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Abstract A direct method is developed that reduces a polynomial system matrix describing
a discrete linear repetitive process to a 2-D singular state-space form such that all the relevant
properties, including the zero structure of the system matrix, are retained. It is shown that
the transformation linking the original polynomial system matrix with its associated 2-D
singular form is zero coprime system equivalence. The exact nature of the resulting system
matrix in singular form and the transformation involved are established.

Keywords Linear repetitive processes · 2-D discrete systems · Systemmatrix · 2-D singular
form · Zero-coprime system equivalence · Invariant zeros

1 Introduction

State-space models play an important role in the theory of 1-D finite dimensional linear sys-
tems.Over the last decades there has been research on extending the state-space representation
to more general systems, e.g. time-delay systems or systems described by partial differential
equations. Another extension from1-D to 2-D is the discrete linear state-spacemodel that has
a number of variants, e.g., Roesser (1975), Attasi (1973) or Fornasini andMarchesini (1976).
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Several authors haveproposed a generalized state-space description for 2-D systems, e.g., Zak
(1984) based on the Roesser model and Kaczorek (1988) based on the Fornasini-Marchesini
model. Also Galkowski (2001) developed an algorithm for reducing 2 − D, and in general
n − D (n ≥ 2), rational function matrices to the singular and nonsingular Roesser forms.
More recent work on this approach includes, e.g., Li et al. (2012) and references therein.

In this paper, a direct method for the reduction of a polynomial matrix description arising
from linear repetitive processes Rogers et al. (2007) to an equivalent 2-D singular state-space
system is developed. The exact structure of the resulting system matrix in singular form is
given and the transformation linking it to the original system matrix established. It is shown
that this transformation is zero-coprime-system-equivalence. This type of equivalence has
been studiedbymanyauthors, e.g., Levy (1981), Johnson (1993) andPugh et al. (1996, 1998).
In particular, Pugh et al. (1998) have shown that zero-coprime system equivalence forms the
basis of the connection between all least order polynomial realizations of a given 2-D transfer
function matrix. Also, state-space models of discrete linear repetitive processes have been
transformed to the equivalent Roesser or Fornasini-Marchesini forms, see, e.g., Galkowski
et al. (1999); Rogers et al. (2007) and this is one route to characterize systems properties,
such as local reachability/controllability (Galkowski et al. 1998), for these processes.

Throughout this paper the dimensions of the zero and identity matrices are specified only
when essential to the analysis. In all other cases, these matrices are denoted by 0 and I
respectively.

2 Discrete linear repetitive processes

Following Rogers et al. (2007), the state-space model of a discrete linear repetitive process
has the following form over the two indeterminates p and k where 0 ≤ p ≤ α − 1, k ≥ 0

xk+1(p+1) = Axk+1(p) + B0yk(p) + Buk+1(p)

yk+1(p) = Cxk+1(p) + D0yk(p) + Duk+1(p) (1)

In this model α < +∞ denotes the finite pass length and on pass k ≥ 0 xk(p) ∈ R
n is the

state vector, yk(p) ∈ R
m is the pass profile vector, which also serves as a system output, and

uk(p) ∈ R
l is the input vector.

To complete the process description, it is necessary to specify the boundary conditions,
i.e., the state initial vector on each pass and the initial pass profile (i.e. on the 0th pass). For
the purposes of this paper, it is assumed that the state initial vector at the start of each new
pass is of the form xk+1(0) = dk+1, k ≥ 0 and y0(p) = f (p), 0 ≤ p ≤ α − 1, where the
n × 1 vector dk+1 has known constant entries and those in the m × 1 vector f (p) are known
functions of p.

