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Abstract

The development of JAFS, a new computational method to study the binding
geometries of small fragment molecules to protein cavities, estimate their binding
affinities and analyse how they compete for a common protein binding site, all in
the context of Fragment Based Drug Discovery, is presented in this thesis.

Fragment Based Drug Discovery is an approach to drug development which
studies the binding of small ligands (fragments) forming high quality interactions
with their target. Further optimization of these fragments into drug-like molecules,
adding functionalities to increase affinity while controlling other relevant properties
such as toxicity and absorption then takes place. JAFS studies the binding of
fragments to their target proteins.

The JAFS method consists of the execution and analysis of Monte Carlo simu-
lations of fragments (and waters) in the binding cavities of proteins with an added
degree of freedom which accounts for the scaling of the interaction energy of the
fragment (and water). Sampling of states at very low interaction energies gives
a boost in fragment configurational sampling while competition between different
fragments to remain at unscaled (high) interaction energies at a given binding site
provides information on their relative binding affinities. JAFS is built on the JAWS
formulation for water binding to protein cavities.

The performance of the JAFS method on a range of different test cases (T4
Lyzozyme, Major Urinary Protein I, Cyclin Dependent Kinase 2 and Heat Shock
Protein 90) was studied. JAFS is divided in two protocols to rank fragments by
affinity and locate binding geometries, respectively. The ranking of fragments by
affinity to a common protein target was satisfactory (as compared to experimen-
tal data) for the simpler systems (T4 Lyzozyme and Major Urinary Protein I).
However, more demanding systems proved problematic, where the ranking of nine
different ligands to the binding site of Cyclin Dependent Kinase 2 provided results
unrelated to experimental binding affinities.

Studying pose generation in sets of five repeats per simulation, the crystal
binding geometry of every fragment studied was found in at least one of the re-
peats, without providing any previous information on the system (such as the
presence or location of water mediated interactions or the hydration state of the
cavity). Consistency between repeats was however found to be problematic and no
method is currently able to select the optimal binding geometry among all the gen-
erated poses. Suggestions are given for further developments which would provide
a methodology to rank poses.
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Chapter 1

Introduction

Through history, all societies have had an interest in the process of healing

and maintenance of health.1 From the use of plant extracts and fungus based

on observation and experience, thousands of years of research have brought us

to the use of chemistry and other related disciplines in the development of new

synthetic medicinal drugs for individuals to experience longer, healthier and more

comfortable lives.

The aim of each drug development (DD) project is to create a molecule capable

of generating a desired measurable biological effect. However, owing to the com-

plexity of biological systems, measuring biological effects at every step of the drug

development process is hardly feasible. Simplified systems are used, commonly

studying the binding affinity of the compound under development to a desired tar-

get, as a proxy for its biological effect. The most accurate measure of the binding

affinity is the free energy of binding. It is hence easy to understand that the aim of

the drug development process, up until its last stages, is to find a drug with high

binding affinity and few side effects.2,3

There are many strategies to drug development. Differences can come from the

reasoning behind selecting a particular target, to the process of hit discovery or

its development into the final drug.4 However drug discovery strategies generally

differ on the global understanding of whole stages of the drug development process,

such as lead generation. Structure based drug discovery is a clear example.5,6

Structure based drug discovery (SBDD) aims at including structural reasoning

behind every step of drug generation and optimization. While other drug develop-
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ment strategies, such as high throughput screening, base their success on the large

number of chemical compounds examined as potential candidates (be it potential

hits in the screening process, or modifications to a hit during optimization); SBDD

works on the idea of fewer compounds, carefully selected.6 To proceed with this

careful selection, structural information on the ligand and its binding cavity is re-

quired.6 Fragment Based Drug Discovery (FBDD) is one of the purest forms of

SBDD.

FBDD is based on the understanding of drugs as the sum of their chemical

moieties, where each moiety is called a fragment.7 These fragments will be screened,

virtually or experimentally, in the search for hits (those that bind to the target).8,9

While this is a common process, the main difference relates to the small size of

fragments. Fragment hits are only one chemical moiety of the final drug. Informed

decisions are hence taken to include each chemical modification, from hit to lead and

final drug, improving binding affinity while controlling any undesired effects.9–12

Computational chemistry is appealing to the pharmaceutical industry for its

potentially fast and low cost calculations.13–15 It is often considered as a tool

to increase the efficiency of the drug discovery process; an approach to focus the

process on the most promising candidates. Given the investment required for a

drug generation cycle, both in time and economic terms, efficiency boosts are in

demand.14

Different areas within computational chemistry offer different opportunities and

the trade off between accuracy of results and speed of the computational process

generally applies.16 From identifying possible targets of a given drug in the search

for potential off-target effects to detecting new drugs for a given protein target,

or selecting the best binder among a set of possible ligands, the field of computa-

tional chemistry in drug discovery offers a wide range of applications.14 In terms

of selecting the best binder among a range of chemical compounds, concurrently

detecting the correct binding geometry, docking and scoring is possibly the best

known approach.17 However, the performance of docking and scoring studies varies

depending on the exact conditions under study and the systems included in the

evaluation (see section 2.4.1). Scoring functions, in particular, are often found

to generate unreliable results.18 More rigorous (and computationally expensive)

alternatives to docking and scoring can be found in free energy calculations.19,20

2



These can be the optimal choice if the set of potential binding molecules is small,

or the accuracy requirements are high.

Owing to their small size, fragments are expected to have a low binding affinity,

even when each of their atoms is involved in efficient binding interactions. It is in

a challenging context like this, that methodologies like out-of-the-box docking and

scoring are expected to be outperformed by those more sophisticated, such as free

energy based methods.21,22

Alchemical transformations are computational methods available to accurately

calculate the relative binding affinity between two ligands. However, they require

previous knowledge of binding geometries, while generally assuming low variability

of these geometries with time.2,23

Throughout this thesis we will present the JAFS methodology, which provides

a flexible twist to classical alchemical transformations. Developed in the context

of FBDD, JAFS focuses on increasing sampling of fragments in protein binding

cavities, providing information on where, and how tightly, these fragments bind.

This method offers the possibility of locating the binding pose of a given fragment

molecule, automatically taking into account any potential water mediated inter-

actions. It should also ideally estimate the relative binding affinity of different

fragments without previous knowledge of their exact binding geometry. However

this possibilities come at a cost, and our binding affinities must be considered es-

timates, rather than true relative binding free energies between potential binders.

The rest of the thesis may be divided in the initial chapters, providing back-

ground (chapters 2 and 3), methodology chapters providing all information required

to follow the subsequent studies (chapters 4 and 5), the results chapters (chapters

6 and 7), future work (chapter 8) and the conclusion chapters (chapters 9 and

10), plus the Appendix (chapter 11). During the background chapters, the FBDD

context in which JAFS is developed will be presented, and the required theoretical

framework to understand the method will be explained, together with a few meth-

ods which might be considered the competition of the JAFS methodology. The

methodology chapters will detail the JAFS methodology, both of its protocols, and

its theoretical explanation, as well as the range of systems used in the subsequent

studies, with their peculiarities and reasons for being selected. The results chapters

will include results obtained during the development of the JAFS method, justi-
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fying the choices and changes performed to the implementation of its predecessor,

the JAWS method, as well as the results of the simulations performed to test the

performance of the finalized JAFS method on a range of systems. The future work

chapter will describe the most relevant path in which further development could

benefit the outcome of JAFS simulations. The conclusion chapters will summarize

the main lines of the analysis presented during the analysis of the JAFS simulations

on the test systems as well as conclude on the goals achieved and current state of

the JAFS method in context. The appendix will contain information which may

be relevant but did not flow naturally within the presentation of the thesis, nor

was required to its understanding.
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Chapter 2

FBDD

Figure 2.1: Schematic rep-

resentation of a drug size

molecule (top) and its frag-

ment components (bottom)

The fragment approach to the development

of new drug candidates, or fragment based drug

discovery (FBDD), made its first appearances in

the pharmaceutical industry during the 1990s.11,24

Since then, a number of pharmaceutical compa-

nies decided to invest in this promising approach,

with some even being exclusively dedicated to

FBDD.9,11,24 As a result, many success stories can

be found in publications over recent years (where

citations are only a few examples).25–31

2.1 Concept

The idea of FBDD originates from early works

on additivity of binding energies and the affinities

of individual substituent groups.7 If we can under-

stand a drug-sized molecule as the sum of its smaller

chemical components, we could study each of these

components separately in our search for the optimal

global binder. Building a drug from its components offers greater control on the

chemical composition of the final molecule (see section 2.1.1 for further advantages

of this approach).
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While we cannot assume additivity of binding free energy between the chemical

components of a larger molecule,7 the binding of drug-like molecules to protein

binding sites does generally revolve around certain key atoms, where a small chem-

ical component forms strong interactions with the receptor.9,32 FBDD is based

on the idea of studying these small components rather than the final drug-like

molecule, finding the most promising binders, and then adding further chemical

moieties until the desired properties are achieved. Figure 2.1 illustrates the con-

cept of small components forming a complex drug.

The previous paragraphs provide an overview of the ideas behind FBDD, but

concepts need to be defined in practice. Next we will consider what we understand

by each of these “chemical components” and the routes followed to transform them

into drugs.

Property Limit

Molecular weight < 300

Hydrogen bond donors ≤ 3

Hydrogen bond acceptors ≤ 3

ClogP ≤ 3

Rotatable bonds ≤ 3

Polar surface area ≤ 60

Table 2.1: Limits set to properties in an effort

to define fragment molecules within the Rule of

Three33

The best practical defini-

tion of these chemical compo-

nents (“fragments” from now on)

can be obtained by limiting the

chemical properties that these

molecules should obey. Follow-

ing this viewpoint, the “rule of

three” was proposed.33 It sets a

series of values for relevant prop-

erties which are considered as

maximum limits to which frag-

ment molecules must be con-

strained in order to fulfil their

role of a minimal starting structure. These include a basic core with limits on

the molecular weight, number of hydrogen bond donors and acceptors as well as

a measure of hydrophobicity. Further useful criteria are suggested on number of

rotatable bonds and surface area.33 The limits assessed within the rule of three can

be seen in table 2.1. The “rule of three” is built on the same basis as the previously

defined and widely known “rule of five” for drug-like molecules.34 It is important

to note that while the “rule of three” is the most commonly accepted set of bound-

aries to the definition of a fragment, different pharmaceutical companies working

6



in the field of FBDD apply slightly different limits, hence the “rule of three” must

the taken as guidance rather than a strict set of rules that cannot be broken.

Within a FBDD procedure, a set (library) of fragment compounds are screened

(see sections 2.2 and 2.4) generally searching for a compound binding to the macro-

molecular target of interest. The fragments found to bind to the target during

screening are commonly referred to as hits. Different properties of these initial hits

must then be improved, namely affinity towards target, cell activity and properties

related to administration, toxicity and metabolism of the compound when admin-

istrated as a drug (ADMET properties35). This is done in the process generally

called optimization, as well as “fragment to lead” or “fragment to drug”. It can be

understood that during the development of the initial hit into a lead (“fragment to

lead”) the increase in affinity towards macromolecular target and / or cell activity

mainly prevails. During the “lead to drug” stage, other properties related to the

drug administration would then be improved. Examples of FBDD processes can be

found in the literature which fall within this two-stage definition.25,36 This defini-

tion of stages, while useful in the understanding of the drug development process,

is however arbitrary and does not need to be fulfilled. The processes followed to

develop the fragment into the lead or drug molecule are described in section 2.2.2.

While different processes to develop drugs from fragments may be followed, all of

them benefit from structural information of the macromolecule-fragment complex.

This is linked to the concept of FBDD itself, as well as its advantages (see section

2.1.1). While starting from smaller, less tightly bound molecules, and hence often

requiring a longer process of drug development from the initial hit, FBDD bases its

successes on the level of control available to the researchers on the final structure

and properties of the final drug.

It had often been observed that many conventional drug development projects

failed in their latter stages, due to the drug’s poor ADMET properties, or simply

that it was not possible to improve affinity of the initial compound found to bind

during screening (hit), while maintaining reasonable ADMET properties.35 These

observations led to the inclusion in the libraries of compounds selected for “lead-

like” properties, rather than “drug-like” properties. That is, the required room for

optimization, the process which more often than not requires an increase in molec-

ular size and hydrophobicity, was taken into account in the compounds screened —
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they were made smaller and less lipophylic. FBDD takes this idea a step further;

the compounds screened are smaller and less hydrophobic than “lead-like”, leaving

far more room for subsequent modifications, and control of the resulting structure

and properties, in the development of drugs from fragments.

Figure 2.2: Representation of the complexity

model according to its description on its initial

publication. In the image, the orange string of

pluses and minuses represents the protein binding

cavity. The ligands are shown as shorter strings of

pluses and minuses. The ligands shown in green

are those which would be defined as “binders” ac-

cording to the model and in purple are the “non-

binders”. Each plus or minus corresponds to one

chemical functionality in the ligand or protein cav-

ity and correct complementarity is that of a “+”

with a “-”.

The change in perspective

regarding what we are looking

for during the screening pro-

cess needs to be accompanied

by a change in properties used

for selection of hits. If we keep

compounds with higher affin-

ity towards their target, it is

more likely that we will keep

the biggest compounds, where

more chemical groups are avail-

able to interact with the target

macromolecule. What should

then be the measure that cor-

responds to the properties in

the screened molecules that

will provide a better drug once

optimized? One of the op-

tions most commonly used is

the concept of ligand efficiency.

Ligand efficiency can be sim-

ply defined as binding affinity

divided by the number of lig-

and heavy atoms.37,38 This

definition will be used through-

out the thesis, while other mea-

sures are available.39,40

So far the appearance of FBDD strategies has been analysed from the perspec-

tive of the further evolution of the hits into the final drugs. However, the “hit
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finding” (screening) stage also benefits from the FBDD approach. The unachiev-

able perfect screening procedure would be that which screened all possible binding

compounds, finding only the tightest binders. If this could be done, no further

optimization would be required, since the perfect binder would be detected from

the beginning. Without aiming to such extremes, we would like to aim for the

highest efficiency in sampling the chemical space, being able to detect binders by

screening the lowest number of compounds possible.

A very simple model representing the likelihood of binding for ligands in terms

of their size shows that, as long as no condition is applied on the number of possible

binding configurations, the smaller the size of the ligand, the higher the probability

of the ligand binding (where binding is understood as fulfilling all possible comple-

mentary interactions between ligand and protein simultaneously).41 It is important

to understand that this simple model assumes all binding can be detected, with-

out taking into account the binding affinity, which is expected to decrease with

decreasing ligand size. Equally, it does not consider the possibility of mismatches

(that is, all possible interactions of the ligand must be satisfied), or ligands not

necessarily employing all their functionalities on binding. A representation of this

model is shown in figure 2.2. This simple model is called the complexity model,

and a review on it was written ten years after its first publication.42 Validations of

the model have produced a range of different results, and it can be understood that

the outcomes of such validations will depend on the properties of the compounds

used in the study. Hydrophobic ligands, for example, are expected to bind tighter

and to a wider variety of targets with increasing ligand size.41–44

Despite all their limitations, complexity studies highlight the basic reasons for

the better screening of chemical space with fragments than drug-sized molecules.

Simplistically, if we imagine a receptor with three binding functionalities, and an

example where fragments would consist of only one functionality and drug-sized

molecules are formed by three functionalities bound together, to find binding, frag-

ments would only have to contain one of the complementary functionalities to the

receptor, while the drug-sized molecules would have to present all complementary

functionalities as well as presenting them in the correct bound order.
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2.1.1 Advantages

The main advantages of FBDD have been implicitly described through the

introduction of the FBDD concept and its reason for emerging. Here they will be

summarized and clarified:11

� High quality interactions. Given the same affinity for a drug sized molecule

and a fragment, the affinity of the drug may be achieved through a large

number of weak interactions, while the fragment, due to its small size, can

only reach that affinity through a small number of high quality interactions.

This correlates with the high ligand efficiency of fragment binders (see above).

� Better screening of chemical space. As explained previously, the lower the

number of functionalities within a ligand, the more effective the screening is

expected to be, in terms of the number of ligands required to find a binder to

target. In a study of the chemical space of organic molecules of up to eleven

atoms of carbon, nitrogen, oxygen and fluorine, 26.4 million compounds where

found, while only 1850 compound where found with up to 6 atoms of the same

species.45

� Greater control of the structure of the final drug. Since the process of drug

development in FBDD starts with a small sized hit, and the addition of each

of the extra functionalities is made as a conscious decision, the majority of

the structure and associated physicochemical properties of the final drug are

controlled through the development process. This is expected to yield better

ADMET (such as lower hydrophobicity, where hydrophobicity is linked to

unspecific binding and side-effects) and binding properties (ligand efficiency)

of the final drug.

2.1.2 Drawbacks

In the previous section, it has been explained how the small size of fragments

is associated with advantages of FBDD. The small size of the fragments is also the

reason for its major drawback: the low binding affinity of fragments and associated

difficulty of detection during screening.46–48 Even with fragments efficiently explor-

ing high quality interactions, the affinity arising is generally lower than that which
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can be reached by a much larger number of medium quality interactions formed by

a drug-sized (or lead-size) ligand. While the advantages in section 2.1.1 account

for a high affinity of the final drugs developed from these initial weak binders, the

detection of the hits is necessarily done at the fragment stage, giving a require-

ment to detect low affinity binders during the fragment screening process. This

drawback conditions the methods used when studying the binding of fragments

experimentally, as well as the application of computational methods (sections 2.2

and 2.4).

2.2 Experimental Methods in FBDD

2.2.1 Finding Fragment Hits

Owing to the low affinity of fragments towards their targets, detection of frag-

ment hits through standard screening procedures such as HTS (high throughput

screening)49 in their standard conditions is unlikely. As an example, biological

assays would require higher ligand concentration to detect binding of lower affin-

ity ligands.50 Consequently, the level of affinity towards which the screening for

FBDD is calibrated must differ. FBDD follows a highly rational perspective where

the number of chemical groups which need to be added to the initial hit is often

high (compared to other drug development strategies) but the resulting molecular

structures are consequently under tight control.11 Standard drug discovery proto-

cols tend to start the development at the “lead” stage, closer in size to the fully

functional drug, given their search for high affinity hits during screening. Con-

sequently, much of the structure of the final drug is provided by the initial hit.

From these two perspectives follows that, usually, the activity of the hit compound

in the traditional approach needs to be relatively high (since a lower number of

functionalities are to be added), while this is not a concern in FBDD where further

cycles of compound modifications are expected.11

Consequently, two different perspectives may be adopted to achieve detection

of fragment hits: a higher concentration of potential binders must be applied over

traditional methods, or different, specific methods need to be applied to fragments.

We will first present the former idea below, and then proceed to explain several of

the specific techniques that may be applied within FBDD, together with some of
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the associated advantages for each.9,51

High Concentration Screening

While, owing to the lower affinity of fragment hits with respect to lead-sized

hits, fragments are not likely to be detected in a biochemical assay given the same

conditions, a higher concentration of the weaker binder should compensate and

allow detection. This is commonly known as High Concentration Screening (HCS).

A variety of assay types have been applied to FBDD. Depending on the charac-

ter of the assay, either sensitivity of the detection technique must be improved

to be able to account for the weaker binding of fragments (see the use of X-ray

crystallography as a sensitive detection technique within HTS for fragments52), or

the concentration of ligand must be increased in biochemical assays53 (note that

this limits its applicability to fragments with solubility higher than the screening

concentration54).

Structure-based Screening

One of the approaches to tackle the required increase in sensitivity due to the

low affinity of fragments is to change the screening method from biological assays

(which are typical in HTS) to biophysical techniques, which offer greater sensi-

tivity.11 One of these biophysical techniques (X-ray crystallography) has already

been mentioned in the previous subsection, which highlights the overlapping of

these two concepts, as biophysical methods can be incorporated within HTS.52

In this subsection we will focus on discussing the biophysical methods which, be-

sides providing high sensitivity, offer structural information on the ligand-protein

binding geometry.

As explained in section 2.1, FBDD may be defined as a subclass of Structure

Based Drug Discovery (SBDD). FBDD inherits from SBDD the rationale behind

the development process. In principle, the full sized final drug could be obtained

from the initial fragment by non-structural approaches such as dynamic combina-

torial chemistry.55,56 However, this limits the control of the structure and chemical

composition of the final drug. To take full advantage of the FBDD approach, struc-

tural information on the binding mode of the fragment is often needed. In the cases

where a non structure-based screening method is followed, a structure determina-
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tion technique may be applied a posteriori. However, structure-based screening

avoids the intermediate stage and provides structural information through the same

screening process. Different variants of structure-based screening of fragments will

be briefly presented below.9,51

� X-ray crystallography. X-ray crystallography is a common technique to study

conformations of macromolecules on their own or complexed with bound lig-

ands. In its more traditional approach, each of the potential binders would

be put in solution with the target, the complex would be formed in the cases

where favourable interactions may be expected, and a crystallization process

would then take place. However, taking into account that we are aiming

to use this method for screening purposes, a faster process is desired. This

is obtained with fragment soaking into crystallized macromolecular targets.

Solutions of 3 to 10 fragments are left in contact with the target and the elec-

tron density of the resulting complexes analysed.57 Note that the structure

of the protein is studied in a rigid (crystallographic) conformation.

� SAR by NMR. The other typical method to obtain structural information

from macromolecules is Nuclear Magnetic Resonance (NMR). This method

studies the structure of proteins in solution, where they often present flexi-

bility. Information on the structure of complexes between protein and bound

ligands may be obtained with this technique. Specific 2D NMR methodolo-

gies are required for the study of macromolecules where the behaviour of more

than one atom species (i.e. carbon and hydrogen) in the system needs to be

studied. In 2D NMR, peaks are generated which may be associated with each

of the residues in the protein. Upon ligand (fragment) binding, changes can

be observed in some of the peaks, representing a change in their chemical

environment. Following this procedure, the binding region and binding affin-

ity of the ligand can be determined. The application of 2D NMR techniques

to the study of fragment binding in this manner is referred to as Structure-

Activity relationship by NMR, and its development is considered to be one

of the key steps at the beginning of FBDD.9,48
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Other Biophysical Methods

The structure-based screening methods are not the only biophysical methods

available with sensitivity specifically applicable to affinities of the order of those

expected for fragment hits. It may be considered that information on the binding

configuration is only relevant for those binders which will be developed further into

leads. Obtaining structural information during the screening process may hence

not be considered a requirement, and structural techniques will then be applied

a posteriori exclusively to fragments of particular interest. In that case, a wider

range of techniques is available for the detection of fragment binding.

One of these techniques is 1D NMR — NMR measurements of the ligand,

rather than the protein. As mentioned in the previous subsection, the analysis

of the protein structure (or changes in its chemical environment) through NMR

require complex 2D methods where more than one atom species (such as carbon and

hydrogen) is studied at once. Much simpler is the NMR study of small molecules

such as fragments. Ligand binding to a macromolecule produces changes in ligand

properties which can be captured by NMR: upon binding, a change (loss of signal

intensity) can be observed in the ligand NMR spectra.9

Other available methods include surface plasmon resonance,58 mass spectrom-

etry59 and Isothermal Titration Calorimetry (ITC),60 all of which require high

fragment concentrations, which may make them more prone to artefacts.9

Often, several of the described techniques are combined to confirm fragment

hits as well as to characterize their binding.9,59

2.2.2 From Fragment to Drug-sized Molecule

This thesis focuses on the study of fragment binding to their target, rather than

the evolution of fragments into full-grown drugs. However, understanding the basic

ideas behind this process is key to extracting conclusions on the best methods for

studying fragment binding, as well as the requirements for the development of new

methods.

There are different strategies for developing drug-sized molecules from the initial

fragment molecules, and each will be briefly presented below.

� Linking fragments. In some cases, the screening of fragment binders to a par-
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ticular target protein, may provide results regarding several fragment binding

at once. Examples of such screening methods, which also provide structural

information are X-ray crystallography with fragment soaking (as described

in section 2.2.1) or computational screening techniques (described in section

2.4). In other cases, the structural information for several fragment binders

may be obtained independently. When different fragments are known to bind

to different subpockets within the same binding cavity, a logical approach to

increase affinity is to link them together through a chemical linker to pro-

duce a bigger compound expected to bind tighter. While this approach has

generated successful examples of hit to lead development in FBDD,61–63 it is

important to understand that the affinity of the linked compound cannot be

predicted exclusively from that of the individual fragments.7 Linking both

fragments may increase affinity by decreasing the entropy of the (unbound)

ligand in solution.64 Besides this, the linker itself may have favourable or

unfavourable interactions with the target.

� Growing fragments. Starting from the fragment hit, chemical functionalities

may be added to the initial fragment structure to increase its affinity. The

decision on which functionalities are added relies on the researcher, who is

expected to avoid groups with associated toxicity or undesired side effects,

as well as favour those which provide desired absorption / administration

qualities. When structural information on binding is available, the decision

on the added chemical functionalities is guided by the functional groups in

the binding cavity which are available to interact, and the fragments may be

grown keeping a high binding efficiency towards the target. This approach

has proven successful in lead generation.25,65–67 This manner of generating

leads from initial fragment hits is sometimes divided into fragment evolution

(as the process of modifying the fragment to improve affinity) and fragment

optimization (referring to the modifications which improve other properties

of interest, such as toxicity or absorption).10

� Alternative approaches can be found, for example, in fragment self-assembly,

where fragments are allowed to react in the presence of the target, hopefully

forming a bigger, tighter binder molecule within the macromolecular binding

cavity.10
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As can be seen from the above, the availability of structural information makes

either of the chosen paths easier. This is because of the need to take decisions, such

as which fragments to link, which linker to apply and at which particular points

those should be linked (within fragment linking) or which functionality should

be applied at which atom of the fragment (within fragment growth). Often, the

bound structures of fragments different from those which are chosen to proceed into

the lead optimization stage are used to guide the decisions of the functionalities

or linkers to be added. This fact favours the use of techniques such as soaking

of fragments into crystallized proteins where the binding configurations of many

binders may be obtained.

This process of developing drugs or leads from initial fragment hits is presented

here in the section on experimental work in FBDD, but would apply in the same

manner to fragments which have been discovered as binders through computational

methods. The rest of this report will focus on the study of the small fragments

binding to the target, without considering in any depth the further development of

these fragments.

2.3 Success Stories

When talking about success stories for FBDD, Plexxikon deserves the main

mention for the first drug approved by the FDA (U.S. Food And Drug Administra-

tion), Vemurafenib (PLX4032).11,68,69 While this is currently (to our knowledge)

the only drug developed through FBDD which has been approved, more than 30

are (or have been) in the clinical trials stage.70 As well as the number of drugs in

development, research in the field of FBDD has also been increasing over the last

ten years, with the number of publications in 2015 with the phrase “fragment based

drug discovery” being more than five times those in 2005.71 With all this, FBDD

is still a young field, with the first paper acknowledging this approach appearing

less than twenty years ago, in 1997.72,73

A few of the stories of fragment based drug development that have generated

successful results will be presented below.
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2.3.1 Plexxikon working on Vemurafenib

The studies that led to the discovery of PLX4032 started with a high concen-

tration screening (HCS) with enzymatic (kinase) assays, of 20000 fragment-sized

compounds. Of these, 238 were found to inhibit the activity of the three kinases

used in the enzymatic assays, and were hence subjected to co-crystallography. One

of the co-crystal structures revealed 7-azaindole binding to the ATP binding site

of the kinase, with weak affinity and multiple different binding modes. A group of

monosubtituted 7-azaindoles were then synthesised, finding a 3-aminophenil ana-

logue which bound in a single configuration and with increased affinity.

This scaffold was studied on a range of different kinases, finding a consistent

binding mode within the protein family as well as promising optimization sites

on the ligand. Consequently, libraries of mono and disubstitued analogues of

7-azaindole where built and screened, finding a set of compounds containing a

difluoro-phenylsulfonamide motif which presented excellent potency against onco-

genic B-Raf and selectivity with respect to wild-type B-Raf and other kinases.

These compounds were co-crystallized with B − RafV 600E . Based on the struc-

ture of the complex, subsequent rounds of optimization lead to PLX4720, which

inhibits B − RafV 600E at a 10 times lower concentration than required to inhibit

wild-type B-Raf.11,74 Later on during animal testing, a modified version of the

compound with an added phenyl group, PLX4032, was chosen for its improved

pharmacokinetic properties on animals.68,69

2.3.2 Astex working on HSP90 inhibitors

Astex studies on inhibitors of Heat Shock Protein 90 (HSP90) started with

a 1D NMR screen (see section 2.2.1) against the N-terminal domain of HSP9075

of approximately 1600 compounds from fragment libraries. The most successful

compounds from this screen where taken to a further NMR study of competition

with the native (and weak) binder ADP to select those fragments binding to the

ATP/ADP binding pocket. Only the binders with a certain level of affinity towards

this pocket were then selected by adding Mg2+, which increases the affinity of ADP

displacing the weaker fragment binders.

Based on the NMR data and considering chemical diversity, 125 fragments

were taken into the crystallographic stage, and 26 fragment crystal structures
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were obtained, which spanned a variety of chemotypes. Among these, four frag-

ments were found of particular interest, three of which bound within the same

subpocket, through conserved bridging water molecules, and one which was found

to co-crystallize with the smaller of the other three, in a different pocket region.

Two of the fragments which bound through conserved waters where chosen for

optimization. These fragments were also used at different stages (development,

see section 6, and production, see section 7) in this project. Here we will follow

the optimization of fragment one (which can be seen in section 6) and briefly

summarize that of fragment three (see section 7), which ended up in the generation

of a AT13387, which reached the stage of clinical trials.36

Optimization of Fragment One

The fragment chosen in this optimization strategy is formed by a pyridine ring

bound to a pyrimidine, where the bond between these two rings is twisted (see sec-

tion 6.2.2 figure 6.2 (a)). Torsion profiles and crystal structures of small molecules

suggest that the optimal geometry of these rings is close to planarity, hence it should

be possible to improve affinity through stabilization of the bound conformation.

With this in mind, the optimization started with the virtual screening of close

analogues, finding a chloro analogue to the initial fragment hit which provided a

100 fold increase in affinity. The substitution of the phenyl ring with small groups,

led to analogues which stabilized the bound structure, as well as filling a lipophilic

side pocket. In particular, a 2-methoxy analogue led to a 5-fold improvement

in affinity. While this compound did bind in the desired conformation, further

studies, including that of the torsion energy profile led to the addition of another

methoxy group which stabilized further the desired rotational geometry, providing

a 5-fold gain in affinity. A 2-chloro analogue was then found to increase potency

by reducing the energy difference between local and global minima of the torsion

profile. This compound was the most ligand efficient from the initial synthesis.

In the next iteration, a chlorine substitution was found to significantly increase

activity by means of additional lipophilic interactions with HSP90. Solubilizing

groups were then introduced to improve cell activity, leading to a compound with

low micromolar activity in cell assays.25
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Optimization of Fragment Three

From the fragment three hit (2dl in table 11.1), addition of isopropil groups to

fill the proximal lipophilic pocket lead to a 100 fold increase in potency. Focus was

then on replacing the diethylamide, with the aim of displacing a Lys sidechain with

larger tertiary amides which might then form good hydrophilic interactions with the

protein. This gave compounds with several hundred times improvement in affinity,

with the Lys indeed displaced and forming a salt bridge. An extra hydroxyl group

was then added to form a hydrogen bond with an adjacent protein residue, an idea

driven by the similarity to the natural compound radicicol. The final compound

from this optimization shows subnanomolar affinity, excellent ligand efficiency and

good cell activity, and was chosen as the lead compound.25

Further optimization of this lead compound was focused on the physiochemical

and pKa properties, and lead to the generation of a compound that went into

clinical trials: AT13387.36

2.4 Computation in FBDD

The binding affinity of a ligand to a macromolecular target is of interest in a

number of stages of the fragment based drug discovery process. From the initial

screening of a large set of fragments to the analysis of the effects of modifications

applied on the initial hit, calculations of binding affinity are often performed and

the time required to obtain these data and the accuracy of the results vary in their

importance as the process of drug development progresses. At the beginning of

the drug development process, when a large number of compounds are considered,

it may be practically impossible to spend a large amount of time in obtaining

information on each of them. However, in later stages, when only a few ligands are

being developed, small affinity differences may be key to select the most optimal

binder.

The required binding affinity results could exclusively be obtained experimen-

tally, but computational methods offer a generally faster and less expensive alter-

native. More often than not, however, computational calculations are used, not

as an alternative per se, but as a preparatory step, which allows the experimental

studies to focus on the most promising candidates at every stage of the develop-

19



ment processes. They can also provide extra pieces of information (such as binding

geometries) and allow for the flexibility associated to the lower economical expense

of attempting new developmental pathways within computational methods. While

diverse in their resource and time requirements as well as the theoretical back-

ground on which they are based, a key generality of computational methods to

study binding affinity is their generation of structural information for the expected

binding mode.

It is important to highlight, however, that, the uses of computational tools

within FBDD are not limited to the study of binding affinities; computational tools

can be involved in the generation of fragment libraries, as well as the exploration of

the chemical space offered by replacement of substituents to a given scaffold.76,77

As previously stated, the focus of this project will be on methods to study

binding configurations and relative affinity of small ligands (fragments) within the

drug development process.

We may define a scale regarding computational methods to study the binding

of ligands (particularly fragments) to macromolecular binding sites — of which,

from now on, we will focus exclusively on proteins. The scale measures the time

and resources required to proceed with the calculation of affinity and / or bind-

ing geometry of the fragment, where a lower cost (in both time and resources) is

generally associated with a less theoretically accurate representation of the system.

Within this scale, docking and scoring methods and free energy techniques would

lean towards different ends of the spectrum, particularly the low cost (fast) end and

more accurate representation end, respectively. While the theoretical background

on which these methods are based will be described in chapter 3, here we will

present their applications to fragment based drug discovery, what advantages and

disadvantages they can provide to the field and any developments or techniques of

particular interest to FBDD.

2.4.1 Docking and Scoring

Docking is a method to obtain possible binding configurations of a ligand to

a target binding cavity, while scoring is the manner in which different binding

configurations or different ligands are assigned an estimate of their affinity towards

the target, as well as ordered in terms of their relative affinity estimates. While
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docking and scoring can be defined independently, they are often understood as

two parts of a common method, since the scoring function is applied directly on

the poses obtained by docking, deciding which poses are presented in which order

as an output of the docking run. While further information on docking and scoring

can be obtained from section 3.2, suffice to say here that the estimations used to

generate possible configurations (i.e. study of the available interactions between

fragment and ligand) as well as those employed to calculate the affinity with the

scoring function are approximations rather than strict definitions of affinity based

on physically robust derivations. Their focus is on the speed at which the binding

configurations and relative affinity estimates can be produced, with the key aim in

mind that among the set of fragments predicted to bind with higher affinity, an

enrichment of actual binders is found, so that subsequent experimental (or more

theoretically robust) study of that set of compounds is more efficient that direct

screening of the initial fragment library.

Docking and scoring was applied to the drug discovery process before the rise of

the field of FBDD.78–82 A critical study of its general performance on ligand binding

(within the context of drug discovery) has been attempted often,18,83–87 generating

a variety of different outcomes. Arguably, the only general conclusion which can

be extracted from these studies is that no one docking protocol is optimal for all

systems, with different software packages performing better in different systems,

and where the choice of parameters for each software significantly affects the quality

of the outcome. Generally, it is less problematic to locate the correct binding

configuration than it is to successfully select it as the configuration of higher binding

affinity, or selecting the best binder among a set of ligands. Consequently, it can

be argued that problems mainly relate to the scoring part of the protocol.

Regarding the application of docking and scoring methodologies to fragments,

it may be logical to argue that their performance is expected to be worse than that

of bigger ligands (drug-sized molecules). This is because of the weak binding affin-

ity of fragments due to their small size, and the small number of interactions. To

select the best binders among a set of fragments, the sensitivity required is expected

to be higher than that to perform the same task on drug-like molecules, since the

difference in affinity between the best binders and the non-binders is expected to be

much lower in the case of fragments. However, some studies addressing this issue
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found no significant difference in the performance of docking methods on drug-like

and fragment compounds. In particular, for ensemble docking, the combined dock-

ing performance of the different scoring functions tested produced a percentage of

top-ranked (best) docking solutions within a threshold of the crystal pose of 42% for

both their fragment and drug-like sets.88 These same studies found, however, that

the docking and scoring behaviour of fragments and drug-sized molecules differed.

For fragment molecules, the behaviour described above, where locating the correct

binding configuration is less problematic than selecting it as the tightest binder,

is even more extreme than was found for drug-like molecules. While the sampling

of different configurations still needs to be improved for drug-sized molecules, the

major problem related to fragments is the lack of accuracy in the estimation of

the affinity.88 The treatment of the binding affinity with more theoretically robust

methods than those applied within scoring functions could then be envisaged as

a logical step forward for the study of fragment binding configurations and affin-

ity. Application of these more robust methods could, arguably, be considered more

crucial for fragments than drug-sized molecules, where an increase in the sampling

algorithms for docking may offer improvements to the current docking and scoring

results.

Whether on drug-sized of fragment-sized molecules, the assessment of docking

and scoring methods is often made difficult by the existence of different types of

docking (explained in section 3.2.2) depending on the relation between the ligand

and protein structure used in the docking study. Equally, when assessing the per-

formance of a scoring function, its performance on ranking by affinity different

binding configurations of the same ligands, or different ligands to a same protein

target, can be studied (see section 3.2.1). Generally speaking, much better results

are obtained for docking calculation when the protein structure used is obtained

from a complex structure with the same ligand docked (self-docking or native dock-

ing) than when a different protein structure (apo or obtained from complex with

a different ligand) is used (non-native docking).89 Scoring functions, in turn, tend

to perform better at selecting the binding geometries of higher affinity among all

possible binding geometries of a single ligand, than selecting the tightest binding

ligand among a set of ligands.90 It is hence clear that the assessment of the per-

formance of docking and scoring is not one-sided, and different results are likely to
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be obtained depending on the exact functionalities under study.

2.4.2 Free Energy Techniques

In a similar manner to above with docking and scoring methods, the impact of

the free energy techniques on FBDD will be presented in this section, while their

theoretical background and a deeper understanding of their function shown within

the appropriate section of chapter 3 (to which we will refer as appropriate). We will

be considering here a series of methods which are, directly or indirectly, applied

to fragments and which will hopefully set the context in which the development of

the JAFS methodology can be understood.

GCMC Applied to Small Molecules

A method to calculate the binding affinity of small molecules that fall within

the spectrum of those generally considered fragments, is Grand Canonical Monte

Carlo (GCMC, see section 3.5.4) as shown in the work of Clark et.al.91,92 A se-

ries of approximations are applied, such as the lack of protein flexibility and only

indirect account of ligand flexibility, or the simplistic model employed in the cal-

culation of the solvation free energies. Some further (and not theoretically sound)

approximations are included inadvertently in the calculation of the binding free

energies (see section 3.6.4 and citations93).

Their method offers the possibility of locating binding cavities within a protein

surface for fragment-like molecules and estimating the binding affinity of each pose.

Within their latest publication on this topic, their method was applied to the simple

system of the hydrophobic cavity of (mutated) T4 Lysozyme (also used in this

project, see chapter 5). The binding free energy of rigid ligands was calculated

with their method and the results, with a mean signed error to experimental free

energies of 0.5 kcal/mol and a standard deviation on the error of 1.5 kcal/mol, do

not allow for a correct ranking of the different ligands by their affinity to target.

No error is reported for the computed binding affinities. The rough calculation of

their hydration free energies has a big influence on the deviation of the computed

affinities to the experimental values. While a more robust method for calculation of

free energies could be applied, this would negatively affect one of the main strengths

of the method: its speed compared to other free energy based methods. The poor
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performance of the method on a simple, hydrophobic and rigid test case suggests

that further work is required in the development or improvement of the method.

Related to its approximations, it is important to note that this protocol requires the

availability of the protein conformation co-crystallized with the biggest of binders

to minimize issues related to rigidity of the receptor. Equally, it does not offer the

opportunity to account for potential water mediated interactions between ligand

and receptor.92

The location of crystal binding geometries is not a feature offered with their

latest implementation, since their calculation of binding affinities is obtained from

the average concentration of ligand in the binding cavity.92

Fragment Mapping

While a series of fragment mapping methods have been developed to find bind-

ing cavities on protein surfaces,94,95 their application to FBDD is best represented

by the SILCS approach.96,97 The method, which is further explained in section

3.6.4, provides probability maps of fragment types binding to different target re-

gions (FragMaps) as well as an affinity estimate (LGFE) to rank-order ligands by

binding affinity to target.

The SILCS methodology may be divided in two parts, the generation of FragMaps

and the calculation of the affinity estimate. The assessment of FragMaps is gener-

ally done qualitatively by comparison of the location of known ligand functional-

ities with the regions of higher probability for each fragment type predicted with

SILCS, and they have been found to suggest functionality which is present in known

binders.98 FragMaps per se provide no information on the binding geometry or

affinity of the ligands of interest. While they might be used to study where fur-

ther functionalities might be added to a ligand whose binding geometry is known,

arguably, this same study can be done directly by observation of the complemen-

tary protein functionality. Furthermore, other factors (such as entropy, section 3.6)

may play a role in affinity that FragMaps (and SILCS in general) are not taking

into account. FragMaps are a step required for the posterior calculation of binding

affinities of the ligands of interest.96,98

To calculate an estimate of the binding affinity (LGFE), previously, an ensem-

ble of configurations must be obtained (unless the binding geometries of the ligands
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are known previous to their study with SILCS). It is important to note that, to

obtain the (meaningful) ensemble of configurations, one or several relatively short

molecular dynamics (see section 3.5.1) or Monte Carlo (see section 3.5.2) simula-

tions must be run. The need to run these simulations considerably increases the

computational cost of the method.96,98

Once an ensemble of configurations and the FragMap are known, the LGFEs

may be calculated. In terms of the binding affinity estimate (LGFE), the results

vary strongly depending on the target protein, and application of LGFE calculation

on an ensemble of configurations (see section 3.6.4) appears to be a requirement

to obtain satisfactory correlation between LGFE and experimental affinities. The

test cases for which better results were obtained within their presentation of the

method, R2 = 0.79 was obtained while in the worst case, anti-correlation was

observed. This highlights the difficulty to predict the performance of SILCS for

particular desired test case and makes the method unreliable.98

In summary, SILCS offers an easy to visualize representation of protein affinity

towards different functionalities (FragMaps), while the information provided with

these representations may not exceed by much what a chemist may obtain by

observation of the protein surface. Their study of ligand affinity requires either

previous knowledge of the binding geometry, or this binding geometry to be studied

with (computationally expensive) sets of short molecular dynamics or Monte Carlo

simulations. Once the binding geometry (or ensemble of these) is obtained, the

estimation of affinity is found to perform well in some systems while failing in

others, making the methodology unreliable when used in any new system.

Other methods derived from SILCS have been developed, such as the oscillating-

µex GCMC-MD, which aims to increase the sampling of the previously mentioned

representative fragments to improve the quality of the FragMaps, as well as allowing

study of occluded protein cavities. This method also provides an alternative for

the calculation of hydration free energies and an estimation of the binding free

energies of the chosen representative fragments. The only binding affinity shown

during their method presentation does not appear to be of satisfactory quality for a

simple and well studied protein-ligand system (benzene to T4 Lysozyme, see section

5, with a binding affinity difference to experiment of 1.94 kcal/mol). Conceptual

problems with this approach are shown in section 3.6.4. A successful correlation

25



between LGFE and binding free energies seems to be obtained for this simple

system (see above for the variability of these results between different systems).99

Other examples of fragment mapping techniques can be found in the litera-

ture.100,101

λ Dynamics

λ-dynamics has had many stages to its development.102–107 First, its main

applications will be summarized, highlighting those that allow for the consideration

of ligands with completely diverse structures. Next, the results obtained from the

latest developments are presented.

λ-dynamics increases the sampling of ligand configurations by scaling the in-

teraction energies of the ligands with a parameter (λ) which is variable during the

simulation. To sample all relevant binding configurations, and to obtain a mean-

ingful measure of binding affinity, the scaling of the interaction energy must be

sampled in all its ranges (from fully interacting to non-interacting). Biasing poten-

tials need to be applied to achieve this sampling. The choice of biasing potential

will influence the outcome of the sampled configurations, making the result of

the configurational sampling dependent on the simulation input or settings.104,106

Further information on the implementation of λ-dynamics can be found in section

3.6.4.

With respect to the calculation of relative binding free energies, again the ap-

plication of bias is found to be required to avoid trapping in the sampling of the

λ variables.102 To find the correct biasing potential, often an iterative procedure

is required, increasing considerably the required computational time to obtain a

reliable relative binding affinity within λ-dynamics. This aspect is particularly rel-

evant since one of the main advantages of λ dynamics is that it reduces the required

computational time for the calculations of relative affinities between sets of several

ligands to a common target, with respect to more traditional relative free energy

calculations (see section 3.6.2).103

λ-dynamics has had many stages to its development.102–107 The results ob-

tained on estimation of binding affinities for the tests cases studied with its latest

version (see section 3.6.4) are summarized here.107 Note that this latest develop-

ment is within what has been called multisite λ-dynamics, linked to the study of
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the different substituents attached to a common ligand core (for more informa-

tion see section 3.6.4). For both test cases (benzoquinone derivatives in solvent

and geldanamycin derivatives bound to HSP90) a positive correlation between the

calculated and experimental affinity is observed, where, for its more realistic test

case (geldanamycin derivatives bound to HSP90) — where additional chemical

space is sampled between the different substituents to a common ligand core —

the correlation is found to be R = 0.56. A discussion of the validity of some of

the experimental data is undertaken and a consequent filtering of the experimental

values available was performed. For the experimental values deemed more reliable,

the correlation between calculated and experimental affinities increases to an as-

tonishing R = 0.98. It must be noted, however, that only four experimental and

calculated affinities are included in this correlation.107

While this latest development seems to produce very appealing results, its ap-

plicability is restricted to ligands with a common core. Note that, within FBDD,

this approach is probably more relevant at the fragment optimization stage than

it is during calculation of affinities for initial fragment hits (see below). While the

substituents are kept flexible, and the particular conformation of each substituent

may be presumed to be correctly sampled, the initial binding configuration of the

ligand core with all its associated substituents must be previously decided and no

sampling of the configuration of the whole molecule may be expected given that the

core always remains fully interacting with the environment during the simulation.

Hence this latest version of λ-dynamics does not provide binding geometries for

new ligand structures.

Note that the nature of fragments (small and generally formed of only one func-

tional moiety) makes the study of their affinity much more amenable to methods

which can consider ligands with completely different structures, rather than those

requiring some common chemical core.

Free Energy Perturbation

Recently, traditional alchemical transformation (see section 3.6.2), methods

have been used to calculate free energy differences in the context of FBDD.108

Note that the calculation of free energy differences through alchemical transforma-

tions is often referred to as Free Energy Perturbation (FEP). Often standard FEP
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approaches have been discarded from routine application to the drug discovery pro-

cess, particularly in its earlier stages — those that concern the initial fragment hits

in FBDD — due to their high computational cost. However, the increase in compu-

tational power — with better availability of GPUs and access to Cloud computing

— could enhance the interest of the FEP methods on fragment molecules. In this

section we will summarize results and relevance of FEP calculations on fragment

molecules as performed by Steinbrecher et.al.108

In this study, their particular implementation and protocol of FEP is referred

to as FEP+. Details of their protocol are summarized in section 3.6.4. The use

of physically accurate free energy methods has advantages, providing information

which is not available to other, less physically realistic, methodologies. Mostly, this

extra information relates to the possibility of comparing binding affinities between

different methodologies. This comparison is particularly useful in studies of ligand

binding selectivity between different protein targets, or to those interested in the

effect of protein mutations on ligand binding affinities. Besides, the physical accu-

racy relates to not needing to parametrize the protocol for different systems. While

parametrization goes into the generation of the molecular mechanics force fields (see

section 3.4) this is performed to capture all physical interactions of interest and no

modification should be required in a system specific manner.

They present a study on eight different protein systems, with several ligands

of conserved charge binding to each protein. Their results can be considered satis-

factory, with an average correlation between calculated and experimental binding

affinities for all studied systems of R2 = 0.65, and two thirds of the ligands present-

ing absolute errors lower than 1 kcal/mol. Given their “fragment” classification,

ligands typically present lower affinity than expected for typical drug development

studies when starting from more drug-like hits. The affinities range from those

exceeding 1 mM to those in the high nanomolar range. No significant difference in

performance is observed for this method at the different ranges of affinity tested.

A difference in performance is however observed between different test systems,

with two out of eight systems performing exceedingly well (DNA Ligase and MUP-

I), which suggests low errors on both experimental and computational results for

these systems, providing a high correlation.

Perhaps not surprisingly, FEP+ was found to outperform less physically ac-
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curate (and faster) methods — particularly docking and MM-GBSA — for the

majority of systems. The correlation between calculated affinities and experimen-

tal ones is found to be significantly higher for the FEP+ results. Interestingly, the

correlation between molecular weight and experimentally measured affinity outper-

forms those of the less physically accurate methods, getting closer to the results

obtained with FEP+. This is, however, likely due to a publication bias, where only

active ligands are published, while the inactive ones will not be available in the

literature to test new methodologies. Cases are analysed in their publication108

where molecular weight does not correlate well with experimental binding affinity,

while FEP+ calculated binding free energy does.

When comparing the calculated relative affinity between pairs of compounds

in each particular system with the equivalent experimental results, FEP+ is found

to predict correctly the effect in binding free energy for most structural changes,

miss-predicting a low proportion of these. In particular, out of the 116 direct trans-

formations described, FEP+ is successful in predicting the most potent binder in

over 85% of the cases. Running FEP+ prior to compound synthesis in a drug de-

velopment protocol would hence enrich the proportion of higher active compounds

synthesised.

The summarized results show successful studies of fragment binding predictions

by alchemical transformation methods. Despite this success, it is the prior knowl-

edge and computational cost to obtain them that may be problematic. In terms of

the required structural information, the binding pose of each of the ligands must

be known in advance, or else its prediction must be performed with some extra

methodology, where the accuracy of the FEP calculation will depend on the qual-

ity of the predicted bound configuration. The other major problem associated with

the usability of the FEP calculations is the computational cost. As pointed out by

Steinbrecher et.al.,108 the accuracy of the FEP calculations, combined with their

high requirements in terms of computational expense may make them the opti-

mal tool for cases where ligands present important challenges from the synthetic

perspective. In these cases, the time spent performing a FEP calculation may be

worth the time and cost which may be required for the equivalent experimental

step. However, in most standard cases, where synthesis may be relatively straight

forward, the time scales required for FEP calculations may struggle to compete with
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experimental measurements, particularly at the initial stages of drug development,

which are associated with fragment-sized molecules in FBDD.

2.5 Summary

In this section, the basic concepts that lay the foundation of Fragment Based

Drug Discovery (FBDD) have been presented, together with its major advantages

and its drawbacks. The experimental methods of particular interest to FBDD have

been described, including biochemical and physicochemical methods for fragment

screening, as well as the different approaches to develop the initial fragment into

a lead or drug-like molecule. Consequently two examples of successful projects in

FBDD have been summarized, from its initial screenings to the entry of compounds

in clinical trials and, in one of the cases, the release of an approved drug to the

market. At last, the computational methods within FBDD have been described,

focusing on docking and scoring as well as the free energy methods available, which

are the context in which the development of JAFS should be understood.

Next, the theoretical concepts and computational developments required to

understand the rationale of JAFS will be presented. The understanding of com-

putational chemistry, and molecular mechanics will be described, fields of which

the JAFS method is a small part. Techniques which are key in the context of

computational chemistry for drug development (and which will be briefly used in

this thesis) will then be introduced. Tools which are essential to the correct func-

tioning of the JAFS methodology, such as the Monte Carlo sampling algorithm

and the molecular mechanics force fields, will be explained in detail. Then, free

energy calculations, which are key to the understanding of the implementation, as

well as the objectives, of JAFS simulations will be studied in depth. Enhanced

sampling methods will be shown, as they will be used in the thesis in one of its

variants and could be considered alternatives as some of the objectives that JAFS

tries to achieve. At last, the JAWS methodology, of which JAFS is a further devel-

opment and modification, will be presented, with its advantages and caveats, and

the reasons why it was chosen as the basis for the development of JAFS, presented.
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Chapter 3

Theoretical Background

In the previous chapter, the necessary background on the concepts of FBDD,

methods used within the field and latest developments have been summarized.

Understanding the context of the application of the method presented in this thesis

is essential to determine its requirements and analyse its successes, hence generating

the most optimal method, and allowing the reader to understand the strengths

and weaknesses of JAFS. Such context is provided in the previous section with the

explanations on FBDD.

A knowledge of atomistic modelling, the Monte Carlo method and free energy

techniques in particular is required to understand the JAFS method. All these

concepts, and others of relevance to the project will be presented below, and hope-

fully described in enough depth for the reader to be able to comfortably follow the

following sections of the thesis.

3.1 Computational Chemistry

A traditional understanding of chemistry would envisage a particular chemical

reaction or the equilibrium state of a particular system as a process or situation

which can be observed within a real environment (i.e. a laboratory) or described

on paper, with a representation of its components via chemical formulae. Com-

putational chemistry expands that traditional idea, providing an alternative repre-

sentation of chemical processes and states which, capturing a range of traits and

phenomena hard (or impossible) to obtain from a static two dimensional represen-
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tation, does not require the study of the real process with its associated potential

dangers, expense or difficulty on extracting from a complex environment, as well

as offering an associated visualization of small scale — in size and time — events,

which may be hard or impossible to detect from a traditional experiment.

3.1.1 Visions of Computational Chemistry

The use and applicability of the additional tools provided by computational

chemistry can be understood within the context of experimental work (real-life ex-

periments). From this perspective, computational chemistry can provide the means

to speed up and optimize practical experiments by providing relevant knowledge

on the system under study, as well as a guide, highlighting the possible research

paths more likely to reach a particular goal.

Alternatively, computational chemistry can be addressed as an alternative vi-

sion of chemistry all together. A future of chemistry can be imagined where exper-

imental work is obsolete or exclusively useful in the context of validating computa-

tional work. It can be considered as the equivalent of the futuristic vision of robots

fabricating robots. The accuracy of results increases with the development of the

different fields within computational chemistry, and the development of technology,

and particularly computational power, continuously increases how far these compu-

tational methods can be applied. At the moment, computational methods are often

not regarded as reliable and used simply as a tool to aid experiments. However,

there is no theoretical limitation on the development of computational methods

which may ultimately be as reliable as experiments are nowadays regarded.

While such futuristic perspective may well be regarded as exaggeration, it does

illustrate the tendency towards developing computational chemistry as a field of

its own, and the interest applied to automation. The idea of such a future seems

necessarily interlinked with easy to use and robust computational methodology,

where human intervention and expert knowledge applied to each of the calculations

is minimal. This idea is generally used as a descriptor to methods with the term

“black-box”. While not applied entirely or in its more pure forms, a tendency

towards the development of black-box methodologies will be apparent through this

thesis.

The reasons for the development of JAFS as a black-box type method are related
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to the increase in throughput this approach provides, together with an emphasis on

the reproducibility of the results and a keen interest on developing a method robust

enough so that it requires as little human intervention as possible in its application.

The increased throughput is obtained because of the little intervention required

from the user, and this same reason is related to its reproducibility. Given identical

input, a piece of software must always produce the same output; a human being, on

the contrary, may provide different answers depending on non-controllable external

factors. For these reasons, an emphasis on the black-box style development was

applied to our method development and consequently will be mentioned throughout

the thesis as the justification for some of the decisions taken on the development

of the JAFS methodology.

3.1.2 Applications within Computational Chemistry

Computational chemistry studies are present in a wide range of chemical dis-

ciplines, from the structural study of the air-water interface,109,110 through the

study of the bond formation and patterns in defects of crystalline structures,111,112

to research on the size of the chemical space of all available small organic molecules

and how to better explore it to obtain compounds of interest to the pharmaceu-

tical industry.113–116 This thesis will focus on techniques which are applicable to

biomolecular systems, with an emphasis on proteins and particularly protein-ligand

interactions.

As well as dividing research within computational chemistry by scientific fields,

the level of computational resources required to perform each particular task is

a common differentiating trait to further partition each area of expertise. While

the computational expense of a particular group of methodologies might seem a

minor consideration in their description, in computational chemistry, the trade-

off between accuracy of results and computational expense of the methodology

generally applies. Besides, the computational and time resources required for a

particular study very much limit its applicability, defining the context of its us-

ability. Within the study of protein-ligand interactions, we will be presenting two

different levels of complexity, which lie within opposite extremes of the accuracy-

expense range, namely the fast (low computational requirements) docking (and

scoring) and the expensive free energy calculations based on molecular mechanics
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simulations. While the method developed throughout this thesis (JAFS) will be

presented from section 4.2 onwards, all the theoretical requirements for its under-

standing will be explained in this section. JAFS lies somewhere in between the

two extremes in terms of computational expense, being closer to the requirements

of traditional free energy calculations than those of docking. Both docking and

traditional free energy calculations will also be applied through the development

of the methodology as means of comparison of results and / or to perform required

calculation to the correct functioning of the JAFS methodology.

