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SUMMARY 
Microglia play key roles in brain development, homeostasis and function and it is 

widely assumed that the adult population is long-lived and maintained by self-

renewal. However, the precise temporal and spatial dynamics of the microglial 

population are unknown. We show in mice and humans that the turnover of microglia 

is remarkably fast, allowing the whole population to be renewed several times during 

a lifetime. The number of microglial cells remains steady from late postnatal stages 

until ageing, and is maintained by the spatial and temporal coupling of proliferation 

and apoptosis, as evidenced by pulse-chase studies, chronic in vivo imaging of 

microglia and the use of mouse models of dysregulated apoptosis. Our results reveal 

that the microglial population is constantly and rapidly remodelled, opening new 

avenues into the understanding of their roles in the maintenance of brain 

homeostasis. 
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INTRODUCTION 

Microglial cells are the brain’s resident innate immune cells, with proposed key roles 

in immune to brain communication and the control of inflammation in brain disease 

(Gomez-Nicola and Perry, 2015), the developmental control of neurogenesis 

(Cunningham et al., 2013), wiring (Squarzoni et al., 2014) and synaptic 

pruning(Paolicelli et al., 2011), the monitoring of synaptic activity(Wake et al., 2009) 

and the regulation of adult neurogenesis (Sierra et al., 2010). Microglia account for 5-

12% of the total number of glial cells in the mouse brain (Lawson et al., 1990) and 

0.5-16.6% of the total number of cells in the human brain (Mittelbronn et al., 2001) 

depending on the region studied.  

Microglia are derived from the yolk sac at E8.5 (Ginhoux et al., 2010), a lineage 

distinct from the majority of other tissue-resident macrophages (Hoeffel et al., 2015) 

and acquire their definitive local density soon after birth, after a wave of microglial 

proliferation at early postnatal stages (Nikodemova et al., 2015). However, it is 

unclear if proliferation alone can account for the rapid increase in microglial numbers 

and suggests the possibility of additional recruitment and differentiation from blood-

derived monocytes perinatally (Ginhoux et al., 2013), although the contribution of 

monocytes have not been observed in fate mapping studies (Hoeffel et al., 2015, 

Sheng et al., 2015).   

In the adult, it has been suggested that the microglial population is long-lived and 

maintained by self-renewal (Lawson et al., 1992), although the dynamics of the 

microglial population in the adult brain are largely unknown. However, evidence 

arising from manipulations of the numbers of resident microglial cells highlights that 

this population can be rapidly reconstituted by the proliferation of resident cells after 

genetic ablation using the Cx3cr1CreER-based system (Bruttger et al., 2015), 

pharmacological elimination (Elmore et al., 2014), or by infiltrating monocytes after 
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the death of microglia induced using the CD11b-TK system (Varvel et al., 2012). 

Microglia are rarely replaced by bone-marrow (BM) derived progenitors in health or 

disease (Gomez-Nicola and Perry, 2015). These observations suggest that microglia 

resemble the behaviour of other tissue-resident macrophage populations, like lung or 

BM macrophages, which are maintained by self-renewal in the steady 

state(Hashimoto et al., 2013). Although these studies suggest that microglia are a 

dynamic population and give some clues about the molecular determinants of the re-

population response, we do not know the rules governing the homeostatic 

maintenance of microglia during an organism’s lifetime. 

In this study we show that the adult microglial population is formed without a 

contribution from circulating progenitors. We show that in the adult mouse and 

human brain, microglia display a high proliferation rate that accounts for several 

rounds of renewal of the whole population during the organism’s lifetime. This 

proliferation is temporally and spatially coupled to intrinsic apoptosis, resulting in the 

maintenance of a relatively steady number of cells from early postnatal stages 

through to ageing. Our results reveal a highly dynamic but tightly regulated control of 

microglial cell numbers, opening new avenues into the understanding of the functions 

of microglia in the healthy and diseased brain. 
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RESULTS 

A perinatal wave of infiltrating monocytes does not contribute to the adult 

microglial population 

Although recent evidence supports the concept that the adult microglial population is 

generated from yolk sac emigrants (Ginhoux et al., 2010), followed by a wave of 

microglial proliferation (Nikodemova et al., 2015), it is unclear if this, alone, accounts 

for the total increase in microglial cell numbers. Contrasting reports described the 

infiltration of blood-derived monocytes into the brain at perinatal stages (Alliot et al., 

1999, Tambuyzer et al., 2009), although monocytes have been shown not to 

contribute to the adult microglial population (Hoeffel et al., 2015, Sheng et al., 2015). 

To address this question, we used a novel approach to label and track hematopoietic 

cells during embryonic development, based on the in utero intra-liver delivery of 

lentiviral LeGO vectors driving the expression of the fluorescent protein Venus at 

E14, a stage when the liver is the main hematopoietic organ (Fig. 1a). This method 

allows rapid, selective and minimally invasive tracing of cells from the hematopoietic 

lineage, and further analysis in target organs. Intra-liver tracing at E14 and 

subsequent analysis of the brain from P0 onwards allowed the visualization of waves 

of infiltrating monocytes (Venus+), acquiring migratory (bipolar, elongated; 87.9% of 

all Venus+ cells at P3) or ramified (multiple radially orientated processes; 12.0% of all 

Venus+ cells at P3) phenotypes within the brain’s parenchyma (Fig. 1b, 1c). The 

visualization of the differentiation of Venus+ cells into ramified Iba1-expressing 

morphologies supported the use of this tracking method for long-term purposes, as 

the expression of the Venus transgene was not affected by phenotypic changes with 

postnatal age (Fig. 1c). Venus+ cells were not found in the perivascular space of the 

blood vessels or in the meninges. This, together with the morphologies observed in in 

Fig. 1c, supports that Venus+ cells infiltrate the parenchyma proper. The 
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quantification of the total Venus+ cells  (ramified+migratory; Fig. 1b, 1c) evidenced the 

time-course of infiltration (Fig. 1d, 1e). This wave of infiltration was coincident in time 

with the expansion of the resident microglial population (Iba1+Venus-) followed by 

further refinement (Fig. 1d), in accord with previously reported data (Nikodemova et 

al., 2015). After a peak of infiltration at P3, the infiltrated monocytes were found to 

radically decrease in number until only rare cells survive in the adult brain (Fig. 1e). 

