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Abstract: We systematically classify and investigate fully three-dimensional similarity solu-

tions to a system of equations describing the motion of a filament moving in the direction of its

principle normal with velocity proportional to its curvature, v = κn, where n is the principle

normal and κ the curvature of the filament. Such formulations are relevant to superconducting

vortices and disclinations.

Keywords: Motion by curvature.

1 Introduction

There are many physical systems which exhibit line singularities [3]. These are characterised
by a singularity in a certain quantity which occurs along a curve in three-space. So, for
instance, a disclination in a nematic liquid crystal is a curve along which the director, a
vector field which gives the preferred direction for molecular alignment, is multivalued. Other
examples of line singularities are the superconducting vortex, the superfluid vortex (which
is found in liquid helium) and the dislocation (which is a misalignment of a crystal lattice).
In many scenarios the behaviour of these systems is primarily governed by the presence of
these singularities and it is possible to derive linear field equations with singularities along
curves, corresponding to the positions of the line singularities, which couple to a law of
motion for these curves. In the case of the superconducting vortex, for example, the vortex
law of motion

v = κn + (∇ ∧ B) ∧ t, (1)

couples to a linear field equation for the magnetic field B [6]. Here v is the velocity of
the vortex, κ its curvature, t its tangent and n its principle normal. The first term in this
velocity law is a self-induced term while the second term can be thought of as arising from
the presence of other vortices and boundaries. Situations inevitably arise in which the first
term dominates so that the motion can be approximated by

v = κn, (2)
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for example when vortices are well-separated. It is conjectured that line disclinations in
certain nematic liquid crystal also have this form for the self-induced velocity. 1 In a certain
limit the dynamics of scroll waves, which occur in excitable media, also obey equation (2)
[8]. In contrast to these systems the leading order self-induced velocity of the superfluid
vortex is

v = κb,

where b is the binormal to the vortex curve (see for example [12]). This is identical to the
so-called local induction approximation for a classical vortex in an otherwise irrotational
fluid and has been derived from the Euler equations by [13], [5] in the limit that the width
of the vortex core shrinks to zero.

In two dimensions the dynamics of a curve evolving under (2) has been fairly intensively
investigated. Mullins [9] found travelling wave, rotating wave and a particular class of
similarity solutions. A Lie group analysis was carried out by Wood [16] which revealed the
existence of other types of similarity solution which were then analysed in detail. Gage [7]
showed that an embedded (non self intersecting) two-dimensional curve evolving under the
velocity law (2) will tend to a circle before shrinking in finite time to a point. In fact it can
be shown that a closed curve of length l1(t) shrinks according to the law

dl1
dt

= −
∫ l1(t)

0

κ2dl,

where we parameterise the curve in terms of arclength l. This result also holds in three-
dimensions and is called the curve shortening property. It can be proved by formulating (2)
in terms of arclength. Self intersecting planar curves have been considered by Altschuler
[1]. Such curves develop singularities in their evolution and [1] defines the flow through such
singularity to be given by the limiting flow of a sequence of space curves which asymptote to
the planar curve. Furthermore he demonstrates this limit to be independent of the sequence
taken. In a sequel paper [2] singularity development was investigated for space curves and
shown to be a planar phenomenon.

A theoretical treatment of the problem given by (2) can be found in a work by Ambrosio
and Soner [4].

In two dimensions the curvature of the curve can be written in terms of the angle θ the
curve makes to the x-axis, say, and its arclength l, so that

κ = |θl|.

Using this formulation it can be shown that the area A enclosed by a (closed) curve decreases
according to

dA

dt
= −2π. (3)

1A two-dimensional velocity law has been derived for a certain class of disclination in [14], which is such
as to suggest that the corresponding three-dimensional law contains a self-induced term similar to equation
(1).
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In three-dimensions we can employ a similar formulation by introducing a second angle φ,
so that the tangent to the curve

t = (sin θ cos φ, sin θ sin φ, cos θ) .

Here it is found that the curvature is

κ =
(

θ2
l + sin2 θφ2

l

)1/2
.

The generalisation of (3) to three-dimensions can be found using this formulation and is
that, where φ is monotonically increasing (or decreasing) in s the area of the projection of
the curve onto the x-y plane Aproj changes according to

dAproj

dt
= −

∫ 2π

0

sin2 θdφ.

In the remainder of this work we investigate the velocity law (2) as applied to a space
curve (we make no assumptions about whether the curve is self-intersecting or otherwise).
We find it helpful to represent the curve by the vector q such that its position at time t is
given by

x = q(s, t) = (u(s, t), v(s, t), w(s, t)),

in Cartesian (x, y, z) space, where s is some, as yet undefined, parametrisation. The velocity
law (2) can then be written in the form

qt = κn − Gt, (4)

where the subscript denotes the partial derivative and we allow an arbitrary component of
qt, magnitude G, in the tangential direction. The choice of G has the effect of determining
the evolution of the parametrisation s.

In terms of the parametrisation s the tangent, the normal and the curvature of the curve
are given by

t =
qs

|qs|
,

κn =
1

|qs|
∂

∂s

(

qs

|qs|

)

, |n| = 1.

It follows that the velocity law (2) can be formulated in the form

ut −
1

√

u2
s + v2

s + w2
s

(

us
√

u2
s + v2

s + w2
s

)

s

+
Gus

√

u2
s + v2

s + w2
s

= 0, (5)

vt −
1

√

u2
s + v2

s + w2
s

(

vs
√

u2
s + v2

s + w2
s

)

s

+
Gvs

√

u2
s + v2

s + w2
s

= 0, (6)

wt −
1

√

u2
s + v2

s + w2
s

(

ws
√

u2
s + v2

s + w2
s

)

s

+
Gws

√

u2
s + v2

s + w2
s

= 0. (7)
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Useful simplifications can be made by choosing G appropriately. For instance, by setting

G =

(

1
√

u2
s + v2

s + w2
s

)

s

,

we can set s = z. Then the evolution of the curve given by q = (u(z, t), v(z, t), z) is governed
by the coupled system

ut =
uzz

(1 + u2
z + v2

z)
, (8)

vt =
vzz

(1 + u2
z + v2

z)
. (9)

In terms of this parameterisation the curvature κ is given by

κ =
[(vzuzz − uzvzz)

2 + u2
zz + v2

zz]
1/2

(1 + u2
z + v2

z)
3/2

.

