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Abstract
Introduction
 The utility of blood for genome-wide gene expression profiling and biomarker discovery has received much attention in patients diagnosed with major psychiatric and central nervous system (CNS) disorders. While numerous studies have been conducted, statistical rigor and clarity in terms of blood-based biomarker discovery, validation and testing is needed. 
Methods
We conducted a systematic review of the literature to synthesize methodological approaches and to further assess the value of blood transcriptome profiling in mental disorders. We were particularly interested in statistical considerations related to machine-learning,  gene network analyses and convergence across different disorders. 
Results
A total of 116 peripheral blood transcriptome studies across 16 disorders were surveyed: 28 studies used a variety of machine-learning techniques to assess putative clinical viability of the candidate biomarkers, 11 leveraged a higher-order systems-level perspective to identify gene module-based biomarkers and 9 performed analyses across two or more psychiatric phenotypes. Further, ~50% of the surveyed studies included fewer than 50 samples while ~75% included less than 100. 
Conclusions
Expanding knowledge of peripheral signals in mental disorders is useful in supplementing the current neurocentric paradigm in advancing diagnosis and treatment. Proper statistical consideration and execution is critical to ensure blood-based biomarker discovery and validation. Future studies capitalizing on larger sample sizes and emerging next-generation technologies set a stage for potential accurate blood-based tests. 

Background
Great research effort is underway to classify mental disorders on the basis of objective biological markers (biomarkers), and to include this exercise into the standard diagnostic process (Cuthbert and Insel, 2013). Emerging technologies such as, genome-wide microarray and RNA-sequencing transcriptome profiling, are quickly moving forward as techniques for biomarker discovery in psychiatry and hold great promise for making biological systems-based evaluations. These techniques provide a quantitative and qualitative assessment of genome-wide transcript abundance useful for investigating genome-environment interactions (Buil et. al., 2015), health-to-disease transitions (Costa et. al., 2012) and treatment response (Mamdani et. al., 2011; Guilloux et al., 2015).
Application of genome-wide gene expression profiling to major psychiatric and central nervous system (CNS) disorders is increasing. Through large collaborative efforts, analyses of post-mortem brain tissue have offered the first systematic view of the vastly complex transcriptome landscape across brain development and between brain regions (Kang et al., 2011; Sunkin et. al., 2012; Miller et. al., 2014). While highly informative for the pathophysiology of these disorders, the inability to access live brain tissue hinders its use as a prognostic and diagnostic indicator. The use of post-mortem brain gene expression as a putative biomarker has limitations beyond tissue inaccessibility; for example, the relative instability of RNA resulting from post-mortem factors (such as brain tissue pH, hypoxia, and dehydration) may confound the relationship between measured expression levels and disease status (Popova et. al., 2008), resulting in inconsistencies across studies. Alternatively, genome-wide analysis of patient blood transcriptional profiles offers a non-invasive surrogate for biomarker discovery and for investigating the mechanisms relevant to mental disorders.
Research into the correspondence of gene expression across blood and brain compartments reveals a highly variable 35% - 80% of known transcripts believed to be present in both tissues, with weak to moderately strong correlations between tissues (r < 0.64) (Tylee et. al., 2013; van Heerden et. al., 2009). However, the expression of a biomarker in the blood may not, or necessarily need to, resemble the expression of the same analyte in the brain. Moreover, an increasing body of literature emphasises the fine-tuned communication between many seemingly distant bodily systems: for example, the discovery of a lymphatic vasculature reaching the meningeal linings of the brain highlights the potential role of peripheral mechanisms in brain disease etiology (Louveau et. al., 2015). Perhaps a better example of blood-brain bidirectional communication is found in increasing work indicating that dysregulation of immune-related genes in the periphery is associated with the pathophysiology of numerous mental disorders. 