A heavily used state-space model for the analysis of discrete linear systems recursive over
the upper right quadrant of the 2-D plane was first proposed by Roesser (1975). In this model
a state vector is defined for vertical and horizontal axes independently. Denoting these vectors
by xh(i, j) ∈ R

n and xv(i, j) ∈ R
m, and also introducing the output vector y(i, j) ∈ R

q

and the input vector u(i, j) ∈ R
l , the Roesser state-space model has the form

[
xh(i + 1, j)
xv(i, j + 1)

]
=

[
A11 A12

A21 A22

][
xh(i, j)
xv(i, j)

]
+

[
B1

B2

]
u(i, j)

y(i, j) = [
C1 C2

] [
xh(i, j)
xv(i, j)

]
+ Du(i, j) (2)
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In this case boundary conditions are defined as xh(0, j) = f ( j), j ≥ 0 and xv(i, 0) =
d(i), i ≥ 0, where the n × 1 vector f ( j) and the m × 1 vector d(i) have known constant
entries.

Another commonly used state-space model for 2-D systems is the Fornasini Marchesini
model (Fornasini and Marchesini 1976), where the state vector is not split into horizontal
and vertical components and the structure is

z(i + 1, j + 1) = A1z(i + 1, j) + A2z(i, j + 1) + A3z(i, j)

+ B1u(i + 1, j) + B2u(i, j + 1)

y(i, j) = Cz(i, j) + Du(i, j) (3)

where the vectors z, y and u are the (appropriately dimensioned) state, output and input
vectors, respectively, with boundary conditions to be specified.

The Roesser model (2) and the discrete linear repetitive process model (1) are very similar
but there are essential differences. The first is that repetitive processes are defined over a
finite strip, or subset, the upper right quadrant of the 2-D plane. These processes make a
series of sweeps, or passes, through dynamics defined over the finite pass length. Once each
pass is complete, the process resets to the starting location and the next pass can begin, either
immediately after the resetting is complete or after a further period of time has elapsed. In
a repetitive process the 2-D systems structure arises from the influence of the previous pass
profile on the current pass state and pass profile vectors, i.e., from the terms B0yk(p) and
D0yk(p) in (1) respectively.

3 System equivalence

The concept of a polynomial system matrix was first introduced by Rosenbrock (1970) for
standard, or 1-D, linear systems. The natural generalization to 2-D linear systems is the
polynomial system description:

T (z1, z2)x = U (z1, z2)u
y = V (z1, z2)x + W (z1, z2)u

(4)

where x ∈ R
n is the state vector, u ∈ R

p is the input vector and y ∈ R
m is the output

vector, T,U, V and W are polynomial matrices with elements in R[z1, z2] of dimensions
r×r, r× p,m×l andm× p respectively. The operators z1 and z2 may have variousmeanings
depending on the type of system. For example, in delay-differential systems z1 may represent
a differential operator and z2 a delay-operator. For 2-D discrete systems, z1 and z2 represent
horizontal and vertical shift operators, respectively and is the only case considered in this
paper. The system (4) gives rise to the system matrix in the general form:

P(z1, z2) =
[

T (z1, z2) U (z1, z2)
−V (z1, z2) W (z1, z2)

]
(5)

where

P(z1, z2)

[
x

−u

]
=

[
0

−y

]
(6)

If T (z1, z2) is invertible, the system matrix in (5) is said to be regular. In such cases, the
transfer-function matrix corresponding to the system matrix in (5) is given by:

G(z1, z2) = V (z1, z2)T
−1(z1, z2)U (z1, z2) + W (z1, z2) (7)
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A special case of (5) is obtained for systems described by the following 2-D singular general
(SG) state-space model as given by Kaczorek (1988),

Ex(i + 1, j + 1) = A1x(i + 1, j) + A2x(i, j + 1)

+ A0x(i, j) + B1u(i + 1, j)

+ B2u(i, j + 1) + B0u(i, j)

y(i, j) = Cx(i, j) + Du(i, j) (8)

where x(i, j) is the state vector, u(i, j) is the input vector, y(i, j) is the output vector, E ,
A0, A1, A2, B0, B1, B2, C and D are constant real matrices of compatible dimensions and E
may be singular. Introduce the forward shift operators z1 and z2 in the horizontal and vertical
directions, i.e.

z1x(i, j) = x(i + 1, j), z2x(i, j) = x(i, j + 1) (9)

respectively. Then the process dynamics described by (8) can be written in polynomial matrix
description form as:

PSG(z1, z2)