Another useful formulation is obtained by writing

u = r(θ, t) cos θ, v = r(θ, t) sin θ, w = z(θ, t),

setting s = θ and

G =
1

(r2
θ + z2

θ + r2)
1/2

(

2rθ

r
− rθrθθ + zθzθθ + rrθ

r2
θ + z2

θ + r2

)

.

This results in a system which describes the evolution of the curve in terms of the cylindrical
polar coordinates r, θ and z:

rrt =
rrθθ − r2 − 2r2

θ

r2
θ + z2

θ + r2
, (10)

rzt =
rzθθ − 2rθzθ

r2
θ + z2

θ + r2
. (11)

In terms of this parameterisation the curvature is

κ =
[(zθθrθ − zθrθθ)

2 + (rzθθ − rθzθ)
2 + (r2

θ − rrθθ)
2 + (r2 + 3r2

θ − 2rrθθ)(r
2 + r2

θ + z2
θ)]

1/2

(r2 + r2
θ + z2

θ)
3/2

.

In the next section we use the formulation (8)-(9) to derive all classical Lie symmetries
of (2); these are equally applicable to all formulations of (2). In section §3 we use these
symmetries to write down the similarity reductions for the formulation (10)-(11) (which
turns out to be convenient to work with). In sections 4 and 5 we look for the corresponding
similarity solutions. Note that although we work with (10)-(11) we are in fact able to find
solutions which are not graphs in θ by investigating the finite θ blow-up of the similarity
solutions. Finally, in §6, we draw our conclusions.

4



2 Symmetries

We apply the usual Lie group method for determining the classical symmetries of (8)-(9)
(see, for example, Hydon [10]), in the first instance by determining the infinitesimal trans-
formations of the form

t∗ ∼ t + εT (t, u, v, z), u∗ ∼ u + εU(t, u, v, z),

v∗ ∼ v + εV (t, u, v, z), z∗ ∼ z + εZ(t, u, v, z),

which leave equations (8)-(9) unchanged to order ε, where ε � 1.2 Omitting the details of
the derivation, we find that the symmetry group of (8)-(9) has eight parameters taking the
form

T = 2αt + t0, (12)




U
V
Z



 =





α d −b
−d α −c
b c α









u
v
z



 +





u0

v0

z0



 , (13)

where α, t0, b, c, d, u0, v0 and z0 are all arbitrary constants. We can in the usual way use
the infinitesimal versions of the groups to construct the global forms of the transformations
under which equations (8)-(9) are invariant. These are given by solving the initial value
problem

∂t∗

∂ε
= T (t∗, u∗, v∗, w∗),

∂u∗

∂ε
= U(t∗, u∗, v∗, w∗),

∂v∗

∂ε
= V (t∗, u∗, v∗, w∗),

∂z∗

∂ε
= Z(t∗, u∗, v∗, w∗)

(14)

with

t∗ = t, u∗ = u, v∗ = v, z∗ = z on ε = 0.

We can simplify the solution of (14) by first making a rotation of the (u∗, v∗, z∗) coordi-
nates about an appropriate axis to leave equation (14) in the form

∂t∗

∂ε
= 2αt∗ + t0, (15)















∂u∗

∂ε
∂v∗

∂ε
∂z∗

∂ε















=





α −M 0
M α 0
0 0 α









u∗

v∗

z∗



 +





u0

v0

z0



 ; (16)

2The notation A ∼ B means that A − B is much smaller than the smallest term contained in B in the
limit of interest (in this case ε → 0).
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We note that t0, u0, v0 and z0 represent translation invariants, α a rescaling invariant and M
a rotation invariant; the parameters b, c and d in (12)-(13) relate to M and the axis about
which the rotation occurs. We now integrate the system (15)-(16) with respect to ε. In the
case α = 0 and M = 0 we have

t∗ = t + εt0, u∗ = u + εu0, v∗ = v + εv0, z∗ = z + εz0. (17)

corresponding to a translation in each variable. By rotating the axes appropriately we can,
without loss of generality, set u0 = v0 = 0. In the case α = 0, M 6= 0 we have (where we set
u0 = v0 = 0 by translation of u and v)

t∗ = t + εt0, u∗ = u cos(εM) − v sin(εM),

v∗ = u sin(εM) + v cos(εM), z∗ = z + εz0,

in terms of the polar coordinates r, θ and z,

t∗ = t + εt0, r∗ = r, θ∗ = θ + εM, z∗ = z + εz0. (18)

Integrating (15)-(16) with respect to ε in the case α 6= 0 (where we set u0 = v0 = z0 = t0 = 0
by translation of u, v, z and t) we obtain

t∗ = exp(2αε)t,

u∗ = exp(αε) (u cos(εM) − v sin(εM)) ,

v∗ = exp(αε) (u sin(εM) + v cos(εM)) ,

z∗ = exp(αε)z.