These cells were not observed when vectors were delivered to the amniotic sac, 

supporting the specificity of the intra-liver approach. Intra-liver injections were 

comparable in different litters, as evidenced by a comparable degree of labelling of 

Kupffer cells and hepatocytes in the liver (Fig. 1f), preserved over time. Venus+ cells 

in the brain parenchyma were identified at P3 to be CD206low, when compared with 

choroid plexus or perivascular macrophages (Fig. 1g), and GFAP-Olig2-NG2- (Fig. 

1h), supporting their monocytic lineage. Venus+ cells were also defined as non-

proliferative cells (Venus+BrdU-) in the different regions analysed (Fig. 1i). 

The analysis of cell death in the Venus+ population revealed an apoptotic response 

from P3, as identified by the expression of cleaved caspase-3 or chromatin 

condensation (non-significant difference between activated Caspase-3+ cells vs cells 

with condensed nuclei stained with DAPI)(Fig. 1j). We found that at P3 1.83% 

(condensed DAPI) or 3.17% (act-caspase-3+) Venus+ cells were apoptotic, with small 

variations across regions. Other cells, mostly neurons, were also found to be 

activated caspase-3+ (Fig. 1k), due to postnatal circuitry refinement. Given that the 

average time for an apoptotic cell to be removed from the brain is about 80 minutes 

(Sierra et al., 2013), and assuming that the clearance rates remain constant until 

adulthood, we estimated that the infiltrated monocytes could be removed from the 

brain parenchyma within approximately 42-72h. Although this is an estimation based 
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on the mean rate of observed apoptosis, it helps explain the drop in Venus+ cell 

numbers detected from P3 to P6 (Fig. 1e).  

In light of these data, we conclude that the adult microglial population is composed 

exclusively from yolk sac derived cells, without the contribution of hematopoietic 

derived monocytes infiltrating at perinatal stages.  

 

The number of microglial cells remains stable throughout life in mice and 

humans 

We next investigated the regional and temporal changes in the number of microglial 

cells in a select number of brain regions, in order to understand their population 

dynamics. The density of murine microglial cells (Iba1+) remained remarkably stable 

throughout, with little change from the young (4-6 months) to the aged (18-24 

months) brains in all the areas analysed, except in the thalamus, where an increased 

number was found with ageing (Fig. 2a). Microglial cells were more dense in grey 

matter enriched vs. white matter enriched areas, as previously shown (Lawson et al., 

1990). To better understand if the maintenance of microglial numbers was achieved 

by local self-renewal or by a contribution from circulating monocytes, we compared 

the microglial density in young vs. aged CCR2-/- and WT mice. CCR2-/- monocytes 

have deficient egress from the bone marrow, leading to fewer circulating monocytes 

(Serbina and Pamer, 2006), making them a valuable model in which to study the role 

of recruited monocytes (Gomez-Nicola and Perry, 2015). The contribution of 

patrolling monocytes (CX3CR1+/CCR2-) was not studied by our approach and cannot 

be excluded, although these cells have been shown to infiltrate the CNS only under 

pathological conditions (Shechter et al., 2013). Neither young, nor aged, CCR2-/- 

mice had a different number of microglial cells when compared to WT mice (Fig. 2b), 
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suggesting that circulating monocytes do not contribute significantly to the microglial 

population during a healthy lifetime.  

A similar picture was observed when we compared young (20-35 years old) vs. aged 

(58-76 years old) human cases. The density of microglia in the grey or white matter 

of the temporal cortex was found to be unchanged with ageing (Fig. 2c). Microglial 

cell density was greater in the white matter than grey matter (Fig. 2c, 2d), in 

agreement with previous findings (Mittelbronn et al., 2001). This pattern of distribution 

is opposed to that previously found in rodents (Lawson et al., 1990), indicating 

species-specific regional differences in the microglial population. 

Together, these data demonstrate that the density of microglial cells is remarkably 

stable in young and aged brains from both mice and humans. 

The analysis of microglia in aged mice led to the identification of small numbers of 

multinucleated microglial aggregates (Fig. 2e), previously described in the aged rat 

brain (Perry et al., 1993). Multinucleated microglial aggregates were more frequent in 

the aged thalamus and cerebellum (Fig. S1a), and expressed MHCII (Fig. S1b) as 

well as CD45 (not shown). Using confocal microscopy we could identify aggregates 

containing up to 10 nuclei within the same cytoplasmic syncytium (Fig. S1c). To 

better understand if failed cytokinesis after increased proliferation was the origin of 

these aggregates we performed analysis of proliferation after repeated BrdU 

incorporation, by confocal microscopy (Fig. S1d). The incorporation of BrdU was 

minimal in these aggregates (0.48% were BrdU+ and showed only 2 cells/aggregate; 

Fig. S1d), ruling out the hypothesis of failed cytokinesis. Our next hypothesis was 

that these aggregates could have a peripheral origin, which was confirmed after 

observing that aged CCR2-/- mice were devoid of multinucleated microglial 

aggregates (Fig. 2f). 
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Microglia have a high proliferation rate in the mouse and human brain 

Although it is often assumed that the microglial population is maintained by a slow 

turnover of long-lived resident cells, little formal evidence exists (reviewed in (Gomez-

Nicola and Perry, 2015)). Earlier work from Lawson and colleagues (Lawson et al., 

1992), using H3 thymidine combined with immunohistochemistry for F4/80, 

demonstrated that microglia proliferate in the healthy brain, but more slowly than 

other tissue macrophages: 0.05% of the microglia were proliferating at a given time, 

20-times less than the lowest labelling index for any other resident macrophage 

populations studied (Lawson et al., 1992). We set out to analyse the proliferation of 

resident microglia by using more sensitive techniques (BrdU incorporation detected in 

Iba1+ cells by double immunohistochemistry of DAB and AP)(Olmos-Alonso et al., 

2016). We found that microglial proliferation rates in the adult brain were 

approximately 10-times higher (Fig. 3a, 3b, 3c) than those previously reported by 

Lawson et al., 1992. On average, 0.69% of the total microglial cells were proliferating 

