Derivation and solution of effective-medium equations for bulk heterojunction organic solar cells

G. RICHARDSON1, C. PLEASE2 and V. STYLES3

1 School of Mathematics, University of Southampton, Southampton SO17 1BJ, UK
2 Mathematical Institute, University of Oxford, 24–29 St Giles, Oxford OX1 3LB, UK
3 Department of Mathematics, University of Sussex, Brighton, BN1 9QH
email v.styles@sussex.ac.uk

(Received 6 December 2016)

A drift-diffusion model for charge transport in an organic bulk-heterojunction solar cell, formed by conjoined acceptor and donor materials sandwiched between two electrodes, is formulated. The model accounts for (i) bulk photogeneration of excitons, (ii) exciton drift and recombination, (iii) exciton dissociation (into polarons) on the acceptor-donor interface, (iv) polaron recombination, (v) polaron dissociation into a free electron (in the acceptor) and a hole (in the donor), (vi) electron/hole transport and (vii) electron-hole recombination on the acceptor-donor interface. A finite element method is employed to solve the model in a cell with a highly convoluted acceptor/donor interface. The solutions show that, with physically realistic parameters, and in the power generating regime, the solution varies little on the scale of the microstructure. This motivates us to homogenise over the microstructure; a process that yields a far simpler one-dimensional effective medium model on the cell scale. The comparison between the solution of the full model and the effective medium (homogenised) model is very favourable for the applied voltages that are less than the built-in voltage (the power generating regime) but breaks down as the applied voltages increases above it. Furthermore, it is noted that the homogenisation technique provides a systematic way to relate effective medium modelling of bulk heterojunctions \cite{19, 25, 36, 37, 42, 59} to a more fundamental approach that explicitly models the full microstructure \cite{8, 38, 39, 58} and that it allows the parameters in the effective medium model to be derived in terms of the geometry of the microstructure. Finally, the effective medium model is used to investigate the effects of modifying the microstructure geometry, of a device with an interdigitated acceptor/donor interface, on its current-voltage curve.

Key Words: Shockley model, drift diffusion, asymptotic analysis, photovoltaic, homogenisation.

\section{Introduction}

Organic photovoltaics (OPVs) are a relatively new technology \cite{24} that offers the prospect of cheap mass produced solar cells manufactured by printing techniques such as roll to
roll processing [28]. The energy efficiency of these devices has increased rapidly within the past ten years [13] and they are rapidly approaching the point at which they will be able to compete in the commercial market with standard inorganic devices; currently they have maximum power conversion efficiencies in excess of 13% [13].

Photovoltaics are typically formed from two (or possibly more) semiconducting materials with different electrical properties that give the device the characteristics of a diode. Thus positive charge carriers (holes) move readily across the device in one direction, but not in the other, while negative charge carriers (free electrons) move easily in the opposite direction, but not in the same direction as the holes. The device functions by absorbing light to create charge pairs (in the form of free electrons and holes) which then separate because the two types of charge carrier move preferentially in different directions. This gives rise to a flux of positive charges onto one electrode and of negative charges onto the other electrode that may be used to drive a current around a circuit.

Here we outline the important physical processes involved in the operation of OPVs (noting that a detailed review of the physics of can be found in [12, 20]). Charge pair generation typically occurs in a three step process. Firstly a photon (with an appropriate energy) is absorbed within one of semiconductors to create a tightly bound excited charge complex (exciton). This migrates within the material, by a diffusive process, and may either recombine losing its energy to the device (releasing it as heat or light) or reach the interface between the two semiconductors. If it reaches this interface it forms a geminate pair which, because of the differences in ionisation potential and electron affinity between the two materials, is much less tightly bound than the exciton and so can separate into a free electron in the acceptor and a free hole in the donor. However geminate pair recombination is thought to be a significant loss mechanism in organic devices [16, 26]. Once the charges have been separated they can either recombine on the interface (non-geminate pair recombination) or migrate to the contacts where their charge can be harvested to give useful electrical energy. Notably non-geminate recombination is fairly insignificant at short-circuit ($V = 0, J = J_{sc}$) but becomes much more significant towards open circuit ($V = V_{oc}, J = 0$) [16] in the regime that a solar-cell typically operates.

A significant problem that arises in the design of organic devices is that the diffusion lengthscale of an exciton (i.e. the typical distance an exciton diffuses before it recombines and loses its energy) is much shorter, at around 10nm [24], than the thickness of semiconductor required to absorb a significant fraction of the incident light, this is about 200nm [24]. Consequently bilayer devices (see Figure 1a), formed from planar slabs of acceptor and donor materials separated by a planar interface, are always very inefficient [47] because if they are thick enough to absorb most of the incident light energy a large majority of the excitons created will be too far from the interface to stand much chance of diffusing to the interface before they recombine. Conversely a device that is sufficiently thin to allow most of the captured excitons to diffuse to its interface is only capable of absorbing a small fraction of the incident light.

In order to circumvent this difficulty it is customary to make OPVs in the form of bulk heterojunctions (see Figure 1(b)-(c)). These devices are sufficiently thick to absorb most of the incident sunlight (>200nm) but which possesses a highly convoluted acceptor/donor interface with the property that most regions of the device are within an exciton diffusion...
length of the interface (∼10nm). Such convoluted interface geometries ensure that most of the excitons generated reach the interface and separate into electron hole pairs rather than recombining. Three-dimensional images of bulk heterojunctions, based on scanning electron microscopy and simulations of the annealing process used to form the devices, are shown in [46]. Bulk heterojunctions can either be grown, for example, by spin-coating and phase separation of the acceptor and donor in a drying solution (with subsequent annealing to control domain size) [41] or by controlled organic vapour phase deposition [60]. The former process leads to a uniform mixed thin film in which acceptor and donor regions are intermingled (see Figure 1(b)) while the latter can be used to produce a graded thin film in which a mixed layer separates donor and acceptor layers (see Figure 1(c)). A notable advantage of manufacturing a device with capping layers of pure donor and pure acceptor (as illustrated in Figure 1(c)) are that these can block the transport of holes to the upper (electron extracting) electrode and conduction electrons to the lower (hole extracting) electrode. Without capping layers the direction of charge transport in the heterojunction is typically controlled by using electrodes with different work functions [24].

Many theoretical studies of such bulk heterojunction devices have applied drift-diffusion charge transport models to realistic device geometries focussing on the role of the convoluted interface morphology in determining the electrical behaviour and efficiency of the device [8, 35, 38, 39, 58]. Other studies have used effective-medium type models in order to obtain a picture of the average electrical behaviour of solar cell on the device lengthscale (∼200nm) while smearing out the effects of the convoluted interface (∼10nm) [19, 25, 36, 37, 42, 59]. From a numerical viewpoint it is far easier to solve the one-dimensional partial differential equations (PDEs) that result from pursuing the effective-medium approach than the 2- or 3-dimensional, highly heterogeneous, PDE model that is a consequence of pursuing the more fundamental approach adopted in [8, 35, 38, 39, 58]. Indeed, Kodali et al. [35] note that solving over a bulk heterojunction geometry with physically realistic parameters requires the use of an extremely fine grid and parallelized computational methods. However the effective medium approaches employed in [19, 25, 36, 37, 42, 59] are ad-hoc and so unable to relate the coefficients in their equations to the geometry of the microstructure, or systematically account for the capping layers of unadulterated donor (or acceptor) material (seen for example in the devices manufactured by [46, 60]).
It remains an open question when, and whether, an effective-medium approach is capable of genuinely approximating the full description of the device applied on a real morphology. It is the aim of this work to address this question. We start with a drift diffusion model that was formulated in [21, 49], to describe a bilayer organic solar cell, and validated against real data.\(^1\) We apply this model to a convoluted 2-dimensional device geometry and solve it numerically. We then compare the numerical solutions, for the 2-dimensional device geometry, to the results of a 1-dimensional effective-medium model that is systematically derived from the full model by use of homogenisation techniques. The results show that, providing the effective Debye length of the material, is large compared to the fine scale morphological structure of the device there is good agreement between solution to the full model and the effective-medium model. In sufficiently strong forward bias he applied voltage exceeds the built in voltage and there is a build up in electron and hole density because electrons are driven away from the acceptor contact and holes away from the donor contact. This increase in electron and hole density causes a corresponding decrease in the effective Debye length until eventually it is reduced to the scale of the fine structure and the effective-medium approach breaks down. In this limit we suggest an alternative approach to approximating the full model. We finish by using the effective-medium model that we have derived to calculate profiles of charge carrier densities and the electric potential across the device and to calculate typical current voltage curves.

Before proceeding with the formulation of drift-diffusion model we note that there is also a considerable body of literature that investigates charge transport (and generation) in OPVs with Monte-Carlo simulations (see for example [26, 27, 32, 44, 45]). These simulations are particularly useful for examining the details of phenomena occurring on the molecular scale, such as carrier trapping by heterogeneities in the HOMO\(^2\) and LUMO\(^3\) levels and geminate pair recombination.

2 Model formulation

2.1 Governing equations

We begin by writing down the dimensional equations that model charge transport within the cell and denote dimensional all variables by a * superscript.

Electron and hole transport in the semiconductors. Consider a simple drift diffusion model for the motion of holes and electrons in an organic semiconducting device. This takes the usual form for such devices (see, for example, [8, 17, 18]) with the notable simplifications that there is no doping and that hole density in the acceptor and electron density in the donor are negligible; a result of the large differences in electron affinity and ionisation potential between the acceptor and donor materials.

\(^1\) This model is similar to previous drift diffusion models for organic diode [17, 18].

\(^2\) Highest occupied molecular orbital: the anologue of the valence band edge in an inorganic semiconductor.

\(^3\) Lowest unoccupied molecular orbital: the anologue of the conduction band edge in an inorganic semiconductor.
More details are provided in [21, 49]. The model consists of conservation equations for the free electron number density \(n^* \) and the hole number density \(p^* \)

\[
\begin{align*}
n^* &= 0 \quad \text{and} \quad \frac{\partial p^*}{\partial t^*} + \nabla^* \cdot \mathbf{j}_p^* = 0 \quad \text{for} \quad (x^*, y^*) \in \Omega_d, \\
p^* &= 0 \quad \text{and} \quad \frac{\partial n^*}{\partial t^*} - \nabla^* \cdot \mathbf{j}_n^* = 0 \quad \text{for} \quad (x^*, y^*) \in \Omega_a,
\end{align*}
\]

in which \(\mathbf{j}_p^* \) is the hole current density, \(\mathbf{j}_n^* \) is the electron current density and the domains \(\Omega_d \) and \(\Omega_a \) are those occupied by the donor and acceptor materials, respectively, as illustrated (for example) in Figure 3.

The motion of both the holes and electrons are assumed to be governed by the standard drift-diffusion model so that the electron and hole current densities are given by

\[
\begin{align*}
\mathbf{j}_p^* &= -qD_p \left(\nabla^* p^* + \frac{q}{kT} p^* \nabla^* \phi^* \right), \\
\mathbf{j}_n^* &= qD_n \left(\nabla^* n^* - \frac{q}{kT} n^* \nabla^* \phi^* \right).
\end{align*}
\]

Here \(\phi^* \) is the electric potential, \(k \) is Boltzmann’s constant, \(T \) is absolute temperature, and \(D_p \) and \(D_n \) are the hole and electron diffusion coefficients, respectively.

The electric potential \(\phi^* \) is governed by Poisson’s equation, which, on allowing for the difference in permittivity between the two materials, gives

\[
\begin{align*}
\nabla^* \cdot (\epsilon_d \nabla^* \phi^*) &= -qp^* \quad \text{for} \quad (x^*, y^*) \in \Omega_d, \\
\nabla^* \cdot (\epsilon_a \nabla^* \phi^*) &= qn^* \quad \text{for} \quad (x^*, y^*) \in \Omega_a,
\end{align*}
\]

where \(\epsilon_d \) and \(\epsilon_a \) are the permittivities of the donor and acceptor respectively.

Boundary conditions at the contacts.

There are two cases to be considered. In the first of these (illustrated in Figure 1(c)) blocking layers stop contact between the acceptor and the lower (hole extracting) electrode and between the donor and the upper (electron extracting) electrode; appropriate Ohmic boundary conditions therefore consist of imposing the electric potential \(\phi^* \) and electron concentration \(n^* \) on the upper electrode \((y^* = L) \), whilst imposing \(\phi^* \) and the hole concentration \(p^* \) on the lower electrode \((y^* = -L) \) such that

\[
\begin{align*}
\phi^*|_{y^* = -L} &= \frac{V - V_{bi}}{2}, \\
\phi^*|_{y^* = L} &= -\frac{V - V_{bi}}{2}, \\
p^*|_{y^* = -L} &= p_-, \\
n^*|_{y^* = L} &= n_+.
\end{align*}
\]

Here \(V_{bi} \), the built-in voltage across the device at equilibrium, arising from the difference in the Fermi-levels of the two semiconductors (in isolation), while \(V \) is the applied voltage across the device, and \(p_- \) and \(n_+ \) are known constants that depend upon the properties of the contacts, see (2.20) and the discussion preceding it, for further details. In scenarios in which the acceptor contacts the hole extracting lower electrode and the donor contacts the electron extracting upper electrode (as illustrated in Figure 1(b)) the Ohmic boundary conditions on the carrier concentrations (2.7) are replaced by

\[
\begin{align*}
p^*|_{(y^* = -L) \cap \Omega_d} &= p_-, \\
n^*|_{(y^* = -L) \cap \Omega_a} &= n_-, \\
p^*|_{(y^* = L) \cap \Omega_d} &= p_+, \\
n^*|_{(y^* = L) \cap \Omega_a} &= n_.
\end{align*}
\]
It will be shown that (2.9) do not provide a particularly good description of the behaviour of devices with the structure shown in Figure 1(b) and corrections to these conditions will be considered in §6.

Exciton generation and recombination in the semiconducting materials.

Excitons are generated on absorption of photons in both donor and acceptor materials although the rate of photon absorption (and thus also exciton generation) is typically considerably larger in the polymeric donor material than in the acceptor, see for example [36, 53]. Thus if \(A_a \) and \(A_d \) are the fraction of photons absorbed in the acceptor and donor per unit depth of material, and \(Q^* \) is the photon flux, then the rate of exciton generation per unit volume is \(A_a Q^* \) in the acceptor and \(A_d Q^* \) in the donor. In order to calculate the photon flux as a function of position across the cell we average the rate of absorption across the cell from the acceptor and donor. Assuming that these have volume fractions (as a function of depth \(y^* \)) of \(F(y^*) \) and \(1 - F(y^*) \) and that the angle of the incident radiation to the cell surface normal is \(\theta \) (depicted in Figure 1(a)) then the rate of photon absorption per unit width of the cell is \((A_a F(y^*) + A_d (1 - F(y^*)))/\cos \theta \). Furthermore if the incident radiation intensity is \(Q_0 \) then the photon flux striking the surface of cell \(y = -L \) is \(Q_0 \cos \theta \). It follows that \(Q^* \) satisfies the following initial value problem in \(y^* \):

\[
\frac{\partial Q^*}{\partial y^*} = -\frac{(A_a F(y^*) + A_d (1 - F(y^*)))}{\cos \theta} Q^*, \quad Q^*|_{y^*=-L} = Q_0^* \cos \theta. \tag{2.10}
\]

We note that a more comprehensive treatment of light absorption and exciton generation would also account for frequency dependent variations in the absorption spectrum.