This corresponds to a rotation about an arbitrary axis, one rescaling and four translations, as
we might expect in advance from the geometrical interpretation of the motion but probably
not from the partial differential equation formulation (8)-(9). Writing this in terms of the
polar coordinates r, θ and z gives

t∗ = exp(2αε)t, r∗ = exp(αε)r, θ∗ = θ + Mε, z∗ = exp(αε)z. (19)

3 Similarity reductions

The case α = 0, M = 0. We now note the invariants (i.e. quantities which are not
functions of ε) of the global transformation (17) when u0 = v0 = 0; they are

u, v z − qt,

where q = z0/t0. This leads to a travelling wave reduction to (8)-(9) of the form

u = U(z − qt), v = V (z − qt). (20)
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The case α = 0, M 6= 0. Invariants of the global transformation (18) are

θ − ct, r =
(

u2 + v2
)1/2

, z − qt.

where c = M/t0. These suggest that we should use the equations describing the evolution
of the filament in polar coordinates, namely (10) and (11), to look for a travelling rotating
wave solution to v = κn of the form

r = R(θ − c t), z = q t + f(θ − c t), (21)

where the arbitrary constants q and c are, respectively, the velocity of the wave in the z-
direction and its angular velocity about the z-axis. Note that the travelling wave ansatz (20)
corresponds to the special case of the travelling rotating wave ansatz (21) where c = 0. We
return to both of these reductions shortly. In the exceptional case where t0 = 0 as well as
α = 0 the invariants of the transformation are

z − kθ, t, r,

where k = z0/M and we therefore look for a similarity reduction to equations (10) and (11)
of the form

z = k θ + f(t), r = R(t), (22)

where k is some constant. This gives rise to a contracting helix (see for example [6, 2]) such
that when we substitute (22) into (10) and (11) we find that f is a constant (which may,
without any loss of generality, be taken to be zero) and R(t) is given by

t =
1

2
(R2

0 − R2) + k2 log

(

R0

R

)

,

where R(0) = R0. Hence as t → ∞ the radius decreases as exp(−t/k2).

The case α 6= 0. Invariants of the global transformation (19) are

r2

t
=

u2 + v2

t
,

z2

t
, θ − M

2α
log |t|.

We thus look for similarity reductions to (10)-(11) either of the form

r =
√

t R(θ − p log t), z =
√

t f(θ − p log t), (23)

or of the form

r =
√
−t R(θ + p log(−t)), w =

√
−t f(θ + p log(−t)), (24)

where p is an arbitrary constant.
We now have a complete catalogue of the classical similarity reductions to the sys-

tem of partial differential equations (8) and (9) describing motion by curvature of a curve
parametrised by z and t and equivalently to the system of partial differential equations (10)
and (11) describing motion by curvature of a curve parametrised by θ and t.
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4 Rotating Travelling Waves

4.1 Formulation

In light of (21), we look for a solution to (10)-(11) of the form

r = R(η), z = qt + f(η), η = θ − ct.

This ansatz results in the following system of ordinary differential equations:

R′′ + cR′

(

R2 + f ′2 + R′2
)

−
(

R +
2R′2

R

)

= 0, (25)

f ′′ + (cf ′ − q)
(

R2 + f ′2 + R′2
)

− 2R′f ′

R
= 0, (26)

which is a third order autonomous system for R and f ′; the only symmetries of the original
partial differential equations inherited by this coupled system are invariance under transla-
tions in f and η. It is, however, invariant under the discrete transformation

η → −η, c → −c

and we therefore choose, without any loss of generality, c > 0 in all that follows. It should also
be noted that, for non-zero c, we can reduce the number of free parameters in the problem to
one, namely q/

√
c, by rescaling f and R with 1/

√
c. We first describe the possible asymptotic

forms of solutions to (25)-(26) and then outline how they can be used to formulate initial
value problems which furnish meaningful solutions to (10)-(11).

4.2 Finite η blow up

The balance

R′′ ∼ −cR′

(

f ′2 + R′2
)

, f ′′ ∼ −cf ′

(

f ′2 + R′2
)

,

in (25) and (26) arises in describing blow up at finite η (in this case to R′ and f ′ becoming
unbounded). The corresponding asymptotic expressions for R and f are thus

R ∼ d +

(

2(η − η0)

c

)1/2

cos α, f ∼ h +

(

2(η − η0)

c

)1/2

sin α, (27)

or

R ∼ d −
(

2(η − η0)

c

)1/2

cos α, f ∼ h −
(

2(η − η0)

c

)1/2

sin α, (28)

where α, d, h and η0 are all arbitrary constants. It is clear that there are four degrees
of freedom for this asymptotic behaviour (since it contains four arbitrary constants), the
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maximum possible for the fourth order system (25) and (26), so this is a generic form of
blow-up. There is also a second type of blow-up which can occur as R → 0. Here there is a
local balance of the form

R′′ + cR′

(

f ′2 + R′2
)

∼ 2R′2

R
, f ′′ + cf ′

(

f ′2 + R′2
)

∼ 2R′f ′

R
,

with the corresponding asymptotic behaviour

R ∼
(

6(η − η0)

c

)1/2

cos α, f ∼ h +

(

6(η − η0)

c

)1/2

sin α, (29)

or

R ∼ −
(

6(η − η0)

c

)1/2

cos α, f ∼ h −
(

6(η − η0)

c

)1/2

sin α. (30)

In this case it is not obvious how many degrees of freedom are contained in this asymptotic
behaviour; to assess this we perturb about (29) (an equivalent analysis applies to (30)) by
substituting

R ∼
(

6(η − η0)

c

)1/2

cos α + R1, f ∼ h +

(

6(η − η0)

c

)1/2

sin α + f1,

into equations (25)-(26), linearising in R1 and f1 and seeking the eigenmodes (and therefore
neglecting the forcing terms) to obtain a fourth order homogenous system. The solution of
this linear system (at leading order in (η − η0)) reveals the eigenmodes

R1 = 0

f1 = 1

}

;
R1 ∼ cotα(η − η0)

−1/2

f1 ∼ (η − η0)
−1/2

}

;

R1 ∼ − tanα(η − η0)
1/2

f1 ∼ (η − η0)
1/2

}

;
R1 ∼ cotα(η − η0)

−1

f1 ∼ (η − η0)
−1

}

.

(31)

The first of these corresponds to a small change in h, the second to a small change in η0 and
the third to a small change in α; the fourth is larger than (29) and is hence asymptotically
inconsistent, from which we conclude that (29) and (30) have three degrees of freedom. This
is as might be expected since the degree-of-freedom d in (27)-(28) is lost by requiring blow-up
to occur as R → 0.

