Gp

ΛG
p∗
Λ )−1rp

〉

[Q]

which completes the proof.

This optimization problem, however, is non-trivial except
for the special case ofM = 1, i.e. there is only one track-
ing point, where the solution can be obtained analytically,as
shown in the following theorem.

Theorem 2. When there is only one tracking point, optimiza-
tion problem (28) has analytical solution

Λ∗ = N.



The corresponding minimum energy is

min
Λ∈Θ

‖u∞(Λ)‖2R =
〈
rp, Ψ−1

N rp
〉

[Q]

where

Ψt =

t∑

i=1

CAt−iBR−1(CAt−iB)⊤.

Proof. In this case, the optimization problem (28) becomes

min
t

〈
rp, Ψ−1

t rp
〉

[Q]
, subject tot ∈ [1, N ]. (29)

It is clear thatΨt is a positive operator such that

Ψt 6 ΨN , ∀t 6 N (30)

which hence yields

〈
rp, Ψ−1

N rp
〉

[Q]
6

〈
rp, Ψ−1

t rp
〉

[Q]
, ∀t 6 N. (31)

It follows thatt = N is the global optimizer of the problem
(29), which completes the proof.

Theorem 2 shows that whenM = 1, Λ∗ = N is always
the optimal choice in terms of minimizing the control input
energy - this is not surprising as this allows the system out-
put to change gradually to the desired position. However,
whenM > 1, i.e. there is more than one tracking point, the
cost function is generally non-linear and non-convex with
respect to the time point setΛ. These aspects lead to the
difficulties in obtaining an analytical solution of the problem
(28) at general cases.

In the case of discrete time systems, the setΘ has a finite
number of elements and this permits the use of a blind search
over the whole set. However, this carries a high computa-
tional load especially when the number of tracking points
M becomes large. Therefore, an efficient alternative method
is proposed in the next theorem to give an approximate solu-
tion of the Stage Two problem (28).

Theorem 3. Consider the coordinate descent method with
initial estimateΛ0

Λj+1 = C(Λj) (32)

with Λj = [tj1, t
j
2, . . . , t

j
M ]⊤, j ∈ N denotes the coordinate

descent trial number and each time point is updated by the
functionC as

ti,j+1 =

{

tj∗i , i = (j + 1) mod M

tji , else
(33)

wheretj∗i is the optimizer of the optimization problem

minimize
t

〈
rp, (Gp

ΛG
p∗
Λ )−1rp

〉

[Q]

subject to Λ = [tj1, . . . , t
j
i−1, t, t

j
i+1, . . . , t

j
M ]⊤,

t ∈ (tji−1, t
j
i+1).

(34)

The sequence{f̃(Λj)} based on the coordinate descent up-
date (32) converges downward to a limitf̃∗.

Proof. The coordinate descent method divides the optimiza-
tion problem (28) into a number of intermediate trials. At
each trial, it performs a local optimization (34) to update a
single time pointti,j with other points keeping the same val-
ues. Therefore, it follows that the sequence{f̃(Λj)} mono-
tonically decreases as

f̃(Λj+1) 6 f̃(Λj). (35)

In addition, as the functioñf(Λ) is bounded below, the se-
quence{f̃(Λj)} converges to a non-negative valuef̃∗.

Remark 2. Although blind search is still used in each co-
ordinate descent trial to update a single time pointtji , the
coordinate descent method requires much less computation
time than the pure blind search method over the whole set
Θ to provide an optimal solution to the same optimization
problem. This is because of the desirable property of the co-
ordinate descent method which splits the original problem
into several sub-problems.

Remark 3. In most optimization problems the coordinate de-
scent method does not guarantee a global optimal solution,
but yields a suitable local optimal solution which approxi-
mates the global optimal solution [14].

Remark 4. Gradient method can be applied to problem (28)
in the case of continuous time systems [13]. However, the
gradient is unavailable in discrete time systems, so this ap-
proach is infeasible.

Remark 5. The coordinate descent method described in (32)
updates a single time instant at each trial, however, multiply
number of time instants can be also considered for updating.

4 Implementation of the Design Approach

This section develops an algorithm to efficiently imple-
ment the two stage framework.

4.1 Implementation of Stage One

The general solution of Stage One using (22) can be ei-
ther computed directly using the analytical solution (24) or
implemented experimentally using a combined feedback and
feedforward solution illustrated in the next proposition.