(Iba1+ BrdU+) after a single pulse of BrdU. This rate was particularly high in the 

dentate gyrus (DG), the only area where we also found that ageing had an impact on 

the proliferation rate (Fig. 3a, 3b, 3c). We ensured that these rates were not 

underestimated by the dose of BrdU, since we had performed a dose-response 

analysis of microglial proliferation confirming that the BrdU dose (7.5mg/ml) used was 

optimal (Fig. S2a, S2b). We next performed a time-course analysis of 

proliferation/division after a single pulse of BrdU in microglial cells (Fig. 3b). In the 

cortex we could detect the duplication of the proliferating population from 16h after 

the BrdU pulse, indicating successful cell cycle exit and cell division (Fig. 3b). Return 

to the baseline number of Iba1+BrdU+ cells was observed from 24h. Considering that 

the S phase of mammalian cells comprises ~50% of the duration of the cell cycle, 

with G2/M only taking a few hours (Cameron and Greulich, 1963), this allows an 



	 10	

estimate of a cell cycle length (Tc) of 32h. This would be in agreement with reported 

cell cycle lengths of macrophages, which vary depending on differentiation stage 

from 20-40h (Kueh et al., 2013). If S phase spans ~50% of the cell cycle length our 

data from BrdU labelling would only detect half of the dividing population. This 

indicates that ~1.38% of the population will be proliferating at a given time (F=fraction 

of cells in cell cycle). If we use these rates to calculate the time needed for the entire 

rodent microglial population to renew (X), with the equation: 

𝑋 =
100𝑥𝑇𝑐
𝐹  

we can estimate the population renews once every 2318 hours (~96 days), allowing 

as many as 6 cycles of complete renewal during an animal’s lifetime (average 21 

months). However, these calculations are based on estimations of Tc, and require 

further specific study in the future.  

The proliferative cycle was much quicker in the DG, where the initial duplication 

returned to baseline before 24h (Fig. 3b). In addition to revealing the higher 

proliferative activity of microglia in the DG, these data strongly suggest that microglial 

death must be tightly temporally and spatially coupled to proliferation, in order to 

maintain the stable density of microglial cells, as discussed below. 

Higher figures were observed when analysing the proliferation of human microglia 

(on average, 2% of the microglial population proliferating at a given time), according 

to double staining of Iba1 and Ki67 (Fig. 3d, 3e). This rate is 2.9x higher than that 

observed for mice above (0.69%). However, Ki67 expression is not directly 

comparable to BrdU incorporation. This difference might be explained by the fact that 

Ki67 would label not only the S-phase but also other cell cycle phases except G0. 

This means that the labelling of Ki67 is approximately 2x higher than BrdU (Kee et 

al., 2002), which only labels S phase comprising ~50% of the duration of the cell 
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cycle (Cameron and Greulich, 1963). If cell cycle length remains constant in 

mammals (32h, above), this would allow an estimation of hundreds of cycles of 

complete renewal during lifetime (average 80 years). 

 

To further explore any age-related changes in microglial proliferation, we studied the 

expression of genes related to the CSF1R driven proliferative response (Gomez-

Nicola et al., 2013). We found a significant reduction in the expression of PU.1 and 

IRF8 in ageing brains, and a non-significant trend towards a reduction in relevant 

genes like CSF1, CSF1R, C/EBPα, CD34 or RUNX1 (Fig. S3). To further address 

the significance of the CSF1R pathway in controlling microglial turnover, we 

administered young mice with a diet containing GW2580, a specific CSF1R inhibitor 

previously shown to cause blockade of microglial proliferation but not their survival 

(Gomez-Nicola et al., 2013, Uitdehaag et al., 2011, De Lucia et al., 2016, Olmos-

Alonso et al., 2016), in contrast to the microglia-depleting effects caused by the 

CSF1R inhibitor PLX3397 (Elmore et al., 2014). Treatment with GW2580 for 3 

months decreased the total number of microglial cells (PU.1+) by 17% (Fig. 3f, 3g), 

supporting the relevance of the CSF1R pathway in controlling the homeostatic 

maintenance of microglial turnover. 

To provide an independent method to validate our analysis of microglial proliferation 

in mice, we took advantage of the ability of γ-retroviral vectors to selectively 

transduce proliferating glial cells (Gomez-Nicola et al., 2014). We delivered an Eco-

SFFV γ-retroviral vector driving the expression of mCherry to the lateral ventricle of c-

fms EGFP mice, allowing diffusion to adjacent areas (cortex and striatum) due to the 

initially injected volume (5µl)(Fig. 3h). We analysed the incorporation of Eco-SFFV-

RV mCherry 3 days after injection, to allow for the expression of detectable levels of 

mCherry (Gomez-Nicola et al., 2014) and to allow the potential visualization of pairs 
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of cells, before post-division microglial death (Fig. 3b). We found a limited number of 

microglial cells (EGFP+) expressing mCherry, presenting as typical microglial duplets 

(Fig. 3i). The quantification of proliferating microglial cells (mCherry+EGFP+) offered a 

similar proliferation rate (Fig. 3j) as that previously described by analysing the 

incorporation of BrdU in Iba1 cells (Fig. 3a), validating our previous findings. 

For direct visualisation of microglial turnover, we used chronic live imaging of the 

olfactory bulb microglia in CX3CR1GFP/+ mice, coupled to repeated blood vessel 

imaging (Kovalchuk et al., 2015)(Fig. S4a). To control for potential interference of the 

implantation of the chronic window on the microglial behaviour, mice were analysed 

3-4 weeks after surgery, to allow initial inflammation to resolve. After this, imaged 

microglia were typical highly branched, CD11blow and CD68- (Fig. S4b, S4c), and 

therefore considered as surveillant microglia. Repeated live imaging of microglia 

allowed the identification of cell division (duplication; Fig. 3k) or death 

(disappearance; Fig. 6a), and defined the proliferation rate of microglia at 0.79% per 

day (Fig. 3l), similar to the rate we found with Iba1/BrdU staining (Fig 3a). During the 

first 24h after division, paired microglia were found at a significantly closer distance 

than resident non-dividing microglia (Fig. 3m), suggesting that these cells were 

generated from the same proliferating cell. During the following days the cells 

migrated away from each other and reached cell-to-cell dispersion similar to the rest 

of the microglial population within 3-4 days (Fig. 3n). These data confirm the high 

rates of microglial proliferation detected by Iba1/BrdU staining and suggest that the 

territories occupied by microglia change upon cell division, probably affecting the 

performance of local homeostatic functions. 