We believe these to be the only types of finite η blow-up which can occur for (25)-(26).
Note that for c > 0 blow-up can only occur as η tends to η0 from above and for c < 0 only
as η tends to η0 from below. Hence only one blow-up can occur along any given solution.
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4.3 Behaviour of the solution for large η

As η → +∞ we find the following balance between terms in equations (25)-(26):

cR2R′ ∼ R, cR2f ′ ∼ qR2,

with asymptotic behaviour

R ∼
(

2η

c

)1/2

, f ∼ qη

c
, (32)

We now again determine the number of degrees of freedom exhibited by this asymptotic
behaviour. Writing

R ∼
(

2η

c

)1/2

+ R1, (33)

f ∼ qη

c
+ f1, (34)

substituting into (25)-(26) linearising in R1 and f1 and neglecting forcing terms gives a
homogenous system for R1 and f1 which has the following possible asymptotic behaviours
for large η:

R1 = 0

f1 = 1

}

;

R1 ∼ η−1/2

f1 ∼
q

2 (2c)1/2
η−2











;

R1 ∼ −exp(−η2)

2η

f1 ∼ −q

(

2

c

)1/2

η−1/2 exp(−η2)















;
R1 ∼ q

(

2

c

)1/2

η−1/2 exp(−η2)

f1 ∼ −exp(−η2)

2η















.

None of these expressions leads to a violation of the asymptotic expansions (33)-(34), so
there are four degrees of freedom exhibited by the behaviour (32) which is therefore generic.

We also consider the asymptotic behaviour of solutions which do not exhibit finite η blow
up in the limit as η → −∞, by making the ansatz

R ∼ k exp(αη), f ∼ dη, α > 0; (35)

substitution into (25)-(26) gives two relations for α and d:

cd3 − qd2 − 2αd = 0, α2 − c d2α + 1 = 0,

so that

d = ±
(

q2

2c2
+

(

q4

4c4
+

4

c2

)1/2
)1/2

, α =
1

2
d(c d − q), (36)
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and k is a arbitrary constant. Again we can determine the number of degrees of freedom
exhibited in this behaviour by linearising about (35)

R ∼ k exp(αη) + R1, f ∼ dη + f1,

implying that R1 and f1 are made up of linear combinations of the following expressions:

R1 = 0

f1 = 1

}

;
R1 ∼ exp(αη)

log f1 ∼ 2αη

}

;
R1 ∼ exp((α − cd2)η)

(

kα

d
sin(dµη) +

kµ

2
cos(dµη)

)

f1 ∼ exp(−cd2η) sin(dµη)







;

R1 ∼ exp((α − cd2)η)

(

kα

d
cos(dµη) − kµ

2
sin(dµη)

)

f1 ∼ exp(−cd2η) cos(dµη)







,

here µ2 =
√

q4/4 + 4c2 − q2/2. The first and second of these behaviours represent a change
in f by a small constant and a small change in k. However since we look at the behaviour
as η → −∞ and have assumed c > 0 we require that the third and fourth of these be absent
in order that the asymptotics are not violated. It follows that there are only two degrees of
freedom represented in the behaviour (35).

4.4 Construction of rotating travelling wave solutions to v = κn.

Three distinct types of solution to v = κn may be formed using solutions to (25)-(26)
with different asymptotic behaviours. Examples of these three sorts of solution are given
in Figures 1 and 2, in which the solution is represented by a curve, fattened for visibility,
plotted as a function of R(η) cos(η), R(η) sin(η) and f(η) (in other words, showing the curve
as it appears in Cartesian coordinates (x, y, z) at time t = 0). Outlined below are the three
possible ways in which it is possible to form a smooth rotating travelling wave solution.

1. We can join a solution with asymptotic behaviour (29) as η → η+
0 to one with asymp-

totic behaviour (30) as η → η+
0 to find a regular solution of v = κn in which R and

f are multivalued. Both branches exhibit the asymptotic behaviour (32) as η → +∞
(which has four degrees of freedom). In practice this construction involves choosing
η0, h and α shooting from η slightly larger than η0 towards η = ∞ along one branch
(using (29)) and then repeating the process along the other branch. An example (with
η0 = 0, h = 0 and α = π/4) of such a solution is given in Figure 1 (a). The curve
shown in this figure rotates in a anti-clockwise direction about the z (i.e. the f) axis
while translating in the positive z direction. An animation of the motion of this curve
can be found in [15].

2. We can also join a solution with asymptotic behaviour (27) as η → η+
0 to one with

asymptotic behaviour (28) as η → η+
0 . The resulting curve is a regular solution of

v = κn but is again multivalued in R and f . The two branches both exhibit the

11



asymptotic behaviour (32) as η → +∞, which has four degrees of freedom. The
practical details of the computation are the same as above. An example of such a
solution is given in Figure 1 (b) (with η0 = 0, h = 3 sin(3π/8), d = 3 cos(3π/8), and
α = (3π/8)). The curve shown in this figure again rotates in a anti-clockwise direction
about the z (i.e. the f) axis while translating in the positive z direction.

3. We can find solutions with asymptotic behaviour (35) as η → −∞ and asymptotic
behaviour (32) as η → +∞. This involves using (35) in shooting from η = −∞, where
there are two degrees of freedom, to η = ∞ where there are four degrees of freedom.
Examples of such solutions are given in Figures 2 (a) and 2 (b). In both cases k = 0.1,
c = 2.0 and q = 0.5 and α and d are calculated using (36). However in the former
the positive root of d is taken while in the latter the negative root is taken. The curve
shown in Figure 2(a) rotates in an anti-clockwise direction about the z (i.e. the f)
axis and propagates in the positive z direction leaving a straight line in its wake. The
curve in Figure 2(b) rotates and translates in a similar fashion however as it does so it
consumes the half-line lying along the z-axis.