[
x

−u

]
=

[
0

−y

]
(10)

where over R[z1, z2],

PSG(z1, z2) =
[
z1z2E − z1A1 − z2A2 − A0 z1B1 + z2B2 + B0

−C D

]
(11)

is the system matrix of (8). If the matrix z1z2E − z1A1 − z2A2 − A0 is invertible, the
transfer-function matrix for such examples is:

GSG(z1, z2) = C(z1z2E − z1A1 − z2A2 − A0)
−1(z1B1 + z2B2 + B0) + D (12)

A singular Roesser type model (SR) has the state-space model:

E

[
x1(i + 1, j)
x2(i, j + 1)

]
=

[
A11 A12

A21 A22

] [
x1(i, j)
x2(i, j)

]
+

[
B1

B2

]
u(i, j)

y(i, j) = [
C1 C2

] [
x1(i, j)
x2(i, j)

]
+ Du(i, j)

(13)

where thematrix E is singular. On employing z1 and z2 defined above, (13) can be represented
by the polynomial equations:

PSR(z1, z2)

⎡
⎣ x1

x2
−u

⎤
⎦ =

⎡
⎣ 0

0
−y

⎤
⎦ (14)

where

PSR(z1, z2) =
[
z1E1 + z2E2 − A B

−C D

]
(15)

with E =
[
E11 E12

E21 E22

]
, E1 =

[
E11 0
E21 0

]
, E2 =

[
0 E12

0 E22

]
, BT = [BT

1 BT
2 ] and C = [C1 C2]

is the system matrix associated with (13). If the matrix [z1E1 + z2E2 − A] is invertible, the
transfer-function matrix corresponding to (15) is:

GSR(z1, z2) = C [z1E1 + z2E2 − A]−1 B + D (16)

One reason to analyze the singular Roesser model arises in the definition and character-
ization of controllability (or reachability but here this concept is not discussed further) for
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discrete linear repetitive processes, where more than one distinct concept can be formulated
with a well defined physical meaning. In some applications for repetitive processes, such as
material rolling, it may be required to produce a specified pass profile on a specified pass
number (variations are possible such as not a-priori specifying the pass number but requiring
that the specified pass profile is produced on some pass). A refinement of this property is
local controllability where it is required that the pass profile has a pre-specified value at a
particular point along a specified pass (again variations are possible).

In Galkowski et al. (1998) it was shown that conditions for local controllability of discrete
linear repetitive processes can be obtained by converting the defining state-space model to
that of a singular 2-D Roesser state-space model. Hence applications driven interest in the
links between the underlying descriptions that forms the motivation for the rest of this paper.
Next some known concepts used in this paper are stated.

Definition 1 Let T(m, n) denote the class of (r + m) × (r + n) 2-D polynomial matrices,
where r > −min(m, n). The subset, P(m, n) of T(m, n) obtained by requiring r > 0
represents the 2-D polynomial system matrices. Two polynomial system matrices P1(z1, z2)
and P2(z1, z2) are said to be zero coprime equivalent if there exist polynomial matrices
S1(z1, z2) and S2(z1, z2) of compatible dimensions such that

S1(z1, z2)P2(z1, z2) = P1(z1, z2)S2(z1, z2) (17)

where P1(z1, z2) and S1(z1, z2) are zero left coprime and P2(z1, z2) and S2(z1, z2) are zero
right coprime.

Pugh et al. (1996) and Pugh and El-Nabrawy (2003) have shown that zero coprime equiva-
lence exhibits fundamental algebraic properties amongst its invariants.Abasic transformation
proposed for the study of 2-D system matrices by Levy (1981) and Johnson (1993) is zero
coprime system equivalence. This transformation is characterized by the following definition.