Excitons are mobile and diffuse in the device until they either recombine (losing their energy as they do so) or meet the acceptor/donor interface on which they are absorbed and separated into a coulombically bound charge pair on either side of the interface (a geminate pair). Assuming recombination rates of \(\alpha_a \) and \(\alpha_d \), in the acceptor and donor regions respectively, and using similar notation for the exciton diffusion coefficients \(D_a \) and \(D_d \), leads to conservation laws for the exciton number densities \(c_a^* \) and \(c_d^* \) in the acceptor and donor regions, respectively

\[
\frac{\partial c_a^*}{\partial t^*} = D_a \nabla^{*^2} c_a^* + \frac{A_a}{\cos \theta} Q^*(y^*) - \alpha_a c_a^* \quad \text{in} \quad \Omega_a, \tag{2.11}
\]
\[
\frac{\partial c_d^*}{\partial t^*} = D_d \nabla^{*^2} c_d^* + \frac{A_d}{\cos \theta} Q^*(y^*) - \alpha_d c_d^* \quad \text{in} \quad \Omega_d, \tag{2.12}
\]

respectively. Furthermore we assume that there is no flux of excitons from the contacts, so that

\[
\frac{\partial c_a^*}{\partial y^*}|_{y^*=-L} = 0 \quad \text{and} \quad \frac{\partial c_d^*}{\partial y^*}|_{y^*=L} = 0, \tag{2.13}
\]

and that any exciton that reaches the acceptor/donor interface \(\partial \Omega_i \) is immediately absorbed (forming an electrostatically bound geminate charge pair) so that

\[
c_a^*|_{\partial \Omega_i} = 0, \quad c_d^*|_{\partial \Omega_i} = 0. \tag{2.14}
\]

These are frequently formed from a C_{60} compound.
Here we denote the sections of the boundaries to \(\Omega_a \) and \(\Omega_d \) that are common to both (i.e. the acceptor/donor interface) by \(\partial \Omega_i \).

One of the keys to understanding the efficiency of the device is the fate of the geminate charge pairs. These may either recombine (geminate recombination), resulting in the loss of their energy, or separate into a free electron in the acceptor and a free hole in the donor which can be subsequently harvested at the contacts. The theoretical treatment of this process is beyond the scope of this work but we note that there have been a number of works that simulate it via monte-carlo methods, for example [26, 27, 44, 57]. The results of these treatments can be summarised by a single parameter \(\gamma_{\text{eff}} \) which gives the fraction of excitons absorbed onto the interface that eventually dissociate into a free electron (in the acceptor) and hole (in the donor). The fate of the remaining fraction \(1 - \gamma_{\text{eff}} \) is geminate recombination on the boundary. Furthermore the simulations conducted by [44] suggest that \(\gamma_{\text{eff}} \) is field dependent (larger in reverse bias than forward bias) but that at room temperature this is not a large effect.

Jump conditions on the donor/acceptor interface \(\partial \Omega_i \).

There is assumed to be no significant surface charge on the interface \(\partial \Omega_i \), implying continuity of both electric potential and the normal component of the electric displacement on \(\partial \Omega_i \),

\[
[\phi^*]_{\partial \Omega_i} = 0, \quad [\epsilon \mathbf{N} \cdot \nabla \phi^*]_{\partial \Omega_i} = 0. \tag{2.15}
\]

Here \(\mathbf{N} \) is the unit normal to the interface (pointing from the donor into the acceptor).

Charge conservation at the interface implies continuity of current across \(\partial \Omega_i \), that is

\[
j^*_n \cdot \mathbf{N} |_{\partial \Omega_i} = j^*_p \cdot \mathbf{N} |_{\partial \Omega_i}. \tag{2.16}
\]

In addition we need to account for interfacial conservation of electrons and holes. These are created in pairs by the dissociation of excitons (resulting in equal fluxes \(j^*_\text{phot} / q \) of electrons into the acceptor and holes into the donor) and destroyed (in pairs) by non-geminate recombination (resulting in equal fluxes \(R^* (n^*, p^*) \) of electrons onto the interface from the acceptor and holes onto the interface from the donor). These arguments leads to the interfacial conservation laws

\[
j^*_n \cdot \mathbf{N} |_{\partial \Omega_i} = j^*_p \cdot \mathbf{N} |_{\partial \Omega_i} = qR (n^* |_{\partial \Omega_i}, p^* |_{\partial \Omega_i}) - j^*_\text{phot}. \tag{2.17}
\]

As noted above generation at the interface occurs as a result of incident excitons forming interfacially bound geminate pairs of which only a fraction \(\gamma_{\text{eff}} \) dissociate into an electron a hole, with the remaining fraction \(1 - \gamma_{\text{eff}} \) undergoing geminate recombination (and losing their energy to heat or light). On accounting for the fluxes of excitons onto the interface the generated flux \(j^*_\text{phot} / q \) of electrons and holes away from the interface is given by

\[
j^*_\text{phot} = q \gamma_{\text{eff}} \left(D_a \left. \frac{\partial c^*_a}{\partial N^*} \right|_{\partial \Omega_i} - D_d \left. \frac{\partial c^*_d}{\partial N^*} \right|_{\partial \Omega_i} \right). \tag{2.18}
\]

Here we consider only a constant rates of geminate recombination but this could easily be modified to cover field dependent rates of dissociation (as described in [5]) by making \(\gamma_{\text{eff}} \) a function of the electric field on the boundary.
The (non-geminate) recombination rate and its relation to thermodynamically consistent Ohmic boundary conditions.

We now examine the model and ensure that the parameters are consistent with the idea that when the device is in equilibrium detailed balance reinforces no current flow. Typically recombination rates are modelled by an algebraic expression that depends on local electron and hole concentrations (such as the Shockley Read Hall rate, see e.g. [42]) that accounts for flow of charge carriers into intermediate trapped states. Here we write the interfacial recombination in the generic form

$$R(n^*|_{\partial\Omega_i}, p^*|_{\partial\Omega_i}) = (n^*|_{\partial\Omega_i}, p^*|_{\partial\Omega_i} - N_i^2)\Theta(n^*|_{\partial\Omega_i}, p^*|_{\partial\Omega_i})$$

(2.19)

noting that, at thermal equilibrium, the term $n^*|_{\partial\Omega_i}, p^*|_{\partial\Omega_i} - N_i^2$ ensures a balance between thermal generation and recombination of the form $n^*|_{\partial\Omega_i}, p^*|_{\partial\Omega_i} = N_i^2$. It is modulated by the function $\Theta(n^*|_{\partial\Omega_i}, p^*|_{\partial\Omega_i})$ which accounts for the particular mechanisms involved in recombination [33]. In all the simulations we present we consider a Langevin recombination along $\partial\Omega_i$ (as is standard in the literature e.g. [8, 36]) of the form $R(n^*|_{\partial\Omega_i}, p^*|_{\partial\Omega_i}) = n^*|_{\partial\Omega_i}, p^*|_{\partial\Omega_i}\Theta(n^*|_{\partial\Omega_i}, p^*|_{\partial\Omega_i})$ in which we neglect the thermal generation term N_i^2 because it is, in physically realistic regimes, vanishingly small.

In order for the device to have an equilibrium that satisfies detailed balance there must be a solution $(n_{eqm}^*(x), p_{eqm}^*(x), \phi_{eqm}(x^*))$ to the model at zero applied potential $V = 0$ and zero generation $j_{phot}^* \equiv 0$ for which the electric currents are identically zero everywhere $j_i^* \equiv 0$ and $j_p^* \equiv 0$. In particular this requires that $R(n_{eqm}^*, p_{eqm}^*) \equiv 0$ along the entire interface $\partial\Omega_i$. Such an equilibrium solution takes the form

$$n_{eqm}^* = n^*_+ \exp \left(\frac{q}{kT} \left(\phi^* - \frac{V_{bi}}{2} \right) \right) \text{ in } \Omega_i, \; p_{eqm}^* = p_- \exp \left(-\frac{q}{kT} \left(\phi^* + \frac{V_{bi}}{2} \right) \right) \text{ in } \Omega_d.$$

If the recombination $R(n^*, p^*)$ along the interface is to be zero it is necessary that $np|_{\partial\Omega_i} = N_i^2$. Substitution of the above formulae for n_{eqm}^* and p_{eqm}^* into this yields the following relations between the parameters in the Ohmic boundary conditions (2.8) and (2.9) and the quantities N_i and V_{bi}:

$$n_- = N_i^* \exp \left(\frac{qV_{bi}}{2kT} \right), \; p_- = \frac{N_i^*}{\Upsilon} \exp \left(\frac{qV_{bi}}{2kT} \right), \; n_+ = N_i^* \Upsilon \exp \left(-\frac{qV_{bi}}{2kT} \right), \; p_+ = \frac{N_i^*}{\Upsilon} \exp \left(-\frac{qV_{bi}}{2kT} \right).$$

(2.20)

for some dimensionless parameter Υ.

2.2 The nondimensional model

Typical heterojunction devices are characterised by two lengthscales, namely the device lengthscale L and the microstructure lengthscale, denoted by h. Motivated by the use of this device to generate current under illumination we nondimensionalise electron and hole current densities j_i^* and j_p^* with the typical photogenerated current. This is calculated by noting that the typical number of excitons generated per unit cross-sectional of the device (normal to the y-axis) is $Q_0 A_d L$; assuming that a significant number of these go on to generate electron-hole pairs leads to an estimate of the photogenerated current density of $qQ_0 A_d L$. Assuming that a significant portion reach the acceptor/donor interface and balancing the diffusive terms in (2.11)-(2.12) with the generation terms, over
obtain the following scalings potential with the thermal voltage.

\[x^* = Lx, \quad t^* = \frac{L^2}{D}t, \quad n^* = \frac{Q_0 A_d L^2}{D} n, \quad p^* = \frac{Q_0 A_d L^2}{D} p, \quad \Theta^* = \frac{D^2 R_0}{Q_0^2 A_d^2 L^4} \Theta, \]

\[\phi^* = \frac{kT}{q} \phi, \quad c_a^* = \frac{h^2 Q_0 A_d}{D} c_a, \quad c_d^* = \frac{h^2 Q_0 A_d}{D} c_d, \quad \hat{j}_n^* = q Q_0 A_d L \hat{j}_n, \quad \text{(2.21)} \]

Substitution of the above scalings into (2.1)-(2.8) and (2.10)-(2.18), the model for a device with blocking layers (c.f. Figure 1(c)) yields, on setting \(\hat{D} = (D_n D_p)^{1/2} D \) and \(\hat{D} = (D_n D_p)^{1/2} D \) and distances with the cell half width \(L \) we obtain the following scalings

\[\frac{\partial p}{\partial t} + \nabla \cdot \hat{j}_p = 0 \]
\[\hat{j}_p = -\kappa (\nabla p + p \nabla \phi) \quad \text{in } \Omega_d, \quad \text{(2.22)} \]
\[\delta^2 \nu \frac{\partial c_a}{\partial t} = \delta^2 \chi \nabla^2 c_a + Q(y) - \beta c_a \]
\[\frac{\partial n}{\partial t} - \nabla \cdot \hat{j}_n = 0 \]
\[\hat{j}_n = \frac{1}{\kappa} (\nabla n - n \nabla \phi) \quad \text{in } \Omega_a, \quad \text{(2.23)} \]
\[\delta^2 \nu \frac{\partial c_a}{\partial t} = \delta^2 \chi \nabla^2 c_a + A Q(y) - \beta c_a \]
\[\nabla \cdot \left(\left(\varepsilon H_d + \frac{1}{\varepsilon} (1 - H_d) \right) \nabla \phi \right) = \frac{1}{\chi^2} (1 - H_d)n - H_d p \quad \text{in } \Omega_d \cup \Omega_a, \quad \text{(2.24)} \]
\[\frac{\partial Q}{\partial y} = -\frac{K}{\cos \theta} \left((1 - F(y)) + A F(y) \right) Q \quad \text{in } \Omega_d \cup \Omega_a, \quad \text{(2.25)} \]
\[\hat{j}_n \cdot N|_{\partial \Omega} = \hat{j}_p \cdot N|_{\partial \Omega} = \delta (\Gamma R(n, p) - J_{phot}), \quad c_a|_{\partial \Omega} = 0, \quad c_d|_{\partial \Omega} = 0, \quad \text{(2.26)} \]

\[\phi = \frac{\Phi - \Phi_{bi}}{2}, \quad p = \frac{n}{T}, \quad Q = \cos \theta, \quad \frac{\partial c_a}{\partial y} = 0 \quad \text{on } y = -1, \quad \text{and} \quad n = \frac{n}{T}, \quad \frac{\partial c_a}{\partial y} = 0 \quad \text{on } y = 1. \quad \text{(2.27)} \]

In the case of a device without blocking layers (c.f. Figure 1(b)) substitution of the scalings (2.21) into (2.1)-(2.7) and (2.9)-(2.18) yields identical dimensionless equations with the exception that the boundary conditions on the electron and hole concentrations...
now read
\[
n_{|\downarrow} = \frac{\tilde{n}}{\tilde{Y}} e^{-\Phi_b}, \quad p_{|\downarrow} = \frac{\tilde{n}}{\tilde{Y}} e^{-\Phi_a},
\]
\[
n_{|\uparrow} = \frac{\tilde{n}}{\tilde{Y}} e^{-\Phi_a}, \quad p_{|\uparrow} = \frac{\tilde{n}}{\tilde{Y}} e^{-\Phi_b}.
\]
(2.28)
The interfacial recombination rate \(R(n, p) \) and the characteristic function \(\mathcal{H}_d \) are defined by
\[
R(n, p) = \Theta(n, p)(np - \tilde{n}^2 e^{-\Phi_a})
\]
and \(\mathcal{H}_d = 1 \) in \(\Omega_d \) and \(\mathcal{H}_d = 0 \) in \(\Omega_a \),
(2.29)
and the interfacial photocurrent by
\[
J_{\text{phot}} = \delta \gamma_{\text{eff}} \left(\frac{1}{\lambda} \nabla c_e \bigg|_{\partial \Omega_i} - \chi \nabla c_d \bigg|_{\partial \Omega_i} \right) \cdot \mathbf{N}.
\]
(2.31)
The dimensionless parameters are defined by
\[
\hat{n} = \frac{\bar{N}_i(D_n D_p)^{1/2} e^{-\Phi_a}}{Q_0 A_d L^2}, \quad \kappa = \left(\frac{D_p}{D_n} \right)^{1/2}, \quad \Phi = \frac{q}{kT} \nu, \quad \Phi_{bi} = \frac{q}{kT} \nu_{bi},
\]
\[
\mathcal{E} = \left(\frac{\epsilon_d}{\epsilon_a} \right)^{1/2}, \quad \nu = \left(\frac{D_p D_n}{D_n D_d} \right)^{1/2}, \quad \chi = \left(\frac{D_d}{D_a} \right)^{1/2}, \quad \Gamma = \frac{R_0}{Q_0 A_d h},
\]
\[
K = L A_d, \quad \lambda = \frac{L}{L^2}, \quad \delta = \frac{h}{L},
\]
\[
\beta_a = \frac{\alpha_d h^2}{(D_a D_d)^{1/2}}, \quad \beta_d = \frac{\alpha_d h^2}{(D_a D_d)^{1/2}}, \quad G_a = \frac{A_a}{A_d},
\]
where \(L_d \) is the Debye length defined (in terms of the typical charge density in the device, \(\rho_{\text{typ}} \), arising from charge carrier generation) by
\[
L_d = \left(\frac{(\epsilon_a \epsilon_d)^{1/2} kT}{q \rho_{\text{typ}}} \right)^{1/2} \quad \text{where} \quad \rho_{\text{typ}} = qQ_0 A_d L^2 (D_n D_p)^{1/2}.
\]
Henceforth, for simplicity of notation, we drop the *s from the dimensionless variables.

\[2.2.1 \text{ Parameter estimates}\]
We estimate the size of the dimensionless parameters in the model primarily on the basis of the work by Koster et al. [36] who consider a representative polymer/fullerene heterojunction device made from PPV/PCBM. The material parameters given therein are
\[
\epsilon_a = 3 \times 10^{-11} \text{ AsV}^{-1} \text{m}^{-1}, \quad \epsilon_d = 3 \times 10^{-11} \text{ AsV}^{-1} \text{m}^{-1}, \quad D_n = 6.5 \times 10^{-9} \text{m}^2 \text{s}^{-1},
\]
\[
D_p = 7.8 \times 10^{-10} \text{m}^2 \text{s}^{-1}, \quad V_{bi} = 1.34 \text{V}, \quad N_i \exp \left(\frac{q V_{bi}}{2kT} \right) = 2.5 \times 10^{25} \text{m}^{-3},
\]
\[
L = 120 \times 10^{-9} \text{m} \quad Q_0 A_d = 5.4 \times 10^{47} \text{m}^{-3} \text{s}^{-1}.
\]
Exciton diffusion lengths \((D_d/\alpha_d)^{1/2}\) in PPV are around 5 nm [40] and although we have no direct information about \(h \) the size of the device microstructure we expect that, since
it is able to convert most of the light it absorbs in reverse bias, that h is smaller or comparable to 5 nm. We take $h = 3$ nm. In addition the generation of excitons, via the absorption of light, is typically significantly higher in a polymeric donor material than in a fullerene acceptor (e.g. [53]) so that $G_a < 1$, although this depends strongly on the frequency the incident radiation. In light of the above discussion we make the following estimates of important parameters in the model:

$$\lambda = 0.1, \quad \kappa \sim 0.35, \quad \delta = 0.025, \quad \Phi_{bi} = 50, \quad \hat{n} \sim 720, \quad \mathcal{E} = 1, \quad \beta_d \sim 1, \quad \beta_a \sim 1.$$

Furthermore [36] asserts that the light absorption length is much greater than the width of the device so that $K \ll 1$.