Solutions to the ODEs (25)-(26) were calculated numerically using a fourth-order Runge-
Kutta method. In cases 1 and 2 we used the appropriate asymptotic behaviours about η = η0

to construct the initial values for the solution at an initial point η = η0 + δ where 0 < δ � 1.
In case 3 we used (35) to construct initial values for the solution at η = −1/δ, where again
0 < δ � 1. Solutions of type 1 are characterised by three arbitrary parameters α, h and
η0 (since three degrees of freedom are exhibited by the initial conditions (29) and (30));
the last of these parameters η0 corresponds to a translation of the curve along the f -axis.
Such solutions pass through the axis of rotation. Solutions of type 2 are characterised by
four parameters α, d, h and η0 (since four degrees of freedom are exhibited by the initial
conditions (27) and (28)); again η0 corresponds to a translation of the curve along the f -
axis. Solutions of type 3 are characterised by two arbitrary parameters (since two degrees
of freedom are exhibited by (35)). In all cases considered the numerical behaviour for large
positive η was compatible with (32) which should not be surprising as it has four degrees of
freedom.

4.5 Special cases

4.5.1 q = 0: Rotating waves.

When q = 0 in equations (25)-(26) the equations describe a rotating wave with angular
velocity c. While these have the same asymptotic behaviour as before close to blow up (i.e.
(27)-(28) and (29)-(30)), they exhibit different behaviour as η → +∞ where the balance is
of the form

cR′R2 − R ∼ 0, f ′′ + cf ′R2 ∼ 0,
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with asymptotic behaviour

R ∼
(

2η

c

)1/2

, f ∼ d, (37)

where d is an arbitrary constant. Hence as η → +∞ the solution tends towards a planar
solution. We determine the number of degrees of freedom exhibited by this behaviour by
linearising about (37) in the form

R ∼
(

2η

c

)1/2

+ R1, f ∼ d + f1,

and find that R1 and f1 are composed of linear combinations of

R1 = 0

f1 ∼ 1

}

;
R1 ∼ η−1/2

f1 = 0

}

;
R1 ∼

1

2η
exp(−η2)

f1 = 0







;

R1 = 0

f1 ∼
1

2η
exp(−η2)











.

Since none of these behaviours violates the asymptotic expansion (37) in the limit η → +∞
four degrees of freedom are exhibited by (37).

Rotating waves can be constructed in an identical manner to rotating travelling waves.
Examples of rotating waves computed from equations (25)-(26) are plotted in Figure 3 and
4. In Figure 3(a) the curve is formed from two solutions with initial data given by (27) and
(28) whilst in Figure 3(b) it is formed from two solutions with asymptotic behaviours (29)
and (30). Figure 4 shows a rotating wave which has asymptotic behaviour of the form (35) as
η → −∞. In all three cases the curve rotates in an anti-clockwise fashion about the f -axis.
Figure 4 is of particular interest because it suggests that, when the forcing term (∇∧B)∧ t

is retained in the superconducting vortex equation of motion (1), that it is possible to form
a three-dimensional superconducting analogue of the Frank-Read source seen in disclination
dynamics. In this scenario a superconducting vortex is pinned on two semi-infinite lines and
curves round from the top of one line to meet the top of the other. When a current (i.e. an
external force) is applied to this structure it seems likely that it would generate a lengthening
double spiral vortex that would, after sufficient time, reconnect with itself releasing a vortex
ring.

4.5.2 c = 0: Travelling waves.

When c = 0, equations (25)-(26) describe a travelling wave moving with velocity q in the
z-direction. In particular, we can now identify the similarity variable as θ and write equation
(25) in the form

d2R

dθ2
−
(

R +
2

R

(

dR

dθ

)2
)

= 0. (38)
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This has general solution

R =
k

sin(θ − θ0)
,

where k and θ0 are arbitrary constants. It follows that the solution curve lies in the plane
y cos(θ0)−x sin(θ0) = k and, as such, is equivalent to the planar solutions studied previously
by Mullins [9] and Wood [16].

5 Logarithmic Similarity Reductions

5.1 Expanding case

We now investigate similarity solutions to equations (10) and (11) of the form

r =
√

tR(η),

z =
√

tf(η),

η = θ − p log(t).

Substituting this into (10) and (11) yields the autonomous system

R′′ =
1

2
(R − 2pR′)

(

R2 + f ′2 + R′2
)

+

(

R +
2R′2

R

)

, (39)

f ′′ =
1

2
(f − 2pf ′)

(

R2 + f ′2 + R′2
)

+
2R′f ′

R
. (40)

Since these equations are invariant under the transformation

η → −η, p → −p,

we can, without loss of generality, choose p > 0. As with the rotating travelling wave we
find two types of blow up in finite η, namely

R ∼ d ±
(

2(η − η0)

p

)1/2

cos α, f ∼ h ±
(

2(η − η0)

p

)1/2

sin α, (41)

and

R ∼ ±
(

6(η − η0)

p

)1/2

cos α, f ∼ h ±
(

6(η − η0)

p

)1/2

sin α, (42)

where d, h, η0 and α are all arbitrary constants. It follows that there are four degrees of
freedom for the asymptotic behaviour (41). In order to determine the number of degrees of
freedom exhibited by the asymptotic behaviour (42) we follow the procedure adopted in the
case of the equivalent behaviour of the rotating travelling wave. The result is identical to
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that found in (31) if we replace c by p and, as in the case of equation (29), the asymptotic
behaviour (42) has three degrees of freedom.

The large η behaviour differs from the previous case. Equations (39) and (40) have no
finite stationary points and hence for η increasing the only possible asymptotic behaviour is
for at least one of f and R to tend to infinity. Hence we find that

f ∼ 2pf ′, R ∼ 2pR′,

so that the asymptotic behaviour is given by

R ∼ e1 exp

(

η

2p

)

, f ∼ e2 exp

(

η

2p

)

, as η → +∞, (43)

where e1 is a non-zero, but otherwise arbitrary, constant and e2 is an arbitrary constant. If
we linearise in R1 and f1 via the ansatz

R ∼ e1 exp

(

η

2p

)

+ R1,

f ∼ e2 exp

(

η

2p

)

+ f1,

we find that the asymptotic behaviour for R1 and f1 is a linear combination of

R1 ∼ exp

(

η

2p

)

+ O

(

− exp

(

η

2p

))

f1 = O

(

exp

(

−3η

2p

))















;
R1 = O

(

exp

(

− η

2p

))

f1 ∼ exp

(

η

2p

)















.

and two very rapidly decaying solutions each of which satisfies

log R1 ∼ −p2E2 exp

(

η

p

)

log f1 ∼ −p2E2 exp

(

η

p

)

,

as η → +∞, where E2 = e2
1 + (e2

1 + e2
2)/(4p2). An appropriate combination of the first two

of these solutions represents translational invariance (in η) of (39) and (40). Corrections to
the last two solutions can be determined by proceeding to next order in the expansion (43).
None of the expressions we have found for R1 and f1 violate the asymptotic behaviour (43);
it hence exhibits four degrees of freedom.