Definition 2 Two polynomial system matrices P1(z1, z2) and P2(z1, z2) ∈ P(m, n), are said
to be zero coprime system equivalent if they are related by
[
M(z1, z2) 0
X (z1, z2) Im

]

︸ ︷︷ ︸
S1(z1,z2)

[
T1(z1, z2) U1(z1, z2)

−V1(z1, z2) W1(z1, z2)

]

︸ ︷︷ ︸
P2(z1,z2)

=
[

T2(z1, z2) U2(z1, z2)
−V2(z1, z2) W2(z1, z2)

]

︸ ︷︷ ︸
P1(z1,z2)

[
N (z1, z2) Y (z1, z2)

0 In

]

︸ ︷︷ ︸
S2(z1,z2)

(18)
where P1(z1, z2) and S1(z1, z2) are zero left coprime, P2(z1, z2) and S2(z1, z2) are zero
right coprime and M(z1, z2), N (z1, z2), X (z1, z2) and Y (z1, z2) are polynomial matrices of
compatible dimensions.

The transformation of zero coprime system equivalence plays a key role in certain aspects
of 2-D systems theory.Moreover, this is an extension of Fuhrmann’s strict system equivalence
from the 1-D to the 2-D setting and has been shown by Levy (1981), Johnson (1993) and
Pugh et al. (1996, 1998) to preserve important properties of the system matrix P(z1, z2).

Lemma 1 (Johnson (1993)) The transformation of zero coprime system equivalence pre-
serves the transfer-function matrix and the zero structure of the matrices:

Ti (z1, z2), Pi (z1, z2),
[
Ti (z1, z2) Ui (z1, z2)

]
,

[
Ti (z1, z2)

−Vi (z1, z2)

]
, i = 1, 2.
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4 System matrices of linear repetitive processes

In this section linear repetitive processes described by (1) are considered. Introduce the
forward shift operators z1 in the pass-to-pass direction and z2 in the along the pass direction,
i.e.,

z1sk(p) = sk+1(p), z2sk(p) = sk(p + 1) (19)

respectively, where the signal sk(p) represents xk(p) or yk(p) as appropriate. The process
dynamics can now be written in polynomial matrix form as:

PRP (z1, z2)

⎡
⎣ xk(p)

yk(p)
−uk(p)

⎤
⎦ =

⎡
⎣ 0

0
−yk(p)

⎤
⎦ (20)

where

PRP (z1, z2) =
⎡
⎣ z1z2 In − z1A −B0 z1B

−z1C z1 Im − D0 z1D
0m,n −Im 0m,p

⎤
⎦ (21)

is the systemmatrix associated with (1). Alternatively the dynamics of (1) can be represented
in transfer-function matrix form as:

Y (z1, z2) = GRP (z1, z2)U (z1, z2) (22)

where

GRP (z1, z2) = [
0 Im

] [
z1z2 I − z1A −B0

−z1C z1 I − D0

]−1 [
z1B
z1D

]
(23)

Example 1 Consider the discrete repetitive process with state-space model matrices:

A =
[
1 −1
2 0

]
, B0 =

[
0 1
2 1

]
, B =

[
1 0
1 1

]

C =
[
0 0
0 1

]
, D =

[
1 0
0 −1

]
, D0 =

[−1 0
0 0

]
.

(24)

The polynomial system matrix corresponding to (24) is:

PRP (z1, z2) =

⎡
⎢⎢⎢⎢⎢⎢⎣

z1z2 − z1 z1 0 −1 z1 0
−2 z1 z1z2 −2 −1 z1 z1
0 0 z1 + 1 0 z1 0
0 −z1 0 z1 0 −z1
0 0 −1 0 0 0
0 0 0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(25)

and the 2-D transfer-function matrix is:

GRP (z1, z2) =
[ z1

z1+1 0
z1(z1z2+z1+3 z2−1)

(z1+1)(z1z22−z1z2+2 z1−z2−1)
− z1

(
z22−2 z2+3

)
z1z22−z1z2+2 z1−z2−1

]
(26)
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5 Equivalence between discrete linear repetitive processes and the 2-D
singular general form

Let PRP (z1, z2) ∈ R
[(n+m)+m]×[(n+m)+p][z1, z2] be a 2-D polynomial system matrix given

by (21). Then by introducing the state vector

ν(k, p) =
[
xTk (p) yTk (p)

]T
(27)

