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CLASSIFICATION OF PHASE TRANSITIONS IN THIN 
STRUCTURES WITH SMALL GINZBURG-LANDAU PARAMETER* 

G. RICHARDSONt AND J. RUBINSTEINt 

Abstract. Thin superconducting structures are considered. We compute the limit where the 
thickness and the Ginzburg-Landau parameter tend simultaneously to zero with a preferred scaling. 
The new equations enable us to divide the parameter space into regimes of first order or second order 
phase transition. The results are discussed in light of recent experiments. 
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1. Introduction. Superconducting materials exhibit a phase transition from a 
normal state, in which they behave like conventional metals, to a superconducting 
state in which they can support electric currents without resistance and exhibit the 
so-called Meissner effect, namely a tendency to expel magnetic fields. This phase 
transition is commonly associated with a critical temperature Tc, below which the 
material enters the superconducting state. This, however, applies only in the absence 
of a magnetic field. Where a magnetic field H is applied to the sample the transition 
takes place across some (sample geometry dependent) curve in H-T space which we 
represent schematically in Figure 1.1. The purpose of this paper is to investigate 
this phase transition for thin structures made from a certain class of superconducting 
materials at low magnetic fields. In order to do this we make use of the Ginzburg- 
Landau (GL) model of superconductivity [7]. In this model the superconducting 
charge carriers (electron pairs) are represented by a complex order parameter O(x), 
which is defined such that \l(x) 

2 is proportional to the number density of these 
charge carriers. 

Phase transitions are classified into two types: first order (discontinuous) and 
second order (continuous). First order phase transitions are associated with a jump 
in some quantity (in this case the GL order parameter 4) as a controlling parameter 
is varied (in this case temperature T). They are also associated with hysteresis in this 

quantity as the controlling parameter is swept up and down through the phase tran- 
sition. In a second order phase transition the quantity of interest (here 4) bifurcates 
continuously from its initial state (the normal state 4 = 0). Both types of transition 
are exhibited by superconductors in the change from the normal state X = 0 to the 
superconducting state 4 54 0. In bulk samples the order of this transition depends 
upon a material property, namely the GL parameter r. It is known that the transition 
is of first order if K < 1/v'2 and second order if K > 1/x/2 [17]. This is one of the 
facts that has led to a distinction being drawn between type-I materials (, < 1/vX2) 
and type-II materials (K > 1/V2). In contrast to bulk superconductors recent exper- 
iments [11, 19] on thin structures indicate a second order transition even in materials 
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FIG. 1.1. A schematic representation of the dependence of normal/superconducting phase tran- 
sition on temperature T and magnetic field H. 

with rather small values of K (for example, aluminum, where n = 0.28). In order 
to explain this difference in behaviors we investigate the limit in which the thickness 
of the structure goes to zero at the same time as n tends to zero. In particular we 
choose the distinguished limit which captures the crossover between type-II behavior, 
favored by thin geometries, and type-I behavior, favored by low values of n. 

From a mathematical viewpoint, a second order phase transition occurs whenever 
the bifurcation of the superconducting solution from the normal solution is supercriti- 
cal, and a first order transition occurs whenever it is subcritical. A heuristic argument 
can be made for the magnetic field generated by superconducting currents favoring a 
subcritical bifurcation. Therefore one can say that a strong Meissner effect (low K) is 
generally associated with a first order transition, whereas a weak Meissner effect (large 
K) is typically associated with a second order phase transition. If, however, the sam- 
ple has at least one thin dimension, then the sample's ability to change the magnetic 
field via the Meissner effect is diminished. Thus thin samples of low-K materials may 
exhibit second order transitions. We shall derive models for superconductivity in thin 
domains in the distinguished limit, as the thickness of the domain and n tend to zero, 
in which it is possible to find both first and second order phase transitions. We shall 
use each of these models to derive an eigenvalue problem whose solution determines 
the position of the normal/superconducting phase transition in H-T phase space; and 
to find a criterion which may be used to determine whether this phase transition is 
of first or second order. A similar eigenvalue problem and criterion have been derived 
from the full GL equations by Chapman [5] for a body of arbitrary shape. However, 
the practical application of this more general treatment is limited by the difficulty of 
solving the eigenvalue problem. 

Limit models for thin superconducting domains have previously been derived by 
Chapman, Du, and Gunzburger [6] (thin films) and by Rubinstein and Schatzman 
in [14] (thin strips) and [15] (thin networks). In these works the authors consider 
the limit where the thickness of the domain goes to zero. In [13] we have derived a 
different model in which we considered the limit of vanishing thickness together with 
strong applied magnetic fields. All these models have proved useful to study a variety 
of problems. In particular they have been used to confirm experimental results such 
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as the Little-Parks oscillation [10], [8], and even to predict new effects [3] (see also 
[12]). The new models we derive here complement these works. They enable us to 
derive precise criteria for classifying the phase transitions. They also serve as a useful 
tool for understanding such structures well into the nonlinear regime. 