Before blood-based biomarkers can be translated clinically in psychiatry, statistical rigor and clarity in terms of biomarker discovery, validation and testing is necessary. Rapid technologic advances and emerging evidence of unique peripheral signatures across mental disorders necessitate a detailed cross-field examination of the genome-wide peripheral blood transcriptome profiling in molecular psychiatry research. It is expected that enhanced methodological clarity may inform the search for more verifiable biomarkers. Here, we systematically surveyed blood-based genome-wide gene expression studies in major psychiatric and CNS phenotypes and focus on statistical applications pertaining to machine-learning, gene network analyses and convergence across different disorders, and anchored this discussion around illustrative case-studies. We further discuss common methodological hurdles and guidelines for improved reproducibility, as well as the utility of new next-generation techniques for enhanced resolution of peripheral mechanisms as objective blood-based biomarkers for mental health status.
Methods
We survey published human studies from the past 10 years, (up to August 2015), which applied blood transcriptome gene expression profiling to 16 often investigated major psychiatric and CNS conditions: schizophrenia, Alzheimer’s disease, major depressive disorder, autism spectrum disorder, bipolar disorder, Parkinson’s disease, posttraumatic stress disorder (PTSD), psychosis, Tourette syndrome, eating disorders, generalized anxiety disorder (GAD), suicide, post-partum depression (PPD), personality and personality disorders, attention deficit hyperactivity disorder (ADHD) and panic disorder.  We also include studies incorporating blood transcriptomics to investigate mindfulness and meditation. 

We coupled these terms with the following PubMed query: (blood OR PBMC OR PBMCs OR PBL OR PBLs OR peripheral blood leukocytes OR peripheral blood OR leukocytes OR blood-based OR blood-based biomarker) AND (transcriptome OR transcriptomics OR RNA-Sequencing OR RNA-Seq OR RNAseq OR RNASeq OR RNA Sequencing OR microarray OR microarrays OR blood gene expression OR peripheral blood gene expression OR leukocyte gene expression) AND (“disease term x”)

A total of 16 independent queries were performed, substituting each disease term with the above-stated “disease term x” and results were pooled. The search was limited to human studies published in the last 10 years. Studies using transcriptomic platforms to profile miRNA, mRNA or lnRNA were included while studies using qualitative real-time PCR (RT-qPCR) as a means to investigate a targeted panel of candidate genes were removed. We excluded studies investigating molecular mechanisms in lymphoblastoid cell lines derived primary cells, skin fibroblast cultures, serum and plasma in order to retain true peripheral blood signatures. Review papers and secondary data integration analyses were not included. 
RESULTS
A total of 5,331 potentially relevant articles were identified and examined. From these studies, 116 human blood transcriptome gene expression studies were curated from the past 10 years (Supplementary Table 1), of which 97 were published in the last 5 years, and 37 in the previous 2 years. Studies were parsed accordingly to statistical analyses, sample size and disorder-type (Fig. 1). A total of 28 studies attempted to perform a variety of class prediction to assess the putative clinical viability of candidate genes for diagnosis or prognosis. In parallel, 11 studies used a higher-order gene network approach as a means to move beyond single gene analyses to identify functional gene module-based biomarkers of disease. Additionally, 9 studies incorporated two or more mental illness phenotypes to investigate potentially converging molecular signatures across disease states. Beyond this, 5 studies leveraged clinical data, genome-wide association studies (i.e. GWAS or genetic variability) and peripheral blood gene expression measurements to perform causal inference testing across platforms addressing the role of genetic variability as causally contributing to psychiatric disease (i.e. locus  gene expression  clinical trait/outcome). The remaining (and vast majority of) studies accord with a conventional bioinformatics pipeline: i.e. normalization, data filtering, multiple testing corrected differential expression analysis, unsupervised clustering on differentially expressed genes, pathway analysis and occasionally mapping physical interactions amongst candidate genes. 
It has been reported that most studies in the field of molecular psychiatry are of small effect sizes and tend to be underpowered in statistical terms (Rothpearl et al., 1981; Ioannidis, 2008; Kapur et al., 2012). Therefore, we also considered the distribution of the sample sizes (cases and controls) collected over these 116 studies (Fig. 1B). We observed a high degree of variation in terms of reported sample sizes and that ~50% of the surveyed studies conducted their analysis on fewer than 50 samples (cases and controls) and ~75% of the studies surveyed analysed fewer than 100 samples. We also noted that blood-based transcriptome biomarker discovery for schizophrenia has received a considerable amount of investigation (Fig. 1C). 