PRP (z1, z2) is written in the 2-D singular form (11), i.e.,

P̃RP (z1, z2) =
[
z1z2 Ẽ − z1 Ã1 − z2 Ã2 − A0 z1 B̃1 + z2 B̃2 + B̃0

−C̃ D̃

]
(28)

where

Ẽ =
[
In 0
0 0

]
, Ã1 =

[
A 0
C −Im

]
, Ã2 = 0, Ã0 =

[
0 B0

0 −D0

]

B̃1 =
[
B
D

]
, B̃2 = B̃0 = 0, C̃ = [

0 Im
]
, D̃ = 0.

(29)

Example 2 Consider the system matrix (25) corresponding to the discrete linear repetitive
process given in Example 1 with 2-D transfer-function matrix given by (26). Then using the
system matrix in (28) the matrices Ãi , B̃i , C̃ and D̃ are given by:

Ẽ =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Ã1 =

⎡
⎢⎢⎣
1 −1 0 0
2 0 0 0
0 0 −1 0
0 1 0 −1

⎤
⎥⎥⎦ , Ã2 =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

Ã0 =

⎡
⎢⎢⎣
0 0 0 1
0 0 2 1
0 0 −1 0
0 0 0 0

⎤
⎥⎥⎦ , B̃1 =

⎡
⎢⎢⎣
1 0
1 1
1 0
0 −1

⎤
⎥⎥⎦ , B̃2 = B̃0 =

⎡
⎢⎢⎣
0 0
0 0
0 0
0 0

⎤
⎥⎥⎦ ,

C̃ =
[
0 0 1 0
0 0 0 1

]
, D̃ =

[
0 0
0 0

]
.

(30)

6 Reduction of a discrete linear repetitive process to the singular Roesser
form

Using the method given by Boudellioua (2012), the following result is obtained.

Theorem 1 Let P̃RP (z1, z2) be the [(n+m)+m]×[(n+m)+ p] polynomial system matrix
given by (28) and (29). Then P̃RP (z1, z2) is zero coprime system equivalent to a Roesser
singular type system matrix of the form (15), i.e.,

S1(z1, z2)P̃RP (z1, z2) = P̃SR(z1, z2)S2(z1, z2) (31)
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where

P̃SR(z1, z2) =

⎡
⎢⎢⎢⎢⎣

In+m −z1 In+m 0n+m,p 0n+m,m 0n+m,p

z2 Ẽ − Ã1 − Ã0 z1 B̃1 0n+m,m 0n+m,p

0m,n+m −C̃ 0m,p Im 0m,p

0p,n+m 0p,n+m −Ip 0p,m Ip
0m,n+m 0m,n+m 0m,p −Im 0m,p

⎤
⎥⎥⎥⎥⎦ , (32)

and

S1(z1, z2) =

⎡
⎢⎢⎢⎢⎣

0n+m,n+m 0n+m,m

In+m 0n+m,m

0m,n+m 0m,m

0p,n+m 0p,m
0m,n+m Im

⎤
⎥⎥⎥⎥⎦ ,

S2(z1, z2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1 In+m 0n+m,p

In+m 0n+m,p

0p,n+m Ip
C̃ 0m,p

0p,n+m Ip

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(33)

Proof The transformation in (33) is in the required form and it remains to prove the equality
(31) and the zero coprimeness of the matrices, where it is easily verified, given (29) and
Ã2 = 0, B̃2 = B̃0 = 0, D̃ = 0, that the left and right-hand sides of (31) give

⎡
⎢⎢⎢⎢⎣

0 0
z1z2 Ẽ − z1 Ã1 − Ã0 z1 B̃1

0 0
0 0

−C̃ 0

⎤
⎥⎥⎥⎥⎦ . (34)

The zero left coprimeness of P̃SR(z1, z2) and S1(z1, z2) follows from the fact that the matrix[
P̃SR(z1, z2) S1(z1, z2)

]
has the highest order minor

det

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

In+m 0 0 0 0
z2 Ẽ − Ã1 0 0 In+m 0

0 Im 0 0 0
0 0 Ip 0 0
0 −Im 0 0 Im

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ = ±1 (35)

obtained by deleting the second and third block columns. Similarly the zero right coprimeness

of P̃RP (z1, z2) and S2(z1, z2) follows from the fact that thematrix
[
P̃T
RP (z1, z2) ST2 (z1, z2)