Looking at the asymptotic behaviour (43) it might be conjectured that (by choosing
e1 = 0 and e2 6= 0) it is possible to find solutions to (39) and (40) which asymptote to the
f -axis as η → +∞. However, if f ∼ e2 exp(η/(2p)) as η → +∞ and R � f then R obeys
the approximate equation

R′′ ∼ e2
2

8p2
exp

(

η

p

)

(R − 2pR′) +

(

R +
2R′2

R

)

.
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In this limit the above equation has possible asymptotic behaviours

R ∼ exp

(

η

2p

)

C1 exp

(

e2
2

4
exp

(

η

p

))

, R ∼ C2 exp

(

η

2p

)

,

where C1 and C2 are arbitrary constants. This suggests that the only solutions to (39) and
(40) which asymptote to the f -axis as η → ∞ are those for which R ≡ 0 (i.e. lie along the
f -axis).

We conjecture that there is no solution to (39)-(40) which does not exhibit finite η blow
up for sufficiently large negative η.

Numerical solutions. In a manner similar to that outlined above, we may join two solu-
tions with asymptotic behaviours (41) (but different signs) to each other. We calculate the
two branches separately using the positive sign in (41) to give initial conditions at η = η+

0

of one branch and the negative sign in (41) to give initial conditions at η = η+
0 for the other

branch. For both branches we then integrate forward in η using a fourth order Runge-Kutta
numerical scheme. The behaviour as η → +∞ is then found to be given by (43). A typical
curve obtained using this procedure is plotted in Figure 5(b). In a similar fashion we can use
the positive sign in the asymptotic behaviour (42) to provide initial conditions to calculate
one branch of a continuous curve and the negative sign in equation (42) to calculate the other
branch and, as before, the behaviour as η → +∞ is given by (43). An example of such a
curve is plotted in Figure 5(a). In both cases the curve rotates in an anti-clockwise direction
about the f -axis with slowing angular velocity; it expands as it does so. An animation of
the curve in Figure 5(b) can be found in [15].

The initial value problem. We may interpret solutions to (39)-(40) as satisfying an
initial value problem for the original partial differential equations (10)-(11). For any fixed
value of θ the corresponding value of η as t → 0 tends to +∞ if p > 0. Initial data at t = 0
is thus given by the large η behaviour (43). On substituting this into the similarity ansatz
(23) we see that the initial data is given by two logarithmic spirals, joined at r = 0 z = 0
and distorted in the z-direction to lie on the surface of a cone, that is

r = e+
1 exp

(

θ

2p

)

, z = e+
2 exp

(

θ

2p

)

, at t = 0,

and

r = e−1 exp

(

θ

2p

)

, z = e−2 exp

(

θ

2p

)

, at t = 0.

This initial value problem gives a dramatic demonstration of the curve shortening prop-
erty, since the spiral is initially of infinite length in the neighbourhood of the origin but
instantaneously shortens to a finite length there.
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5.2 Contracting case

We look for solutions to (10) and (11) of the form

r =
√
−tR(η), w =

√
−tf(η), η = θ + p log(−t),

yielding

R′′ +
1

2
(R + 2pR′)

(

R2 + f ′2 + R′2
)

−
(

R +
2R′2

R

)

= 0, (44)

f ′′ +
1

2
(f + 2pf ′)

(

R2 + f ′2 + R′2
)

− 2R′f ′

R
= 0. (45)

As with the expanding case these equations are invariant under

η → −η, p → −p,

and this allows us to choose, without any loss of generality, p > 0. With this choice of sign
for p we find the system (44)-(45) exhibits identical finite η blow up to equations (39)-(40),
namely that given by (41) and (42), and these again have four and three degrees of freedom,
respectively.

Unlike equations (39)-(40) for the expanding case, equations (44)-(45) have a critical
point at R =

√
2, f = 0. Furthermore, this critical point is stable for p > 0. We conjecture

that all solutions (with p > 0) tend towards this point as η → +∞.
As η → −∞ those solutions which do not exhibit finite η blow-up have asymptotic

behaviour

R ∼ e1 exp

(

− η

2p

)

, f ∼ e2 exp

(

− η

2p

)

. (46)

We investigate the number of degrees of freedom exhibited in this behaviour by making a
perturbation to it of the form

R ∼ e1 exp

(

− η

2p

)

+ R1, (47)

f ∼ e2 exp

(

− η

2p

)

+ f1, (48)

and linearising in R1 and f1. We find that the asymptotic behaviour of R1 and f1 is given
by a linear combination of

R1 = exp

(

− η

2p

)

+ O

(

exp

(

η

2p

))

f1 = O

(

exp

(

3η

2p

))















;
R1 = O

(

exp

(

η

2p

))

f1 ∼ exp

(−η

2p

)















.
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and two rapidly decaying solutions whose leading order behaviour is given by

log R1 ∼ −p2E2 exp

(

−η

p

)

log f1 ∼ −p2E2 exp

(

−η

p

)

,

where E2 = e2
1 + (e2

1 + e2
2)/(4p2). Corrections to the leading order behaviour of these two

solutions can be determined by proceeding to the next order in the expansion (46). Since we
consider the limit η → −∞ and p > 0 the first and second solutions we found for R1 and f1

violate the asymptotics while the third and fourth do not. Hence there are only two degrees
of freedom for the asymptotic behaviour (47) and (48).