3.2 Docking and Scoring

The fundamentals of the docking and scoring techniques, as well as a brief

classification of the different approaches to scoring will be presented in this section.

There are two main reasons why these techniques must be explained within the

context of this thesis. First, through the explanation and analysis of the results

obtained with the methodology developed throughout this project (JAFS), docking

and scoring (simply referred to as “docking” through our thesis) will be used as

a measure of reference. While the developed technique will necessarily require a

higher computational cost than docking, we hope to provide functionalities which

are either not found in the common docking protocols, or where docking is deficient.

In particular, docking calculations on the same systems to which the fully developed

JAFS functionality has been applied, will be presented towards the end of the thesis.

This will provide some direct comparisons.

Second, as will be explained shortly, the limits on what is called docking and

scoring are not necessarily as neat as one could imagine. While the most tradi-

tional docking and scoring methodologies can be clearly encompassed under this

nomenclature, we can find techniques which are on the limits of what can be con-

sidered docking and scoring. In fact, depending on how we choose to interpret the

definition of these terms, the method developed in this thesis can be considered

as a docking method. It is hence important that we understand the basic idea

underlining docking and scoring.
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3.2.1 Concept

In their most basic form, docking and scoring techniques could be described

as computational methodologies which aim to obtain the most favourable binding

configuration of small molecules to a target macromolecule, as well as ordering

these small molecules by their affinity towards this target. While this is the basic

idea, docking and scoring are terms generally applied to those methodologies which

can be used in the context of studying a large number of small molecules within

limited computational time. In its most typical expression, this would refer to

ligand screening within a drug discovery context.17,117–119

Docking

Docking and scoring are commonly used in the pharmaceutical industry and

related research. Docking techniques are those employed to obtain the preferred

binding configuration of small molecules (ligands), to a (generally protein) target.

Scoring functions are intrinsically related to docking protocols as judges of the

binding affinity of each configuration (score). Most common docking protocols

may be divided in to two different stages. During the first stage, docking as such is

taking place, and a set of potential binding configurations are produced as output.

During the second stage, the scoring function of choice is applied on the generated

poses. As a result the most favourable binding configuration is selected. Notice that

this two-stage definition implies different scoring functions may be combined with

the same docking approach (with one scoring function used for pose generation and

a different one for pose scoring). For the first stage, in principle, a thorough scan

of the whole configurational space of the ligand within the binding cavity would be

applied. This would however, be far from optimal, exploring non-relevant regions

and providing the scoring function with a large set of binding modes, most of

which will be highly unfavourable. To select sensible binding configurations and

pass them to the scoring function, different docking algorithms are applied. Some

examples are highlighted below.120

� Filtering strategy, where an extensive set of configurations of the ligand are

filtered initially by their shape complementarity to target, subsequently ap-

plying further filters based on pharmacophores or scoring functions.121
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� Monte Carlo based strategy, where random perturbations are applied to the

ligand, and then the ligand configurations are subject to minimization meth-

ods.122

� Simulated annealing, where the ligand starts in an initial random configura-

tion and at “high temperature”. Changes in the configuration of the ligand

are then attempted, where the probability of keeping the new configuration

is related to the difference in their affinities (estimated by scoring functions)

and the current temperature. The temperature is decreased throughout the

process, making the acceptance criteria more restrictive, hence forcing to keep

only configurations with high scores.123

� Genetic algorithms, where an initial set of candidates are generated ran-

domly, which then evolve through selection, recombination and point muta-

tion. Genetic algorithms can be used directly or combined with minimization

techniques.123,124

� Incremental ligand construction, where a ligand core is selected and initially

docked in the binding cavity. Successive ligand moieties are docked, bonded

to the correct atoms of the ligand core (or previously placed moieties), sam-

pling the different conformations of each moiety upon placement.125

Scoring

While, as seen above, scoring is intrinsically linked to the docking process,

it can also be conceived as an independent tool to rank either different binding

configurations of a particular ligand, or different ligands, to a particular target

protein. Scores assigned to each ligand or binding configuration are measures of

their binding affinity towards the target.

The concept of free energy and how to calculate it in an accurate manner

computationally will be presented in section 3.6. Suffice here to say that, taking all

relevant factors into account correctly, the ligand, or configuration, with lowest free

energy of binding towards the target is, by definition, that which must be found

most frequently bound to target. However, the accurate calculation of free energy of

binding is computationally expensive. The application of this accurate calculation

of free energy to a large number of ligands or bound configurations would take
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the whole process out of the scope of feasible time which can be invested within

the early stages of drug development. For this reason, scoring functions are used.

These are approximations of the accurate calculation of free energy of binding for a

particular ligand or binding geometry, usually applied to rigid binding geometries

(hence missing the entropic term, see section 3.6). The different types of scoring

functions will be summarized in section 3.2.2.

3.2.2 Different Approaches of Docking and Scoring

Types of Docking

There are different classification strategies for docking methodologies. Here, we

will present a classification of docking based on the relationship between the ligand

and protein structure used. Note that another common option is to classify docking

techniques depending on the flexibility (sampled degrees of freedom) applied to

both ligand and target.

Based on the relationship between the ligand and the target protein conforma-

tion, docking can be divided into the following categories:89,126

� Native docking. A docking experiment is considered native docking when

the ligand is docked against the conformation of the protein to which that

particular ligand is bound. This is the type of docking performed when the

conformation of a protein is obtained from a co-crystal of the protein and

a particular ligand, and that same ligand is the re-docked into that protein

conformation. In this case, the ligand bound configuration is known (the

crystal structure is considered to be equivalent to that adopted in vitro and in

vivo). This kind of docking is often performed to validate docking protocols,

comparing the results of docking against the known crystal binding modes.

� Non-native docking. Non-native docking is performed when the target protein

is found in a conformation which may be different (to some unknown degree)

to that which is adopted upon binding of the studied ligand. This is the case

when the target protein is taken from the structure obtained when bound to

a different ligand, or to no ligand at all (apo structure). This is the most

common case for realistic docking situations, where the binding geometry of

the ligand is unknown (no structure of the ligand bound to the protein is
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available). In most cases, several ligands will be docked to a single protein

structure which may not have been obtained from a structure bound to any of

them. Most real docking experiments are performed under these conditions.

� Ensemble docking. Ensemble docking is a docking approach developed to

account for receptor flexibility and / or increase the success rate from non-

native docking to a single structure. It consists on docking the ligand of

interest to a set of structures of the target protein, rather than a single

one. While commonly, none of the target structures will have been obtained

from the complex with the ligand being studied, the results obtained are still

generally more favourable than those obtained with non-native docking.89,126

As should be clear from the explanation above, a problem may arise in the assess-

ment of the docking methods when analysis and assessment of the results obtained

is not careful.89

Types of Scoring Functions

It is important to note that different classes of scoring functions perform better

for different target proteins. In some cases, this is related to the functions being

parametrized for proteins similar to the target. The selection of the correct scoring

function for the particular target in hand is often problematic, and one of the

important challenges present in docking and scoring.118

The different types of scoring functions differ in the approximation used to

estimate the binding affinity of ligands (or binding geometries) to the target pro-

tein. Typically, three types have been used within the literature (namely force-field

based, empirical and knowledge-based) which may be combined in the consensus

scoring approach.17,127 The classification presented is in an updated form128 re-

viewed to fit to widely accepted categories. In the cases where the new classification

is used, the equivalent traditional naming will be provided as well. The different

categories of scoring functions are shown below:

� Force field based scoring functions. These scoring functions rely on force

fields (see section 3.4) to calculate the interaction between the the ligand

configuration and the target protein. While force fields are used in molecular
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mechanics simulations to calculate free energies (see below) when being ap-

plied to one unique binding configuration, the resulting value is the potential

energy of binding the ligand in that particular pose from the gas state. Im-

plicit solvent models can be used to obtain the potential energy of binding

from solvent rather than gas (more representative of the real binding pro-

cess). However, free energy (see section 3.2.1 and section 3.6) can never be

obtained from a single configuration, and the potential energy of binding to

that exact configuration is obtained instead. These scoring functions tend to

be computationally more demanding than other types, while their ability to

capture previously unseen (or uncommon) and non-intuitive interactions is

higher than for alternatives.

� Empirical or regression-based scoring functions. These scoring functions are

based on the choice of intuitive energy terms, both favourable interactions

(such as hydrogen bonds and lipophilic interactions) and penalties (such as

steric clashes) which define the basic energy function. This energy function

is then “trained” using a training set of known affinities, and coefficients are

fitted for each of these energy terms. The value of each of these energy terms

for each ligand-protein configuration is calculated when applied to any new

case, multiplied by their coefficients and added to obtain the global score.

These are generally faster than force field based methods, and easy to modify

by adding new relevant terms and re-fitting against a training set.

� Knowledge based scoring functions. The scoring functions that fall within

this category study the distance between different atoms types within a large

training set of binders to protein targets. The atom types here are degenerate,

depend on the chemical environment of the atom, as well as its chemical

type. When the scoring function is to be applied to a new case, the atoms of

the system are classified within these degenerate atom types. The distances

between atom types are then calculated. When atom types in the system are

found close together which correspond to atom types which have been equally

found close among the training set, a favourable factor will be included in

the score. A negative factor will be applied to the score when atoms found

close in the system where not so within the training set.
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� Machine-learning based scoring functions. In traditional classifications this

category may fall within knowledge-based scoring functions. In this new cate-

gory defined using modern classifications,128 a large number of descriptors are

chosen to account for the protein-ligand interactions. Then, machine-learning

techniques are applied on a training set and generate statistical models to de-

rive the final models for ligand binding affinities, which will generally involve

a selected subset from the previous large pool of descriptors.

As described above, within all but the most pure of the force field based scoring

functions, a training set is used to generate the final functional form of the scoring

function. For all of these, the choice of training set may have a big influence on

the results obtained for the estimate of binding affinity. In some cases, specific

scoring functions trained on limited sets of proteins work better for studies on

those particular families of proteins. On the contrary, diverse training sets are

ideal to generate scoring functions which can be applied to any system of interest.

3.2.3 Docking and Scoring in the Context of FBDD

The docking and scoring methodology explained within this section is commonly

applied in the drug discovery process. While often results are not optimal, an

enrichment of binders is obtained among ligands with highest scores (estimates of

their binding affinities), and non-binders are most common among those with low

scores.

As explained in section 2, fragments are a specific type of ligand, and due to

their small size, their behaviour compared to bigger (drug-sized) ligands may differ.

It is logical to presume that, due to the smaller affinity linked to the smaller size

of fragment molecules, the capability of differentiating between the affinity of a

binding fragment and that of a non-binder using scoring functions may be lower

than that on drug-sized molecules. Studies have been performed on the difference

in docking and scoring performance between fragments and bigger ligands, whose

outcomes seems to contradict the common thought that molecules of lower affinity

should perform poorly in docking studies (see section 2.4.1).88
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3.3 Molecular Mechanics

We can understand molecular modelling as the capacity to represent a real

system at the molecular level (chemically) in silico (computationally). Given this

definition, molecular mechanics (MM) refers one of the levels of accuracy available

to molecular modelling representations.

Working in the realm of molecular mechanics implies accepting the Born-

Oppenheimer approximation. It is known that the displacement of electrons is

much faster than that of the nucleae. Electrons are then considered to adapt

instantaneously to any change in configuration of the nucleae. When studying in-

teractions in molecular mechanics, hence, the only positions considered are those

of the nucleae (atomic positions), with the distribution of electrons around each

nucleus considered constant.129

In particular, molecular mechanics encompasses representations of the system

where molecules may sample different configurations, both internally and with re-

spect to one another. However, they are not allowed to change their composition:

bonds cannot form or break. In molecular mechanics simulations, energies are cal-

culated between each component atom (or bead) of the system based on a force field

(see section 3.4), where the energy is determined by a given functional form and a

set of associated parameters. Neither the functional form nor the parameters are

typically based on theoretical first principles. A functional form is provided which

determines the behaviour of the components of the system, and the associated pa-

rameters are fitted to either experimental data, or calculations from first principles

(quantum chemistry).

As for any of the molecular modelling techniques, the aim of molecular mechan-

ics is to represent the real system as accurately and efficiently as possible (where

the trade-off between efficiency and accuracy applies). The difficulty of represent-

ing a real system at the molecular level with the (fairly) accurate energy estimation

provided by force fields is two fold: it relates to size of the system and time scales

available.

When events are studied experimentally, a large number of molecules are stud-

ied at the same time. Even for an uncomplicated system, such as a solution of

glucose in water, a big number of glucose and water molecules will be present

within any measurable amount of the system. In a similar fashion, without the
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use of special techniques, it could be said that the fastest changes observable to

the systems studied experimentally are those occurring in the order of seconds. In

the subsections below, the difficulty of representing these volume and time scales

typically used in experimental measures will be explained.

3.3.1 Sampling the Correct Configurational Ensemble

In molecular mechanics, every single particle in the system is represented at

the molecular level. This involves, if we were studying simply water (assuming

a molarity of water of 56 M), for every millilitre of experimental sample, within

molecular mechanics, roughly 5.6x1022 water molecules would have to be simulated.

Now let us assume we wanted to calculate the total interaction energy generated

according to our force field for such a system. Assuming that we need to calculate

the interaction between all water molecules present, we would face the calculation of

roughly (5.6x1022)2 interactions — actually (5.6x1022)2−5.6x1022 or ((5.6x1022)2−
5.6x1022)/2, assuming only one interaction point per water molecule. While the

most common functional forms involved in force fields will be presented in section

3.4, these numbers probably serve as an indication of why the size of systems as

they are simulated with molecular dynamics (or indeed most molecular modelling

techniques) will be much smaller than that of experimental systems.

For the reasons exemplified above, systems modelled using molecular mechanics

represent a small section of those seen experimentally. When a solvated ligand

is simulated with molecular mechanics, typically, only one copy of the ligand is

present, surrounded by water, in the simulation. However, the properties of this

solute, as studied experimentally, will correspond to the ensemble average of the

properties presented by all different copies of the ligand, with their corresponding

different configurations (given a flexible ligand). How can one single copy of the

ligand accurately represent the properties of the ensemble of configurations present

in solution at one given time?

In statistical mechanics, the ensemble of configurations adopted through (sim-

ulation) time by the single copy (or few copies) of the system simulated is replaced

by the ensemble comprising the different copies of the system present in an exper-

imental setting at any given moment. For these two ensembles to be equivalent,

we must make sure that, throughout the simulation, the most favourable states of
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the system are sampled more frequently (and in the correct proportion), just as

experimentally there will be more copies of the system in its most favourable states

(Ergodic hypothesis). In summary, we must sample the free energy landscape (see

section 3.6) of the system in an accurate and efficient manner.

In particular, both the experimental and computational ensemble must corre-

spond to the Boltzmann ensemble, where the probability (p) for each configuration

fulfils the Boltzmann law in equation 3.1.130

p ∝ e−E/kBT (3.1)

where E is the energy of the configuration, T the temperature of the system and

kB is the Boltzmann constant.

Both sampling methods explained in section 3.5 follow different procedures to

ensure that this rule of probabilities is fulfilled. Each of the procedures will be

explained in the corresponding section below.

3.3.2 Time Scales Available

In a similar fashion to the limitations in the size of the simulated system, in

molecular mechanics there are limitations to the time scales available to the sim-

ulation. Before explaining the time limitations it is important to clarify that not

all sampling methods directly account for a representation of real-life time within

the simulation. While the reasons for this will be further described in section 3.5,

molecular dynamics does produce an output which represents a particular time

length of the experimental system, while Monte Carlo methods do not. In princi-

ple, sampling with both methodologies, using equally optimized software packages

should be identical for infinite simulations. The reasoning will be applied here to

lengths simulated by molecular dynamics simulations, but they should be concep-

tually applicable to both sampling techniques.

Let us start by clarifying the concept of limitations in time scales available. It

is important to recognize that no conceptual limit exists, in principle. If we could

leave one particular simulation running for an indefinitely long period of time within

a particular computational engine, there is no theoretical reason why that system

could not be simulated for any time length required. When we talk about the limits
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to available time scales, often the phrase within reasonable simulation time, or in

this case, within reasonable computational time, appears. The idea transmitted

would be that there are limits to the time sampled by the system with molecular

mechanics, if we are to run a simulation within reasonable computational time.

This within reasonable computational time is a subjective measure, but clearly a

simulation must not run take longer to run than a researcher takes to finish a

project!

But what are the limits on the simulation time available? These limits will de-

pend on the level of molecular representation (further explained below). Focussing

on atomistic simulations of proteins, the longest simulations currently reach the

order of milliseconds of sampled simulation time.131,132

Let us address now the issue of why are simulations so “slow” compared to

real life events. This explanation is similar to that of the previous section, related

to the limits in the size of the simulated section of the system. By reducing the

size of the simulated system, we have decreased the number of interactions (and

internal) energy components to calculate. However, within a simulation, every time

a change is generated in the system, these energies (at least some of them) will

have to be re-calculated. The energy calculation takes computational time, which

may be diminished by increased computational power. While the calculation of the

energies often takes up a good part of the computational time of the simulation, we

should not forget that every single requirement is a computational task that takes

up time. In Monte Carlo simulations (see section 3.5.2), random numbers must be

generated, sets of conditionals must be checked to decide what will exactly happen

in the next step, to proceed, statements need to be evaluated to be true or false. In

molecular dynamics (see section 3.5.1), velocities and forces must be calculated as

well as energies. In both cases, coordinates of the system will have to stored, files

printed out, some may need to be read. Every single one of those processes will take

computational time, making it difficult to imagine for computational simulations

to happen as fast as their real life counterparts.

3.3.3 Exploring the Free Energy Landscape

As seen in sections 3.3.1 and 3.3.2, simulations cannot sample an unlimited time

scale and are limited in the size of the system they can represent. Nevertheless, we
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still aim to represent accurately the real system, where we are capturing an aver-

age over a much larger system size and the difficulty in time scales often relates to

capturing fast events, rather than being faced with too short lengths. Simulations

and experiments are connected by the Boltzmann distribution, which simulations

in the canonical ensemble (NVT, see section 3.5.3) must follow provided that suf-

ficient system configurations are sampled. The key resides in equation 3.1 and the

Boltzmann law. Both experiments and computational simulations must follow it.

Accordingly, both sampling methods explained in section 3.5 will make sure that

it is fulfilled — as far as enough simulation time is provided to sample all relevant

system configurations.

Note that equation 3.1 provides the probability of a particular energy state.

The Boltzmann law will not provide the configurations of the system, but given

a configuration, its associated energy can be calculated, and the Boltzmann law

will indicate how likely that energy state is. These possible configurations must

be found in some other way, and the sampling methods that will be presented in

section 3.5 take care of that. Any sampling method could theoretically be used to

generate hypothetical configurations for the simulated systems. All atoms within

the system could just be placed in random positions within a range of simulation

dimensions. However, we can see that, in most cases, this will generate atoms

which should be bonded to appear far away within the simulation box. While the

manner in which energies are specified will be explained in section 3.4, it is intuitive

to assume that such a configuration will be associated with a high energy (will be

unfavourable) and hence your system will be unlikely to adopt it.

Intuitively, we have started to draw a free energy landscape. The free energy

landscape is nothing other than an imaginary multidimensional surface which rep-

resents the energy associated with each configuration of the system. The lowest

free energy states would be those sampled more frequently.

Notice that we talk about the free energy surface, but we have described an

analysis of the energy (enthalpy) of the system at each particular state. In molecu-

lar simulations, the entropic term (see section 3.6) is taken into account implicitly,

where wide wells within the landscape represent states of the system with higher

entropy, that is, which can adopt a larger number of similar configurations without

big changes to their energy. For an equivalent enthalpy (depth in the landscape)
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the wider wells (higher entropy) will be sampled more frequently (will be more

favourable, lower free energy), simply due to more conformations being available.

An important factor to note in the description of free energy landscapes is that

the height in the energy corresponds (for equal entropy) to a lower likelihood of the

system present in that state. While the manner in which new configurations are

generated differs between sampling algorithms (section 3.5), to avoid generating

completely unlikely configurations as in the previous example of bonded atoms

ending up far apart, new configurations are generated based on previous ones, and

hence the free energy landscape is sampled starting from one initial configuration,

moving in a particular direction, but never going too far with every step. This way,

the system will be unlikely to proceed out of its local minimum, while a deeper and

/ or wider well may be available elsewhere in the landscape. This is the problem

of trapping the system in local minima, while the properties of the system will be

determined by all low energy configurations of the system.

This is a known problem within molecular simulations, where the system can get

trapped and it is conceptually impossible to know whether all the required energy

landscape has been sampled. Approximations to this assertion can of course be

made, and we tend to consider a simulation has sampled enough when we succeed

in matching experimental results and / or when several simulations, started from

different points within the energy landscape provide the same results.

3.3.4 Levels of Molecular Representation

Until now we have made general references to the representation of the sys-

tems, and implicitly referred to the classical mechanics representation of “balls

and springs” as representation of atoms and bonds, respectively. Throughout this

project we will remain within the realm of classical mechanics, where covalent

bonds are treated as ideal springs that cannot be broken. However, even within

the realm of molecular (classical) mechanics, different representations of the sys-

tems are common, which diverge in what exactly the balls and springs represent in

the system.

It must be noted that the expression “balls and springs” is an over simplification

of the representation of the system. In practice, every “ball” is associated with

a set of parameters and mathematical formulae that define its interactions with
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other non-bonded “balls” and each “spring” corresponds to sets of parameters

and mathematical formulae that control the interactions between specific bonded

“balls”. These parameters and mathematical representations will be explained in

section 3.4.

Possibly the most intuitive representation of systems within classical mechan-

ics is what is commonly known as atomistic representation. In (strict) atomistic

simulations, every atom of the section of the experimental system that we are in-

cluding in our computation will be represented by a ball, and all bonds between

these atoms will be associated to springs. This is also the representation that will

be used throughout this thesis.

Some other representations can be found which do not fulfil this definition but

are still often referred to as atomistic, however, one might argue they are not strictly

atomistic.

Among those above we may find what is commonly known as united atom rep-

resentations.133 In these, non-polar hydrogens (generally those bonded to carbon)

are not included directly in the simulations but implicitly taken into account when

describing the ball (parameters) associated to the carbon atom. This is generally

considered a fairly safe approximation, since the behaviour of non-polar hydrogens

is not expected to change much throughout a molecular mechanics simulation.

We have just described how two or more atoms (particularly carbon and one

or more bounded hydrogens) can be described as one unique ball and hence be

encompassed within one unique set of parameters, which will be behave as a unit

throughout the simulation. When this is applied beyond non-polar hydrogens, this

is commonly called Coarse Grained representation and balls are here called beads.

The level at which a system is coarse grained can vary from a representation of

an aromatic 6 atom ring with three beads, to representing a full protein residue

with one unique bead, or even greater.134–136 The difficulty with coarse grained

representation is often in determining the correct parameters that must be asso-

ciated with each bead and their respective bonds, and these might have to be

determined specifically for each simulated system. General parametrizations are

available, which require associating each of the beads within a system to a partic-

ular bead type, based on properties such as hydrophobicity and charge,134 but the

accuracy of the system representation using these is not necessarily expected to be
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as good as in the cases where specific parameters for the beads in each particular

molecule are generated.

Specific concepts of representation within classical mechanics refer to the sol-

vent. While solvent (commonly water) molecules are most often represented just as

any other molecule in the system (either atomistic or coarse grained) this does not

need to be the case. Alternatively, the solvent can be represented as a continuum,

with an independent mathematical formulation. This representation is commonly

referred to as implicit solvent, as opposed to an explicit solvent representation

(where the solvent molecules are treated as any other molecule in the system).137

All these alternatives to the fully atomistic representation of the system reduce

the degrees of freedom to sample (there are fewer configurations available to the

system when this is represented by a fewer number of balls), reducing as well the

computational expense associated with energy calculations (fewer balls correlates

with lower number of computations for the interactions between them). These

two factors will increase the sampling speed, making it less likely that the system

gets trapped within an energy well for a long simulation time. The free energy

landscape effectively becomes smoother.138

3.4 Force Fields

Force fields can be defined as the tool employed in molecular mechanics sim-

ulation to calculate the energy of the system at any given configuration. Force

fields take the positions of every atom (or bead) in the system, and generate an

estimate of its potential energy, taking into account both intra and inter molecular

interactions. The energetics are usually calculated pair-wise, so that to calculate

the potential energy of each atom (or bead), its interaction with each other atom

(bead) of the system is considered individually. As far as our current explana-

tion is concerned, the interactions of each two atoms will then be added to result

in the total potential energy (pair-wise additive force fields, see section 3.4.3 for

exceptions).

Force fields encompass a functional form and a set of parameters, which are

used to calculate this potential energy. In some circumstances, however, the term

“force field” can refer to the set of parameters exclusively.

The functional form tends to be applicable in the same manner to all molecular
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and atom types. The interactions between different atom types differ in their energy

values thanks to the application of different parameters to the same functional

form. These functional forms may differ between different force fields (see below).

Functional forms contain different terms, each representing an energy component.

Each of these terms is a mathematical approximation to the shape of the graph

generated when plotting that energy term for any given pair of atoms (or beads)

as a function of geometry (a particular geometry value, such as distance or angle,

depending on the component of the energy measured).

Figure 3.1: Simple model example of a

system to run in molecular mechanics,

where each sphere represents an atom and

every cylinder a covalent bond.

Once the functional form is decided,

the parameter sets for each atom and

molecular type are calculated by fit-

ting the functional form to experimen-

tal data or rigorous simulations (atom-

istic force fields will often be fitted

to quantum mechanical calculations,

while coarse grain ones may be fitted

to atomistic simulations). While func-

tional forms may vary between different

force fields, some common traits can be

extracted (see section 3.4.1), and gen-

erally the functional forms remain un-

changed between different versions of

the same force field family. Parameter sets, however, often change, and parameters

for new interactions not previously considered may be included. The functional

forms are included within the source code of the software packages used to run the

simulations, while parameter sets are generally included as external files, so that

new versions of the sets of parameters are easily applied to new simulations within

the same software.

As mentioned above, the interaction energy of a particular atom with its envi-

ronment, as calculated by force fields, will be dependent on its atom type and those

of the atoms around it. Here, “atom type” refers to a degenerate typing, where

the type of every atom is defined by its chemical type (carbon, hydrogen...) and

its chemical environment (a carbon within an aromatic cycle will commonly hold a
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different atom type than that of a methyl group). For the application of any force

field to a new system, a process of atom assignment must take place. In most force

fields, the atom type assignment of macromolecules will be done automatically

(often through some provided tools) from the structural file of the macromolecule

(generally in the pdb format). Owing to the huge diversity and variability of small

molecules, the process of atom assignment is often more complex. The decision

may have to be taken by the user, given a description of all possible atom types,

where a comparison with the chemical structure of the small molecule is expected.

In some cases, however, the process has been automated, and a tool or script is

provided with the force field (or is available on-line). Further information on this

point will be given, for our particular choice of force field, in section 3.4.2.

Below, a comment on the most common functional forms and frequently used

parameter sets will be presented. Besides explaining the concepts, reference will be

made to some of the most common and early classical force fields used in biomolecu-

lar simulations, namely AMBER,139,140 CHARMM,141,142 OPLS,143,144 and GRO-

MOS.133,145 These force fields have been modified (improved) from their original

development,146–148 and references to these modifications may be found as well.

3.4.1 Functional Forms

Functional forms of force fields are generally divided into the different energy

contributions, with their associated parameters. Energy contributions are typically

divided in two groups, depending on whether the two interacting atoms are con-

nected by up to three covalent bonds. When the two atoms of interest are within

three bonds of each other the “bonded interactions” are taken into account, and

the “non-bonded interactions” may be scaled or not present. If two atoms are not

linked by three or fewer bonds, no “bonded interactions” are accounted for, nor is

there any scaling applied for the “non-bonded interactions” (generally, for further

details see section 3.4.4). By looking at figure 3.1, when calculating energies be-

tween atoms A and either B, C or D, the bonded interactions would have to be

considered, but not for those of A with either E, F, X, Y or Z.

For the non-bonded interactions there is a consensus of including two major

terms, representing the van der Waals and electrostatic contributions. However, less

consensus is present within the bonded interactions. While it is commonly accepted
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that bonded interactions include terms representing bonds, angles and dihedral

angles, further terms are often added to these three basics. In this section the

common elements within most well-known force fields will be presented, with their

mathematical representations. Some of the alternatives implemented in common

force fields will be mentioned as appropriate.

Bonded Interactions

Common terms within the bonded interactions include bond, angle and dihedral

terms, which, in figure 3.1, would be calculated between atom A and B (bond), C

(angle) or D (dihedral angle).

Bonds

The energy of two atoms connected by one bond (i.e. A and B in figure 3.1) is

commonly calculated following equation 3.2.

Ubond =
∑
bonds

kbond(r − r0)2 (3.2)

which represents a harmonic spring. The parameters to be fitted are to kbond, the

force constant, and r0, the distance of null potential energy for the spring. r is then

the current distance between the two bonded atoms and Ubond the contribution to

the total potential energy of all bond interactions.

Representations of this energy term with a different use of exponents on the

interatomic distances can be found.149 Representations where kbond is divided by

a constant also exist,149 however note that the division (or multiplication) by a

constant may well be contained within the value of kbond, as kbond is simply a

parameter.

Angles

The most common representation of angle (also called bond-angle) interactions,

between atoms separated by two covalent bonds (i.e. atoms A and C in figure 3.1)

is shown in equation 3.3.

Uangle =
∑
angles

kangle(β − β0)2 (3.3)

which, as can be seen, represents a harmonic spring, where kangle is the force
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constant and β0 the equilibrium angle for the spring at null potential energy. β is

the current value of the angle and Uangle is the contribution to the total potential

energy of all angle interactions. This representation is common in AMBER,150

CHARMM,151 and OPLS.144 However, a completely different representation can

be found within GROMOS force field.149 Just as previously mentioned for bonds,

note that the division (or multiplication) by a constant may well be contained

within the value of kangle, as kangle is simply a parameter.

Dihedral Angles

Dihedral angles, also called torsion angles, are most commonly represented by

equation 3.4. These interactions would be calculated between atoms A and D in

figure 3.1.

Udihedral =
∑

dihedrals

∑
n

Vn
2

(1 + cos(nω − γ)) (3.4)

where the parameters are Vn, often called the barrier height, n, the multiplicity,

and γ, the phase angle. Vn gives an indication of the height of the energy barrier

between minima as the torsion angle rotates. n is a measure of the number of

minima through the 360° rotation of the dihedral. γ controls where each of the

minima are located.129 In the equation, ω is the current value of the dihedral

angle and Udihedral is the contribution of all dihedral angles to the total potential

energy of the system. Again, this is a common representation in AMBER150 and

CHARMM.151 In OPLS, a similar form to that of equation 3.4 is used, but signs and

coefficients diverge from those in the equation above as well as between different

values of n (multiplicity).144 A different representation is found in GROMOS.149

Extra Terms

While the terms for bond, angle and dihedral angle are similar and often the

only ones included within bonded interactions in force fields, some force fields

add extra terms to account for specific interactions. A particularly common extra

term is the improper dihedral term, also called out-of plane. It can be found in

CHARMM151 and GROMOS149 force fields (in force fields where this term is not

defined, out of plane motions are specified using the dihedral angle term). Improper

terms are used to keep four atoms in a specific configuration. An example would

be maintaining the planarity of hydrogens bound to aromatic carbons.

Some force fields add a number of extra terms. This is particularly characteristic
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in force fields such as MM3.152–154 As an example, in this force field, terms linking

the sampling of angles with bonds (stretch-bend interactions), bonds with dihedral

angles (torsion-stretch interactions) and angles with dihedral angles (torsion-bend

interactions) are present.152

Non-bonded Interactions

Non bonded interactions are typically represented as van der Waals and elec-

trostatic terms. Regarding their mathematical implementation, some variations

can be found (such as in the van der Waals representation of the AMOEBA force

field155), but again the representations shown below are more common.

Van der Waals

The most common representation of the van der Waals interactions between a

pair of atoms is the Lennard-Jones potential. Its formula is shown in equation 3.5.

UvdW =
∑
ijpairs

4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

(3.5)

In the equation, σ and ε are the parameters to be fitted. ε is called the well

depth and measures the how low is the energetic minimum of the van der Waals

interaction between two particular atom types. σ is the distance at which the

energy is zero for a particular pair of atoms, or “contact distance”. In certain

implementations, the equation can be expressed in terms of r0 rather than σ, where

r0 is the distance between two atoms at which their van der Waals interaction

energy is minimum. rij is then the current distance between both atoms (i and

j) and UvdW the contribution to the total potential energy by the van der Waals

interactions of all atom pairs.

Electrostatics

In pairwise additive force fields (see 3.4.3), the representation of the electrostatic

interactions is made using the coulombic expression, as shown in equation 3.6

Uij ele =
∑

ij pairs

qiqj
4πε0rij

(3.6)

where Uij ele is the contribution to the total potential energy of the electrostatic

interaction of all atom pairs, qi represents the charge of one of the atoms in the
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pair and qj that of the other atom and ε0 is the permittivity of free space.

It must be understood that not only molecules with net charge will present

electrostatic terms in their interactions. Most atoms, as defined by non-polarizable

force fields (see section 3.4.3), will present partial charges, which must add up

to the net charge of the molecule of which they are part (often zero). This is a

computationally simple representation of molecular multipoles.

3.4.2 Parameter Sets

In section 3.4.1, the most general functional form of common force fields in

biomolecular simulations has been presented. However, force fields are a combi-

nation of their functional form and the associated parameters for each atom type,

or combination of atom types. In this sections some generalities of the parameter

sets will be described and some of the most common available parameter sets for

biomolecular simulations will be mentioned highlighting their main focus or some

specific characteristics.

Within the parameter sets of a force field the data provided is generally divided

in two sections:

� The list of atom types (and atom type combinations) with their associated

parameters.

� The assignment of each atom in the simulated system to the most suitable

available atom type.

The list of atom types may be identical for all molecules in the system but each

simulated molecule must then present associated information regarding which atom

type is associated to each of its atoms.

Assignment of Atom Types

The second part of the required information, the association of the molecule’s

atoms with the atom types differs between molecules which are common to bio-

logical systems and hence expected to appear very frequently in simulations, and

those which are specific to a particular simulation (such as system specific biological

ligands or drugs).
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Some molecule types are expected to appear very frequently in our simulations,

such as waters and proteins, common ions like sodium or chloride, as well as, in

some cases, other biomolecules like lipids or nucleic acids. It is to be expected that

every time a protein is run in any simulation with one particular force field, the

same atoms within a particular protein residue are associated to the same atom type

within the force field, independent of the particular protein in which the residue

is located. A similar reasoning can be applied to water. Identical assignment of

atom types is then expected every time for either identical molecules run very

frequently (i.e. waters) or polymeric molecules, whose atom type assignment must

be based on their common monomers (proteins). To avoid the performance of

repetitive tasks and provide a consensus on atom type assignment, the information

on the assignment of atom types for commonly simulated molecules is generally

provided and packaged together with the list of available atom types and their

related parameters.

A different case is that of molecules which are not present in most simulations,

nor are they polymers of common monomers, such as system specific ligands (small

molecules). The atom assignment in these cases must be done on a per case basis,

and it is often a non-trivial task on which the accuracy of the simulation rests.

There is thus a level of expertise required which slows down the process of sim-

ulating new systems. To avoid this problem, automatic protocols are available

which computationally generate a guess on the optimal atom assignment for any

molecule.156–158 While it is always advisable to inspect and verify the generated

results, these automated methods provide the consistency that human decisions

cannot and tend towards the black-box approach (see section 3.1) that we favour

in this project.

Just as the atom assignment differs between biomolecules and small molecules,

so does the list of atom types and their associated parameters. While there is no

particular reason why all atom types could not be included within the same file,

it is common practice to separate force fields into their standard (often protein

based) and general (associated to small molecules) force fields.159,160 In the same

manner, solvents are often provided as a separate “force field” (commonly referred

as models). While the general force fields are commonly generated to be compatible

with a specific standard (macromolecular) force field, solvent models are often
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shared between different standard force fields. In particular, for the most common

case of water, often macromolecular force fields are developed using a few of the

available water models, and it is most optimal to perform simulations with the

same combinations used during development.

Atom Types and Their Associated Parameters

The parameters per se provided in the parameter sets are associated to spe-

cific atom types or their combinations. It is important to remember here, as it

has been previously noted (at the beginning of section 3.4 and equivalent to that

described in section 3.2.2) that the atom types we are referring to here are degener-

ate, they describe both the chemical identity of a particular atom and its chemical

environment, which influences its chemical properties.

It is important to remember that it is the set of parameters that has been

fitted to either theoretical or experimental data, and hence combination of different

parameter sets within a simulation is strongly discouraged.

Regarding the parameters required for the non-bonded interactions, it must

be noted that, while for the electrostatic interactions (see equation 3.6) individual

terms are included for each atom (namely qi and qj), for the van der Waals inter-

actions (see equation 3.5), unique terms are included for the interaction between

two atoms. However, in the parameter sets, individual terms are provided for each

atom type. Consequently, a combination of the parameters must be undertaken.

This combination is performed following certain combining rules. Note that two

different parameters must be obtained to include in the van der Waals equation,

σ and ε (see equation 3.5). Two different sets of combining rules are most com-

monly found. The first set of rules is known as the Lorentz-Berthelot combining

(or mixing) rules, where the σ for a pair of atoms A and B is obtained as the

arithmetic mean (see equation 3.7), while the epsilon for the same two atoms is

obtained as the geometric mean (see equation 3.8). Alternatively, both parameters

can be obtained with the geometric mean of the individual atom parameters. Note,

in equations 3.7 and 3.8, the AA and BB indices indicate the parameters of atoms

A and B respectively, which would be used directly for an interaction between two

56



atoms of the same species.129

σAB =
1
2

(σAA + σBB) (3.7)

εAB =
√
εAAεBB (3.8)

The parameters associated with the bonded functional forms (see section 3.4.1)

are generally assigned to the groups of atoms involved in a particular interaction,

rather than defined for individual atoms and then combined, as is the case for

van der Waals interactions. Notice that this limits the number of possible bonded

interactions between atom types to those defined in the force field, and while these

definitions are generally wide, it can be the case of a particular bonded interaction

which lacks the required parameters in the force field. The parameters assigned to

each non-bonded interaction will vary depending on the functional form of choice

for each particular force field.

Different Force Fields

As mentioned previously, every force field must provide a functional form or

mathematical expression of the interactions, and a set of parameters to specify

and distinguish interactions between different atoms. While the functional form is

rarely changed, due to required changes into all software using the force field as

well as a complete re-parametrization, the parameter sets are quite often changed,

or simply an additional small set of parameters is provided as a complement.

Commonly, at any one given moment, several versions of any particular force

field are being used in different projects, due to preference or simply for legacy

reasons. Common versions of the Amber force field — the default force field in

ProtoMS and that used throughout this project — are Amber99,147 Amber99SB148

and Amber14SB,161 where all share the same functional form but differ in their sets

of parameters, and where Amber99SB improves a small set of the parameters (in

particular protein backbone parameters) provided in Amber99 (rather than being a

change of parameters in full). Amber14SB is an evolution of Amber99SB, including

slight adjustments to protein backbone parameters and improvement on side chain

terms.161
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While originally certain force fields where developed for particular macromolec-

ular types, nowadays, most of the common force fields provide support for proteins,

lipids and nucleic acids within the same or compatible parameter sets. Similarly,

force fields for small molecules are generally provided as separate force fields com-

patible with one particular macromolecular force field (see above for differences in

atom assignment for small molecules).

3.4.3 Alternative Force Fields

The force fields described so far have been developed for atomistic representa-

tions of the system (see section 3.3.4) and a partial charge based representation of

electrostatics. Different force fields are required for the simulation of coarse grained

systems, of which ELBA162 and Martini134 are two commonly used examples.

Within the same (i.e. atomistic) representation of the system, the manner in

which electrostatics are estimated may still differ. The simplest and most common

approach within biomolecular simulations is to assign partial charges to each atoms

of a molecule, accounting in this manner for molecular dipoles and the different

electronegativity of different atoms. Adding all charges within a molecule must give

the net charge of the molecule. While convenient, this representation does not re-

flect accurately the behaviour of the experimental system, where the proportion of

the electron cloud placed over a particular atom will change with time, depending

on the position of other atoms around it. While the partial charge approximation

often provides satisfactory results, there are some particular cases where an ac-

curate representation of the variation in charge on each atom with time may be

essential, and it could provide a general improvement of results. Examples of these

particular cases are the study of ionizable residues in proteins (particularly those

in binding sites) or the study of biological electron transport processes (such as

photosynthesis).163 This alternative representation of electrostatics is achieved via

polarizable force fields of which AMOEBA155 and the CHARMM-Drude164 force

field are two common examples.

3.4.4 Extra Elements

The basic components of the energy calculation of a system through the use

of force fields have been described above. However, extra terms can be added
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to improve the speed of the calculation or to make sure the system fulfils some

required configurational restrictions.

Restraints and Constraints

The application of restraints and constraints is common within biomolecular

simulations when the position of a particular component of the simulated system

determines the correct representation of the desired state of the experimental sys-

tem. Restraints and constraints may also be used as a requirement of specific

simulation set-ups. The most typical types of restraints and constraints are listed

below.

� Harmonic restraints: A harmonic restraint is sometimes applied to the po-

sition of an atom or centre of a molecule, or a particular (real or artificially

defined) internal coordinate of a set of atoms. A harmonic force is applied

on the restrained variable during the simulation (see section 3.4.1).

� Half-harmonic restraints: A half-harmonic restraint works in a similar fash-

ion to harmonic restraints, but in the case of half-harmonics, a buffer zone

(distance from optimal) is defined which can be sampled by the restrained

degree of freedom without experiencing any extra force. Once the buffer is

exceeded, the forces are applied following the functional shape of a harmonic

restraint.

� Hard-wall constraints: While restraints allow sampling of the affected degree

of freedom by simply adding a force affecting the final energy calculation

(hence modifying the preferred sampled regions), constraints forbid the sam-

pling outside a given configurational region.

In ProtoMS simulations, when droplets of water are used (generally in protein

simulations), half-harmonic restraints are used to maintain the shape of the water

droplet. Besides, within GCMC (see section 3.5.4) and JAFS simulations, a cubic

hard-wall constraint is used to limit the region where molecules must be inserted

or deleted (GCMC) or to limit the sampled area of the JAFS particles.
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Cut-offs

In the cases where simulations are performed with periodic boundary conditions

(that is, the system simulated is assumed to be repeated in all directions to infinity),

given that, in principle, the interaction energy between all atoms in the system

must be calculated, the energy calculations would be performed to infinity, and no

calculation would ever end. Since, obviously, energy calculations must eventually

end so that the simulation can proceed, a cut-off is applied. The cut-off indicates

the maximum distance between two atoms whose interaction energy is calculated.

When calculating the energy associated with one particular atom in the system,

all atoms which fall beyond the cut-off will be ignored.

Within ProtoMS cut-offs are evaluated on a molecular basis (except for pro-

teins, where they are applied on a residue basis). This implies that it will be the

distance between molecules that is measured, rather than between atoms, and all

atoms within molecules which fall beyond the cut-off (as measured from the cur-

rent molecule) will be ignored. The ProtoMS default cut-off of 10 Å with a 0.5 Å

feather is used in all our simulations, where the feather acts over the last part of

the cut-off scaling the energy quadratically to zero, to avoid an abrupt change to

zero which might cause energetic inconsistencies.

It must be noted that calculation of a correction for electrostatics, which may

remain relevant at long distances (beyond the cut-off) are often calculated, while

corrections for van der Waals interactions are also available. However, none of

these terms in applied typically in ProtoMS (nor in any of our calculations). These

corrections will be briefly described here, and the reasons why they have not been

applied mentioned.

The radial distribution function is a measure of the change in number density

of atoms in a system with distance from any given atom in the system.165 As

the distance from any atom in the system increases, the number density of atoms

tends to one for Lennard-Jones fluids.129 If we assume the value of the radial

distribution function to be one in the simulated system beyond the applied cut-off,

the corrections for the electrostatics and Lennard-Jones terms can be calculated as

in equations 3.9 and 3.10 respectively.129 These corrections would be applied as a
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post-processing step after the simulations has finished.

Ecorrection = 2πρN
∫ ∞
rC

r2v(r)dr (3.9)

Ecorrection = 8πρNε[
σ12

9r9
− σ6

3r3
] (3.10)

In equations 3.10 and 3.9, ρ is the number density, rC is the cut-off distance, r is a

measure of interatomic distance, v(r) is the pair potential at a distance r, and the

ε and σ parameters are those found in equation 3.5.

Note that, while cut-offs may be applied to any simulation set-up, they are par-

ticularly relevant when the system is placed within periodic boundary conditions.

In our simulations, periodic boundary conditions are applied to the calculation of

hydration free energies (see section 4.2). Simulating in periodic boundary condi-

tions basically implies implementing the simulations so that the system feels the

interactions provided by copies of itself repeated infinitely in all directions. How-

ever, interaction energies may not be calculated for an infinite number of pair-wise

interactions, hence the relevance of cut-offs.

In this context, long range electrostatics may be treated with the Ewald method.

The Ewald summation is a sum over all electrostatic interactions between the atoms

in the central representation of the system and those of the periodic replicas of

the system in all directions. However, such a sum converges slowly, and hence

the Ewald method describes a path to transform that slow converging sum in

a series of sums that converge much more rapidly. This is done by considering

each charge in the system to be surrounded by a neutralizing charge distribution,

commonly in the shape of a Gaussian. The summation is then performed on such

a system, and it is commonly called the “real space” summation. Subsequently, a

second charge distribution is considered on the system, which exactly neutralizes

the previous one. A summation is then performed to account for the contribution

from this second charge distribution. This is commonly called the “reciprocal

space” summation. The interaction of each Gaussian with itself must also be

subtracted and consequently another term is subtracted to account for this.129

However, the implementation of the Ewald summation is computationally ex-

pensive. Particularly for the case of (our implementation of) Monte Carlo, where
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in each move only one molecule is sampled. Despite this small change in the sys-

tem, the interactions between all particles would have to be calculated each step to

implement the Ewald method. Simplified versions of this implementation, where

the Ewald term is only considered every few number of steps are also a possibil-

ity. Given the high computational cost of the Ewald implementation together with

reasons presented below, it was considered that the benefits provided by the appli-

cation of the Ewald method were not enough to justify the excess in computational

cost of the simulations for the JAFS method.129

While ignoring the long-range electrostatics beyond a cut-off may seem a crude

approximation, studies have been done in the group166 which show the ranking of

small neutral compounds in terms of their hydration free energies is not expected

to be affected by ignoring long-range electrostatics. Since the interest in the JAFS

protocol when estimating affinity is that of the relative affinity between different

compounds and their ranking, it was considered safe to ignore long-range effects in

our calculations.

3.5 Sampling Methods

As described in section 3.3.3, the free energy landscape available to the system of

interest must be sampled so that all relevant free energy minima can be found. Only

by sampling all low free energy regions of the landscape can we make sure that the

properties studied are representative of the experimental system, at equilibrium.

Besides, when only unique configurations are considered, free energy cannot be

taken into account within the context of molecular mechanics calculations (since

entropy is accounted for implicitly via the number of configurations available to

each particular state).

There are two main approaches to sampling the free energy landscape: either

the configurational evolution of the system, starting from an initial configuration

and given a set of velocities, may be studied (molecular dynamics), or a set of

configurations may be generated by randomly repositioning elements of the system,

with limitations to the random motion aimed at avoiding high free energy states

(Monte Carlo). Each approach has different advantages and provides some different

information. They will be described in more detail in sections 3.5.1 and 3.5.2.
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3.5.1 Molecular Dynamics

Molecular dynamics (MD) is arguably the most intuitive of both sampling

methodologies. Molecular dynamics represents what we would see if we could take

our experimental system — in the lab — and visualize the behaviour of only one

copy of protein in solution, while slowing down our observable time scale to visu-

alize the events as they occur in femtosecond steps. From a molecular mechanics

perspective, we may choose to visualize the energy surface available to our system

as a sandy landscape with dunes and hollows, and picture the position of our sys-

tem in this landscape as that of a ping-pong ball on the sand. Within this analogy

— if we discard friction, but not gravity — starting from a particular configuration

of the system, a set of velocities is applied to the system (the ball appears on the

landscape at one particular position and moving in any one particular direction).

From here on, it will be the shape of the energy landscape itself (dunes and hollows

of the landscape) that decide the trajectory of the system, and the configurations

(positions of the ball on the sand) that will be adopted.

In practice, in molecular dynamics, once the initial configuration and velocities

are provided to each atom, the system is let free to evolve with those velocities for

a very short period of time (on the range of femtoseconds), after which the forces

that atoms apply on each other are calculated, generally the current configuration

and energy of the system is saved, and the new velocities of each of the atoms is

calculated from the forces. The recently calculated velocities are then applied to

the current configuration of the system, which is left to sample for another very

short period of time.

To accurately represent the experimental system, is not enough that we sample

its configurations, but we must also capture certain conditions of the experimental

environment, such as temperature or pressure. In molecular dynamics these are

maintained via the use of tools such as thermostats, which will periodically correct

the velocities of the system, to make sure they remain within the desired values. It is

important to remember that the temperature correlates with the vibrational energy

of any system. The higher the temperature, the higher the (average) velocities, the

easier to overcome free energy barriers. This is the reason why the energies of the

system must be corrected to match the desired temperature.

Molecular Dynamics is the Molecular Mechanics simulation technique which
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directly provides information on how the system evolves with time. Two traits of

molecular dynamics are directly associated with obtaining this information: first,

we are concerned with kinetic as well as potential energy; and second, we need to

calculate the forces that the elements of the system exerts on each other to be able to

determine their changes in velocity and configuration throughout the simulation.

Given the configuration of the system at one given time, using force fields (see

section 3.4), we can determine the potential energy of the system. The forces

suffered by each atom in the system can be obtained by differentiating the potential

energy. The acceleration can then be obtain from the forces using Newton’s second

law F = ma (were F is force, m is mass and a is acceleration). Hence, given an

initial set of configurations and velocities for all particles in the system, their time

evolution may be studied.165

If we take Newton’s second law and express the acceleration as a derivative

of the velocity, and the velocity in turn as a derivative of the positions, we get

equations 3.11 and 3.12 respectively, where F is force, v is velocity, t is time and r

is position.165

F = m
dv

dt
(3.11)

v =
dr

dt
(3.12)

MD deals with the time evolution by studying the changes on the system every short

period of time (time step). Consequently, some common algorithms are available to

study the energies and forces of the system at one given moment in the simulation

and determine the velocities and positions of the atoms in the system after that

time step. One of the simplest of such algorithms, the Verlet algorithm will be

presented here.165

To obtain the Verlet algorithm we need to take the Taylor expansion of r(t),

such that:

r(t+ ∆t) = r(t) +
(
dr

dt

)
t

∆t+
1
2

(
d2r

dt2

)
t

(∆t)2 + ... (3.13)

r(t−∆t) = r(t)−
(
dr

dt

)
t

∆t+
1
2

(
d2r

dt2

)
t

(∆t)2 + ... (3.14)
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In equations 3.13 and 3.14, ∆t is the time step, t is time and r is the position.

Combining these two equations and assuming third and higher order terms are

negligible we get equation 3.15.

r(t+ ∆t) = 2r(t)− r(t−∆t) +
(
d2r

dt2

)
t

(∆t)2 (3.15)

And the velocity is then obtained from equation 3.16.

v(t) =
r(t+ ∆t)− r(t−∆t)

2∆t
(3.16)

It is important to note that Verlet algorithm is not the most efficient in terms of

information storage. It has been chosen here for its simplicity.

An initial temperature is set at the beginning of MD simulations as linked to

the kinetic energy of the system, and hence to the initial set of velocities of the

system atoms. During the simulation this temperature is likely to change due to

exchange between the kinetic and potential energies through collisions. To keep

the system at an average constant temperature, a thermostat may be applied, of

which the simplest form is a rescaling of the velocities of the system to adapt to

the desired temperature.129

In a similar manner, when running in the NPT ensemble, the pressure must

be kept constant, and consequently, a barostat is applied. Equivalently to the

thermostat described above, the simplest barostat would consist of a rescaling of

the volume of the system to keep the average pressure constant.129

In the next subsection we will present a whole different approach to obtain the

relevant thermodynamic properties of the simulated system, while the information

on the time dependent evolution of the system will be lost. Molecular dynamics is

hence the method of choice when the time evolution is the desired information.

3.5.2 Monte Carlo

The Monte Carlo (MC) algorithm is not intrinsically related to molecular me-

chanics, but rather a statistical sampling method applicable to any problem which

can be expressed in terms of rules applied to probabilities of events. It is based on

the idea of expressing computationally a set of rules which define the real proba-

bility of a set of events, and then select one of these events from the computational
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algorithm previously defined. Doing this a large number of times, the resulting dis-

tribution of events must be the same as the underlying probability distribution.167

This idea is fairly simple and can be further understood with a very simple ex-

ample. We can imagine some marbles of different colours in a bag. We are then

asked which proportion of marbles display which colour. To provide an answer we

could simply take all the marbles out of the bag, count how many display which

colour and divide by the total number of marbles. But let us assume we are not

allowed to take more than one marble of the bag at any given time. The Monte

Carlo approach would be equivalent to randomly picking one marble, writing down

its colour, and throwing it back into the bag. Then repeating this same process

a number of times (say hundred), every time adding one to the total number of

marbles of that colour. At the end, we could obtain the proportion by dividing the

number of times we took a (say) green marble out of the bag by the total number

of trials (100).

While proceeding with this experiment may seem (and probably is) fairly useless

for a simple case, Monte Carlo has proven highly useful in situations where the set

of rules are known but obtaining the consequent mathematical expression on the

proportion of events expected of each type is very costly or impossible.

The initial development of the Monte Carlo sampling algorithm for molecular

systems diverges slightly from this simple initial idea, being linked to the develop-

ment of Markov-Chain Monte Carlo algorithms.168 This initial development was

later generalized, originating the Metropolis-Hastings algorithm now commonly

used in molecular mechanics Monte Carlo simulations.169

Markov-chains fulfil two requirements: each new element depends on the pre-

ceding element, but not on any previous ones; and each element belongs to a limited

set of possible elements.129 These features directly link to how Monte Carlo is im-

plemented in molecular mechanics simulations: we start from a particular initial

configuration somewhere within the free energy landscape, which we may call the

initial state or state 0 (we can imagine the sandy landscape and ping-pong ball of

section 3.5.1). What we call a move is then attempted, where a small displacement

of one (or several) of the system components is performed. The probability of the

new state in our set of possible finite states is calculated. Within molecular me-

chanics, as our probability rules must be related to the fulfilment of the Boltzmann
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distribution (see section 3.3.1), the probability of the new state is related to the

difference in potential energy between the initial and the new states. If the new

state is deemed “acceptable”, we say the move has been accepted, and the process

will again be repeated originating from this new state. Otherwise, the move is not

accepted, the old state will be recounted and the process will be repeated again

from the initial state, selecting a different random displacement. Note that follow-

ing this algorithm, the result of every move will depend on its state 0, but never

on the configuration from which this state 0 originated in turn, hence fulfilling the

Markov-chain requirements.

The exact algorithm followed to generate new configurations within a current

Monte Carlo molecular mechanics simulation is show below.165170168

1. Select an element of the system at random and calculate its energy

2. Give the element a random displacement, and calculate its new energy

3. If the energy at the new position is lower than the energy at the previous

position, accept the move

4. If the energy at the new position is higher, we allow the move with a proba-

bility of

p = exp
(
−∆U
kBT

)
(3.17)

where ∆U is the difference in energy between the new position and the old

position (∆U = Unew − Uold).

To assess that probability, we generate a random number γ between 0 and 1.

If γ < p, the move is accepted.

5. If the move is not accepted, the old position becomes the new position, and

the process is repeated.

where equation shown in point 4 is equivalent to equation 3.1.

Note that the moves which generate a new configuration lower in energy than

the original will always be accepted. This is logically intuitive, as our aim is to

sample more often the lowest free energy states. However, there is also a certain

probability of accepting moves when the new configuration is higher in energy than

the initial one. This fact will serve to overcome free energy barriers between several
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minima. Within this context, the acceptance ratio associated with a particular

Monte Carlo simulation will simply be the proportion of accepted moves with

respect to the total number of attempted moves. The acceptance ratio for moves

of a certain type or which fulfil a particular characteristic may also be calculated.