3 Numerical solution to the full model in an interdigitated device

In order to solve the dimensionless equations (2.22)-(2.31) over a region with an interdigitated interface, $\partial \Omega_i$, (such as that depicted in Figure 3) we use a finite element scheme based on a piecewise linear approximation to the solution. The full details of this scheme are outlined in appendix B.

The main difficulty that arises in approximating the model numerically arises because p and n are defined only in the domains Ω_d and Ω_a, respectively, and are related solely by a condition along the common interface between these two domains $\partial \Omega_i$. In turns this interface lies in the interior of the domain $\Omega_d \cup \Omega_a$ on which c and ϕ must be solved. The two main methods for tackling such problems are known as fitted and unfitted finite element methods. In the former the mesh is isoparametrically fitted to the interface $\partial \Omega_i$ while in the latter the mesh is independent of $\partial \Omega_i$; a detailed description of these methods is given in [4]. Here we opt for a fitted finite element method and for simplicity we take our triangulated mesh, \mathcal{T}^h, of Ω to be such that the curve $\partial \Omega_i$ is approximated by a piecewise affine curve $\partial \Omega_i^h$ that is comprised of triangle edges so that each triangle of \mathcal{T}^h lies either entirely in $\overline{\Omega}_d$ or $\overline{\Omega}_a$. A further difficulty that arises, in some parameter regimes, is the appearance of large gradients in the solution in the neighbourhood of the interface and in order to deal with this we employ a non uniform mesh.

The model (2.22)-(2.31) comprises of a system of strongly coupled partial differential equations, however by using a semi-implicit backward Euler finite element approximation it can be reduced to an uncoupled system of linear equations, (B.7)-(B.11), for the approximate solutions c^k_h, ϕ^k_h, p^k_h and n^k_h. In order to obtain the solution at the k'th time step, from the data for $p^k_{h} - 1$, $n^k_{h} - 1$ and c^k_{h} at the $k - 1$'th time step, we first solve (B.7) and (B.8) for c^k_h, before solving (B.9) for ϕ^k_h and finally use these results (together with the data from the $k - 1$'th time step) to solve (B.10) and (B.11) for p^k_h and n^k_h.

Numerical simulations of bilayer devices with sinusoidal interfaces have previously been presented in [9] and simulations for more realistic devices with complex active layer morphologies can be found in [35]. In [7] numerical examples showing the steady-state device behaviour, calculated from different applied potentials, of the organic photovoltaic bilayer devices are presented, while in [19] the authors apply Rothe's method, which is an advanced time-step control technique, to accurately estimate photocurrent transient times. The software package WIAS–TeSCA, [23], has very efficient numerical procedures for solving two- and three-dimensional finite element approximations of drift-diffusion
and photo-voltaic models, the main ideas of these procedures are given in [22]. In [2] three-dimensional simulations, using WIAS–TeSCA, of a thin film heterojunction solar cell with a point contact/defect passivation structure at the heterointerface are presented.

The Geometry.
In order to illustrate the nature of the solutions in a typical microstructured geometry we solve in the domain \(\Omega \) between contacts at \(y = -1 \) and \(y = 1 \) and with a 2\(\delta \)-periodic interface \(\partial \Omega_i \), separating the acceptor and donor regions (\(\Omega_a \) and \(\Omega_d \), respectively), given by the curve \(y = 0.7 \cos(\pi \delta x) \), see Figure 3.

Results.
In all the simulations we present we consider a Langevin recombination along \(\partial \Omega_i \), e.g. [8, 36], of the form

\[
R(n, p) = np
\]

in which we neglect the thermal generation term \(-\dot{n}^2 e^{-\Phi_{bi}} \) because it is, in physically realistic regimes, vanishingly small. We choose the other parameters in the problem to be given by, what we believe to be, physically realistic values

\[
\delta = 0.025, \, \lambda = 0.4, \, \kappa = 0.35, \, \dot{n} \sim 750, \, \mathcal{E} = 1, \, \beta_d = 1, \, \beta_a = 1, \, K = 0.1,
\]

\[
\Gamma = 2 \times 10^{-8}, \, \gamma_{\text{eff}} = 0.75, \, G_a = 0.3, \, \nu = 1, \, \chi = 1, \, \delta = 0.025, \, \Upsilon = 1.
\]

and we took the incident radiation to be normal to the cell so that \(\theta = 0 \). On noting that the solution depends only on the dimensionless applied bias \(\Phi \) and built-in voltage through their difference \(\Phi - \Phi_{bi} \) we choose to illustrate the nature of the solution by looking at three values of this quantity, namely \(\Phi - \Phi_{bi} = -6 \), \(\Phi - \Phi_{bi} = 0 \) and \(\Phi - \Phi_{bi} = 3 \), representing regimes in which the applied potential is held below, at, and above the built-in voltage, respectively. The results of three simulations are displayed in Figure 2, where for ease of visibility the domain \(\Omega \) has been rescaled so that its length is the same size as its height. Here contour plots of the stationary solution for \(p \) (left-hand), \(n \) (centre) and \(\phi \) (right-hand) are presented, with \(\Phi - \Phi_{bi} = -6 \) (upper), \(\Phi - \Phi_{bi} = 0 \) (centre) and \(\Phi - \Phi_{bi} = 3 \) (lower). It is notable that for \(\Phi - \Phi_{bi} = -6 \) the solution is almost entirely independent of \(x \), i.e. it does not ‘see’ the fine details of the microstructure. In fact this is a characteristic feature of all solutions for which \(\Phi < \Phi_{bi} \) and indeed it can be seen that even for \(\Phi = \Phi_{bi} \) the dependence of the solution on \(x \) is relatively weak. However this feature of the solution changes rapidly as \(\Phi \) increases above the built-in voltage; thus we see, where \(\Phi - \Phi_{bi} = 3 \), the development of boundary layers about the interface \((\partial \Omega_i) \) between the acceptor and donor, even though, in dimensional terms the applied potential has only exceeded the built in voltage by 3 thermal voltages (corresponding to 0.075 Volts at room temperature).

4 Derivation of the homogenised equations as \(\delta \rightarrow 0 \)
A noteworthy feature of the numerical solution to the (full) model of the bulk-heterojunction is that, for applied potentials \(\Phi \) less than the built-in voltage \(\Phi_{bi} \), the solution does not
change significantly over the dimensions of the microstructure, and so for the interdigitated morphology that we considered in §3 the solution is almost entirely independent of the spatial variable x. This suggests that, at least in the regime $\Phi < \Phi_{bi}$, it is appropriate to use the method of homogenisation to derive effective medium equations for the device. Since the regime $\Phi < \Phi_{bi}$ typically corresponds to the power generating regime of the device the resulting effective medium equations can be used to accurately characterise its electrical behaviour relevant to its use as a solar cell. Considerable savings in numerical time and effort can be obtained by using effective medium equations in place of the full model (which, as discussed in §3, is hard to solve). Furthermore use of effective medium equations, in which an intricate microstructure is replaced by functions representing averaged features of this microstructure, has the advantage that it allows device behaviour to be understood in terms of the gross (averaged) microstructural features.

Here we consider the derivation of homogenised equations from the nondimensional model (given in (2.22)-(2.31) based upon the disparity between the scale of the device microstructure h and its width L; formally we take the limit $\delta = h/L \to 0$. We treat two separate scenarios, one in which the device has an interdigitated structure (as de-
picted later in Figure 3) and the other in which the device has a locally periodic three-
dimensional structure (such as that depicted later in Figure 6). These two scenarios are
described in §4.1 and §4.2. The first of these scenarios is considerably easier to treat
mathematically and is so described in detail in the main text while the details of the
derivation for the locally periodic structure (whilst more pertinent to bulk heterojunc-
tions) are relegated to appendix A. In both cases, however, the homogenised equations
have the same form. Comparison between the results of the homogenised model derived
in §4.1 and the full non-dimensional equations (2.22)-(2.31) are then made in §3.

4.1 Homogenisation for an interdigitated device

4.1.1 The geometry of the device

Consider a device with a two-dimensional, highly convoluted, interdigitated interface
between the two semiconductors that is given by the periodic curve

\[y = f(\xi) \quad \text{where} \quad x = \delta \xi \quad \text{and} \quad f \text{ is a 2-periodic even function}. \]

The problem can then be considered on a periodic subdomain, as shown in Figure 4,
with suitable periodic conditions on the left- and right-boundaries. Here it is helpful to
express this curve in terms of its inverse \(\xi = 1 - F(y) \) where \(y \in (\alpha, \beta) \) and \(\xi \) ranges
between 0 and 1 (see Figure 4). Note that \(F(y) \) can, as in equation (2.25), be identified
as the volume fraction of the acceptor material at depth \(y \). With this definition of the
interface in \(0 < \xi < 1 \) the unit normal to the interface can be expressed in the form

\[
N = \frac{\nabla(\xi - (1 - F(y)))}{|\nabla(\xi - (1 - F(y)))|} = \frac{e_x + \delta F'(y)e_y}{\sqrt{1 + \delta^2 F'(y)^2}}
\]

(4.1)

where \(e_x \) and \(e_y \) are unit vectors in the direction of positive \(x \) and \(y \) respectively and a
prime denotes a derivative with respect to \(y \). In (4.1) the gradient operator is considered
with respect to \(x \) and \(y \), in terms of the variables \(\xi \) and \(y \) it takes the form

\[
\nabla = \frac{e_x}{\delta} \frac{\partial}{\partial \xi} + e_y \frac{\partial}{\partial y}.
\]
Effective-medium equations for bulk heterojunction organic solar cells

\[\xi = 1 - F(y) \]

\[\beta \]

\[\Omega_a \]

\[\Omega_d \]

\[\beta \]

\[\alpha \]

\[\Omega \]

\[\beta_a \]

\[\beta_d \]

\[\nu \]

\[\kappa \]

\[\chi \]

\[\delta \ll 1 \]

\[\Phi, \Phi_{bi}, E, K, \beta_a, \beta_d, \nu, \kappa, \chi \] are all formally \(O(1) \).

Asymptotic expansion.
We write \(j_n = u_n e_x + v_n e_y \) and \(j_p = u_p e_x + v_p e_y \) and expand as follows:

\[n = n_0(y, t) + \delta^2 n_2(\xi, y, t) + \cdots, \quad p = p_0(y, t) + \delta^2 p_2(\xi, y, t) + \cdots, \]

\[\phi = \phi_0(y, t) + \delta^2 \phi_1(\xi, y, t) + \cdots, \quad J_{\text{phot}} = J_{\text{phot,0}} + \cdots, \]

\[c_d = c_{d,0}(\xi, y, t) + \cdots, \quad c_a = c_{a,0}(\xi, y, t) + \cdots, \]

\[u_n = \delta u_{n,1}(\xi, y, t) + \cdots, \quad v_n = v_{n,0}(y, t) + \cdots, \]

\[u_p = \delta u_{p,1}(\xi, y, t) + \cdots, \quad v_p = v_{p,0}(y, t) + \cdots, \]

On substitution into (2.23)-(2.24) this yields, to leading order in the region \(\alpha < y < \beta \),

\[\frac{\partial n_0}{\partial t} - \frac{\partial u_{n,1}}{\partial \xi} - \frac{\partial v_{n,0}}{\partial y} = 0 \quad \text{for} \quad 1 - F(y) < \xi < 1, \quad (4.2) \]

\[\frac{\partial p_0}{\partial t} + \frac{\partial u_{p,1}}{\partial \xi} + \frac{\partial v_{p,0}}{\partial y} = 0 \quad \text{for} \quad 0 < \xi < 1 - F(y), \quad (4.3) \]

\[v_{n,0} = \kappa_n \left(\frac{\partial n_0}{\partial y} - n_0 \frac{\partial \phi_0}{\partial y} \right) \quad \text{for} \quad 1 - F(y) < \xi < 1, \quad (4.4) \]

\[u_{p,0} = -\kappa_p \left(\frac{\partial p_0}{\partial y} + p_0 \frac{\partial \phi_0}{\partial y} \right) \quad \text{for} \quad 0 < \xi < 1 - F(y), \quad (4.5) \]

\[\frac{\partial}{\partial \xi} \left(\frac{1}{\xi} H(\xi - 1 + F(y)) + \varepsilon H(1 - F(y) - \xi) \frac{\partial \phi_1}{\partial \xi} \right) + \]
This yields (4.13) to the result. This results in the following:

\[
\frac{\partial}{\partial y} \left(\frac{1}{\xi} H(\xi - 1 + F(y)) + \mathcal{E} H(1 - F(y) - \xi) \frac{\partial \phi_n}{\partial y} \right) = \frac{1}{\lambda^2} (H(\xi - 1 + F(y))n_0 - H(1 - F(y) - \xi)p_0),
\]

(4.6)

\[
\chi \frac{\partial^2 c_{d,0}}{\partial \xi^2} + Q(y) - \beta_{d,c0} = 0, \quad \text{for } 0 < \xi < 1 - F(y),
\]

(4.7)

\[
\frac{1}{\chi} \frac{\partial^2 c_{a,0}}{\partial \xi^2} + G_a Q(y) - \beta_{a,c0} = 0, \quad \text{for } 1 - F(y) < \xi < 1,
\]

(4.8)

\[
J_{\text{phot},0} = \gamma_{\text{eff}} \left(\frac{1}{\chi} \frac{\partial c_{a,0}}{\partial \xi} \bigg|_{\xi = (1-F(y))^+} - \chi \frac{\partial c_{d,0}}{\partial \xi} \bigg|_{\xi = (1-F(y))^+} \right).
\]

(4.9)

The symmetry of the problem and the interface conditions (2.26)-(2.27) give

\[
\begin{align*}
\frac{\partial n_2}{\partial \xi} \bigg|_{\xi = 1} &= 0, \quad u_{n,1}\big|_{\xi = 1} = 0, \quad \frac{\partial \phi_1}{\partial \xi} \bigg|_{\xi = 1} = 0, \\
\frac{\partial p_2}{\partial \xi} \bigg|_{\xi = 0} &= 0, \quad u_{p,1}\big|_{\xi = 0} = 0, \quad \frac{\partial \phi_1}{\partial \xi} \bigg|_{\xi = 0} = 0,
\end{align*}
\]

(4.10)

\[
\frac{\partial c_{a,0}}{\partial \xi} \bigg|_{\xi = 0} = 0, \quad c_{d,0}\big|_{\xi = 1 - F(y)} = 0, \quad c_{a,0}\big|_{\xi = 1 - F(y)} = 0, \quad \frac{\partial c_{d,0}}{\partial \xi} \bigg|_{\xi = 1} = 0,
\]

(4.11)

\[
\begin{align*}
(u_{n,1} + F'(y)u_{n,0})\big|_{\xi = 1 - F(y)} &= \Gamma R(n_0, p_0) - J_{\text{phot}}\big|_{\xi = 1 - F(y)}, \\
(u_{p,1} + F'(y)u_{p,0})\big|_{\xi = 1 - F(y)} &= \Gamma R(n_0, p_0) - J_{\text{phot}}\big|_{\xi = 1 - F(y)}.
\end{align*}
\]

(4.12)

Integrating (4.2) with respect to \(\xi\) between \(\xi = 1 - F(y)\) and 1 yields

\[
F(y) \frac{\partial n_0}{\partial t} - [u_{n,1}]_{\xi = 1 - F(y)} - F(y) \frac{\partial c_{n,0}}{\partial y} = 0.
\]

Applying the boundary conditions (4.10a), (4.10b) and (4.12) leads to an equation for \(n_0(y,t)\)

\[
F(y) \frac{\partial n_0}{\partial t} - \frac{\partial}{\partial y} (F(y)u_{n,0}) = J_{\text{phot}} - \Gamma R(n_0, p_0) \quad \text{in } \alpha \leq y \leq \beta.
\]

(4.14)

A similar equation can be derived for \(p_0(y,t)\) by integrating (4.3) with respect to \(\xi\) between \(\xi = 0\) and \(1 - F(y)\); and applying the boundary conditions (4.10d), (4.10e) and (4.13) to the result. This results in the following:

\[
(1 - F(y)) \frac{\partial p_0}{\partial t} + \frac{\partial}{\partial y} ((1 - F(y))u_{p,0}) = J_{\text{phot}} - \Gamma R(n_0, p_0) \quad \text{in } \alpha \leq y \leq \beta.
\]

(4.15)

The equation for \(\phi_0(y,t)\) can be derived by a similar procedure, namely integrating (4.5) between \(\xi = 0\) and 1 and applying the symmetry conditions (4.10c), (4.10f) to the result. This yields

\[
\frac{\partial}{\partial y} \left(\frac{1}{\xi} F(y) + \mathcal{E}(1 - F(y)) \frac{\partial \phi_0}{\partial y} \right) = \frac{1}{\lambda^2} (F(y)n_0 - (1 - F(y))p_0) \quad \text{in } \alpha \leq y \leq \beta.
\]

(4.16)
The three homogenised equations (4.14)-(4.16) for the five quantities \(n_0(y, t), \ p_0(y, t), \ \phi_0(y, t), \ v_n(y, t) \) and \(v_p(y, t) \) couple to the two equations (4.4) and (4.5) to form a closed system.