---------------------------------------------------Insert Fig. 1(found below)-------------------------------------------------
Supervised Machine-Learning: Blood-Based Biomarkers for Prediction and Diagnosis 
An ample body of research and class prediction algorithms has emerged, as represented by 28 out of the 116 collated studies. The early work of Tsuang, Glatt and colleagues challenged the utility of peripheral blood gene expression as an objective clinical diagnostic (Tsuang et. al., 2005). These authors used peripheral blood gene expression to try distinguishing between individuals with schizophrenia, bipolar disorder and healthy control subjects using logistic regression and ROC analysis. Current applications of machine-learning (ML) use supervised algorithms which ‘learn’ gene expression patterns based on presented data from past examples (the ‘training set’) and evaluate prediction accuracies on blinded withheld samples (the ‘test set’). This process reports measures of sensitivity, specificity and overall accuracy of the putative biomarker panel in distinguishing between psychiatric phenotypes using withheld samples. While several specific ML algorithms have been developed and applied to transcriptome data (Libbrect and Noble, 2015), the construction of a ML imputed blood-based biomarker broadly consists of three fundamental steps; (i) feature (gene) selection, (ii) ML algorithm implementation and (iii) estimating prediction accuracies by cross-validation. A discussion of some recent studies emphasizes some of the assumptions, methodological issues and gaps in ML blood-based biomarker discovery in psychiatric research. 

A recent study (Glatt et. al., 2013) profiled the blood transcriptome of 48 U.S. Marines (24 with eventual PTSD and 24 controls) prior-to deploying to conflict-zones, and developed a prognostic PTSD-risk biomarker for PTSD development. A predictive panel of 23 biomarkers discovered prior-to trauma exposure was able to predict the eventual onset and emergence of PTSD with 85% accuracy on a training set (38 subjects) and 70% prediction accuracy on an independent withheld test set (10 subjects). Genes passing ANCOVA testing with p < 0.01 were subjected to a support vector machines (SVM) ML model and prediction accuracies were evaluated using a nested 10-fold cross-validation. The top performing classifier was tested on the withheld test set in order to determine its ability to accurately predict group status. Cross-validation of the feature selection step occurred at each nested cross-validation iteration, which is especially critical when performing ‘leave-one-out cross-validation’ (LOOCV), the preferred and less biased approach for estimating prediction accuracy on small to moderate sample sizes (N < 50). This was the first study to demonstrate that immune-related gene dysregulation is a putative risk factor for (and not simply a consequence of) PTSD.

Mehta and colleagues (Mehta et. al., 2014) sought to identify early blood-based biomarkers for postpartum depression (PPD) at a time when women (N=201) were still euthymic, by measuring the blood transcriptome at the first and third pregnancy trimesters and again at early postpartum. Feature selection identified 116 dysregulated genes between PPD and euthymic women at the third trimester which were then incorporated into a prediction model using 100-fold LOOCV that achieved 88% accuracy in a training set (201 women) and reached similar accuracies of 87.3% on a withheld independent test set (12 PPD and 12 euthymic women). Interestingly, differential gene expression (feature selection) between PPD and euthymic women at the first trimester revealed 786 dysregulated genes which were able to achieve only a 72% prediction rate. This drop in prediction accuracy may illustrate the ‘curse of dimensionality’, where predictive power on the withheld test set reduces as the number of generalized features on the training set increases (i.e. increased data dimensionality) owing to ‘over-fitting’ the model on the training data. However a particular strength of this study is a reasonable size cohort together with an independent validation group, and the suggestion that risk for PPD may be predicted as early as the third trimester of pregnancy.