It is important to note that the acceptance test presented above is that used

for simulations in the canonical (NVT) ensemble. To obtain the acceptance test

for other ensembles, the fact that the condition of detail balance must be followed

is used. The detail balance condition states that the probability of going from

state A to state B must be the same as that of going from state B to state A. The

probability of going from A to B can be taken as the product of the probabilities of

being in state A, generating configuration B from state A, and accepting the move

from A to B.170 The acceptance test for MC simulations in the NPT ensemble

results in equation 3.18, which applies to a change in volume and gets reduced to

the same as equation 3.17 when the volume in a move remains constant and the

coordinates of the system change.

p = exp
(
−∆U
kBT

− P (Vnew − Vold)
kBT

+N ln
(
Vnew
Vold

))
(3.18)

where the difference in potential energy ∆U may be caused by a change in volume

or in the system coordinates. The process followed in the generation of moves is

the same as the one described above but with the volume added as a new degree

of freedom to sample in the simulation.

In Monte Carlo simulations, keeping constant parameters such as temperature

or volume is much easier than in MD runs. A value is provided to the simulation

(in the acceptance test), and this is simply applied accordingly. As can be seen in

equation 3.1 and the Metropolis-Hastings algorithm above, temperature is simply

a factor to include on the calculation of the probability of a move to be accepted.

Just as a higher temperature in MD will correspond with higher velocities (on

average), hence making it easier to overcome free energy barriers, in Monte Carlo,

a higher temperature will correspond with a higher probability to accept a move

which generates a new state of higher energy than the original one.
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Monte Carlo Implementation in ProtoMS

The algorithm presented above is used in most software packages that run

molecular mechanics using the Monte Carlo sampling method. However, the sam-

pling efficiency will vary between different packages depending on the implementa-

tion of this algorithm. In this section, the key factors of the implementation of the

Monte Carlo sampling algorithm in ProtoMS will be presented. ProtoMS is the

MC software used (and improved, see section 4.3) throughout this project.

Within ProtoMS, all molecules in the system are divided into molecular types,

entering either of the categories; protein, solvent, solute or gcsolute; where solutes

generally refers to ligand molecules, gcsolutes refers to particles which are allowed

to sample the “insertion” and “deletion” GCMC moves, and protein and solvent

are self-explanatory. The reason for this distribution is the different sampling capa-

bilities of each molecular type. As such, solvent sampling can be optimized, where

no internal degrees of freedom need to be sampled. Another example, proteins,

sample individually each of their residues since moves applied to the whole protein

are unlikely to be accepted due to the expected big energy changes suffered by

the system. Each time a new move is to be attempted, the steps shown below are

followed.

1. The type of particle to be moved is chosen randomly. The probability of

choosing each molecule type is specified by the user as simulation input.

2. If more than one molecule of that type is present in the simulation, the exact

molecule is chosen at random. All molecules of one given type are weighted

equally.

3. A new configuration of the molecule is generated. Changes on translation and

rotation as well as the internal conformation of the molecule are attempted

in the same move.

4. The energy of the system with the new configuration of the molecule is cal-

culated.

5. The difference in energy between the old and new state of the system is passed

to the metropolis test, and the move is consequently accepted or rejected.
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There are a few key features of the implementation in ProtoMS that need to be

detailed. Particularly relevant is the use in ProtoMS of internal coordinates. This

implies that rather than treating each atom based on its Cartesian coordinates,

and each new move attempting a change on this Cartesian coordinates, changes in

bonds, angles and dihedrals of the molecule are attempted. Within the ProtoMS

input, flexibilities for each of the internal degrees of freedom (bonds, angles, dihe-

drals), as well as for translation and rotation, are provided. Equally, a z-matrix

is given, which defines the relation of each atom in the molecule with the rest in

terms of internal coordinates. When a new move is attempted, translation and

rotation are attempted on the molecule (except for proteins, which only sample

internally), with a maximum displacement limited by the flexibility given. All

internal coordinates are then displaced, again with a limitation provided by the

flexibility assigned to each. The new values of each internal degree of freedom is

stored, and the molecule is re-built from the first atom defined in the z-matrix, and

the newly calculated values for the internal coordinates. It is important to note

that the flexibility assigned may be zero, hence not all degrees of freedom have to

be sampled.

The input provided to the ProtoMS simulation package can be automatically

generated with easy-to-use tools (shipped as part of the software package). Within

these tools, default values for all input parameters (except for protein and / or

ligand coordinate files) are provided. For further information of the software, please

see section 4.3 (or visit the website protoms.org).

3.5.3 The Different Ensembles

So far we have talked about the free energy landscape (or phase space) as well

as mentioning the importance of keeping parameters, such as the temperature,

constant and correct during our simulations. We have not discussed, however,

which parameters define the phase space sampled at a particular simulation. This

actually will depend on the ensemble sampled. There are four main ensembles

available to molecular mechanics simulations:129,165

� Canonical or NVT: where the total number of particles in the system, the

volume and the temperature are kept constant.
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� Isothermal-isobaric or NPT: where the total number of particles, the pressure

and the temperature are kept constant.

� Microcanonical or NVE: where the total number of particles, the volume and

the total energy of the system are kept constant.

� Grand Canonical or µVT: where the chemical potential, the volume and the

temperature are kept constant.

Throughout this project, no simulations will be run in the microcanonical en-

semble, hydration free energy simulations will be run in the isothermal-isobaric

ensemble, while relative binding free energies with dual topology will be run in the

canonical ensemble (see sections 3.6, 4.2 and 7). The JAFS simulations are run in

a modified version of the grand canonical ensemble.

The Grand Canonical ensemble is the only one which allows the number of

particles to vary through the simulation, keeping the chemical potential constant

instead. The chemical potential can be understood as the change in energy on

the system as the number of particles changes ((∂E/∂N)) — at constant entropy

and volume.171 However, it is more commonly defined in terms of free energy

as µJ = (∂G/∂nJ)T,P,nB
where µJ is the chemical potential for substance J , G

is the Gibbs free energy, nJ is the number of particles of substance J , and T,P,nB

represents constant temperature, pressure and number of particles of the rest of the

substances in the system.172 Given that the variability in the number of particles

throughout the simulation is key in the development of this project, the Grand

Canonical ensemble and related methods are further discussed in section 3.5.4.

3.5.4 Variable Number of Particles

As seen above, the grand canonical ensemble provides unique properties to the

sampling environment — the associated phase space — by allowing the number

of particles to change. It is not one of the most common simulated ensembles,

being generally used only for specific aims. Through this project we will see its

use (and that of its modified version) related to an increase in sampling efficiency

of the particles allowed to vary in number. Equally, its implementation is gener-

ally not straight forward within common simulation packages and we will see how
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implementation pathways which are not necessarily intuitive may be the most ef-

fective, having the same final effect on the simulation as an intuitive (but harder)

implementation. The concept of a simulation with a variable number of particles

and its relation to sampling Cartesian coordinates will be key to understanding the

development of the JAFS methodology.

Grand Canonical Monte Carlo

Grand Canonical Monte Carlo (GCMC) is the name given to the simulations

sampling the Grand Canonical (GC) ensemble, with the Monte Carlo sampling

method. Note that the statistical nature of the Monte Carlo sampling method

grants a greater flexibility on its implementation and sampling possibilities than

those offered by molecular dynamics. The requirements to the implementation of

the grand canonical ensemble in a Monte Carlo software are, conceptually, limited

to:

� The existence of the appropriate moves to handle the appearance and disap-

pearance of molecules

� The existence of a Metropolis test associated to these moves / changes in the

system

Within MD simulations, the dynamics of the process of inserting and deleting

particles would have to be taken into account, which complicates the conceptual

understanding of the GC ensemble. This difficulty is caused by the discontinuity

at the points of insertion and deletion of particles.173 The implementation of the

grand canonical ensemble in molecular dynamics simulations generally implies a

hybrid MD-MC simulation, where the inclusion of the MC steps allows for the

particle insertion and deletion.174

Implementation in ProtoMS

The problems associated with the implementation of GCMC are related to the

variable number of particles in the system. They could be formulated through

questions such as Where do the inserted particles come from? or How can the

software handle a system of variable size (number of particles) and where no limits

to this variation are intrinsically defined?. In ProtoMS these problems are avoided

by choosing an alternative implementation, where no particles are effectively added
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or deleted from the system, as far as the software implementation is concerned, but

which produce an equivalent effect to the energetics and configuration of the system,

effectively following the GC ensemble.

This implementation relies on an idea which could be related to the expression

what you don’t know won’t hurt you. Within the context of GCMC, if the particles

are in the system as far as the software is concerned but the rest of the system

does not know about them (it cannot interact with them), effectively, the effect is

the same as if the particles were not there.

In practice, a GCMC cubic region (box) is defined, which will be the section

of the system where particles are allowed to be inserted and deleted. Within this

section, a number of particles are added which are in excess of the number of those

required (in the case of water molecules in binding cavities, the concentration of

bulk water to the whole gcmc box is commonly applied). These particles (gc-

solutes) are provided with two additional moves: insertion and deletion. At the

beginning of the simulation, all gcsolutes have their interaction energy set to zero

(non-interacting). These non-interacting particles are free to sample the Cartesian

space limited by the GCMC box, and since their interaction energy is zero, all

(translation and rotation) moves must be accepted. When an insertion move is

accepted on one of this particles, the (zero) scaling factor applied on its interaction

energies is removed, and the particle is now fully interacting — the rest of the

system now knows about it. When a deletion move is applied on an interacting

particle, its interactions are zeroed, hence returning to the pool of non-interacting

particles, freely sampling the GCMC box, awaiting an insertion move.

It is important to mentioned that, since GCMC was developed in ProtoMS to

be used on solvent (water molecules), gcsolutes do not present internal degrees of

freedom, hence their internal energies are constant, and the only variable to their

energies being their interactions.

Applications

The most common application of GCMC within biomolecular simulations is the

study of the solvation of cavities and the affinity of water molecules within those.

While there is no theoretical obstacle to the use of GCMC on bigger molecules (see

section 3.6.4), the sampling of insertion and deletion moves provides a limitation.

Acceptance probability of insertion and deletion moves is generally low, and the
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bigger the molecule, the lower the insertion and deletion probability is expected to

be. This is simply related to the available space in the cavity.

While the GCMC methodology has been known for a number of years, its abil-

ity to predict the optimal number of water molecules in a particular cavity, together

with their location and affinity has been shown in a recent study.93 The particular

relevance of this aspect relates to the difficulty of sampling different configurations

of particles bound to a cavity throughout the course of a molecular mechanics sim-

ulation. Given a particular initial configuration of solvation of a protein cavity (be

it empty or with a number of waters in a particular disposition) we cannot necessar-

ily expect the solvation level and location of the waters to equilibrate with solvent

water through a typical length Monte Carlo or Molecular Dynamics simulation. It

is this capability of non-interacting particles to freely sample the cavity and hence

the possibility of inserting a water in any position and orientation of the cavity,

associated with the possibility of simply deleting it from the simulation (transfering

it to the reservoir) without having to access bulk solvent to be released, that offers

the possibility of sampling different solvation configurations in a simulation time

that would otherwise be impossible.

3.6 Free Energy

3.6.1 Definition

The free energy can be understood as a measure of how likely a particular state

of a system is. The measure of this “likelihood” always refers to the comparison be-

tween two different states, describing which of the two will appear more frequently

for a particular set of equilibrium conditions. The relative ratio of expected ob-

servations for each of the states of the systems in that set of conditions can be

extracted from their difference in free energy.

Any free energy difference is formed of two components, enthalpy and entropy,

as shown in equation 3.19.

∆G = ∆H − T∆S (3.19)

where ∆H represents enthalpy differences, ∆S differences in entropy, T is the
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temperature of the system, and ∆G the relative Gibbs free energy (obtained in

the NPT ensemble, see section 3.5.3). In molecular terms, differences in enthalpy

between two states are correlated with the differences in chemical interactions they

present, while differences in entropy can be correlated to the available degrees of

freedom to sample in the different states of the system. The process of going

from state A, with lower number of favourable interactions between its molecules

and lower number of available degrees of freedom available to sample, to state B,

with higher number of favourable interactions and higher number of free degrees

of freedom, will have an associated negative free energy, negative enthalpy and

positive entropy — ∆G < 0, ∆H < 0, ∆S > 0 —. The process of going from state

A to state B will be favourable.

This is an important concept to understand. It is the reason why, for exam-

ple, the configuration of a ligand binding to the protein with tighter (enthalpic)

interactions is not necessarily the most favourable, the one that is found more

often when the real system is in equilibrium. Another binding configuration with

less tight interactions, but more available degrees of freedom to sample (e.g. where

some dihedral angles are free to rotate) may present a higher affinity towards the

protein.

It can be observed that we are using a different mathematical formula here

to that used to calculate free energies with MC or MD. While information on

the enthalpic terms can be obtained from these simulations (potential energy in

Monte Carlo and potential and kinetic energy in molecular dynamics), no direct

calculation of entropy is performed. This is accounted for implicitly, since states

with a higher number of conformations associated to them will be sampled more

frequently (for probabilistic reasons).

The most common mathematical expression of the free energy in the context of

statistical mechanics is shown in equation 3.20, which defines the Helmholtz free

energy (A) — free energy associated with the canonical ensemble, see section 3.5.3

— can be defined as in equation 3.20.130

A = −kBT lnQ (3.20)

In this equation, the concept of partition function (Q) is introduced, and will be

defined below, together with the associated concept of the density of states.
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We must say, that to define free energy in equation 3.20, an arbitrary zero value

has been assumed, which cancels for the calculation of relative free energies (see

above, beginning of section 3.6.1). For the calculation of relative free energies, this

same expression is transformed into equation 3.21, where the initial and final states

are represented as 0 and 1, respectively.175 Note that in this equation, the notation

β = kBT is used.

∆A = −β−1ln
Q1

Q0
(3.21)

Density of States

The density of states (W ) is a manner of describing the energy levels available to

the system as a continuum (opposite to what they would be in quantum chemistry).

W (E,N, V )dE is then the number of states the system can present whose energy

lies within the infinitesimal range from E to E + dE, where the number (of each

species) of particles in the system (N) and the volume (V ), define the system.

Partition Function

The Boltzmann equation has been discussed previously (see section 3.3.1), and

in equation 3.1, the probability of finding our system in one particular state was

defined. However, probabilities are generally defined in a normalized manner, such

that the sum of all probabilities for one particular choice (the sum of the proba-

bilities of finding our system in any possible state), adds up to 1 (or 100%). To

comply with this normalization, we must define the probability (pi) of finding our

system in any one state as in equation 3.22.130

pi =
exp(−Ei/kBT )∑
i exp(−Ei/kBT )

(3.22)

where the normalization factor,
∑

i exp(Ei/kBT ), defines the partition function.

It turns out that the partition function is dependent on the temperature T

(obvious from its expression), as well as the number of particles N (the number of

particles of each species, in fact), and the volume of the system V , since the number

of particles and volume of the system delimit all the available energy levels of the

system Ei. We can then provide the expression in equation 3.23 for the partition
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function.

Q(T,N, V ) =
∑
i

exp(−Ei/kBT ) (3.23)

Given a system complex enough (i.e. a macroscopic system) so that the energy

levels are not distinguishable, we can use the density of states (W ) to define the

partition function, such as in equation 3.24.130

Q(T,N, V ) =
∫ ∞
E0

e−E/kBTW (E,N, V )dE (3.24)

3.6.2 Alchemical Transformations

Now that we have defined the free energy and its associated concepts, we can

explore its applications.

As has been mentioned in section 3.6.1, only calculation of the relative free

energy between two different systems, or states within a system, is applicable.

While the term “absolute free energy” is sometimes used (as in “absolute binding

free energy”), it still refers to the free energy between two different states (in the

binding case, between the ligand free, and the ligand bound to target).

There are different ways of calculating the relative free energy between two

different systems, and some will be explained in section 3.6.3. However, the set-up

of the calculations required to run all the methods presented below are basically

identical. In this section, we will present the common set-up and simulation mind-

set.

First, it is important to understand that to accurately calculate the free energy

difference between two systems, we must sample the phase space associated with

each. If the energy difference between two systems was calculated using the ini-

tial configuration instead, a few problems would arise. First, we would not know

whether we are at a high free energy position within the phase space (unlikely

configuration), and even a minimization procedure, generally only grants access to

a local minima, disregarding the possibility of deeper global minimum. Second,

even if the single configurations could be placed at the global minima of the free

energy landscape, often a number of minima are low enough in energy so that their

contribution to the properties of the system is considerable. Furthermore, even if

one unique configuration was placed in every low energy minima, the entropic con-
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tribution would not be properly taken into account if no sampling of the degrees of

freedom is captured. Hence, to properly capture all components of the degrees of

freedom for each end state and obtain a valid free energy difference, both systems

need to sample their free energy landscape, and this will be done following MD

(section 3.5.1) or MC (section 3.5.2). All the free energy calculations (and indeed

all sampling, except for the docking runs) performed throughout this project follow

the Monte Carlo sampling method. From now on, concepts and applications will

be described exclusively in this context.

Another important requirement is that the free energy landscapes of the systems

whose relative free energy is to be calculated must overlap, particularly at the

low free energy areas, that will dominate the simulation. The calculation of free

energies generally requires that, during sampling, the energy of each configuration is

calculated with the parameters associated with the opposite system as well as with

its own parameters. The idea is that, by sampling only one of the systems, relative

free energy information is obtained for both. From the difference in energy for

each of the configurations, the free energy difference is obtained following equation

3.25, where the fact that the phase space has been sampled is expressed with

the ensemble brackets (〈〉).129 This equation represents the Zwanzig approach to

calculating free energies.176 The reason for the need for overlap between both phase

spaces is that the free energy of the second system (that we are not sampling) is

based on configurations reached by the first system. If those configurations are not a

good estimate of the ones sampled by the second system, we will not be capturing

accurately the free energy properties of the second system. It is important to

understand that the Zwanzig equation (equation 3.25) is not an approximation,

it will always hold, given enough sampling. However, its convergence properties

are poor, hence it may not be possible to reach “enough sampling” within feasible

simulation time, if the overlap between the free energy landscape of both states is

poor. To check that there is a good overlap between the free energy landscapes, the

Zwanzig free energy calculation may be done in both directions (also sampling with

the second system, and calculating the energies with parameters of the first). If not

enough common phase space is present, both answers will diverge. This situation

is called hysteresis. While the methods to calculate free energies in this project are

more elaborate than the Zwanzig equation, the need for the phase space overlap
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still applies.

∆A = −kBT ln〈e−∆E/kBT 〉 (3.25)

The requirement for the two systems to present overlapping phase space limits

the range of systems on which the free energy difference can be studied. Since the

interest in free energy differences will generally span a range of more diverse systems

than those similar enough to have overlapping free energy landscapes, a method

to bypass this issue is needed. To understand the method, we need to introduce

the idea that the free energy is a state function. This means that alternative

paths can be chosen for the calculation of the relative free energy between two

states. As long as the initial and final state remain the same, the final free energy

difference should be the same. Simplistically, to go from A to B, in the calculation

of any property that happens to be a state function, the results should be the same

whether obtained following the direct route A to B or an alternative path A to C

to D to B. While conceptually the same, sampling can be an issue for any given

path (such as is the case with the Zwanzig equation between different systems).

In summary, we require overlap of the phase space between the two systems for

which we are to calculate the free energy difference, but we are allowed to imagine

any path between the two desired systems, as long as we start at the initial system

and end at the final one. The logical solution is to build intermediate states,

generating a net of overlapping states, so that we can go from A to an overlapping

state Ab, then to a neighbouring overlapping aB, which finally should overlap

with B. This is common practice; all states, from the initial to the final and all

intermediates are commonly assigned values of a parameter widely referred to as

λ, in such a way so that the initial state is called λ = 0, the final state is λ = 1,

and all intermediates fall in between these values depending on how similar they

are to the initial or the final state.

The key factor to remember here, is that the path does not have an influence

on the end result (as long as good sampling is achieved), and we are not in the

experimental but the computational realm. Hence, the intermediate states do not

have to be “realistic”: they do not need to correspond with any system that could

be generated experimentally. Here is where the concept of alchemistry, and

alchemical transformations originates.
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It is important to define the concept of Potential of Mean Force or PMF which

will be referred latter on this thesis. The PMF can be defined as a profile of the

free energy changes experienced by the system as some variable is changed. Within

the context of alchemical transformations, a PMF is often depicted to represent the

free energy changes associated to the changes in the system between its different λ

states (see section 3.6.3 for further information on free energy changes).

There are two common methods to generate intermediate states, particularly

within the context of relative free energies of ligands within a common environment

(be it the protein cavity or solvent): single topology and dual topology. The manner

in which each of them constructs intermediate states will be presented below.

Single Topology

Single topology follows the strategy of directly transforming one ligand into the

other, within its environment. The intermediate states (at intermediate λ values)

in single topology will actually be hybrids of both end states.177

We can envision the transformation between two molecules which are identical

in all their atoms but one. Let us say we are transforming A-B-C (molecule 1,

initial state) into X-B-C (molecule 2, final state). The assignment of values of

λ = 0 and λ = 1 will correspond to molecule 1 and molecule 2, respectively. We

could then think of generating one intermediate state, at the middle point λ = 0.5.

In single topology, this intermediate state (molecule 12) should present parameters

which are half of those of the initial state plus half of those of the final state. Note

that, for all the common atoms, parameters at molecule 1 and 2 should be identical,

and hence so will be those at the intermediate state. If we decide to generate an

intermediate state at λ = 0.25 this should display the parameters of molecule one

scaled by 0.75 plus those of molecule two scaled by 0.25.

In the simplest example of linear scaling, given parameter k, at any given λ,

and where k0 is the value of the parameter k for molecule A-B-C (above) and k1 is

the value of the parameter k for molecule X-B-C (above):

kλ = λk1 + (1− λ)k0 (3.26)

In summary, in single topology, the force field parameters are scaled with λ.

Single topology works really well for molecules that are similar enough in their
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parameters and topologies, where it can be easily decided which atom maps on

to which. While the size of molecules can be increased by growing atoms with

single topology, and equally atoms can be faded to nothing, the similarity between

compounds is always a factor to take into account when planning single topology

calculations. In principle, any transformation could be successfully computed with

single topology, no matter how different the two end states are, given enough

intermediate states and clever planning of which atom should be converted to

which, and at which time. But out-of-the-box single topology is only encouraged for

similar ligands. The level of difference at which single topology is not recommended

can generally be quite well estimated when the mapping of atoms between the initial

and the final state (which atom of the initial state should be transformed into which

of the final) becomes an over complicated and non-intuitive decision.178

In the cases where two ligands share a common structure that makes them

suitable for a single topology calculation, but their mapping requires the creation

or annihilation of atoms, the singularity problem, or end point problem, may origi-

nate. This problem is associated with the shape of the Lennard-Jones equation (see

equation 3.5), with the repulsion increasing very rapidly as two atoms come closer

than their contact distance (σ). While the interaction energy for the disappear-

ing atom (which will be fully decoupled from the environment) would be zero by

definition no matter how close other particles may be, a partially interacting atom

with its interaction energies scaled close to zero, would already present very high

repulsion to particles much closer than its contact distance, as described by equa-

tion 3.5. If an atom decoupled from the environment found a neighbouring particle

in its close proximity, its energy gradient with respect to λ would be a lot bigger

than that calculated from its neighbouring λ window. This situations would create

numerical instabilities in the calculation of the relative free energies. The approach

commonly taken in single topology to avoid atoms decoupled from the environment

to encounter particles within their contact distance is to decrease the length of the

covalent bond of the disappearing atom at the same time as its interactions are

being faded. It is important to note, however, that other approaches, such as the

non-linear scaling with λ, which are explained in the following section (for energy

scaling), may also be applied here for the scaling of the force field parameters.179
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Dual Topology

Dual topology is the recommended approach when the two molecules to inter-

convert are not particularly similar. In dual topology simulations both ligands are

present in the simulation at all λ values, but their interaction energies are scaled

differently at each λ window.177 Also, for any of the values of λ, their mutual

interaction energies are zero (they do not interact with one another). This last

feature is essential since they are expected to occupy the same simulation volume.

We can imagine a hypothetical system where we have ligand A as our initial

state (λ = 0) and ligand B as our final state (λ = 1). In its dual topology rep-

resentation, at λ = 0 the interaction energy of ligand A will be unscaled, while

the interaction energy of ligand B will be zero (scaled by zero). At λ = 1 the

opposite will be true, with the interaction energy of ligand B being unscaled and

that of ligand A set to zero. At intermediate λ values, the interaction energy of

the ligand unscaled at λ = 1 (ligand B) will be scaled by the value of λ, while the

ligand unscaled at λ = 0 (ligand A) will be scaled by the value of 1− λ. Following

this principle, we will find that, for λ = 0.5 both ligands present their interactions

halved, while at λ = 0.25, ligand A will have its interaction energies scaled by 0.75

and ligand B scaled by 0.25. Note that, in dual topology, a non-interacting ligand

is taken as a proxy for a ligand not being present in the simulation.178 This idea

has already been mentioned in section 3.5.4.

In the simplest example of linear scaling, the interaction energy from the ligand,

at any given λ, and where E0 is the interaction energy of ligand A (above) without

scaling and E1 is the interaction energy of ligand B (above) without scaling is:

Eλ = λE1 + (1− λ)E0 (3.27)

In summary, in dual topology, the interaction energies are scaled with λ.

One of the key factors mentioned in the reasons to develop these alchemical

transformations is the generation of transformation pathways between both end

states where the free energy landscapes overlap between contiguous states. When

plotting the gradient in free energy as λ changes with respect to λ, this will result

in smooth plots, which are both essential per se in some of the forms of calculations

of free energy (see section 3.6.3) and a valuable tool to indicate the validity of the
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chosen path.

In dual topology calculations there are a few sources of potential lack of overlap

between free energy landscapes in neighbouring λ, one of which will be studied in

below, and it is sometimes referred to as the end point problem.

One of the possible sources of non-smooth gradients relates to the presence of

one of the ligands being non-interacting at each of the extreme λ. Given that the

interaction energies of this particular ligand will be zero, it will experience a flat

energy landscape in terms of its position (and orientation) within the simulation

space. It may very well drift into an area of the simulation filled by protein or

solvent atoms. This is not that much of a problem during the simulation, but it

will be a problem during the free energy calculation, since the free energy landscape

available for this ligand to sample will change drastically from the value of λ where

some interaction is experienced to that where the interaction energy is zero. Some

measure of restraint may be applied to avoid this drifting, but these restraints

would then have to be accounted for during the calculation of the free energies.180

A simpler solution is to link the translation and rotation of both ligands.178 This

is the implementation which is applied by default in ProtoMS and what has been

used in the relative free energy calculations performed in this project (see section

7).181

Softcores

The reason behind the appearance of the intermediate λ values and their imple-

mentation in both types of alchemical transformation is to generate a path between

both end states through overlapping energy landscapes. As mentioned previously

(see dual topology above), the good overlap between the phase space of all neigh-

bouring values of λ will result in a smooth plot of gradients of energy with respect

to λ changes for all λ values. However, the changes towards the end states (λ = 0

or λ = 1) where one molecule or part of it must make its interaction energies zero

is often problematic when the scaling of the energies follows a linear correlation

with λ. In the case of single topology (section 3.6.2) where it may be one atom

or a small part of a molecule that disappears, this problem is solved by modifying

bond lengths as well as van der Walls and electrostatic parameters of the fading

atom, to make sure that, at the time when the energies turn to zero, the atom
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falls within the van der Waals radius of an atom to which it is bonded. In dual

topology this approach cannot be taken, since one full molecule must appear and

one disappear at each of the extreme λ values. The approach hence taken in dual

topology is to adopt a modified scaling of the energies with respect to λ. Note that,

as always, the intermediate λ are simply a tool to achieve a convenient free energy

pathway, hence modifications to the energetics of intermediate λ do not distort the

correct calculation of the relative free energy between both states, as long as the

end states λ = 0 and λ = 1 are represented accurately. One of the possibilities of

alternative scaling of energies with respect to λ is referred to as softcores. This

alternative allows for the smooth annihilation and creation of atoms and molecules

at the end states (λ = 1 and λ = 0) without creating numerical instabilities during

the calculation of free energy differences.179

Note that another possible alternative is the generation of non-linear scaling

of the interaction energies with λ, such that equation 3.27 would become equation

3.28. This approach would change the rate of energy coupling with λ, which offers

only a partial solution to the problem, since the gradient may become smoother at

non-extreme λ values, but the issue would remain for the end states.179,182

Eλ = λkE1 + (1− λk)E0 (3.28)

where k may take any desired value.

The two different softcores used throughout this project are shown below, where

that of equation 3.29 has been used for the dual topology calculations (both relative

binding and absolute hydration free energy calculations) and that in equation 3.30

has been used for the JAFS calculations.181 The choice of these softcores is simply

related to trial of a few different examples and choice of the one providing the

smoothest gradients of energy with respect to λ.

UV dW =
∑
ijpairs

4ε(1− λ)

 σ12(
r6
ij + 0.2λσ6

)2 −
σ6

r6
ij + 0.2λσ6


Uij ele =

∑
ijpairs

(1− λ)qiqj

4πε0
(

2λ+ r6
ij

) 1
6

(3.29)
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UV dW =
∑
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]
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∑
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(1− λ)qiqj

4πε0
(
λ+ r2

ij

) 1
2

(3.30)

Note that equations 3.5 and 3.6 will be replaced by either 3.29 or 3.30 (depend-

ing on which softcore is used), which will affect the energies at intermediate values

of λ. But both softcores will be reduced to equations 3.5 and 3.6 for extreme (0

and 1) values of λ. All variables in the softcore equations (3.29 or 3.30) are equiv-

alent to those in the original force field equations (3.5 and 3.6) except for the λ

parameter.

Understanding the reason for the need of softcores is relatively easy when an

example is considered. Let us think of the calculation of the relative free energy of

solvation between two different ligands, with ligand A (non-interacting at λ = 1)

being bigger than ligand B (interacting at λ = 1). For the simulation run at λ = 1,

molecules of water may very well overlap with the van der Waals radii of atoms of

ligand A, as this is fully non-interacting and hence there is no associated energetic

penalty. However, for values of λ which may be very close to 1, but not exactly 1

(say λ = 0.99), these atoms will present van der Waals parameters being 0.01 times

their full van der Waals parameters. However, taking into account that the energy

associated with the van der Waals interactions, as measured by the Lennard-Jones

potential (in equation 3.5), increases very rapidly as two atoms get closer than

their optimal distance, the associated repulsion will still be high. Consequently

the gradient at this point will be very high. However, in a simulation run at

that value of λ = 0.99, given than some (even if small) van der Waals parameters

are associated with the atoms of ligand A, it is unlikely that any solvent atom will

overlap with them, hence making the energy gradient with change in λ a lot smaller.

These will give rise to non-smooth gradients, which are a sign of non-overlapping

free energy landscapes. The softcores modify the Lennard-Jones potential (as seen

above) for intermediate values of λ, hence having an effect on the energy gradients.

In particular, softcores will make the Lennard-Jones repulsion suffered by particles

with low interaction energies (their interaction energies scaled down close to zero)

much lower, for short interatomic distances, that they would be with the original
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Lennard-Jones formulation. This will, in turn, reduce the energy gradient at the

end states (at λ = 1 in the example above).

3.6.3 Calculating Free Energy Differences

To calculate the free energy difference between two systems, or two different

states of the same system, each of these states must be simulated to ensure that the

most relevant states of the system, contributing to their free energy, are sampled.

As described previously (in section 3.6.2), the phase space of the two end states

must overlap or, alternatively, a pathway of intermediate states with overlapping

free energy landscapes must be designed. Alchemical transformations (see section

3.6.2) are one of the most relevant (but certainly not the only) methods to construct

such intermediates. While a basic methodology to calculate free energies (namely

the Zwanzig equation) has already been presented in section 3.6.2, in this section

we will show more advanced methodologies to calculate free energy differences. All

of the techniques shown here are available within the ProtoMS analysis tools, and

all three of them were performed on the dual topology simulations shown on this

thesis. The results displayed here and those used to incorporate as input data in

the JAFS calculations shown in section 7 are those generated with the MBAR183

technique.

Thermodynamic Integration

The calculation of free energies through the Thermodynamic Integration (TI)

method requires the generation of the gradients of energy with λ changes for all

λ windows. These gradients (particularly in their graphical form) have been pre-

viously mentioned as a tool to visualize the phase space overlap between different

λ windows, where a smooth variation on the gradient (with no sudden peaks)

corresponds to a good overlap and associated reliable free energy estimates. The

calculation of the free energy with TI involves the integration over these gradients

for all the range of λ (from 0 to 1). By looking at the plot of gradients used as an

indication of phase space overlap, the free energy between both end states would

then be the area under the curve. The equation which represents this integration

corresponds to equation 3.31.129,170 Effectively, the integration over all values of λ

of the ensemble average of the gradient of the potential energy with respect to λ,
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as sampled at each λ window.

∆A =

λ=1∫
λ=0

〈
∂U(λ)
∂λ

〉
λ

dλ (3.31)

In equation 3.31, the free energy is ∆A, the gradient of (potential) energies with

changes in λ for each λ value is shown as ∂U(λ)
∂λ , and the angular brackets represent

the ensemble average over all sampled configurations at each λ window.

Within ProtoMS, two different methods to calculate free energies with TI in

dual topology simulations are available, the numerical and the analytical route.

In the analytical route, to calculate the gradient, rather than the whole of the

potential energy, each of the energy components is studied independently, and

their functional form (see section 3.4) is then differentiated with respect to λ. The

ensemble average is then applied by taking the average over all stored values of

energy throughout the simulation. Finally, the integration over λ is fulfilled from

our independent λ windows using the trapezium rule.

∆A =

λ=1∫
λ=0

∂A

∂λ
dλ (3.32)

To follow the numerical route, the equivalence of equation 3.31 with equation 3.32

is used. The finite difference approximation is applied to assume that ∂A/∂λ can

be estimated from the difference between the free energy that our system presents

at the current λ and that it would present at a slightly different value of λ (i.e.

±0.001 in λ values), divided by this small variation in λ. Given that now we are

trying to calculate the difference in free energy between two (very similar) systems,

by sampling only at one of them (the current λ) the Zwanzig equation, as presented

in section 3.6.2 can be applied here. Just as in the analytical route, the trapezium

rule is then applied for the integration from individual values of λ. The numerical

route has been defined as finite difference thermodynamic integration (FDTI) in

the literature.184
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BAR

The BAR methodology (Bennett Acceptance Ratio) was designed as a more

efficient manner of estimating the free energy than the Zwanzig equation, and it is

considered more efficient than TI.185,186

For every free energy difference, an iterative process to determine a variable

C is followed so that Nj〈f(Ui − Uj + C)〉j = Ni〈f(Uj − Ui − C)〉i where f is the

Fermi function in equation 3.33, U is the (potential) energy, N is the number of

configurations (snapshots) and i and j are the two states (neighbouring λ values)

for which we are calculating the free energy differences. Notice how at each side of

the previous equation, the ensemble average is obtained by sampling at different

states. It is important to understand that the Fermi function is chosen as an

optimal observable, in terms of providing the highest precision on the free energy

calculation for a given simulation length. However, different observables would be

equally valid in the limit of infinite sampling.

f(x) =
1

1 + exp(x)
(3.33)

Note that, in equation 3.33, x will be replaced by the term inside the fermi function

f seen above in the expresion to determine the variable C.

The difference in free energy between the two states (neighbouring λ) can then

be obtained with the calculated C following equation 3.34 where Nj and Ni are the

number of stored energy (and coordinate) frames at λj and λi respectively.

∆ABARji = −kBT ln
Nj

Ni
+ C (3.34)

The process described above will be followed for every two neighbouring λ values,

and the free energy differences of every λ step finally added to obtain the total free

energy difference between the initial (λ = 0) and final (λ = 1) state.186

MBAR

The MBAR method (Multistep Bennett Acceptance Ratio) is an optimized

version of the BAR methodology presenting a lower variance on the free energy

estimate. It is a generalization of BAR to any number of states (rather than

only two).183 The MBAR method presents an estimation of the free energy for
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a particular λi as shown in equation 3.35, which must be solved self-consistently

for Âi (which can be found in the equation also as Âk, since k is the index of a

sum over all λ). Note that “absolute” free energies are obtained, but these are

calculated only up to an additive value, hence only relative free energies as taken

by the difference in free energies calculated following this equation are meaningful.

Âi = −βln
K∑
j=1

Nj∑
n=1

exp(−βUi)∑K
k=1Nkexp(Âk − βUk)

(3.35)

In equation 3.35, Âi is the free energy (up to a constant value) associated with λi,

K is the total number of λ windows, Nj is the number of energy (and configuration)

frames stored through the simulation and U is the potential energy at a particular

value of λ.

Equation 3.35 can be understood as the equivalent to the combination of equa-

tions 3.34 and 3.33 in BAR, but applied to a number of states rather than only

two, and with a different choice of observable (rather than the Fermi function in

equation 3.33), as the optimal choice changes when applied to an indefinite number

of states.

3.6.4 Free Energy Methods for FBDD

In this section we will describe the theoretical background of some specific free

energy methods, not described previously for not being part of the basic core of

free energy techniques, but which have a relevant impact on FBDD. More directly,

their impact on FBDD has been described in section 2.4.2.

GCMC Applied to Small Molecules

So far, the theoretical explanation of GCMC (see section 3.5.4) has focused on

its main application to water molecules. While all the principles are equivalent

between different applications, a few key points affecting the application to small

molecules will be highlighted here. Please, refer back to section 3.5.4 for an expla-

nation on the basic principles on the method, as well as its implementation within

the ProtoMS software.

An implementation of the GCMC protocol applied to ligands, where the par-

ticular example systems involve fragment-sized molecules, is presented by Clark et
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al.91,92 In their representation, GCMC on each ligand binding to a target protein

is studied in vacuum, with the ligand hydration free energy estimated with im-

plicit solvent (see section 3.3.4) calculations, and the contributions of solvating the

protein-ligand complex assumed to be equivalent for different ligands in a series

(hence cancelling for relative binding calculations). Both protein and ligands are

treated as rigid bodies, and the flexibility of ligands that is expected to be present is

captured through the use of several ligand configurations. The study of the binding

over the whole surface of the protein is performed with this method. The chemical

potential (µ) of the system — in fact a related variable, Adams value, B — is

annealed through the simulation, observing a high concentration of particles for

high values of B, and decreasing the value of this variable through the simulation,

to observe a decrease in the number of particles, where only the tightest binding

pockets will present ligands at the lowest values of B. The binding affinity at each

pocket is obtained from the study of the effect of annealing B at that position, in

a similar manner as it would be performed with a titration curve. As argued by

Ross et al.,93 assumptions are implied in this calculations which do not apply to

small protein cavities.91,92 As seen, a number of approximations are applied to this

method, related to flexibility, solvation and calculation of affinities. Most of these

approximations are, however, the trade off required to be able to explore the whole

protein surface and estimating ligand binding affinities for a number of different

poses. The results obtained and relevance of the work in FBDD can be seen in

section 2.4.2

Fragment Mapping

While several related methods have been developed based on similar principles

to map protein binding sites,94,95 we will focus here on the SILCS methods given

its specific focus on FBDD.96,97 SILCS bases its study of fragment binding to

protein target in molecular dynamics (see section 3.5.1) all-atom explicit solvent

(see section 3.3.4) simulations. It studies the preferred regions of binding within

a protein surface for different fragment types by performing an MD simulation of

a protein soaked in a solution of different fragment species at 0.25 M (or 1 M)

concentration. These fragment species are meant to be representatives of different

fragments (and interaction) types, where small sized fragments are chosen as the
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representatives to increase sampling. Sampling is increased for small fragments

both by means of their higher diffusion and the lower affinity (hence higher turn-

over of bound fragment), due to fewer number of atoms (see the concept of ligand

efficiency in 2.1). A repulsive potential is implemented between these fragments

to avoid aggregation and guarantee effective equal concentration of all fragment

species. Equally, weak positional restraints are applied to the protein to allow

sampling while avoiding denaturation (which can appear in the SILCS simulation

conditions).

With the resulting snapshots from the molecular dynamics simulation of the

target soaked in solution of representative fragments, the fragment atom locations

are binned, creating a 3D histogram called FragMap, which defines the probability

of each fragment type at each location of the target surface.

When quantitative affinity information is desired, an equivalent simulation to

the previous MD run is performed, but without the presence of the macromolecular

target. The occupancy with the target is then normalized with respect to that of

bulk and inverse-Boltzmann weighted. With this, a “Grid Free Energy” (GFE)

is computed per FragMap atom type. To obtain an estimate of affinity for any

ligand, its atoms are transformed into FragMap atom types and the GFE of each

of these atoms in the bins defining a particular ligand binding configuration are

summed. This process may also be applied to ensemble of thermodynamically

weighted configurations.96

Note that, even though SILCS relies on a MD simulation to obtain the most

likely binding regions of representative fragments, this method does not provide

binding geometries for the ligands or fragments of interest. SILCS provides an

estimate of the binding affinities of ligand configurations and information which

may be used for possible ligand modifications (FragMap). While obtaining the

initial FragMap for a particular target may be costly, given a particular ligand

binding configuration (obtained elsewhere) the process of getting an estimate for

its binding affinity is fast. It is also important to note that this binding affinity

estimate is based on a principle that, while intuitive and easy to understand, is

not theoretically accurate. The binding free energy of a particular ligand is not

the result of adding the binding free energies of its component functionalities (or

atoms).7 The binding affinity (free energy) will be influenced by the entropic
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change of the ligand binding from solvent to target. This entropic change is mostly

unrelated to the presence of a particular chemical functionality within the ligand.

Some further methods have been developed from the initial SILCS approach,

with the oscillating-µex GCMC-MD being an example. In this method, each GCMC

(see section 3.5.4) step is followed by a very short MD simulation to improve con-

figurational sampling. This process is applied repeatedly on the representative

fragments of the previously defined SILCS protocol, to allow for a better sampling

of their preferred configurations, including the reach of occluded cavities, hence im-

proving the convergence in the generation of FragMaps. During the simulation, the

excess chemical potential (µex) as applied in the GCMC steps is varied following an

algorithm with the aim of reaching a desired target “concentration” of fragment,

and then maintaining an osculation of µex around this equilibrium value. While

this guarantees a better sampling within the GCMC protocol (where sampling can

be problematic, see section 3.5.4 and section 3.6.4) the concept of a target concen-

tration in the binding region (cavity) of a ligand is a problematic concept, since

this will actually vary depending on the affinity of the fragment whose estimation

is attempted.99

λ Dynamics

The λ-dynamics102 approach shares features with the GCMC approach while

diverging in many aspects. λ-dynamics presents a variable numbers of particles in

the simulation also as a way of improving sampling, as GCMC does. However, the

definition of this variability is different between both techniques. They also diverge

in their applicability — λ dynamics focuses of relative affinities of ligands, while

GCMC (although it has been applied to small molecules) focuses on water location

and affinity — and their method of sampling — with λ dynamics using MD while

GCMC uses Monte Carlo.

Let us start with the definition of variability in the number of particles. The

Grand Canonical ensemble (see section 3.5.3) sampled with GCMC defines a system

in which the number of particles is variable. However, we must remember how the

ProtoMS implementation of this technique took an indirect interpretation of this

idea where the deletion of particles is equated to zeroing their interaction energies

and the insertion to resetting their full interactions. λ-dynamics can be understood
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as an expansion of this idea where how much a molecule is present in the system

is measured by the scaling of their interactions. The key difference is that, in λ-

dynamics, intermediate scaling is allowed, rather than the switch-like behaviour

presented in the GCMC implementation in ProtoMS (where particles where either

fully interacting, or their interaction energy was zero). The variable λ measures this

scaling (see the reason for this choice of variable and its relation to dual topology

simulations in section 3.6.2). The variable λ is here sampled as a continuum, with

limitations, that will be explained below.

The sampling method of choice is another one of the big differences between

GCMC and λ-dynamics. As mentioned in section 3.5.4, MC offers a greater flexibil-

ity which makes the implementation of a new kind of move rather simple. In MD,

the dynamics associated with every move must be defined, however the dynamics

of inserting and deleting a particle are non-intuitive. λ-dynamics benefits from

the sampling of the scaling variable as a continuum, which facilitates its treatment

within MD. A set of fictitious particles are created within MD simulations, one

associated with each of the particles which will be allowed to appear or disappear

from the system. The “position” of these fictitious particles is the scaling of their

associated particle in the system, and a mass is associated with them so that a

kinetic energy is provided to sample the scaling (“position”).

One of the applications of λ-dynamics is the calculation of relative free energies

(of binding or hydration). These can be obtained from the proportion of the simu-

lation time that each of the solutes spends “deleted” or “inserted”. The scaling of

the different solutes are generally coupled (i.e. the sum of the scaling for all solutes

is one) and the application of biasing forces to the simulation is often required to

obtain the correct sampling for all the “inserted” and “deleted” states.102–105

When the JAFS method, developed through this project is presented, it will be

noted that both JAFS (which deals with small solute molecules) and its predecessor,

JAWS (which studies water molecules) are based on similar concepts to λ-dynamics.

They also present particles with variable scaling, sampled as a continuum. They

are, however, implemented as Monte Carlo methodologies, their application does

not involve coupling between the scaling for the different particles, and, in JAFS,

no application of bias is required.

In their latest studies, λ-dynamics developed into biasing potential replica ex-
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change multisite λ-dynamics.107 In this latest version, the common core for a series

of ligands is simulated with a set of different substituents in one or more of its po-

tential modification sites, with one λ variable assigned to each substituent. For

each site, typical λ-dynamics conditions apply (namely the sum of λ values for

all substituents at that site must add up to one, where each λ is sampled as a

continuum between zero and one). The relative free energy estimate between two

particular ligands is then obtained from the ratio of probabilities of all substituents

being at λ = 1 for each of the ligands. Given the sampling of λ as a continuous

variable, an approximation is taken in defining λ = 1 ≈ λ > 0.8.

Common in λ-dynamics is the application of biases to allow for adequate sam-

pling of all ligands at λ = 1, where the choice of this bias has typically not been

straight forward and often required iterative procedures. In this latest develop-

ment, both typical λ-dynamics bias, fixed bias and variable bias are applied in a

slightly different manner, which is expected to provide satisfactory sampling within

the applicability limits of the method.107 The application of the fixed bias is related

to the use of replica exchange, where each bias is assigned to a different replica.

These bias are optimized by running short simulations and searching for those pro-

viding the desired level of sampling in λ coordinate, where the initial bias value

for the middle replica is taken as the free energy of hydration of each substituent

as calculated with implicit solvent (see section 3.3.4). Their variable biases are

meant to increase sampling and are only applied when λ < 0.8, hence not having

an influence on the states which are later used in the calculation of the relative free

energies. Results of this latest developments of λ-dynamics and their relevance to

fragment based drug discovery are presented in section 2.4.2.107

Free Energy Perturbation

Free Energy Perturbation (FEP) is the name commonly applied to the calcu-

lation of free energies through alchemical transformations. While the process of

alchemical transformations has been described previously (see section 3.6.2) as has

the calculation of free energies (see section 3.6), some of the specific details for the

protocol followed by Steinbrecher et al. to apply FEP to fragment molecules108

will be summarized here.

Their FEP calculations are based on molecular dynamics sampling (see section
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3.5.1) explicit solvent simulations (see section 3.3.4) using the Schrödinger molecu-

lar modelling suite. They have used solute tempering (see section 3.7.1) to improve

their sampling. The structures of their ligands were generated by hand, energy-

minimized and either docked into the protein receptor or manually placed on top

of the binding configuration of a ligand co-crystallized with the protein, when this

provided a clear binding mode. Standard protocols within the Schrödinger suite

where used throughout the study, without an optimization of protocol applied to

each individual system (what might have been expected to enhance accuracy of

results). Please, see their study for further details.108

3.7 Enhanced Sampling

We have described so far the concept of phase space or free energy landscape,

as well as mentioning the possibility of trapping the system in certain wells of the

landscape, hindering visits to other regions which may present deeper or wider

wells (see section 3.3.3). We have also mentioned that, for systems where this is

a known problem, often when none of the region of the landscape one wishes to

be studied is reached within any reasonable simulation time, a new representation

of the system may be advisable, provided by coarse-grained models (see section

3.3.4). A representative example of the latter is the study of protein folding thanks

to coarse-graining.187,188 We might, however, be faced with systems where the

sampling and trapping challenge is not as large, where the minima sampled are

relevant, but still, an increase in sampling is required, for example, because the

desired convergence between repeats starting at different initial configurations is

not satisfactory. We may also be presented with a system where the application of

a coarse-grained representation would defeat the purpose of the study itself, such

as when the particular interest lies in the exact conformation of the internal degrees

of freedom of a small molecule, some of which would be missed by the application

of bigger beads including several atoms. In these cases, the enhanced sampling

techniques may be applied to avoid trapping the system in particular free energy

wells.

Enhanced sampling techniques are diverse. They can be based on the increase in

kinetic energy (or probability of accepting a move) provided at higher temperatures

(e.g. parallel tempering189,190) or in the application of a bias to the previously
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visited states — free energy wells, naturally visited more often, should suffer higher

bias — (metadynamics191), where these are only two of the most common basic

ideas behind a wide range of different enhanced sampling methods.192

Figure 3.2: Simplified free energy land-

scape for an arbitrary system, with arbi-

trary units of energy (y) and distance (x),

with distance measured from an arbitrary

origin.

In this project we will focus on

a particular group of enhanced sam-

pling techniques, which rely on the ex-

change of configurations of the system

between several replicas run simultane-

ously under different conditions. These

are called replica exchange methodolo-

gies, and parallel tempering mentioned

earlier is one example of these.

A simplified representation of a free

energy landscape where enhanced sam-

pling methods may be required can be

seen in figure 3.2. In this hypothetical

free energy landscape, a situation could

be imagined with the system being in

energy well A. Potentially, the change

in energy between A and B may be too large, hence the majority of moves at-

tempting to go in the direction of B from A would be rejected. Moves to change

the system directly from A to C may not be available. Hence it would seem logical

that C is not sampled within the available simulation time, while being the global

minima within our landscape.

3.7.1 Replica Exchange

While replica exchange methodologies have been applied to molecular dynam-

ics,190 they originated within the realms of Monte Carlo sampling and they are

easier to define within those terms. Since throughout this project, only the Monte

Carlo sampling method has been used, the explanations within this chapter will

focus on this sampling method.

In principle, the only requirement for a system successfully sampling the Boltz-

mann distribution within Monte Carlo is the generation of new configurations of
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the system, which are then subject to the Metropolis test (see section 3.5.2), to

determine whether they will be included within the ensemble of configurations sam-

pled. While, in the standard Metropolis-Hastings implementation of the method,

the new configuration is originated from the previous one, this is done with the

purpose of generating realistic configurations of the system and any other method

of generating possible configurations of the system is not forbidden.

Replica exchange makes use of this flexibility provided by Monte Carlo and gives

the opportunity of generating possible configurations of the system in an alternative

manner. In particular, several replicas of the system are run simultaneously at

different conditions and, at given intervals, a Monte Carlo move to exchange the

configurations of the system at different replicas is attempted. The nature of these

“different conditions” between replicas is what defines the different kinds of replica

exchange methodologies.

Please note that, since parallel tempering (presented in section 3.7.1) was the

original example for which replica exchange was developed, the term replica ex-

change is often used to refer, specifically, to the parallel tempering methodology.

Throughout this thesis, however, we will use them as distinctive terms, where

replica exchange reflects a more general class of enhanced sampling methods char-

acterized by the exchange of configurations between replicas.

λ Replica exchange

As mentioned, the different applications of replica exchanges will be defined

by which conditions vary between different replicas of the simulation. If we think

about it carefully, we have already talked about specific simulation types which

require running several copies of almost the same system with one differing vari-

able. These are the alchemical transformations defined in section 3.6.2. Whether

single or dual topology (see sections 3.6.2 and 3.6.2 respectively), running alchem-

ical transformations requires the simulation of the system at different values of the

λ parameter, that accounts for the scaling of certain energies or parameters in the

system. While, to perform an alchemical transformation it is perfectly possible

to run all the different replicas of the system at different λ values (often called λ

windows) sequentially, we can imagine as well that these are run in parallel (com-

monly in different cores of the same computational engine). Given this setting of
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alchemical transformation simulations it is easy to conceive of a replica exchange

methodology which will attempt to swap the configurations of the system between

neighbouring λ windows at certain intervals. These might provide certain λ win-

dows with the sampling of system configurations which might be easier to reach at

other λ values. Notice, however, that, thanks to the application of the Metropolis

test, these configurations will be accepted with a probability related to their likeli-

hood (free energy) in the λ window for which they are destined.193 The test applied

to this configurational swaps necessarily diverges from the original Metropolis test

presented in section 3.5.2, since the difference in energy of two different replicas of

the simulation needs to be taken into account for the same move. For a λ value of

a and b the move will be accepted if the p in equation 3.36 is higher or equal than

a randomly generated number between 0 and 1.193

p = e(−∆Ea−∆Eb)/(kBT ) (3.36)

where kB is the Boltzmann constant, T is the temperature and ∆E is the difference

in energy for each particular lambda window (a or b) between the system after and

before the configuration swap (∆Ea = Eaafter − Eabefore and ∆Eb = Ebafter −
Ebbefore with after and before defined with respect to the configuration swap).

Since the setup for this particular replica exchange procedure is given by the

alchemical transformation definition, this is a practical and intuitive manner of

aiding the convergence of the simulation at each of the λ windows and increasing the

sampling of the common regions of the free energy landscape between neighbouring

λ windows, as seen in section 3.6, a requirement to the correct calculation of the

free energy.

Parallel Tempering

As mentioned previously, parallel tempering was the first application of replica

exchanged envisioned. In fact, it may be fair to say that originally parallel temper-

ing was developed,189 and then the idea of swaps between replicas was generalized

to other types of replica. In parallel tempering, the difference between replicas is the

temperature at which the simulation is run. Note that, the higher the temperature,

the more likely Monte Carlo moves are to be accepted, following the Metropolis

test (see section 3.5.2). So we could, in principle, run any simulation at a higher
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temperature to increase sampling. However, because the temperature is affecting

the acceptance test, it will have an influence on the proportion of time spent in the

wells of the free energy landscape with respect to the peaks. This will have an ef-

fect on the behaviour and properties of our system. Consequently, most frequently,

we are interested in running our simulations at temperatures which replicate the

experimental conditions (commonly, room temperature, 25° C). Hence we would

like to have the increase in sampling and lower probability of trapping provided by

higher temperatures, but with the free energy landscape and associated proportion

of sampled configurations of a lower temperature (room temperature). To obtain

this, we apply the replica exchange idea to a set of replicas of the simulation run

at different temperatures. While the resulting data will only be studied from the

temperature that replicates experimental conditions, the other replicas at higher

temperatures will sample faster different regions of the phase space (notice that

the phase space is not modified per se). The swaps between configurations at dif-

ferent temperatures should drive the configurations sampled at high temperatures,

but which correspond to a well in phase space, to lower temperatures, through

acceptance of Metropolis tests associated with configuration swaps.

The Metropolis test associated with parallel tempering in an NVT ensemble

(as used in this project) corresponds to the acceptance of a swap move between

temperature replicas a and b if p in equation 3.37 is bigger than a random number

between 0 and 1.193

p = e∆E/kBTb−∆E/kBTa (3.37)

where, as previously, kB is the Boltzmann constant, T is the temperature and

∆E is the difference in energy between the configurations swapped, such that

∆E = E(j) − E(i) if i is the configuration that was at temperature a before the

swap, and j the configuration at temperature b before the swap. Notice that the

energy of each configuration will be the same at both replicas, since the energy

landscape remains unchanged.

Notice that, because we are generally only interested in the configurations sam-

pled at the end of the simulation at one of the temperatures (generally the lowest

temperature), it is essential that configurations sampled at the highest tempera-

tures reach the ensemble of the lowest temperature replica. This must be done
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through individual configurational swaps between neighbouring replicas. A good

sampling in replica space is hence required. This associates with the idea of the ran-

dom walk. When plotting the path between different temperatures of a particular

trajectory of configurations (or the computational task associated with one start-

ing configuration), the path must be varied in the temperature replicas reached

and not appear to follow any particular direction, hence the term random walk.

This concept of a desirable random walk, while possibly more obvious for parallel

tempering, applies equally to λ replica exchange (see above) and solute tempering

(see below).

Throughout this thesis the terms “parallel tempering” and “temperature replica

exchange” may be used interchangeably.

Solute Tempering

So far we have seen two different examples of replica exchange, one in which

a change in the free energy landscape varied between different replicas (λ replica

exchange) and another where a different variable was changed (temperature), but

the free energy landscape was left unaltered (parallel tempering). The replica

exchange applications where the free energy landscape differs between different

replicas are commonly known as Hamiltonian replica exchange. Solute tempering

is another specific example of Hamiltonian replica exchange.