Finally we can derive an expression for \(J_{\text{phot}, 0} \) by solving (4.8)-(4.7) with boundary conditions (4.11) to obtain

\[
\begin{align*}
\varphi_{d,0} &= \frac{Q(y)}{\beta_d} \left(1 - \frac{\cosh \left(\frac{\beta_d}{\chi} \right)^{1/2} \xi}{\cosh \left(\frac{(\beta_d/\chi)^{1/2}}{(1 - F(y))} \right)} \right) \quad \text{on} \quad 0 < \xi < 1 - F(y), \quad (4.17) \\
\varphi_{a,0} &= \frac{G_a Q(y)}{\beta_a} \left(1 - \frac{\cosh \left(\frac{\beta_a}{\chi} \right)^{1/2} (1 - \xi)}{\cosh \left(\frac{(\beta_a/\chi)^{1/2}}{F(y)} \right)} \right) \quad \text{on} \quad 1 - F(y) < \xi < 1. \quad (4.18)
\end{align*}
\]

which leads, on substitution into (4.7), to the following formula for \(J_{\text{phot}, 0} \) in \(\alpha \leq y \leq \beta \):

\[
J_{\text{phot}, 0} = \gamma_{\text{eff}} Q(y) \left(\frac{G_a}{(\beta_a \chi)^{1/2}} \tanh \left(\frac{(\beta_a/\chi)^{1/2}}{F(y)} \right) + \left(\frac{\chi}{\beta_d} \right)^{1/2} \tanh \left(\frac{(\beta_a/\chi)^{1/2}}{F(y)} \right) \right). \quad (4.19)
\]

Since there is no interface on which excitons can dissociate in \(-1 < y < \alpha \) and \(\beta < y < 1 \) it follows that \(J_{\text{phot}, 0}(y) \) is 0 for \(y \) in these ranges. Furthermore, it is unsurprising that the homogenised variable \(J_{\text{phot}, 0} \) is discontinuous at \(y = \alpha \) and \(y = \beta \) because at these two positions there is sharp discontinuity in the length of interface (per unit width of cell). In addition the intensity function \(Q(y) \) is obtained by direct integration of (2.25) with the boundary condition \(Q|_{y=-1} = \cos \theta \).

Summary of the homogenised model
The homogenisation of the interdigitated geometry described in §4.1.1 leads to an approximate, one-dimensional model given by equations (4.14)-(4.16) and (4.19) for \(n, p \) and \(\phi \) and the electron and hole currents, \(j_n \) and \(j_p \). On dropping subscripts, and extending the validity of the equations into the blocking layers \((-1 < y < \alpha \) and \(\beta < y < 1 \)), the homogenised equations can be written in the form

\[
\begin{align*}
(1 - F(y)) \frac{\partial p}{\partial t} + \frac{\partial J_p}{\partial y} &= (J_{\text{phot}} - \Gamma R(n, p)) H(y - \alpha) \quad \text{in} \quad -1 < y < \beta, \quad (4.20) \\
J_p &= -\kappa (1 - F(y)) \left(\frac{\partial p}{\partial y} + \frac{\partial \phi}{\partial y} \right) \\
F(y) \frac{\partial n}{\partial t} - \frac{\partial J_n}{\partial y} &= (J_{\text{phot}} - \Gamma R(n, p)) H(\beta - y) \quad \text{in} \quad \alpha < y < 1 \quad (4.21) \\
J_n &= F(y) \frac{\kappa}{\partial n}{\partial y} - \frac{\partial \phi}{\partial y} \\
\frac{\partial}{\partial y} \left(\frac{1}{\xi} F(y) + \xi (1 - F(y)) \right) \frac{\partial \phi}{\partial y} &= \frac{1}{\lambda^2} (n F(y) - p(1 - F(y))) \quad \text{in} \quad -1 < y < 1. \quad (4.22)
\end{align*}
\]
where we denote current densities averaged across the device cross-section by \(J_p = (1 - F(y))j_p \) and \(J_n = F(y)j_n \) and where

\[
J_{phot} = \gamma_{eff} Q(y) \left(\frac{G_a}{(\beta_a \chi)^{1/2}} \tanh \left(\frac{(\beta_a \chi)^{1/2} F(y)}{\beta_d} \right) + \left(\frac{\chi}{\beta_d} \right)^{1/2} \tanh \left(\frac{\beta_d}{\chi} (1 - F(y)) \right) \right),
\]
valid in \(\alpha < y < \beta \), and

\[
Q(y) = \cos(\theta) \exp \left(-\frac{K}{\cos \theta} \int_{1}^{y} (1 - F(z))(1 - G_\alpha)dz \right).
\]

The boundary conditions, for a device with finite blocking layers, are

\[
\begin{align*}
\phi &= \frac{\Phi - \Phi_{bi}}{2} \quad \text{on} \quad y = -1, \\
p &= \frac{n}{\bar{\iota}}, \quad \text{on} \quad y = 1,
\end{align*}
\]

\(J_n \to 0 \quad \text{as} \quad y \downarrow \alpha, \quad J_p \to 0 \quad \text{as} \quad y \uparrow \beta; \)

these are illustrated in Figure 5(c). In the case of a device without blocking layers (i.e., one for which \(F(-1) > 0 \) and \(F(1) < 1 \)) the zero electron and hole current conditions on \(y = \alpha \) and \(y = \beta \) (i.e. (4.26)) are replaced by the following Ohmic boundary conditions on \(y = \pm 1 \):

\[
n|_{y=-1} = \hat{n}\bar{\iota}e^{-\Phi_{bi}} \quad \text{and} \quad p|_{y=1} = \hat{n}\bar{\iota}e^{-\Phi_{bi}};
\]

this case is illustrated in Figure 5(b).

An alternative formulation of the homogenised model

In order to solve the homogenised model (4.20) - (4.22) numerically it is helpful to reformulate it in terms of Slotboom variables \(A(y, t) \) and \(B(y, t) \) by writing \(n = A(y, t) \exp(\phi(y, t)) \) and \(p = B(y, t) \exp(-\phi(y, t)) \). This results to the following formulation

\[
\begin{align*}
(1 - F(y)) \frac{\partial B e^{-\phi}}{\partial t} + \frac{\partial J_p}{\partial y} &= (J_{phot} - \Gamma R(n, p)) H(y - \alpha) \quad \text{in} \quad -1 < y < \beta, \\
\frac{\partial B}{\partial y} &= -e^\phi \frac{J_p}{(1 - F(y))\kappa},
\end{align*}
\]

\[
\begin{align*}
F(y) \frac{\partial A e^\phi}{\partial t} - \frac{\partial J_n}{\partial y} &= (J_{phot} - \Gamma R(n, p)) H(\beta - y), \\
\frac{\partial A}{\partial y} &= e^{-\phi} \frac{J_n \kappa}{F(y)}
\end{align*}
\]

\[
\frac{\partial}{\partial y} \left(\frac{1}{\epsilon} F(y) + \epsilon (1 - F(y)) \frac{\partial \phi}{\partial y} \right) = \frac{1}{\lambda^2} \left(A e^\phi F(y) - B e^{-\phi} (1 - F(y)) \right) \quad \text{in} \quad -1 < y < 1
\]

(4.30)
Effective-medium equations for bulk heterojunction organic solar cells

Figure 5
Boundary conditions on the homogenised model for the device geometries illustrated in Figures 1(b) and 1(c). Case (b) a bulk heterojunction without capping layers. Case (c) a bulk heterojunction with capping layers on pure donor and acceptor materials at the electrodes.

with J_{phot} given by (4.26) and the boundary conditions (for a device with blocking layers) are

$$
\phi = \frac{\Phi - \Phi_{bi}}{2} \quad \text{on} \quad y = -1, \quad \phi = -\frac{(\Phi - \Phi_{bi})}{2} \quad \text{on} \quad y = 1,
$$

$$
B = \frac{\hat{n}}{1} e^{-\frac{(\Phi - \Phi_{bi})}{2}} \quad \text{as} \quad y \searrow \alpha, \quad J_{n} \to 0 \quad \text{as} \quad y \nearrow \beta.
$$

and in the case of a device without blocking layers the conditions (4.32) are replaced by

$$
A|_{y=-1} = \hat{n} Ye^{-\frac{(\Phi - \Phi_{bi})}{2}} \quad \text{and} \quad B|_{y=1} = \frac{\hat{n}}{1} e^{-\frac{(\Phi - \Phi_{bi})}{2}}.
$$

Notably the steady state solutions to (4.28a) and (4.29a), in the restricted domains $-1 < y < \beta$ and $\alpha < y < 1$ (respectively), with internal boundary conditions (4.32) are equivalent to the solutions to (4.28a) and (4.29a) on the full domain $-1 < y < 1$ where the right hand side of these equations is replaced by $(J_{\text{phot}} - \Gamma R(n, p)) (H(y-\alpha) - H(y-\beta))$ and where the boundary conditions (4.32) are replaced by $J_{n}|_{y=-1} = 0$ and $J_{p}|_{y=1} = 0$.

It is this reformulation of (4.28)-(4.32) as a two point boundary value problem that we solve numerically.

4.2 A bulk heterojunction with three-dimensional microstructure

Here we consider how to derive homogenised equations for a bulk heterojunction with a fully three-dimensional (and almost periodic) microstructure; such as occurs in spin-coated devices (e.g. [41]). The techniques required to perform this homogenisation are considerably more complex that those described for the interdigitated device in §4.1 and involve application of the formal asymptotic method of multiple-scales as originally developed by Joseph Keller [30, 31] (relevant extensions of this method to applications in which the microstructure is not entirely periodic are given in [6, 11, 48, 49]). We note further that there is an extensive literature on rigorous homogenization methods (see [1, 14]) but that these methods involve considerably more effort than their formal
Figure 6. Left hand panel: an illustration of the microstructure geometry within one of the periodic boxes \hat{V}. Right-hand panel: repeated periodic boxes form the global microstructure.

counterparts whilst yielding exactly the same homogenized equations (they are also particularly hard to apply to microstructures that are not strictly periodic). Here we operate on the dimensionless equations (2.22)-(2.31) in which the device lengthscale is of $O(1)$ and that of the microstructure is $O(\delta)$, where $\delta \ll 1$. Furthermore we assume that the microstructure is \textit{locally} periodic inside a \textit{globally} periodic array of boxes which we denote by $\hat{\Omega}_d \cup \hat{\Omega}_a$. This approach allows us to consider geometries in which important features of the microstructure (such as the donor volume fraction) are periodic on the lengthscale of the microstructure but vary slowly over the device lengthscale (further discussion of the applicability of this technique are given in [50]). Consider now one of these boxes \hat{V}, say, whose volume is split into a part $\hat{\Omega}_d$ occupied by the donor material and a part $\hat{\Omega}_a$ represents occupied by the acceptor (see Figure 6 for an example configuration). Furthermore we denote that part of the boundary to $\hat{\Omega}_a$ lying along the boundary of \hat{V} by $\partial \hat{\omega}_a$ and that part lying along the interface between $\hat{\Omega}_a$ and $\hat{\Omega}_d$ by $\partial \hat{\Omega}$. Similarly we denote that part of the boundary to $\hat{\Omega}_d$ lying along the boundary of \hat{V} by $\partial \hat{\omega}_d$ and that part lying along the interface between $\hat{\Omega}_a$ and $\hat{\Omega}_d$ by $\partial \hat{\Omega}$. For the sake of generality we allow the microstructure to change slowly, over the $O(1)$ lengthscale, and it is in this sense that it is \textit{locally} periodic.

4.3 A multiple scales formulation of the problem.

We formally consider the distinguished limit in which $\kappa, \nu, \chi, \beta_d, \beta_a, G_a, E, \lambda, \Gamma$ and γ_{eff} are all $O(1)$ while $\delta \rightarrow 0$ and introduce the microscale variable \hat{x} defined by

$$\mathbf{x} = \delta \hat{x}.$$

We look for a solution to the problem (2.22)-(2.31) that is a function both of the microscale variable \hat{x} and the device scale variable \mathbf{x}. As is standard in such multiple-scales calculations we look for a solution that is periodic in the microscale variable and transform the gradient operator via $\nabla \rightarrow \nabla + \nabla / \delta$. The central ansatz of the homogenisation
Effective-medium equations for bulk heterojunction organic solar cells

is contained in the asymptotic expansion

\[
\begin{align*}
 n &= n_0(x, t) + \delta n_1(x, \hat{x}, t) + \delta^2 n_2(x, \hat{x}, t) + \cdots, \\
p &= p_0(x, t) + \delta p_1(x, \hat{x}, t) + \delta^2 p_2(x, \hat{x}, t) + \cdots, \\
 \phi &= \phi_0(x, t) + \delta \phi_1(x, \hat{x}, t) + \delta^2 \phi_2(x, \hat{x}, t) + \cdots, \\
c &= c_{d,0}(x, \hat{x}, t) + \delta c_{d,1}(x, \hat{x}, t) + \delta^2 c_{d,2}(x, \hat{x}, t) + \cdots, \\
c &= c_{u,0}(x, \hat{x}, t) + \delta c_{u,1}(x, \hat{x}, t) + \delta^2 c_{u,2}(x, \hat{x}, t) + \cdots, \\
 j_n &= j_{n,0}(x, \hat{x}, t) + \delta j_{n,1}(x, \hat{x}, t) + \delta^2 j_{n,2}(x, \hat{x}, t) + \cdots, \\
 j_p &= j_{p,0}(x, \hat{x}, t) + \delta j_{p,1}(x, \hat{x}, t) + \delta^2 j_{p,2}(x, \hat{x}, t) + \cdots, \\
 J_{\text{phot}} &= J_{\text{phot},0}(x, \hat{x}, t) + \delta J_{\text{phot},1}(x, \hat{x}, t) + \delta^2 J_{\text{phot},2}(x, \hat{x}, t) + \cdots.
\end{align*}
\]

(4.34)

Thus the electric potential and the concentrations of free-electrons, holes and excitons are all functions of the device lengthscale only at leading order. The electron- and hole-current densities both have to flow around the microstructure and are thus functions of both device-scale and micro-scale variables at leading order.