Thus, using three independent lines of evidence our data show that microglia 

proliferate in the adult mouse and human brain at a high rate, allowing several cycles 

of renewal of the whole population during the organism’s lifetime. 
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Microglial turnover is not maintained by Nestin+ precursors 

In light of recent findings suggesting that Nestin+ microglial precursors may be 

involved in the repopulation response after pharmacological (Elmore et al., 2014) or 

transgenic microglial ablation (Bruttger et al., 2015), we aimed to study if microglial 

proliferation in the steady-state was maintained by a subpopulation of stem cell-like 

microglia. We analysed Nestin-GFP mice, as an optimal reporter mouse for the 

expression of nestin (Mignone et al., 2004), and although we evidenced the 

previously reported expression in pericytes (Figure 4a, 4b, 4c), neural stem cells 

(Figure 4b) and oligodendrocyte precursor cells (Figure 4a, 4c)(Mignone et al., 2004), 

we did not find any evidence of nestin expression in microglia (Iba1+; Figure 4a, 4b, 

4c). We specifically studied the expression of nestin in proliferating microglia 

(Iba1+BrdU+; 24h post-injection), and found no evidence of nestin+ microglia (Figure 

4d). We therefore conclude that microglial proliferation is not maintained by Nestin+ 

microglial precursors in the steady state. 

 

Microglial proliferation and apoptosis are temporally and spatially coupled to 

maintain microglial homeostasis 

The time-course analysis of microglial proliferation (Fig. 3b) suggested that microglial 

cell death plays a key role in maintaining the stable number of microglia over time. 

Given the difficulties of analysing microglial apoptosis by traditional methods (Sierra 

et al., 2013) we set out to address this point by using live imaging of microglia in 

CX3CR1GFP/+ mice. Under these conditions, microglial death is defined as a 

disappearance of a cell within the network of relatively immobile neighbouring cells 

(Fig. 5a) with the blood vessel pattern serving as additional landmarks. The death 

rate of resident microglia was found to be 1.23% per day, while the death rate for 



	 14	

newborn (recently divided) microglia was 2.40% (Fig. 5b). For newborn microglial 

cells the death rate was highest during the first 5 days after division (5.0 ± 3.5%), 

significantly higher than the death rate in the resident adult cell population. 

To further study the relevance of microglial apoptosis in the maintenance of the 

population we studied the numbers of microglia in three mouse models defective in 

intrinsic apoptosis (PUMA-/-, BIM-/- and Vav-Bcl2). While the first two have ubiquitous 

deletion of the pro-apoptotic BH3-only molecules PUMA or BIM, the Vav-Bcl2 mice 

have the anti-apoptotic molecule Bcl2 overexpressed only in cells of the myeloid 

lineage. When compared to WT mice, both BIM-/- and Vav-Bcl2 mice were found to 

have a significant increase in the number of microglial cells (Fig. 5c). PUMA-/- 

showed no difference, or even a reduction, in the number of microglia (Fig. 5c), in 

agreement with previous findings in the eye (Zhang et al., 2012) and suggesting that 

microglial apoptosis is PUMA-independent. Since Vav-Bcl2 mice provide a robust 

block in intrinsic apoptosis only in lymphoid and myeloid lineage cells (Egle et al., 

2004), which in the brain is restricted to microglia, we decided to focus on the study 

of this model (Fig. 5d). A time-course of postnatal development of the microglial 

population in Vav-Bcl2 mice showed that the increase in number of microglial cells is 

reached early in life (P44) and remains stable until middle-age (before the onset of 

other health defects (Egle et al., 2004))(Fig. 5e, 5f). This stabilization of increased 

density, caused by deficient microglial apoptosis, is perhaps explained by the inability 

of the parenchyma to accommodate more cells, suggesting contact inhibition 

mechanisms are in place.  

In order to understand the impact of apoptosis blockade on microglial phenotype, we 

isolated microglia by FACS and analysed their transcriptomic profile by RNAseq (Fig. 

6). Flow cytometry analysis showed a significant increase in the population of 

CD11b+CD45high cells in Vav Bcl-2 mice, when compared to WT littermates (Fig. 6a), 
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identifying this subpopulation of microglia as the biggest contributor to increased 

numbers observed previously. Isolation of CD11b+CD45low and CD11b+CD45high 

subpopulations from WT and Vav Bcl-2 followed by RNAseq profiling rendered a total 

of 137 genes statistically (P <0.01; fold change >10) upregulated in Vav Bcl-2 vs WT 

and 259 statistically downregulated in Vav Bcl-2 vs WT microglia (Fig. 6b; Table S1). 

Gene Ontology analysis revealed differentially expressed genes were particularly 

associated with GO-Slim terms involved in metabolic processes and biogenesis (Fig. 

6c). Clustering of GO terms (based on genes shared between each GO category) 

revealed GO processes previously identified to be upregulated in microglia (Grabert 

et al., 2016), including immune response and macromolecule biosynthesis (Fig. 6d), 

amongst others. Vav Bcl-2 mice also showed a significant alteration of genes 

clustered under the processes of cell cycle and proliferation and death, confirming 

the expected effects of Bcl-2 upregulation (Fig. 6c). Vav Bcl-2 microglia had a 

significant repression (> 200-fold) of the pro-apoptotic gene Bad, and a significant 

upregulation (17-fold) of the anti-apoptotic gene Api5 (Table S1). Also Vav Bcl-2 

microglia showed a significant repression of cell cycle promoting genes like Mad2l1, 

Mdm2, Cdca3, Cdk1, Cdc20 and Cdc20b (all > 25-fold down-regulated) (Table S1). 

These changes confirm the anti-apoptotic effects of Bcl-2 overexpression in 

microglia, but also suggest an impaired cell cycle regulation as an associated effect. 

A Venn diagram showing the relations between the gene sets of CD45low and 

CD45high identifies the CD11b+CD45low subpopulation as the major contributor to the 

transcriptional variability observed between WT and Vav Bcl-2 microglia (Fig. 6e). 

Despite the fact that Vav-Bcl2 mice had a significant alteration in the number and 

phenotype of microglia through most of their adult life, they did not display gross 

deficiencies in the astrocyte (Fig. S5a) or the neuronal (Fig. S5b) populations, and 

only showed minor differences in age-dependent changes in synaptic density (Fig. 
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S5c). Vav-Bcl2 mice showed no differences in behavioural performance when 

compared to WT mice (Fig. S6a, S6b).  