We explained above how higher temperatures can be used through temperature

replica exchange as a resource to increase the sampling of our lower temperature

replica of interest. The temperature will, however, have an effect of increased

sampling on the whole system. Often, only a particular part of the system is of

interest, and it is the sampling of that region that requires focus. This can be done

by modifying the energies associated with this particular region of the system at

different replicas, while keeping the original energetic representation of the system

at our “lowest” replica. These energy modifications are commonly a scaling of the

energies, and the particular region of the system is often a particular solute, hence

the given name “solute tempering”.

While the general idea of solute tempering is that described above, the imple-

mentation of the scaling of the energies, and which energies are to be scaled exactly,

will depend on the particular implementation of the technique.

100



In ProtoMS, the scaling of the energies is associated with a “temperature”

term (called “solute temperature” throughout this thesis), which does not really

correlate with any temperature of the system, but does measure how the solute

energies are scaled, given the real temperature at which the simulations are run.

The equation that represents this implementation of the energy scaling can be seen

in equation 3.38, where T0 (or the equivalent β0) refers to the real temperature of

the simulation, also being the solute temperature of the lowest replica. Equivalently

Ti refers to the solute temperature of the current replica.

Ei(X) =
βi
β0
E1(X) +

β0 + βi
2β0

E2(X) + E3(X) (3.38)

where β = 1/kbT , where T is temperature and kb is the Boltzmann constant. X

refers to a set of coordinates. Ei is the total energy of each replica, E1, E2 and E3

its energy components with different associated scaling factors. Subindex i refers

to each particular replica and 0 the reference, generally associated with the lowest

replica (but not necessarily). Please notice that the scaling of the energies described

above is purely empirical. Any scaling may be chosen for those replicas that are not

the reference replica (used on the final collection of information), but the scalings

presented above are the ones available in ProtoMS. Any energy term related to

the solute may be included within E1, E2 or E3 depending on the scaling desired

for that energy component. Again, this choice will be purely empirical. A similar

implementation has been published by Wang et al.194 In this project, the internal

energies of the solutes are left unchanged (being part of E3) while all interaction

energies of the solute are altered with E1.

In this thesis, the terms solute tempering and solute replica exchange will be

used interchangeably.

3.7.2 Other Enhanced Sampling Methods

Up to this point we have discussed enhanced sampling methods based on the

exchange of configurations between replicas of a simulation which differ either in

their temperature, or the scaling of (some of) the energies of the system. In this

section we will summarize other relevant and widely used enhanced sampling meth-

ods, in which reaching configurations which may require a very long simulation time

within standard MC or MD simulations is achieved by some other means.
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Metadynamics

Metadynamics191 belongs to the class of enhanced sampling methods which

reach configurations which would be otherwise difficult to sample by the application

of an energy bias (or forces) to the simulation. Metadynamics can be considered

similar to replica exchange methods which require a scaling of the energies (see

section 3.7.1), in the sense that the energy of the system is modified. However, in

the case of metadynamics, an external energy contribution is added to the system,

rather than a scaling applied to already present energetic terms. As a further

difference, in particular for the case of metadynamics, simulation of several replicas

is not required as the biases are applied within one single simulation.

Metadynamics is based on the application of energy biases, in the form of

Gaussians, which are applied to any visited configuration. In this manner, already

visited configurations (generally energy minima) are increasingly less favourable to

visit (due to the applied bias) and new configurations eventually become preferred

(lower in free energy). If we take the simplified free energy landscape shown in

figure 3.2 as a guide, we may start our simulation in the local minima A, where the

jump to a different energy minima is unlikely due to high energy barriers (B). If

metadynamics is applied in the simulation, successive Gaussians will be applied on

A as we visit and re-visit its configurations, effectively elevating the minima until,

eventually, it will reach the same height as B. At this point, there is no energy

barrier for the system to move towards C (or equally the smaller minima shown on

the left of the figure). Once the system reaches C, since this minima has not been

sampled yet, initially, no Gaussian biases will be present. However, as C is sampled,

the same behaviour as previously seen in A will be observed. As this happens to

all available minima, eventually the simulation will sample a flat energy landscape.

At this point the metadynamics simulation is considered to be converged, and may

be stopped. The original free energy landscape may then be regained from the

information of all Gaussian bias being applied in the simulation.195

While this conceptual explanation is valid, some difficulties appear in practice.

To proceed with a metadynamics simulation, the free energy landscape of the sys-

tem is effectively re-defined in terms of a few selected degrees of freedom (generally

called collective variables, CVs). The selected degrees of freedom must be all those

presenting the high energy barriers that are difficult to sample within a standard
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MD/MC simulation. These degrees of freedom should be able to distinguish be-

tween the different relevant states. The wrong choice of collective variables may

lead to a metadynamics simulation which cannot converge, or not lead to the ex-

ploration of the full energy landscape of the system. While some guidance on the

choice of collective variables is available, their correct selection is not trivial and

one of the main drawbacks of metadynamics.195

While arguably the most crucial, the choice of collective variables is not the only

decision required to run a metadynamics calculation. Parameters associated with

the size of the applied Gaussian (energy bias) are also required, and again, their

selection is not necessarily intuitive without previous information on the shape of

the energy landscape to be sampled.196

Markov State Models

Markov State Models (MSMs) can be understood as a kinetic interpretation

of the information provided by a number of simulations on a given system (i.e.

molecular dynamics, see section 3.5.1). Typically, these simulations will cover

part but not all of the desired section of phase space. As well as interpreting the

information available from a kinetic perspective which may not be obvious from any

of the individual simulations, MSMs serve as a tool to indicate the most optimal

starting point for subsequent simulations to optimize sampling. The enhanced

sampling provided by MSMs can hence be understood as two fold; first their ability

to extract information from a number of short simulations which would normally

only be available from much longer ones, second, on their suggested starting points

to optimize any further sampling (adaptive sampling).197

A number of short molecular dynamics simulations are input to a MSM to which

an initial configurational clustering is applied, where the number of resulting clus-

ters is a parameter. Each of the resulting clusters is then called a microstate. The

trajectory of each of the available simulations is then “translated” into a trajectory

of microstates, by assigning each of the configurations to the closest microstate.

The frequency of transition between each microstate with respect to all possible

transitions is then calculated, generating a microstate transition matrix. On their

own, these transition matrices can provide information on experimental observables

of the system, however their human interpretation is not necessarily intuitive. To
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facilitate human understanding, MSMs can be “coarse grained”, that is bigger

macrostates can be generated from the original microstates and the kinetic evolu-

tion of those may be studied. To generate the macrostates from the microstates, a

kinetic clustering is performed based on the information provided by the microstate

transition matrix. To proceed with adaptive sampling (see above) the uncertainty

associated with each of the elements of the transition matrix is employed. Those

elements of the transition matrix which are most imprecise are chosen as starting

point for additional runs.197

MSMs have been used for the study of protein-ligand binding,198 from their

processes of association and dissociation to relevant intermediates.199 All these

pieces of information are often useful in the discovery of new possible binding sites

and structural design of alternative binders.

3.8 JAWS: Just Add Water moleculeS

In this section, the JAWS200 (Just Add Water moleculeS) methodology will be

described. Its close relationship with GCMC and λ-dynamics points towards the

inclusion of this technique within sections 3.5.4 or 3.6.4. However, given that the

method presented in this thesis (JAFS) is a further development from the initial

JAWS methodology, its explanation was deemed relevant enough to be assigned its

own separate section.

JAWS is a method developed to study binding configuration and affinity of

water molecules to protein cavities. JAWS is implemented as a Monte Carlo simu-

lation and follows a similar idea to that adopted in GCMC — a method which has

been widely used to determine the location of water molecules binding to protein

structures — but addresses its sampling problem associated with the insertion (or

deletion) of new water molecules in the system. The low acceptance ratio of the

insertion and deletion moves in GCMC (see section 3.5.4) is related to the large

change in energy most often arising by the appearance or removal of a new particle.

For the case of insertions, this low acceptance ratio can be intuitively associated

to the low likelihood of enough space being available within the (solvated) protein

binding cavity, at any given point in the simulation, for a new water molecule to

be inserted.

JAWS addresses this sampling issue in a similar fashion to that presented with
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λ-dynamics. All water molecules available to move between the reservoir and the

simulation box are associated with a parameter (θ). The θ in these simulations can

be considered in some sense equivalent to the λ value in alchemical transformations

(see section 3.6.2). Like λ in alchemical transformations, θ accounts for an scaling

of the interaction energies of the particles with which it is associated. In fact,

we could understand θ = 1 − λ. However, some differences remain. Arguably

the main difference is that θ are sampled as continuous variables throughout the

simulation, rather than the set of predefined values (windows) being assigned to

different replicas in the alchemical λ. Another key distinction is the assignment of

an individual θ to each of the waters, which sample independently of one another.

In summary, we have a protein binding cavity delimited by a cubic box, to which a

reservoir of waters is associated, with a θ variable associated to each water which

corresponds to a scaling of their interaction energies. Together with moves sampling

Cartesian space, moves in θ space are attempted throughout the simulation. When

a θ move is chosen, a change in the scaling of the interaction energies for one of the

waters is attempted. Please keep in mind that, while we are describing the scaling

of the interaction energies, water molecules are treated here in the same manner as

solvent water molecules, which do not sample any internal degree of freedom (the

only variable energy component is the interaction energy).

Note that, while the theoretical explanation is consistent, the specifics of the

setup described in this section are different to the setup reported in the literature.200

Here the setup associated with the implementation of the method in ProtoMS is

described. This is particularly convenient since many of these details are shared

between JAWS and JAFS simulations in ProtoMS and may be referred to later.

3.8.1 Water Binding Affinity with JAWS

In this section we will explain the calculation of the binding affinity of water at

one particularly defined site (pose, binding geometry) — which may be obtained

with the protocol described below (section 3.8.2). To study the affinity of water for a

particular site, first that site must be defined. Within the ProtoMS implementation

of JAWS, the site is defined as a small cubic region, typically 3 Å x 3 Å x 3 Å

(JAWS box). Within this region one unique water molecule is included. This water

molecule will have the capability of sampling the space between the reservoir and
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the binding site by sampling its associated θ variable (with θ = 0 being gas-like or in

the reservoir, and θ = 1 being fully interacting with the surrounding binding site).

This water will also be allowed to sample Cartesian space, but will be constrained

to the previously defined JAWS box, and no other water (solvent) molecule will

be allowed inside. After sampling both Cartesian and θ space, the free energy of

transferring this water molecule between gas (reservoir, θ = 0) and the binding site

(θ = 1), can be calculated from equation 3.39).

∆Gtrans(water, sitei) = −kBT ln
(
P (θi → 1)
P (θi → 0)

)
(3.39)

where kB is the Boltzmann constant, T is temperature, P (θi → 1) is the probability

of finding the water at θ one and P (θi → 0) the equivalent for θ zero.

By looking at equation 3.39, and analysing the simulation setup just described,

two relevant issues may be noted:

� Since θ is being sampled as a continuum, it needs to be decided what exactly

is considered θi → 1 and θi → 0, since the values of 0 and 1 will rarely (or

never) be exactly sampled.

� For equation 3.39 to provide realistic results in practice, a good sampling of

both states, θi → 1 and θi → 0, must be achieved.

To sort the first issue, a threshold is defined, where P (θi → 1) ≈ P (θ > 0.95) and

P (θi → 0) ≈ P (θ < 0.05).

The second problem is solved by applying a biasing potential, which is then

accounted for when calculating the free energy of binding from bulk water (see

equation 3.40).201 Typically, a set of different biases are attempted until a relation

P (θi → 1)/P (θi → 0) ' 1 is obtained, since this correlates to the most optimal

sampling of both states. The data from simulation at this biasing potential is then

used to calculate the free energy of binding from bulk water following 3.40.

∆Gbind(θi) = −kBT ln
(
P (θi → 1)
P (θi → 0)

)
−∆Ghyd −∆Gbias (3.40)

where ∆Ghyd is the free energy of solvation of a water molecule in bulk water and

it is taken as a constant value −6.4kcal/mol, ∆Gbias is the biasing potential and

the rest of terms are as defined for equation 3.39.
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3.8.2 Water Location with JAWS

To detect the location of water molecules in a protein binding site, the volume

comprising the protein cavity is first delimited as a cubic region (JAWS box). A

number of water molecules with the possibility of sampling the θ space between the

reservoir and the cavity (JAWS waters) are included within the limits of the JAWS

box, and their Cartesian sampling is constrained, so that they may not leave this

region during the simulation. The number of water molecules is user-determined,

but commonly, the bulk concentration within the volume of the JAWS box is used.

All the JAWS waters typically start the simulation in the reservoir (i.e. with their

interaction energies scaled to zero, non-interacting, at θ = 0). The simulation

starts including the protein, solvent water, JAWS waters, and possibly a bound

ligand.

As the simulation progresses, Cartesian space is typically sampled for all sim-

ulation species (as in any other MC simulation, see section 3.5.2), with the water

molecules and any possible ligand starting inside the JAWS box constrained to

that space. Equally, no solvent waters are allowed inside. Together with Cartesian

sampling, a sampling in θ space is available to the JAWS waters, where θ space is

sampled as a continuous variables within its limits of 0 and 1.

We know that the free energy of transferring a water molecule from the gas

phase (reservoir) to the specific site (pose, binding geometry) i is defined by equa-

tion 3.39. Hence, the most favourable binding sites should be those which most

often present JAWS waters with θi → 1. For a simulation without any bias (see sec-

tion 3.8.1), waters at θi → 1 are only expected at certain sites, where a bias would

be required to observe them at other positions within the binding cavity. While

the densities of waters throughout the θ distribution may be visualized, commonly,

to determine the particular water binding sites, the waters presenting θ above a

particular threshold are clustered. The most commonly used threshold is θ > 0.95,

just as before.

3.8.3 Application of JAFS to fragment molecules

At the onset of this project, it was considered what may be the most optimal

approach to the development of a new technique to study the binding geometries

and affinities of fragment molecules to binding cavities of proteins, in a manner
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which improved on the accuracy of standard docking and scoring methodologies,

but with results, for a small number of fragments, that could be obtained within

feasible time scales. The advantages or reasons for choosing to develop JAWS into

a methodology that could account for fragments will be presented in this section.

These could be divided into two categories: JAWS as a methodology to improve

sampling within a binding cavity and JAWS as a method to estimate binding

geometries and affinities. Obviously, these two perspectives are interlinked, but

they will allow the comparison with different sets of methodologies in this section.

It is only fair that the drawbacks of JAWS in its application to fragments may be

understood. These correlate to two characteristics of the JAWS methodologies that

have been discussed above: the sampling of the scaling of the interaction energies

(θ) as a continuous variable, and the clustering process during the analysis of the

results of the water location JAWS simulations.

While the sampling of θ as a continuous variable provides sampling advantages

to JAWS with respect to GCMC, it is associated with the presence of particles (wa-

ters) in the simulation at intermediate values of θ (i.e. particles that are not present

nor absent from the simulation). These intermediate particles diminish the realism

of the representation of the experimental system, since, in experiments, no water

molecule will be “partially on” (i.e. only half interacting with its surroundings).

Clustering is a powerful and very useful tool for the visualization of simulation

results that would otherwise be tedious to analyse and very hard to compare to

experimental data (i.e. crystallographic data). However, on clustering, information

is simplified, and, potentially, simulations that have sampled in a manner consistent

with experiment could generate clustering results which do not match experimental

data. As an example, two neighbouring water binding locations may have been

observed experimentally, and sampled in the simulation, but clustered incorrectly

as a unique cluster in the middle of both binding geometries rather than two distinct

clusters. While clustering is considered to be the best tool available for the analysis

of results such as those generated by JAWS, it cannot be denied that complications

may arise from its use.
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JAWS to Improve Sampling

JAWS can be understood as method to improve the sampling of water molecules

within protein binding cavities with respect to standard Monte Carlo and molec-

ular dynamics simulations. The improvement in sampling can be related to that

obtained with GCMC. We can take the ProtoMS implementation of GCMC (see

section 3.5.4) as well as JAWS, where the particles in the reservoir are actually

present in the simulation, constrained to the GCMC or JAWS box, with their

interaction energies scaled to zero, to understand the benefits provided by these

sampling techniques. While both the GCMC and JAWS simulations typically start

with all the cavity waters in the reservoir (interactions scaled to zero), to better

understand sampling we can imagine a protein cavity with a particular network of

water molecules and possibly a ligand bound (this may represent a point during a

GCMC calculation or a standard MD or MC calculation). Now we can assume that

there are two different low free energy distributions of the water network within

that particular cavity. Within a standard MD or MC simulation, to sample both

configurations of the water network, the concerted motion of a number of particles

would have to occur for the disposition of the water network to change. It can

be assumed that a number of the water molecules would have to exit the cavity,

for the rest to have enough space to re-position. To achieve this, in turn, solvent

molecules would have to make space for the water molecules in the cavity to exit.

Waters within the cavity would have to re-position and then the correct number

of water molecules find their way back into the cavity. This combination of events

is rare. While the re-organization of the water network in the cavity would still

require a number of concerted moves within the GCMC and JAWS approaches, the

number of required moves is reduced by the extra phase space (reservoir) available

to the cavity waters in GCMC and JAWS. With their interaction energies scaled

down, the cavity waters are free to sample the whole GCMC or JAWS box, since

no energy difference will be found between any of the different configurations for

the reservoir waters. This sampling while in the “gas” phase allows the waters to

be inserted exactly as the point of interest, without the need to sample their way

from the exterior of the cavity (solvent) to the exact required bound configuration.

In terms of comparing GCMC and JAWS, as explained previously, JAWS pro-

vides an improvement on the sampling of the particles changing between the reser-
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voir state to the (fully interacting) binding cavity. The rationale behind this sam-

pling improvement is simply the performance of smaller steps associated with the

scaling of the interactions. Smaller changes in the interaction energy are linked to

a smaller difference in energy, which increase the probability of accepting the move

(see the beginning of this section for a further explanation).

However, if we are talking about techniques to improve sampling, naturally,

JAWS is not the only alternative, and previously (see section 6.3.2) other enhanced

sampling methods have been described. However, JAWS offers advantages for the

specific case of the configurational sampling of molecules within a protein binding

cavity. In comparison to parallel tempering (see section3.7.1), JAWS improves on

the focus of the improvement in sampling to the specific area of interest within the

simulation (the configuration of the molecules within the protein binding cavity).

The main advantage over metadynamics (see section 3.7.2) is related to the simplic-

ity of running the simulations, avoiding difficulties related to choosing the correct

collective variables and additional simulation parameters. While the Markov State

Models (see section 3.7.2) allow for the study of processes of binding to protein cav-

ities, they have a kinetic focus, and their enhancement of sampling is centred on

an iterative process, where information on how to better run further simulations is

provided by MSMs. JAWS provides an enhancement in sampling intrinsic to every

single run. Of the previously analysed enhanced sampling methods, solute temper-

ing seems to be the more applicable to our particular case of interest, with its focus

being specific to the molecules which require further sampling and no complex de-

cisions being, in principle, required for its application. While solute tempering is

still considered of interest for our protocols (as will be further explained in section

6.3.2) JAWS was chosen for its previous application to obtaining both affinity and

binding geometry results.

JAWS to Study Binding

As shown in the previous section, JAWS can be understood as a way of im-

proving the sampling from that which would be obtained in an standard molecular

dynamics or Monte Carlo simulation of the protein cavity. However, JAWS is truly

a method to study the binding geometry and affinity of water molecules to a pro-

tein cavity, and it needs to be expanded to account for fragments. Hence, arguably,
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the most logical comparison is that of the capabilities offered by JAWS to those of

other available methods to study fragment binding. These have been described in

section 2.4 and can be separated into docking (docking and scoring) and free energy

based methods. It is important to note, first that, were JAWS to be included in

this classification, it would logically fall within the free energy based methods.

While docking algorithms are referred to here in the context of fragment (or

ligand) binding, there are docking methods available for water molecules as well.202

Standard docking is expected to perform more efficiently that any of the free en-

ergy based methods (including JAWS). While an study on water location methods

is out of the scope of this work, an example in the comparison between JAWS

and WaterDock202 is the superior ability provided by JAWS of locating water net-

works within the cavity (WaterDock only provides a first water layer on top of the

molecular surface per simulation run).

Some comparative examples on how the development of JAWS applied to frag-

ments aims to improve the available free energy methods will be presented below.

For further details on the free energy methods applied to fragments, please see

sections 2.4.2 and 3.6.4.

� JAWS applied to fragments will present the advantage over the GCMC method

applied to small ligands (Clark et al91,92) of providing the ligands with sam-

pling of their internal degrees of freedom, besides avoiding the inherent sam-

pling problem associated with GCMC and its insertion and deletion moves.

� On the SILCS96,97 and related fragment mapping methodologies, JAWS im-

proves by studying both the binding configuration and affinity of any desired

fragment. SILCS is limited in this respect since binding geometries are only

studied for a low number of simple “representative” fragments, and the bind-

ing geometry of any other ligand which affinity is to be calculated with SILCS

needs to be known in advance or studied with supplementary methods (e.g.

MD or docking).

� JAWS applied to fragments will improve on λ-dynamics102 by avoiding the

use of any tunable biasing potential. An improvement on the configurational

sampling may also be expected from JAWS with respect to λ-dynamics, due

to the independent θ parameters associated to each particle in JAWS.
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� With respect to the FEP+ method,108 JAWS applied for fragments provides

the advantage of studying binding geometry as well as affinity. Besides, the

calculating of relative affinities with JAWS applied to fragments is not ex-

pected to be limited to pairs of compounds, but rather a number of them

might be included in the same simulation. A considerable gain in compu-

tational expense could be obtained from this implementation. Another gain

in computational expense, even when considering pairs of ligands with both

methods is required to the number of replicas required for a single simulation.

When no enhanced sampling method (i.e. solute tempering) is applied to any

of the methods, FEP+ will still require a number of replicas to run at differ-

ent λ windows while JAWS for fragments would require a unique simulation

replica.

In conclusion, we believe that the development of JAWS for its application to

fragment binding to protein cavities, both in terms of its affinity and binding con-

figuration and automatically taking into account the solvation of the cavity as well

as possible water mediated interactions fills a void within the field of computational

studies on fragment based drug discovery.
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Chapter 4

The JAFS Methodology

4.1 Aims

The objective in the development of JAFS methodology is to provide a compu-

tational tool for FBDD which can assess binding of fragments to protein cavities

providing all the accuracy of free energy methodologies, sampling within feasible

time scales with no previous knowledge of the binding mode, while exploring unique

features that no other available technique can offer. Through the development of

the method this initial objective was further specified in the aims seen below:

1. Estimate the binding affinity of fragments to protein cavities

2. Estimate the binding geometry of fragments to protein cavities

3. Allow for competition between different fragment species

4. Capture water mediated interactions between fragments and proteins

5. Develop methodology applicable to fragments of realistic complexity

Each of these goals crystallized during the development of the JAFS methodol-

ogy. These goals will be outlined here, but further expanded in the next sections.

Briefly, an estimate of binding affinity (score) is generated with the ‘JAFS score’

routine, where competition between different fragment species is expected. The

binding geometry is estimated in both ‘JAFS score’ and ‘JAFS pose’ procedures,
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but emphasised within ‘JAFS pose’, which captures potential water mediated in-

teractions. Both protocols have been developed within the framework of test cases

provided by pharmaceutical companies (see chapter 5).

4.2 Method

The aim of this work was to generate a method that could be applied generally

to any system of potential fragment binders and their target protein cavity, with a

high level of automation. Two different approaches were developed by the end of

this work, and they will be highlighted here. The results obtained with each will

be later presented in chapter 7. These two distinctive protocols share a common

outline, described below (section 4.2).

Theory

The JAFS (Just Add Fragment moleculeS) method is based on JAWS,200 shar-

ing its theoretical background. It was developed from the application of the JAWS

method to small ligand (fragment) molecules. The theory behind JAWS has been

described previously (see section 3.8). Briefly, it can be understood from the per-

spective of GCMC, and in particular the GCMC implementation in ProtoMS. Just

like in GCMC, in JAWS particles are allowed to vary in number during the simula-

tion. However, the sampling problem associated with the “insertion” and “deletion”

of particles in GCMC is tackled in JAWS (and JAFS) by sampling the appearance

and disappearance of the particles from the system with a continuous variable.

The JAWS and JAFS theory applies this idea by defining a continuous variable

rather than a switch between the “on” and “off” states. This variable is called θ,

which is allowed to vary freely between 0 and 1, where θ = 0 corresponds to the

“off” state and θ = 1 represents “on”. A flexibility (move size) is associated with

this degree of freedom, just as any other, to control sampling.

The Monte Carlo algorithm associated with moves in θ space is as follows:

1. Assuming a move on θ space has been chosen among all possible simulation

moves

2. Choose randomly which of the JAFS particles will be affected by the θ move
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3. Choose a random displacement of θ (within its assigned range)

4. Calculate the energies of the system for the new and old θ values

5. If the energy at the new θ is lower than at the old θ, accept the move

6. If the energy at the new θ is higher, allow the move with a probability

p = exp(−β(∆UMM −∆UPMF )) (4.1)

where ∆UMM corresponds to the potential energy change of the system, and

∆UPMF corresponds to a bias applied to take into account the affinity of the

particle to water (hydration free energy — the need to apply the hydration

free energy is explained in section 4.4). ∆UPMF is defined as

UPMF = m0 +m1(1− θ) +m2(1− θ)2 + ...+mn(1− θ)n (4.2)

7. If the move is accepted, the new θ becomes the old θ

The UPMF term above will be referred as the solvation penalty or hydration penalty.

The different use of the hydration penalty will be explained later in this thesis (see

section 6.3.1). However, it is worth pointing out here that, during production runs,

all mx terms in UPMF were set to 0, except m1 which was set to the free energy of

decoupling one molecule of that JAFS particle species from water; resulting in:

UPMF = −∆Ghyd(1− θ) (4.3)

where ∆Ghyd is the hydration free energy of the JAFS particle.

Outline

The main steps to be followed when running a JAFS calculation in any of its

forms are highlighted below. These will serve as a framework for the subsequent

explanations of the different JAFS protocols in the next subsections.

Following in order as presented, to set-up, run and analyse a JAFS simulation

the steps required are:

- Set up of fragment (ligand) molecules
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- Running the fragments’ absolute hydration free energy simulation

- Calculation of hydration free energies with MBAR (see section 3.6.3)

- Generation of the combined template file for all JAFS particles

- Set up of the protein file

- Definition of the dimensions of the JAFS box surrounding the binding cavity

- Random distribution of the JAFS particles in the cavity

- Set up of appropriate protocol of JAFS (see sections 4.2.1 and 4.2.2)

- Running JAFS

- Clustering the positions and / or scoring with θ for JAFS particles during

the simulation

4.2.1 JAFS score

The JAFS score protocol is ideal when the binding region within the protein

cavity is known (or for small protein cavities). The aim is to rank a number

of fragments in the order of their binding affinities to the target, simultaneously

locating their correct binding geometry within a small binding region. The ranking

order of the fragments is defined by their score (where the highest score is associated

with the top ranked fragment), an estimate of their relative binding affinity.

Theory

One of the standard, free energy based approaches to calculate the relative

affinity of different fragments to a target is relative free energy simulations by

(single or) dual topology alchemical transformations (as have been described in

section 3.6.2). The free energy of hydration of our ligands (section 4.4) is obtained

with dual topology alchemical transformations.

These methods are theoretically sound and have been widely used for many

years,23,177,203 as well as recently applied to fragments.108 However, they have

some major drawbacks, particularly when applied to the drug discovery process.
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One of their main problems is the computational time and resources required.

This has been frequently tackled from the perspective of directly trying to re-

duce the computer time required by improving sampling of the free energy land-

scape.203,204

Another hindrance to the application of these techniques in the context of drug

discovery is the requirement to know the exact binding geometry for each of the

ligands. Within common simulation lengths, the interconversion between different

potential binding poses is often unlikely.

With JAFS score we tackle both these issues from an alternative perspective.

In JAFS score, the relative affinity of a number of ligands can be estimated at once,

eliminating the limit present in dual or single topology alchemical transformations,

where the relative affinity of only two ligands is calculated at once. Besides, pre-

vious knowledge of the exact binding geometry is not required, only the binding

region.

This is achieved with the JAFS approach presented above. All ligands, whose

relative affinity in which we are interested, will have their Cartesian sampling con-

strained to lie within a small binding region. Each will be assigned a scaling

parameter to their interaction energies (θ).

All ligands are constrained to the same, small, binding region, so that they

are on top of one another. This is a highly unfavourable conformation for fully

interacting particles (with many Lennard-Jones clashes). But ligands in JAFS do

not need to be fully interacting, they can sample the scaling of their interaction

potential. Hence, for the system to avoid unfavourable clashes, only one of the

ligands is expected to present a high θ value (be mostly “on”) at any one given

time in the simulation. All ligands will hence be competing in θ space. In system

terms, a lowest free energy minima will be sampled when the most favourable ligand

(that with lowest free energy at high θ) is “on”, while the rest remain with their

interaction energy close to zero. Since the system is expected to spend more time

at the lowest free energy, the relative affinity of these ligands can be estimated by

the proportion of simulation time each of them spends with high θ (being close

to fully interacting). In JAFS score simulations, relative affinity of fragments is

assessed based on their simulation time spent with high values of θ.

In addition, as all ligands are expected to spend part of the simulation time
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at low θ values, with their interactions close to zero, they will have the chance

to freely change orientation and position within their constrained binding region.

This is why the exact knowledge of their binding geometry is not required, and

their most favourable binding pose should be located during the simulation time.

Protocol

Typically, two to ten potential fragment binders will be selected and one copy

of each of the fragment species included as a JAFS particle in the simulation

(a free sampling θ variable assigned to each fragment copy). A box of 125 Å3

will be defined around the binding region. These measures were estimated as a

compromise to allow enough configurational sampling while forcing overlap between

fragments (desired in JAFS score calculations). The box will limit the Cartesian

space available for the JAFS particles to sample, with their centre of geometry

always remaining within the box limits. The initial position of each JAFS particle

is set randomly within the box limits, with their θ variable set to zero.

Solute tempering (see section 3.7.1) is included in the set up of the simulation,

with specifics as presented in section 4.4.

The setup of the JAFS score simulation is outlined in the list below:

1. Select the fragments and protein target

2. Follow the simulation setup outlined in section 4.2 and further described in

section 4.4

3. Include, as JAFS particles, one copy of each fragment species

4. Set the JAFS box to 125 Å3 around the binding region

Once the simulation is finished, analysis is required to obtain both a score to

proceed with fragment ranking, and clustering to analyse the binding geometry.

For the test systems and our production runs, a comparison between the clusters

and the known true binding geometry is performed by calculation of RMSD. The

tools used for analysis are described in section 4.5.
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Analysis

Since the main objective of a JAFS score simulation is to obtain information

on the relative affinity of binding of a set of ligands to a target protein cavity,

its analysis focuses on obtaining the score associated with each of the fragments,

consequently providing an ordered list of ligands by binding affinity. Plots for

the study of the sampling of the θ variable throughout the simulation can also be

generated.

The study of the binding geometry of each fragment within the small binding

region can be done through clustering methods. The generated clusters are under-

stood as binding poses, and their distance to the crystallographic binding pose can

be studied by the calculation of RMSD.

One possible analysis protocol is presented below:

1. Run plot thetas.py (section 4.5.2) for each fragment to:

1.1 Obtain a score, based on the proportion of the simulation each fragment

spends with θ > 0.5 (see section 6.4)

1.2 Generate plots of θ sampling

1.3 Extract all configuration of that fragment found in snapshots where its

θ was above 0.9 (see section 6.4)

2. Run calc clusters.py (section 4.5.2) on each fragment to obtain their binding

geometries

3. (with test systems) Calculate the RMSD of each of the poses to the crystal-

lographic binding pose with frag RMSD.py (section 4.5.2)

4. (with test systems) Study the sampling of fragments in Cartesian space with

plot RMSD.py (section 4.5.2)

4.1 Of particular interest to the study of the correct functioning of JAFS pose

simulations is to compare plots showing the evolution of the RMSD to

crystal pose with respect to simulation snapshot (generated with plot RMSD.py)

with those of fragment θ with respect to snapshot (generated by plot thetas.py).

Abundant Cartesian sampling (variable RMSD) is expected when the
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fragment presents low θ, while, ideally, the RMSD to crystal pose would

be low (and stable) at times where θ is high.

4.2.2 JAFS pose

The JAFS pose protocol is ideal when the binding region of the fragment is

unknown, for systems with big binding cavities, as well as systems where waters

might play an important role in fragment binding. The aim is to locate the correct

binding geometry of the fragment, automatically taking into account the possibility

of any water mediated interactions in fragment binding. No previous knowledge is

required on how well hydrated the binding cavity is. In fact, the results presented in

section 7.2 include examples of cavities expected to be dry, as well as others which

are known to contain large numbers of waters (see chapter 5 for a description of

the protein systems used in this study).

Theory

The idea behind the JAFS pose protocol relies on the sampling potential of

JAFS particles at low θ values and the realistic representation of the system pre-

sented for high values of θ.

Sampling different binding configurations with standard Monte Carlo or Molec-

ular Dynamics simulations is challenging due to the high number of degrees of

freedom whose sampling needs to be coordinated for the change between different

binding configurations to happen. A particularly clear example involves highly hy-

drated binding cavities, where two different binding configurations involve moving

the ligand between two different regions of the binding cavity. In this scenario,

besides any internal degrees of freedom which need to be sampled in the ligand to

change from one configuration to the other, a number of water molecules will have

to change their positions and / or orientation, together with the ligand molecule.

Any intermediate configuration is expected to be a lot less favourable than either of

the binding geometries, hence making the interchange between binding geometries

a rare event.

JAFS pose tackles this issue by adding alternative free energy paths between

binding geometries. Both ligand and water molecules are defined as JAFS particles.

A set of particles with high θ values represents one particular binding disposition.

120



While their θ values remain high, their ability to sample Cartesian space is re-

duced. However, any of these particles may reduce their θ, hence scaling down

their interaction potential. When the θ value of one of any of these particles is low,

its interaction energy will be close to zero. Consequently, the particle will be able

to freely explore the whole space of the JAFS box. The energy landscape for this

particle in Cartesian space is expected to be nearly flat, and the acceptance ratio

consequently high for any change in position and orientation. When a favourable

configuration is reached, it will be energetically favourable for this particle to in-

crease its θ and a new binding geometry will be then formed by all JAFS particles

which present high θ values at that moment in the simulation.

Protocol

In each simulation, our estimate of binding geometry for one single fragment will

be obtained. While it is possible to set up the JAFS pose simulation for a number of

fragment species at once, it was considered advisable to develop and test the method

in its simpler version. Typically, a box of 12 x 12 x 12 Å3 (measures estimated

to cover the whole of the binding site for the studied systems) is defined around

the binding region. Several copies of one single fragment species and several copies

of water are randomly distributed within the box limits. The number of copies of

fragment and water to be included in the simulation is automatically calculated

as explained in section 4.4.1. There will always be the same number of fragment

copies as water molecules within the box. Furthermore, the number is chosen so

that particles are always in excess (i.e. there should be more JAFS particles than

those required to fill the space of the binding cavity - within the limits of the JAFS

box). The solute tempering set-up will be identical as that of the JAFS score

protocol (see section 4.2.1).

Solute tempering (see section 3.7.1) is included in the set up of the simulation,

with specifics as described in section 4.4.

The setup of the JAFS pose simulation is outlined below:

1. Select one fragment and protein target

2. Follow the simulation setup outlined in section 4.2 and further described in

section 4.4
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3. Include, as JAFS particles, the same number of copies of fragment and water.

The specific number is simulation specific and calculated as specified in 4.4.1

4. Set the JAFS box 12 x 12 x 12 Å3 around your binding region

Once the simulation is finished, a clustering analysis is performed on both

fragment and water molecules. The result of this clustering should include the

binding geometry of the fragment, as well as all waters relevant in the binding

event (i.e. waters bridging interactions between the fragment and target protein).

The RMSD between the clustering results and the crystallographic binding mode

is calculated in this study to assess the success of the protocol in predicting the

binding geometry of the fragment.

Analysis

As explained previously, the main objective of the JAFS pose protocol is to

find the optimal binding pose of a given fragment against a target protein cavity,

concurrently locating any relevant water molecules. Consequently, the analysis

focuses on obtaining a set of likely binding poses from the simulation snapshots.

To this end, a clustering protocol is applied to both fragment and waters.

The sampling of the θ variable during the simulation can also be studied. This

can serve to corroborate frequent exchange in theta space between different copies

of the fragment, where this exchange is to be expected in a well sampled simulation.

One potential analysis protocol is outlined below:

1. Run plot thetas.py (section 4.5.2) on the fragment and water to:

1.1 Extract all configurations of each particle above clustering threshold (θ >

0.9, see section 6.4)

1.2 Generate plots of θ sampling for fragment and water

2. Run calc clusters.py (section 4.5.2) on the configurations extracted in the

previous step, to obtain the binding geometries

3. (with test systems) Calculate the RMSD distance between the poses and the

crystal binding mode with frag RMSD.py (section 4.5.2)
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4.3 Software: ProtoMS

All JAFS and other free energy calculations presented in this thesis have been

run in the ProtoMS software, developed in house, and freely available on its website

(protoms.org).

ProtoMS is a biomolecular Monte Carlo free energy simulation package, whose

capabilities include absolute and relative free energy calculations with single and

dual topology methodologies, as well as Grand Canonical Monte Carlo.

ProtoMS started life in 2002, however tools to deal with both input generation

and output analysis were limited at the time when work on this project started.

The lack of appropriate tools increased the time required for system preparation

and simulation set-up and analysis. It was thus considered pertinent to invest

effort on the improvement of the software. The development of a new version of

ProtoMS was undertaken as a group project by several members of the research

group (including me).

The latest developments in ProtoMS include improvements and additions to the

main software, together with a wide range of consistent and user-friendly set-up

and analysis tools, which expand the usability and applicability of the code. The

first version of ProtoMS which provides these features is ProtoMS3.

All calculations whose results are presented in this thesis have been run with

the version of the software ProtoMS3, with all production runs using subversion

ProtoMS3.1.2 plus some additional tools.

While version 3 included most of the tools that consistently saved time and

effort, as well as reducing the probability of errors, during preparation and analysis

of simulation data, subversion 3.1 added the parallel tempering and solute tem-

pering capabilities that have been key to the generation of the observed results in

section 7.

Within these additions to the code, the parallel tempering (temperature replica

exchange) functionality to the code was mainly my individual effort (notwithstand-

ing the relevance of sound advice from colleagues).
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4.3.1 Simulations in ProtoMS

Setup

To run simulations with the ProtoMS software, command files (called cmd files,

after their extension) are used. Each cmd file includes the parameters and flags to

run a particular simulation type, together with paths to the required structure and

parameter files and other required information (such as dimensions of the JAFS box

for JAFS simulations). The cmd file can also be understood as the coordination

input file for ProtoMS, which provides all information expected by the main source

code. While cmd files can, in principle, be generated by hand, most commonly, they

are created with the main setup coordination tool, protoms.py (see section 4.4.1),

or with sets of individual setup tools provided as part of the ProtoMS package.

The automatic setup within ProtoMS also uses external tools such as antechamber

from AmberTools (from Amber12 in the productions runs of this project).150 In

some specific simulation types, as is the case for JAFS, extra setup steps may be

required, such as modifications of the initial cmd file, or the use of particular tools

after the general setup with protoms.py

Force Fields

Simulations run with the ProtoMS software are fully atomistic and use explicit

solvent. They evaluate energies based on classical force fields, with the default

force field being AMBER139,140,147,148 for proteins and GAFF (general amber force

field) for ligands. In particular, in all simulations presented in this report, the

AMBER99SB148 was used for proteins and the TIP4P205 was the chosen water

model. The TIP3P and TIP4P water models are commonly used in combination

with AMBER protein force fields. In our case, TIP4P was chosen over TIP3P

as no extra cost is associated with the extra interaction point within the Monte

Carlo simulation with rigid solvent, while greater accuracy in the description of

the energetics is expected. In terms of force field versions for ligands, for the

production runs, the GAFF14 force field is used in all absolute hydration free energy

simulations. In JAFS calculations, the GAFF force field is used in all cases except

when extra parameters where required which are not present in this version. When

that was the case, for all examples, simply the substitution of GAFF by GAFF14
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provided all required parameters. Information on force field parameters for ligands

are stored in .tem files. Partial charges stored in .tem files were automatically

calculated during setup with the semi-empiric AM1-BCC level of theory.206,207

Proteins in ProtoMS

Other specifics of the default setup for ProtoMS used in the production runs of

this report must be introduced. One of these peculiarities is the protein scooping.

To reduce the computational requirements of protein simulations in ProtoMS, some

of the external residues of proteins, which are located far from the main point of

interest of the simulation (i.e. the centre of geometry of the ligand) are removed

from the simulation. All residues which are next to the deleted ones are then fixed

(not sampled), to avoid unrealistic changes in protein conformation. Default sizes

of protein scoops are used throughout this report (i.e. 20 Å radius from the centre

of geometry of the ligand, with a region of residues with fixed backbone from 16 Å

to 20 Å radius).

Solvation

With regards to the solvation of the protein in water, again to gain computa-

tional speed (lower computational requirements), a sphere of water centred around

the protein scoop was used as solvent, rather than a box of waters. A water box,

however is the solvation method used for simulations of ligands in solvent, when

no protein is present (i.e. absolute hydration free energy simulations). Both hy-

dration protocols are performed automatically by the ProtoMS setup tools (specif-

ically solvate.py which may be automatically called from within protoms.py). For

the generation of water boxes, a pre-equilibrated water box is duplicated around

the ligand, which is not translated during the simulation. In the case of spheres of

water, waters are placed randomly within a radius of 30 Å all around the protein

scoop, from its centre, deleting any water molecules which fall within the Atomic

radius of any previously present atom of the simulated system.

Sampling

All components of the simulated system in ProtoMS can sample Cartesian

space. Cartesian sampling of each component can be divided to the sampling
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of external and internal components.

External degrees of freedom include translation and rotation. Solvent molecules

will, by default, always (and only) sample these degrees of freedom. Ligands sample

external degrees of freedom generally only when a protein is present in the system,

while they are placed as the constant centre of the simulation box in simulations

of ligand and solvent, or ligand in gas phase. When a protein is present, it is set

as the reference frame of the simulation; the protein is always located in the centre

and not allowed to sample translation or rotation.

While external degrees of freedom control the position of each element of the

system with respect to one another, internal degrees of freedom control their in-

ternal conformation. Internal degrees of freedom which can be sampled in Pro-

toMS include bonds, angles and dihedral angles, however bonds are not sampled

by default. Proteins and ligands sample their internal coordinates, while solvent

molecules generally keep these internal coordinates fixed throughout the simulation.

In certain simulations in ProtoMS, such as JAFS, other degrees of freedom

which are not Cartesian, can be sampled for certain particles. JAFS particles —

particles included within the limits of the JAFS box — sample in θ space, besides

Cartesian space, in JAFS simulations. The θ variable controls the scaling of the

interaction energies of JAFS particles. Further information can be found in sections

3.5.4, 3.8 and 4.2.

In one Monte Carlo move, one or a group of these degrees of freedom may be

sampled (grouping of degrees of freedom for sampling will be explained below).

As explained in section 3.5.2, for each Monte Carlo move, a new configuration

of the system may be generated, the energies of this configuration are calculated

and compared with that of the previous configuration. The difference in energy

will be entered in the Monte Carlo test whose output will determine whether the

new configuration is accepted or the old one is kept. When the energy of the new

configuration is higher, the bigger the difference in energy, the lower the likelihood

of accepting the configurational change. As seen in this brief summary, the first

step of the move is the generation of the new state of the system. While this

new state could in principle be chosen at random from all possible states of the

system, this method would decrease the sampling efficiency by often generating

states with high associated energy, hence increasing the possibility for rejection of
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the configurational change. Instead, some limits are applied to how much each of

the sampled degrees of freedom can be changed in each attempted Monte Carlo

move. Within ProtoMS, these limits are called the flexibilities of each degree of

freedom. While the flexibilities associated with the ligand degrees of freedom may

be defined by the user, those associated with protein and solvent moves are provided

within the force field files in ProtoMS.

Every time a new move is to be performed, the type of move is first randomly

chosen according to a user-determined probability per move type. “Move types”

in this context include each of the molecule types (“protein”, “solute”, “gcsolute”,

“solvent”) related to the Cartesian space sampling of molecules within this type. It

also includes move types only relevant in specific simulation classes, such as “inser-

tion” and “deletion” for GCMC or “theta” for JAWS and JAFS. Extra move types

exist, such as “volume”, for simulations run within the NPT ensemble. When the

move related to one of the molecular types (i.e. “solute”) is chosen, firstly, one of

the molecules of that class present in the simulation is chosen, all weighted equally

(for the case of protein, one of the residues is chosen). Within that molecule, all

internal degrees of freedom, as well as translation and rotation may be altered (ac-

cording to the previously defined “flexibility” term). In the case of proteins some

differences are observed, where only backbone, only side chain or both might be

moved. When the backbone is moved (either with or without moving side chain),

neighbouring residues are also altered in their conformation to allow for an adjust-

ment of the protein conformation. For the case of the simulation specific moves,

these are related to a specific molecule type (that which presents the associated

flexibility, i.e. gcsolutes for GCMC). One of the molecules present of such type is

chosen and the change associated with the move type is applied. In the case of

“theta” moves, for JAWS and JAFS sampling of θ space, a flexibility is also defined

as ProtoMS input for each of the ligands. Moves which are not associated with a

particular molecule type (i.e. “volume”) are performed on the system when chosen.

After the change to the system (or particular element of the system) has been

performed, the new energies are measured and, as described above, the move is

accepted or rejected based on its energy difference with the previous configuration

of the system.
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4.4 Simulation Setup

Protein Setup

The protein file for each system to run JAFS was chosen among the struc-

tures present in the Protein Data Bank (www.pdb.org) in complex with one of the

fragments, with no particular criteria.

1. Choose one conformation for residues which might present several alternatives

in the crystallographic structure

2. Choose the optimal protonation state for titrable residues and tautomers

(histidine, acidic and basic residues). The protonation state is chosen based

on observation of optimal hydrogen bond pattern

3. Change of residue names corresponding with the protonation state chosen

4. Protonation, following the patterns of the residue names assigned, performed

with tleap (from the AmberTools150)

5. Leaving the crystallographic waters, proceed with the scooping and solvation

of the protein. This will be done automatically with protoms.py when setting

up any simulation where the protein is included. The most simple example,

with a ligand present could be run with

python $PROTOMSHOME/protoms.py -p protein.pdb -l lig1.pdb -s none

Ligand Setup

When talking about ligands in our calculations, we refer to the fragment molecules

whose binding configuration and / or score we are interested in studying.

Ligand structures were obtained from two different sources. For systems and

ligands associated with publications, where their crystal structure complexed with

the target protein was publicly available, the initial ligand crystal structure was

taken from the complexed protein pdb (from the Protein Data Bank www.pdb.org).

Several sets of ligands were provided directly by collaborators within pharmaceuti-

cal companies. Among those, binders followed the same set-up as outlined below,

with the initial protein structure being that given to us by our collaborators. In

the case of decoys, no minimization step was followed.
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Starting from the initial ligand pdb, the ligand set-up followed certain steps:

1. Protonate ligand using the Chimera 1.8 software208

2. Generate the required antechamber configuration and parameter files by run-

ning

$PROTOMSHOME/protoms.py -l ligand.pdb -s none

where ligand must be replaced by the corresponding ligand name.

3. Minimize the configuration of the ligand (see below)

The minimization of the ligand is run in sander (within AMBER 12150). It

comprises a hundred steps of steepest descent minimization in the gas phase with

a non-bonded cut-off of 20 Å. The script used for the minimisation in sander is

provided in the Appendix, in section 11.1. Notice that, by running this form of

setup, the flexibilities assigned to internal degrees of freedom of the ligand, as well

as its translation and rotation moves, are assigned automatically by protoms.py,

based on sets of empirical rules.

Hydration Free Energy Runs

The hydration free energies are obtained commonly in ProtoMS by calculating

the free energy of decoupling the ligand from water. 16 equally spaced λ values

are distributed between λ = 0 and λ = 1. A replica-exchange dual topology (see

section 3.6.2) simulation is performed in which the ligand is transformed into a

dummy (non-interacting) atom. At λ = 0, the fully coupled ligand is simulated

while at λ = 1 only a dummy particle in a box of water is present. In this project,

the MBAR methodology (see section 3.6.3) was used to calculate the decoupling

free energy from the simulation results. This free energy is needed as input for the

jpmf parameter in the input file of each JAFS particle.

Three different repeats of hydration (decoupling) free energy calculations were

performed. The setup for these runs is automatic with protoms.py by using the

following command:
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$PROTOMSHOME/protoms.py -l ligand.pdb --absolute -s dualtopology -r 3

where ligand must be replaced by the corresponding ligand name. In all hydra-

tion free energy simulations presented in the report, 5 million equilibration and 40

million production moves are run per λ window (protoms.py default).

The average decoupling free energy for the three repeats was calculated. Again,

the analysis is run automatically using the tool provided with ProtoMS calc dg.py.

The calculation of MBAR requires the installation of some dependencies. The

required analysis command is as follows:

$PROTOMSHOME/tools/calc dg.py -d out1 free/ out2 free/ out3 free

where out? free (with ? in 1 2 3)corresponds to the default naming of out folders

provided in the cmd file by protoms.py (the correct names of the out folders must

be provided if these have been changed).

JAFS Runs

JAFS ligand templates

Not all parameters available to ligand template files are consistently used; some

are specific requirements for certain simulation types. This is the case for JAFS.

All JAFS particles will be treated by ProtoMS as ligands, hence requiring an

associated template file. For JAFS particles to present their full correct behaviour,

extra parameters have to be included in their template files. These include jtheta,

jcorr and jpmf.

The main distinctive feature of JAFS particles is their ability to sample the

scaling of their interaction energy (sample θ space). Just as for any other degree of

freedom, the flexibility for the θ moves needs to be set. This will be assigned with

the jtheta keyword. See section 3.5.2 for further information on the flexibility of

MC moves.

A concentration correction is available on JAFS simulations, however the ap-

plicable scaling factor was set to 1 (no scaling) for the simulations presented in the

report. This parameter can be used to account for the different concentration in

solution of diverse JAFS particles. The original idea links to the expected higher

concentration of water than fragment molecules in solution. Consequently apply-

ing the concentration correction in this case would favour the interactions of water

with respect to fragments. It was found, in studies previous to my intervention in
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the project, that such effect resulted in seldom sampling fragment configurations

at high θ values and was hence deleterious for obtaining useful data from the sim-

ulations. The scaling associated with the concentration correction is applied with

the jcorr keyword.

The last of the JAFS specific parameters in the template files is particularly

relevant for JAFS score calculations, where the relative binding affinity of several

ligands is estimated. jpmf is the keyword used to specify the hydration penalty

of the fragment. The penalty is applied to each of the JAFS particles to account

for their affinity for the solvent water. Throughout a JAFS calculation, the JAFS

particles repeatedly sample the exchange between their vacuum state (for θ =

0, when their interaction energy is 0) and their bound state (when θ = 1, fully

interacting, since their Cartesian space is limited and they are forced to remain

within the protein binding cavity). If no hydration penalty is applied, the score

obtained with JAFS will be an estimation of the binding free energy from vacuum.

But both in vivo and in vitro, the process of ligand binding occurs between the

ligand in solvent and the ligand in the binding cavity. The hydration penalty

will then account for the free energy of taking the ligand from solvent to vacuum,

completing the free energy cycle.

The need for the hydration penalty (jpmf) is explained in figure 4.1. In the

figure, when no hydration penalty is applied, the difference between the free energy

of going from E to A and that of going from F to B is what the JAFS score estimates.

The hydration penalty on the template for ligand orange triangle accounts for the

free energy of going from C to E, just as the hydration penalty in template for

ligand green square accounts for that of going from D to F. The score (proportion

of simulation time with θ > 0.5) obtained from a simulation with correctly applied

hydration penalty will be an estimate of the difference in free energy between going

from C to A and going from D to B.

JAFS box

As mentioned previously, the protein structure used is taken from the complex

with one of the fragments in the system. Consistently, the JAFS box is centred on

the centre of geometry of that same fragment. The idea behind this decision on

the protocol is based on a hypothetical situation where a JAFS calculation is made

on a set of fragments for a particular system, where only one of them has been
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C D
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Figure 4.1: Schematic representation of several possible thermodynamic cycles to
obtain the relative binding free energy between two different ligands to the same
target protein. In the figure, the purple pie-shape (full circle minus a quadrant)
represents the protein, the orange triangle and green square are ligands, the blue
circle represents the solvent water and the dashed circumference means vacuum.
The difference between both dark red arrows is the relative binding free energy
between those two ligands. Two different free energy cycles are present in the
figure, both being different routes to reach the same relative binding free energy.
Arrows in turquoise represent the free energies estimated with the JAFS score
protocol. Black arrows are calculated with standard binding free energy techniques
(i.e. alchemical single/dual topology transformations).
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previously studied and the crystallographic structure of that complex is known. In

a different scenario, the exact placement of the JAFS box may be decided based

on the observation of the dimensions of the protein cavity — directly, or based on

cavity prediction software.209–212

Solute Tempering

The solute tempering setup chosen comprised of a maximum ‘solute temper-

ature’ of 100°C, with 14 equally spaced intermediate solute replicas and a lowest

(and main) replica at 25° C (16 replicas in total, with 5°difference between repli-

cas). Swaps between replicas were attempted every two hundred thousand Monte

Carlo moves.

The application of solute tempering to all the simulations presented through-

out this report corresponds to a scaling of all interaction energies of the lig-

and (namely ligand-ligand, ligand-protein and ligand-solvent, both coulombic and

Lennard-Jones terms) with T0
Ti

while all other energies (internal energies of the lig-

and, and all energies not involving any ligand) remain unscaled (that is, they would

be identical for any “solute temperature”). Here, T0 corresponds to the reference

“solute temperature” (here always 25°C) and Ti to that associated with each given

replica.

The application of this setup in ProtoMS requires the two lines below to be

included in each cmd file:

temperaturere 200000 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0

75.0 80.0 85.0 90.0 95.0 100.0

solutetempering 25.0 bndang 3 dih 3 lj 3 coul 3 solu 1 prot 1 solv 1

Further information on solute tempering and its implementation in ProtoMS

can be found in section 3.7.1. Correlating the aforementioned scaling with equation

3.38, interaction energies of the ligand are included in E1 and all other interactions

in E3.

The solute tempering set-up was optimized for best results (described in section

6.3.2), but also taking into account the most convenient structure in our high

performance computing facility (i.e. 16 replicas in 16 cores per node). A different

choice in number of replicas or spacing might be better suited for other facilities.

133



4.4.1 Tools

Several tools provided with ProtoMS are used throughout the setup and anal-

ysis of (mainly JAFS) simulations presented in this report. Each of these will be

presented below. Note that all these tools were developed as a group effort by

several members of the research group (including me).

protoms.py

protoms.py is the initial script and coordinates the setup tools offered with Pro-

toMS. The whole setup to standard ProtoMS simulations can be completed with

protoms.py. Defaults are provided for all but the essential parameters (i.e. ligand

and/or protein files, type of simulation), while a wide range of customization is

available through an extended set of flags. Help within the script is provided in

its reduced version which highlights the most commonly customized parameters,

as well as in its full version (--fullhelp) with all provided options. Simulations

can equally be set up using individual tools provided, with certain levels of cus-

tomization only available through this route. This modular structure allows for

full flexibility as well as complete automation of the most common simulations in

ProtoMS.

Even for non-standard simulations, where full, direct setup through protoms.py

is not provided, this coordinator of tools is still frequently used to create files that

may be subsequently manually modified, or complemented with additional tools.

In this way, even if several steps are required in the desired setup of a non-standard

simulation, these can easily merged together in user-created simple scripts.

An example of the use of protoms.py for standard simulations is the setup of

the hydration free energies of fragments, where the required files, ready to run, are

generated as direct output of protoms.py given the correct parameters as flags (see

above).

An example of the set-up of non-standard simulations is that of JAFS simula-

tions. As has been previously presented, the protoms.py script is used at several

points in the setup process, such as ligand setup (see above), and generation of a,

later modified, initial version of the JAFS cmd files.
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distribute waters.py

distribute waters.py is the script used within ProtoMS to randomize the position

of solvent and solute molecules within a provided cubic space. It is used within the

set-up of the JAFS calculations to distribute the JAFS particles (fragments and

water molecules) within the JAFS box around the protein binding cavity.

distribute waters.py takes the dimensions of a box, the number of particles that

should be included within that space and a pdb file with the coordinates of the

particles to be distributed. It can also be run with the name of a water model

(“t4p” = TIP4P or “t3p” = TIP3P) instead of a pdb coordinate file, in which

case, waters will be automatically generated and randomly distributed. Particles

are placed within the box in such a way so that their geometry centre is always

within the box limits, while part of their atoms can lie outside the provided volume.