4.3.1 Summary of the homogenised equations

The multiple scale analysis, the details of which are relegated to appendix A, results in homogenised equations for the electron and hole concentrations \(n \) and \(p \), respectively, the electric potential \(\phi \), the volume averaged electron and hole current densities \(\langle j_n \rangle \) and \(\langle j_p \rangle \), respectively and the volume averaged electric displacement and photogeneration \(\langle D \rangle \) and \(\langle J_{\text{phot}} \rangle \), respectively. On dropping the 0 subscript from the leading order terms in the multiple scales expansion these equations take the form

\[
\begin{align*}
 (1 - F(x)) \frac{\partial p}{\partial t} + \nabla \cdot \langle j_p \rangle + b_{et}(x)(\Gamma R(n, p) - \langle J_{\text{phot}} \rangle) &= 0, \\
 F(x) \frac{\partial n}{\partial t} - \nabla \cdot \langle j_n \rangle + b_{et}(x)(\Gamma R(n, p) - \langle J_{\text{phot}} \rangle) &= 0, \\
 \langle j_p \rangle_i &= -B_{ij}(x) \left(\frac{\partial p}{\partial x_j} + p \frac{\partial \phi}{\partial x_j} \right), \\
 \langle j_n \rangle_i &= C_{ij}(x) \left(\frac{\partial n}{\partial x_j} - n \frac{\partial \phi}{\partial x_j} \right), \\
 \nabla \cdot \langle D \rangle &= \frac{1}{\chi^2} \left((1 - F(x))p(x, t) - F(x)n(x, t) \right), \text{where} \quad \langle D \rangle = -A_{ij}(x) \frac{\partial \phi}{\partial x_j} e_i. \quad (4.37)
\end{align*}
\]

(4.35)

(4.36)

(4.37)

(4.38)

Here \(B_{ij}(x) \) and \(C_{ij}(x) \) are the (dimensionless) electron and hole current conductivity tensors, \(A_{ij}(x) \) is the (dimensionless) permittivity tensor and \(b_{et}(x) \) a (dimensionless)
measure of the surface area of interface per unit volume of material, defined by

$$B_{ij}(x) = \frac{\kappa}{|\Omega_d| + |\Omega_a|} \int_{\Omega_d} \left(\delta_{ij} - \frac{\partial \zeta^{(j)}}{\partial \hat{x}_i} \right) d\hat{V},$$

$$C_{ij}(x) = \frac{1}{\kappa(|\Omega_d| + |\Omega_a|)} \int_{\Omega_a} \left(\delta_{ij} - \frac{\partial \eta^{(j)}}{\partial \hat{x}_i} \right) d\hat{V},$$

$$A_{ij}(x) = \frac{1}{|\Omega_a| + |\Omega_d|} \int_{\Omega_a \cup \Omega_d} \left(\mathcal{E} \mathcal{H}_d + \frac{1}{\mathcal{E}} (1 - \mathcal{H}_d) \right) \left(\delta_{ij} - (1 - \mathcal{E}^2) \frac{\partial ^2 \mu^{(j)}}{\partial \hat{x}_i \partial \hat{x}_j} \right) d\hat{V},$$

$$b_{ei}(x) = \frac{1}{|V|} \int_{\partial \hat{V}} d\hat{S},$$

These tensor quantities depend on the microstructure geometry through the nine characteristic functions $\mu^{(j)}(x, \hat{x}), \zeta^{(j)}(x, \hat{x})$ and $\eta^{(j)}(x, \hat{x})$ (for $j = 1, 2, 3$) which must be found by solving cell problems (A15)-(A16) and (A30)-(A31) within a periodic box \hat{V}. Where the microstructural geometry of the acceptor/donor interface varies over the macroscopic lengthscale x (so that A_{ij}, B_{ij}, C_{ij} and b_{ei} are all functions of x) this requires that cell problems be solved at sufficient macroscopic spatial points in order to obtain a reasonable approximation to these functions in x.

5 Comparison between full- and homogenised-models

The aims of this section are (i) to validate steady state solutions to the homogenised model (4.20)-(4.27) against steady state solutions to the full model (2.22)-(2.31) in an interdigitated domain (see Figure 7) and (ii) to use the homogenised model to investigate device behaviour, in particular we will calculate current voltage curves for different device geometries (see Figure 8).

In Figure 7 we compare steady state solutions of (4.20)-(4.27), the one-dimensional homogenised model, (red curves) to those to (2.22)-(2.31) the full two-dimensional model (blue dashed curves). These simulations were performed for the set of parameters given in (3.2) in the geometry described in §3, namely with an interface $\partial \Omega_i$ given by $y = 0.7 \cos(\delta \pi x)$. In terms of the homogenised model this corresponds to setting $\alpha = -0.7$ and $\beta = 0.7$ and $F(y) = \frac{1}{\pi} \cos^{-1}(y/0.7)$. In order to compare the solutions to the one dimensional homogenised model and the two-dimensional full model we plot solutions of the full model (as functions of y) for p and ϕ along the line $x = 0$ and for n along the line $x = -\delta$ and compare to the equivalent solutions to the homogenised model (again plotted as a function of y). We obtain the steady state solutions to the homogenised model (4.20)-(4.27) by numerically solving a steady state form of the alternative formulation (4.28)-(4.33) using the Matlab boundary value problem solver ‘bvp4c’.

Notably the agreement between the two models is extremely good for $\Phi - \Phi_{bi} = -6$, it is still quite good for $\Phi = \Phi_{bi}$ but less good for $\Phi - \Phi_{bi} = 3$. As remarked in §3 it is a generic feature of the solutions to the full (2-d) model, with applied potentials $\Phi < \Phi_{bi}$, that it almost independent of the lateral dimension x and, as a corollary,
it is well approximated by the solution to the homogenised model. The validity of the homogeneous approximation to the full model breaks down as the applied potential \(\Phi \) increases above the built-in voltage as the solution develops features on the scale of the microstructure. From a physical perspective increases in applied potential act to counter the effect of the built in voltage which is to drive electrons to the acceptor contact and holes to the donor contact. Thus for large applied potentials electron and hole concentrations build up within the device leading to a shortening of the typical length scale for variations in the potential: the effective Debye length \(L_{d, \text{eff}} \), which in this instance can be estimated from the relation
\[
L_{d, \text{eff}} = \left(\frac{(\varepsilon_a \varepsilon_d)^{1/2} kT}{q \rho_{\text{eff}}} \right)^{1/2},
\]
where \(\rho_{\text{eff}} \) gives a measure of the charge density (caused by the electrons and holes). Once the effective Debye length decreases (with increases in \(\Phi \)) to the lengthscale of the microstructure the solution starts to exhibit significant variations on the scale of the microstructure which invalidate the standard homogenisation procedure. Interestingly, in the instance of an interdigitated morphology, it is still possible to derive averaged equations by using a nonlinear multiple scales method, but since the results have little bearing on the physically relevant power generating regime we omit the details.

6 Device current voltage curves calculated using the homogenised model

We finish by using the homogenised model to calculate current voltage (\(J-V \)) curves for a range of device geometries. In order to make fair comparison between different devices we plot \(J-V \) curves in which the current is rescaled with the maximum photocurrent \(\gamma_{\text{eff}}/K \) that can be extracted from the device assuming that all incident photons are absorbed to make excitons that reach the acceptor/donor interface (before recombination). Where the device has entire capping layers that prevent contact between the acceptor and the positive contact and between the donor and the negative contact the solution of the homogenised model depends only on the built-in voltage \(\Phi_{bi} \) and the applied potential \(\Phi \) through \(\Phi - \Phi_{bi} \) and so in these cases we plot \(KJ/\gamma_{\text{eff}} \) versus \(\Phi - \Phi_{bi} \). In contrast where either (or both) the acceptor contacts the lower (hole extracting) electrode or the donor contacts the upper (electron extracting) electrode the solution depends independently on \(\Phi \) and \(\Phi_{bi} \) and so we plot \(KJ/\gamma_{\text{eff}} \) versus \(\Phi \).

In Figure 8 we use the parameter set given in (3.2) with the exception that we take
\[
\lambda = 0.1, \quad \Gamma = 2 \times 10^{-6}, \quad \beta_a = 0.5, \quad \beta_d = 0.5, \quad K = 2, \quad \theta = 0,
\]
noting, in particular, that the smaller values of \(\beta_a \) and \(\beta_d \) taken here, and consequently the less significant exciton recombination, give a significantly more efficient cell than the original parameter set. In the left hand panel of Figure 8 we display \(J-V \) curves for four different bulk heterojunctions with capping layers of different thicknesses. The geometric properties of these heterojunctions are described by the following parameter sets

- (I) \(\alpha = -0.7 \) and \(\beta = 0.7 \) and \(F(y) = \frac{1}{\pi} \cos^{-1}(y/0.7) \) in \(\alpha < y < \beta \),
- (II) \(\alpha = -0.9 \) and \(\beta = 0.9 \) and \(F(y) = \frac{1}{\pi} \cos^{-1}(y/0.9) \) in \(\alpha < y < \beta \),
Figure 7. Comparison between solutions of the full dimensionless model (dashed blue line) and the homogenised model (solid red line), \(p_h \), (left), \(n_h \), (centre), \(\phi_h \), (right) for \(\Phi - \Phi_{bi} = -6 \) (upper), \(\Phi - \Phi_{bi} = 0 \) (middle), \(\Phi - \Phi_{bi} = 3 \) (lower). Here plots of \(p_h \) and \(\phi_h \) are made along the line \(x = 0 \) while those of \(n_h \) are made along \(x = -\delta \). In all panels the horizontal axis is the \(y \)-axis (stretching between -1 and 1).

- (III) \(\alpha = -0.7 \) and \(\beta = 0.7 \) and \(F(y) = \frac{1}{2} \) in \(\alpha < y < \beta \),
- (IV) \(\alpha = -0.9 \) and \(\beta = 0.9 \) and \(F(y) = \frac{1}{2} \) in \(\alpha < y < \beta \).

In all four of these geometries the donor material does not directly contact the upper electrode \(y = 1 \) and the acceptor material does not directly contact the lower electrode \(y = -1 \). As can be seen the main feature of these curves is that their characteristics improve as the thickness \(1 + \alpha \) of the lower donor blocking layer decreases (i.e. as \(\alpha \) decreases towards -1); the best reverse saturation current being for curves (II) and (IV) where the interface almost contacts the lower electrode. In particular it can be seen that reverse saturation current (i.e. the current as \(\Phi \to -\infty \)) increases as the thickness of the
Effective-medium equations for bulk heterojunction organic solar cells

blocking layer decreases. This is not particularly surprising because light enters from the surface \(y = -1 \) and its intensity decays rapidly as it propagates in the positive \(y \)-direction. Thus much of the energy of the incident radiation is lost if the capping layer adjacent to the surface \(y = -1 \) is thick and this is reflected in the relatively poor performance of the cell. Reducing this lower capping layer too far though is dangerous because it can result in direct contact between the acceptor region \(\Omega_a \) and the positive contact (on \(y = -1 \)) resulting in a short circuit. This phenomenon is illustrated in the right hand panel of Figure 8 where we display the \(J-V \) curve for a device in which \(F(y) \equiv 0.5 \), so that the acceptor material contacts the lower (hole extracting) electrode and the donor material contacts the upper (electron extracting) electrode. The material parameters for this device are the same as those considered above (I)-(IV) but in addition we specify the built-in potential by \(\Phi_{bi} = 10 \). Here it can be seen that the power generating capacity predicted by the model for this device is virtually non-existent since the open circuit voltage \(\Phi_{oc} \) (i.e. the voltage \(\Phi \) when \(J = 0 \)) is close to zero, while in reality such devices are usually capable of producing power. The issue here is the use of Ohmic boundary conditions to describe the contacts made between acceptor with the lower electrode (hole extracting) and the donor with the upper (electron extracting) electrode. In well-designed devices the energy of the donor HOMO (analogous to the valence band edge) lies close to the Fermi level of the hole extracting electrode and the energy of the acceptor LUMO (analogous to the conduction band edge) lies close to the Fermi level of the electron extracting electrode; this means that it is appropriate to use Ohmic conditions for such contacts. However the same is not generally true for the energy differences between (a) the acceptor LUMO and the Fermi level of the hole extracting electrode and (b) the donor HOMO and the Fermi level of the electron extracting which means that Ohmic boundary conditions are inappropriate and need to be replaced by more general conditions describing charge recombination and injection processes taking place at the contact. The derivation of such boundary conditions describing the contact between an organic semiconductor and a metal has been made in [51]. However this (as pointed out in [3]) leads to a final statement of the boundary conditions that is inapplicable to solar cells because it neglects the diffusive fluxes of charge carriers; the correct conditions can be found in [3]. In the case where the equilibrium electron concentration \(n \) on the hole extracting contact and the equilibrium hole concentration \(p \) on the hole extracting contact are both very small (so that injection can be neglected) these boundary conditions take the (dimensional) form

\[
\frac{\partial n^*}{\partial x^*} \bigg|_{x^*=-L} \sim \frac{n^*}{r_c \psi^2(f)} \bigg|_{x^*=L} \quad \text{and} \quad \frac{\partial p^*}{\partial x^*} \bigg|_{x^*=-L} \sim -\frac{p^*}{r_c \psi^2(E^*)} \bigg|_{x^*=L} \quad \text{for } E^* < 0, \quad (6.2)
\]

where \(E^* = -\frac{\partial \phi^*}{\partial x^*} \) and \(\psi(E^*) = \frac{1}{f} + \frac{1}{\sqrt{f}} - \frac{(1 + 2\sqrt{f})^{1/2}}{f} \) with \(f = -\frac{E^* r_c}{kT} \). (6.3)

Here \(r_c \) is the Coulomb radius defined by \(r_c = q^2/(4\pi \varepsilon kT) \). Where the electric field has the opposite sign these approximate boundary conditions should be replaced by

\[
\frac{\partial n^*}{\partial x^*} \bigg|_{x^*=-L} \sim \frac{4n^*}{r_c} \bigg|_{x^*=L} \quad \text{and} \quad \frac{\partial p^*}{\partial x^*} \bigg|_{x^*=-L} \sim -\frac{4p^*}{r_c} \bigg|_{x^*=L} \quad \text{for } E^* > 0.
\]

These boundary conditions are discussed in further detail in §C.
7 Conclusions

In this work (in §2) we have formulated a model for charge transport and light absorption in an organic bulk heterojunction solar cell consisting of two organic semiconducting materials, one an electron donor and the other an electron acceptor, that contact each other along a highly convoluted interface. We used a finite element method, in §3, to solve the resulting coupled partial differential equations (at steady state) in a device with an interdigitated interface between the acceptor and donor materials (as illustrated in Figure 3) for a range of applied potentials. Motivated by these results we observed that the solution did not vary significantly over the scale of the microstructure (i.e. is almost independent of the lateral spatial variable x) when the applied potential is less than the built in voltage. This led us, in §4, to use the method of multiple scales to derive a homogenised model, in which variables are averaged over the microstructure. We did this both in the case of an interdigitated acceptor/donor interface and in the more generic case of a complex interlacing three-dimensional microstructure, such as that commonly encountered in devices manufactured by spin-coating. In the former case we compared the solutions from the systematically derived homogenised model to those of the full model (with realistic parameters) and found good agreement, provided the applied potential was less than the built in voltage. This is the device’s power generating regime, and thus the most relevant one from the point of view of solar cell performance.