Guilloux et al., 2015 tested the utility of peripheral blood gene expression to predict non-remission of major depressive disorder (MDD) following a 12 week course of combined psychotherapy and citalopram treatment. A predictive panel of 13 biomarkers was constructed which was able to classify non-remission of MDD prior to treatment with 79.4% accuracy in a cohort of 67 subjects (34 MDD and  33 controls) and was further validated on an independent test set from another team of investigators (63 MDD) (Mamdani et. al., 2011) with 76% accuracy 8 weeks into treatment. Feature selection was based on differential expression between remitting and non-remitting subjects prior-to treatment and fed into a SVM model. Prediction accuracies were validated with a nested LOOCV using the top sets of genes ranging from 2-30, until all samples had been left out at least once to ensure an unbiased error rate. The authors later explored the utility of integrating clinical data with blood gene expression measurements in a ML context. A joint clinical-molecular prognostic classifier was constructed using the same bioinformatic pipeline and achieved 97% accuracy to predict treatment outcomes using just two gene expression measurements (IFITM3 and TIMP1) and one clinical trait (QIDS: a patient-reported inventory of depressive symptoms). This study highlights not only the utility of peripheral blood gene expression to predict treatment outcomes of MDD using a completely independent test set (Mamdani et. al., 2011), but also supports the inclusion of external clinical data as putative predictors in the model. 
These three studies highlight the flexibility of ML for blood-based biomarker discovery in neuropsychiatric phenotypes. The following statistical and translational observations for implementing ML and moving results into a real-time clinical setting may be useful. First, the fit of a model to the same data used to develop a classifier is not evidence of prediction accuracy for independent data. In other words, cross-validation is only valid if the test set is not used in the development of the model. Using the complete set of samples to select features violates this assumption and invalidates cross-validation. Second, over-fitting occurs when a ML algorithm is trained on too few features and becomes specific to the training set resulting in poor classification on independent test data. Alternatively, as the number of features increases, more training data is required to ensure there are enough training instances with each combination of the feature values. Third, for small sample sizes (n < 50) LOOCV is less biased than split-sample whereas for moderate sample sizes 10-fold or split-sample validation is preferred (Simon et. al., 2011). In either case, nested cross-validation should be considered as it avoids optimistically biased prediction accuracies by further dividing training data into an outer-loop (optimization of feature selection) and an inner-loop (specificity of the model is fit prior to applying to the withheld test set) (Cawley and Talbot, 2010). Fourth, longitudinal experimental designs are critical in fully elucidating mechanistic trends as well as in predicting disease onset, relapse or response to treatment strategies. Fifth, ML is hindered by the heterogeneity of a biological tissue whereby assuming that all genes within a biological system (blood transcriptome) are independent from each other and identically distributed. To overcome tissue complexity, various statistical approaches have been recommended, focusing on integrating physical protein-protein interaction information or summarizing gene-sets for a pathway level prediction approach (Libbrect and Noble, 2015). Additionally, several cell type deconvolution methods have been developed that provide in silico predictions of immune cell type contributions to the observed gene expression profiles, offering a means to better understand and potentially overcome cellular heterogeneity (Gaujoux and Seoighe, 2013). Sixth, an ideal test set is a truly separate, independent cohort of patients. However, naive external samples often represent statistical hurdles that connote batch-effects or technical biases, limiting classifier reproducibility. To accelerate reproducible gene signatures across independent cohorts, international research efforts collecting blood tissue across independent cohorts that is sent for joint technical processing may bypass spurious batch-effects and technical biases. Finally, it is appealing to consider the National Institute of Mental Health’s Research Domain Criteria definition of a ‘biosignature’ (Casey et. al., 2013): an integrated multi-marker test based on the use of several different readouts (self-reported, cognitive, genetic, transcriptomic, epigenomic, neuroimaging) measured in parallel for predicting disease risk and patient outcomes. For these purposes, the ability of ML algorithms to effectively integrate, interrogate and identify a putative ‘biosignature’ holds great promise. Such studies may wish to consider factors of ‘multi-collinearity’ (i.e. the inherent correlation between biomarkers which track the same process in one individual) and the ability of ascertaining the incremental utility of adding a new biomarker to a panel; at some point, including and measuring additional factors will not improve diagnosis accuracy or change patient management or clinical outcome.