We next analysed the temporal and spatial relationship between death and 

proliferation events in vivo. We observed a remarkably rapid reorganisation of the 

microglial landscape (Fig. 7a). This is exemplified by the representation of the history 

of microglia during the 22-day-long imaging period in a sample field of view, with 

stable cells shown in grey, cells going to die shown in red and cells going to divide 

shown in blue (Fig. 7b). Microglial proliferation and apoptosis were spatially and 

temporally coupled, as many more cells proliferated in the vicinity (≤ 200 µm) of a 

dying cell immediately after its death (Fig. 7c). Some of the proliferating cells were 

immediately adjacent to the dying cells, whereas others were located more distantly 

(Fig. 7b, 7d). The median distance between the dying and the nearest proliferating 

cell was 72.95±43.13 µm (n=19 cell pairs), being almost double the distance between 

the dying and the nearest resident cell (37.94±11.74 µm, n=31 cell pair) (Fig. 7d, 7e). 

Thus overall, proliferating cells were found to be the second closest neighbour to the 

dying cells. 

In summary, our data indicate that the microglial population undergoes a constant 

and rapid remodelling, based on the temporal and spatial coupling of proliferation 

and apoptosis, providing a mechanism for the homeostasis of the population through 

life. This constant renewal causes not only the individual cellular players to change, 

but also their spatial layout to be rapidly modified.  
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DISCUSSION 

During the last decade, the study of microglial cells and neuroinflammation has 

experienced a revolution. Minimally-invasive methods have revealed microglia to be 

highly dynamic in their interaction with the microenvironment, responding to 

inflammatory signals (Nimmerjahn et al., 2005, Davalos et al., 2005) and interacting 

with neuronal circuits at the synaptic level (Tremblay et al., 2010, Wake et al., 2009). 

Microglia can sculpt the brain and impact on its physiology, as they have been 

observed to contain phagocytic inclusions with features of axonal terminals, dendritic 

spines or unneeded neuronal progenitors (Tremblay et al., 2010, Paolicelli et al., 

2011, Sierra et al., 2010). Our data demonstrate that microglial cells are actively 

renewed and that the brain population is maintained by a finely tuned balance of 

proliferation and apoptosis.  

 

It has been long assumed that microglia are “long-lived” cells. At the population level, 

microglia are indeed long-lived, but at the individual cell level they are not. The 

microglial landscape changes radically within a few weeks, with cells dying, other 

taking their place and their absolute position changing. This renewing landscape will 

likely influence the interpretation of phenomena such as microglial priming, where the 

microglial response is exaggerated (stronger than that observed in stimulus-naive 

microglia) to a secondary insult. This is perhaps best illustrated when the first 

(priming) and second stimulus are separated by prolonged periods of time, in the 

context of adult responses to early-life infections (Bilbo and Schwarz, 2009), delayed 

inflammation after TBI (Johnson et al., 2013) or the onset of age-related amyloid 

deposition after gestational inflammation (Krstic et al., 2012). There, microglial 

priming implies the need for “microglial memory” to the first stimulus to elicit an 

exaggerated response to the second stimulus. We suggest that our findings could 
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either support the hypothesis that microglial priming is achieved through epigenetic 

(inheritable) changes (Schwarz et al., 2011) or suggest that “microglia memory” could 

be stored elsewhere in the neural/glial network. We believe that the parameters 

defined here will stimulate a re-interpretation of many of the functions of microglia in 

health and disease. 

 

The fact that the adult microglial population is maintained at least in part by self-

renewal has been largely assumed for over 2 decades, since our group reported on 

the proliferation of resident microglia (Lawson et al., 1992). Using [3H]-thymidine 

incorporation and detection with autoradiography, Lawson et al, described a very low 

turnover rate for microglia, with ~0.05% of the cells dividing at a time (Lawson et al., 

1992). Although a probable underestimation, acknowledged at the time due to the 

relative insensitivity of the method, these studies were never revisited using the gold 

standard in the field: incorporation of BrdU. We now show, using three independent 

methods, that the proliferation index of microglia is much higher than expected (more 

than 10x higher), and an average of 0.69% microglial cells are in S phase at a given 

time. This rate would allow for an estimation of the brain’s microglial population being 

renewed every ~95 days, allowing several cycles of renewal within the lifetime of a 

mouse. Higher rates are found in the human brain (average 2%), with a more 

dramatic consequence on the turnover cycles: leading to estimates that microglia 

would cycle hundreds of times during 80 years of life. However, the estimation of the 

turnover rate of human microglia would need alternative methods in order to provide 

a more accurate calculation and allow extrapolation to the average human 

population. 

This homeostatic microglial proliferation is balanced by the opposing force of 

microglial apoptosis. The apoptotic cascade controlling microglial death seems to be 
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dependent on the pro-apoptotic molecule BIM but not PUMA, as evidenced from the 

analysis of KO mice. A recent report demonstrated that deficiency in PUMA leads to 

decreased numbers of both retinal and brain microglia, due to unexpected roles of 

this protein in promoting cell survival (Zhang et al., 2012), consistent with our present 

findings showing a decreased density of microglia in PUMA-/- mice. Microglial death 

can be counteracted by the inhibition of mitochondrial apoptosis as indicated by the 

overexpression of Bcl2 leading to increased microglial numbers. Surprisingly, our 

results support the hypothesis that the brain can only accommodate certain number 

of microglial cells, as deficient microglial death causes the increased microglial 

numbers to plateau after postnatal development. In the normal brain, the microglial 

population displays a mosaic-like organization where processes of individual cells 

avoid contact with each other, being disrupted only with the emergence of changes 

related to pathology, age or systemic influences (Gomez-Nicola and Perry, 2015). 

Transcriptomic profiling of microglia from Vav Bcl-2 mice highlights profound 

alterations of their functional profile, including altered metabolism and immune 

response, providing a link between homeostatic microglial apoptosis with phenotypic 

profile. A more detailed future study of the mechanisms by which altered microglia 

turnover could impact basic microglia functions, including those controlling their 

inflammatory properties, will provide valuable insights to understand the maintenance 

of the microglial population in health and disease. 