Proposition 1. The ILC update (22) can be implemented us-
ing the feedforward plus feedback implementation

uk+1(t) = uk(t) +R−1B⊤pk(t), t = 0, . . . , N (36)

with

pk(t) = −K(t)(I +BR−1B⊤K(t))−1A

(xk+1(t)− xk(t)) + ξk+1(t) (37)

whereK(t) denotes the Riccati feedback matrix

K(t) = A⊤K(t+ 1)(I +BR−1B⊤K(t+ 1))−1A,

K(N) = 0, K(t̃−i ) = K(t̃+i ) + C⊤QiC (38)

andξk+1(t) denotes the predictive feedforward term at the
(k + 1)th ILC trial

ξk+1(t) = (I +K(t)BR−1B⊤)−1A⊤ξk+1(t+ 1),

ξk+1(N) = 0, ξk+1(t̃
−

i ) = ξk+1(t̃
+
i ) + C⊤Qiek(ti). (39)



Proof. The ILC update (22) can be equivalently written into

uk+1(t) = uk(t) + (Gp∗
Λ epk+1)(t). (40)

Note that(Gp∗
Λ epk+1)(t) can be computed according to the

costate equation (25), and hence (40) give rise to (36).
When assuming full state knowledge, a causal implemen-

tation is derived by transforming the costate equation (25)
into (37). Then use the method proposed in [15] to derive
the discrete Matrix Riccati equationK(t) and the optimal
predictorξk+1(t) as shown in (38) and (39). Substitute

ek+1(t̃i) = ek(t̃i)− C(xk+1(t̃i)− xk(t̃i)) (41)

into the jump condition at̃ti in costate equation (25), and it
follows that bothK(t) andξk+1(t) have the jump conditions
at t̃i for i = 1, . . . ,M shown in (38) and (39).

The experimental implementation of norm-optimal ILC
using feedback and feedforward solution provides an opti-
mal solution to Stage One problem (20) based on real plant
dynamics. Due to the real time state feedback at the current
ILC trial, this implementation method has a certain degree
of robustness against model uncertainties.

4.2 Implementation of Stage Two

The coordinate descent method introduced in Theorem 3
re-arranges the tracking time allocation to minimize the con-
trol effort. It starts from an initial tracking time allocation

Λ0 = [t01, t
0
2, . . . , t

0
M ]T ∈ Θ. (42)

At each coordinate descent trial, it only updates a single time
point tji by solving the optimization problem (34). This is
equivalent to finding the optimal element along the finite in-
terval(tji−1, t

j
i+1) with respect to a cost function. Therefore,

blind search methods can be applied to this problem with a
total computation numberηi = (tji+1 − tji−1 − 1).

Remark 6. As the solution of the coordinate descent method
is a local solution, it is necessary to choose a suitable initial
tracking time allocationΛ0 to give a solution which approxi-
mates the global one, especially when the system is complex.
If no information is available,Λ0 can be chosen arbitrarily,
and alternatively it can be selected using different methods
such as performing grid search with a large sample time.

4.3 An iterative implementation algorithm

Combining the implementation of Stage One and Stage
Two designs leads to an iterative implementation of the two
stage design framework - Algorithm 1. Note thatΛ0 is a
suitably chosen initial tracking time allocation, andǫ > 0,
δ > 0 are small scalars which depend on the tracking preci-
sion requirement and performance requirement, respectively.

In Algorithm 1, we require that Step2 and6 (i.e. norm-
optimal ILC algorithm) is implemented experimentally and
Step4 uses real datau∞(Λj) obtained from experiments.
These requirements are not necessary when an accurate sys-
tem model is known. However when there exists model mis-
matches/uncertainties, the proposed algorithm will have at-
tractive robustness properties as the algorithm ‘learns’ infor-
mation about the real plant dynamics through use of exper-
imental data. This will be demonstrated using experimental
results in the next section.

Algorithm 1 Two Stage Design Framework Implementation

Import: Λ0, S(A,B,C), rp, Θ
1: initialization: Coordinate descent trial numberj = 0
2: Implement Stage One update (22) withΛ = Λ0 experimentally

until convergence, i.e.‖epk‖ < ǫ‖rp‖; record converged input
uex
∞
(Λ0) and input energỹf(Λ0).

3: repeat
4: Implement Stage Two update (32) withrp = G

p

Λj
uex
∞
(Λj).