Unsupervised Systems-Biology Approaches: Gene Networks as Functional Markers of Disease

Eleven of the 116 surveyed studies performed gene network analyses as a means to move beyond single gene analysis and provide a systems-biology perspective for understanding biological disturbances underlying disease etiology.  Several specific network approaches have been developed and applied to transcriptome data (Zhang and Horvath, 2005; Ramani et. al., 2008; Parikshak, Gandal and Geschwind 2015), here we center discussion around weighted gene co-expression network analysis (WGCNA) for analysing transcriptome data. WGCNA aggregates gene expression measurements from across the entire transcriptome, in an unbiased fashion to focus analysis on discrete groups of genes with highly correlated expression patterns (i.e. co-expression modules). Indeed, the probability for multiple transcripts to follow a complex pattern of expression across dozens or hundreds of samples only by chance is low and such sets of genes should therefore constitute coherent and biologically meaningful transcriptional modules. Because of the large number of comparisons (usually > 10,000) within conventional approaches (e.g. differential expression), these results are far less permissive to ‘noise’, so enhancing biomarker discovery and interpretation. Transcriptional modules can be annotated for specific molecular functions, peripheral blood cell type specificity and can be further be associated to disease status, clinical measurements and external biological data. In this sense, modules with likely biological origins and direct disease-association reflect gene regulatory networks in the blood transcriptome and act as functional biomarkers of disease rather than a single blood-based biomarker. Case-studies performing gene network analyses are useful for considering how to move beyond transcriptional modules towards clinical intervention. 

de Jong et. al., 2012 explored the diagnostic utility of blood-based genome-wide gene expression from a primary cohort of 92 medicated schizophrenia (SCZ) patients and 78 healthy controls. First, the top 5,000 most variable transcripts (across the entire dataset) were selected and a weighted gene network was constructed to identify discrete groups of co-expressed modules. The expression profiles of all genes in a module per sample were summarized by their first principal component, commonly referred to as module eigengene (ME), and tested for association to schizophrenia disease status (with age and gender as covariates) using linear regression. The analysis identified 12 modules significantly associated to schizophrenia. Following, to determine the extent of antipsychotic medication influencing these changes, a second independent medication-free cohort of 29 SCZ patients and 40 healthy controls were subjected to the same analysis. A module preservation Z statistic demonstrated significant preservation of co-expression patterns across the two cohorts. This secondary analysis identified that 2 of the 12 previously identified modules associated to SZC could be fully replicated in the medication-naïve cohort and one of these modules was strongly enriched for brain-expressed genes (although not enriched for specific neuronal markers) and functional categories such as Cellular Development and Neurological Disease. Most interestingly, by leveraging existing public data, this reproducible disease-associated module was also enriched with disease-related SNPs indicating a primary role in SCZ susceptibility and contained several heritable cis-regulated genes (i.e. ABCF1) suggesting that nearby genetic variation regulates this SCZ-associated network.
A recent PTSD study (Breen et. al., 2015) investigated peripheral blood gene expression derived from a sample of 188 U.S. Marines both prior-to and following deployment to conflict zones using a gene network-based approach. First, the preservation of co-regulated transcriptional modules were investigated as being disrupted or created in PTSD cases relative to controls, and vice-versa, at pre- and post-deployment. However, similar fundamental gene co-regulation with PTSD cases and controls was observed suggesting that major changes in the underlying molecular connectivity is not a basis for the pathology of the disorder. Second, a global co-expression network was constructed at pre- and post-deployment, independently comprised of both PTSD cases and controls. Resulting modules were functionally annotated, tested for enrichment of differentially expressed genes and correlated to clinical parameters. The greatest molecular variation distinguishing PTSD cases from controls, at pre- and post-deployment, occurred at the level of small collective changes in gene expression within modules specific for innate immunity. This result was reproduced in a completely independent cohort of U.S. Marines (96 subjects) for which data had previously been published (Glatt et. al., 2013), which is a particular strength. 