 

The sub-regional analysis of microglial turnover highlighted the DG as a particularly 

active anatomical region. In the DG, microglial proliferation is higher, quicker and 

decays more rapidly with age. An age-dependent decrease in proliferation is also 

observed in the population of DG neural progenitors (Kuhn et al., 1996), and this can 

be correlated with the decrease of microglial proliferation, as microglial phagocytosis 
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of progenitors is coupled to neurogenic activity (Sierra et al., 2010). Thus, ageing 

would lead to a decrease in DG microglial proliferation indirectly, through a decline in 

neurogenesis. A more direct effect of ageing on microglia residing within the DG 

would imply microglial senescence. Replicative senescence, the loss of mitotic 

potential accompanied by significant telomere shortening, occurs once a cell has 

undergone approximately 50 replications, the so-called Hayflick limit (Hayflick, 1965). 

Thus, we hypothesise that the increased microglial turnover in the DG will lead to a 

quicker extinction of the proliferative capacity of these cells, as observed in our data. 

The microglial population at the DG seems particularly susceptible to telomere 

shortening, as recently highlighted using a mouse model of telomere dysfunction 

(TERC KO)(Khan et al., 2015), supporting the hypothesis that increased microglial 

division can lead to replicative senescence. 

 

In an attempt to reconcile conflicting evidence about the contribution of circulating 

monocytes to the composition of the microglial population at perinatal stages 

(Ginhoux et al., 2013), we developed a cell-tracking approach based on the intra-liver 

tracing of embryonic haematopoiesis. Our results support the existence of a wave of 

monocytes that infiltrate the brain, peaking at P3, but indicate that these are rapidly 

depleted by apoptosis and do not contribute to the final microglial population, which 

we can now confirm is exclusively formed by yolk-sac derived progenitors. The 

elimination of infiltrated macrophages is coincident with a wave of microglial 

proliferation, followed by a further selection process before the final number of cells is 

achieved (Nikodemova et al., 2015). The functional significance of this wave of liver-

derived monocytes is unknown, and should be the subject of future research, but the 

temporal coincidence with the refinement of the microglial numbers prompts 



	 21	

speculation that these cells could trigger the death of a subpopulation of yolk sac 

derived microglia.  

 

The changes in microglial morphology that occur during ageing are well documented, 

however, a particular morphological change that has received little attention to date is 

the formation of giant, multinucleated microglial aggregates in aged mice, such as 

those observed in our study. Previous studies have shown that microglia form 

aggregates with multiple nuclei, which can include more than 20 individual cells, 

under certain inflammatory conditions (Fendrick et al., 2007, Perry et al., 1993). Our 

data show that these aggregates are not generated by failed cytokinesis after 

division. Similar structures are observed in the context of a repopulation paradigm 

after genetic ablation of microglia (Bruttger et al., 2015). However, these clusters are 

BrdU+ (Bruttger et al., 2015), transient and not fused, suggesting they serve as pools 

of repopulating microglia, whereas we here observe a fusion/aggregation of groups 

of cells. Given the territorial nature and lack of contact between microglial cells in 

younger brains, this is seen as an aberrant morphological development and 

represents a significant change in the phenotype and function of microglia in ageing. 

With our data we can provide clear evidence that these aggregates likely originate 

from the incorporation of circulating monocytes into the brain parenchyma, but further 

research is needed to fully understand their function.  

 

One question of particular interest raised by our data is the molecular regulation of 

the self-renewal process. We provide evidence for a necessary, but not sufficient, 

role of CSF1R in controlling microglial turnover in homeostasis, as is evidenced from 

our mRNA studies and from the pharmacological inhibition of the CSF1R tyrosine 

kinase activity with GW2580. Elimination of microglia can be achieved by acute 
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treatment with a highly potent CSF1R/c-kit/FLT3/PDGFRβ inhibitor, highlighting the 

relevance of these receptors in maintaining microglial numbers (Elmore et al., 2014). 

However, other systems may have to be in place to fully control microglial turnover. 

Recent studies, using genetic ablation of microglia, show that IL-1R plays a crucial 

role in the replenishment process (Bruttger et al., 2015). Although a repopulation 

process cannot be compared to the homeostatic maintenance of the microglial 

population, complementary systems (CSF1R, IL1R, or others) must be in place in 

order to ensure the stability of this important population of non-neuronal cells in the 

CNS. 

 

In light of the current data, we conclude that the turnover of the microglial population 

is a highly dynamic process, made possible due to the finely tuned temporal and 

spatial balance of microglial proliferation and apoptosis. Our data question the view 

of microglia as a long-lived population, almost never renewed in the adult brain, and 

propose a much more dynamic scenario, which will help uncover the key microglial 

functions in the healthy and diseased brain. 
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EXPERIMENTAL PROCEDURES 

Experimental mice 

All experimental procedures were either approved by a local ethical review committee 

and conducted in accordance with personal and project licenses under the UK 

Animals (Scientific Procedures) Act (1986), or performed in accordance with 

institutional animal welfare guidelines and were approved by the government of 

Baden-Wurttemberg, Germany. Details of experimental mice can be found in the 

Supplementary information.  

To analyse cell proliferation, mice received injections of i.p. BrdU (Sigma-Aldrich; 

7.5mg/ml, 0.1ml/10g weight in sterile saline). A dose-response experiment was 

performed using 3.75, 7.5 or 15mg/ml BrdU.  

 

Post-mortem human brain samples  

For immunohistochemical analysis, human brain autopsy tissue samples (n=15 per 

group)(temporal cortex, paraffin-embedded, formalin-fixed, 96% formic acid-treated, 

6µm sections) from the National CJD Surveillance Unit Brain Bank (Edinburgh, UK) 

were obtained from Alzheimer’s disease or vCJD non-diseased age- and sex-

matched young (age 20-35) or aged (age 58-79) controls, in whom consent for use of 

autopsy tissues for research had been obtained. Ethical permission for research on 

autopsy materials stored in the National CJD Surveillance Unit was obtained from 

Lothian Region Ethics Committee.  

 

In utero intra-liver tracing of embryonic haematopoiesis 

Cell tracking was performed by the administration of VSVG-SFFV-Venus or VSVG-

SFFV-mCherry lentiviral vectors. Details on the design, production and application of 

these vectors can be found in the Supplementary information.  



	 24	

 

Chronic cranial window implantation 

Chronic cranial window was installed as previously described(Kovalchuk et al., 2015).  

A detailed description of the method can be found in the Supplementary information.  