Numerical solutions. Again, as for the expanding case, we may join two solutions with
initial conditions given by the asymptotic behaviours (41) (but different signs) to each other
to construct a contracting logarithmic similarity solution and; we may also join two solutions
with initial conditions given by asymptotic behaviours (42) (but different signs) to form a
different type of contracting logarithmic similarity solution. In both cases, as η → +∞, the
curve asymptotes to the critical point R =

√
2, f = 0 making infinitely many rotations as it

does so but never self-intersecting. Examples of a curve with initial conditions of the form
(41) and (42) are given in Figure 6(a) and 6(b) respectively. In Figure 6(a) we have η0 = 0,
h = 0 and α = 3π/8 while in Figure 6(b) we have η0 = 0, d = h = 3 cos(3π/8) and α = 3π/8.
In both case the curves rotate about the f -axis in an anti-clockwise sense contracting to a
point in finite time. An animation of the motion of the curve in Figure 6(b) can be found in
[15]. A third type of solution can be constructed by taking the asymptotic behaviour (46) as
an initial condition as η → −∞. This again asymptotes to the critical point R =

√
2, f = 0

as η → +∞. An example of this third type of solution can be found in Figure 7. Here the
curve rotates in a clockwise sense and contracts as it does so.

5.3 The special cases p = 0

In both the case where we search for an expanding similarity solution of the form

r =
√

tR(θ), z =
√

tf(θ),

and the case where we search for a contracting similarity solution of the form

r =
√
−tR(θ), z =

√
−tf(θ), (49)

it is possible to show that

d2

dθ2

(

f

R

)

+
f

R
= 0.

It follows that f may be expressed in the form

f = k R cos(θ + α),
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where k and α are arbitrary constants, and hence that the solutions are always planar. As
such solutions have again been investigated previously in Mullins [9] and Wood [16] we again
say no more on the subject, except to note the circular case of (49), namely

r =
√
−2t, z = 0,

which is known [7] to provide the extinction behaviour of closed curves in the planar case
and also seems likely to in the three-dimensional case.

6 Discussion

In this work we have investigated the motion of a space curve evolving in accordance to the
velocity law v = κn. We started by using the Lie group method to classify the symmetries
of the partial differential equations describing this evolution. We used the results of this
analysis to write down all possible classical similarity reductions to these equations. When
we formulated the system in terms of cylindrical polar coordinates r, θ and z (as in equations
(10) and (11)), these similarity solutions take the form

r = R(θ − c t), z = q t + f(θ − c t), (50)

r = R(t), z = k θ + f(t), (51)

r =
√

t R(θ − p log t), z =
√

t f(θ − p log t), (52)

r =
√
−t R(θ + p log(−t)), z =

√
−t f(θ + p log(−t)), (53)

where c, q, k and p are all arbitrary constants. The similarity form (50) gives rise to rotating
travelling waves, special cases of which are rotating waves q = 0 and travelling waves c = 0.
In respect of the travelling wave we were able to show that solutions of this form must be
planar. Solutions to (10) and (11) of the form (51) are contracting helices and the similarity
forms (52) and (53) we term expanding logarithmic similarity solutions and the contracting
logarithmic similarity solutions. The special cases of (52) and (53) in which p = 0 give rise
to so-called shape preserving solutions; as with the travelling waves, we were able to show
that these shape preserving solutions are necessarily planar.

When the model v = κn is used to describe the motion of a line singularity, such
as a superconducting vortex or a line disclination, it is useful and interesting to consider
the behaviour of the curve where it meets a boundary. The natural boundary condition
associated with the law of motion v = κn is

t ∧ N = 0, (54)

where t is the tangent to curve and N is the normal to boundary. Typically we expect the
boundary to be held fixed as the curve evolves. It follows that the only similarity solutions
which can be used to describe the motion of a curve which connects to planar boundaries
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are the shape preserving and travelling wave solutions. It is significant that, as noted above,
these are necessarily planar. Such planar shape preserving solutions have been used in [16]
to describe the evolution of a curve connected at both ends to a wedge, for example.

It is also of interest to speculate on whether there is any closed curve similarity solution to
v = κn other that the obvious contracting circle. It is clear from the catalogue of similarity
solutions in (50)-(53) that the only one capable of describing the evolution of a closed curve
is (53). Recall that we were unable to find any other behaviour than attraction to the stable
critical point at R =

√
2, f = 0, as η → +∞ for p > 0 and that we could find no evidence of

finite η blow up for increasing η. Furthermore numerical evidence suggest that, as η → +∞,
all trajectories are attracted to this critical points and hence that it is unlikely that closed
curve similarity solution exist other that the obvious one R =

√
2, f = 0. However, it is

perfectly possible to find long closed curves whose behaviour is approximately described by
similarity solutions of the form (53). One has only to think of taking the curve in Figure 7b
rotating it by π and joining it back onto its unrotated self somewhere on the plane f = 0
with the aid of four judicious cuts and two joins which get rid of the infinite portion of the
two curves along the circle R =

√
2, f = 0. The resulting finite, but very long, closed curve

will follow the evolution of the similarity solution asymptotically, at least until the coils lying
along the circle R =

√
2, f = 0 are close to unwinding (i.e have O(1) length in the similarity

variables).
Our final comments relate to coupled diffusion equations of the form

∂α

∂t
=

∂

∂z

(

D1(α, β)
∂α

∂z

)

,

∂β

∂t
=

∂

∂z

(

D2(α, β)
∂β

∂z

)

,

(55)

which have a large number of applications. By writing

α =
∂u

∂z
, β =

∂v

∂z
,

this system can be re-expressed as

∂u

∂t
= D1

(

∂u

∂z
,
∂v

∂z

)

∂2u

∂z2
,

∂v

∂t
= D2

(

∂u

∂z
,
∂v

∂z

)

∂2v

∂z2
,

(56)

and so as an indirect consequence of our analysis we are able to identify the special case