Ren et. al., 2015 explored the dual role of peripheral blood long non-coding RNAs (lncRNAs) and mRNA expression in 19 drug-naïve first-episode early-onset schizophrenia (EOS) patients relative to 18 controls. The extent of module preservation was first assessed across lncRNAs co-expression modules between cases and controls and no large differences in gene co-regulatory patterns between groups were detected. Subsequently, co-expression networks were constructed of cases and controls. Two of the identified modules were significantly associated to EOS after removing potential confounding factors, suggesting that changes in lncRNAs may be involved in the pathogenesis of EOS. This same approach was taken with mRNA expression, and highlighted one dysregulated module specific for mitochondrial functioning found to be associated with EOS. Subsequently, lncRNAs hub genes were correlated to mRNA hub genes to determine the role lncRNAs in the disturbance of mitochondrial function in association to EOS. The exploratory nature of this study revealed that EOS and controls differ in network-level activity in immune cell transcriptomes, which are now able to guide future prediction making hypotheses in terms of developing a lncRNAs blood-based prognostic classifier for the development of schizophrenia.  
Moving from a gene network approach to clinical utility necessitates a multi-step process. We provide a set of guidelines to enhance co-expression network reproducibility across independent cohorts. First, it is important to recognize that ‘weighted’ networks have shown to be more reproducible than ‘binary’ networks and ‘signed’ networks share more pathway and protein interaction relationships than ‘unsigned’ networks (Zhang and Horvath, 2005; Ramani et. al., 2008). Our work has implemented signed weighted networks as a part of WGCNA (Breen et. al., 2015; Breen et. al., 2016a; Breen et al., 2016b). Second, the power of network analyses is dependent on many similar factors as ML (e.g. data must be quality controlled and properly normalized), however one key advantage is that gene expression data are often more robust and reproducible at the module level (Langfelder et. al., 2011; Allen et. al., 2012). To obtain module level reproducibility when comparing between conditions, it is recommended to construct networks using a minimum 20 independent samples per condition and to perform permutation analyses on modules of interest to provide in silico support of co-expression (Ballouz, Verleyen and Gillis, 2015). Third, while network applications are robust, they could in theory overlook important individual disease-associated genes and we recommend analysts to also perform differential gene expression when comparing between two or more conditions. Studies may also consider combining ML with gene network applications to facilitate the placement of single biomarkers (identified by ML) into an empirically derived gene network with likely biological origins, so enhancing practical and mechanistic understandings of the ML derived biomarker panel. Fourth, focusing WGCNA on candidate gene-lists is a limitation for the level of transcriptomic exploration and results in the inability to fully characterize module structure and detect novel hub genes. This is only appropriate when lists are numbering in the thousands of genes. Fifth, gene network analyses are particularly useful in regards to data integration including the identification of modules enriched for expression quantitative trait loci and causal genetic variants (de Jong et. al., 2012) as well as associating module ME values to clinical, neurocognitive and neuroimaging data (Breen et al., 2016b). Critically, we encourage researchers to deposit their raw data in public repositories to facilitate such multi-modal analyses, which ideally will lead to more informed decisions for personalized, predictive and preventative medicine. Finally, the inclusion of multiple disease-types is a key step towards placing results into a broader context. Determining how gene networks interact and converge across psychiatric diseases supports the discovery of gene networks which drive critical neurobiological processes involved in the pathophysiology of many psychiatric diseases. Ideally, repeated computational and experimental studies which confirm functionality of prioritized candidates through network models are needed.
Multi-Disorder Convergence: Disease-Disease and Disease-Gene Relationships 
Nine out of 116 surveyed studies performed joint molecular profiling on two or more psychiatric phenotypes, with a focus on pairing schizophrenia (SCZ) with a neighboring disease state. Indeed, there is a significant overlap of clinical symptoms and presumed neurobiological mechanisms among psychiatric disorders. Abstracting disease-disease and gene-disease relationships supports the identification of unique and consensus gene networks elucidating the shared and distinct molecular networks across symptomatically similar psychiatric phenotypes. Early investigations have attempted to delineate such signatures (Tsuang et. al., 2005; Yang et al., 2005) however there is a lack of current studies adopting such a framework. This may be due to lack of assorted clinical samples, scarcity of appropriate statistical models and/or high technology costs. As a consequence, a majority of the current classification techniques tend to neglect the overlapping nature of many neuropsychiatric diseases. To begin filling in these gaps, meta-analysis of existing multi-scale data sets could represent a promising strategy to identify and evaluate novel gene networks and genetic variants that confer susceptibility to disease. 