This arrangement corresponds perfectly to that required by JAFS runs, as JAFS

particles are constrained to keep their geometry centre within the limits of the

JAFS box throughout the simulation.

The header of the file generated with distribute waters.py must be changed to

match that of ligand files to proceed with JAFS simulations.

cavity volume.py

cavity volume.py is a script provided within the ProtoMS tools which can be

used to estimate the volume of a protein cavity as well as (an excess of) the number

of copies of a molecule that would be required to completely fill the cavity.

The calculation of volumes within the script is grid based. For the calculation

of the volume of the cavity, a grid of imaginary points is generated to cover a

user-specified cubic volume. Within that volume, the grid points that lie within a

given distance of one of the protein atoms are deleted, the remaining grid points

are added up and multiplied by a unit volume associated with each grid point, the

result being the estimated volume of the cavity. A similar technique is used to

estimate the volume of each of the provided “ligand” molecules, where each of the

grid points that lies within a given distance of one of the ligand atoms is added up

and multiplied by their associated unit volume. To calculate the excess of copies

of the molecule required to fill the cavity, the estimated volume of the cavity is

divided by that of the ligand.
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This script is used within JAFS calculations to determine the number of copies

of fragment and water that must be included in the calculation to overfill the

cavity. The script can estimate the number of copies of two different molecules,

being the same number of each, required to fill the cavity. This result is the number

of fragment and water molecules included in a JAFS pose simulation, where the

cubic volume corresponds to the limits of the JAFS box.

merge templates.py

While individual template files can be used for each ligand in ProtoMS, it is

advised that the templates of all ligands are merged into one unique file which is

then included in the ProtoMS cmd file. The reason for this recommendation is that

individual template files share common numbering for certain parameters that need

to be different for each ligand included in the simulation. While it is possible to

access manually each of the ligands and make the numbering compatible, it is highly

error prone. The merge templates.py tool takes care of merging the templates of

several ligands in one unique (separate) template file, automatically assigning them

compatible numbering.

Within the JAFS calculations this script will be used to merge templates for

all JAFS particles that must take part in a simulation in one combined template

file.

4.5 Simulation Analysis

4.5.1 Clustering

Clustering can be defined as the process of dividing a bigger set of entities into

smaller sets or clusters.213 In particular throughout this thesis the term clustering

will be used to refer to the grouping of sets of molecular configurations into smaller

sets and choosing a representative configuration of each set (which we will call

cluster representative or simply cluster). The aim of this process is to study the

relevant configurations visited during a simulation in a more comfortable (and

human readable) manner.

Throughout this thesis, the clustering method of choice will be hierarchical

clustering. In all production runs and some of the development runs (chapters 7
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and 6 respectively) the clustering will be performed with the calc clusters.py tool

provided with ProtoMS (section 4.5.2) using default parameters, unless otherwise

specified. However, the runs presented in section 6.2 follow different clustering

methods (the current version of calc clusters.py was not yet available), which are

specified within that section.

The clustering methods used within this thesis are hierarchical and determinis-

tic. In most cases (all but one clustering method used in section 6.2), no information

on the number of desired clusters is provided a priory to the algorithm. Instead,

information is always given on the cut-off distance between posses to be part of the

same cluster.

The cluster representatives shown in the graphical representations throughout

the thesis are obtained as the copy of the molecule taking part in a cluster which

is closest to the centroid of that cluster. Here, the centroid of a cluster is obtained

as the mean position of each atom of the molecule in that cluster.

4.5.2 Tools

calc replicapath.py

calc replicapath.py is a tool designed to visualize the efficiency of swaps between

replicas when running λ, temperature or solute replica exchange simulations (also

known as reti, parallel tempering and solute tempering respectively). It follows the

processor id for each replica exchange simulation through the simulation snapshots.

The value of replica (λ, temperature or “solute temperature”) that each processor

presents at every simulation snapshot is then plotted (with replica value on the y

axis and snapshot on the x). Examples of the results of these plots can be seen in

figures 6.16 and 6.15. Note that each coloured line corresponds to one processor

id.

frag RMSD.py and plot RMSD.py

frag RMSD.py and plot RMSD.py are in-house tools not included with the Pro-

toMS package version 3.1.2 (used for production runs).

frag RMSD.py is an in-house tool used for the calculation of RMSD between

the crystallographic binding pose and clusters obtained as result of JAFS simu-
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lations (both JAFS pose and JAFS score). This is a simple tool and does not

account for any symmetry during RMSD calculation. Symmetry was hence taken

into account manually, by generating any required symmetrical equivalents of the

crystallographic pose as required per ligand. Furthermore, this tools calculates

RMSD by assuming atoms correlate based on their order of appearance in the pdb

file structure of the molecule. Since ProtoMS generates output file with a custom

ordering of atoms for each molecule, the pdb file of the crystallographic pose (and

any required symmetrical equivalent) were converted to the same atom ordering as

that of the ProtoMS output before the RMSD was calculated.

plot RMSD.py is, as its name suggest, used to plot the RMSD of a copy of

a fragment molecule to crystallographic binding mode with respect to simulation

snapshot. The “time” evolution of the RMSD distance of a fragment to the (con-

sidered) “correct” binding mode is deployed. Calculations of RMSD follow the

same procedure as those in frag RMSD.py. Examples of these plots can be seen in

figure 7.3 and figure 7.4.

plot thetas.py

plot thetas.py is a tool included with the ProtoMS software. It is commonly

used to analyse the output of JAWS and JAFS simulations. It can, in principle, be

used on the output of GCMC simulations as well, but other tools might be better

suited for these data.

As indicated by its name, its main use is to produce plots of the evolution

of the θ variable throughout the simulation. This information is represented by

a set of plots, with a display of θ values for a given JAFS particle in the form of

histograms as well as the evolution of θ with respect to simulation snapshot (“time”

evolution of θ in the simulation). When several copies of the same fragment type

are included in a simulation, the evolution of all copies are plotted in together,

hence the number of copies with high or low value of θ can also be estimated from

these plots. A modified version of this tool was used to analyse the production

runs. This modified version also provides the proportion of simulation snapshots

that one particular fragment spends above a user specified θ threshold. Equally,

the mean value of θ for the given fragment is printed. Note that this modified

version of the tool is not provided with the ProtoMS package version 3.1.2 (used

138



for production runs).

calc clusters.py

calc clusters.py is a tool provided within the ProtoMS suite. Together with

calc densities.py, they offer different options to visualize the space sampling of

a given molecule through a ProtoMS simulation. The visualization offered by

calc densities.py can be of particular interest when dealing with water molecules,

and the script has mainly been designed for this purpose. As suggested by its

name, calc densities.py does not provide individual configurations of the molecule

of interest as a result. Instead, it generates a map of the positions of the most

central atom of the relevant molecule using all provided simulation snapshots by

means of a grid distribution.

calc clusters.py on the other hand, gives unique configurations of the molecule

of interest as output. This is useful for JAFS pose calculations, which aim to

provide the most likely binding configurations of particular fragments (and water

molecules). calc clusters.py is hence the main analysis tool of the output of JAFS

pose simulations.

The generated clusters are printed in order of occupancy (the number of con-

figurations included in each cluster), with the exact value for each cluster included

in the last column of the pdb file. While occupancy of clusters may be used as

a mean of ranking, unsatisfactory results (see section 8.1) suggest this is not a

recommended practice here.

The clustering method used in calc clusters.py as of ProtoMS version 3.1.2 is

hierarchical clustering, where the default clustering threshold is 2 Å but, as will

be obvious in section 7, this can be customized.

4.6 Summary

In this section, JAFS, the method developed throughout this thesis has been

presented. The theoretical understanding of this method has been described, which

is common to the previous JAWS method and based on GCMC and inspired by the

ProtoMS implementation of GCMC. The two protocols developed within the JAFS

methodology have been presented: JAFS score and JAFS pose. The specific theory
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behind each of this protocols as well as their specific set-up has been presented.

Furthermore, the tools required for the set-up and analysis of JAFS have been

described individually.

In summary, in this section we have presented the method developed to the

study of the relative affinity of different fragment molecules to a common region of

a protein cavity (JAFS score) as well as the study of the exact binding configuration

of fragments to a protein cavity together with the solvation pattern of that same

cavity (JAFS pose). In chapter 6 the development of the method until it reached its

latest state of development (as presented in the current section) will be described.

In chapter 7 the results obtained when applying the fully developed JAFS method

to the systems seen in chapter 5 will be shown.
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Chapter 5

Systems

A range of systems were chosen to test both protocols of the JAFS method

(JAFS score and JAFS pose, see section 4.2). Some of these systems are expected

to present no particular difficulty in order to test basic functionality of the method-

ology. Others present different challenges to assess the limits of what JAFS can

achieve. In this section the systems will be introduced, the potential challenges

presented and their interest within the field of drug development or computational

chemistry explained. Please note that this section does not intend to explain each

of the systems in depth from their biological perspective, nor to explain all studies

these systems have undergone within computational chemistry. Within the brief

introductory section to each of the systems, references to biological and computa-

tional developments for that system will be provided.

All systems, with their respective ligands, can be found in figure 5.9. 2D rep-

resentations of the ligands can be seen in the Appendix, table 11.1.

5.1 Model Systems

Some of the test systems chosen to develop and study the performance of the

JAFS methodology can be qualified as model systems. These are comparatively

simple systems, or present a particular property which tests some specific aspect of

the JAFS method. They may not be therapeutic targets and have not been chosen

for their interest to the pharmaceutical industry. In these cases, the interest lies in

their physical properties rather than their biological functionality.

141



The two model systems used throughout the development of the JAFS method-

ology will be presented in this section.

5.1.1 T4 Lysozyme

Figure 5.1: T4Lys scoop (left, bigger) and full protein structure (right, smaller).
Note that the scoop mostly retains a subdomain of the protein. In both cases, the
protein is displayed as ribbons in grey and the ligand (bnz) in dark blue. On the
left, the surface of the binding cavity is shown in light brown. The JAFS box is
shown in white. PDB code 181L.

T4 Lysozyme (T4Lys) was chosen as a test system due to its simplicity and well

studied behaviour. It is a small globular protein for which crystal structures have

been known for a number of years (since 1986).214 This protein has been widely

used on studies of protein structure, and, in particular, on the structural effect of

mutations on protein residues.214–220 A number of these mutations generate cavities

within the structure of T4Lys, which have been commonly used in computational

chemistry as simple test systems.220–222

In this project we have taken T4Lys with its L99A mutation, which generates
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a small apolar cavity, as a simple test case on the performance of JAFS. Fragments

of known experimental binding affinities have been chosen.223

The T4Lys mutant studied here presents an apolar, non solvent exposed cavity,

of such small size that binders generally fill most, if not all, of the binding cavity.

This can be observed in figure 5.1, where benzene (bnz) is shown bound to T4Lys

L99A (referred simply as T4Lys, from now on). As can be seen, the cavity is

formed by two linked (nearly) spherical subcavities. Most ligands bind to the main

(bigger) subcavity. However, one ligand (nbb, see figure 5.9 or the Appendix, table

11.1, for the 2D structure) will be presented in this project which does bind its side

chain into the smaller subcavity (to the side).

This system will be used exclusively on JAFS score calculations, since most of

the cavity can already be covered by the small box that delimits these simulations,

and one unique region of the cavity where ligands could bind can be comfortably

defined. In this context, the JAFS box constraining the location of the centre of

geometry of the fragments in the JAFS calculations is also displayed in figure 5.1.

Given the steric restrictions provided by the protein and the limits to conforma-

tional sampling imposed by the JAFS box, we can be confident no two fragments

could fit within the volume available without overlapping.

Fragments chosen to study performance on this system can be found as molecu-

lar models in figure 5.9, as well as 2D structures in the Appendix, table 11.1, under

the names: bnz, 1mp, nbb, dcb and wa1. The structures of the co-crystallized

protein-ligand complexes are those with PDB code 181L, 2OU0, 186L and 2OTY

respectively (the water molecule, wa1, is not expected to bind as its structure cor-

responds to that of the Tip4P water model and binding cavity is hydrophobic).

During most of the study the protein structure used was that of 181L. In some

cases 186L was used, this will be indicated where appropriate.

5.1.2 Mouse Major Urinary Protein I

The mouse Major Urinary Protein I (referred as MUP or MUP-I throughout

the thesis) was chosen as a test system for the JAFS method due to its particular

property in terms of cavity hydration. MUP presents a hydrophobic cavity, but

in contrast to that of T4Lys, this is considerably bigger. While the cavity is big

enough to accommodate a number of water molecules at the same time as any of
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the fragment binders within this thesis, the rest of the cavity is found empty, with

the minimum energy configuration corresponding to no water molecules present

in the cavity, on average (GCMC studies performed within he group — Dr. G.

Ross, personal communication). Equally, when the binding cavity is empty of

ligand, enough space is available for a water network to be present. On studies of

solvation run with GCMC within the group,93 the conformations associated with

0 to 6 water molecules bound were found to be thermally accessible (the number

of water molecules is expected to fluctuate). The minimum energy configuration is

associated with two water molecules where the two most occupied clusters of water

configurations correspond to the conserved waters in the crystal structure of the

apo protein (PDB code 1I04).93 Note that there are other ligands, not used in our

simulations, where bridging waters are found in the cavity, co-crystalized with the

ligand, mediating interaction between ligand and protein (e.g. PDB code 1I05).

It is for cases like this, where the solvation state of the system (dry cavity) may

prove hard to predict, that JAFS can be of particular use. In the case of JAFS pose,

to correctly predict the solvation state of the binding cavity, and hence obtain the

correct binding poses, JAFS will need to automatically detect the hydrophobicity

of the pocket, to prevent the appearance of water molecules. In the case of JAFS

score, the available sampling volume is higher than that of other systems (e.g.

T4Lys, see above) due to the absence of waters and protein residues close to the

limits of the JAFS box. In MUP, ligands displaced to the edges of the box (where it

is only their centre of geometry that is constrained to the JAFS box limits) may not

find any steric clashes disfavouring their conformation. In systems such as T4Lys,

any ligands displaced to the edge of the box are likely to find steric clashes with

protein residues. The same effect would be expected if a bigger cavity were heavily

hydrated. It is hence both the big volume and dryness of the binding cavity that is

effectively increasing the volume available to sample by the interacting fragments

within the JAFS score calculations. It is important to remember that JAFS score

relies on the fragments overlapping, so that only one of them presents high values

of θ at any given time. If several fragments can present high θ at the same time,

the assessment of relative affinity of binding through the scores (proportion of

simulation time with θ > 0.5) provided by JAFS might be compromised.

Fragments chosen to study performance on this system can be found in figure
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5.9 and in table 11.1 under the names: ipz and prz. The structures of their protein

complexes have PDB codes 1QY2 and 1QY1 respectively, where 1QY2 was the

protein conformation chosen to perform the simulations.

Figure 5.2: MUP-I structure (orange ribbons), PDB

code 1QY2. The bound ligand (ipz) is shown in dark

grey and the two JAFS boxes (JAFS score the smaller

and JAFS pose the bigger one) are shown in light grey.

Note that, by following the default setup as provided

by protoms.py, no scoop is required in this case, due

to the small size of the full protein structure in the

PDB file.

In figure 5.2, the struc-

ture of MUP with ipz

bound can be seen. Both

boxes for JAFS score (smaller

one) and JAFS pose (big-

ger one) are also shown

surrounding the binding

cavity.

5.2 Pharmaceutical

Targets

Certain test systems

were selected due to their

relevance within the phar-

maceutical industry. These

systems are expected to

present equivalent proper-

ties and level of difficulty

to those on which JAFS

will likely be applied in

the future. In these sys-

tems, their biological rele-

vance and reasons for their

targeting by the pharma-

ceutical industry will be

presented. While mainly

chosen for their pharmaceutical relevance, together with the availability of binding

affinity experimental data and X-ray crystal structures, they also present physi-

cal and structural properties affecting the binding process which will be explained
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below.

5.2.1 Heat Shock Protein 90

The Heat Shock Protein 90 (HSP90) system was provided by our collaborators

at Astex Pharmaceuticals. Their interest in this protein is related to its role in can-

cer cells and cancer development. This role is complex and wide spread throughout

cancer types, being related to the control of cell apoptosis and the maintenance of

the functional state of oncogenic mutated proteins.

HSP90 for Development

Figure 5.3: Water mediating interac-

tions (dark red) between ligand f01

(brown) and HSP90 residues (grey).

PDB code 2XDK. Names to water

molecules assigned for reference W1

to W5.

A system had to be chosen for the initial

studies on the project. This system would

be used throughout the development of the

methodology. The system was chosen to

fulfil certain criteria:

- Possibility to validate the results ob-

tained by the application of the new

methodology to the system. Reliable

experimental data has to be available

to compare to the new results.

- Representativity. The system of

choice must be a model for those to

which the new methodology will be

applied.

- Simplicity. Initially, the basic perfor-

mance of the methodology must be

assessed. Once this step has been ful-

filled, further traits can be added to

the complexity of the test case.

With this criteria in mind, HSP90 and the co-crystallized fragment f01 were

chosen (see figure 5.4).25
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Figure 5.4: HSP90 scoop (left, bigger) and full protein structure (right, smaller).
Note that the scoop includes most of the structure of the full protein. In both cases,
the protein is displayed as ribbons in grey and the ligand (f01) in dark brown. On
the left, the JAFS box is shown in white. PDB code 2XDK.

Figure 5.5: 2D

structure of

f01.

The fragment used through my work on the development of the

methodology, f01, can be seen in figure 5.5. It establishes inter-

actions with the protein through four conserved water molecules,

which are “W1” to “W4” in figure 5.3. The key dihedral angle

to be sampled is that between both aromatic rings. Notice that

waters from “W1” to “W3” share their bound conformation with

those found in figure 5.6 (from right to left, “W1” to “W3”, re-

spectively).

HSP90 for Production

As well as the relevance of its biological function and its role

as a target for cancer therapy (see below), HSP90 also presents

physical properties of particular interest to our analysis of JAFS performance. It

147



should help assess whether JAFS can provide all the automation expected in its

treatment of waters in the binding cavity. The hydration of the binding cavity of

HSP90 presents opposite challenges to those offered by MUP (see section 5.1.2). In

contrast to MUP, HSP90 presents a highly hydrated binding site.224 The JAFS pose

protocol must automatically detect this hydrophilicity. During the simulations, the

pocket must be filled with both the fragment and a number of water molecules so

that the correct solvation states of the cavity are sampled and the binding geometry

can be found. Following the black-box approach to JAFS, the setup for both, MUP

and HSP90 systems, will be identical.

Figure 5.6: Water mediating interactions

(dark red) between ligand 2dl (green) and

HSP90 residues (grey). PDB code 2XDL

Not only is the cavity in HSP90 ex-

pected to be filled with waters, but the

exact positions of these water molecules

are essential to the binding of the frag-

ments. In HSP90, three to four wa-

ters are conserved between several crys-

tal structures of bound ligands (see

for example structures with PDB codes

2XDK, 2XDU and 2XDL) mediating

key interactions between the binder and

protein. The three waters conserved

throughout all binders studied in this

project can be seen in figure 5.6. The

right-most water in the image (called

W1 in figure 5.3) mediates an essential

hydrogen bond in the binding of all fragments presented in this thesis. In prelim-

inary studies of the affinity of the conserved waters for HSP90 (data not shown)

W1 has proven to be the most tightly bound of all these waters.

Fragments chosen to study the performance on this system can be found in

figure 5.9 and in table 11.1 under the names: 2dl, ata, atb, atc atd ate and atf. The

protein structure used during the simulations is that co-crystallized with 2dl (PDB

code 2XDL). Note that the rest of ligands used do not have a complexed structure in

the Protein Data Bank. Their RMSD to crystal binding geometry are calculated to

crystal structures obtained by our collaborators at Astex Pharmaceuticals (Marcel
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Verdonk, personal communication).

Figure 5.7: HSP90 scoop (left, bigger) and full protein structure (right, smaller).
Note that the scoop includes most of the structure of the full protein. In both
cases, the protein is displayed as ribbons in grey and the ligand (2dl) in green. On
the left, the JAFS box is shown in white. PDB code 2XDL.

The Protein Structure

The section of the protein included in our system is the N-terminal domain —

which is also the ATP binding section. It is the ATP binding site where the studied

fragments bind (as can be seen in figures 5.4 and 5.7).

The N-terminal domain of HSP90 (simply HSP90 from now on) is formed by

a α + β sandwich defined by nine helices and an anti-parallel β sheet (see figure

5.4).225

A cavity is formed in the centre of the α + β sandwich, accessible through the

helical side of the sandwich. Hence, the pocket is limited by the β sheet at the

front and a helical structure to the sides.
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The Protein Function

HSP90 is part of the family of proteins known as molecular chaperones (or

simply chaperones). The proteins in this family share common roles in the cell,

related to protein folding and cell homoeostasis.75,226

Several subgroups form the protein family of chaperones, among them, HSPs

are proteins of particular interest. HSP stands for Heat-Shock Protein. This name

is due to the increase in expression found in these proteins when the cell suffers

different forms of stress (heat among them).

Given their proteostatic role, chaperones are highly influential for the survival of

cancer cells, which, due to their mutations and exacerbated growth, live in constant

stress conditions. Moreover, inhibition of certain chaperones has been proven to

specifically inhibit growth of some cancer cell lines.75

5.2.2 Cyclin Dependent Kinase 2

Cyclin Dependent Kinase 2 (CDK2) is one of the targets provided by our phar-

maceutical collaborators at Astex Pharmaceuticals. It is, like HSP90, a target for

cancer therapy.

The correct functioning of CDK2 in the cell is essential to the correct progres-

sion of the cell cycle, controlling the evolution of the cell between cycle states.227

This cycle determines when (and if) cells should divide and proliferate, as well as

leading the cell towards apoptosis if required. Consequently, the deregulation of

this cycle can generate uncontrolled division and cellular growth, as well as inhibit-

ing apoptosis, typical behaviour of cancerous cells. In cancer cells, the expression

of the proteins of the CDK family, as well as the modulators of their activity, is

often found to be altered.227

To fulfil their function as regulators of the cell cycle, Cyclin Dependent Kinases

(CDKs) work in tandem with Cyclins, forming a heterodimer. In this dimer, CDKs

perform kinase activity, while cyclins form the regulatory subunit.227

In the case of CDK2 binding to one of its possible partner Cyclins (Cyclin

A), the binding of the cyclin activates the Kinase by releasing steric clashes which

otherwise block the entrance to the active site. CDKs hence remain inactive when

not attached to Cyclins, and it is the formation of these transitory complexes, and

the associated conformational change, that initiates the kinase functionality and
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Figure 5.8: CDK2 scoop (left, bigger) and full protein structure (right, smaller).
Note that the scoop includes mostly one of the subdomains of the full protein. In
both cases, the protein is displayed as ribbons in green and the ligand (vth) in dark
grey. On the left, both JAFS boxes (score, smaller and pose, bigger) are shown in
light grey. PDB code 2VTH.

drives the progression of certain cell cycle events, such as the replication of DNA

in the case of CDK2.228

CDKs share the same fold and tertiary structure with the rest of the eucaryotic

protein kinases, while differences in their active site distinguish members of the

protein kinase family. The structure of CDK2 is composed of two different lobes,

a smaller one (N terminal) where β-sheets are dominant, and a larger one, mostly

α-helical. As can be seen in figure 5.8, the region studied for the binding of our

fragments is formed by a cleft between both lobes, with the β-sheet lobe to the

right and down of the ligand and the α-helical lobe to its left in the image. This is

the native binding site for ATP.228

In the dataset of ligands used with this system we find some which binding

affinity has been determined experimentally (binders, actives) and those which ex-

perimental studies have found not to bind with detectable affinity (non-binders,

decoys). Distinction between these two ligand classes is one of the main points
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of interest in the initial stages of drug development processes. Optimization ef-

forts are invested in initial active hits, since non-binders are not expected to evolve

into effective drugs by optimization. The measure of enrichment factors (increased

proportion of actives with respect to the total number of ligands) as measures of

success of docking and scoring protocols are an example of the relevance associated

to the distinction between binders and decoys.229–231 Accordingly, it is highly rele-

vant to assess the performance of JAFS within this context. The specific fragments

chosen to study performance on this system can be found in figure 5.9 and in the

Appendix, table 11.1, under the names: vta, vth, vtm and wcc (binders) and cd1,

cd5, cd6, cd8, and cd9 (decoys). The PDB codes of the protein complexes with

the binders are 2VTA, 2VTH, 3VTM and 1WCC. The protein structure used in

all simulations unless otherwise specified was taken from the 2VTH complex.

5.3 Why These Systems

In the two previous sections we have briefly described the systems that have

been chosen as our test cases for JAFS. However, besides their classification as

model or pharmaceutical targets, little has been said about why these particular

protein complexes have been selected. In this section the main reasons will be

summarized.

5.3.1 Interesting Range of Challenges

Possibly the reason which has been mentioned the most in the previous sections

is related to the range of difficulties they offer to test new JAFS method. From

the different levels of solvation and cavity size, from the small and apolar T4Lys,

to the big and dry MUP to the big and well hydrated HPS90, which also presents

the challenge of conserved bridging waters. Equally, in the complexity associated

with the number of fragments, the systems range from only two binders in MUP

to 9 different ligands in CDK2, which is interesting as it includes both binders and

decoys.
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(a) (b)

(c) (d)

Figure 5.9: All systems used throughout the JAFS production stage. Fragments
shown associated with their target. 2D representations of fragments can be found
in the Appendix, table 11.1.
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5.3.2 Availability of Structural Data

In all cases, a determining reason for the choice of these particular test cases

was the availability of crystal structures of the protein-ligand complexes. These

may be publicly available (in most cases) but in some cases (i.e. HSP90) part of

the information was made available to us for this study through personal com-

munications. The availability of good quality structural data is essential for the

comparison of out calculated binding conformations with experiment.

5.3.3 Availability of Experimental Binding Affinities

The availability of binding affinity was of great importance, in particular for

the systems where the JAFS score protocol (see section 4.2.1) was to be performed.

This data allowed for a comparison of the ranking obtained by affinity of different

ligands to a binding cavity as observed experimentally to that obtained computa-

tionally with JAFS.
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Chapter 6

Development

6.1 Previous work: JAWS Applied to Fragment Molecules

The JAFS method is based on the JAWS methodology. For a description of

the theory behind JAFS, sharing many principles with JAWS, see chapter 4.

6.1.1 JAWS

Just Add Water moleculeS (JAWS)200 is a method developed to tackle the

always-relevant aspect of water molecules binding to protein cavities. Water molecules

may mediate interactions between bound ligands and their binding cavity and the

solvation state of the cavity has an effect on binding affinity even when no direct

mediation of binding interactions is present. Moreover, the displacement of bound

water molecules is a method commonly used to increase affinity of ligands through

the increase in the entropy of the system as the water is released to the solvent

(bulk water). Despite all its importance and having been studied often, predicting

the correct binding affinity and geometry of water molecules to protein cavities is

still challenging.202

With the aim of sampling occluded cavities and increasing the sampling of

crowded ones, a similar concept to that of GCMC (see section 3.5.4) is applied.

However, rather than offering water molecules only two possible states (present

in the simulation vs. the external bath), the JAWS waters are offered an extra

degree of freedom to be sampled as a continuum, from absence (θ = 0) to presence

(θ = 1) in the simulation. Both extreme states, as well as all intermediates, are
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defined by the scaling factor (θ) applied to the interaction potential of the water

molecules. The possibility of sampling this variable as a continuum allows for

smaller Monte Carlo steps (attempted simulation moves) to be taken when sampling

the presence or absence of JAWS waters. Consequently the energy difference arising

from the moves can be small, and hence, the acceptance ratio (and sampling) can

be improved (see section 3.5.2). JAWS has been proven to provide results on water

binding affinity and location in agreement with experiment.200

For more information on the original JAWS method, see section 3.8.

6.1.2 Issues on ligand binding

While the study of water binding to protein cavities is still very much a hot

topic,93,202,232–234 similar issues can be found when looking to find the correct

binding geometry of small organic molecules (ligands) binding to protein cavities.

Just like water molecules, small ligands can bind in occluded protein cavi-

ties,223,235 where capturing the process of ligand binding to target would require

protein conformational changes not expected in typically simulated time scales. Dif-

ferent methods to increase sampling within a given simulation time are described

in section 6.3.2. Even when binding in fully solvent exposed cavities, sampling a

range of different configurations in atomistic, molecular mechanics, explicit solvent

simulations may require the concerted move of a set of water molecules, the ligand

and potential re-arrangement of protein side-chains, all of which, again, cannot be

guaranteed in a typical simulation time. Given these sampling difficulties, com-

putational estimates of optimal binding geometries often rely on simplified system

representations and energy calculations such as docking17,83,124 (see sections 2.4.1

and 3.2). Other available methods with their contributions and drawbacks are

summarized in sections 2.4.2 and 3.6.4.

6.1.3 Applying JAWS to Fragment Molecules

However, given ligands and waters face similar challenges in the study of their

binding to protein cavities, why not try to apply the same solution to their prob-

lems?

When thinking of transferring water binding techniques to other protein lig-

ands, fragment molecules can be seen as the most feasible step. Besides, fragment
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molecules, due to their small size and related lower binding affinity are considered

more difficult cases in binding prediction methodologies (see section 2.4.1). As

detailed in chapter 2, fragments are small, comparatively rigid molecules, in the

context of organic molecules binding to proteins. Both the size of the molecule and

lack of degrees of freedom prove relevant measures of the transferability of water

methodologies.

Water molecules are smaller in size compared to any other molecule present

within a typical biomolecular system (excluding some inorganic ions). This small

size is key to the efficiency of techniques such as GCMC, based on the sudden “ap-

pearance” of a molecule in the simulation. As the acceptance of a Monte Carlo move

depends on the generated change in the energy of the system (see section 3.5.2), a

move which, introducing a molecule in the system, generates Lennard-Jones clashes

with those previously present, is very unlikely to be accepted. Consequently, the

smaller the molecule to which GCMC is applied, the more efficient the technique

is expected to be. The same reasoning can be applied to JAWS, while JAWS

is expected to achieve better sampling than GCMC for any given molecule. As

is generally the case, this increase in sampling does not come without associated

drawbacks. To study the benefits and drawbacks of each method, the reader is

advised to read sections 3.5.4 and 3.6.4 for information on GCMC, section 3.8 for

further information on JAWS and sections 9 and 10 for a summary of the drawbacks

and benefits found when applying JAWS to fragment molecules.

The number of degrees of freedom, on the other hand, simply increases the

dimensionality of the problem. Given a particle where internal degrees of freedom

are sampled, its insertion move in a particular point of simulation space may gen-

erate a different energy change (and hence be accepted or rejected) depending on

the internal conformation of the inserted particle.

It is in this context that techniques applied to water molecules are more likely to

be successful if extended to fragments, than to other bigger, more complex species.

It is important to note, however, that GCMC has been applied to small molecules,

as described in section 3.6.4. The advantages expected from the application of

JAWS to this same problem are noted in section 3.8.3.

The aim was then to expand JAWS — the technique developed with a similar

approach to GCMC, but with increased sampling efficiency — to be used in the
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fragment context. Some general ideas of this initial stage of the application of

JAWS to fragment molecules are listed below:

- Definition of the binding cavity space within a cubic region surrounding the

whole of the desired cavity

- Several fragment species and water molecules included within the binding

cavity

- Fragment species and water molecules within the cavity are only allowed to

sample the cubic region in terms of Cartesian space

- Fragment species and water molecules within the cavity allowed to sample

the scaling of their interaction energy (θ)

- Fragments and waters within the cavity are expected to compete both in

Cartesian and θ space

- As a result of this competition, each particle in the cavity must find its

optimal binding pose, or remain at low interaction energy (low θ) if binding

is disfavoured

The outlined protocol for the application of JAWS to fragments would estimate

binding geometries of several fragments at the same time, with intrinsic competition

in terms of affinity for the different binding areas within the cavity. It would provide

useful information for the intuitive development of drugs from combinations of

fragments binding to different areas of the cavity and / or potential modifications

of the initial fragment in the process from hit to lead and drug (see chapter 2),

given that potential binding geometries of fragments are partially overlapping.

While the initial ideas for the protocols would provide a number of advantages

highlighted above, attempts to develop this complex protocol proved unsuccessful

(Dr. S. Genheden, personal communication). The objectives to be fulfilled by a

single simulation were deemed too ambitious and the dimensions of the free energy

landscape to be sampled excessive, since convergence could not be achieved. The

objectives where then simplified, by reducing the application of JAWS to one unique

fragment species per simulation (plus water molecules). The new protocol would
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allow for the binding geometry of this one fragment species to be studied, at the

same time as the solvation of the cavity around it.

This protocol was used to study CDK2 with ligands wcc and vta (see chapter

5 and the Appendix, table 11.1). Finding the correct binding geometry for these

fragments proved challenging, with solvent exposed configurations frequently found

and the crystal geometry rarely appearing (Dr. S. Genheden and Dr. G. Ross

personal communication). Key conditions of the simulations performed for these

studies are shown below:

- 10 x 10 x 10 Å3 box limiting the binding cavity

- 15 copies of fragment species (one species in each simulation) and 15 copies

of water

- 5 million equilibration and 20 million production Monte Carlo moves
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6.2 Initial Work: Sampling vs Mean Field Effect

6.2.1 Protocol

Key aspect of the protocol followed during section 6.2 will be highlighted here.

Note the differences with the JAFS protocol as presented in chapter 4. This is to

be expected as a reflection of the different stages of method development. A form

of “naive” implementation is shown here, which was then further refined into the

JAFS methodology as shown in chapter 4. Unless otherwise stated:

- four repeats (different random seed but common starting conditions) have

been run for each simulation with a particular set of conditions

- the initial configuration of the JAWS fragments emulates that of the X-ray

crystal structure. The centres of geometry of the JAWS waters are located

on the same coordinates as that of the fragments. Note all JAWS particles

overlap.

- the initial value of θ for all JAWS particles is zero

- before starting the main body of the simulation, ten thousand randomizing

steps (Monte Carlo moves in Cartesian space) are applied to those initially

centred JAWS particles, so that they are distributed within the simulation

box. Note that, at this stage, the JAWS particles move freely within the

JAWS box, given that for them all θ = 0 (non-interacting with the environ-

ment)

- once the simulation is finished, only “on” fragments are clustered, where an

“on” fragment is that for which θ > 0.95 (threshold consistent with published

work on JAWS200)

Simulation Setup

JAFS box. The dimensions on the JAFS box were decided to make sure the

whole binding site was covered. Looking at the reference where fragment f01 was

studied and developed into more complex compounds,25 three other fragments are

also discussed (co-crystallized with HSP90 in entries 2XDL, 2XDU and 2XDS of
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the pdb). The JAFS box was designed from the overlayed structures of these co-

crystals to be at least 2 Å away from all atoms in the protonated structures of

these fragments. The approximate size of the box resulted 16 Å x 14 Å x 13 Å(see

figure 6.1).

Figure 6.1: HSP90 scoop (from PDB code

2XDK) in dark grey, with the JAFS box used

in section 6.2 in green

JAFS particles. The number

of JAFS particles in these simula-

tions was chosen to be in excess of

the number of molecules expected

in the cavity (results of GCMC cal-

culation on the cavity with and

without the fragment and personal

communication with Dr. G. Ross):

- Copies of f01: 1 or 5

- Copies of water molecule: 25

or 30

resulting in three different simu-

lation conditions: 1 copy of f01

and 25 copies of water (1F25W), 5

copies of f01 and 25 copies of water

(5F25W), and 1 copy of f01 and 30

copies of water (1F30W). Of these, in depth analysis will be presented for 1F25W

and 5F25W simulations. Their comparison was found to provide the most relevant

information to reach conclusions on the methodology.

This number of particles was taken as approximated by a GCMC (see section

3.5.4) simulation on the cavity, with the limit on the GCMC region of the same

dimensions as the JAFS box. 25 water molecules were estimated to be the opti-

mal number of waters in the cavity when fragment f01 was present, as 30 was the

optimal number of waters generated for an empty cavity. While these calculations

were performed before the GCMC methodology reached its most recent develop-

ment,93 our previous application of GCMC is likely to over estimate the number

of water molecules (Dr. G. Ross personal communication). An over estimation of

the number of waters is not expected to have any major effects in the development
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of the JAFS methodology, since JAFS should take care of keeping any excess of

JAFS particles at low θ values.

Simulation lengths and proportion of moves. Simulations of different

lengths (number of moves) were run. Standard (20 million moves) length simula-

tions were followed by approximately 70 million move simulations. Eight repeats

of “extra-long” simulations (250 million moves) were run with 1 copy of f01 and

25 copies of waters. The idea behind these “extra-long” simulations was to check

whether better convergence could be achieved for very long simulations. The pro-

portion of moves attempted on each type of particle involved in the simulation can

be seen in table 6.1. These were estimated to provide good sampling of the system

based on experience of simulations with the same software in the group. A special

focus is applied on the sampling of solutes, both in θ (theta) and the Cartesian

(solute) space (note there is a high number of molecules of solvent, hence the sam-

pling per molecule will be low for solvents). While the move size limit (flexibility)

of Cartesian sampling is divided in different terms related to each of the internal

degrees of freedom, as well as translation and rotation, the flexibility of the theta

moves is determined by a single value, which is set to 0.15 for all work presented

in section 6.2.

move type moves
theta 50%

protein 4%
solvent 23%
solute 23%

Table 6.1: Proportion of moves for each move type in the JAFS calculations
throughout section 6.2. Solute refers to the move within the Cartesian coordinates
of the fragments and waters treated as JAFS particles (internal degrees of freedom
in the case of fragments, as well as translation and rotation for both fragment and
waters). Theta refers to the moves in the θ space.

Clustering Analysis

Two different programs were used for clustering fragment and water structures

from the snapshots produced through simulations: cpptraj, included in Amber-

Tools, as part of Amber12,150 and an in-house script (generated by Dr. Gregory
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Ross, based on scipy hierarchical clustering, see docs.scipy.org/doc/scipy/reference/

cluster.hierarchy.html). Two associated clustering methods were used: average

linkage213 with cpptraj and single linkage213 with the in-house script (however,

average linkage was used with the in-house script in specific examples specified

later). Different thresholds were also used for each approach, explaining differences

between figures which might be noted through the text (4 Å as maximum distance

between clusters and 5 as the minimum number of clusters for cpptraj clustering,

and 2 Å as maximum distance between clusters for the in-house script). Cases

where clustering methods were problematic will be specified in the text. The dif-

ferent clustering approaches were used depending on visualization preference for

different simulations and simulation conditions. Results regarding the success in

locating the crystal binding mode were compared for some of the simulations, ob-

serving comparable results for the different clustering protocols. This diversity was

considered acceptable at these early stages of method development where visual-

ization of the results was key.

6.2.2 Results

(a) (b)

Figure 6.2: The f01 fragment in its crystal conformation (a) and the “flipped”
conformation (b) where the dark blue atoms are nitrogens, light blue carbons and
white hydrogens.

In this section the results of the simulations within the initial development of

the JAFS methodology will be presented. Most importantly, the RMSDs to the

crystal binding mode of the different resulting clusters will be shown. In some
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cases, the RMSD to the “flipped” pose will be mentioned. Here, the “flipped”

pose refers to an equivalent to the binding mode with the unique sampled dihedral

angles in f01 rotated by 180°(see figure 6.2). This “flipped” pose was considered

valid as its distinction from the binding mode displayed in the crystal structure

would be hard from electron density maps (as a carbon with a hydrogen atom

present the same number of electrons as an atom of nitrogen). The assignment

of the ligand conformation in the crystal structure was done based on a water

molecule found within hydrogen bonding distance in the crystal structure (Marcel

Verdonk, personal communication). The non-flipped pose (image (a) in figure 6.2)

may hence be considered the “correct” binding geometry. However, the ring might

rotate in non-crystallographic conditions. When the (all-atom) RMSD of a given

cluster to either of these poses was less than 2 Å, the cluster was considered to

have successfully located the crystal binding mode.

The distribution of θ values throughout the simulations will also be shown for

some particular cases, as a route to reaching conclusions on the reasons behind the

differences in results for different simulation setups.

The cluster population was explored during this stage of the project as potential

information which may be used to rank clusters by binding affinity and identify

the crystal binding pose among those generated. Here cluster population refers to

the number of simulation snapshots whose configurations compose one particular

cluster.

Please note that the water model used in the simulations presented in this

section (section 6.2.2) was later found to be a faulty version of the TIP4P model.

The small differences between the parameters of the water model used in this

section and that of TIP4P are not expected to produce significant differences in

the simulations. Furthermore, the results of the simulations run at this initial phase

were simply taken as experience and a guide to develop further the application of

JAWS to fragment molecules. Nevertheless, this fact must be noted.

Finding the Crystal Pose

Tables 6.2 and 6.3 show the RMSD between the clusters (obtained by clustering

200 snapshots per simulation, with 100 000 configurations separating each snap-

shot) and the crystal binding mode. Clusters shown are the result of clustering all
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Protocol: 1F25W

20M moves population RMSD (Å)
cluster 1 0.47 2.32
cluster 2 0.21 3.73
cluster 3 0.20 5.77
cluster 4 0.12 6.07

Protocol: 1F25W

70M moves population RMSD (Å)
cluster 1 0.58 1.32
cluster 2 0.42 4.98
cluster 3 0.00 4.51

Table 6.2: Snapshot population of clusters in 20 M and 70M move runs of 1F25W.
RMSD (in Å) from each of the clusters to the crystal pose.

snapshots for all four repeats run under those conditions, during that simulation

length. Note how, for both simulation lengths (20M moves and 70M moves, table

6.3), none of the clusters found in the 5F25W simulations is within 3 Å RMSD of

the crystal binding geometry. In the case of the 1F25W (table 6.2) for the 70M

move simulations, the most populated cluster already presents an RMSD to crystal

pose of less than 2 Å. The top populated cluster for the 20M 1F25M simulations

presents an RMSD to crystal pose slightly higher (2.32 Å). However, when the

RMSD to the “flipped” pose is calculated, this falls below the 2 Å limit (RMSD =

1.16 Å).

As previously indicated, these clusters were obtained from all snapshots in all

different repeats within one set of conditions. The presence of snapshots from the

different repeats in each of the clusters was studied.

For the 1F25W simulations, it was then found that, within each repeat, all

snapshots (with fragment θ > 0.95) were part of only one cluster (different clusters

for different repeats). In all cases, four different simulation repeats were run, and

all were clustered together. For the 20M runs, where four clusters were found, each

cluster is populated by snapshots from only one repeat. For the 70M moves runs

three clusters are found, with one of them being populated by snapshots from two

different repeats and the remaining two clusters, each being populated by snapshots
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(a) (b)

Figure 6.3: RMSF (RMSD with respect to previous snapshot) for f01 during the
last 100 snapshots (10M moves) of the 20M move simulations for representative
examples of 1F25W (a) and 5F25W (b) runs. Each different line colour corresponds
to a different copy of the fragment.

(a) (b)

Figure 6.4: Sampling of θ for f01 during the last 100 snapshots (10M moves) of the
20M move simulations for representative examples of 1F25W (a) and 5F25W (b)
runs. Each different line colour corresponds to a different copy of the fragment.
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Protocol: 5F25W

20M moves population RMSD (Å)
cluster 1 0.38 5.66
cluster 2 0.31 3.70
cluster 3 0.13 7.94
cluster 4 0.12 4.68
cluster 5 0.04 7.65
cluster 6 0.01 3.38
cluster 7 0.01 3.41

Protocol: 5F25W

70M moves population RMSD (Å)
cluster 1 0.37 3.25
cluster 2 0.20 5.02
cluster 3 0.17 6.41
cluster 4 0.13 8.88
cluster 5 0.07 4.28
cluster 6 0.04 3.77
cluster 7 0.02 4.98
cluster 8 0.00 10.31

Table 6.3: Snapshot population of clusters in 20 M and 70 M move runs of 5F25W.
RMSD (in Å) from each of the clusters to the crystal pose.

from only one repeat. In either case, each of the repeats does not sample more than

one unique binding configuration (cluster) while the fragment presents θ > 0.95.

In the case of the 5F25W simulations, some more variability in the distribution

of snapshots was found, where one cluster was typically populated by snapshots

from two to three different repeats, with only one cluster (the most populated

cluster for the 70M moves runs) found to be populated from a single repeat.

The points below can serve as a summary of the results presented above:

- The 1F25W simulations seem to be more successful than 5F25W in finding

the crystallographic binding mode

- Based on the snapshots clustered together from different simulation repeats,

the sampling of the 5F25W simulations is understood to be better

To confirm the idea that the sampling of Cartesian space in the 5F25W is bet-
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Protocol: 1F25W

250M moves population RMSD (Å)
cluster 1 0.69 3.69
cluster 2 0.21 4.37
cluster 3 0.10 4.51
cluster 4 0.01 5.34

Table 6.4: Snapshot population of clusters in 250 M move runs of 1F25W. RMSD
(in Å) from each of the clusters to the crystal pose.

ter than that of 1F25W, a study of the RMSF (RMSD with respect to previous

snapshot) per simulation snapshot was performed. Plots of the last 100 snapshots

(one snapshots per 100000 MC moves) of representative repeats of 20M move sim-

ulations for 1F25W and 5F25W can be found in figure 6.3. These plots support

our previous understanding that increasing the number of copies of the fragments

increases the Cartesian space sampled.

By comparing the plots in figure 6.3 with those in figure 6.4 the coupling of

the θ sampling with sampling of Cartesian space can be observed. See how, for

the case of 1F25W, the only fragment present remains at high values of θ (figure

6.4 plot (a)), correlating with a low sampling of Cartesian space (figure 6.3 plot

(a)). As the number of copies of the fragment is increased, some of those copies

sample low values of θ (see figure 6.4 plot (b), the green and red lines). When the

lowest values of θ are sampled, an increase in the RMSD with respect to previous

snapshot can be observed (see 6.3 plot (b), the red and green lines).

Given that the problem associated with the 1F25W simulations seemed one

related to sampling, we attempted to run very long simulations, with the idea

that these should then reach convergence and provide the crystal binding mode

in all repeats. Results for the clusters obtained from all repeats of the extra long

simulations (250M moves) are shown in table 6.4. As can be seen, no crystal pose

is obtained for this simulation length. It was then concluded that increasing the

simulation length was unlikely to provide the solution to the sampling problem

observed, within any feasible simulation time.
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Figure 6.5: Smooth histogram of the θ values of f01 in every snapshot in the 4
repeats of 20 M moves with simulation set-up: 1F25W (a), 1F30W (b) and 5F25W
(c). A Gaussian kernel is used for the smoothing of the histograms (the density is
displayed as a normalized sum of Gaussians). Note that, while this representation
simplifies visualization, it necessarily associates with a non-accurate representation
of the density at the extreme values of θ (0 and 1).
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The Influence of θ Sampling

The distribution of θ throughout the simulations for a set of different simulation

conditions is shown in figure 6.5. An obvious difference between the simulations

where one copy of the fragment is present (1FW25 and 1F30W) and those with five

copies of the fragment (5F25W) is presented. It can be seen how, for those with one

copy of the fragment, f01 remains at high values of θ most of the simulation time,

with the possibility of appearing at low value of θ at some stage in the simulation.

However, for simulation where five copies of the fragment are present, there is

a close to uniform distribution of θ values throughout the simulation for the f01

particles. It is important to understand here that particles at intermediate values

of θ are not a true representation of any state in the real system. That is, in reality,

a particle can be in the cavity (represented by high values of θ) or not be there

(low values of θ), but no particle with half its interaction energy will exist in the

real protein-ligand system. It can be hence concluded that simulations with less

crowded cavities (those with one copy of the fragment) seem to represent a more

realistic system that those with over-crowded cavities (five copies of the fragment).

While differences appear less prominent, a similar behaviour to that of the

fragment molecule can be observed for the waters included as JAWS particles. The

θ distributions for JAWS waters can be seen in figure 6.6, where the simulations

with five fragment copies (5F25W) present a flatter distributions of θ than those

seen for the simulations with only one copy of the fragment (1F25W and 1F30W).

6.2.3 Conclusions

Based on the results presented above, it was concluded that:

- Over-crowding the JAFS box by including more particles of bigger volume

(volume of f01 > volume of water molecule) seems to increase the sampling

of the fragments, at the same time generating a less realistic environment

(with a number of fragments with intermediate values of θ). Both facts are

understood to be correlated, with the presence of fragments at intermediate

and lower values of θ increasing the Cartesian sampling, due to their interac-

tion energies being scaled down. Fragments can then increase their θ where

favourable interactions are found.
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Figure 6.6: Smooth histogram of the θ values of the waters in every snapshot in
the 4 repeats of 20 M moves with simulation set-up: 1F25W (a), 1F30W (b) and
5F25W (c). A Gaussian kernel is used for the smoothing of the histograms (the
density is displayed as a normalized sum of Gaussians). Note that, while this
representation simplifies visualization, it necessarily associates with a non-accurate
representation of the density at the extreme values of θ (0 and 1).
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- A less crowded JAFS box generates a more realistic environment, where the

crystal binding pose could be successfully found. However, Cartesian sam-

pling was hindered by the single copy of f01 remaining at high values of θ

during almost all of the simulation time. While the fragment copy remains

at high values of θ, without the interaction energy being scaled, the increased

sampling effect of JAFS simulations does not apply.

A dilemma arises, where increased sampling seemed to be associated with unreal-

istic simulations, while a realistic simulation can only be achieved with low levels

of sampling. The rest of chapter 6 will aim to solve this dilemma, by increasing

sampling in realistic simulations and / or making well sampled simulations better

correlate with the real system.

172



6.3 Addressing the Sampling Problems

As described, the initial work on the development of JAFS seemed to end in an

impasse, where the overall outcome of the simulations could not be improved. The

sampling of the simulations could be improved at the cost of decreasing the realistic

depiction of the system, while representing the system accurately seemed to be in-

trinsically linked to poor sampling. As explained in previous sections, an increased

number of fragments in the simulation is correlated to both an increase in sampling

and decrease in the accuracy in the representation of the physical system, through

the appearance of fragments at intermediate values of θ — neither present nor

absent from the simulation. Simulations with lower numbers of fragments, lacking

this intermediate θ fragments, represent more accurately the physical system, since

fragments can be assigned to either “present” (high θ) or absent (low θ) states.

However, the low number of fragments is also associated with a lower sampling

of the fragment binding configurations (with lower number of copies available to

perform the search).

The logical question to answer was what was pushing the simulations towards

this impasse. We would like to run simulations with conditions linked to better

sampling (several copies of fragment) without getting, as a consequence, a sea

of particles with intermediate values of θ (and hence a simulation which poorly

reflects reality). Next, questions on how a realistic representation with improved

sampling can be obtained, and why the intermediate values of θ seem to dominate

the simulations, will be addressed.

6.3.1 Minimizing Intermediate θ: Changes to the Hydration Penalty

The hydration penalty has been defined before in this thesis (see sections 4.2

and 4.4, and refer to figure 4.1). However, an in-depth explanation of its application

through the development of JAFS to the final state of the method has been missing.

To understand the effects and application of the hydration penalty, it is first

required to understand the links between the θ variable in the JAFS simulations and

the λ variable used in common simulations involving alchemical transformations

for the calculation of relative free energies. (see sections 3.6.2 and 4.4).

Let us picture an absolute dual topology transformation (see section 3.6.2)
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where a ligand is decoupled from its environment (transformed into “nothing”

or a dummy atom, as implemented in ProtoMS). The different λ windows may

be assigned so that λ = 0 corresponds to the ligand fully interacting with the

environment, while λ = 1 corresponds to the ligand fully decoupled. A set of

intermediate λ windows will be set in place equally. For simplicity, let us assume

only two intermediate λ windows exist, at λ = 0.33 and λ = 0.66. At λ = 0.33,

the ligand will be “0.33 off”, that is “0.66 on”, or more specifically, its interaction

energy will be

Eλ=0.33 = Eλ=0 ∗ 0.66 (6.1)

where Eλ=0 is the unscaled (full) interaction energy of the ligand with its envi-

ronment. Equivalently, Eλ=0.66 = Eλ=0 ∗ 0.33. Notice that we are asuming linear

scaling of the energies (and no softcore), for simplicity.

The assignment explained above is exactly that chosen for hydration free en-

ergies in ProtoMS (except for the use of softcores in ProtoMS simualtions) where,

in fact, the free energy of decoupling the ligand from water, rather than the hy-

dration free energy, is calculated (note that these two free energies are equivalent

but with opposite sign, as they measure the same process in opposite directions).

Simulations are then run for each of the λ windows (generally with more windows

than the simplified example above), and the free energy is produced by calculating

the PMF (see section 3.6.2) through the λ path.

As explained in sections 4.2 and 4.4, the free energy of hydration of each of the

ligands in the JAFS simulation needs to be included so that their relative affinity

of binding is correctly represented. This applies to both JAFS score and JAFS

pose protocols (see section 4.2) since the binding geometry cannot be represented

accurately if the relative affinity of waters and fragment is not accounted for prop-

erly. The hydration penalty is the means to include the hydration free energy into

the JAFS calculations.

Let us look again at how the hydration free energy (or rather the free energy of

decoupling the fragment from water) is calculated in ProtoMS. While λ is a static

variable, their values correspond to particular scalings of the interaction energy of

the fragment, in an equivalent fashion to the θ values. It is important to take into

account that, for the decoupling free energy as defined in ProtoMS, λ = 1−θ, since

a fragment with its interaction energy not scaled is represented by θ = 1 in JAFS
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and λ = 0 in the decoupling calculations.

It has been said that the hydration penalty is the way in which the hydration

free energy is incorporated into the JAFS calculations, but what effect exactly does

the hydration free energy have?

Within ProtoMS, the hydration penalty is implemented as an external factor,

only calculated when a move in θ space is attempted. When this move is chosen

randomly between all possible moves, the process explained in section 4.2 is fol-

lowed, where the hydration penalty is expressed by UPMF in equation 4.2. The

idea is that, when a move in θ is attempted, the energy at the old and new θ

are calculated both for the protein cavity system in which the particle is being

simulated, and the associated change in free energy for the JAFS particle in solu-

tion. In this way, when two JAFS particles compete in θ space (when one of them

may be “on” in a particular region of the simulation), that molecule with lower

interaction energies with the JAFS system and higher free energy when solvated in

water will be favoured. For equal affinity towards the binding region, the particle

which is less favoured in water will adopt higher values of θ. This is equivalent

to separately calculating the relative affinity of both particles in water and adding

it to their “bound leg” when calculating relative binding affinities with typical al-

chemical transformation methods (see section 3.6.2 as well as section 4.2 and figure

4.1).

The variability in the application of the hydration penalty can be related di-

rectly to equations 4.2 and 4.3. During the initial work on JAFS, the hydration

penalty is used directly as a polynomial (of 4th or 5th order) fit of the PMF gener-

ated from the simulation of decoupling the fragment from water. The PMF plotted

with respect to λ can be seen in figure 6.7 for several of the ligands that will be

seen in chapter 7.

By looking at figure 6.7, it can be seen that the PMF maximum is always

between 0.6 < λ < 0.9, with minima at both extreme λ values. As previously

mentioned, initially the hydration penalty was expressed as a polynomial fit of

these same PMFs. To understand the effects of the hydration penalty on the

θ sampling in the calculation is important to remember that, for our particular

scenario, θ = 1 − λ, and also that, as seen in equation 4.1, it is actually the

negative of the hydration penalty that will be applied to the energy of the system
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for the calculation of the Metropolis test for θ. Taking the previous into account,

and looking again at figure 6.7, we can tell that the hydration penalty will have

the effect of, given a flat energy landscape for the ligand interaction energy as a

function of λ (or θ), generate an energy minimum at 0.1 < θ < 0.4 and energy

maxima at both extreme values of θ.

While these exact data may be only true for these examples, the general trend

(parabolic shape of the PMF with respect to λ, with a maximum at λ 6= 0 ,

λ 6= 1) has been observed for all fragments analysed. We can then tell that, for all

examples studied, the application of hydration penalty as a high order polynomial

of the PMF of decoupling the fragment from water, tends to favour intermediate

values of θ over θ = 1 and θ = 0.

Consequently, the hydration penalty is promoting the presence of these inter-

mediate values of θ that make our system less realistic. The next logical question is

whether there is a manner of applying the hydration penalty which, still accounting

for the relative affinity of each fragment for water, does not promote intermediate

θ values.

Most obviously, it is the shape of the hydration penalty curve that is generat-

ing the preference towards intermediate values of θ. If we could apply a hydration

penalty whose shape through θ-space diverged from that of the PMF of decoupling

the particle from water, the bias towards intermediate θ could be avoided. But

would a different shape of the hydration penalty accurately represent the real sys-

tem? The first important fact to note, again, is that the intermediate θ states do

not represent any real state of the system. Hence, how they are represented in our

system should affect sampling but, conceptually, the representativity of our model

should not vary. Furthermore, in practice, it is the abundance of these interme-

diate θ states that is pushing our model away from an accurate representation of

reality, hence decreasing their presence certainly must take us closer to the real

state, instead of further away.