Although we did not perform simulations of the full model on an interlacing three-dimensional microstructures we note that such simulations have been performed in [35] (in realistic parameter regimes) and further, that to a good approximations, n and p vary solely in y, so that the electric field is predominantly in the y-direction, thus supporting our effective medium approach. The result of the multiple-scales analysis was a homogenised model that, in dimensional form, can be written

$$\left(1 - F(x^*)\right)q \frac{\partial \rho^*}{\partial t^*} + \nabla^* \cdot \langle j^*_p \rangle + B_{ct}(x^*) (qR^* (n^*, p^*) - \langle j^{* \text{phot}} \rangle) = 0,$$

$$F(x^*)q \frac{\partial n^*}{\partial t^*} - \nabla^* \cdot \langle j^*_n \rangle + B_{ct}(x^*) (qR^* (n^*, p^*) - \langle j^{* \text{phot}} \rangle) = 0,$$

$$\langle j^*_p \rangle = - \sigma^* \left(\nabla^* \phi^* + \frac{kT}{q} \nabla^* \log p^* \right), \quad \langle j^*_n \rangle = - \sigma^* \left(\nabla^* \phi^* - \frac{kT}{q} \nabla^* \log n^* \right),$$

where $\sigma^* = \left(\frac{D_n D_p}{kT} \right)^{1/2} q^2 B_{ct}$ and $\sigma^* = \left(\frac{D_n D_p}{kT} \right)^{1/2} q^2 C_{nt}$.
Effective-medium equations for bulk heterojunction organic solar cells

\[\nabla^* \cdot \langle D^* \rangle = q((1 - F(x^*))p^* - F(x^*)n^*), \quad \text{and} \quad \langle D^* \rangle = -\varepsilon^* \nabla^* \phi^*, \quad (7.5) \]

where \(\varepsilon^* = (\varepsilon_a \varepsilon_d)^{1/2} A \). \quad (7.6)

Here \(B^*_a(x^*) \) is the surface area of acceptor/donor interface per unit volume of material; \(\langle j^*_{\text{phot}}(x^*) \rangle \) is the local average of the photocurrent over the surface area of the acceptor/donor interface; the averaged hole and electron currents \(\langle j^*_p \rangle \) and \(\langle j^*_n \rangle \) are given in terms of the electric potential by the generalised Ohm’s Laws (7.3) in which the tensor hole and electron conductivities \(\sigma^*_p \) and \(\sigma^*_n \) are defined via (7.4) in terms of the dimensionless tensors \(\underline{B} \) and \(\underline{C} \) which characterise the microstructure through the relations (4.39)-(4.40); the averaged electric displacement field \(\langle D^* \rangle \) is related to the electric potential by (7.5) in which the permittivity tensor \(\varepsilon^* \) is given by (7.6) in terms of the dimensionless tensor \(\underline{A} \) which characterises the microstructure through the relation (4.41).

Finally we used the homogenised model (as applied to an interdigitated cell) to investigate the effects that changes in the geometric properties of the cell have on its performance by calculating current-voltage curves for a range of device designs, that make use of identical materials. We showed that for devices manufactured with capping layers it is important to ensure a relatively thin capping layer, above the lower transparent electrode, because the energy from light absorbed in the capping layer is lost to the device, since excitons generated here are unlikely to reach the interface before recombination. However reducing the thickness of this capping layer to zero so that the acceptor/donor interface contacts the lower electrode (such as in a device made by spin coating) results in short-circuit and consequent losses that manifest themselves in a reduction of the open-circuit voltage.
Appendix A Derivation of homogenised equations for a bulk heterojunction.

In this Appendix we consider how to derive homogenised equations, over the device lengthscale, by explicitly taking account of the processes occurring on the heterojunction microscale. This will be accomplished via the method of multiple-scales (see for example [11]). In this instance we operate on the dimensionless equations (2.22)-(2.31) in which the device lengthscale is of $O(1)$ and that of the microstructure is $O(\delta)$, where $\delta \rightarrow 0$. Furthermore we assume that the microstructure is locally periodic inside a completely periodic array of boxes which we denote by $\hat{\Omega}$. Consider now one of these boxes \hat{V}, say, whose volume is split into a part $\hat{\Omega}_d$ occupied by the donor material and a part $\hat{\Omega}_a$ represents occupied by the acceptor (see Figure 6 for an example configuration). Furthermore we denote that part of the boundary to $\hat{\Omega}_a$ lying along the boundary of \hat{V} by $\partial \hat{\omega}_a$ and that part lying along the interface between $\hat{\Omega}_a$ and $\hat{\Omega}_d$ by $\partial \hat{\Omega}$. Similarly we denote that part of the boundary to $\hat{\Omega}_d$ lying along the boundary of \hat{V} by $\partial \hat{\omega}_d$ and that part lying along the interface between $\hat{\Omega}_a$ and $\hat{\Omega}_d$ by $\partial \hat{\Omega}$. For the sake of generality we allow the microstructure to change slowly, over the $O(1)$ lengthscale, and it is in this sense that it is locally periodic.

A.1 A multiple scales formulation of the problem.

We investigate the distinguished limit that κ, ν, χ, β_d, β_a, G_a, \mathcal{E}, λ, Γ, γ_{eff} are $O(1)$ while $\delta \rightarrow 0$. We then introduce a microscale variable \hat{x} defined by

$$x = \delta \hat{x},$$

and look for a solution to our equations that is a function both of the microscale variable \hat{x} and the device scale variable x. As is standard in such multiple-scales calculations we look for a solution that is periodic in the microscale variable transform the gradient operator via $\nabla \rightarrow \nabla + \hat{\nabla}/\delta$. We can thus rewrite (2.22)-(2.31) in the form

$$\delta \frac{\partial p}{\partial t} + \hat{\nabla} \cdot \hat{j}_p + \delta \nabla \cdot \hat{j}_p = 0$$

in $\hat{\Omega}_d$, \quad (A 1)

$$\delta^2 \nu \frac{\partial c_d}{\partial t} = \chi \left[\hat{\nabla}^2 c_d + 2 \nabla \cdot \hat{\nabla} c_d + \nabla^2 c_d \right] + Q(y) - \beta_d c_d$$

in $\hat{\Omega}_d$, \quad (A 2)

$$\frac{\partial n}{\partial t} - \hat{\nabla} \cdot \hat{j}_n - \delta \nabla \cdot \hat{j}_n = 0$$

in $\hat{\Omega}_a$, \quad (A 3)

$$\nabla \cdot \mathcal{D} + \delta \nabla \cdot \mathcal{D} = \frac{\delta}{\lambda^2} \left(\mathcal{H}_d - (1 - \mathcal{H}_d) n \right)$$

$$\mathcal{D} = \frac{1}{\delta} \left(\mathcal{E} \mathcal{H}_d + \frac{1}{\mathcal{E}} (1 - \mathcal{H}_d) \right) \left(\hat{\nabla} \phi + \delta \nabla \phi \right)$$

in $\hat{\Omega}_d$, \quad (A 4)
Effective-medium equations for bulk heterojunction organic solar cells

\[j_n \cdot N|_{\partial \Omega} = j_p \cdot N|_{\partial \Omega} = \delta(\Gamma R(n,p) - J_{\text{phot}}), \quad c_d|_{\partial \Omega} = c_a|_{\partial \Omega} = 0, \quad (A\,5) \]

where \(J_{\text{phot}} = \delta \gamma_{\text{eff}} \left(\chi \left(\nabla c_a + \nabla c_d \right) \right) \cdot N \) on \(\partial \Omega_i, \quad (A\,6) \)

and \(n, p, \phi, j_n, j_p, c_d, c_a \) are periodic in \(\hat{x} \) over \(\hat{V} \), \((A\,7) \)

Here \(\mathcal{H}_d \) is the characteristic function for the donor region (i.e. \(\mathcal{H}_d = 1 \) in \(\hat{\Omega}_d \) and zero in \(\hat{\Omega}_a \)) and \(\mathcal{D} \) is the dimensionless electric displacement field.

The Interface.

We make the standard assumption that variables are periodic in the shortscale variable \(\hat{x} \). This ensures that there are no secular growth terms in their asymptotic expansions (in powers of \(\delta \)). In order to allow us to account for an acceptor/donor interface which not only varies on the microscale but can also show slow variations in its structure over the macroscale we follow [48] and [6] and define the interface \(\partial \hat{\Omega} \) by the zero level set of the function \(\psi(\hat{x}, \hat{\hat{\hat{\hat{x}}}}) \) (that is by \(\psi(\hat{x}, \hat{\hat{\hat{\hat{x}}}}) = 0 \)) choosing this function so that \(\psi > 0 \) in \(\Omega_a \) and \(\psi < 0 \) in \(\Omega_d \). It follows that \(N \) the unit normal to the interface (directed from \(\hat{\Omega}_d \) into \(\hat{\Omega}_a \)) is given by

\[N = \nabla \psi + \delta \nabla \psi \]

and that the interface conditions \((A\,5a) \) can be written in the form

\[j_n \cdot (\nabla \psi + \delta \nabla \psi)|_{\partial \Omega} = j_p \cdot (\nabla \psi + \delta \nabla \psi)|_{\partial \Omega} = \delta \left| \nabla \psi + \delta \nabla \psi \right| (\Gamma R(n,p) - J_{\text{phot}}), \quad (A\,9) \]

It is also useful to define the leading order approximation to the unit normal to the interface by

\[N_0 = \frac{\nabla \psi}{\left| \nabla \psi \right|} \]

Two useful results.

Following [48] we note the following results that prove useful in the derivation of the homogenised equations:

\[\nabla \cdot \int_{\Omega_a} j(\hat{x}, \hat{x}) \, d\hat{V} \sim \nabla \cdot \int_{\Omega_d} j \, d\hat{V} + \int_{\partial \Omega} \frac{j \cdot \nabla \psi}{\left| \nabla \psi \right|} \, d\hat{S}, \quad (A\,11) \]

\[\nabla \cdot \int_{\Omega_d} j(\hat{x}, \hat{x}) \, d\hat{V} \sim \nabla \cdot \int_{\Omega_d} j \, d\hat{V} - \int_{\partial \Omega} \frac{j \cdot \nabla \psi}{\left| \nabla \psi \right|} \, d\hat{S}, \quad (A\,12) \]

which are true for a differentiable vector field \(j(\hat{x}, \hat{x}) \) defined in \(\hat{\Omega}_a \) and \(\hat{\Omega}_d \), respectively.

A.2 Homogenization of the potential equation

Substitution of the expansions \((4.34) \) and

\[\mathcal{D} = \mathcal{D}_0(x, \hat{x}, t) + \delta \mathcal{D}_1(x, \hat{x}, t) + \delta^2 \mathcal{D}_2(x, \hat{x}, t) + \cdots, \]
into (A3)-(A4) yields the following cell problem, in $\mathbf{\hat{V}}$, for the first order correction to the potential, at leading order:

$$\mathbf{\hat{V}}^2 \phi_1 = 0 \quad \text{in} \quad \hat{\Omega}_a \quad \text{and} \quad \hat{\Omega}_d, \quad (A13)$$

$$\left(\nabla \phi_1 \big|_{\partial \hat{\Omega}} - \varepsilon^2 \nabla \phi_1 \big|_{\partial \hat{\Omega}} \right) \cdot \mathbf{N}_0 = -(1 - \varepsilon^2) \nabla \phi_0 \cdot \mathbf{N}_0, \quad \phi_1 \big|_{\partial \hat{\Omega}} = \phi_1 \big|_{\partial \hat{\Omega}}. \quad (A14)$$

We can write the solution to this problem in terms of the three characteristic functions $\mu^{(i)}(x, \mathbf{\hat{x}})$ (for $i = 1, 2, 3$) which satisfy the problems

$$\mathbf{\hat{V}}^2 \mu^{(i)} = 0 \quad \text{in} \quad \hat{\Omega}_a \quad \text{and} \quad \hat{\Omega}_d, \quad (A15)$$

$$\left(\nabla \mu^{(i)} \big|_{\partial \hat{\Omega}} - \varepsilon^2 \nabla \mu^{(i)} \big|_{\partial \hat{\Omega}} \right) \cdot \mathbf{N}_0 = -N_{0,i}, \quad \mu^{(i)} \big|_{\partial \hat{\Omega}} = \mu^{(i)} \big|_{\partial \hat{\Omega}}, \quad (A16)$$

where $N_{0,i}$ is the i'th component of \mathbf{N}_0. The solution for ϕ has the form

$$\phi_1(x, \mathbf{\hat{x}}) = -(1 - \varepsilon^2) \sum_{i=1}^{3} \frac{\partial \phi_0}{\partial x_i} \mu^{(i)}. \quad (A17)$$

Proceeding with the expansion of (A3)-(A4) to next order we obtain the following problem:

$$\mathbf{\hat{V}} \cdot \mathbf{D}_1 + \nabla \cdot \mathbf{D}_0 = \frac{1}{\chi^2} \left(\mathcal{H}_d p_0 - (1 - \mathcal{H}_d) n_0 \right) \quad \text{in} \quad \hat{\Omega}_a \cup \hat{\Omega}_d,$n_0$$

$$\mathbf{D}_1 \quad \text{periodic in} \quad \mathbf{\hat{x}}.$$ Integrating this problem over $\hat{\Omega}_a \cup \hat{\Omega}_d$ and applying the divergence theorem, yields

$$\int_{\partial(\hat{\Omega}_a \cup \hat{\Omega}_d)} \mathbf{D}_1 \cdot \mathbf{N} d\hat{S} + \int_{\hat{\Omega}_a \cup \hat{\Omega}_d} \nabla \cdot \mathbf{D}_0 d\hat{V} = \frac{1}{\chi^2} (|\hat{\Omega}_d| p_0 - |\hat{\Omega}_a| n_0)$$

where $|\hat{\Omega}_d| = \int_{\hat{\Omega}_d} d\hat{V}$ and $|\hat{\Omega}_a| = \int_{\hat{\Omega}_a} d\hat{V}$. Since \mathbf{D}_1 is periodic in $\mathbf{\hat{x}}$ the first term in the above expression vanishes so that it can be rewritten as

$$\nabla \cdot \left(\mathbf{D}_0 \right) = \frac{1}{\chi^2} \left((1 - F(x)) p_0(x, t) - F(x) n_0(x, t) \right), \quad (A18)$$

where $\langle \mathbf{D}_0 \rangle(x, t)$ is the averaged value of \mathbf{D}_0 over the periodic cell $\hat{\Omega}_a \cup \hat{\Omega}_d$ and $F(x)$ is the volume fraction of the acceptor; these quantities can thus be expressed in the form

$$\langle \mathbf{D}_0 \rangle = \frac{\int_{\hat{\Omega}_a \cup \hat{\Omega}_d} \mathbf{D}_0 d\hat{V}}{|\hat{\Omega}_a| + |\hat{\Omega}_d|}, \quad F(x) = \frac{|\hat{\Omega}_a|}{|\hat{\Omega}_a| + |\hat{\Omega}_d|}. \quad (A19)$$

In order to complete the analysis it remains to evaluate $\langle \mathbf{D}_0 \rangle(x, t)$ in terms of the slowly varying variable $\phi_0(x, t)$. We note that, where we replace ϕ_1 by its solution (A17) and use the Einstein summation convention, that \mathbf{D}_0 has the form

$$\mathbf{D}_0 = -\left(\varepsilon \mathcal{H}_d + \frac{1}{\varepsilon} (1 - \mathcal{H}_d) \right) \left(\delta_{ij} - (1 - \varepsilon^2) \frac{\partial \mu^{(j)}}{\partial x_i} \right) \frac{\partial \phi_0}{\partial x_j} \mathbf{e}_i.$$ Here \mathbf{e}_i is the unit basis vector in the direction of the x_i-axis. Integrating \mathbf{D}_0 over $\hat{\Omega}_a \cup \hat{\Omega}_d$ and dividing by $|\hat{\Omega}_a| + |\hat{\Omega}_d|$ yields an expression for $\langle \mathbf{D}_0 \rangle(x, t)$ in terms of an effective permittivity tensor $\epsilon_\mathbf{\hat{x}}$ (that is determined from the underlying microscale geometry) and
the gradient of \(\phi_0 \)

\[
(D_0) = -A_{ij} \frac{\partial \phi_0}{\partial x_j} e_i,
\]

where

\[
A_{ij} = \frac{1}{|\Omega_u| + |\Omega_d|} \int_{\Omega_u \cup \Omega_d} \left(\mathcal{E} \mathcal{H}_d + \frac{1}{\mathcal{E}} (1 - \mathcal{H}_d) \right) \left(\delta_{ij} - (1 - \mathcal{E}) \frac{\partial \mathcal{H}_d^{(j)}}{\partial x_i} \right) d\mathbf{V}.
\]

(A 20)

The ‘averaged’ equations for the leading order potential are thus given by (A 18) and (A 20).