D1(α, β) =
1

1 + α2 + β2
= D2(α, β), (57)

of (55) as having a very rich (albeit non-local) eight parameter symmetry group; more
precisely, two of the rotation groups of (2) correspond to non-local symmetries of (55) with
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(57) while rotation about the z-axis corresponds to a local symmetry of (55). This result
suggests that an analysis of (56) to identify the non-local symmetries of (55) would be
highly worthwhile. In particular we may extend the above result by applying the following
geometrical reasoning (or, at the cost of some algebra, by a systematic procedure based on
the relevant infinitesimals). For rotation about an axis in the (u, v, z) = (a, b, c) direction it
is clear that

aα + bβ + c

(1 + α2 + β2)1/2
,

(which is the component of the tangent to the curve in the (a, b, c) direction) is an invariant
depending only upon the first derivatives α and β. The angle that the projection of the
tangent to the curve onto the plane normal to (a, b, c) makes with the vector (0, c,−b) is

Θ = tan−1

(

(b2 + c2)α − abβ − ac

(a2 + b2 + c2)1/2(cβ − b)

)

.

Under rotation about (a, b, c) this angle changes by the angle of rotation. Thus

v = eµΘΛ

(

aα + bβ + c

(1 + α2 + β2)1/2

)

κn, (58)

is invariant under a translation in Θ and a rescaling in time for any function Λ. Formulating
this velocity law as a PDE and differentiating with respect to z gives the following system
of nonlinear diffusion equations:

∂α

∂t
=

∂

∂z

[

Λ

(

aα + bβ + c

(1 + α2 + β2)1/2

)

exp

(

µ tan−1

(

(b2 + c2)α − abβ − ac

(a2 + b2 + c2)1/2(cβ − b)

))

1

1 + α2 + β2

∂α

∂z

]

,

∂β

∂t
=

∂

∂z

[

Λ

(

aα + bβ + c

(1 + α2 + β2)1/2

)

exp

(

µ tan−1

(

(b2 + c2)α − abβ − ac

(a2 + b2 + c2)1/2(cβ − b)

))

1

1 + α2 + β2

∂β

∂z

]

,

(59)

which inherits as a non-local (unless a = b = 0) symmetry the symmetry of (58) under
translations of Θ. The corresponding results for the planar case underpin the analysis of
[11] (and references therein) though those examples (of scalar nonlinear diffusion equations)
have not previously been given the geometrical interpretation

v = eµΘκn, (60)

in two dimensions with Θ = tan−1(∂u/∂z). Equation (60) implies that

∂α

∂t
=

∂

∂z

(

eµ tan−1 α

1 + α2

∂α

∂z

)

,
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so setting µ = −2in, α = ic is often expedient, leading to

∂c

∂t
=

∂

∂z

(

(1 + c)n−1

(1 − c)n+1

∂c

∂z

)

;

having µ and α imaginary obscures the geometrical derivation and content, however.
Finally, it is worth noting the similarity of such results to λ-ω reaction diffusion systems.

For a = b = 0, the relevant symmetry of (58) is a local one. For a = b = µ = 0 (59) takes
the form

∂γ

∂t
=

∂

∂z

(

D(|γ|)∂γ

∂x

)

(61)

with γ = α + iβ; (61) is evidently invariant under γ → γeiφ for constant φ, and the re-
sult represents a nonlinearly-diffusive version of that for the λ-ω reaction diffusion systems,
readily generalising to

∂γ

∂t
=

∂

∂z

(

D(|γ|)∂γ

∂x

)

+ (λ(|γ|) + iω(|γ|))γ, (62)

for example. Systems such as (62) thus warrant further attention.
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Figure 1: Examples of rotating travelling waves. (a) shows a solution with c = 1.5 and
q = 1.0 with initial conditions R ∼ ± cos(π/4)

√
4η and f ∼ ± sin(π/4)

√
4η as η → 0. (b)

shows a solution with c = 2.0 and q = 1.0 with initial conditions R ∼ cos(3π/8)(3 ± √
η)

and f ∼ sin(3π/8)(3 ±√
η) as η → 0.
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Figure 2: Examples of a further kind of travelling rotating wave with c = 2.0 and q = 0.5
and initial data compatible with the asymptotic behaviour given by (35) as η → −∞. In
(a) the positive root of d is taken and in (b) the negative.
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Figure 3: (a) shows an example of an asymmetric rotating wave with initial conditions
R ∼ cos(−π/4)(1±√

2η) and f ∼ sin(−π/4)(1±√
2η) as η → 0. Figure (b) shows an anti-

symmetric rotating wave with initial conditions R ∼ ± cos(π/4)
√

6η and f ∼ ± sin(π/4)
√

6η
as η → 0. In both cases c = 1.
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Figure 4: An example of a further kind of rotating wave with c = 3.0 and initial data
compatible with the asymptotic behaviour f ∼ dη, R ∼ 0.1 exp(αη) as η → +∞.
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Figure 5: (a) shows an example of an expanding logarithmic similarity solution with p = 3
and initial conditions R ∼ ± cos(π/4)

√
2η and f ∼ ± sin(π/4)

√
2η as η → 0. (b) shows

an asymmetric expanding logarithmic similarity solution with p = 2 and initial conditions
R ∼ cos(3π/8)(2±√

η) and f ∼ sin(3π/8)(2 ± √
η) as η → 0.
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Figure 6: (a) shows an example of an antisymmetric contracting logarithmic similarity so-
lution with initial conditions R ∼ ± cos(3π/8)

√
6η and f ∼ ± sin(3π/8)

√
6η as η → 0.

(b) shows an asymmetric contracting logarithmic similarity solution with initial conditions
R ∼ cos(3π/8)(3±√

2η) and f ∼ sin(3π/8)(3 ± √
2η) as η → 0. In both cases p = 1.
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Figure 7: An example of a contracting similarity solution with the asymptotic behaviour
R ∼ exp(−η/(2p)) and f ∼ exp(−η/(2p)) as η → −∞. Here p = 1.
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