In a more theoretically based form of reasoning, it has been explained previously

(see section 3.6) that the free energy is a state function. In the calculation of the

decoupling free energy of the particle from solvent, it is essential that a smooth path

in terms of energy gradients between both end states is generated; the free energy

landscape between neighbouring windows must overlap. However, the exact path
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(a) (b)

(c) (d)

Figure 6.7: PMF (in kcal/mol) with respect to λ for the decoupling of fragment
ata (a), vta (b), ipz (c) and 1mp (d) from water. See figure 5.9 and the Appendix,
table 11.1, for a molecular and 2D representation of the ligands, respectively.
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is simply chosen for convenience and a different implementation would be equally

valid as far as it complies with the requirements stated. It was hence concluded

that no theoretical or practical impediment was preventing the implementation of a

hydration penalty with a different shape. The only requirement was that the PMF

value for both end states (λ = 0 or θ = 1 and λ = 1 or θ = 0) remained equal to

that of the PMF of decoupling the particle from water. To have the most neutral

influence on the sampling of θ, without creating any minima or maxima, and still

fulfilling the task of accounting for the hydration free energy of each particle, a

linear hydration penalty was chosen, defined by a value of 0 for λ = 0, θ = 1 and

the value of the free energy of decoupling for λ = 1, θ = 0.

(a) (b)

Figure 6.8: Sampling in θ space of ligand 1mp in a JAFS pose simulation with only
two ligands (1mp and nbb) within system T4Lys (see section 5.1.1 for a system
description and figure 5.9 and the Appendix, table 11.1, for a molecular and 2D
representation of the ligands, respectively). Two different repeats are shown with
the same simulation conditions except the shape of the hydration penalty is a
polynomial in (a) and linear in (b).

The effect in θ sampling of the change in the shape of the hydration penalty

for a JAFS pose simulation (see section 4.2.2) of ligands 1mp and nbb in T4Lys

(see chapter 5) can be observed in figure 6.8. A very relevant change is obvious,

between mostly sampling intermediate values of θ to remaining at extreme values

of θ. While a clear example has been chosen to illustrate, this is a widespread

effect, which has been observed for all examples where this comparative study was

applied.
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We can hence consider that, by changing the shape of the hydration penalty,

the issue regarding the presence of abundant intermediate values of θ has been

alleviated. However, by looking at plot (b) in figure 6.8, we can see that only

one swap between low and high values of θ was observed through the 40 million

production moves of the simulation. This repeat was chosen to display θ sampling

more clearly due to most of the repeats within this particular simulation setup not

presenting any swap between high and low values of θ (the fragment remains at

either high or low θ during the whole length of the simulation). It hence became

obvious that the other issue presented within our impasse after the initial work

needed to be addressed. In the next subsection, the lack of θ sampling of the JAFS

particles in our simulations will be examined.

6.3.2 Increasing Sampling: Parallel Tempering and Solute Tem-

pering

From the two issues presented at the end of the initial work in this project,

the abundance of intermediate θ states and the lack of sampling, only one has

been addressed so far. The previously studied abundance of intermediate θ values

is an issue intrinsically related to JAFS and JAWS, the methods within which θ

is defined. The lack of sampling, on the other hand, while including an extra θ

dimension, is a general problem in molecular mechanics simulations. A number of

techniques have been developed to alleviate this issue.192,236,237

Among all possible techniques, several aspects were taken into account to decide

to focus on parallel tempering and related enhanced sampling methods (based on

replica-exchange):

- Simplicity. A well known and robust method was desired, which would not

over-complicate either running or analysing JAFS simulations.

- Sampling the Boltzmann distribution. Since we are interested in binding

affinities and optimal binding geometries of ligands, enhancing sampling must

not come at the cost of the correct Boltzmann distribution of states. Besides,

since no further complication is desired, this ensemble must be directly avail-

able, rather than requiring further calculations to obtain it.

- Implementation availability. While no enhanced sampling technique was
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readily available within the release version of ProtoMS, the implementation

of the new technique was restricted in time by the scope and demands of the

project. Parallel tempering fits in well within the ProtoMS software, with

available parallelization, meaning that the enhanced sampling technique will

not reduce the speed of running the software.

Parallel Tempering

Parallel tempering is an enhanced sampling method based on the increase in

sampling obtained at higher temperatures. A theoretical explanation of this tech-

nique can be read in section 3.7.1. It is based on running a set of replicas of the

same simulation at different temperatures. It relies on the increased sampling pro-

vided by high temperatures, and on replica exchange Monte Carlo moves to swap

configurations between replicas at high and low temperatures, hence providing the

replicas at low temperatures with configurations that can only be reached within

the simulation time-scale for high temperatures.

In the JAFS scenario, and by looking again at plot (b) in figure 6.8, we expect

the simulations at high temperatures to have frequent swaps between high and low

values of θ for each of our fragments, as well as directly and indirectly (through

increased sampling of θ) increasing the Cartesian sampling of the JAFS particles

within the cavity. Swaps between replicas should then hopefully provide both more

varied configurations and θ values at the lowest temperature replica.

Implementation in ProtoMS

There were a number of reasons to choose parallel tempering as the enhanced

sampling technique in this project, which have been highlighted before. However, in

terms of the implementation of an enhanced sampling method in ProtoMS, parallel

tempering was the obvious choice, since work had been published previously with

ProtoMS and the use of solute tempering (a method related to parallel tempering

both conceptually and in terms of implementation).166 In previous versions of

ProtoMS (see section 4.3), parallel tempering was available as a set of external

scripts that could be applied to the simulation. With the latest optimizations of

the ProtoMS source code structure, which involved simplicity of use and neatness

of the source code, as well as an increase in speed, the use of external sets of

tools throughout the simulation is not possible. Further development was hence
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required.

The source code of ProtoMS is written in the Fortran programming language.

Before the release of ProtoMS 3.0, for the performance of any other action besides

out of the box Monte Carlo simulation moves, the source code had to stop the

simulation, and then proceed with the next assigned task (i.e. printing energies

to a file), proceeding then with the next action demanded. In other words, the

execution of tasks by the source code was strictly linear, and so the instructions

had to be provided by the user. To avoid the tedious task of writing a list of

instructions which often would have to be repeated identically as many times as

simulation snapshots where required, a python wrapper was available. This wrapper

(written in the python programming language) would work by creating small input

files which would periodically be produced and read by the source code, providing it

with the information required until the next snapshot. The existence of this python

wrapper would also increase the flexibility of the code. By arranging the simulation

in this small sub-simulations controlled through the python script, different actions

could be performed at intervals on the simulation by manipulating the simulation

input fed to the source code. At this stage, the main source code of ProtoMS was

also serial (non-parallel), and no way of simulating several simulation conditions

(i.e. different temperatures or λ values) simultaneously had been implemented

within the Fortran (source) code. Given this implementation of the (Fortran) source

code, the previously mentioned python wrapper was required to perform any replica

exchange related techniques (see section 3.7.1). If we take as an example λ replica

exchange (see section 3.7.1), by using exclusively the (Fortran) source code, the

simulation of different λ windows was possible, but not at the same time, making

the exchange between different replicas (practically) impossible. With the use of

the previously described python wrapper, extra python scripts had been generated

and made available, allowing for the exchange of configurations between different

replicas at different λ values at the points were new snapshots were printed, where

the next sub-input file was generated by the python wrapper.

Please note that I was not involved in the generation of the original ProtoMS

source code, nor its so far described python wrapper. What has been described so

far is the state of the software at the beginning of this thesis.

As soon as ProtoMS 3.0 was released (which development was a group effort
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Figure 6.9: Schematic representation of the ProtoMS implementation of the com-
bination of multiple replica exchange methodologies within a single simulation. In
this example, the two replica types are temperatures (parallel tempering) and λ
(alchemical transformation) represented by the two axes. Each processor is repre-
sented by the crossing between two lines. All processors within the same vertical
line share the same value of λ and all those in the same horizontal line share the
same temperature. The orange bars represent temperature ladders (all processors
within a temperature ladder have different values of temperature and the same
value of λ). The blue bars represent λ ladders (all processors within a λ ladder
have different values of λ and the same temperature). The blue arrows represent
swaps in λ and the orange arrows represent swaps in temperature. Note that, when
a swap in λ is accepted (blue arrow), not only the values of λ must be swapped, but
also the identifier that indicates the temperature ladder (orange bar) each proces-
sor corresponds to. Equivalent behaviour for λ ladders applies when temperature
swaps are accepted. Using OpenMPI groups, the attempts of λ swaps in all λ
ladders at the same time is easy to implement. Note that swaps between different
values of λ may be accepted for different λ ladders at the same moment in the
simulation. This concept applies also to temperature swaps and ladders.
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by several members of the research group, including me), the python wrapper was

removed, and each replica exchange methodology had to be implemented sepa-

rately into the (Fortran) source code. The new implementation of the source code

improved its speed by skipping all stopping and starting of the simulations, as it

allowed for certain tasks to be provided in a non-linear manner (i.e. the printing

of energy and configurational information to file). At the same time it made the

handling of simulations simpler by avoiding the requirement of a wrapper, since all

instructions could now be provided in a natural manner within one single input file.

Specifically, tasks which must be performed regularly throughout the simulation

(i.e. printing energy information) are indicated with a specific flag including the

frequency of the action, and performed periodically, at the appropriate simulation

times within the Fortran source code. However, this necessarily requires that the

implementation of the replica exchange procedures, previously in python scripts,

is now moved to the Fortran code, which is now allowed to run several replicas in

parallel, all within the Fortran code.

Independent of parallel tempering being previously available for ProtoMS, a

general structure of replica exchange was included within ProtoMS 3.0 for the

simulation of λ replica exchange. This both simplified and made the inclusion of

parallel tempering in the code more complex. It provided the general structure

which the parallel tempering code needed to follow, but it also required both par-

allelizations to be fully compatible, allowing a customizable grid of λ values and

temperatures.

While including either one of the replica exchange techniques within the source

code required transforming the python instructions into Fortran code and adapting

them to the slightly new structure of the source code, including several compat-

ible replica exchange methodologies was more complicated. While previously all

replica exchange related actions were performed by independent python scripts,

now all had to be controlled and coordinated within the same source code. The

coordination difficulty is related to the need to control different groups of replicas

(i.e. those with different λ values and with different temperatures which may need

to perform different actions at different moments of the simulation — for example

if the swaps of different types of replica exchange are not happening at the same

time in the simulation). The other issue is related to the storage of the informa-
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tion by each of the processors taking each of the replicas. In the implementation

of replica exchange in ProtoMS, each processor takes care of one configurational

“trajectory”. It is then the conditions of the simulation (i.e. λ value or tempera-

ture) that are swapped between different processors, providing effectively the same

result as the swap of configurations between different simulation conditions. Each

processor must then store its set of conditions associated with its replica, and this

information must be swapped between the correct processors at the correct time in

the simulation, without affecting the rest of the simulation conditions. Since the

Monte Carlo acceptance tests have been developed for each of the replica exchange

methodologies independently but not for a (conceptually strange) mixture of them,

the implementation must make sure that exchanges between different replicas are

only attempted between those with appropriate simulation conditions. For exam-

ple, if a parallel tempering (variable = temperature) exchange is taking place in

an alchemical transformation (variable = λ) simulation, swaps between different

temperature replicas must only take place between replicas sharing the same λ

variable. Equally, swaps between λ replicas must only be attempted between those

sharing the same temperature.

A general structure was finally created with groups of tasks that controlled

every “ladder” of temperatures or λ values. Temperature ladders would exchange

processes with other ladders during a λ replica swaps and within themselves (be-

tween different λ ladders) during a temperature swap.

The implementation was made using the OpenMPI capabilities available in

Fortran and, within those, the possibility of dividing the processors in different

groups. For a simulation with replica exchange applied in the λ dimension (alchem-

ical transformation) and the temperature dimension (parallel tempering), several

temperature groups and several λ groups would be defined. The different temper-

ature groups would correspond to the different temperature ladders, where within

one temperature ladder all processors share a common λ value. This distribution

would allow for temperature swaps to be performed at the same time in all tem-

perature groups, with swaps restricted to replicas within the same group (sharing

the same λ value). The same structure would apply to the λ dimension. It is key

to note that the swap between replicas of the same group in the λ dimension will

then correlate with a change of temperature group (as previously described, all
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processors within the same temperature group must share the same λ value). A

schematic representation of this implementation can be found in figure 6.9.

Figure 6.10: Schematic represen-

tation of the ProtoMS implemen-

tation of a replica exchange sim-

ulation with a single tempera-

ture ladder. This is the situa-

tion which would apply to the

JAFS simulations. The orange

bar represents the temperature

ladder and the arrows the swaps

between temperature replicas.

The new implementation of the software

was tested in situations which required only λ

replica exchange (which produced consistent re-

sults with the previous version of the software)

as well as those requiring exclusively parallel

tempering. Once these two basic test were suc-

cessful, the implementation was tested on simu-

lations which combined both λ replica exchange

and parallel tempering. The path followed by

the replicas as they swapped between different λ

and temperature ladders was studied to search

for any potential error in parsing information.

Equally, the changes in the acceptance ratio of

the swaps was studied as the number and prox-

imity of replicas, both in temperature and λ

dimensions, were modified.

This implementation was then applied to

the JAFS calculations in the mode of one unique

temperature ladder (since no λ replicas were

present, see figure 6.10).

Application to JAFS

To test the effects of parallel tempering on

the JAFS calculations, simulations where setup

with 25 different replicas per run, with equally

distributed temperatures ranging from 25°C to

100°C. These runs are equivalent to those represented by plot (b) in figure 6.8. It

must be noted, besides applying parallel tempering, the flexibility (move size) of

the θ variable was increased between these two sets of results from 0.15 to 0.30 (the

latter was observed to produce results closer to those observed experimentally in

terms of ligand ranking by affinity).

The best (a) and worst (b), in terms of θ sampling, of the repeats of JAFS
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score simulations of the T4Lys system with ligands 1mp and nbb (see chapter 5)

are shown in figure 6.11. In this figure, the evolution of θ sampling with simulation

snapshot at the lowest temperature replica for one of the fragments is shown. It

can be appreciated how the worst sampled repeat appears very similar to the best

sampled run obtained without parallel tempering (plot (b) of figure 6.8). While

parallel tempering can be concluded to improve sampling (now all repeats present

some swaps between low and high θ values), we would still hope to achieve further

sampling in our JAFS simulations. How this is achieved will be presented in the

solute tempering section below.

(a) (b)

Figure 6.11: Sampling in θ space of ligand 1mp in a JAFS pose parallel tempering
simulation with only two ligands (1mp and nbb) within system T4Lys (see section
5.1.1 for a system description and figure 5.9 and the Appendix, table 11.1, for a
molecular and 2D representation of the ligands, respectively). The lowest temper-
ature replica (25°C) of two different repeats is shown, the best (a) and worst (b)
in terms of θ sampling.

Solute Tempering

We have presented before the idea that the lack of sampling is a common prob-

lem in molecular mechanics simulations, and hence we could approach the issue by

applying common methods to enhance sampling in biomolecular modelling. How-

ever, the best enhancement in sampling will be obtained when the method is chosen

depending on the simulation conditions and the exact problem associated with the

lack of sampling. In the case of JAFS, we are most interested in sampling the
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JAFS particles. It would be optimal, therefore, to apply some sort of technique

to enhance the sampling of that particular region of the system, since the config-

urational sampling of the solvent or most of the protein residues can be expected

to have little effect on our calculations (since their interaction with the ligands is

expected to be minimal and hence their influence in the difference in affinity of

several ligands or the ligand binding configurations, negligible).

A technique which is equally based on replica exchange, but which focuses on

an increase of the sampling of the small molecules present in the system is available.

It is called solute tempering, and it has been explained previously, section 3.7.1.

In summary, the idea is that, rather than changing the temperature of the system

between the different replicas, the energy of the system will be scaled. Modifications

applied to any replicas which is not the base one (the one used to obtain the final

results) can be any we like, since the acceptance test on the replica exchange moves

will make sure the configurations that reach the base replica fulfil the Boltzmann

ensemble. In our case, a scaling on the interaction energies of all our JAFS particles

will be applied (a scaling per replica, on top of the θ scaling). Equations describing

the energy scaling can be found in 3.7.1.

As explained in section 3.7.1, the difference between replicas in solute tempering

is commonly described by referring to how “hot” the solute is, where further scaled

(lower) interaction energies of the solute correspond to “hotter” solutes. While this

is not an accurate description since the different replicas correspond to a change

in the Hamiltonian (scaling of solute energies) rather than different temperatures,

it simplifies the tags associated to each replica. We will be referring here to the

different replicas by their associated temperature or “solute temperature”. See

section 3.7.1 and equation 3.38.

In these terms, in figure 6.12, plots presenting the θ sampling of solute temper-

ing simulations with 16 replicas equally distributed, ranging from 25°C to 100°C are

shown. It is worth noting at this stage that the ligand 1mp, when competing with

nbb in this simulation setup is expected to spend most of its simulation time at

low θ values (since experimentally, nbb is found to bind with higher affinity to the

protein cavity). For all five repeats in these simulation conditions, the percentage

of time spent with θ > 0.5 (our definition of affinity score) is lower for 1mp than

for nbb. For comparison, in the five initial repeats without any enhanced sampling,
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only one out of five repeats showed a percentage of time spent with θ > 0.5 is lower

for 1mp than for nbb.

(a) (b)

Figure 6.12: Sampling in θ space of ligand 1mp in a JAFS pose solute tempering
simulation with only two ligands (1mp and nbb) within the system T4Lys (see
section 5.1.1 for a system description and figure 5.9 and the Appendix, table 11.1,
for a molecular and 2D representation of the ligands, respectively). Two different
repeats are shown. That with the worst θ sampling is shown in plot (a). Information
from the lower “solute temperature” replica (with unscaled energies) is displayed.

In all repeats run with these simulation conditions, several swaps between high

and low θ values are observed. The sampling of θ with simulation snapshot of the

repeat with the lower number of swaps between high and low θ is shown in plot

(a) figure 6.12.

Different Solute Temperature Settings

While the results of the application of consecutive enhanced sampling tech-

niques is most definitely satisfactory, the choice of settings in terms of temperatures

and “solute temperatures” ranges for the different replicas has been intuitive. At

this point we wonder whether a more optimal distribution of replicas is available.

The logical option when optimizing a replica exchange-type protocol is looking

at the acceptance ratio of the moves controlling the swaps between different replicas.

When looking at these for different simulation setups with increasing temperature

difference between replicas, it was found that these acceptance ratios were all higher

than expected (> 85%), and tending towards a plateau, without ever reaching what

was considered optimal acceptance ratios (40% < ratio < 60%). This finding could

have been expected and can be easily reasoned. We were expecting the acceptance
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ratio to drop as the temperature difference between replicas increased, since the

difference in the energy landscape must also increase, hence providing diverse con-

figurations, with greater differences in energy, making the replica moves less likely.

However, there are two factors we did not take into account. First, we were keep-

ing constant the total number of replicas, hence, as the difference in temperature

between replicas increased, so did the maximum temperature reached, and the ac-

ceptance ratio studied accounts for replica moves between all replicas. We were

making the energy landscape (at least that concerning the solute) flatter for the top

replicas as we were increasing the temperature difference between replicas, which

could account for an increase in the acceptance ratio between the top replicas. At

the replicas with high “solute temperature” the interaction energies of the ligand

and scaled down close to zero. Hence, the difference in the energy of the system

for different configurations of the ligand will be small. Consequently, the swap of

configurations between different replicas (which are expected to diverge mainly in

solute configuration, since the sampling of the rest of the system is not enhanced)

at high solute temperatures will be associated with a small energy difference, ac-

counting for a high probability of accepting the move. Second, the swaps between

replicas can happen at any of the values of θ for the solutes. The values of θ for

the JAFS particles can influence the acceptance ratio since they precisely account

for scaling of the energies of the solutes.

The study of the acceptance ratio was hence considered not applicable to the

optimization of the solute tempering, and focus was instead placed on the direct

study of results and sampling for the different simulation settings.

JAFS score simulation for a pair of fragments, 1mp and dcb, on the T4Lys

system (see chapter 5) were run with increasing “solute temperature” difference, in

a search for the temperature difference which provided a better distinction between

the tighter and the more weakly bound (greater difference between their scores,

assigning a higher score to the ligand with higher affinity, nbb) as well as a better

convergence between repeats (lowest standard error on each score). See section

4.2.1 for further information on the JAFS score simulations and how scores are

obtained.

The study of the differentiation between binding affinity was performed by plot-

ting the difference between the scores of both fragments for simulations with solute
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tempering with increasing difference in “solute temperature” between the replicas.

In every case, the score was obtained as the proportion of simulation time each

fragment spent at θ > 0.5 in the lowest “solute temperature” replica (note the

lowest “solute temperature” remained at 25°C — no scaling of the interaction en-

ergies — as the differences between replicas were increased for different simulation

set-ups). The resulting plot can be seen in figure 6.13 (a).

The study of the convergence of the different repeats (measured as standard

error) was performed by plotting the mean of the standard errors for the scores

of both fragments for simulations with solute tempering of increasing difference in

“solute temperature” between the replicas. Note again that, for every case, the

score was measured at the lowest “solute temperature” replica (25°C, no scaling of

the solute interaction energies). The resulting plot is shown at figure 6.13 (b).

These studies were performed with the hope of observing, for some particular

difference in “solute temperature” between replicas, a maximum in the difference

between scores (figure 6.13 (a)) and a minimum in the mean standard error of the

scores (figure 6.13 (b)). If such scenario were found, the maximum in score differ-

ence and the minimum in mean standard error would define the optimal simulation

set-up (clear differentiation between tightest and weakest binders with consistent

results between repeats). However, as can be seen in figure 6.13, no clear trend

could be found in either of the cases. The information was consequently discarded

as noise.

As an alternative, measures of the sampling were used to select the optimal

setup of the solute tempering replicas. Focusing on the Cartesian sampling (where,

as explained previously, θ and Cartesian sampling are always expected to be cou-

pled), the number of clusters identified was taken as a measure of sampling. It

was hence decided that the initially attempted spacing of 5° C between replicas (16

replicas between 25° C and 100° C) was the optimal setup since a higher number

of clusters, as well as high number of swaps between high and low θ was observed.

Plots showing representative examples of the sampling of θ throughout the sim-

ulation for two different setups (5° C and 100° C difference in “solute temperature”

between replicas) are shown in figure 6.14. As can be seen, a higher number of

swaps is obtained for the simulation with 5°C separation between replicas than for

the 100° C separation setup. While a representative example was chosen, and this
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(a) (b)

Figure 6.13: Study of the results of JAFS score calculations with fragments 1mp
and nbb with different solute tempering simulation conditions. Study of the dif-
ference in score between both fragments (a) and mean error for the score of both
fragments (b) for different separation between “solute temperatures” for the differ-
ent replicas. Replicas are always equally spaced, and always 16 replicas are used
in total. The lowest replica is always at 25°C (no scaling of the solute interaction
energies).

trend is observed for all repeats run, it can also be observed that the difference

is not as obvious as it might be expected from such difference in the simulation

setup. The average number of clusters per repeat obtained from JAFS pose sim-

ulations with solute tempering and either 5°C or 25°C difference between replicas

were studied for three different fragments (2dl, atd and ate) of the HSP90 system

(see chapter 5). The results of this study can be seen in table 6.5. As it can be

observed, for all three cases, a higher number of clusters per repeat is observed for

the simulation with a 5° C difference in “solute temperature” between the replicas.

Fragment Clusters 5°C step Clusters 25°C step
2dl 10 ± 0.7 5.8 ± 0.6
ate 18.8 ± 2.6 10.6 ± 1.0
atd 17.6 ± 0.7 9.8 ± 1.0

Table 6.5: Average number of clusters per repeat and standard error of the mean
for JAFS pose simulations on the HSP90 system (see section 5). Five repeats were
run in each case.

In figures 6.15 and 6.16, examples of paths of the different replicas for solute
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(a) (b)

Figure 6.14: Plots of the evolution of the θ variable of fragment dcb in JAFS score
solute tempering simulations of fragments 1mp and dcb in the T4Lys binding cavity
(see chapter 5). Both plots have been obtained from the replica at lowest “solute
temperature” (25°C, or no scaling of the ligand interaction energies) of 16 replicas
with equally spaced “solute temperatures”. In plot (a) the solute temperatures of
the replicas were separated by 5°C while in plot (b) they were separated by 100°C.
A representative repeat is shown.

tempering with different temperature ranges can be observed. Owing to our equal

spacing distribution of replicas and consistent use of 16 replicas, a bigger range in

“solute temperature” corresponds to a proportionally bigger difference in “solute

temperature” (step) between replicas. As expected, a pattern more typical of a

random walk is observed in replicas with a step of 5°C that when a 25°C step is

chosen. While the choice of “solute temperature” ranges was based on the sampling

as studied by the number of clusters per simulation, the path descriptions for

replicas support the choice of lower step associated with optimal sampling.

Notice that a study of the “random walk” sampling of the different replicas is

performed here rather than a comparison of the acceptance ratios for the replica

swaps. The reasons why the acceptance ratios are not a good measure of the

optimal sampling in this case can be found at the beginning of this subsection.

6.3.3 Conclusions

In this section we have addressed the issues found on applying the JAWS

method to fragments during section 6.2. The two main improvements desired

with respect to previous developments of the method were an increase in sampling
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(a) (b)

Figure 6.15: Plots produced with calc replicapath.py (see section 4.5.2) from the
JAFS pose simulation results on ate (system: HSP90). The x axes corresponds to
simulation snapshot and y axes shows the “solute temperature” (“rest”, replica ex-
change solute temperature) in degrees Celsius (see section 3.7.1 and 4.4) associated
with each replica. Figure (a) corresponds to a solute tempering difference between
replicas of 5°C while (b) corresponds to a difference of 25°C between replicas.

(both in θ and Cartesian space) and a reduction of the “unrealistic” states of the

JAFS particles with intermediate values of θ. In this subsection we will summarize

the main achievements in addressing these problems and conclude on the state of

the JAFS method heading towards the production runs in chapter 7, where the

finalized version of JAFS is used.

Applying a Linear Hydration Penalty

In this section we have seen how changing the shape of the hydration penalty

could help reduce the presence of JAFS particles at intermediate values of θ. The

previous shape of the hydration penalty, favoured intermediate θ values over ex-

treme values of θ (θ = 1 and θ = 0).

The hydration penalty fulfils the function of accounting for the hydration free

energy of each of the JAFS molecules in the simulation to correctly measure their

relative affinity towards the protein. To fulfil this function in a theoretically sound

manner, the only requirement is that the penalty applied at the end points (θ = 1

and θ = 0) correctly corresponds with the affinity of the fragment for bulk water

(hydration free energy of the fragment). The behaviour of the hydration penalty
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(a) (b)

Figure 6.16: Plots produced with calc replicapath.py (see section 4.5.2) from the
JAFS pose simulation results on atd (system: HSP90). The x axes corresponds to
simulation snapshot and y axes shows the “solute temperature” (“rest”, replica ex-
change solute temperature) in degrees Celsius (see section 3.7.1 and 4.4) associated
with each replica. Figure (a) corresponds to a solute tempering difference between
replicas of 5°C while (b) corresponds to a difference of 25°C between replicas.

at the intermediate θ states does not need to follow any particular shape, from a

theoretical perspective, since the existence of these intermediate states themselves

does not correspond to any real state of the experimental system whose binding

affinities we are trying to reproduce. In practice, decreasing the abundance of

these intermediate θ states should lead to a more accurate representation of the

experimental system, avoiding interactions between particles present in the system

(θ ≈ 1) and the unrealistic particles at intermediate θ.

Previously, the hydration penalty was taken as a polynomial approximation to

the PMF of decoupling the particle from bulk water as obtained with alchemical

transformations and understanding θ = 1 − λ. Observing undesired effects with

this shape, the hydration penalty was defined as a linear representation between

the extreme points of the hydration free energy for θ = 1 and zero for θ = 0 (the

hydration free energy of “nothing” or a dummy atom must be zero). The associated

mathematical representations can be found in equations 4.2 and 4.3.

The results observed for this change are satisfactory as can be seen in figure

6.8, with sampling of θ clearly more focused on its extreme values for the linear

implementation of the hydration penalty (plot (b)) than for the polynomial imple-

mentation (plot (a)) of the hydration penalty.
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Applying Enhanced Sampling Methods

While the application of the linear hydration penalty helps in reducing the

presence of the intermediate θ states, it does not help to improve sampling. In

fact it can be considered to make this matter slightly worse, as the JAFS particles

present now a certain tendency to remain at one of the extreme values of θ without

sampling the opposite end of the range of θ values.

To address this problem, the application of enhanced sampling methods was

undertaken. Parallel tempering (and subsequently solute tempering) where chosen

since they fulfilled our requirements (i.e. not altering the Boltzmann distribution

of states) as well as for implementation reasons. Parallel tempering was then

implemented in ProtoMS since this was not available at the time in the release

version of the code.

The effects of parallel tempering were studied on θ sampling, and are shown in

figure 6.11. As can be seen when these results are compared with those in figure

6.8, plot (b) (where the best sampled repeat of linear hydration penalty simulations

without enhanced sampling is shown) parallel tempering does considerably improve

θ sampling. However, further sampling improvement was desired.

To this end, the application of solute tempering was attempted. Solute temper-

ing was chosen for its ability to focus the sampling boost of the simulation species

of interest, in our case, the JAFS particles, while leaving the rest of the system

unaltered. Leaving the rest of the system sampling at the same temperature (and

with the same energy description) for all replicas, improves the ratio of swaps be-

tween different replicas, allowing for a more efficient boost to the sampling of the

configurations of JAFS particles.

The results of the application of solute tempering can be seen in figure 6.12

and, by comparing these with the plots in figure 6.11, a further improvement in

sampling can be observed.

The specific simulation settings associated with solute tempering (such as the

distribution of the different replicas and their associated “solute temperatures”)

was chosen based on the observed number of clusters generated and the study of

the “random walk” for different sets of simulation parameters. A more thorough

study of the optimization of parameters for solute tempering was attempted, but

no conclusive result was obtained, hence these data were discarded.
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Summary

Both issues observed in the application of JAWS to fragment molecules during

section 6.2 were addressed in this section. The application of a linear implemen-

tation of the hydration penalty, together with the application of solute tempering

generated a sampling of θ focused on its extreme values, while swaps between

these both extremes (θ = 1 and θ = 0) were attempted frequently throughout the

simulation, for the systems tested.
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6.4 Choosing Thresholds

In the previous sections, the naive approach to the project has been presented,

followed by the changes applied to the method to address the issues found during

its initial implementation. While the major developments of the JAFS method

have been shown, the thresholds applied to the θ variable, both in the JAFS score

and JAFS pose methodology, have been presented as arbitrary so far. In this

section, information on the study of different choices of threshold will be presented,

concluding with the reasons why the used thresholds were chosen.

6.4.1 JAFS score Threshold

In the JAFS score protocol, a threshold is used to calculate the score (measure

of binding affinity towards target) for each of the fragments studied. As explained

previously, the measure of affinity in JAFS score is based on the sampling of higher

values of θ during the simulation for the ligands with higher binding affinity (see

section 4.2.2 for an in-depth explanation). The measure of sampling of higher

values of θ is made, in the JAFS score protocol, by measuring the proportion of

time each of the fragments in the simulation spends with a value of θ > 0.5, where

0.5 is called the threshold. An equivalent measure could however be obtained with

alternative values of threshold, or a different measure could be used, such as the

average value of θ during the simulation sampled by each of the fragments. These

alternative options were studied (following the JAFS score protocol as described in

chapter 4) in the T4Lys system (see chapter 5) and the results are presented here.

The results of applying a threshold of θ > 0.9 and a threshold of θ > 0.5 to

the calculation of scores for ligands 1mp and dcb binding to T4Lys are shown in

table 6.6. Knowing that dcb has been calculated experimentally to be a tighter

binder to T4Lys than 1mp (relative binding free energy of 2 kcal/mol),223 we would

expect a higher score to be obtained for ligand dcb. The relative binding affinities

obtained with well established simulation methods, using the same force field and

simulation package as the JAFS runs (as shown in section 7.2, table 7.5) predict

the binding affinity of dcb to be higher than that of 1mp by 1.15± 0.28 kcal/mol.

We might hence expect our simulations to slightly underestimate the difference in

binding free energy between both fragments.
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System: T4Lys – 1mp & dcb

Fragment Score θ > 0.5 Score θ > 0.9
1mp 0.533 ± 0.072 0.385 ± 0.050
dcb 0.487 ± 0.065 0.206 ± 0.043

Table 6.6: Scores obtained for ligands 1mp and dcb on T4Lys (see chapter 5 and
the Appendix, table 11.1) from five repeats of a JAFS score simulation including
only these two fragments. Scores are shown for two different thresholds, θ > 0.5
and θ > 0.9.

As can be observed in table 6.6, using the θ > 0.5 threshold, the scores for

both fragments are within error, hence it could not be established, from that data,

whether 1mp or dcb binds tighter to T4Lys. Meanwhile, the use of a higher thresh-

old (θ > 0.9) generated results which (wrongly) assessed 1mp as the tightest binder.

It is hence considered that, by using a higher threshold, relevant information on

the assessment of the best binder is discarded. A choice of θ > 0.5 as threshold was

hence considered more optimal. It is worth mentioning that this study was per-

formed for a range of thresholds (0.5, 0.6, 0.7, 0.8 and 0.9) where the general trend

of dcb being assessed a lower score for higher thresholds was followed (information

not shown).

However, alternatives to the use of any threshold can also be presented, where,

for example, the average value of θ sampled throughout the simulation for each of

the fragments is taken as their score. This possibility was studied for different pairs

(and one trio) of fragments binding to T4Lys (see chapter 5), as shown in table 6.7.

Taking into account that the order in binding affinity of these fragments is, from

tightest to weakest binder, nbb > dcb > 1mp > wa1 (as can be seen in section 7.1,

tables 7.5 and 7.2) the use of threshold θ > 0.5 was always associated with a higher

score to the tightest binder and / or lower score to the weakest binder compared

to those generated via the average θ sampled throughout the simulation.

In conclusion, the scores (estimated binding affinity) obtained as the proportion

of simulation time spent by each fragment above a threshold of θ > 0.5 allowed for

a neater distinction of the tightest binder towards the T4Lys cavity, compared to

the use of higher θ thresholds as well as the average θ throughout the simulation

as a score. Consequently, throughout this thesis the scores have been calculated as
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System: T4Lys – 1mp & nbb

Fragment Score θ > 0.5 Score mean θ

1mp 0.20 ± 0.04 0.21 ± 0.04
nbb 0.79 ± 0.04 0.67 ± 0.03

System: T4Lys – 1mp & dcb

Fragment Score θ > 0.5 Score mean θ

1mp 0.53 ± 0.07 0.51 ± 0.06
dcb 0.49 ± 0.07 0.43 ± 0.06

System: T4Lys – 1mp & dcb & wa1

Fragment Score θ > 0.5 Score mean θ

1mp 0.51 ± 0.08 0.48 ± 0.07
dcb 0.52 ± 0.07 0.47 ± 0.06
wa1 0.00 ± 0.00 0.08 ± 0.00

Table 6.7: Comparison of the scores obtained as the proportion of snapshots spent
with θ > 0.5 for each fragment, and the mean value of θ per fragment. Data shown
for five repeats of three different JAFS score simulations on the T4Lys system, two
of them with two ligands each (1mp and nbb or 1mp and dcb) and one of them
with three ligands (1mp, dcb and wa1). See chapter 5 and the Appendix, table
11.1 for further information on the system and ligands.

stated in chapter 4.2, using a threshold of θ > 0.5.

6.4.2 JAFS pose Threshold

Just as a choice of threshold is needed for the JAFS score simulations, a thresh-

old is also required in JAFS pose. In this case the threshold limits the configurations

selected to cluster (see section 4.5.2). The resulting cluster representatives will then

be compared to the crystal binding mode and an RMSD obtained, with the correct

crystal pose considered to be found whenever a cluster representative falls within a

2 Å RMSD. It is worth noting that the threshold used for clustering in JAFS pose

will also be used for the selection of poses for clustering in JAFS score simulations,

when the study of the binding configuration is desired.

While the same threshold as that of the scoring in JAFS score simulations could

in principle be used for the selection of configurations for clustering, the require-
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ments vary between both processes. In the case of the scoring threshold, a scoring

value should be obtained for all ligands which present some affinity towards the

protein (a null score, obtained when the ligand was not above the scoring threshold

at any point during the simulation, must be reserved for non-binders, which will

be discarded for any further development into tighter-binding ligands). In the case

of the pose-selection threshold, a reduced number of poses is desired. Since JAFS

pose does not offer a method to select the correct binding geometries among those

generated, it is likely that a posteriori rescoring is desired, whose computational

expense is expected to increase with the number of binding configurations (see sec-

tion 4.2.2 and chapter 8). In particular, only configurations with the highest values

of θ are desired. A binding configuration observed for a ligand with interactions

scaled by 0.5 (or 0.7), may well contain atoms partially overlapping with protein

residues. In general, any pose observed by ligands with their interactions partially

“on”, but not observed for fully interacting ligands could be an artefact, and is

discarded.

Consequent with this line of thought, a threshold of θ > 0.9 was chosen as the

limit above which configurations sampled throughout the simulation are collected

for clustering and pose finding.
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Chapter 7

Production

In this section we will be presenting the results of the main production runs

of this thesis. The JAFS methodology is considered to be fully developed at this

stage of the project, and it is now tested on a variety of systems (see chapter 5)

which should reveal the difficulties that might be encountered by the methodology.

As described in the methods chapter (chapter 4), the JAFS methodology has

been divided in two different protocols – JAFS score and JAFS pose — with differ-

ent aims. The results obtained from applying the two protocols to our systems will

be described here in separate sections of this chapter. The two protocols provide

different information and are appropriate for different situations.

JAFS score is suited for small cavities or situations where the region within

a binding cavity where the ligands bind (or where the binding of ligands wants

to be studied) is known. It requires several ligands (fragments) to be studied at

once, and their relative binding affinities will be estimated, as well as their binding

configuration within the user-limited binding region studied. It is important to

keep in mind that this is not a method to calculate the relative affinity of different

known binding configurations. The configurations of all ligands are expected to

sample during JAFS score simulations.

JAFS pose is a protocol suited for bigger binding cavities, and in situations when

the solvation state of the binding cavity might not be known and/or the presence of

water mediated interactions between the ligands and the protein is to be studied.

The output of these simulations is a study on the possible binding configurations

of the ligand, with information on the solvation state of the cavity and automatic
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placement of waters required for the ligand binding in each configuration. No

competition between different ligands is currently implemented in this protocol.

Given that these two protocols are suited for different situations, not all systems

have been run with both protocols. Only MUP and CDK2 systems have been run

with both JAFS pose and JAFS score. T4Lys is an optimal system to run with

JAFS score due to its small and occluded cavity. However, for this same reason,

running T4Lys with the bigger user defined region of JAFS pose would not provide

any extra information. In the same way, no space is expected to be available for

any solvent molecule in the T4Lys cavity at the same time as any ligand is present

making it unnecessary to run this system with the JAFS pose protocol. HSP90

has only been run with the JAFS pose protocol. While running JAFS score on

HSP90 would be possible and might provide interesting information, one difficulty

is added by this system, and it is the presence of known water mediated interactions

between the ligands and the protein. While JAFS pose takes water into account

automatically, JAFS score does not offer this possibility. A decision would have to

be made on how to treat these bridging waters, and previous information of the

system would need to be included in the JAFS runs, which goes against the black-

box idea which is central to the development and study of the JAFS protocol. It

was hence decided to leave HSP90 out of the system set used on the JAFS score

protocols (however, we do admit this system might be of interest in future studies

with JAFS).

From now on, results of the JAFS runs and their discussion will be presented

in this section, as previously mentioned, divided by the two protocols, JAFS score

and JAFS pose. We have decided to start this study with the JAFS score protocol,

due to its simplicity compared to JAFS pose.
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7.1 JAFS score

The theory, set-up and analysis of JAFs score have been explained previously

in section 4.2.1, In this section, some specifics of the simulation set-up as it was

performed in the production runs of JAFS score will be presented first. Next,

the results of the production runs of JAFS pose will be presented, starting with a

general discussion. The discussion of specific aspects that have been the focus of

study throughout the development of the method will then be presented. Lastly,

the results will be analysed on a system by system basis, with special focus on the

most complex of all test cases.

7.1.1 Specific Setup

All production runs of JAFS score share the same simulation specifications:

� Simulations consisted of 5 million moves of equilibration and 40 million pro-

duction moves

� Five repeats were run for each system

� The JAFS box was defined as a 5 Å x 5 Å x 5 Å simulation box around the

centre of the ligand which was co-crystallized with the protein structure used

� One copy of all fragments within that system were included within the JAFS

box for each simulation

� Solute tempering was applied to the simulations, with 16 equally spaced

replicas with solute temperatures between 25°C and 100°C

� The proportion of attempted moves applied to all JAFS runs has been: sol-

vent = 51%,protein = 9%, solute = 20% and θ moves = 20%

Protein Fragment
T4Lys bnz
CDK2 vth
MUP ipz

Table 7.1: Co-crystallized fragment with each of the protein structures used in
JAFS score production runs.
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For each of the three systems presented here, the protein has been co-crystallized

with one of the fragments taking part in the JAFS score simulations. The frag-

ment co-crystallized with the protein structure used for each system can be found

in table 7.1. This is relevant, since a certain advantage could be experienced by

the co-crystallized fragment with respect to the other ones since the protein confor-

mation is not expected to change much during the simulations. While the protein

is allowed to sample freely, our Monte Carlo simulation setup does not promote

efficient sampling of the protein conformational landscape.

The difference in the number of fragments can be taken as an a priori measure

of the complexity of JAFS score simulations. All JAFS particles must sample their

available configurational space and sufficiently sample the θ space to be assigned a

meaningful score (measured as the proportion of simulation time spent at θ > 0.5).

Besides, the higher the number of binders (score significantly higher than zero),

the higher the accuracy and precision required to satisfactorily distinguish their

assigned scores (since scores can only range from zero to one).

7.1.2 General Discussion

The results of the production runs of JAFS score can be seen in table 7.2. The

success of these simulations vary widely with the studied system. For the MUP-1

system, which presents the lowest complexity in terms of number of fragments to

rank, as well as a dry cavity (little or no water is expected to have an influence on

the binding process) the results are satisfactory. The two fragments are correctly

ranked (ipz top, prz bottom), with their scores (proportion of simulation time spent

at θ > 0.5) being separated by several standard errors (where the score shown is

the average between scores from all simulation repeats and the standard error is

that associated with this average). We can hence be quite confident that choosing

the correct ranking order is due to a higher affinity of binding of ipz with respect

to prz under our simulation conditions. Hence, our conditions seem to represent

the real system with sufficient accuracy to extract conclusions on binding affinity

for this particular system and number of fragments.

The next system with increasing complexity is T4Lys, where five different lig-

ands must be ranked. The cavity is occluded, with limited space, and again, no

water molecule is expected to intervene in the binding process. As an initial guess,
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System: T4Lysozyme

Fragment Score JAFS rank Exp rank Exp ∆G (kcal/mol)
nbb 0.59 ± 0.03 1 1 -6.7
dcb 0.11 ± 0.03 4 2 -6.4
bnz 0.15 ± 0.03 3 3 -5.2
1mp 0.19 ± 0.04 2 4 -4.4
wa1 0.00 ± 0.00 5 5 —

System: MUP-1

Fragment Score JAFS rank Exp rank Exp ∆G (kcal/mol)
ipz 0.91 ± 0.03 1 1 -9.2
prz 0.55 ± 0.06 2 2 -8.1

System: CDK2

Fragment Score JAFS rank Exp rank Exp ∆G (IC50)
vth 0.00 ± 0.00 9 1 120 µM
vta 0.29 ± 0.08 3 2 185 µM
wcc 0.22 ± 0.14 5 3 < 1 mM
vtm 0.22 ± 0.08 4 4 < 1 mM
cd1 0.57 ± 0.09 1 9 —
cd5 0.21 ± 0.07 6 9 —
cd6 0.39 ± 0.10 2 9 —
cd8 0.06 ± 0.03 7 9 —
cd9 0.02 ± 0.02 8 9 —

Table 7.2: Results of JAFS score compared to experimental binding affinities for
T4Lysozyme223 MUP238 and CDK2.239 The score obtained with JAFS, rankings
for both JAFS score and with experiment, as well as the experimental binding
affinities, are shown. The errors shown associated to the scores are standard errors
of the mean. No error is shown on the experimental binding affinities for consis-
tency, since some were found in the literature while others were not available. The
experimental binding affinities were obtained with a range of different methods, in-
cluding different methods applied to ligands of the same system. Note that, in the
case of CDK2 ligands, the IC50 shown for wcc and vtm correspond to experimental
64% I at 1mM and 54% I at 1mM, respectively.
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the increase in complexity from MUP-1 to T4Lys could mainly be associated with

the increase in the number of fragments to rank. It can be observed in the results

how the top binder (nbb) and the non-binder (wa1) are successfully ranked among

all fragments. Errors associated with their scores remain low for all fragments and

extremely low for the non-binder. The ranking associated with the intermediate

binders does not match the ranking based on experimental results. Taking a closer

look at the scores and associated errors of these intermediate binders (dcb, bnz and

1mp), we can see that their results are within error. We cannot tell them apart

and hence, arguably, their ranking should be set to be the same. Comparing the

errors with those in the MUP-1 system, we can see that those are not bigger. It

can be speculated that the problems found in the T4Lys test case are intrinsically

associated with increasing the number of fragments in a JAFS score simulation.

However, further systems would be required to confirm this statement. In any case,

errors typically associated with experimental binding affinities and inaccuracies of

the force field are a limiting factor to the results that may be obtained when com-

paring simulations to experimental data. In this context the performance of JAFS

score on T4Lys is considered satisfactory, particularly given that no fragments are

ranked in an incorrect order (when errors associated with their scores are taken

into account) but rather the binding affinities of a set of the fragments cannot be

discriminated.

CDK2 is the most complex of the systems, presenting nine fragments to be

ranked and a bigger cavity (same size JAFS box defined within a bigger protein

cavity), when waters could potentially be involved in fragment binding. Results for

CDK2, are distinctly different from the two previous examples. When comparing

the ranking based on experimental results with that based on JAFS simulations,

no exact matches are observed and no trend can be obviously spotted which pushes

the best experimental binders to the top of the JAFS rank. Looking more carefully

at the particular system, we can see that five (cd1, cd5, cd6, cd8 and cd9) out of

nine fragments are classified as non-binders experimentally. Of these, one of them

(cd1) is assigned as top binder following the results of JAFS. Equally, the weakest

binder according to JAFS (vth) is the top experimental binder. The ranking trend

is not followed inversely either, with three of the five decoys being ranked among

the bottom five binders with JAFS (what could be considered “correct ranking”).
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Problems here can arise from sampling (further simulation time could be required

for more complex systems), or from an incorrect representation of the system in

our JAFS simulation (be it simulation setup, force field parameters, etc.). The

increase in standard errors associated to the scores (proportion of simulation time

with θ > 0.5) for CDK2 compared to previous systems suggests sampling is more

problematic here. However, the top binder for JAFS score and its bottom ranked

fragment do not present scores which are within error of one another, suggesting

sampling must not be the only issue.

In this subsection, a general overview of the results of the JAFS score simu-

lations for all systems has been presented. In the following subsections, the main

points highlighted here will be further discussed, key points in the analysis of the

JAFS simulations will be studied in depth, and the particularities of each system

will be presented in detail.

7.1.3 Correlation Between Sampling in Cartesian and θ space

Figure 7.1: The crystal

structure of ipz (blue) and

cluster representatives ob-

tained at the third repeat of

JAFS score (orange). Hydro-

gens hidden for clarity.

At the core of JAFS is the idea of an increase in

sampling. This idea flows from the development of

JAWS (from which JAFS originated), as a method

which could obtain equivalent results to GCMC

but increasing sampling of water insertion and dele-

tion, to JAFS as an approach to simulate a binding

pocket where swaps between binding configurations

happen within reasonable simulation time. Intrinsi-

cally, the sampling in θ space and that of Cartesian

space are interlinked. The reason why JAFS can

provide increased Cartesian sampling within a bind-

ing cavity is the presence of fragment copies at low

values of θ, which, having their interaction energy

scaled down, can explore the binding region without

clashing with other molecules in the system. However, this increase in sampling

at low θ will only be productive if particles sample effectively θ as well, being able

to get back to their (at least nearly) full interaction energy when a region with

favourable interactions is found. It is at this point when these interacting particles
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will be captured and their poses clustered during analysis. It is only if particles

are capable of finding their favourable regions of binding and increase their θ value

accordingly that the measure of the proportion of time each fragment spends at

high θ, as a measure of relative binding affinity makes sense.

box volume MUP cavity volume T4Lys cavity volume

125 Å3 118 Å3 114 Å3

343 Å3 297 Å3 267 Å3

Table 7.3: Volume of the protein cavities of MUP and T4Lys systems (see chapter
5) enclosed by JAFS box of different sizes — centred around the same position as
the JAFS box used for the JAFS score calculations — once the volume occupied
by protein atoms has been discarded.

We will take here an example from JAFS score, where the JAFS box is smaller

than that of JAFS pose simulations and only one copy of each fragment species

is present, to analyse the expected correlation between the sampling in θ space

and that in Cartesian, expressed in RMSD to the crystal pose. That is, we expect

particles at low θ to present high variability in their RMSD, since they must be

sampling most of the JAFS box. On the other hand, particles with high values of

θ should present barely variable RMSD, since their interaction energies will be (al-

most) fully “on”. Ideally, their RMSD must be both stable and low, meaning they

have increased their θ after finding favourable interactions in the crystal binding

geometry.

While this sampling strategy of θ and Cartesian space is perfectly true concep-

tually, the results observed in practice will depend on the environment of the JAFS

box. The whole rationale of the concept explained above is based on the fragment

at high values of θ not being able to sample Cartesian space, due to the interac-

tion energy between the fragment and surrounding particles. However, given the

extreme example of the JAFS cavity, simulating only one fragment in vacuum, the

value of θ would have no influence on the sampling of the fragment. How close our

system is to that extreme example of the fragment in vacuum will influence how

closely our expectation is followed.

We will show here examples of the sampling of one of the fragments present

in one particular repeat, for two different systems, T4Lys and MUP. While the
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size of the JAFS box for both sets of simulations is identical (see section 7.1.1),

the available space to sample for the fragments in not the same in both systems.

This can be appreciated in figure 7.2. Their cavity volumes as estimated by our

cavity volume.py tool (see section 4.4.1) have been calculated. The volumes esti-

mated to remain available once protein atoms have been taken into account within

increased sizes of boxes — centred around the same position as the JAFS box used

in our JAFS score simulations — is shown in table 7.3. In other words, the table

shows the free volume for the ligands to explore. When looking at the table it is im-

portant to remember that, while the JAFS box used in the JAFS score simulations

is 5 Å x 5 Å x 5 Å (125 Å3) in size, only the centroids of the atoms are constrained

by the box, hence the ligands will effectively be sampling bigger volume. We will

see how results consequently differ between the T4Lys and MUP systems.

(a) (b)

Figure 7.2: Crystal structure of T4Lys with ligand nbb bound (a) and MUP with
ligand ipz bound (b). Protein in dark grey, ligands in brown.

First, we will study the correlation between θ sampling and Cartesian sampling

(as measured by RMSD to the crystal structure) for ligand nbb. These are shown in

figure 7.3 for the second repeat of T4Lys JAFS score. We can see how, during the

first 15 million production moves (150 snapshots), nbb mostly remains with θ < 0.2,

and consequently, there is a high variability in RMSD to crystal binding mode, of
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between 2 Å and 8 Å. This is true for this period of the simulation except for a

few snapshots around 10 million moves (snapshot 100), where θ > 0.8 are sampled,

and the RMSD seems to remain fairly stable and lower than 2 Å during those few

snapshots. During the rest of the simulation, periods with θ > 0.6 are associated

in the neighbouring plot (b) with fairly stable RMSD values between slightly below

2 Å and 3 Å. Notice that it is the stability of the RMSD and not its particular

values that we expect to correlate with high values of θ. Meanwhile, when θ < 0.2

are sampled, an increase in RMSD sampling is observed. The variability in RMSD

is harder to observe during the short periods spent at low θ simply due to lack

of amplification in the plot. We can hence conclude that, for nbb in T4Lys, the

correlation between sampling of θ and RMSD is entirely as expected based on our

theoretical understanding of JAFS. See over for comments on these ideas.

We will now examine the θ and RMSD sampling of ligand ipz during the third

repeat (chosen as a representative example) of the MUP JAFS pose runs (see

figure 7.4). No long periods with consistent low values of θ are observed. However,

short-lasting decreases in θ to very low values are loosely correlated with sudden

increases in RMSD sampling in an otherwise fairly stable plot. Periods (like that

between snapshot 200 and nearly 350) which maintained θ > 0.5 present more

stable values of RMSD, while some RMSD variability is still observed. After the

sampling of low values of θ around snapshot 350, the stability of RMSD is again

decreased (higher RMSD variability). In conclusion, the expected general trend can

be observed in these plots, where low θ is generally associated with high RMSD

variability. However, results are more noisy here than in the previous example

of nbb in T4Lys. It is also important to note that the stable RMSD here is not

particularly low, hence the crystal binding pose has not been successfully found in

this repeat, as it can be observed in figure 7.1.

Comparing both examples shown in this section, an increase in noise and greater

differences to the ideal behaviour as explained at the beginning of this section is

observed for systems with more volume available for the ligands to sample. This

may be considered a limitation of the methodology. However, in the particular

example of the JAFS score simulations on MUP as performed in this thesis, correct

ranking of the ligands has been observed (see sections 7.1.2 and 7.1.4).

Rather than plotting the value of RMSD with respect to the crystal binding
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(a)

(b)

Figure 7.3: Evolution with simulation snapshot of θ (a) and RMSD with respect
to crystal pose (b) of nbb in repeat 2 of its JAFS pose runs. Observe how higher
θ corresponds to lower and more stable RMSD.

geometry, as has been shown in figures 7.3 and 7.4, the RMSD with respect to

previous snapshot (RMSF) can be displayed. This representation of the same

repeats and ligands as discussed previously is shown in figure 7.5. By studying this

representation the situation between both systems appears more different. It must

be taken into account that stable RMSDs with respect to crystal pose in plots (b)

of figures 7.3 and 7.4 should correspond with low RMSDs with respect to previous

snapshot (RMSF) in figure 7.5. While the correlation for nbb (figure 7.3 and plot

(a) in figure 7.5) is satisfactory — high θ values correspond to stable RMSD values

and low RMSF values — any form of correlation seems hard to find when looking

at the ipz plots (figure 7.4 and plot (b) in figure 7.5). The reason for this lack of
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(a)

(b)

Figure 7.4: Evolution with simulation snapshot of θ (a) and RMSD with respect to
crystal pose (b) of ipz in repeat 3 of its JAFS pose runs. Observe how the sampling
of low θ corresponds with moments of high variability in RMSD.

correlation of the RMSF plot and the sampling of θ in the case of ipz can be related

to further space available for the ligands to sample in the MUP cavity, a concept

which is further explained in section 7.1.4. Indeed, there is enough space available

so that both ligands in the JAFS score calculation on the MUP system can present

high θ values at the same time (see the discussion of the MUP system in section

7.1.4), which is not the case in other systems such as T4Lys. In this situation, the

MUP ligands (ipz and prz) are placed each at one extreme of the JAFS box, and

they interact with each other. When studying the configurations of ipz during the

period where high values of θ are observed (approximately between snapshots 170

and 350), swaps between different configurations of both ligands, which allow them
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to remain at opposite edges of the JAFS box are observed. Hence, for this repeat

of ipz, the stable RMSD values at high θ account for the sampling of the specific

regions of space, those at the edges of the JAFS box, that allow for both ligands

to present high values of θ at once.

(a) (b)

Figure 7.5: Evolution with simulation snapshot of RMSD with respect to previous
snapshot (RMSF) of the nbb ligand (a) of the T4Lys system and the ipz ligand (b)
of the MUP system. Repeat 2 and repeat 3 respectively of their JAFS pose runs.

In conclusion, a general trend correlating higher variability in RMSD with lower

values of θ is observed. These observations support the theoretical understanding

of the JAFS methodology and the sampling of θ and Cartesian space as explained

at the beginning of this section. These are expected but encouraging findings

since without this correlated sampling of θ and Cartesian space no increase in

the configurational sampling of the ligands within the binding cavity would be

expected with respect to well stablished simulation methods (standard MD or MC).

Without this increase in sampling, the exact binding configuration of each of the

ligands would be required prior to performing the JAFS score simulations, defeating

one of its main objectives, namely the study of the relative binding affinity of

ligands without previous knowledge of their exact binding configuration, taking

into account all possible relevant binding configurations.