A.3 Homogenization of the carrier equations

Here we derive averaged carrier equations in an analogous way to that presented for the averaged potential equation. We begin by expanding (A 1) and (A 2) to leading order obtaining the following expressions for \(j_{p,0} \) and \(j_{n,0} \):

\[
\hat{\nabla} \cdot j_{p,0} = 0 \quad \text{and} \quad j_{p,0} = -\kappa \left(\nabla p_0 + p_0 \nabla \phi_0 + \hat{\nabla} p_1 + p_0 \hat{\nabla} \phi_1 \right) \quad \text{in} \quad \hat{\Omega}_d, \quad (A 21)
\]

\[
\hat{\nabla} \cdot j_{n,0} = 0 \quad \text{and} \quad j_{n,0} = \frac{1}{\kappa} \left(\nabla n_0 - n_0 \nabla \phi_0 + \hat{\nabla} n_1 - n_0 \hat{\nabla} \phi_1 \right) \quad \text{in} \quad \hat{\Omega}_a, \quad (A 22)
\]

The boundary conditions on this problem come from the leading order expansion of (A 9) and are

\[
j_{p,0} \cdot N_0|_{\partial \hat{\Omega}} = j_{n,0} \cdot N_0|_{\partial \hat{\Omega}} = 0, \quad (A 23)
\]

On noting that \(n_0, p_0 \) and \(\phi_0 \) are independent of \(\hat{x} \) and recalling that \(\hat{\nabla}^2 \phi_1 = 0 \) we see that (A 21)-(A 22) can be simplified to

\[
\hat{\nabla}^2 p_1 = 0 \quad \text{in} \quad \hat{\Omega}_d, \quad (A 24)
\]

\[
\hat{\nabla}^2 n_1 = 0 \quad \text{in} \quad \hat{\Omega}_a. \quad (A 25)
\]

Appropriate boundary conditions on these problems come from substitution of the expressions for \(j_{p,0} \) and \(j_{n,0} \), contained in (A 21)-(A 22), into (A 23) and the assumption that solution is periodic in \(\hat{x} \); thus the problems for \(p_1 \) and \(n_1 \) are closed by

\[
\hat{\nabla} p_1 \cdot N_0|_{\partial \hat{\Omega}} = -\left(\nabla p_0 + p_0 \nabla \phi_0 \right) \cdot N_0|_{\partial \hat{\Omega}} - p_0 \hat{\nabla} \phi_1 \cdot N_0|_{\partial \hat{\Omega}}, \quad (A 26)
\]

\[
\begin{align*}
\text{periodic in} \quad \hat{x}, \\
p_1
\end{align*}
\]

\[
\hat{\nabla} n_1 \cdot N_0|_{\partial \hat{\Omega}} = -\left(\nabla n_0 - n_0 \nabla \phi_0 \right) \cdot N_0|_{\partial \hat{\Omega}} + n_0 \hat{\nabla} \phi_1 \cdot N_0|_{\partial \hat{\Omega}}, \quad (A 28)
\]

\[
\begin{align*}
\text{periodic in} \quad \hat{x}, \\
n_1
\end{align*}
\]

The solution to the first order problem in terms of characteristic functions.

The solutions to the two problems for \(p_1 \) and \(n_1 \) can be written in terms of the six characteristic functions \(\zeta^{(i)} \) and \(\eta^{(i)} \) (for \(i = 1, 2, 3 \)) defined by the problems

\[
\hat{\nabla}^2 \zeta^{(i)} = 0 \quad \text{in} \quad \hat{\Omega}_d, \quad \hat{\nabla} \zeta^{(i)} \cdot N_0|_{\partial \hat{\Omega}} = e_i \cdot N_0, \quad \zeta^{(i)} \quad \text{periodic in} \quad \hat{x}, \quad (A 30)
\]

\[
\hat{\nabla}^2 \eta^{(i)} = 0 \quad \text{in} \quad \hat{\Omega}_a, \quad \hat{\nabla} \eta^{(i)} \cdot N_0|_{\partial \hat{\Omega}} = e_i \cdot N_0, \quad \eta^{(i)} \quad \text{periodic in} \quad \hat{x}, \quad (A 31)
\]
It follows from (A 24)-(A 29) and (A 30)-(A 31) that
\[p_1(x, \hat{x}, t) = -p_0(x, t)\phi_1(x, \hat{x}, t) - \sum_{i=1}^{3} e_i \cdot (\nabla p_0(x, t) + p_0(x, t)\nabla \phi_0(x, t))\zeta^{(i)}(x, \hat{x}, t), \]
where
\[n_1(x, \hat{x}, t) = n_0(x, t)\phi_1(x, \hat{x}, t) - \sum_{i=1}^{3} e_i \cdot (\nabla n_0(x, t) - n_0(x, t)\nabla \phi_0(x, t))\eta^{(i)}(x, \hat{x}, t). \]

The first order problems for the carrier fluxes.
Expanding (A 1a) and (A 2a) to first order yields

\[\frac{\partial p_0}{\partial t} + \nabla \cdot j_{p,0} + \nabla \cdot j_{p,1} = 0 \quad \text{in} \quad \hat{\Omega}_d, \]
\[\frac{\partial n_0}{\partial t} - \nabla \cdot j_{n,0} - \nabla \cdot j_{n,1} = 0 \quad \text{in} \quad \hat{\Omega}_a. \]

The corresponding interface conditions (obtained from the \(O(\delta) \) expansions of (A 9)) are
\[j_{p,1} \cdot \nabla \psi \big|_{\partial \hat{\Omega}} + j_{p,0} \cdot \nabla \psi \big|_{\partial \hat{\Omega}} = |\nabla \psi|[(\Gamma R(n_0(x, t), p_0(x, t)) - J_{\text{phot,0}}(x, \hat{x}, t)) (A 36) \]
for \(j_{p,1} \) periodic in \(\hat{x} \) and
\[j_{n,1} \cdot \nabla \psi \big|_{\partial \hat{\Omega}} + j_{n,0} \cdot \nabla \psi \big|_{\partial \hat{\Omega}} = |\nabla \psi|[(\Gamma R(n_0(x, t), p_0(x, t)) - J_{\text{phot,0}}(x, \hat{x}, t)) (A 37) \]
for \(j_{n,1} \) periodic in \(x \).

Integrating (A 34) over \(\hat{\Omega}_d \), applying the divergence theorem and the conditions (A 36) gives
\[|\hat{\Omega}_d| \frac{\partial p_0}{\partial t} + \int_{\hat{\Omega}_d} \nabla \cdot j_{p,0} d\hat{V} - \int_{\partial \hat{\Omega}_d} j_{p,0} \cdot \nabla \psi \big|_{\partial \hat{\Omega}_d} d\hat{S} + \int_{\partial \hat{\Omega}_d} d\hat{S} \left(\Gamma R(n_0, p_0) - \frac{\int_{\partial \hat{\Omega}} J_{\text{phot,0}} d\hat{S}}{\int_{\partial \hat{\Omega}} d\hat{S}} \right) = 0. \]

Applying the formula (A 11) to the above yields the following equation for \(p_0(x, t) \):
\[(1 - F(x)) \frac{\partial p_0}{\partial t} + \nabla \cdot \langle j_{p,0} \rangle + b_{ct} (\Gamma R(n_0(x, t), p_0(x, t)) - \langle J_{\text{phot,0}}(x, \hat{x}, t) \rangle) = 0. \]
where \(F(x) \) is the volume fraction of acceptor (defined in (A 19)), while the averaged hole current \(\langle j_{p,0} \rangle \), the B.E.T surface area \(b_{ct} \) (i.e. the surface area of interface per unit volume) and the average photocurrent \(\langle J_{\text{phot,0}} \rangle \) are defined by
\[\langle j_{p,0} \rangle = \frac{1}{|\hat{\Omega}_a| + |\hat{\Omega}_d|} \int_{\hat{\Omega}_d} j_{p,0} d\hat{V}, b_{ct} = \frac{1}{|\hat{\Omega}_a| + |\hat{\Omega}_d|} \int_{\partial \hat{\Omega}_d} d\hat{S}, \langle J_{\text{phot,0}} \rangle = \frac{\int_{\partial \hat{\Omega}} J_{\text{phot,0}} d\hat{S}}{\int_{\partial \hat{\Omega}} d\hat{S}}. \]

\[(A 39) \]

note that here \(|\hat{V}| = |\hat{\Omega}_a| + |\hat{\Omega}_d| \) is the volume of the periodic box \(\hat{V} \) and so \(b_{ct} \) is a measure of the surface area of interface per unit volume of material.

We can obtain an evolution equation for \(n_0 \), analogous to (A 38), in a similar manner. We begin by integrating (A 35) over \(\hat{\Omega}_a \), applying the divergence theorem and the boundary conditions (A 37) to obtain
\[|\hat{\Omega}_a| \frac{\partial n_0}{\partial t} - \int_{\hat{\Omega}_a} \nabla \cdot j_{n,0} d\hat{V} - \int_{\partial \hat{\Omega}_a} j_{n,0} \cdot \nabla \psi \big|_{\partial \hat{\Omega}_a} d\hat{S} + \int_{\partial \hat{\Omega}_a} d\hat{S} (\Gamma R(n_0, p_0) - \langle J_{\text{phot,0}} \rangle) = 0. \]
Applying the formula (A 12) to yields the desired result

\[F(x) \frac{\partial n_0}{\partial t} - \nabla \cdot (j_{n,0}) +
\]

\[b_{et}(\Gamma R(n_0, p_0) - \langle J_{phot,0} \rangle) = 0. \] \hspace{1cm} (A 40)

where

\[\langle j_{n,0} \rangle = \frac{1}{|\Omega_a| + |\Omega_d|} \int_{\Omega_a} j_{p,0} d\tilde{V}. \] \hspace{1cm} (A 41)

It remains to determine the two quantities \(\langle j_{p,0} \rangle \) and \(\langle j_{n,0} \rangle \). This we do by substituting for \(p_1 \) and \(n_1 \), from (A 32) and (A 33), into the leading order expansions for \(j_{p,0} \) and \(j_{n,0} \), (A 21b) and (A 22b), to find

\[j_{p,0} = -\kappa \left(\delta_{ij} - \frac{\partial c^{(j)}}{\partial x_i} \right) \left(\frac{\partial n_0}{\partial x_j} + p_0 \frac{\partial \phi_0}{\partial x_j} \right) e_i, \]

\[j_{n,0} = \frac{1}{\kappa} \left(\delta_{ij} - \frac{\partial \eta^{(j)}}{\partial x_i} \right) \left(\frac{\partial n_0}{\partial x_j} - n_0 \frac{\partial \phi_0}{\partial x_j} \right) e_i, \]

where \(\delta_{ij} \) is the Kronecker-delta function and we employ the Einstein summation convention. Substituting these expressions into the definitions of \(\langle j_{p,0} \rangle \) and \(\langle j_{n,0} \rangle \) contained in (A 39) and (A 41) yields the following expressions for the average fluxes in terms of the ‘conductivity’ tensors \(B \) and \(C \) (determined from the microscopic geometry) and the leading order solutions for \(n, p \) and \(\phi \):

\[\langle j_{p,0} \rangle = -B_{ij} \left(\frac{\partial n_0}{\partial x_j} + p_0 \frac{\partial \phi_0}{\partial x_j} \right) \] \hspace{1cm} (A 42)

\[\langle j_{n,0} \rangle = C_{ij} \left(\frac{\partial n_0}{\partial x_j} - n_0 \frac{\partial \phi_0}{\partial x_j} \right) \] \hspace{1cm} (A 43)

A.4 The exciton equation.

The microstructure is tuned to be roughly the same scale as the exciton decay length. It follows that exciton concentration depends, to leading order, upon not only the macroscale variable \(x \) but also on the microscale variable \(\hat{x} \). In terms of the multiple scale expansion the exciton equations (2.22c) and (2.23c) and boundary condition (2.26b) become

\[\chi \left(\hat{\nabla}^2 c_d + 2\delta \nabla \cdot (\nabla c_d) + \delta^2 \nabla^2 c_d \right) + Q(y) - \beta_d c_d = 0, \text{ in } \hat{\Omega}_d, \]

\[c_d|_{\partial \hat{\Omega}} = 0 \text{ and } c_d \text{ periodic in } \hat{x}, \]

\[\frac{1}{\chi} \left(\nabla^2 c_a + 2\delta \nabla \cdot (\nabla c_a) + \delta^2 \nabla^2 c_a \right) + G_a Q(y) - \beta_a c_a = 0, \text{ in } \hat{\Omega}_a, \]

\[c_a|_{\partial \hat{\Omega}} = 0 \text{ and } c_a \text{ periodic in } \hat{x}, \]

so that to leading order

\[\chi \hat{\nabla}^2 c_{d,0} + Q(y) - \beta_d c_{d,0} = 0, \text{ in } \hat{\Omega}_d, \]

\[c_{d,0}|_{\partial \hat{\Omega}} = 0 \text{ and } c_{d,0} \text{ periodic in } \hat{x}, \]

\[\frac{1}{\chi} \hat{\nabla}^2 c_{a,0} + G_a Q(y) - \beta_a c_{a,0} = 0, \text{ in } \hat{\Omega}_a, \]

\[c_{a,0}|_{\partial \hat{\Omega}} = 0 \text{ and } c_{a,0} \text{ periodic in } \hat{x}. \]
The solution to these two problems can be used to determine $J_{\text{phot},0}$ via

$$J_{\text{phot},0}(x, \hat{x}, t) = \gamma_{\text{eff}} \left(\frac{1}{\chi} \hat{\nabla} c_d, 0 |_{\partial \Omega} - \chi \hat{\nabla} c_d, 0 |_{\partial \Omega} \right) \cdot N_0,$$

and then $(J_{\text{phot},0})(x, t)$ is determined using (A.39c).

Appendix B Details of the numerical solution to the dimensionless model

B.1 Variational formulation of the dimensionless model

In order to derive a finite element approximation of the nondimensional model (2.22)-(2.31) we first write it in variational form. To this end we introduce

$$\mathcal{W}_d := \{ \eta(x, y, t) \in L^2(0, T; H^1(\Omega_d))| \, \eta(x, -1, t) = 0 \},$$

$$\tilde{\mathcal{W}}_d := \{ \eta(x, y, t) \in L^2(0, T; H^1(\Omega_d))| \, \eta|_{\partial \Omega_i} = 0 \},$$

$$\mathcal{W}_a := \{ \eta(x, y, t) \in L^2(0, T; H^1(\Omega_a))| \, \eta(x, 1, t) = 0 \},$$

$$\tilde{\mathcal{W}}_a := \{ \eta(x, y, t) \in L^2(0, T; H^1(\Omega_a))| \, \eta|_{\partial \Omega_i} = 0 \}$$

and for simplicity of notation we drop the $*$ superscript.