5: Setj → j + 1.
6: Implement Stage One update (22) withΛ = Λj experimen-

tally until convergence, i.e.‖epk‖ < ǫ‖rp‖; record con-
verged inputuex

∞
(Λj) and input energỹf(Λj).

7: until
∣

∣

∣
f̃(Λj)− f̃(Λj−1)

∣

∣

∣
< δ

∣

∣

∣
f̃(Λj−1)

∣

∣

∣

8: return Λj anduex
∞
(Λj)

5 Experimental Verification on a Gantry Robot

The proposed design framework is now validated experi-
mentally on a three-axis gantry robot test facility to demon-
strate its effectiveness on a widely used industrial platform.

5.1 Test Platform Specification

Fig. 1: Multi-axis Gantry Robot Test Platform.

The multi-axis gantry robot shown in Figure 1 is em-
ployed as test platform. The control design objective is to use
the z-axis (m = 1) to perform a point-to-point ILC tracking
task during the given tracking timeT = 2s with only five
special tracking points (M = 5) given as

rp = [0.0048, 0.0029, − 0.0029, − 0.0048, 0]⊤ (43)

which are shown in Figure 3. Thea priori tracking time
allocation is given asΛr = [20, 60, 100, 140, 180]⊤.

5.2 Experimental Results using an Inaccurate Model

In industrial environments obtaining an accurate model is
generally infeasible and we hence assume that only an ap-
proximate model is available for the z-axis as follows:

Ĝz(s) =
0.03

s
(44)

with a 150 proportional feedback controller which is sam-
pled with a zero-order hold at0.01s.

A 30 coordinate descent trial updating procedure of Al-
gorithm 1 is performed on the gantry robot platform with
initial tracking time allocationΛ0 = Λr. For implemen-
tational simplicity, the weighting matrices in Step2 and6
are taken asQi = qI andR = rI where q and r are pos-
itive scalars which satisfyq/r = 1, 000, 000. From the ex-
periment, an experimental optimal tracking time allocation
Λ30 = [54, 59, 128, 137, 200]⊤ is obtained.

The input energỹf(Λj) at each trial is plotted in Figure
2, which shows that the input energy converges to a limit



energyf̃(Λ30) = 1053.4 along the trial. From the figure,
the limit input energyf̃(Λ30) is 27.4% less than the input
energyf̃(Λr) at Λr, which confirms the robustness of the
algorithm against model uncertainties. The theoretical opti-
mal tracking time allocationΛ∗ = [48, 58, 130, 140, 200]⊤

is computed in simulation using the system model, and the
corresponding operation energỹf(Λ∗) = 1102.1 at Λ∗ is
also plotted in Figure 2 as the dashed magenta line. Note that
the experiential energy solutioñf(Λ30) is 4.4% less than the
theoretical onẽf(Λ∗), which demonstrates the advantage of
implementing the algorithm experimentally rather than using
the nominal model in simulation.
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Fig. 2: Experimental Input Energy Results at Each Trial.

The experimental final converged results for the initial and
final trials are compared in Figure 3 with the referencerp

marked as red and green dots. It is obvious that the final
converged output perform perfect point-to-point trackingat
the critical time points, e.g. the mean square error is0.00053
at the final trial. So the algorithm not only optimizes the
input energy but also maintains high tracking performance.
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Fig. 3: Experimental Converged Input and Output Trajecto-
ries for Initial and Final Trials.

Experiments with other initial tracking time allocations
provide similar convergence performance to the results in
Figure 2. For brevity, these results are omitted.

6 Conclusion

This paper exploits the flexibility of choosing the tracking
time allocation in the point-to-point ILC framework, which
affects system performance. An optimization problem is
formulated, and a two stage design framework is used to
solve this problem with minimum control effort. Distinct to
previous work, this framework is suitable for discrete time
systems. Stage One solution is obtained via a norm opti-
mal point-to-point ILC algorithm, and Stage Two solution is
computed using a coordinate descent method. The solutions
yield an iterative algorithm, which is verified on a gantry
robot test platform, whose results reveals practical efficacy.

The experimental results demonstrate the effectiveness of
the algorithm in practice, but a rigorous robustness analy-
sis on the algorithm is needed. In addition, system con-
straints can be incorporated into the proposed design frame-
work. Furthermore, in principle the proposed design frame-
work can be extended to optimize other cost functions be-
sides control effort. All these constitute part of our future
research and will be reported separately.
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