While this general trend is found we have seen that the traits of specific systems

(namely the greater amount of sampling space in the MUP cavity) have placed the

expected correlation between Cartesian and θ sampling in danger. While this will

affect the scores obtained for the ipz and prz ligands, the simulation time where
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this sampling correlation is not observed is characterized by high values of θ for

both ligands at once. Hence the relative score is still expected to be higher for

the ligand which dominates during the remaining period of the simulation. The

problem associated with bigger sampling space for ligands in JAFS score must

however be noted and it will be further discussed in section 7.1.4.

7.1.4 Discussion on individual systems

The Go-to Test System: T4Lys

Figure 7.6: The crystal

structure of nbb (magenta)

and clusters obtained with

JAFS score (grey). Hydro-

gens hidden for clarity.

As explained above (see chapter 5), T4-

Lyzozyme has been used in a number of studies for

its convenience and simplicity in the benchmarking

and testing of computational methods, as well as the

study of protein structure and structural changes. It

is a logical choice as an initial test system for a new

method since the system is well understood.

In particular in the context of JAFS score, the

small, occluded cavity avoids potential complica-

tions related to the different interactions of each

of the ligands with solvent water molecules, whose

disposition might otherwise have an effect. In suffi-

ciently big and well hydrated cavities ligands might

require different water network configurations to ex-

plore their correct binding geometry. This problem

does not appear in small occluded cavities without

water networks. Additionally, small cavities limit the available space for the lig-

ands to sample when presenting high θ, with a “barrier” of potential Lennard-Jones

clashes with the protein. The limited sampling and lack of solvent interactions

should make this a simple system for JAFS score.

However, there were two potential issues which may still appear. The first is

related to the sampling of the hydrocarbon chain of nbb — the tightest binder

being also the one which might require more sampling to find the correct binding

conformation. The second relates to the presence of Cl atoms in ligand dcb, whose

interactions tend to be less accurately captured by standard molecular mechanics
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fixed-charge force fields.240 Of particular relevance is the anisotropic distribution

of the charge around a halogen atom (such as Chlorine) when bound to an aromatic

ring (as it is the case in dcb). The anisotropic distribution of charge allows for less

electron-filled regions of the Cl atom bound to an aromatic ring to interact with

electron-rich atoms (such as the oxygen in water). This trait cannot be captured

by fixed-charge force fields since their charge distribution is homogeneous around

each atom.241

(a) (b)

Figure 7.7: Key difference in the protein conformation within the binding site of
T4Lys. The protein taken from the bound structure to bnz (PDB code 181L)
is shown in grey and that bound to nbb (PBD code 186L) in dark blue. The
crystallographic binding mode of nbb can be seen in yellow. In (b), the effect of
the change in side chain conformation of the valine on the proximity to nbb can
be appreciated — a Lennard-Jones clash is to be expected between the sidechain
displayed in grey and nbb.

The ranking results obtained for the five presented ligands of T4Lys (table 7.1)

are in general satisfactory, as the top binder could successfully be detected as could

the decoy. Furthermore, rather than an incorrect ranking, the intermediate affinity

ligands could just not be separated with JAFS score (their scores were within error

of each other). Equally, for the location of the crystal binding pose (table 7.4), it

was found for almost all repeats for all binders (note that wa1 is a decoy). However,
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Clustering T4Lys
Fragment nbb dcb bnz 1mp wa1

Clusters per run 2.2 1.4 5.8 4.2 0
Runs with crystal pose 4/5 5/5 5/5 5/5

Table 7.4: Average number of clusters per repeat and the proportion of runs
presenting a cluster within 2 Å of their crystal pose for all T4lys ligands. Note
that wa1 is a decoy.

a few issues do require further attention, including:

� Lack of correspondence between experimental binding affinity and scores ob-

tained with JAFS

� Reasons for the slight lack of consistency in finding the crystal pose for nbb

When looking at the experimental binding affinities in table 7.1 a small difference in

affinity between the top binder (nbb) and the second binder (dcb) can be observed,

while the experimental ∆G for the next fragment (bnz), is considerably lower.

This trend does not correspond to what is obtained with JAFS score, where the

top scorer (nbb) is clearly picked among the rest, but the scores for all intermediate

binders (dcb, bnz and 1mp) are identical to within error.

Alchemical free energy transformations in T4Lys
Transformation Protein structure ∆Gcalc (kcal/mol) ∆Gexp (kcal/mol)

1mp→ nbb 186L −3.38± 0.41 −2.3∗

1mp→ nbb 181L −1.15± 0.28 −2.3∗

1mp→ dcb 181L −1.25± 0.08 −2.0
bnz → wa1 181L 10.49± 0.93 -

Table 7.5: Results of dual topology alchemical relative free energy simulations
(∆Gcalc) between some of the T4Lys ligands shown together with the experimental
relative binding free energies (∆Gexp) taken as the difference between affinities
shown in table 7.2. Note the experimental binding affinity of 1mp→ nbb has been
marked (∗), since the experiment will not distinguish between different protein
conformations but is expected to sample the different side chain conformations
that are the main definitory trait of 186L and 181L (see section 7.1.4).

The question that then arises is whether this problem is associated with the

JAFS score protocol, or whether the affinity predicted by the force field used would

correspond correctly with the experimental affinities. To study the influence of the
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force field in this system, the relative binding affinities of dcb and nbb with respect

to 1mp were calculated with dual topology alchemical simulations. The results can

be seen in table 7.5, together with the relative binding affinity between bnz and

wa1. The two different results for nbb are discussed below. If we pay attention

to the affinity of dcb compared to that of 1mp, the consequent conclusion is that

our force field seems to predict dcb binding less tightly (or 1mp more tightly) than

experimental results suggest.

The two different results for the affinity of nbb hint towards the issue which will

be discussed now, in relation to the lack of consistency in finding the crystal pose for

nbb. First, let us look at figure 7.6. Here the difference in side chain conformation

between all clusters of nbb and its crystallographic binding pose is obvious. While

nbb is still successfully ranked as top binder by JAFS, some further study into the

reasons behind this conformational difference was undertaken. It is important to

remember here that for the JAFS score simulations, only one protein structure can

be chosen. The affinity of different ligands is then effectively measured against one

protein conformation. While full flexibility is assigned to the protein (the protein

is free to sample both backbone and sidechain of its residues), limited changes in

conformation are expected for our implementation of Monte Carlo protein moves,

within our simulation timescale. While the particular implementation will vary

the degree of sampling, the lack of conformational sampling is a general issue in

computer simulations of biomolecules.

In figure 7.7, a section of two different protein conformations, obtained from

the complex with two different ligands used in our JAFS calculations (bnz and

nbb) are shown. The protein conformation taken from the complex with bnz (PDB

code 181L) was used as our T4Lys protein in the JAFS score simulations. As a

result of a different conformation of a Valine sidechain, the hydrocarbon chain of

nbb does not have space to be located with the bnz T4lys conformation as it would

in its native complex. A slightly different bend to the hydrocarbon tail is then

adopted. While this does not seem to affect the affinity sufficiently to change the

raking of the different ligands used, it logically changes the clusters found for nbb.

In particular, when looking at the RMSD from clusters to crystal pose, while 4

out of 5 repeats present a cluster that falls within 2 Å of the crystal, on the fifth

repeat a cluster is observed with RMSD = 2.1 Å. This can probably be considered
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a “correct” cluster, taking into account that the exact tail conformation cannot be

expected.

The results of running JAFS score on the T4Lys can hence be considered suc-

cessful, due both to the ranking obtained for the different fragments by affinity and

the location of their crystal binding geometries. The obtained scores of binding

affinities for each fragment are consistent with the calculated relative free ener-

gies of binding with well established (alchemical transformations, see section 3.6.2)

methods, when the errors in the JAFS scores are taken into account. However,

lower capacity of discerning between binders with similar affinities is found with

the JAFS method. It may be concluded that the force field does not perfectly

capture the affinities of the different compounds towards the binding cavity, since

the results of the well established simulation method to calculate relative binding

affinities do not perfectly correlate with the relative binding affinities as obtained

from experimental data (see table 7.5). Besides, as discussed previously in this

section, simulations do not seem to provide the system with sufficient flexibility so

that the different relevant configurations of the protein side-chains in the binding

pocket are sampled.

A dry cavity: MUP-1

The most relevant facts on MUP-1 and its ligands which affect our studies have

been presented above (see section 5.1.2). In particular, for the study of the affinity

of its ligands, it was chosen for its simplicity. Two different reasons should make

this a simple system to which JAFS score can be applied:

� Only two ligands must be ranked

� The lack of waters in the cavity

While more than two ligands were available, other ligands presented waters key to

their binding geometry, as observed in their crystal structure.242 As explained in

the introduction of this chapter (for the reason why the JAFS score protocol has not

been run on the HSP90 system) the presence of key waters increases the difficulty

of performing a JAFS score simulation, and requires the use of prior knowledge

on the system, which goes against the black-box approach applied throughout the
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project. For this reason, only the available ligands with no key waters in their

binding configuration were used in the MUP system.

The reason why a dry cavity is expected to be a simple choice of system for JAFS

score is related to different hydration patterns for different ligands. In a highly

hydrated cavity, where waters are bound to the protein at the same time as the

ligands, the particular disposition of these waters in the bound configuration of each

of these ligands will generally affect their affinity. In JAFS pose, the whole of the

binding cavity is considered, and the position of waters for each potential binding

configuration of the ligand is expected to be captured by the waters included as

JAFS particles. However, in JAFS score, only a small region of the binding cavity is

considered, and the rest of the cavity may be hydrated by solvent water molecules.

However, we know that these solvent waters, treated as standard Monte Carlo

solvent particles, are not likely to change disposition easily within the binding

cavity. Hence the different hydration patterns for different ligands are generally

not expected to be taken into account during a JAFS score calculation. Other

approaches, such as GCTI, which will be discussed in section 8.2.2 as applied to pose

re-scoring, are being developed which could be used in this context. Choosing a dry

cavity alleviates this problem since all ligands present in their bound configuration

have the same hydration pattern — none.

The other reason for the simplicity of the system is obvious in the presence of

only two ligands in the simulation. A random number generation for the scores

would have a 50% chance of getting the ranking correct (if we forget the associated

standard errors). Further, within the JAFS score protocol, one of the potential risks

is the lack of sufficient sampling in θ. Imagine, for example, a situation where one of

the ligands presents a high affinity towards the target protein, binding significantly

tighter than the rest of ligands. This tightest ligand is then expected to remain

at high θ values for long periods of time during the simulation, potentially leaving

little time for the rest of the fragment to sample their high θ values. The ranking

of all but the tightest ligand might not be meaningful (likely incorrect, inconsistent

between repeats, or presenting big associated errors), due to lack of sampling of

both states (above and below θ threshold) which are measured to obtain the score.

The results of ranking for MUP are satisfactory, with correct assessment of

which is the tightest and weakest binder, as well as presenting clearly different
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Clustering MUP-1
Fragment ipz prz

Clusters per run 3.6 5.2
Runs with crystal pose 2/5 3/5

Table 7.6: Average number of clusters per repeat and proportion of runs presenting
a cluster within 2 Å of their crystal pose for all MUP-1 ligands.

scores, separated by several standard errors (see table 7.2).

Figure 7.8: Configurations of ligands ipz

(pink) and prz (blue) in snapshot 300

of the third repeat of JAFS score run

on MUP. In this snapshot both ligands

present a θ > 0.9. The JAFS box is dis-

played in grey.

However, as can be seen in table 7.6,

the success in finding the crystal bind-

ing pose is not as optimal as might be

expected, taking into account the size

of the JAFS box. The exact scores

given for each of these ligands (table

7.2) can hint towards one of the poten-

tial reasons.

It is important to remember that

the scores are obtained as a measure

of the proportion of time spent by

each ligand with their θ above a cer-

tain threshold (in this thesis the chosen

threshold was always θ > 0.5, see sec-

tion 6.4.1 for a further study). It can be

seen that both ligands present a score

above 0.5, meaning both of them spent

most of the simulation time at high θ values. How is this possible, and why would

this correlate with the inaccuracy in finding their crystal binding pose?

Precisely because MUP presents a dry and big binding cavity, all around the

small JAFS box is mostly empty, not presenting any potential Lennard-Jones

clashes, were any of the parts of the JAFS ligands to end up there. It is im-

portant to remember at this point that the JAFS box constraints only the centre

of geometry of the JAFS particles to remain within the box; other chemical groups

or atoms may very well end up outside the box. We could then effectively say that

the sampling space available for the MUP ligands is larger than that of a fully hy-
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drated or smaller cavity, where besides the constraint to their centre of geometry,

ligands are expected to experience limits in their Cartesian sampling due to the

presence of other molecules right outside the JAFS box.

It is thanks to this extra space available that both ligands can be present at once

in the simulation with high θ values. For both of them (their geometric centres, at

least) to fit in the box, they are expected to end up in opposite corners of the box.

Whatever their exact positions, both being at high θ values, their configurations

will be conditioned by one another, they will be interacting, moving the system

away from the conditions in which its is favourable for them to adopt their crystal

binding pose. An example of the configuration of one snapshot with both ligands

at high values of θ is shown in figure 7.8. This figure corresponds to snapshot 300

of the third repeat, and for both ligands, in that snapshot, θ > 0.9. Notice both

ligands are located at opposite extremes of the JAFS box.

The Most Demanding: CDK2

CDK2 was known to be the most complex of the systems simulated with JAFS

score. However, results were expected to be better than those in table 7.2. Further

studies were undertaken to try to understand the reason for this lack of success.

Since it is especially relevant to study a system where the results may not be as

good as expected, a full section is presented below with the analysis of results and

conclusions on this system.

7.1.5 Studying a Problematic System: CDK2

From the systems studied with the JAFS score protocol, CDK2 was the most

demanding. Nine fragments had to be ranked at once, four binders to target,

and five decoys (non-binders). Furthermore, it was suggested that one of the key

interactions in binding for some of the fragments might not be well captured by

our force field (namely, the hydrogen from the ligand aromatic ring interacting

with a protein backbone oxygen as found in ligand wcc and vtm — see figure

7.9).239 This interaction corresponds to a non-standard hydrogen bond between a

hydrogen bound to an aromatic carbon and the oxygen of the peptide-bond amide.

It should be captured by the force field as a favourable electrostatic interaction.

However, the charge assigned to hydrogens bound to aromatic carbons is very
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small, in particular, an order of magnitude smaller than the charge assigned to

hydrogens bound to amide nitrogens. This small charge will make the favourable

electrostatic interaction between the negatively charged peptide oxygen and the

slightly positively charged hydrogen very weak. Furthermore, hydrogens commonly

involved in hydrogen bonds (such as those in hydroxyl groups) do not present

Lennard-Jones parameters, hence avoiding any repulsion due to close proximity

when forming hydrogen bonds. This is not the case for the hydrogen bound to

aromatic rings, where Lennard-Jones will appear if unbound atoms are placed in

close proximity. As a consequence of these charge and Lennard-Jones parameters,

our force field will not be able to capture the key interaction between the wcc and

vth ligands and the protein backbone. This is expected to be a common problem

for fixed charge force fields and better treated with a more complex representation

of charge-charge interactions representations243 (such as that of polarizable force

fields).

Figure 7.9: Fragment wcc in its crystallo-

graphic binding mode. Fragment is dis-

played in cyan and protein residues in

light brown. The hydrogen bond between

protein and ligand can be seen in red. In-

teraction of interest — hard to capture

by our force field — displayed as dashed

blue line.

By looking at table 7.2 it becomes

obvious that correct ranking was not

obtained for the studied fragments in

the CDK2 cavity. While distinction

between affinities of binders can be

difficult to capture, the protocol was

expected to successfully discard the

decoys and correctly predict the top

binder (situation observed for T4Lys,

see table 7.2).

Not only could the fragments not

be ranked correctly, but the tightest

binder presents the lowest score, with

one of the decoys being awarded the

top score. As expected, many of the

scores are identical to within error. Un-

certainties (standard errors of the mean

score for all repeats) for many of the

scores are clearly greater than those for

222



other systems (see table 7.2). Nevertheless, uncertainties are not sufficiently large

for best and worse scores to be identical within error.

Given this sub-optimal results, further study and analysis of the simulation was

performed.

Further Repeats

System: CDK2 – Set: 2

Fragment Score JAFS rank Exp rank Exp ∆G (IC50)
vth 0.00 ± 0.00 9 1 120µM
vta 0.47 ± 0.11 2 2 185µM
wcc 0.21 ± 0.06 5 3 > 1mM
vtm 0.18 ± 0.08 6 4 > 1mM
cd1 0.51 ± 0.05 1 9 —
cd5 0.23 ± 0.09 4 9 —
cd6 0.26 ± 0.07 3 9 —
cd8 0.09 ± 0.05 7 9 —
cd9 0.00 ± 0.00 8 9 —

Table 7.7: Results of a second set of JAFS score runs for CDK2 compared to
experimental binding affinities.239 The score obtained with JAFS, rankings for
both JAFS protocol and with experiment, as well as the experimental binding
affinity are shown. Note that the IC50 shown for wcc and vtm correspond to
experimental 64%I at 1mM and 54%I at 1mM, respectively.

First, another set of 5 JAFS score repeats, with different starting structures

and random seeds from the initial set was performed. The aim of these extra runs

was to study consistency. While the big standard errors associated with the scores

in this system indicated higher variability between repeats, a further set of repeats

could suggest whether the ranking of fragments appears to be a systematic failure

due to the protocol (or force field) or a sampling problem. Given that the new set

of repeats start from a different set of configurations, consistency between the sets

would hint towards a systematic issue with the protocol or force field, and not one

of convergence.

The results obtained with the second set of repeats can be found in table 7.7.

By looking at the table it can be suspected that some correlation between the

rankings obtained by JAFS score on both sets of repeats is present. To analyse
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whether there is a correlation, the Kendall tau that can be obtained comparing

the ranking of both sets of repeats of JAFS score simulations was first calculated.

This calculation was performed in R, using the cor.test functionality with the

parameter method=‘‘kendall’’. The resulting Kendall tau was τ = 0.817. Con-

sequently, the significance of this Kendal tau was studied with the calculation of

its associated p-value (actually produced by the same R command). The resulting

p− value = 0.00237. It would be highly unlikely (lower than a significance level of

1%) to obtain two rankings as similar as these, if they were uncorrelated. These

same results are displayed in table 7.8.

Convergence test

τ p value

0.817 0.00237

Table 7.8: Results of comparing

rankings produced by JAFS score

on CDK2 in two difference sets

five of repeats. Kendall tau and

p-value shown. Original ranking

shown in tables 7.2 and 7.7.

According to the results of our statistical

analysis, we will proceed assuming that the

ranking of both sets of runs are correlated; that

is, there is a systematic issue with protocol or

force field.

Studying Clusters

We will now proceed to study the configura-

tions sampled by the binders and decoys of the

CDK2 system while their θ was high during the

JAFS score simulations. If a difference is ob-

served in sampling between the ligands which

were top ranked and those bottom ranked with

JAFS score, it might provide further information on the reasons for their incorrect

(not comparable to experiment) ranking.

The binding modes (obtained as cluster representatives) for both binders and

decoys were studied. In figure 7.10 the representative of the most populated cluster

of cd1 (the top ranked decoy) from each repeat of the initial set of repeats is shown.

Different binding configurations are observed.

The numbers of clusters obtained for each fragment are shown in table 7.10. A

clear correlation can be found between the average number of clusters per repeat

and the position in the ranking assigned by their score (table 7.2) — higher ranking

is associated with greater number of clusters. This suggests the binding affinity of

the decoys assigned by our JAFS score protocol is directly related to the entropy
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each of the decoys retains at high θ values. An increased sampling space (higher

entropy) available to a particular ligand at high values of θ, must be correlated with

an increased number of clusters (which are obtained only while θ > 0.9), which we

found to be correlated with the score (estimate binding affinity) used for ligand

ranking in JAFS score.

Figure 7.10: Most populated cluster of

cd1 for each repeat of the first set of

JAFS pose on CDK2 is shown. Fragment

clusters are shown in salmon and protein

backbone in light brown. A key hydrogen

bond is displayed as a red line.
The total number of clusters, and the number of clusters locating the crystal

pose is displayed in table 7.10. The crystallographic pose is found for all fragments

except for that which presents no clusters (the ligand never presents values of

θ > 0.5). However, not all repeats find the crystallographic pose.

A ranked correlation between the number of clusters per run and their score

can be studied — results shown in table 7.9. These data may provide some useful

insight, but conclusions must be made carefully. Since the score of each fragment

is the measure of the proportion of simulation time spent with θ > 0.5 and the
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Clustering CDK2 decoys
Fragment cd1 cd5 cd6 cd8 cd9

Clusters per run 4.8 1.2 1.2 0.4 0.2

Clustering CDK2 binders
Fragment vta vth vtm wcc

Clusters per run 2.6 0.0 1.8 1.0
Runs with crystal pose 2/5 0/5 2/5 1/5

Table 7.10: Average number of clusters per repeat of CDK2 decoys and CDK2
binders for the initial set of five runs. The proportion of runs presenting a cluster
within 2 Å of their crystal pose for each of the binders is also shown.

clusters are obtained from the configurations sampled by fragments when their

θ > 0.9, some correlation is necessarily expected. Clearly, the number of clusters

must be zero for a particular repeat when the score is equally 0 (during this run, this

fragment has not sampled θ > 0.5). Nevertheless we will attempt to — carefully

— gain some relevant insight from these data.

Correlating score and no. of clusters

τ p value

0.800 0.00317

Table 7.9: Results of looking into the cor-

relation between the number of clusters

per repeat and the score for each frag-

ment of the CDK2 JAFS score simula-

tions (both binders and decoys). Data

taken from the first set of runs. Scores

can be found in table 7.2.

Both Kendal tau and p-value re-

sults presented in table 7.8, are con-

sidered consistent with those in table

7.9. Hence we will proceed assuming

there is a correlation between the num-

ber of clusters per run for a particu-

lar fragment and their score. As ex-

plained above, this is not entirely sur-

prising. However, such clear correlation

indicates a trend. While it is true that

a fragment must reach high θ values to

increase both its score and number of

clusters, we could think, as a simplifi-

cation, of two different contexts in which a particular fragment might be increasing

its θ at several points during a simulation.

In the first scenario, this hypothetical fragment would present one single high

affinity binding pose. This being the case, the fragment is expected to sample the

whole JAFS box when its θ is low, until it randomly finds a configuration close
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to its optimal binding pose. It would then be favourable for its θ to increase. It

may stay in this condition for some time, and then out of chance, its θ would

decrease and this process would start again, to sample the same highly favourable

configuration every time its θ is high. Given that the affinity of this particular pose

is high, this hypothetical fragment would have a high score (high proportion of the

simulation time is spent at its optimal pose, with high θ), but a low number of

clusters (since every time that it presents a high θ, is always sampling this single

optimal configuration).

In a second, hypothetical scenario, one particular fragment may present a num-

ber of medium affinity binding poses within a JAFS box. This fragment is still

expected to sample the whole box when its θ its low. However, with a given fre-

quency (higher than that of the previous scenario), this fragment may find itself

in one of its binding poses. It will then be favourable to increase its θ. The frag-

ment is then expected to remain for some time at high θ at this particular pose,

but we can expect this time to be less than that of the previous scenario due to

the affinity of its pose being lower. At some point the θ will again decrease by

chance and the sampling of the box with low θ should proceed again. However,

by chance, we might expect this fragment to find now another one of its medium

affinity poses. This process will then repeat, but with potentially different poses

each time, and the fragment finding them faster, but potentially remaining in each

for less time. We would then obtain both, a high score and high number of clusters

for this fragment.

The correlation found in table 7.9 could indicate our CDK2 system for JAFS

score is closer to the second scenario, where number of clusters and scores are highly

correlated.

Studying Sampling

To further understand how this system behaves we will proceed to study the

sampling for each fragment in individual repeats. While obtaining equivalent rank-

ing results for two sets of repeats with different starting configurations could suggest

the issue is not related to sampling, a further analysis is advisable. To study sam-

pling, plots of RMSD with respect to the crystal structure have been generated for

known binders.
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(a) (b)

Figure 7.11: RMSD with respect to crystal binding structure for all binders to
CDK2 during the last hundred snapshots of the first (a) and the second (b) repeats
of JAFS score.

The RMSD sampled during the last hundred snapshots (10M moves) of the

simulation for the binders to CDK2 studied for the first (a) and second (b) repeats

can be found in figure 7.11. The last hundred snapshots were selected for clarity. As

can be seen, none of the binders gets stuck in one particular configuration during

any long period of the simulation. This is reflected in the frequently changing

RMSDs.

The correlation between the RMSD sampling and θ sampling will be further

studied for the first of repeats, and is shown in figure 7.12 for two of the binders

(vta and vth). The two extreme examples in terms of θ values sampled during this

period of simulation are shown, with vta sampling mostly high values of θ (plot

(a)) and vth exclusively sampling very low values of θ (plot (b)). We can observe

how the values of θ have an influence on the RMSD sampling, with more frequent

changes in RMSD for the ligand which spends its time at very low values of θ (plot

(d) is more variable than plot (c)). However, despite its high values of θ, vta is still

often changing configuration (as reflected by the changes in RMSD seen in plot

(c)). The satisfactory sampling observed in this study has reinforced our previous

conclusions that the lack of (configurational or RMSD) sampling does not seem to

be the issue that is causing the failure of the ranking obtained by JAFS score on

the CDK2 system.
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(a) (b)

(c) (d)

Figure 7.12: Sampling of θ ((a) and (b)) and RMSD with respect to crystal ((c)
and (d)) of ligands vta ((a) and (c)) and vth ((b) and (d)) of the CDK2 system,
with respect to JAFS score simulation snapshot. Only the last 100 snapshots (10M
moves) are shown for clarity.

Alternative Setup

In the process of studying the reasons why a suboptimal ranking of ligands was

obtained for the CDK2 system, the disposition of the crystal binding geometries

within the JAFS box was studied more carefully. Note that one of the points of em-

phasis for the development of the JAFS methodology was the search for a black-box

method. Following this approach, the setup for all systems was done consistently,

without applying previous knowledge of the particular system. In particular, the

dimensions of the JAFS box are identical for all JAFS score simulations (as well

as for all JAFS pose runs), and its centre is determined by the geometry centre of
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(a) (b)

Figure 7.13: JAFS score box setup for the CDK2 system. Box is shown in grey,
the ligand which served as centering point for the box in dark red and the rest of
ligands in dark cyan. The original box, centred around vth is shown in (a), while
the alternative, centred around vta is shown in (b).

the ligand whose co-crystallized protein structure is used in the JAFS calculations

for this particular system. The idea behind this choice is that, in a real system,

we may know the binding mode for one particular ligand, but wish to study the

relative affinity to another group of ligands for which we may well not even know

whether they are binders or decoys. This same process was followed for CDK2,

and hence the JAFS box was centred around ligand vth.

In figure 7.13a, the generated JAFS box for the JAFS score runs is shown

in grey, with the crystal binding mode for vth shown in dark red and the binding

modes for the rest of binders in dark cyan. It can be seen that, by centring the JAFS

box around vth, the rest of the crystal binding modes end up a bit skewed to the

corner. This is not a problem in terms of finding the exact binding geometry, since

the centre of geometry of all fragments still lies within the JAFS box. However,

we need to understand that, equally, the protein conformation used may not be

identical to that in which each of these fragments binds, and as explained previously,

the protein is not expected to sample much during our simulations. Taking this

into account, it could be easy to conceive the possibility that some of the fragments

may need to re-arrange their binding mode slightly to adapt to the slightly different
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System: CDK2 – Alternative Setup

Fragment Score JAFS rank Exp rank Exp ∆G (IC50)
vth 0.00 ± 0.00 9 1 120 µM
vta 0.33 ± 0.15 2 2 185 µM
wcc 0.04 ± 0.03 6 3 > 1 mM
vtm 0.08 ± 0.07 5 4 > 1 mM
cd1 0.51 ± 0.19 1 9 —
cd5 0.21 ± 0.12 4 9 —
cd6 0.27 ± 0.17 3 9 —
cd8 0.00 ± 0.00 8 9 —
cd9 0.00 ± 0.00 7 9 —

Table 7.11: Results of JAFS score on CDK2 with the alternative positioning of
the JAFS box compared to experimental binding affinities.239 The score obtained
with JAFS, rankings for both, JAFS protocol and with experiment, as well as the
experimental binding affinities, are shown. Note that the IC50 shown for wcc and
vtm correspond to experimental 64% I at 1 mM and 54% I at 1 mM, respectively.

conformation of the binding site. This being the case, it could well be that such

re-arrangement is not possible within the limits of the provided JAFS box.

Correlating alternative setups

τ p value

0.704 0.00878

Table 7.12: Results of looking into the

correlation between the scores for JAFS

score simulations on CDK2 with the orig-

inal setup (see table 7.2) and the alterna-

tive box centred around vta.

To study whether this was the case,

a new set of five simulation repeats was

submitted with a different JAFS box,

this time, centred around vta. This new

box, with the crystal binding mode of

vta in dark red, and the binding mode

of other binders in dark cyan can be

found in figure 7.13b. The results for

this new set of simulations can be found

in table 7.11.

Looking at table 7.11, it can be

clearly appreciated that the correct ranking (as expected from experimental re-

sults) cannot be obtained with this setup either. Comparing these results with

those in table 7.2, the similarities in ranking (and scores) are obvious. Nonethe-

less, a Kendall tau test can be performed to obtain the statistical significance of

this similarity. This test is performed in an equivalent manner to that explained
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previously. The results can be seen in table 7.12. Conclusions are again equivalent

to those obtained for previous tests: a correlation between both rankings can be

assumed. In this particular context, a small displacement of the JAFS box did not

seem to improve the results of the JAFS score simulations.

Summary

The CDK2 system was originally described as the most complex of the systems

studied with the JAFS score protocol. Its complications arose from the high num-

ber of ligands whose binding was studied at once as well as the presence of key

interactions between some of the binders and the protein which are not expected

to be captured with a fixed-charge force field (see above).

While the correct ranking of all provided ligands might be considered ambitious,

selecting the group of binders as top ranked with JAFS score and the decoys (non-

binders) as bottom ranked would have been considered a satisfactory result.

Throughout this result section we have seen that the ranking of CDK2 ligands

by affinity did not have any correspondence with the experimental binding affin-

ity data. Further more, several studies were performed to try to fully understand

the reasons for this failure, with the associated possibility of a correction on the

method or a good understanding of its limitations. In particular, as a first ap-

proach, the differentiation between a sampling problem and a systematic problem

(whether related to the force field or protocol) was considered key. To discern

the type of problem associated with this failure, first, another set of JAFS score

repeats were run with a new set of starting conditions. The differences between

the original and the new set of repeats would provide insight in whether we are

facing a sampling problem (in that case both sets of repeats should provide differ-

ent fragment rankings) or a systematic problem with the protocol or force field (in

which case both sets of repeats would provide very similar results). Since the study

of the ranking provided by both sets of repeats suggests that their differences are

not statistically significant, a sampling problem was unlikely. To further test this

possibility, a study of the sampling of Cartesian space (as measured by RMSD to

crystal binding structure) of the ligands was performed. This study did not shown

any of the binders getting stuck in any particular configuration and hence further

supported the hypothesis that the issue associated with the failure of JAFS score
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in this context is not related to sampling.

A study on the configurations sampled by the different ligands while their val-

ues of θ remained high was also performed. In this study, a significant correlation

between the number of clusters (obtained from the configurations sampled by the

ligands at θ > 0.9) and the ranking obtained by JAFS score was found. Conse-

quently, it was hypothesized that, effectively, the score obtained with JAFS score

corresponded to the entropy that each ligand retained at high values of θ. No

further studies could be envisioned to try to confirm this hypothesis or understand

why this would be the case.

Another possibility was then tested, that the simulation setup might have an

effect in the form of the exact location of the JAFS box, not leaving enough space

for most binders to sample correctly their crystal binding configurations. Another

set of simulations was then run, with the box centred around another of the CDK2

binders (vta rather than vth, which was the centre of the original JAFS box). This

new set of simulations provided, however, again a ranking which was found to be

no significantly different from that obtained with previous simulation setups.

In conclusion, after all studies performed, the reasons for the failure of JAFS

score in this system are still not known. It could be concluded that the reason does

not seem to be one related to sampling. Given the deficiencies in the force field

representation of this system (see above, capturing non-standard hydrogen bonds),

is likely that this failure is influenced by the use of a fix-charge force field.

233



7.2 JAFS pose

7.2.1 Specific Setup

All production runs of JAFS pose share the same simulation specifications:

� Simulations consisted of 5 million moves of equilibration and 40 million pro-

duction moves

� Five repeats were run for each fragment

� The same protein structure was used for all simulations within each system

� The JAFS box was defined as a 12 Å x 12 Å x 12 Å simulation box around

the centre of the ligand which was co-crystallized with the protein structure

used

� Solute tempering was applied on the simulations, with 16 equally spaced

replicas with solute temperatures between 25° C and 100° C

� The proportion of moves applied to all JAFS runs has been: solvent = 51%,

protein = 9%, solute = 20% and θ moves = 20%

Protein Fragment
HSP90 2dl
CDK2 vth
MUP ipz

Table 7.13: Co-crystallized fragment with each of the protein structures used in
JAFS pose production runs.

For each of the three systems presented here, the protein has been co-crystallized

with one of the fragments taking part in JAFS pose simulations. This can be found

in table 7.13. This could provide an advantage in finding the correct binding confor-

mation for that particular fragment with respect to other fragments in the system,

since the protein is allowed to sample throughout the simulation, but it is not

expected to sample much within our setup of Monte Carlo simulations.

The number of copies of fragment and water molecules were always determined

following the same method (specified in section 4.2.2 and 4.4.1), which aimed at

234



making consistently over-packed cavities for all simulations in terms of volume

of particles per volume of the binding cavity. The resulting number of particles

differed for each simulation (due to the difference size of each fragment) and is

presented in table 7.14. The same number of copies of fragment and water molecules

were always included.

System Fragment Copies System Fragment Copies

HSP90

2dl 6
MUP

ipz 9
ata 12 prz 7
atb 9
atc 10

CDK2

vta 12
atd 10 vth 7
ate 11 vtm 10
atf 9 wcc 12

Table 7.14: Number of copies of each JAFS particle included in the JAFS pose
simulations for each fragment (the indicated number of copies of fragment and
same number of water molecules).

7.2.2 General Discussion

The results of the JAFS pose simulations can be found in table 7.15. The results

of two parallel clustering protocols (varying in clustering cut-off), on the same set

of simulation results are shown. Independently of the clustering protocol used, for

all ligands in all three systems, the crystallographic binding geometry is found at

least once within the five repeats run per fragment. The number of appearances

of the crystallographic pose decreases for a bigger cut-off. This could be expected,

since a higher clustering cut-off correlates with a smaller total number of clusters

(with fewer clusters there is a lower statistical probability of finding the crystal

binding geometry). It is important to mention here that we consider the crystal

geometry to be found if the RMSD between a particular cluster representative and

the crystal pose is lower than 2 Å. 2 Å RMSD cut-off between the predicted and the

known binding conformation is one of the common cut-offs used to assess correct

prediction of the ligand conformation binding to target.244–246

These results prove that the JAFS pose protocol can locate the correct binding

geometry for the presented systems. However, the success of the protocol cannot

be assessed based exclusively on the possibility of finding this pose among those
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System: CDK2

clusters per run runs with crystal pose
ligands 2 Å cut-off 4 Å cut-off 2 Å cut-off 4 Å cut-off

vta 26.6 10.4 2/5 1/5
vth 12.2 8.4 2/5 2/5
vtm 22.4 10.4 5/5 4/5
wcc 24.2 9.6 3/5 1/5

System: MUP-1

clusters per run runs with crystal pose
ligands 2 Å cut-off 4 Å cut-off 2 Å cut-off 4 Å cut-off

ipz 16.6 8.8 4/5 3/5
prz 13.2 6.4 4/5 4/5

System: HSP90

clusters per run runs with crystal pose
ligands 2 Å cut-off 4 Å cut-off 2 Å cut-off 4 Å cut-off

2dl 10.0 7.0 5/5 5/5
ata 20.2 9.0 4/5 1/5
atb 16.8 10.0 3/5 3/5
atc 21.8 10.0 1/5 1/5
atd 17.6 9.4 3/5 2/5
ate 18.8 8.0 5/5 3/5
atf 14.2 9.0 3/5 2/5

Table 7.15: Clustering results with different cut-offs in hierarchical clustering. The
same 5 repeats are analysed but with different clustering cut-offs. The number of
clusters and the proportion of clusters in which the crystal pose was found (within
2 Å RMSD) is shown.
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located, for each fragment. In this study, we have submitted five repeats per

fragment, and in some of the examples (vta and wcc for the CDK2 system and

ata and atc for the HSP90 system) in only one of the repeats the crystal pose is

found when applying the more restrictive (higher) clustering threshold, while in

one example (atc binding to HSP90) this is also true even in the less restrictive

clustering threshold. Not only this, but currently, JAFS does not come associated

with any protocol to rescore the generated poses (a protocol is currently under

development in the group, see section 8). This means that the crystallographic pose

cannot be picked among all generated poses. Consequently, a key factor to keep in

mind when analysing the results displayed in this section, is the total number of

poses (or clusters) generated with these runs. If we were to, hypothetically, generate

such a number of poses that their conformations covered the whole Cartesian space

of possible geometries for that fragment in the cavity, locating the crystallographic

pose would have absolutely no value (that would have been generated just like any

other individual possible conformation). Hence, the success of finding the correct

pose must necessarily be dependent on the total number of poses found.

Different difficulties are expected for each of the systems studied. In particular,

the different requirements for the treatment of water molecules in each of the

cavities will be key to examine the correct behaviour of the JAFS pose protocol

and its automatic treatment of water. MUP-I was considered the simplest system

in JAFS score simulations. However, the fact that its binding cavity is dry is not

necessarily an advantage in JAFS pose. In the JAFS pose protocol, a set of water

molecules are included with the fragments in the JAFS box. The same setup was

followed for all three systems (consistent with the “black-box” approach of the

JAFS methodology). Hence the waters in the binding cavity must keep their θ low

to produce a dry cavity, which is likely to be needed to find the correct binding pose

in the MUP-1 system. This does not seem to be a problem with this protocol, since

the correct binding pose is found for both fragments, for both clustering protocols,

in more than half of the repeats.

In the HSP90 system, difficulties are also associated with water, but in this

case, the presence of conserved crystallographic waters between all ligands which

mediate most of the interactions between the ligands and the protein. In this

case, for ligands to find their crystallographic binding pose, the correct position of
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the bridging waters and the fragment needs to be found simultaneously. Again,

this seems to be successful since the correct crystallographic pose for all ligands

in this system is found. A more in depth study of the behaviour of waters in the

binding cavity with JAFS can be found in section 7.2.5. In HSP90, differences in

the number of repeats required to find the crystal pose are clear. In the case of

the overwhelming consistency in finding the crystal pose for 2dl, it is important to

consider the potential advantage for this ligand, since the protein structure used in

our calculations was the 2dl co-crystal (PDB code 2XDL).

In the case of CDK2, we can also observe important differences in performance

between different ligands, where the crystal pose of vtm is found in a much higher

proportion of repeats (all of them for the lower clustering cut-off, four out of five

for the more restrictive clustering) than the rest of the ligands. However, in this

case, the same advantage found for 2dl in HSP90 does not apply, since the protein

conformation used in these repeats is that co-crystallized with vth.

Symmetry in Clustering and RMSDs

Several of the studied fragments presented one or more points of symmetry.

While our clustering algorithm does not take into account symmetry, nor does our

calculation of RMSD, symmetry was accounted for manually. For ligands (binders)

which presented points of symmetry (2dl and atb in HSP90 and nbb, 1mp, dcb and

bnz in T4Lys), all possible symmetric conformations were generated, and RMSD

was calculated to each of them, so that the lowest RMSD of any of the clusters

to any of the symmetric target conformations was the one used. It is to be noted,

however, that the number of clusters will be dependent on this symmetry not being

accounted for. This may be appreciated both in the number of clusters presented

in tables and visual representation of these clusters in figures.

7.2.3 Cluster Location

As can be seen in figure 7.14 for the example of ligand ata in the HSP90 system,

clusters can be found throughout the whole cavity (this trend is observed for all

systems studied). In fact, as can be appreciated, their added volume basically fills

the whole of the binding cavity. However, while clusters occupy the whole volume,

the density of clusters is not the same in all areas of the cavity.
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Figure 7.14: Clusters of ata for all five repeats

of JAFS pose with target protein HSP90. Clus-

ter representatives shown in dark cyan. Protein,

clipped, shown in purple.

In figure 7.15a the distribu-

tion of the density of clusters

throughout the cluster cavity is

studied (again for ligand ata in

system HSP90). Three differ-

ent lobes can be found, where

the density of clusters is as-

sessed as higher after visual

analysis. These three lobes are

marked by orange arrows in fig-

ure 7.15a. As is also shown in

the same figure, the initial vi-

sual assessment is confirmed by

clustering all clusters, “super-

clustering”, with a high clus-

tering cut-off (cut-off = 6 Å).

The three superclusters gener-

ated are displayed in dark red in the aforementioned figure. They are considered

as the representatives of these three lobes.

These three lobes are the particular representation for ligand ata of a trend

observed in the JAFS pose simulations of systems HSP90 and CDK2 presented here

(MUP cavity is occluded from solvent247). Namely, clusters are mostly observed in

the same volume occupied by the crystallographic pose (not necessary in the same

conformation), and in solvent exposed subsections of the cavity.

As has been mentioned, the same sort of disposition from that seen for HSP90

ligand ata is also found for the CDK2 system. CDK2 also presents a solvent

exposed cavity, and equally, clusters can be observed in the solvent exposed region.

An analysis of the disposition of clusters and cluster lobes for vta ligand in the

CDK2 system can be seen in figure 7.15b. In that figure, the lobes in which

all clusters can be distributed are numbered and highlighted with orange arrows.

Lobe 1 in the image is that which corresponds to clusters in the same region of

the cavity where the crystal binding pose is found (crystal pose in dark blue).

Lobes 2 to 4 are three different solvent exposed lobes, where only two of them are
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captured by “superclustering” (clustering with cut-off = 6 Å), where supercluster

representatives are shown in dark red. Interestingly, another pose is found in a

subcavity (5), which is much more hydrophobic and actually was not considered as

part of the binding cavity during setup. However, due to the JAFS box disposition,

copies of vta were capable of finding conformations where high θ could be displayed

within that subcavity.

(a) (b)

Figure 7.15: Cluster representatives of ata (a) and vta (b) for all five repeats of
JAFS pose (clustering threshold = 2 Å). All cluster representatives are shown in
dark cyan. Crystal pose shown in dark blue. “Supercluster” (clusters of clusters,
with 6 Å clustering threshold) representatives are shown in dark red.

The MUP system does necessarily present differences (i.e. no solvent-exposed

clusters are found) as its cavity is occluded from solvent247 (see figure 7.16, image

a). However, the same process has been followed in clustering ipz clusters (“super-

clustering”) with a cut-off = 6 Å. The results are displayed in figure 7.16, image

b. One of the superclusters in found in the same area as the crystal pose, while

the other covers another region of the cavity, in a similar fashion as those in figure

7.15a. However, it is important to note that, in this case, one of the supercluster

representatives perfectly overlays the crystal binding configuration.
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(a) (b)

Figure 7.16: (a) Cluster representatives of ipz for all five repeats of JAFS pose
with target protein MUP. Cluster representatives are shown in dark cyan. Protein,
clipped, shown in purple. (b) Supercluster representatives of ipz, the result of
clustering all clusters from JAFS pose repeats, compared to the crystal binding
geometry. Supercluster representatives shown in dark red, crystal pose in dark
blue.

It may seem tempting based on the results seen for MUP to simply use “super-

clustering” to generate the potential binding poses. While for the other systems,

one of the superclusters is also found in the same region of the cavity where the

crystal pose is, it does not always overlay nicely with the crystal binding geometry

(see figure 7.17).

7.2.4 Sampling

Although the sampling of both θ and Cartesian space are intrinsically related

within any JAFS simulation (as explained in section 7.1.3), they will be studied

separately below for clarity.
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(a) (b)

Figure 7.17: Supercluster representatives of ata (a) and vta (b), the result of
clustering all clusters from JAFS pose repeats with a 6 Å cut-off, compared to the
crystal binding geometry. Supercluster representatives shown in dark red, crystal
pose in dark blue.

Sampling of θ

There are a number of factors that influence the θ sampling of JAFS particles

in a JAFS pose simulation, such as the number of particles and their size in relation

to the size of the JAFS box; the presence of enhanced sampling methods such as

parallel tempering or solute tempering; the strength of a particular set of interac-

tions between a particle and its environment in a defined pose... While reasons for

the (lack of) sampling and ways to improve it have been presented in sections 6.2

and 6.3.2, here we will focus on the results of sampling and associated conclusions

or consequences. There are a few points that influence sampling and are important

to remember here:

1. The setup has been designed in such a way so that the “crowdedness” of
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(a) (b)

(c) (d)

(e) (f)

Figure 7.18: Evolution of the θ values of JAFS fragments with respect to snapshot
at the end of the simulation (last 50 snapshots) of the first repeat of JAFS pose runs
for fragments vta (a), vth (b) bound to CDK2, ata (c), atb (d) bound to HSP90
and ipz (e) and prz (f) bound to MUP. See chapter 5 for further information on
the systems.
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the cavity is approximately the same, in volume terms, for all ligands in

all systems (see chapter 5 for further information on the systems and their

ligands). This should hence have a minor effect on any potential differences

in sampling between different systems.

2. Solute tempering is being applied on all JAFS production runs. This implies

exchanges are expected between replicas at different “solute temperatures”.

This will influence θ sampling when studied for one particular replica (as we

will do, studying the replica at lowest “solute temperature”, with no added

solute scaling by means of solute tempering). When a replica exchange event

(between different solute tempering replicas) takes place, often a change in

the θ value of the JAFS particles at one particular “solute temperature” is

observed. This is due to different θ values being associated with the JAFS

particles at each of the exchanged configurations.

In figure 7.18, the θ sampling of the copies of the corresponding fragment species

(vta and vth for system CDK2 in plots a and b, ata and atb for system HSP90 in

plots c and d, ipz and prz for system MUP in plots e and f) during the last 5 million

moves (for clarity) of the first repeat of each simulation are shown. Each line in

each of the plots represents a copy of the fragment in the JAFS box. Information

shown is always that of the replica at the lowest “solute temperature” (with no

energy scaling by solute tempering).

A few aspects must be highlighted from the observation of the plots. First,

notice that most fragment copies are always present at either high (θ > 0.8) or low

(θ < 0.2) values of theta, with generally at most one copy present at intermediate

values of θ at a given time. This is relevant to the accurate representation of the

realistic system with our JAFS simulations. Since in the real system, all particles

will either be present or absent from the target binding cavity, and hence the exis-

tence of “partially on” or “partially present” particles (those with their interaction

energy scaled down, intermediate values of θ) do not represent a real state, the ex-

istence of these intermediate particles must be minimized (see section 6.2.2). While

the possibility of sampling these intermediate states of θ is essential to the whole

idea of JAWS and JAFS, and key to the achieved sampling of both θ and Cartesian

space (see explanation of background and ideas behind the method in section 4.2),

it can be seen that, generally, particles do not remain at these intermediate θ and
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instead “choose” whether to present high or low values of θ.

Another relevant result observed in figure 7.18 is the presence of exchanges

between copies at high and low values of θ during the simulation. Sharp exchanges

between very high and very low values of θ can be seen, for example at the end

of plot c (ligand ata). These fast exchanges back and forth between the same

two copies originate directly from exchanges between solute tempering replicas.

In neighbouring replicas, each of the particles is respectively at high and low θ.

Other, more incremental changes in θ can be observed, for example, in plots a

and e (ligands vta of CDK2 system and ipz of MUP system). These incremental

changes are generally the results of successive Monte Carlo moves in θ space of the

fragment copy within one particular replica. The key observation, however, is that

different θ are sampled for the fragment copies, hence giving them the chance to

explore freely Cartesian space when their θ value is low, as well as finding favourable

interactions, where presenting high θ values is favourable.

In conclusion, we observe satisfactory sampling of θ space for the fragments in

the JAFS pose runs, with a dominance of states with either high or low θ rather than

those of intermediate values, but also with exchanges between high and low values

of θ. Success of the objectives in terms of θ sampling has hence been achieved.

Equivalent plots to those in figure 7.18 for the first repeat of all the remaining

ligands used in the JAFS pose production runs can be found in section 11.3.

Sampling of Cartesian Space by RMSD

The RMSD with respect to the crystal structure for three copies of fragment

atf on the third repeat of its JAFS pose simulation is plotted in figure 7.19. These

three poses from one particular repeat have been chosen as being representative

examples of the main different situations which can be found in terms of RMSD

sampling. From those, copy 4 (plot a) reaches the crystal pose (see RMSD < 2 Å),

while the other two copies of atf do not.

It is important to remember here the idea behind the increase of sampling that

JAFS simulations are expected to provide. When a particular copy of a JAFS

particle presents a low value of θ (its interaction energy close to zero), the particle

is expected to sample most of the Cartesian space included in the JAFS box. When

favourable interactions are found, it will be energetically favourable for this particle
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(a) (b)

(c)

Figure 7.19: Evolution of RMSD with respect to crystal pose for three different
copies of fragment atf (target protein HSP90) in its third repeat of JAFS pose.

to increase its value of θ, turning “on” its interaction energy. When its interaction

energy is not scaled down, the Cartesian sampling capabilities of this particle are

limited by the rest of molecules in the environment. It is hence likely that the

particles get “stuck” in terms of Cartesian space while their θ value remains high,

until a move that leads to the decrease of θ is accepted.

Based on that premise we can study the behaviour presented in the plots of

figure 7.19. We will start by looking at plot b (copy 6 of atf) compared with plot c

(copy 8 of atf). In plot b, the continuous change in RMSD with respect to crystal of

copy 6, during the whole length (40 million moves) of the simulation is clear. No set

of snapshots are observed during which RMSD remains constant. In other words,

atf 6 seems to be exploring different regions of the JAFS box, without remaining in
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(a)

Figure 7.20: Evolution of RMSD with respect to previous snapshot (RMSF) for
copy 6 of fragment atf (target protein HSP90) in its third repeat of JAFS pose.

one particular configuration for long. This can be confirmed by the plot of RMSD

with respect to previous snapshot (RMSF) for this same repeat and copy of atf

shown in figure 7.20. Plot c, which represents atf 8 is different in this respect.

While, during most of the simulation time its RMSD is also varying constantly,

during approximately 7 million moves (starting somewhere around snapshot 150)

atf 8 seems to have a clear preference to keep its RMSD to crystal somewhere

slightly below 9 Å. These observations would suggest copy 6 of atf remains mostly

at low values of θ throughout the simulation length. However, we would expect

copy 8 to present high values of θ roughly between snapshot 150 and 220 (between

its 15 and 22 million moves). These suppositions are confirmed by looking at the θ

sampling with respect to snapshot for each of these atf copies in figure 7.21. That

pose sampled by copy 8, at RMSD slightly below 9 Å, is captured in one of the

clusters (6th most populated cluster for both 2 Å and 4 Å cut-off) obtained as

output of this simulation repeat.

After this first analysis of copies 6 and 8, it is probably easier to understand the

behaviour of atf 4, displayed in plot a. It seems that copy 4 is sampling basically

two different poses during the whole simulation. One of them with RMSD < 2 Å,

considered to be the crystallographic pose. The other pose presents an approximate

RMSD of 8 Å to crystal pose.

From these observations several conclusions can be made. First, we can see

that the behaviour of the different copies of the fragment can be quite different in
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(a) (b)

Figure 7.21: Evolution of RMSD with respect to crystal pose for three different
copies of fragment atf (target protein HSP90) in its third repeat of JAFS pose.

terms of sampling of Cartesian space (here measured in RMSD). This may point

to the relevance of including several copies of the fragment in each repeat of the

simulation to increase sampling opportunities available to the fragment. Second,

we can observe the two types of behaviour expected in terms of Cartesian sampling

to be present in the simulation. We observe fragments being “stuck” in particular

configurations, which can only be understood if the fragment copy is interacting

with the environment. At these points θ values are high, and generally high enough

to be captured as part of the configurations to be clustered in order to generate

the possible binding geometries. We also observe copies of the fragment exploring

large regions of the JAFS box in relatively small number of moves. The continu-

ously changing RMSD correlate with rapidly changing configurations of the ligand.

For configurations to change rapidly, the difference in energy between configura-

tions must be low, so that a high proportion of the attempted moves are accepted,

consequently moving the fragment. Most commonly, the reason for small energetic

difference between different configurations is that the interaction energy of the frag-

ment is scaled down (close to zero — low values of θ); differences in the environment

as the configurations then change will hardly make any energetic difference to the

fragment. That is, at low values of θ we observe frequent configurational changes

while at high values of θ the particles explore defined binding configurations that

are captured during the clustering process.
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We can hence conclude that, while the difference between fragment copies might

be more obvious than expected, both desired types of behaviour in terms of Carte-

sian sampling can be successfully found among fragments in JAFS pose simulations.

7.2.5 Waters in the Cavity

Figure 7.22: The three HSP90 crys-

tallographic conserved waters. Wa-

ters taken from the crystal structure

in complex with 2dl are shown in ma-

genta. Cluster representatives of wa-

ters with θ > 0.9 for all repeats of

all HSP90 JAFS pose simulations are

shown in dark cyan. Only water clus-

ters with any of their atoms within

1.5 Å of the crystal waters are shown.

All repeats bar one present one clus-

ter within the set distance of each of

the crystal waters.

One of the main strengths of JAFS pose

with respect to other methods of finding the

binding configuration of ligands is the au-

tomatic inclusion of waters in the binding

cavity. This implies no previous knowledge

of the solvation state of the cavity is re-

quired, nor information on potentially con-

served waters which may mediate interac-

tions between the ligand and target protein.

Both the presence or absence of waters in

any particular configuration, or high vari-

ability of these, should be accounted for

by the waters included in the simulation

as JAFS particles. These waters can vary

the scaling of their interaction energy (ef-

fectively “appear” or “disappear” from the

cavity). They are equally free to sample

their Cartesian space within the limits of

the JAFS box. Their sampling of Carte-

sian space will be enhanced by their ability

to sample their interaction potential, since

they can, effectively, turn their interactions

“off” to avoid energetic clashes.

But does this sampling actually take

place in our simulations? Are we capable

of locating crystallographic conserved waters? Is there a difference in our JAFS

pose simulations between cavities which are known to be dry and those that have

been seen to be highly hydrated? This has been studied and results will now be
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(a) (b)

(c) (d)

Figure 7.23: Evolution of the θ values of JAFS waters with respect to snapshot at
the end of the simulation (last 50 snapshots or 50 million moves) of the first repeat
of JAFS pose runs for fragments vta (a), ata (b), ipz (c) and prz (d). Only 50
snapshots of one repeat shown for clarity. The dryness of the MUP cavity (plot c,
with fragment ipz and d with fragment prz) can be observed by the lack of waters at
high values of θ in comparison with other cavities, in particular, the well hydrated
HSP90 cavity (plot b, with fragment ata).
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presented in this section.

In figure 7.22, the location of the conserved waters mediating binding interac-

tions in HSP90 is studied (see section 5.2.1 for further information on the system).

In the image, the waters from the crystal structure (magenta) — PDB code 2XDL,

protein structure used in the HSP90 production runs — as well as the clusters (dark

cyan) obtained for those waters in all repeats for all HSP90 ligands are shown. All

molecules with any of their atoms within 1.5 Å of the crystal waters were selected.

All but one of the total number of repeats found all three conserved waters within

those limits. The remaining repeat failed to find one of three crystal bridging wa-

ters (W3 in figure 5.3) within the limits described. Two clusters were, however,

found not far from crystal water 3 (W3), with the closest of them presenting the

closest atoms at 1.9 Å, with its oxygen at 2.1 Å.

Observing these results we can confidently say that, for the HSP90 system,

with the range of ligands studied, JAFS is successful in locating conserved crystal-

lographic waters automatically, without any previous knowledge of their presence

or location.

In figure 7.23 a study of the θ values of JAFS waters for the different cavities

where JAFS pose has been run is shown. Plots are shown of the evolution of θ for

the JAFS waters with snapshot for the last 5 million moves of the first simulation

repeat (50 snapshots). Only a section of the simulation and only one repeat are

shown for clarity (choosing the first repeat and last section of the simulation was

arbitrary). Each line in each individual plot corresponds to one water molecule.