From the first and second equations in (2.22) we obtain

$$\frac{\partial p}{\partial t} = \nabla \cdot [\kappa (\nabla p + p \nabla \phi)] \quad \text{in } \Omega_d$$

multiplying this equation by $\eta \in \mathcal{W}_d$ and integrating over Ω_d we have

$$\int_{\Omega_d} \left(\frac{\partial p}{\partial t} \eta + \kappa (\nabla p + p \nabla \phi) \cdot \nabla \eta \right) = \kappa \int_{\partial \Omega_i} (\nabla p + p \nabla \phi) \cdot N \eta \quad \forall \eta \in \mathcal{W}_d$$

and similarly from the first and second equations in (2.23) we obtain

$$\int_{\Omega_a} \left(\frac{\partial n}{\partial t} \xi + \frac{1}{\kappa} (\nabla n - n \nabla \phi) \cdot \nabla \xi \right) = -\frac{1}{\kappa} \int_{\partial \Omega_i} (\nabla n - n \nabla \phi) \cdot N \xi \quad \forall \xi \in \mathcal{W}_a.$$

From (2.26) we have

$$\int_{\Omega_d} \left(\frac{\partial p}{\partial t} \eta + \kappa (\nabla p + p \nabla \phi) \cdot \nabla \eta \right) = \delta \kappa \int_{\partial \Omega_i} (J_{\text{phot}}(c_a, c_d) - \Gamma R(n, p)) \eta \quad \forall \eta \in \mathcal{W}_d \quad (B.1)$$

$$\int_{\Omega_a} \left(\frac{\partial n}{\partial t} \xi + \frac{1}{\kappa} (\nabla n - n \nabla \phi) \cdot \nabla \xi \right) = \frac{\delta}{\kappa} \int_{\partial \Omega_i} (J_{\text{phot}}(c_a, c_d) - \Gamma R(n, p)) \xi \quad \forall \xi \in \mathcal{W}_a, \quad (B.2)$$

where from (2.31) we have

$$J_{\text{phot}}(c_a, c_d) = \delta \gamma_{\text{eff}} \left(\frac{1}{\chi} \nabla c_a |_{\partial \Omega_i} - \chi \nabla c_d |_{\partial \Omega_i} \right) \cdot N. \quad (B.3)$$

Multiplying (2.24) by $\eta \in \mathcal{W}_d$ and integrating over Ω_d we obtain

$$\int_{\Omega_d} \varepsilon \nabla \phi \cdot \nabla \eta = \frac{1}{\kappa^2} \int_{\Omega_d} p \eta + \int_{\partial \Omega_i} \eta \varepsilon \nabla \phi \cdot N \quad \forall \eta \in \mathcal{W}_d$$
and similarly multiplying (2.24) by \(\xi \in W_a \) and integrating over \(\Omega_a \) we obtain
\[
\int_{\Omega_a} \frac{1}{\xi} \nabla \phi \cdot \nabla \xi = -\frac{1}{\lambda^2} \int_{\Omega_a} n \xi - \int_{\partial \Omega_a} \frac{\xi}{\xi} \nabla \phi \cdot N \quad \forall \xi \in W_a.
\]
Combining the two equations above gives the following for all \(\eta \in W_d \) and for all \(\xi \in W_a \)
\[
\int_{\Omega_a} \nabla \phi \cdot \nabla \xi + \int_{\Omega_a} \nabla \phi \cdot \nabla \eta = \frac{1}{\epsilon \lambda^2} \int_{\Omega_a} \eta n \xi + \int_{\partial \Omega_a} \left(\eta \xi - \frac{\xi}{\xi} \right) \nabla \phi \cdot N.
\]
(B.4)

Multiplying the third equation in (2.22) by \(\eta \in \hat{W}_d \) and integrating over \(\Omega_d \) we have
\[
\int_{\Omega_d} \left(\delta^2 \frac{\partial c_d}{\partial t} + \beta_d c_d \right) \eta + \delta^2 \chi \int_{\Omega_d} \nabla c_d \cdot \nabla \eta = \int_{\Omega_d} Q(y) \eta \quad \forall \eta \in \hat{W}_d
\]
and similarly multiplying the third equation in (2.22) by \(\xi \in \hat{W}_a \) and integrating over \(\Omega_a \) we have
\[
\int_{\Omega_a} \left(\delta^2 \frac{\partial c_a}{\partial t} + \beta_a c_a \right) \xi + \delta^2 \chi \int_{\Omega_a} \nabla c_a \cdot \nabla \xi = \int_{\Omega_a} G_a Q(y) \xi \quad \forall \xi \in \hat{W}_a.
\]
(B.6)

\subsection*{B.2 Finite element approximation}

Let \(\Omega \) be a rectangular domain. Let \(\mathcal{T}^h \) be a partitioning of \(\Omega \) into \(J \) disjoint open simplices \(\sigma \), with \(h_{\sigma} := \text{diam}(\sigma) \) and \(h := \min_{\sigma \in \mathcal{T}^h} h_{\sigma} \), so that \(\Omega = \cup_{\sigma \in \mathcal{T}^h} \sigma \). Furthermore, let \(\mathcal{T}^h \) be such that the approximate curve \(\partial \Omega^h \) comprises of triangle edges and each triangle, \(\sigma_j, j = 1 \to J \), lies entirely in \(\Omega^h \) or \(\Omega^h \). Associated with \(\mathcal{T}^h \) are the finite element spaces
\[
S^h = \{ \chi \in H^1(\Omega) | \chi|_{\sigma_j} \text{ is piecewise linear for } j = 1 \to J \},
\]
\[S_a^h = \{ \chi \in H^1(\Omega^h_a) | \chi|_{\sigma_j} \text{ is piecewise linear for } j = 1 \to J \text{ and } \chi(x, -1) = 0 \},\]
\[S_d^h = \{ \chi \in H^1(\Omega^h_d) | \chi|_{\sigma_j} \text{ is piecewise linear for } j = 1 \to J \text{ and } \chi(x, 1) = 0 \},\]
\[S_{\hat{h}}^h = \{ \chi \in H^1(\Omega_{\hat{h}}^h) | \chi|_{\sigma_j} \text{ is piecewise linear for } j = 1 \to J \text{ and } \chi|_{\partial \Omega^h} = 0 \},\]
\[S_{\phi}^h = \{ \chi \in S^h | \chi(x, -1) = (\Phi - \Phi_{bi})/2 \text{ and } \chi(x, 1) = -(\Phi - \Phi_{bi})/2 \},\]
\[S_p^h = \{ \chi \in S_d^h | \chi(x, -1) = \hat{n} / \hat{T} \}, \quad S_n^h = \{ \chi \in S_b^h | \chi(x, 1) = \hat{n} \hat{T} \}, \quad S_c^h = \{ \chi \in S^h | \chi|_{\partial \Omega^h} = 0 \}.
\]
In addition to \(\mathcal{T}^h \), let \(0 = t_0 < t_1 < \ldots < t_{N-1} < t_N = T \) be a partitioning of \([0, T] \) into possibly variable time steps \(t_k := t_k - t_{k-1}, k = 1 \to N \).

The model (B.4) - (B.6) comprises of a system of strongly coupled partial differential equations, however by using a semi-implicit backward Euler finite element approximation it can be reduced to an uncoupled system of linear equations, see below, for the approximate solutions \(\varepsilon k^h, \phi k^h, p k^h \) and \(n k^h \). In order to obtain the solution at the \(k \)'th time step, from the data for \(p k^{k-1}, n k^{k-1}, \) and \(c k^{k-1} \) at the \(k-1 \)'th time step, we first solve (B.7) and (B.8) for \(c k^h \), before solving (B.9) for \(\phi k^h \) and finally use these results (together with
the data from the $k−1$’th time step) to solve (B 10) and (B 11) for p^k_h and n^k_h. To ensure positivity of p^k_h and n^k_h at the k’th time step we choose τ_k so that it satisfies the standard CFL condition that relates h to $|\nabla \phi^k_h|$.

This gives rise to the following finite element approximation of (B 4) - (B 6):

Given \(\{p^k_{h,1}, n^k_{h,1}, c^k_{d,h}, c^k_{a,h}\} \in S^h_p \times S^h_n \times S^h_c \) find \(\{p^k_h, n^k_h, c^k_{d,h}, c^k_{a,h}\} \in S^h_p \times S^h_n \times S^h_c \) such that

\[
\int_{\Omega_d} \left(\delta^2 \frac{(c^k_{d,h} - c^k_{a,h})}{\tau_k} + \beta_d c^k_{d,h} \right) \eta + \delta^2 \chi \int_{\Omega_d} \nabla c^k_{d,h} \cdot \nabla \eta = \int_{\Omega_d} Q(y) \eta \quad \forall \eta \in \hat{S}^h_d \quad (B 7)
\]

\[
\int_{\Omega_a} \left(\delta^2 \frac{(c^k_{a,h} - c^k_{a,h})}{\tau_k} + \beta_a c^k_{a,h} \right) \xi + \delta^2 \chi \int_{\Omega_a} \nabla c^k_{a,h} \cdot \nabla \xi = \int_{\Omega_a} G_a Q(y) \xi \quad \forall \xi \in \hat{S}^h_a \quad (B 8)
\]

\[
\int_{\Omega_d} \nabla \phi^k_h \cdot \nabla \xi + \int_{\Omega_d} \nabla \phi^k_h \cdot \nabla \eta = \int_{\partial \Omega_n} \left(\eta \mathcal{E} - \frac{\xi}{\mathcal{E}} \right) \nabla \phi^k_h \cdot N
\]

\[
= \frac{1}{\mathcal{E} \lambda^2} \int_{\Omega_d} p^{k-1}_h \eta - \frac{\xi}{\mathcal{E}} \int_{\Omega_a} n^{k-1}_h \xi \quad \forall (\eta, \xi) \in \hat{S}^h_d \times \hat{S}^h_a \quad (B 9)
\]

\[
\int_{\Omega_d} \left(\frac{(p^k_h - p^k_{h,1})}{\tau_k} \eta + \kappa (\nabla p^k_h + p^k_h \nabla \phi^k_h) \cdot \nabla \eta \right)
\]

\[
= \delta \kappa \int_{\partial \Omega^h_\text{phot}} (J_{\text{phot}}(c^k_{a,h}, c^k_{d,h}) - \Gamma R(n^{k-1}_h, p^{k-1}_h)) \eta \quad \forall \eta \in \hat{S}^h_d \quad (B 10)
\]

\[
\int_{\Omega_a} \left(\frac{(n^k_h - n^k_{h,1})}{\tau_k} \xi + \frac{1}{\kappa} (\nabla n^k_h - n^k_h \nabla \phi^k_h) \cdot \nabla \xi \right)
\]

\[
= \delta \kappa \int_{\partial \Omega^h_\text{phot}} (J_{\text{phot}}(c^k_{a,h}, c^k_{d,h}) - \Gamma R(n^{k-1}_h, p^{k-1}_h)) \xi \quad \forall \xi \in \hat{S}^h_a \quad (B 11)
\]

Here

\[
J_{\text{phot}}(c^k_{a,h}, c^k_{d,h}) = \delta \gamma_{\text{eff}} \left(\frac{1}{\chi} \nabla c^k_{a,h} \bigg|_{\partial \Omega_i} - \chi \nabla c^k_{d,h} \bigg|_{\partial \Omega_i} \right) \cdot N.
\]

Remark The non-dimensionalised model (B 4) - (B 6) and the corresponding finite element approximation are formulated for a geometry in two space directions, however both the model and the finite element approximation can be naturally extended to three space dimensions.

Appendix C The charge injection/extraction boundary conditions

According to [3] and [51] the boundary conditions at metal contact depend upon the electric field at that contact. In particular if there the field acts to drive a particular type of charge carrier from the metal contact into the organic semiconductor there is a competition between the electric field (that drives the carrier away from the metal contact) and the image charge (that attracts it toward the contact). There is thus a potential barrier to charge injection and a distance r_c (the Coulomb) radius within which
a charge carrier is very likely to recombine with the metal interface (because of the effect of its image). The Coulomb radius is given by \(r_e = q^2/(4\pi kT) \).

Here we are primarily interested in the shorting contacts made between the acceptor and the hole extracting electrode (on \(x = -L \)) and the donor and electron extracting electrode (on \(x = L \)). In both these cases a negative electric field \(E^* < 0 \) drives charge carriers into the semiconductor from the contacts and according to [3, 51] the resulting electron current (on \(x = -L \)) and hole current (on \(x = L \)) are given by

\[
j^-_n|_{x^*= -L} = \frac{4\pi \varepsilon \mu_n(kT)^2}{q^2} \left(\frac{n^*}{\psi^2(E^*)} - 4N_0 \exp \left(-\frac{U_{B1}}{kT} + f^{1/2} \right) \right) + q\mu_n E^* n^* \bigg|_{x^*= -L} \tag{C1}\\
j^+_p|_{x^*= L} = \frac{4\pi \varepsilon \mu_p(kT)^2}{q^2} \left(\frac{p^*}{\psi^2(E^*)} - 4N_0 \exp \left(-\frac{U_{B2}}{kT} + f^{1/2} \right) \right) + q\mu_p E^* p^* \bigg|_{x^*= L} \tag{C2}
\]

for \(E^*|_{x^*= -L} < 0 \) and \(E^*|_{x^*= L} < 0 \), respectively. Here \(\mu_n = qD_n/kT \) and \(\mu_p = qD_p/kT \) are electron and hole mobilities (respectively), \(N_0 \) the density of chargeable sites in the semiconductor, \(U_{B1} \) and \(U_{B2} \) the Schottky barrier energies for electron injection on \(x = -L \) and hole injection on \(x = L \) (respectively), and the dimensionless electric field \(f \) and the function \(\psi(E^*) \) are defined in (6.3). If we now equate the left hand sides of (C1) and (C2) with (2.3) and (2.4) we obtain the conditions

\[
\frac{n^*}{4\psi^2(E^*)} \left. - \frac{r_e}{4} \partial n^* \right|_{x^*= -L} = N_0 \exp \left(-\frac{U_{B1}}{kT} + f^{1/2} \right) \quad \text{for} \quad E^*|_{x^*= -L} < 0, \tag{C3}\\
\frac{p^*}{4\psi^2(E^*)} \left. + \frac{r_e}{4} \partial p^* \right|_{x^*= L} = N_0 \exp \left(-\frac{U_{B2}}{kT} + f^{1/2} \right) \quad \text{for} \quad E^*|_{x^*= L} < 0. \tag{C4}
\]

There are two interesting limits to these boundary conditions. The first is for small gradients in carriers concentration and for \(E^* \) sufficiently small such that \(f \ll 1 \) and \(\psi \sim 1/2 \); this gives the Ohmic boundary conditions \(n^*|_{x^*= -L} \sim N_0 \exp(-U_{B1}/kT) \) and \(p^*|_{x^*= L} \sim N_0 \exp(-U_{B2}/kT) \). The second, which is the relevant limit for these shorting contacts, is the limit of large Schottky barrier heights \(U_{B1}/kT \gg 1 \) and \(U_{B2}/kT \gg 1 \). This implies that the terms on right-hand-side of (C3)-(C4) are negligible, giving the limit conditions (6.2).

In the case of positive electric fields \(E^* > 0 \), so that there are no injection barriers, the relevant boundary conditions, given in [3], are

\[
j^-_n|_{x^*= -L} = \frac{16\pi \varepsilon \mu_n(kT)^2}{q^2} \left(n^* - N_0 \exp \left(-\frac{U_{B1} + qE^* r_e/4}{kT} \right) \right) \bigg|_{x^*= -L}, \tag{C5}\\
j^+_p|_{x^*= L} = \frac{16\pi \varepsilon \mu_p(kT)^2}{q^2} \left(p^* - N_0 \exp \left(-\frac{U_{B2} + qE^* r_e/4}{kT} \right) \right) \bigg|_{x^*= L}. \tag{C6}
\]

Equating these equations with (2.3) and (2.4), as before, we obtain

\[
n^* \left(1 - \frac{qE^* r_e}{4kT} \right) \left. - \frac{r_e}{4} \partial n^* \right|_{x^*= -L} = N_0 \exp \left(-\frac{U_{B1} + qE^* r_e/4}{kT} \right) \quad \text{for} \quad E^*|_{x^*= -L} > 0, \tag{C7}\\
p^* \left(1 - \frac{qE^* r_e}{4kT} \right) \left. + \frac{r_e}{4} \partial p^* \right|_{x^*= L} = N_0 \exp \left(-\frac{U_{B2} + qE^* r_e/4}{kT} \right) \quad \text{for} \quad E^*|_{x^*= L} > 0, \tag{C8}
\]

Effective-medium equations for bulk heterojunction organic solar cells
and the appropriate limit equations for large barrier heights are (6.4).

Acknowledgements

GR and CPP would both like to thank the EPSRC, who partly funded this research through grant EP/I01702X/1. VS gratefully acknowledges the support of the EPSRC, UK grant EP/J016780/1 and the Leverhulme Trust Research Project Grant RPG-2014-149.

References

Effective-medium equations for bulk heterojunction organic solar cells