]T
has the highest order minor

det

([
In+m 0
0 Ip

])
= 1 (36)

obtained by deleting all the block rows except the fourth and the fifth. ��
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Remark 1 Note that in the commonly used notation for 2-D systems and linear repetitive
processes the variables z1 and z2 are interchanged. Hence, the polynomial matrix of (33)
refers to the singular Roesser model of the reversed form with polynomial matrix:

PSR(z1, z2) =
[
z2E1 + z1E2 − A B

−C D

]
, (37)

where the notation of (15) is adopted.

Example 3 Consider again the system matrix associated with the discrete linear repetitive
process of Example 1. Then the corresponding systemmatrix P̃SR(z1, z2) in the 2-D singular
Roesser form is:

P̃SR(z1, z2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 −z1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 −z1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 −z1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 −z1 0 0 0 0 0 0

z2 − 1 1 0 0 0 0 0 −1 z1 0 0 0 0 0
−2 z2 0 0 0 0 −2 −1 z1 z1 0 0 0 0
0 0 1 0 0 0 1 0 z1 0 0 0 0 0
0 −1 0 1 0 0 0 0 0 −z1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(38)

It is routine to verify that PRP (z1, z2) and P̃SR(z1, z2) are related by the zero-coprime system
equivalence transformation:

PRP (z1, z2)S1(z1, z2) = S2(z1, z2)P̃SR(z1, z2)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

z1 (z2 − 1) z1 0 −1 z1 0
−2 z1 z1z2 −2 −1 z1 z1
0 0 z1 + 1 0 z1 0
0 −z1 0 z1 0 −z1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where

S1(z1, z2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, S2(z1, z2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1 0 0 0 0 0
0 z1 0 0 0 0
0 0 z1 0 0 0
0 0 0 z1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(39)

Furthermore the 2-D transfer-functionmatrix corresponding to the systemmatrix P̃SR(z1, z2)
of (38) is given by:

G ˜SR(z1, z2) =
[ z1

z1+1 0
z1(z1z2+z1+3 z2−1)

(z1+1)(z1z22−z1z2+2 z1−z2−1)
− z1

(
z22−2 z2+3

)
z1z22−z1z2+2 z1−z2−1

]

= GRP (z1, z2) (40)

7 Conclusions

In this paper, equivalent representations are obtained in 2-D general singular form and 2-D
singular Roesser type form for a given system matrix arising from a discrete linear repetitive
process. The exact connections between the original system matrix with its corresponding
2-D singular forms have been developed and shown to be zero coprime system equivalence.
The zero structures of the original polynomial systemmatrix are preserved,making it possible
to analyze the polynomial system matrix in terms of its associated 2-D singular forms.

One motivation for this work is that singular 2-D representations are critical to examining
certain physically well defined systems theoretic properties and, in particular, local controlla-
bility/reachability properties of discrete linear repetitive processes. It should also be possible
to extend this analysis to other classes of linear repetitive processes. For example, in Rogers
et al. (2007) it is established that cases exist where the pass state initial vector sequence is
required to contain explicit terms from the previous pass profile, e.g.,

xk+1(0) = dk+1 +
M∑
j=1

α−1∑
p=0

K jp yk+1− j (p), k ≥ 0. (41)

If the summation term is removed then the state initial vector sequence assumed in this paper
results. However, under-modeling, e.g., assuming that this assumption can always be made
is incorrect as the structure of the pass state initial vector sequence alone can destroy stability
and also properties such as controllability/reachability. An example demonstrating this fact
is given in Rogers et al. (2007).

The results in this paper show also the possibility of obtaining new equivalent forms of
repetitive process description, which may have onward value in terms of the development of
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a comprehensive systems theory that is also supported by numerically reliable computational
algorithms for checking systems theoretic properties, such as controllability, and the design
of control laws. Possible future research could also include extending the analysis of this
paper to more general forms of repetitive process dynamics.
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