The simulations with the two ligands in MUP are shown (plots c and d), while only

one of the ligands is presented for each of the other cavities, for comparison. It can

be seen how, for the case of MUP (plots c and d in figure 7.23), which is known

to be a dry cavity (see section 5.1.2 for further information on the system), waters

present low values of θ on average, and none of the water molecules remains at high

θ. In comparison, the cavity of HSP90 (plot b in figure 7.23) which is known to be

highly hydrated (see section 5.2.1) does present, in fact, several water molecules

with θ > 0.8 during all of the last 5 million moves of the simulation. The average

θ per water molecule can be estimated as higher than that of MUP. The case of

the CDK2 cavity, as presented in plot a (within figure 7.23), is an intermediate

one, with at least one water continuously presents a value of θ > 0.8, but the total
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number of waters with high θ values is lower than that of HSP90 cavity (plot b).

As an ilustrative example, measuring water molecules with θ > 0.9 during the first

simulation run, for the HSP90 runs with ata, an average of 4.5 “on” waters were

found, while an average of 2.3 “on” waters per simulation snapshot were found in

the first repeat of the CDK2 runs with vta.

By looking at figure 7.23 and the analysis presented above we can conclude

that the dryness of the MUP cavity, in opposition to the abundant hydration of

HSP90 is detected correctly. It is important to note that an analysis of the exact

number of waters present on average in a hydrated cavity, such as HSP90, may well

not provide the correct value when studied with JAFS. This is a consequence that

JAFS waters do not present the same degrees of freedom as a real water molecule

would, since it has the extra capability of scaling its interaction energy (appearing

and disappearing). This will drive these JAFS waters to sample a different free

energy landscape. However, clearly, for these systems, the approximation of reality

that is our JAFS representation, is good enough to capture the difference between a

well hydrated and a dry cavity, and it seems to set all the water-related conditions

in place to be able to capture the binding geometries correctly.

7.2.6 Differences Between Clustering Thresholds

One of the observations taken from the data presented in table 7.15 was that

the number of clusters per repeat was considered higher than optimal. Given that

the JAFS pose protocol cannot select the “correct” binding pose among those gen-

erated, a posteriori re-scoring of the poses might be desired — depending on the

particular application of the JAFS methodology. Problems of traditional free en-

ergy calculations for pose re-scoring, together with our use of a novel methodology,

will be discussed in a later chapter (see chapter 8). However, it is important to

mention here that standard free energy methods, as well as the one used in this

project, deal with the difference in free energies of ligands (or poses) in a pair-wise

basis — the relative binding free energy between (only) two poses is calculated

from each simulation. The number of generated poses with JAFS pose is hence

relevant, since a new re-scoring simulation will, in principle, be required for each

new pose obtained. It is also worth mentioning that the time length of each of

these re-scoring calculations will be on the same order as that of one JAFS pose
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simulation.

However, the main objective of a JAFS calculation is to find the correct (crys-

tallographic) binding pose. Statistically, it may be expected that, the lower the

number of poses we generate, the less likely that the crystal pose will be among

them. Further study of the two different thresholds for average hierarchical clus-

tering was considered necessary to present this project with an optimal threshold

among those used. In table 7.16, a summary of the complete clustering results (seen

in table 7.15), is displayed as a form of comparison between clustering thresholds.

Clustering summary for 2 Å cut-off

No. repeats Clusters per repeat Clusters within 2Å
65 18.0 46

Clustering summary for 4 Å cut-off

No. repeats Clusters per repeat Clusters within 2Å
65 9.0 32

Table 7.16: Summary of clustering the results of the JAFS pose simulations over all
systems with two different thresholds applied on the hierarchical clustering protocol
(2 Å and 4Å). The complete data set is available in table 7.15.

From the data in table 7.16 we can calculate the ratio between the number

of successful clusters (those with RMSD to crystal pose RMSD < 2Å) and the

number of total clusters (number of repeats times the number of clusters per re-

peat). This will be taken as the global measure of success for a particular clustering

protocol. Performing this calculation we obtain:

� Measure of success for 2 Å cut-off: 0.0393

� Measure of success for 4 Å cut-off: 0.0547

Consequently, for JAFS pose, clustering with a 4 Å cut-off was considered a more

optimal choice when subsequent re-scoring of poses is desired, and limited time to

perform those calculations is available. A lower number of clusters is generated

with the 4 Å cut-off, where each cluster has a higher chance to be the “correct”

binding geometry than for clustering performed with 2 Å cut-off. However, if

the “correct” binding geometry wants to be obtained and, either no re-scoring is

desired, or the time spent on re-scoring is not a relevant matter, the 2 Å cut-off
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is recommended, since it is more likely to provide the correct binding geometry

among all its generated alternatives.

7.2.7 Comparison to random pose generation

Given these results, a logical question was raised of whether the presented re-

sults were any better than random placement of the fragment within the JAFS

box delimiting the sampling region. To answer this question, clustering was per-

formed on the initial distributions on fragments in the JAFS box, which had been

randomly generated. It is important to mention that, while the position of the

fragment is randomly selected within the box limits (centre of geometry of the

fragment remaining within the box) the internal structure of the fragment remains

identical to that provided by the crystallographic information. The different ran-

dom configurations were generated with the distribute waters.py ProtoMS tool (see

section 4.4.1).

Randomly generated poses for all JAFS pose systems

No. repeats Clusters per repeat Clusters within 2Å Clusters within 4Å
65 8.8 0 14

JAFS pose results for all systems

No. repeats Clusters per repeat Clusters within 2Å Clusters within 4Å
65 9.0 32 78

Table 7.17: Results of applying clusters on the randomly generated poses used as
input to the JAFS calculations. Clusters are calculated with hierarchical clustering,
with a 4 Å cut-off. Displayed are the total number of repeats (simulations) adding
all fragments in all systems, average number of clusters per repeat, total number of
clusters which fell within 2 Å or 4 Å RMSD of their corresponding crystal structure.

A summary of the results for all systems and all fragments is shown in table

7.17, the main conclusion being that no correct crystallographic pose (RMSD < 2

Å) could be captured with this random approach.

A statistical test was performed to assess whether the results of clustering

randomly generated poses were significantly different, from a statistical perspective,

to those generated by clustering the results of JAFS pose. A one tailed binomial

test was chosen, to evaluate whether the proportion of clusters within 4 Å of their
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crystallographic pose were significantly higher for the clustered results of JAFS,

than for the result of clustering random poses — the 4 Å cut-off was chosen since

no binding geometries within RMSD < 2 Å were generated randomly, and hence no

successful comparison could be performed —. This test was run with an R script,

with the binom.test command and the alternative=‘‘greater’’ parameter.

On choosing the one tailed binomial test we are initially assuming that JAFS

pose generates binding geometries that are as good as random in finding the crystal

binding geometry (within 4 Å RMSD). If this were the case, if JAFS pose basically

generated just random poses of the ligands within the JAFS box, how likely is it

that we would obtain the data that we observe in the JAFS pose results, or better?

(13.3% of the clusters fall within 4 Å of their crystal binding mode, see below). We

will calculate this probability with the one tailed binomial test. If the answer is

that it is very unlikely that we were to obtain this proportion of clusters within 4

Å of the crystal pose if JAFS pose was generating poses as good as random, then

we will understand that JAFS pose is indeed performing better than random pose

generation.248

Within this test, the probabilities are expressed as the number of successes

(clusters within 4 Å of the crystal pose) divided by number of trials (total number of

clusters). The null hypothesis — corresponding to the results of running clustering

on the randomly generated poses — is expressed as a probability of 14/(8.8 ∗
65) ' 0.024, where 14 is the number of cluster representatives within 4 Å of the

crystal pose, 8.8 is the average number of clusters per repeat and 65 the total

number of runs, as shown in table 7.17. Accordingly, the alternative hypothesis

— obtained from clustering the JAFS pose results — is expressed as a probability

78/(9.0 ∗ 65) ' 0.133, where 78 is the number of cluster representatives within 4

Å of the crystal pose, 9.0 is the average number of clusters per repeat and 65 the

total number of runs, as shown in table 7.17. The obtained p-value of this one

tailed binomial test is p = 2.2E − 16. Consequently, it can be said that our null

and alternative distributions are not equivalent, applying a significance level of 1%.

A summary of results can be found in table 7.18. It can hence be said that the

binding geometries generated with JAFS pose are significantly more likely to find

the crystal binding mode (within RMSD < 4 Å) than randomly generated binding

configurations. In summary, JAFS pose is doing better than random at finding the
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crystal binding structure.

It is important to notice that this is a naive test, where the null hypothesis

does not even take into account potential Lennard-Jones clashes with protein atoms

within the JAFS box.

Results of one-tailed binomial test

Input probabilities Test results

Null probability Alternative probability p value
0.024 0.133 2.2E − 16

Table 7.18: Summary of the one tailed binomial test, data and results. The null
probability (probability of the null hypothesis) corresponds to the probability of
finding cluster representatives within 4 Å of the crystal pose when clustering ran-
domly generated poses. The alternative probability (probability of the alternative
hypothesis) corresponds to the probability of finding cluster representatives within
4 Å of the crystal pose when clustering the configurations sampled with JAFS pose.
According to the p value resulting of the binomial test, the null and alternative
distributions are considered not equivalent.
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7.3 Solute Tempering

As previously explained, the enhanced sampling generated by applying the

solute tempering methodology was essential for the usability of JAFS results. While

the measures of sampling efficiency were focused on numbers of clusters rather

than acceptance of moves between replicas, plotting the path followed by different

replicas is still advisable as a sanity check on the correct behaviour of the simulation.

In figure 7.24, the path of replicas for repeat one of JAFS pose on ligand ata of

the HSP90 system (chosen as a representative example) is shown. Note the correct

expected behaviour, with neighbouring replicas swapping in a random walk.

(a) (b)

Figure 7.24: Plots produced with calc replicapath.py (see section 4.5.2) from the
JAFS pose simulation results on ata (system: HSP90). Figure (a) displays all repli-
cas, while figure (b) shows only some replicas, for clarity. The x axes corresponds to
simulation snapshot and y axes shows the “solute temperature” (see section 3.7.1
and 4.4) associated with each replica.

An in-depth analysis of the effects of solute tempering, in comparison with

parallel tempering and no enhanced sampling technique, as well as a discussion on

the optimization of the settings for solute tempering is included in section 6.3.2.

However, the direct effects on θ sampling of using solute tempering as an enhanced

sampling technique in the production conditions have been further studied. To that

end, simulations identical (including same initial random seed) to the first repeat of

JAFS pose on ata (system HSP90), vta (system CDK2) and ipz (system MUP) but

not including solute tempering have been run (one ligand of each system, and only

the first repeat, chosen as representative examples). Their θ sampling results for
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(a) (b)

(c)

Figure 7.25: Evolution of the θ values of JAFS fragments with respect to snapshot
at the end of the simulation (last 50 snapshots) of the first repeat of JAFS pose runs
for fragments vta (a), ata (b) and ipz (c) in simulations without solute tempering.

only the last 5 million moves (for clarity) can be seen in figure 7.25. By comparing

these plots with those in figure 7.18, the consequences of solute tempering on θ

sampling, within the production simulation conditions, are obvious.

As can be observed in figure 7.25, minimal change in the θ variable is observed

in all simulations, for all ligand copies, when no solute tempering is applied. No

swaps between high and low values of θ are observed for any of the ligands during

these last 5 million moves of simulation. When no swaps between particles at high

and low values of θ are observed the simulations present a very similar condition

to a standard MC (or MD) simulation. A constant number of solutes is present

in the simulation, with their interactions (almost) fully “on”, and no (or very
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little) sampling advantage is obtained with respect to these standard simulations

— the link between θ and Cartesian sampling has been discussed in depth and for

a number of examples throughout the thesis. In fact, it can be argued that this

situation is possibly worse than that of standard MC (or MD) simulation for a few

reasons. First, the possibility of a number of copies of the fragment being present in

the simulation at once (as is the case for the HSP90 ata and CDK2 vta simulation,

as can be seen in figure 7.25) which is unlikely to be the case in experimental

conditions (due to the ligand concentration in solvent). The second reason is the

possible presence of ligands at intermediate states of θ (as is the case in the MUP

ipz and CDK2 vta simulations as shown in figure 7.25). These “half on” ligands do

not represent any state which can be sampled in experimental conditions (where

ligands are either present or absent from the simulations).

The essential conclusion to be taken from this section is the need for the ap-

plication of solute tempering on the JAFS simulations. While the disadvantages

previously described may appear at a given point during the simulation even when

solute tempering is applied, the increase in sampling in the binding cavity provided

by JAFS in combination with solute tempering outweighs (in our opinion) these

possible drawbacks. However, these drawbacks do highlight the need to understand

the JAFS method as a method to rank ligands by affinity (JAFS score) and locate

their binding geometry (mostly JAFS pose, but also JAFS score) rather than a

simulation where any desired thermodynamic property may be obtained.

7.4 Comparison to Docking

While for JAFS pose a (rather naive) comparison to random pose generation has

been performed in section 7.2.7, to assess the scope of usability of the JAFS pro-

tocols, a comparison to current common methods is required.

Possibly the most standard choice for the location of binding geometries of small

ligands to target proteins, and the ranking of these ligands, is docking and scoring.

Docking and scoring techniques, further explained in section 3.2, represent what can

possibly be described as the opposite extreme to the sort of advantages provided by

traditional free energy techniques (such as alchemical transformations, see section

3.6.2) and (to a lesser extent) the JAFS method. They focus on the generation of

fast results, with less emphasis on theoretical accuracy, and encouraging use of all
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previous knowledge available for the systems of interest.

Often, when a new method is compared to its predecessors by developers of

the newcomer, the use of previous methodologies is far from optimal. This is to

be expected, since developers of a particular new methodology are bound to know

and understand their creation more deeply and may not be experts in the use of al-

ternative packages or procedures. Given that the study of fragments often requires

specific setup of methodologies, due to the small size of the ligands, that may di-

verge from standards and package defaults, we considered this to be an important

hindrance to our the comparison of JAFS to other docking techniques. Luckily,

we have the privilege of the involvement in this project of Astex Pharmaceuticals.

Their focus is the development of the fragment based approach to the generation of

new therapeutical drugs. They prioritize the investment and routine application of

computational methods in drug discovery, and frequently perform docking calcula-

tion of fragments, as can be seen from their publications.10,11,25,239 For the reasons

stated it was considered optimal that all docking calculations used to provide the

context of our JAFS results where performed by Astex Pharmaceuticals, with their

optimized docking setup (specified in the Appendix, section 11.2).

The same defining traits of docking and scoring, furthermore when using these

methodologies in their optimal conditions, make it difficult to provide identical

conditions to JAFS and docking protocols. The main reflection of this issue is the

location of potential bridging water molecules, key to the interaction between lig-

and and target protein. While one of the advantages of JAFS pose is its capability

to automatically locate potential water mediated interactions, docking calculations

will typically make use of all previous knowledge of the system, including the pres-

ence of water mediating interactions. When the presence of key waters mediating

the interaction between ligand and protein is not previously known, docking cal-

culations will generally assume these are not present. JAFS offers the possibility

of expanding the previous knowledge of the system in this respect.

7.4.1 Docking Methods

In this section we present the specifics of the docking runs performed by Astex

Pharmaceuticals. They used the software package GOLD,124 with the scoring func-

tion ChemPLP.249 Each of the ligands (binders) used throughout this project for
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the HSP90 and CDK2 systems was independently docked against the same protein

conformation that was used in the JAFS runs.

Each repeat of docking produced a total of 15 resulting binding geometries

(poses). Diversity is forced on these poses so that only up to three poses may fall

within the same cluster of 1.5 Å threshold. For the HSP90 system, the conserved

waters which mediate interaction between the ligands and the protein are included.

The waters are fixed in a user-defined position and rotated to optimize the estab-

lished hydrogen bonds. In the case of CDK2, one single repeat was run for each

case, while three different repeats are available for the HSP90 system. See further

specifications of the docking runs in the Appendix (section 11.2).

7.4.2 Discussion and Comparison

System: CDK2

Fragment Top RMSD Lowest RMSD Crystal pose
vth 3.89 1.37 YES
vta 2.47 0.34 YES
vtm 0.86 0.86 YES
wcc 4.11 2.96 NO

System: HSP90

Fragment Top RMSD Lowest RMSD Crystal pose
2dl 0.36 0.30 YES
ata 1.29 0.72 YES
atb 3.44 0.43 YES
atc 3.74 0.20 YES
atd 4.19 2.01 NO
ate 1.22 0.74 YES
atf 4.27 2.94 NO

Table 7.19: Docking results of one docking run on the CDK2 and HSP90 systems.
The RMSD of the top scored pose and the lowest RMSD of all poses are presented
for each of the fragments studied in this project. A summary column indicating
whether the crystal pose was found among all poses is also shown. The target
protein conformation is the same as that used in JAFS.

In this section, docking results will be presented together with their JAFS

counterpart, so that effective comparison can take place. Docking results provided
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by Astex Pharmaceuticals can be observed in table 7.19, while the corresponding

JAFS data is shown in table 7.20. Please note that the data provided is not iden-

tical. For the docking calculations, the RMSD for the top scored pose is provided

(see “Top RMSD” in table 7.19). A scoring protocol is intrinsic to the docking

calculations (see section 3.2). This implies that the docking runs do provide a

method of selecting the most optimal pose (while this prediction may or may not

be correct in each particular case). As explained previously, JAFS does not provide

the capability of ranking the different binding geometries provided by JAFS pose

(further comment on this respect can be found in section 8). For this reason, the

“Top RMSD” column is not available in the JAFS table of results (table 7.20). The

other differences correlate with the fact that five different runs of JAFS have been

performed, while only one (for CDK2) or three (for HSP90) have been completed

for the docking protocol. The results of only one docking run are shown in table

7.19, while an analysis of the consistency of docking vs JAFS pose repeats for the

HSP90 system is shown in table 7.21. To provide a fair comparison, the first run of

JAFS was chosen and its results are displayed under the “R1” label in table 7.20.

However, given that a number of repeats were available, the mean value of lowest

RMSD was calculated, with their associated standard error for these (label “AV”

in the same table). A column related to the finding of the crystal pose in all five

runs was considered trivial (hence not included) since the crystal pose is always

found within 2 Å, for all ligands studied with JAFS pose, for all systems.

When comparing the results of docking and JAFS it must be further considered

that each of binding geometries generated with JAFS is necessarily unique for

each repeat within our clustering threshold (since they are obtained as the cluster

representatives). For docking, however (as mentioned above) up to three different

poses may fall within the same 1.5 Å clustering threshold.

Two different perspectives can be found when analysing and comparing the

docking data with the JAFS results, and they are related to whether we consider

the successful finding of the crystal pose with JAFS when this has been found within

the five repeats run, or whether we decide to analyse the first repeat individually.

Looking at the results presented by the first JAFS runs in table 7.20, in comparison

to those provided by the single repeat of docking in table 7.19, we can see that JAFS

pose seems to perform equally (for the CDK2 system) or marginally worse (for the
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System: CDK2

Fragment Lowest RMSD - R1 Crystal pose - R1 Lowest RMSD - AV
vth 0.58 YES 2.16 ± 0.89
vta 2.62 NO 2.89 ± 1.05
vtm 0.91 YES 1.10 ± 0.09
wcc 0.53 YES 1.85 ± 1.08

System: HSP90

Fragment Lowest RMSD - R1 Crystal pose - R1 Lowest RMSD - AV
2dl 1.166 YES 1.26 ± 0.07
ata 0.402 YES 1.05 ± 0.84
atb 3.294 NO 1.97 ± 0.74
atc 3.675 NO 3.19 ± 0.65
atd 1.604 YES 2.06 ± 0.66
ate 1.108 YES 0.92 ± 0.20
atf 4.344 NO 2.41 ± 0.91

Table 7.20: JAFS pose results of the first repeat (R1) and average of all 5 repeats
(AV) on the CDK2 and HSP90 systems. The lowest RMSD of all poses is presented
for each of the fragments studied in this project. A summary column indicating
whether the crystal pose was found among all poses in the first repeat is also shown.
The clustering cut-off applied to here was 2 Å (which increases the probability of
finding the crystal binding geometry over all clusters with JAFS pose).
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HSP90 system) than docking for this particular repeat. It can also be seen in table

7.20 that, while the pose is found for all ligands in all systems when we look at all

five repeats of JAFS, the average lowest RMSD among all repeats often does not

fall below the 2 Å RMSD threshold with respect to crystal pose. It must be noted

that the “average lowest RMSD” is taken as the average over the lowest RMSD

from each repeat. The fact that this value does not fall within 2 Å RMSD of the

crystal pose highlights that not all repeats locate the crystal binding geometry (in

some cases, not even the majority of repeats do).

It is important to remember at this point that the docking runs do not present

the same conditions as the JAFS pose simulations, hence making them, arguably

not comparable. The main difference relates to the introduction of extra knowledge

about the system within the docking runs, such as the bridging waters, whose

presence and location is automatically detected by the JAFS pose protocol. In

computational terms, the phase space required to sample within the JAFS pose

simulations is much more complex than that of docking runs, mainly due to the

presence of water molecules as well as the ligand.

Consistency Between Repeats

Lowest RMSD - System: HSP90

Fragment Docking - AV 3 JAFS - AV 3
2dl 0.32 ± 0.01 1.30 ± 0.09
ata 0.71 ± 0.15 0.47 ± 0.10
atb 0.53 ± 0.13 1.84 ± 0.96
atc 0.20 ± 0.00 2.97 ± 0.98
atd 1.14 ± 0.58 1.89 ± 0.86
ate 0.96 ± 0.14 0.95 ± 0.11
atf 2.97 ± 0.02 2.40 ± 1.28

Table 7.21: Comparison of the average result of three repeats, as well as its
associated errors, between docking and JAFS pose results, for all fragments in the
HSP90 system. The clustering cut-off applied here was 2 Å.

The previous comparison between docking and JAFS pose results relied on the

results of a single docking repeat, hence not allowing any analysis of the consistency

of docking runs. Here we present results of three repeats of docking on the HSP90

system, and show the average RMSD to crystal pose as well as its associated error.
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As it can be seen in table 7.21, docking results provide a higher consistency (lower

associated error) for the lowest RMSD between runs in five out of seven ligands

within the HSP90 system. Similarly, the average RMSD is lower for the docking

calculations, again in five out of seven repeats, while in most cases both results are

within error of one another. For this case it is hence found that docking runs are

generally more consistent as well as more accurate. Again, we need to take into

account that the position of the bridging waters has been automatically detected

within the JAFS methodology, hence not necessarily in their exact crystallographic

configuration, which was used within the docking runs.

Summary and Conclusion

First, as has been noted throughout this section, the comparison of the docking

runs and the JAFS simulations is a complicated one, since different conditions

are applied to each methodology (i.e. the treatment of waters or the possible

parametrization of the docking scoring functions against proteins of the same family

as that studied, or a similar set of fragments). However, some information can still

be taken from this comparison study.

As an initial observation, it is clear that JAFS pose does not consistently out-

perform docking calculations, despite using higher computational resources. It may

hence be safely stated that JAFS must not replace docking in its routine use dur-

ing FBDD. Further studying the data, it may also be noted that JAFS does not

considerably under-perform docking calculations either, while a much more “black

box” approach is taken with JAFS (automatic location of bridging waters and lack

of calibration of energy estimations to particular protein families). Consequently,

JAFS pose may be a relevant method for particular cases where a lack of informa-

tion on the system is found and a black-box approach is required (i.e. if a system

from an under-studied protein family is of interest).

Besides its direct usability in pharmaceutical FBDD projects, the finding that

the performance of JAFS is similar to that of docking is encouraging from a devel-

opment and research perspective. It suggests this technique may be found relevant

for particular research projects and possibly future developments may increase its

applicability and success.
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Chapter 8

Rescoring Poses

The JAFS pose protocol has proven successful in finding the correct binging

geometry for all presented fragments in all shown systems (as shown in section 7).

However, not only the correct binding geometry, but a number of possible binding

poses are generated with this protocol. Little has been discussed so far on how (or

if at all possible) the correct binding geometry may be selected from all generated

poses (cluster representatives).

8.1 Cluster Occupancy

An early idea in the initial development on the project (as mentioned previ-

ously in section 6.2) was to rank poses based on their cluster occupancy. The

logic behind this approach is, given proper sampling of the free energy landscape,

the system should remain for longer in the most favourable conformation. Con-

sequently, more snapshots should capture the conformation of the fragment and

waters which correspond to the correct binding mode. While theoretically sound,

this ranking approach does not seem to produce the desired results. When ranking

by cluster occupancy, the crystallographic pose can be found in any position among

the generated clusters. An example of this can be found in table 8.1.

The reasons for the failure of this ranking method may be related to the im-

precisions in the representation of the system. For sampling reasons, it is most

convenient to introduce a number of fragment copies per simulation. Equally, all

JAFS particles must interact with one another, so that interactions between frag-
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ment and water can be correctly represented. However, these two traits imply two

fragment copies may also be able to see one another when presenting high values

of θ in different positions of the same JAFS box. They may stabilize one another,

increasing their cluster occupancy after analysis. In a similar fashion, there often

are two (or more) possible posses which fill (at least partially) the same space in the

JAFS box (partially overlapping clusters). It is likely that the cluster occupancy

of these overlapping poses is lower in proportion to their affinity, compared to a

different pose which does not overlap with any other conformation. This is due to

one of the overlapping poses having to present low values of θ for the other pose

to display high θ.

System: HSP90 - Ligand: ate

Repeat No clusters Rank
1 15 4
2 13 5
3 24 15
4 16 2
5 10 10

System: MUP - Ligand: ipz

Repeat No clusters Rank
1 16 3
2 12 10
3 16 16
4 14 -
5 24 1

Table 8.1: Ranking obtained in each repeat by the crystal binding geometry when
occupancy for the cluster is used as ranking measure. The number of clusters found
in each repeat is shown. A dash (-) indicates the crystal binding conformation was
not found in that repeat. Clustering cut-off of 2 Å has been used here.

8.2 Relative Free Energy of Binding

The most expensive, but (conceptually) most accurate, method to rescore differ-

ent binding geometries must be the calculation of their relative binding free energy.
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To proceed with this calculation, we may want to apply the previously explained

dual topology alchemical transformations (see section 3.6.2). When applying dual

topology to the transformation between two poses of the same ligand, we face two

different problems: conformational sampling and solvation of the cavity.

8.2.1 Problems

Conformational Sampling

To assess the difference in free energy between two systems, sampling of the

free energy landscape of both extremes of the transformation (as well as any in-

termediate states) is required. Differences in energy between two static systems

could be calculated, but the result of such a calculation could never be regarded

as a relative free energy, but only the difference in potential energy between those

particular conformations of each system, where no entropic component is taken into

account. When, for some particular calculations of interest, a section of a system

must remain within a particular area (e.g. a ligand’s distance to the protein) re-

straints can be applied. For accurate free energy calculations, these restraints need

to be applied carefully, and they need to be accounted for, adding the appropriate

energy terms to the final obtained results.180

One of the difficulties associated with calculating the relative free energy be-

tween two different poses with respect to that same calculation between different

ligands relates to their possible interconversion. Without any restraints applied on

them, each of the binding poses would be allowed to sample at their corresponding

extreme values of λ, and they would have the capability to interconvert. Depending

on the differences between both poses (and ultimately, the energy barriers between

both minima), the process of interconversion may be unlikely. However, this will

still be a concern for similar poses, or poorly hydrated cavities (where waters will

not be in the way, providing more freedom for the fragment to exchange conforma-

tion).

The conformational sampling issue may raise some concerns, since the user

would have to make sure poses have not interconverted, or reached conformations

so different from the starting one that are considered different binding geometries.

If ligands reach (considerably) different binding geometries from their starting con-

figuration, the relative free energy calculated is not that between the two initial
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binding conformations, nor between the final ones, since information has been col-

lected throughout a number of different binding conformations. The end states

would be ill-defined and the meaning of the calculated free energy difference would

not be clear. Furthermore, the conformations sampled would be likely to differ

between repeats, making the average free energy between repeats even less mean-

ingful. While it may, in principle, be assumed that, in most cases, the atomistic

Monte Carlo simulation (without the possibility of sampling in θ space) will lack

enough sampling for this to be an issue, the desired behaviour (remaining within

the initial binding geometries) cannot be guaranteed.

Solvation of the Cavity

There are important reasons why waters are included in the JAFS pose calcu-

lations as one of our JAFS particles. The most obvious relates to the possibility of

water mediated interactions between the ligand and the protein, or the possibility

that certain cavities may be well hydrated while others are dry. The effect of water

distribution can also play a more subtle role in binding ligands within the protein

cavity, where the presence and particular distribution of water molecules within

the (potentially solvent accessible) area of the cavity may enhance or decrease the

affinity of the ligands. It would be expected that, while the ligand is bound, wa-

ters in the cavity are distributed in the configuration that takes the system to the

lowest possible free energy state. Most likely, two different bound configuration of

a particular ligand are related to two different water distributions in the binding

cavity.

The sampling expected in an atomistic Monte Carlo (or Molecular Dynamics)

simulation within the restraints of the binding cavity is not high. This is the

reason why we could say in the section above that, in most cases, the poses of

the binding fragment are not likely to interconvert within reasonable simulation

times. For the solvent conformation this lack of sampling is against us. We cannot

assume that, given an initial conformation of the solvent, the water molecules

will correctly rearrange around a particular conformation of the bound ligand.

In the same manner, we cannot assume that the relative free energy of binding

between two different ligand configurations with an arbitrary solvent configuration

will be representative of the real system. Particular examples leading to this lack
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of convergence include the possibility of water molecules overlapping with one of

the binding geometries, the possible need for water mediated interactions for one

or both binding configurations, or the subtle effects of cavity solvation.

8.2.2 Alternatives

Two different alternatives have been considered. Both focus on tackling the

solvation issue. The issue of the ligand conformational sampling, which may be

solved via the application of restraints — while the application of restraints is not

simple, see above — is expected to be addressed later in any methodology successful

in solvation terms. Neither of the alternatives have been applied to the results of

the JAFS method. This section will hence present the reasonings behind them, the

reasons why they have been put on hold, or how they are being continued. This

section can then be understood as future work.

Group Dual Topology

We are faced with the issue presented in section 8.2.1, where the optimal sol-

vation disposition is expected to differ between the binding geometries. Different

dispositions of the water molecules in the cavity would then be associated with each

of the binding modes. Currently, we are considering the bound ligands in different

conformations as the part of the system that must be transformed with λ, while

the rest of the system is left to re-arrange in response. However, the section of the

system that is variable with λ can be artificially defined, as far as the end states

(λ = 1 and λ = 0) correspond to the end states for which the relative free energy

must be calculated. Following this line of thought, we decided to include a set of

waters surrounding the bound ligand as part of the section of the system which is

variable with λ — coupling water molecules into the perturbation.

While this is considered a valid alternative and no theoretical or intrinsic flaw

was detected, its development stopped due to implementation issues.

In the current implementation of dual topology free energy calculations in Pro-

toMS, the two solutes present at λ = 0 and λ = 1 are coupled in their translational

and rotational motions, hence avoiding the issue associated with the non-interacting

solutes wandering out of the defined pose. This protocol relies on the similarity of

the sampling space available to each of the solutes. The reason for avoiding a ligand
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leaving its defined pose when in its interactions are turned “off” is the appearance

of numerical instabilities in the calculation of the relative free energy when an

“off” ligand is effectively in the same position as other atoms in the system. If the

sampling space available to both ligands is different (or, for example, they are of a

very different size) the coupling of their translational and rotational sampling does

not necessarily avoid the wandering of the “off” ligand into regions occupied by

neighbouring protein or solvent atoms. Hence the previously mentioned numerical

instabilities could appear.

In this context, the implementation of group dual topology proved challenging.

When both groups had the same number of molecules, pairing of these could be

applied (one from the group fully interacting at λ = 0 with one from the group

fully “on” at λ = 1). Pairing could be done automatically, based on their order

within the group, or in a user defined manner. In every case, the molecules chosen

for pairing should present as similar sampling space available to them as possible.

When both groups had a different number of solutes the pairing became more

difficult and arbitrary decisions would have to be made.

It was hence considered that, possibly, the optimal pairing algorithm should

not choose between pairs of specific molecules between the dual topology groups,

but rather an algorithm could be envisaged where, every time one of the dual

topology molecules was to be sampled, a solute from the opposite dual topology

group would be chosen at random, and its translation and rotation coupled to

that of the chosen solute. Different algorithms were attempted, but in every case

where a random factor is involved, solutes were displaced towards the edges of the

simulated region, away from the binding cavity (the opposite effect to that desired).

Running these simulations with positional restraints in each of the solutes in-

volved would still be possible. However, the estimation of the optimal restraint

to be applied for each of the solutes, and later taking the energetics effects of the

restraints into account, would not make the method particularly black-box or effi-

cient, hence it was discarded as a potential rescoring method for JAFS calculations.

GCTI

As mentioned previously, the problem that we are trying to solve is related

to the different solvation of each pose in the binding cavity. Within the research
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group, the GCMC method (see section 3.5.4) has been used to predict solvation

in protein cavities, and recent advances93 have made it more reliable and widely

usable. GCMC could be used to generate the optimal solvation structure for each

of the states at λ = 1 and λ = 0. However the problem remains as to which of

these solvation states should be applied to each of the intermediate λ, or how to

transition from one state to another.

However, this issue could be resolved if GCMC were to be applied, indeed,

to each of the simulations at different values of λ. For replica exchange to be

applicable, both in the λ and the GCMC (B values) coordinates, an implementation

similar to that of parallel tempering (see section 6.3.2) was applied.

This alternative, named Grand Canonical Thermodynamic Integration (GCTI)

is theoretically sound. It was considered that the time required to fully develop

this method and explore its potential applications, both in the rescoring of poses

and calculation of relative binding free energies between different ligands, was such

that it was better separated into a project of its own. This project is currently

under development by other members of the research group. It may, at a later

date, be brought back and applied to the results of the JAFS methodology.

8.3 Summary and Conclusions

A number of different methods to rescore the poses generated with JAFS pose

have been covered in this section. While the first of the methods shown, ranking

of binding conformation based on cluster occupancy, had an empirical basis, the

rest of the section has focused on the study of relative binding free energies, its

challenges, and alternative methods to undertake this calculation.

Measuring affinity by cluster occupancy was the most naive approximation. It

used information already available (number of configurations per cluster) and the

theoretical understanding that the most favourable binding configuration should be

present during a higher proportion of the simulation time (sampling the Boltzmann

distribution for the free energy landscape of the system, see section 3.3.1). However,

in practice the binding geometry presenting higher cluster occupancy among those

generated by analysis of the the JAFS pose simulations did not correspond to the

crystal binding geometry. Inconsistency was found between repeats regarding how

the crystal binding conformation was ranked among other conformations by cluster
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occupancy. While a certain degree of sampling problem must be related to the

inconsistency in rankings, an influence of the inaccuracies in system representation

with the JAFS pose methodology (e.g. presence of molecules at intermediate values

of θ, “partially on”) is also expected.

Once the ranking by cluster occupancy was discarded as rescoring method, the

focus was turned to the calculation of relative free energies of binding. However,

the calculations of relative free energies of binding between different poses have

their own attached challenges, mostly related to their drifting from the binding

configuration under study and the solvation of the binding cavity. Possible alter-

natives to solving these challenges have been presented and were attempted within

the scope of this project in the form of group dual topology and GCTI. For group

dual topology, implementation challenges hindered the development of an alterna-

tive which is theoretically sound. While initial development of GCTI started within

the project, the amount of work required for the full development and testing of

the methodology, prior to its application to the relative binding affinity of different

poses, was such that it was better undertaken as an individual project.

In conclusion, while a few interesting ideas have been highlighted in this section,

an optimal method to rescore binding configurations generated with JAFS pose has

not yet been found (or developed).
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Chapter 9

Summary

In this section, the main traits observed in the JAFS simulation from the results

of the production runs will be presented. Once these traits have been highlighted,

in section 10, the conclusions obtained from them, and the project as a whole will

be presented.

9.1 JAFS Score

The outcome of the results of the JAFS score production runs presented in

section 7.1 may be summarized as follows:

� The simpler systems (T4Lys and MUP) provide the desired results, which

more complex systems (CDK2) fail. Simplicity here is measured both in

terms of the number of fragments included in a simulation and how “well-

behaved” a system is deemed to be, where model systems (see section 5.1)

tend to reduce complexity to a minimum.

- An increasing number of fragments can be directly related to a greater

difficulty in distinguishing their scores and ranking. Since the scores are

measured as a proportion of simulation time that the fragment spends

at θ > 0.5, their values span the range between 0 and 1. For identical

standard errors, the greater the number of fragments in a simulation,

the more likely are the scores to fall within one standard error of each

other, hence being statistically indistinguishable.
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- While this issue may account for the examples of systems where rank-

ing was not possible between some fragments due to an overlap in the

uncertainties of their scores (T4Lys), it would not explain the more com-

plex examples where the predicted ranking was providing statistically

significant results (not all scores within one standard error of one an-

other) which did not match in any form the experimental values provided

(CDK2).

� In the most complex of our systems (CDK2) no success was achieved in terms

of fragment ranking. Not even the minimum requirement of providing all non-

binders with a lower score than all binders was fulfilled. Indeed, the fragment

found to bind tightest experimentally was provided with a null score within

JAFS, consistently, for several sets of repeats and slightly different setups.

- No conclusive cause for this failure could be determined.

- It is unlikely to be a sampling issue, since consistency was found between

sets of repeats.

- There is a known issue with the force field, not expected to capture one

of the key binding interactions of two of the ligands (wcc and vta).

- While the position of the JAFS box may not be considered optimally cen-

tred on the binding region of all binders, an alternative, better centred

setup was attempted, where equivalent ranking results were observed.

- There seems to be a correlation between a higher ranking and a higher

number of predicted alternative binding geometries. This correlates with

a higher entropy at high values of θ (as captured by JAFS). This study

was based on the number of clusters per fragment at high θ.

9.2 JAFS Pose

Observing the results of the JAFS pose production runs presented in section

7.2, a few remarks can be highlighted:

� The correct binding geometry was found for every fragment in every one of

the three test systems. In at least one of the five repeats run of each JAFS
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pose simulation, one of the clusters (poses) generated was found to be within

2 Å RMSD of the crystallographic binding configuration. This is true for

either of the thresholds (2 Å and 4 Å) used to cluster the configurations that

the fragment at high θ sampled through the simulation.

� While the correct binding geometry was always found in at least one of the

repeats, consistency between repeats was often poor. For the 2 Å clustering

threshold, out of the 13 total number of fragments (binders to any of the sys-

tems), only three fragments were found within 2 Å RMSD of crystal binding

mode in all five repeats. When looking at the results of the 4 Å clustering

threshold, only one of 13 fragments was found within 2 Å RMSD of its crystal

binding mode in all repeats.

� JAFS does not offer a satisfactory method to select the correct binding mode

among all the generated poses. Even in the repeats where the crystal binding

mode is successfully located, a number of other poses are generated as well.

The only information provided by JAFS is that the correct binding geometry

must be located among the generated poses, but no ranking or probability is

provided to facilitate choosing one particular pose over the rest.

� The correct hydration of the cavity is automatically and correctly captured

by JAFS. JAFS was presented with dry and highly hydrated systems, as well

as one in which conserved crystallographic water molecules were essential

to locate the correct binding configuration of the fragments. In all these

aspects, JAFS provided the results expected. The dry cavity was successfully

detected as such, with water molecules rarely present at high θ, while the

other two cavities continuously present water molecules at high θ. Equally,

the conserved crystallographic waters were correctly located in the system

where these were essential for the correct binding configuration of the ligand.

This can be concluded from the correct binding of the ligands, as well as from

direct observation of the clusters of the configurations sampled by the water

molecules at high values of θ.

- The same protocol was applied to all the systems. No previous informa-

tion on the hydration of the cavity or the position of waters mediating

277



interactions between the fragment and the protein was provided during

setup.
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Chapter 10

Conclusion

JAFS was developed as an accurate method to estimate the correct binding

geometry and relative affinity of small fragment molecules to target protein cavities.

It originated from the lack of consistency often found in common docking and

scoring algorithms, and their requirement of previous knowledge of the system in

some specific situations, such as water mediating interactions (see section 3.2).

After the development of the JAFS methods with its two protocols (JAFS

score and JAFS pose) and its study on the test systems during the production

runs, conclusions can be made, as well as an analysis on the success of the original

objectives of JAFS.

JAFS is a method run using molecular mechanics, following the Monte Carlo

sampling algorithm. While the sampling of the free energy landscape follows com-

mon sampling rules, the accuracy in capturing the free energy landscape of the real

system with JAFS is what limits this method.

JAFS aims to improve the sampling ability of traditional molecular mechanics

methods, where the change between different binding configurations of a ligand

in a protein target, or the study of the relative affinity of several binders to the

same target protein, often proves unfeasible within reasonable simulation times. To

obtain this increase in sampling, the JAFS method provides an alternative path in

the exchange between different JAFS particles (fragments or water molecules) at

any position or conformation within a user-defined cubic region. When adding this

alternative path (namely, the possibility for JAFS particles to sample the scaling

of their interaction energy), the original free energy landscape is being modified
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from that strictly representing the real system.

Modifications and fine tuning of the JAFS method have been carried out during

the development stage of the project, to try and obtain the best combination of

optimal sampling and accurate representation of the real states of the system. An

analysis of the accuracy of the representation of the systems with each of the JAFS

protocols, as well as the factors that may lead to the differences from optimal

behaviour observed for each of the protocols, will be presented below.

10.1 JAFS Score

The main factor modulating the correlation between optimal sampling and

accurate representation of experimental systems within the JAFS score protocol

relates to the choice of measure for the affinity score. The score chosen to rank

ligands by affinity in JAFS is calculated as the proportion of simulation snapshots

where each fragment is found with a θ value above a threshold of 0.5. This choice

of score prioritises sampling over accurate representation of binding affinities.

The lack of accuracy associated with our choice of score can be related to the

existence of particles with intermediate values of θ. These do not represent any

real state of the system (experimentally particles will either be in the cavity or not;

there is no experimental intermediate state).

Experimentally, the affinity can be measured as the proportion of bound ligand

to the protein with respect to the total protein and ligand available. The equiva-

lent to the equilibrium state through huge numbers of molecules taking part in a

experimental measure is obtained by a time average of the behaviour of the sin-

gle system in a computational simulation. Hence computationally, given enough

sampling, the affinity could be measured as the proportion of simulation time the

ligand spends bound to the protein with respect to the time unbound. While in a

standard molecular mechanics simulation, the binding and unbinding events can-

not be expected to happen, if no extra bias is being applied, within any reasonable

simulation time, a JAFS kind of setup could provide this information. In this case,

the bound ligand would be the ligand at θ = 1 (“on” or “present” in the cavity),

and the ligand unbound that at θ = 0.

As can be understood, when sampling the θ variable as a continuum, with Monte

Carlo (and the same would apply to Molecular Dynamics), virtually no snapshot of

280



the simulation can be expected to capture any ligand at the exact value of θ = 1.

Some threshold needs to be applied, where an example of a strict threshold would

be considering bound ligands those with θ > 0.99 ≈ 1. Just as no ligands can be

expected at the exact value of θ = 1, the bigger the range of θ values accepted

as bound ligands (the lower the threshold), the larger the number of samples are

expected to fall within that range. For very small ranges (strict thresholds), for

which only small number of snapshots (i.e. fewer than ten) record bound ligands,

it is trivial to understand that the number of samples (ligands above threshold)

may not be enough to consider the binding estimates significant (i.e. one of the

ligands may have reached θ > 0.999 by chance at some point in the simulation,

while other ligand consistently remained at high values of θ, but these, by chance,

did not overcome such a strict threshold). While the idea of very strict thresholds

may be extreme, it serves to illustrate that, the higher the threshold, the lower the

sampling expected.

However, when lowering the threshold to improve sampling, we are including,

within our definition of bound ligands, particles at intermediate values of θ, which

are not representative of any state of the experimental system. We are basing

our estimation of binding affinity on the affinity experienced by non-realistic states

of the ligands, which may or may not correspond to that experienced by a fully

interacting ligand. The lower the threshold, the bigger the approximation of what

we understand as a bound ligand.

The affinity could be calculated in a more accurate manner by following equa-

tion 3.39 in section 3.8.1.200 As expressed previously, the choice of our affinity

estimate is based on sampling boosts. To obtain good enough sampling with equa-

tion 3.39 for the binding of water molecules, Bodnarchuk et al. applied sets of

biases, requiring several repeats of the same calculations to adjust the bias to the

affinity of water to the binding site of interest.201,250 Coming up with a bias which

would provide enough sampling with a strict threshold for all fragments simulated

together could be problematic and would hinder the black-box approach of JAFS,

as well as considerably increasing the simulation time required.
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10.2 JAFS Pose

Some of the traits specific to the JAFS pose simulations hold the key to the

balance between an accurate representation of the real system and the desired boost

in sampling when compared to traditional molecular mechanics methods.

10.2.1 Intermediate θ Values

The first of these aspects has been mentioned previously when studying the

different hydration penalties in section 6.3.1. The presence of JAFS particles (both

fragments and waters) at intermediate values of θ can be understood as the main

addition of JAFS over GCMC (see section 4.2 and 3.5.4). It allows for the inclusion

of molecules bigger than water molecules (fragments) to be included in the set

of molecules which can “appear” and “vanish” from the system. As explained

previously, it is the possibility of taking small steps in the scaling of the interaction

energy, rather than presenting a exclusive “on-off switch” behaviour, that provides

JAFS with the increased acceptance ratio of moves required for the case of bigger

molecules. While key to giving fragments the “vanishing” behaviour, the possibility

of taking these small steps in scaling interaction energies implies that, necessarily,

particles with intermediate values of this scaling parameter (θ) will be present

at some points in the simulation. In fact, being strict, it makes it unlikely for

particles to be fully “on” (θ = 1) or fully “off” (θ = 0), while most of them will

be somewhere in between. While it is true that the presence of these intermediate

states is required for the functioning of JAFS, the abundance and distribution of

these states can be modulated. The closer each particle is to the extreme values

of θ (0 and 1), the more accurately JAFS is depicting possible states of the real

system, where particles may be present or absent from the binding region, but will

never be “partially there”.

The dominant values of θ can be modulated by altering the free energy land-

scape, changing the location of the minima the system mostly samples. Altering the

free energy landscape at either of the extreme values of θ would modify the affinity

of the system for that type of JAFS particle, hence driving us further away from

a realistic representation. However, intermediate values of θ do not represent any

realistic state of the system. Decreasing their presence, while leaving unchanged
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the free energy at the end states should make our system more accurately repre-

sent reality. To apply this modification of the energy landscape, the shape of the

hydration penalty is modified, while the same values are kept at extreme λ (see

section 6.3.1).

We may look at how the presence of particles at intermediate values of θ can

influence finding the correct binding geometry in more chemical (rather than phys-

ical) terms. Particles at intermediate values of θ, have their interaction energy

scaled down, but are still noticeable. In JAFS pose, it is to be expected that one of

the copies of the fragments may be at high values of θ while some other particles

may present intermediate values of θ. Interactions between the fragment at high θ

and the particle at intermediate θ may stabilize the configuration of the fragment in

a geometry in which would not be otherwise likely to remain. In turn, the particle

at intermediate θ may be occupying a configuration which would not be available

to it while presenting a high value of θ. In this scenario, a non realistic binding

configuration may have been stabilized for a fragment at high values of θ, which

will later be clustered to generate a predicted binding pose.

10.2.2 Several Copies of Fragments

While not intrinsic to the design of JAFS but a choice in our JAFS pose proto-

col, the presence of several copies of fragments in the simulation is another factor

that triggers the balance between sampling and accurate representation of reality.

There are two reasons, related to sampling, to include several copies of the

fragment molecule in a JAFS pose simulation. First is the boost of sampling. When

a move — in Cartesian or θ space — is going to be applied to solute molecules

(JAFS particles in our simulations), one of these particles is chosen at random.

With several copies of fragment present, it is more likely that the particle chosen

is a copy of it. This, in turn, should increase the probability that a copy of the

fragment appears at one given time at high values of θ, in any given region of the

JAFS box. These configurations at high θ will then be clustered. In principle, the

more simulation snapshots capturing a fragment configuration at high θ, the better

the sampling of the JAFS box available to the clustering method. It must be noted

that this sampling issue is related to the ProtoMS implementation of sampling and

molecule types, where a different sampling rate is not applicable to two different
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species of the same molecule type (i.e. waters and fragments both defined as solutes

with θ sampling — JAFS particles).

While this is the most obvious, there is a second reason for several copies of

fragments to be beneficial to sampling. It is related to the need to overfill the cavity.

For the boost in sampling provided by the JAFS methodology to take place, JAFS

particles must be at low values of θ at some time during the simulation. With their

interactions scaled down, they can freely sample the whole Cartesian space of the

JAFS box, hopefully finding a region of favourable interactions where the moves to

increase their θ value are favourable, reaching a possible binding configuration. It

can be found that, by including the optimal number of water molecules and only

one copy of fragment in the cavity, JAFS particles tend to stay at high values of

θ, hence decreasing the sampling potential of JAFS. Our measure of how overfilled

the cavity must be is based on grid calculations which are further explained in

section 4.4.1. While, in principle, the same level of overfilling could be achieved by

including a large number of water molecules as JAFS particles, rather than several

copies of fragment, the huge number of water molecules required would be difficult

to handle by our simulation software. For this and the previously described reason,

introducing several copies of fragments was considered optimal.

However, this decisions has drawbacks in terms of how well the system repre-

sents reality. Including several copies of the fragment molecule, nothing prevents

several fragment copies from presenting high values of θ at the same time. And it

is important to remember that JAFS particles do interact with one another (this

is the reason why water mediated interactions can be found). Hence it is perfectly

possible to imagine (as observed in the plots in figure 7.18) that several copies of

the fragment present high values of θ, filling different regions of the cavity, and

potentially stabilizing sub-optimal binding configurations as well as destabilizing

those which may be optimal in the absence of other fragment copies. While it is

perfectly possible for several copies of the fragment to bind at once in the bind-

ing cavity of the real system, the difference in concentration between waters and

fragment molecules makes it very unlikely for most systems.

While not a simple implementation within the simulation software, the possi-

bility of generating JAFS simulations where different fragment molecules can see

the rest of the waters within the JAFS box, but not other fragments is one of the
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possible alternatives to this method.

10.3 Final Remarks

The JAFS protocol provides a way of estimating binding geometries and rel-

ative affinities of small molecules to protein cavities. On the trade off between

computational expense and theoretical reliability, JAFS provides a more theoreti-

cally sound perspective than that of docking and scoring. In terms of calculating

relative affinities, JAFS score falls on the less computationally expensive as well as

less theoretically sound end of the spectrum than that of dual topology calculations.

The use of JAFS is particularly recommended on systems with challenges appro-

priate for JAFS, such as systems with a lack of previous knowledge of the binding

configuration of the ligand, as well as systems where the solvation structure within

the binding cavity may be unknown, variable with time and / or with bound ligand.

The choice of JAFS as the optimal method for calculating binding affinities and

geometries will depend on the system and particular interests of the project.

The JAFS score protocol has proven successful in ranking fragments by affinity

for the simpler systems, but the success has decreased as complexity of the system

increases. The reasons of failure for the more complex system attempted have

not been fully understood. Application of JAFS score to further systems, those

with a complexity similar to that of the later system (CDK2) in this project would

probably be an interesting prospect in any further developments of this method.

The JAFS pose protocol automatically detected hydration patterns and bridg-

ing waters without any previous knowledge. It has proved sufficiently theoretically

sound to locate the correct binding geometry among all those generated for every

ligand in every systems attempted.

While all correct binding configurations have been found through our repeats of

the JAFS pose simulations, consistency has been an issue. Furthermore, no method

is provided to detect the optimal pose among all generated. The development of

such a method is likely to be required for the JAFS methodology to gain broad

applicability.

Just as it is commonly the case in computational methods, a trade off is present

in this field of finding binding affinities and geometries between computational

expense and accuracy of results. The interest of each method would depend on the
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resources available and accuracy required, as well as previous knowledge available.

Possible lines for further development have been described in section 8 regarding

the ranking of the binding configurations generated with JAFS pose. Alternative

possibilities which might increase the sampling achieved (and hence consistency

between repeats) for JAFS pose have been briefly mentioned above (section 10.2).

A further investigation on the reasons of failure of JAFS score on CDK2 would

be desirable, where its application to other pharmaceutically relevant systems may

shed some light. Furthermore, the application of JAFS score to systems such

as HSP90, where water mediated interactions are involved in binding has been

avoided since further decisions on implementation would be required regarding

the desired treatment of the bridging waters. However, these calculations would be

relevant and particularly useful in the context of JAFS, hence further developments

on its implementation would be of interest. Equally, certain limitations of the

implementation in ProtoMS which have been addressed by the specifics of the JAFS

set-up (e.g. including a number of copies of the fragment in JAFS pose simulations)

may want to be addressed from the software development perspective (e.g. allowing

the possibility of choosing different sampling ratios for different particle species of

the same molecule type). These software changes may allow for an equivalent level

of sampling to that currently obtained, with a more accurate representation of the

experimental system (by including only one copy of the fragment in the cavity). In

general, while the development of the JAFS method has been undertaken during

this thesis, further modifications to the presented methodology may improve its

usability in the context of FBDD.
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Chapter 11

Appendix

11.1 Minimization in Sander

The minimization of ligand structure was accomplished with following the script

lines shown below.

Bash script lines

header=$(sed -n ’1p’ $1.pdb)

#Generation of required amber parameter files

cat << EOF > leap.in

source leaprc.gaff

loadamberprep $1.prepi

loadamberparams $1.frcmod

x=loadpdb $1.pdb

saveamberparm x prmtop prmcrd

quit

EOF

tleap -f leap.in > leap.out

#Specification of minimization parameters

cat << EOF > min.in

&cntrl

irest=0,ntx=1,

imin=1,maxcyc=100,drms=0.0001,ntmin=2,
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ntc=1,ntf=1,

cut=20.0,

ntpr=100,ntwx=0,ntwv=0,ntwe=0,

ipol=0,igb=0,ntb=0,

&end

EOF

#Running ligand minimization

sander -O -i min.in -o min.out -p prmtop -c prmcrd -r mincrd

cat << EOF > ptraj.in

trajin mincrd

trajout mincrd.pdb pdb

EOF

#Getting pdb from the minimization output

ptraj prmtop ptraj.in >& ptraj.out

echo $header > $1.pdb

sed ‘‘/REMARK/d’’ mincrd.pdb.1 >> $1.pdb

11.2 Docking Setup

A summary of the most relevant features of the docking runs performed by

Astex Pharmaceuticals can be found in section 7.4. Some further specific set-up

information is shown below:

� Early termination is “off”: The docking runs are performed until specified

by the rest of set-up options. No early termination is applied when the same

solution (pose) is found repeatedly throughout a docking run.

� Diverse solutions is “on”, with a cluster size of 3 and RMSD of 1.5 Å: During

one docking run, once the number of poses specified in cluster size (3) are

included within a cluster, delimited by the RMSD (1.5 Å), no new solutions

within that cluster will be accepted.

� All “population” parameters are kept as default. These apply to the genetic

algorithm. Since an optimal choice for these parameters is highly correlated,
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choosing one of the default sets is one of the recommended options in the

GOLD configuration file user manual.251

� In a similar fashion as above, the “genetic operators” are left as default.

� Fitting points were generated for all solvent accessible donor and acceptor

atoms, including fitting points that were not solvent accessible themselves.

This is particularly relevant for kinases such as (CDK2).251 The fitting points

define the locations where the ligand may be placed during docking and are

placed based on the interactions that the acceptor atoms may stablish.

� Torsion angles distributions extracted from the Cambridge Structural Data

Base are used to limit the ligand conformational space sampled by the genetic

algorithm

� The size of the binding site is determined to be a sphere of 10 Å of radius.

� The number of ligand binding geometries generated is set to 15.

The descriptions have been taken from definitions parameters described in the

GOLD configuration file user manual.251

11.3 Theta Sampling for All Ligands

The θ sampling during the last 5 million moves of the first repeat of JAFS pose

simulation for all ligands not included in section 7.2.4 are included below in plots

11.1 and 11.2. The conclusions from these plots are equivalent to those seen in the

aforementioned section.

11.4 Fragment 2D representations

The 2D representations of the fragments used throughout this project can be

found in table 11.1.
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2dl ata atb atc

atd ate atf wcc

vta vth vtm cd1

cd5 cd6 cd8 cd9

bnz 1mp dcb nbb

wa1 ipz prz

Table 11.1: 2D representation of all fragments simulated in the JAFS production
phase of this project.
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(a) (b)

Figure 11.1: Evolution of the θ values of JAFS fragments with respect to snapshot
at the end of the simulation (last 50 snapshots) of the first repeat of JAFS pose
runs for fragments vtm (a), wcc (b), all binders to the target protein CDK2.
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(a) (b)

(c) (d)

(e)

Figure 11.2: Evolution of the θ values of JAFS fragments with respect to snapshot
at the end of the simulation (last 50 snapshots) of the first repeat of JAFS pose
runs for fragments atc (a), atd (b), ate (c), atf (d) and 2dl (e), binders to the target
protein HSP90.
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