 

Two-photon Imaging 

Microglia expressing eGFP in the OB of CX3CR1GFP/+ mice were imaged once a day 

for 10 to 22 days by means of two-photon microscopy. Details of the method can be 

found in the supplementary information.  

 

Immunohistochemistry 

Coronal hippocampal sections were cut from paraformaldehyde-fixed, frozen or fresh 

brains. Mice perfusion, tissue processing and immunohistochemical analysis was 

performed as previously described(Gomez-Nicola et al., 2013), with details found in 

the supplementary information. 

 

Statistical Analysis 

Data were expressed as mean±SEM and analysed with the GraphPad Prism 5 

software package (GraphPad Software). When normality and homoscedasticity 

assumptions were reached, we applied the two-tailed Fisher T-test, the one-way or 

two-way ANOVA, followed by the Tukey post-hoc test for multiple comparisons. For 

the analysis of two-photon imaging, for normally distributed data, mean±SEM was 

calculated and the Student’s t test was used for comparison of two groups. For data 

that were not normally distributed, the median±one interquartile range was presented 

as box plot, and 10 to 90 percentiles were shown as whiskers. For comparisons 

between non-parametrically distributed groups we used Mann-Whitney test. Wilcoxon 
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matched pairs test was used for nonparametric comparison of two paired groups. All 

the statistical tests were two sided. Differences were considered significant for 

p<0.05. 
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Figure legends 

 

Figure 1. A wave of infiltrating monocytes invades the brain at early postnatal 

stages, to be rapidly depleted and not contributing to the adult microglial 

population. 

(a) Experimental design, illustrating the tracing of late embryonic haematopoiesis by 

the intra-utero marking of liver progenitors with VSVG-SFFV lentiviral vectors (E14) 

and subsequent analysis of brain infiltration (P0-P43). (b, c) Representative 

examples of Venus+ (green) infiltrating cells at p3 (cerebellum), with migratory 

(bipolar, elongated) (b) or ramified (multiple radially orientated processes) (b (right), 

c) morphologies. Iba1 expression is shown in red in differentiated ramified cells. (d, 

e) Time-course analysis of the number of resident microglia (Iba1+Venus-) and 

infiltrating monocytes (Venus+) in the postnatal cerebellum (CB), cortex (CX) and 

hippocampus (HC). Note that at all ages tested Venus+ cells (e) represent only a 

minority of all Iba+ cells (d). (g, h) Phenotypic characterization of Venus+ cells at P3 

by confocal microscopy. Note Venus+ cells (arrowheads) are CD206low (red, f), 

GFAP-, Olig2-, NG2- (red, h). (i) Representative example of the absence of cell 

proliferation (BrdU+; red) in Venus- cells in the mouse postnatal hippocampus (P3). (j) 

Quantification of the apoptosis of Venus+ cells in the brain (Cortex, Hippocampus and 

Cerebellum) at P3, analysed as expression of cleaved caspase-3 or condensation of 

chromatin (DAPI). A representative example of the expression of cleaved caspase-3 

(red) in Venus+ cells (green) is shown. (k) Expression of cleaved caspase-3 in NeuN+ 

neurons at P3. Venus+ cells shown in green. Scale bars in (b, c, g, h, k) 20µm, in (i, 

j) 100µm. Data shown in (d, e, f, j) represented as mean±SEM (N=6). Statistical 

differences: (d) CB *p<0.05 vs P6, CX *p<0.05 vs P21, HC *p<0.05 vs P6. (e) 
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*p<0.05 vs P0, #p<0.05 vs P3, ##p<0.01 vs P3. (f) **p<0.01. Data were analysed 

with a two-way ANOVA and a post-hoc Tukey test (d, e) or a t-test (f). 

 

Figure 2. The density of microglial cells remains steady through lifetime, 

without a significant contribution of circulating monocytes. 

(a) Quantification of microglial density (Iba1+ cells) across brain regions (CX, cortex; 

CC, corpus callosum; CA1-2, hippocampal CA1-2; DG, dentate gyrus; TH, thalamus; 

OB, olfactory bulb) in young (4-6 months) and aged (18-24 months) mice. (b) 

Quantification of microglial density (Iba1+ cells) across brain regions (see (a)) in 

young (4-6 months) and aged (18-24 months) wild-type (WT) or CCR2-/- mice. (c) 

Quantification of microglial density (Iba1+ cells) in the white and grey matter of the 

human temporal cortex, in young or aged individuals. (d) Representative images of 

Iba1 staining in human temporal cortex. (e) Representative example of a 

multinucleated microglial aggregate (c-fms EGFP) in ageing mice. (f) Representative 

examples of multinucleated microglial aggregates in ageing WT mice, absent from 

CCR2-/- mice. Scale bars in (d, e) 50µm, in (f) 50µm. Data shown in represented as 

mean±SEM. N=7 (a, b), N=15 (c). Statistical differences: *p<0.05. Data were 

analysed with a two-way ANOVA and a post-hoc Tukey test (a, b, c). 

 

Figure 3. Proliferation of microglia in the adult mouse and human brain. 

(a) Analysis of the proliferation (proliferation rate, %) of microglia across brain regions 

(CX, cortex; CC, corpus callosum; CA1-2, hippocampal CA1-2; DG, dentate gyrus; 

TH, thalamus; OB, olfactory bulb) in young (4-6 months) and aged (18-24 months) 

mice. (b) Time-course analysis of microglial proliferation (proliferation rate, %) and 

death in the mouse cortex (CX) and dentate gyrus (DG). (c) Representative example 

of a proliferating microglial cell (Iba1+, brown), incorporating BrdU (blue). (d, e) 
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Analysis of the proliferation (proliferation rate, %) of microglia in the human white or 

grey matter of the temporal cortex, analysed as expression of Ki67 (blue) in Iba1+ 

cells (brown), as shown in the representative example (e). (f, g) Analysis of microglial 

density (PU.1+ cells) after chronic treatment with a control diet (RM1) or a diet 

containing a CSF1R inhibitor (GW2580). Representative staining is shown in (g). (h-

j) Analysis of microglial proliferation by tracing c-fms EGFP mice with Eco-SFFV 

mCherry γ-retroviral vectors (Eco-SFFV-RV)(experimental scheme shown in h). (i) 

Representative image of the tracing of proliferating microglia by Eco-SFFV-RV 

(mCherry, red) in the cortex of c-fms EGFP mice (green). (j) Analysis of the 

proliferation (proliferation rate, % mCherry+EGFP+/Total EGFP+) of microglia (CX, 

cortex; ST, striatum) in c-fms EGFP mice. Data shown in represented as mean±SEM. 