Emerging Next-Generation Techniques for Enhanced Biomarker Discovery
To bridge the translational gap between peripheral blood transcriptomics and real-time clinical care, special attention should be focused on re-positioning the search for objective biomarkers under the umbrella of systems-scale immunology profiling assays. The majority of the studies have chosen to investigate peripheral blood leukocyte or peripheral blood mononuclear cell gene expression profiles collectively. While this bulk blood sampling method is highly informative, cellular heterogeneity has not yet been fully appreciated. There is a dearth of studies exploring peripheral mechanisms within immune cell subsets or gene expression at the single-cell level. These approaches permit higher cellular resolution enabling the discovery of cellular differences which could potentially be masked by bulk blood sampling techniques. When bulk sampling is performed, paired flow-cytometry and gene expression analyses provide a complete picture of cell-type contributions to the observed gene expression picture (Breen et al., 2016a). Indeed, measuring multiple RNA species (miRNA and lncRNA) in parallel provides additional information regarding the utility of blood as a clinical indicator. Another seldom implemented technique includes pairing mRNA expression to DNA variation at specific genomic loci to infer DNA-RNA regulatory interactions, termed expression quantitative trait loci (eQTL). DNA variation and blood transcriptional profiles are measured from the same sample/tissue and examine relationships between variants and expression to explore immunological perturbations and drivers of disease. The integration of DNA methylation arrays provides a means to identify key mechanisms specific to environmental regulation of gene expression and gene function. Other immunological techniques such as single-cell mass cytometry, using the CyTOF platform, allow for an in-depth characterization of immune system disruption via measuring cell surface and intracellular markers. Currently this approach can measure 40 parameters simultaneously for each cell within a bulk sample. Additionally, multiplex immunoassay profiling of blood serum measures up to 225 analytes specific to hormonal, immune and inflammatory, metabolic and neurotropic pathways. The field of neuroproteomics (Pienaar et. al., 2008) and metabolomics aims to quantitatively measure all proteins and small molecule metabolites within a cell and use this information to understand the response to pathyphysiological stimulation.  Metabolomics, if used in an unbiased fashion, might prove to be more direct and cost-effective approach than proteomics given the smaller number of potential metabolomic biomarkers (~2,500-3,000). Research along these lines may lead to the discovery of reproducible and practical blood-based biomarkers, including those which reflect the etiology of the disorder and those which are discriminatory between conditions. 
Conclusions
Blood transcriptome profiling studies provide a framework for the future development of blood-based biomarkers for the assessment and diagnosis of major psychiatric disorders. The utility of a blood-based biomarker is dependent on its ability to be reproducible and consistent across independent cohorts, which is severely dependent upon rigorous statistical execution. We encourage future research to explore the utility of ML and gene network analyses for guiding biomarker discovery and validation in psychiatry. However, numerous problems need to be addressed including the persistence of technical artifacts (i.e. batch-effects), increasing the use of longitudinal experimental designs, joint molecular profiling of two or more symptomatically similar phenotypes, and fully appreciating cellular heterogeneity of peripheral blood. Greater collaboration across separate academic institutions in joint technical processing may represent a critical step in fully validating the utility and reproducibility of blood-based biomarkers. This may improve sample numbers for detecting more substantial effect sizes. Importantly, more carefully planned studies and detailed consideration of statistical analysis in the early stages of experimental planning should help to realise these long-term goals. Molecular psychiatric research has only begun to reveal the importance of peripheral blood signatures for complex brain disorders. Novel systems-immunology profiling tools and new biological discoveries help set the stage for investigating blood-based transciptome tests. 
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MAIN FIGURE LEGENDS

Figure 1. A total of 127 human blood-based transcriptome gene expression studies across major psychiatric and CNS conditions published in the last 10 years. (A) Studies were parsed accordingly to statistical considerations (expressed as %).  Studies were also parsed accordingly to (B) total number of patients (cases and controls) profiled (x-axis) and (C) disease type (x-axis) respective to the total number of publications (y-axis).
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