N=8 (a, b), N=15 (d), N=6 (f), N=5 (j). Statistical differences: *p<0.05. Data were 

analysed with a two-way ANOVA and a post-hoc Tukey test (a, b) or a Student’s T-

test (f, j). Scale bars in (c) 20µm, in (e) 50µm, in (g) 100µm. 

(k-n) Analysis of microglial proliferation by 2-photon imaging of CX3CR1GFP/+ mice. 

(k) Maximal intensity projection (MIP) images of the same field of view (142 - 153 µm 

depth, step 1 µm) in a CX3CR1GFP/+ mouse taken at different time points as indicated 

(see timestamps, relative time). Arrows point to a proliferating microglial cell and to its 

progeny. (l) Proliferation rate of microglia (median ± interquartile range, IQR; n=669 

cells, 9 fields of view (FOV), 4 mice). (m) Mean distance between the centers of two 

neighboring cells for resident cells and for newborn cells during the first 24 hours of 

their life (mean ± SEM; n= 62 cells, 9 FOVs, 4 mice). (n) Distance between the twin 

microglial cells as a function of their age (median ± IQR; n= 31 pair of twin cells, 8 

FOVs, 4 mice). Statistical differences: (m) *p<0.001, Student’s T-Test. Scale bar in 

(a) 20µm. 
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Figure 4. The homeostatic turnover of microglia is not maintained by Nestin+ 

precursors  

(a-c) Immunofluorescent detection and confocal analysis of Iba1+ microglia (red) in 

nestin-EGFP (green) mice, in the cortex (a, c) or hippocampal dentate gyrus (b). (d) 

Triple immunofluorescence for BrdU (blue), Iba1+ (microglia, red) and nestin-EGFP 

(green) in the dentate gyrus. Open arrowhead indicates a BrdU+Iba1-Nestin+ cell, 

while white arrowhead indicates a BrdU+Iba1+Nestin- cell. Scale bar in (a, b) 50µm, 

(c, d) 20µm. N=5. 

 

Figure 5. The turnover of microglia is balanced by apoptosis 

(a) Maximal intensity projection (MIP) images of the same field of view (88 - 106 µm 

depth, step 2 µm) in a CX3CR1GFP/+ mouse. Arrows point to a disappearing (i.e. 

dying) microglial cell. (b) Death rate of microglia (median ± IQR; n= 669 cells, 9 

FOVs, 4 mice). (c) Microglial density across regions (CX, cortex; CC, corpus 

callosum; CA1-2, hippocampal CA1-2; DG, dentate gyrus; TH, thalamus) in wild-type 

(WT), PUMA-/-, BIM-/- and Vav-Bcl2 mice. (d) Expression of Vav (red) in microglia (c-

fms EGFP, green), analysed by confocal microscopy. (e) Time-course analysis of 

postnatal (P0-P231) microglial density in wild-type (WT) and Vav-Bcl2 mice. (f) 

Representative example of microglial cells (Iba1+) in the cortex of WT and Vav-Bcl2 

mice. Data shown in (c, e) represented as mean±SEM. N=4, 3, 4, 7 (c; WT, PUMA-/-, 

BIM-/- and Vav-Bcl2 mice, respectively), N=4 (e). Statistical differences: *p<0.05, 

**p<0.01, ***p<0.001. Data were analysed with a two-way ANOVA and a post-hoc 

Tukey test (c, e). Scale bars in (a, d) 20µm, in (f) 100µm. 
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Figure 6. Transcriptomic profiling of microglia from WT and Vav Bcl-2 mice 

(a) Flow cytometry analysis and sorting (FACS) of microglia from WT and Vav Bcl-2 

mice. Crosshair in FACS plots shows gating parameters used to define 

CD11b+CD45low and CD11b+CD45high subpopulations and subsequent sorting. 

Statistical differences: ****p<0.0001. Data were analysed with a t-test (a). (b) 

Heatmap representation of genes showing a significant (P <0.01; >10-fold change) 

change in Vav Bcl-2 vs WT microglia (combined CD45+). Clustering of genes by 

expression profiles is shown on the left. (c) Clustered representation (GOslim) of GO 

processes significantly altered in Vav Bcl-2 compared to WT microglia. Number of 

genes altered per cluster is shown on top of bars. (d) Enrichment map of GO terms, 

where red nodes represent GO terms and green edges represent shared genes 

(thicker lines indicate more shared genes).(e) Venn diagram representing the 

intersection of the transcriptional variability observed when comparing total (blue), 

CD45low (green) or CD45high (yellow) Vav Blc-2 to WT microglia.  

 

Figure 7. Temporal and spatial coupling of microglial proliferation and death.  

(a) MIP images of a sample field of view (50-80 µm depth, step 1 µm) in a 

CX3CR1GFP/+ mouse taken at the beginning (left, day 0) and at the end (right, day 22) 

of the imaging period. Note that bone growth occurred in the lower right corner of the 

latter image. (b) 3D matrix illustrating the history of cells in the sample field of view 

(317 µm x 317 µm x 160 µm) during the 22-day-long imaging period. Stable cells are 

shown in grey, cells, which are going to die, are shown in red and cells going to 

divide are shown in blue. This FOV includes the cells shown in (a). (c) Temporal 

relationship between death and proliferation events (n= 68 cells, 9 FOVs, 4 mice). 

The time when a cell dies is set as day 0 (reference point) and the relative time when 

proliferation occurs in its vicinity (≤ 200 µm) is calculated. The pie chart illustrates the 
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fractions of cells, proliferating in the vicinity of a dying cell 4 days before (light grey), 

during (grey) or 4 days after (dark grey) the death of the reference cell. (d) Spatial 

relationship between a dead cell and the nearest proliferating or resident cell (n= 53 

dead cells, 9 FOVs, 4 mice). (e) Summary of the data shown in (d) (median ± IQR; 

n= 53 cells, 9 FOVs, 4 mice). Statistical differences: *p<0.001, Wilcoxon signed-ranks 

test. Scale bar in (a) 50µm.	
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