In section 2 we formulate the GL model for superconductivity. It turns out that 
the appropriate canonical scaling depends on the geometry and even on the topology 
of the sample. We therefore consider separately the cases of thin cylindrical shells 
(section 3), thin films (section 4), and thin wires (section 5). In each case we consider 
how the magnitude of the GL order parameter b varies with temperature for different 
constant magnetic fields (in practice this is mathematically convenient). However, 
we lose no generality in doing so as the surface representing |11 as a function of 
magnetic field and temperature can be reconstructed from these slices. Finally we 
discuss our findings in section 6. One of our main conclusions is that the classification 
of materials into type-I or type-II is fairly meaningless in mesoscopic domains. A 
material can exhibit both types of behavior depending upon its geometry. In fact, 
even when the geometry is fixed, the type of phase transition can vary as the applied 
magnetic field changes. 

2. Problem formulation. The GL equations are, appropriately nondimension- 
alized, as follows: 

(2.1) (V - iA)2= r - (V12_1) 0, 

(2.2) V A (V A A) =- 2 (\2A + 2 ( *V - V*)) , 

(2.3) B=VAA, 

(2.4) [B. N]0V =0, -BAN =0, 
_l - 9v 

(2.5) N -(V - ZA) la.v = o. 

Here the dimensionless parameter r is the GL parameter, and F is related to the 
coherence length ~(T) by 

F r-12 12 

where 1 is the problem lengthscale. Close to Tc the critical temperature, below which 
superconducting state is energetically favorable in the absence of magnetic field, F 
can be approximated by F = a(Tc - T) where a is a positive constant. 

It is possible to reduce the number of dependent variables in (2.1)-(2.3) by the 
introduction of the gauge invariant variables 

(2.6) - feiX, Q = A-VX. 

This leads to the following nondimensional system of equations in V: 

(2.7) V2f = (f3 -_ f) + fIQ2, 

(2.8) j =VAB= - (f2Q) 

(2.9) B -= VAQ, 
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which couple to Maxwell's equations 

VAB=O, V B=0, 0 

B -+ Bextez as \xl - oc 

in the exterior domain V' via the jump conditions (2.4) and the boundary conditions 

(2.11) Q -NVf = 0. 
ON ov 

3. A thin cylindrical shell. Consider a thin superconducting cylindrical shell 
V, with axis in the z-direction, subject to an axial magnetic field. Then the center 
surface of the cylinder can in general be described by r = (x, y) = q(s) and the inner 
and outer surfaces by 

r = q(s) + eD(s)n(s), r = q(s) - eD(s)n(s), 

respectively, where n(s) is the inward pointing normal to the surface r = q(s) and 
e = aK2 <? 1 (note that n is not the same as N, the normal to the surface of the 
shell). Points x within the cylinder may be described in terms of the orthogonal local 
coordinates X, s, and z such that 

x = q(s) - eXn(s) + zez 

(here s is the dimensionless distance around the two-dimensional curve r = q(s) 
which increases by 27r as a complete circuit is made). Since this coordinate system 
is orthogonal we can use standard results to write the vector operators grad, div, 
curl, and Laplacian in terms of the derivatives of X, s, and z and the basis vectors 
ex = xx/\xx , es = xs/\xsl, and ez. In terms of these coordinates we find 

(3.1) = e Q e OQ + ezOQ 

(3.2)V.A= A: + +k + + t 3 
c OX (1 +ekX) (1+ ekX) as Oz ' 

3 -1 92Q k OQ 1 0( 1 Q a2Q 
(3.3) V 2 - e2 OX2 e(l + ekX) OX (1 + ekX) as (1I + ekX) as ) az2' 

( 1 0I A3 _A2N (aA1 1 A3 
VAA -e (1l +kX) Os 0 A Oz e Sx) 

(3.4) +ez1 
aA2 + kA2 -1 -A 

(3.4) -e E6 9X (1 + EkX) (1 +ckX) Os ' 

where we write A = Aiex + A2es + A3ez and k is the curvature of r = q(s). We look 
for a solution to (2.7)-(2.9) of the form 

B = B(X, s)ez, Q = Qi(X, s)ex + Q2(X, s)es, f = f(X, s), 

use the vector operators found in (3.1)-(3.4), and expand in powers of c to find 

(3.5) jfxx + -fx - k2Xfx + fss r(F(3 
- f) + f(Q2 + Q2) + 0(6f), 

(3.6) Bsex - -Bxes = - 2 (Qlex + Q2es) + O(eB), 

(3.7) B = -Q2,x + kQ2 - Ql,s + O(eIQI). 15 
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We take the divergence of (2.8) and expand this in powers of e to find 

(3.8) a1 (f2Q1) + (f2Q2) + kf2Q1 O(ef2 QI), 

and finally we write down the boundary conditions (2.11) in terms of the new variables 
and in powers of e: 

(3.9) fx - eD'(s)f) = O(e2f), (fx + eD'(s)f) = O(e2f), 
e6 X=D(s) 

e X=-D(s) 

(3.10) (Ql - 
eD(s)Q2)lx=D(s) 

= O( 21QI), (Ql + eD'(s)Q2)1x=-D(s) = 0(21QI). 

We now seek an asymptotic solution to the system (3.5)-(3.10) of the form 

f = f() (X, s) + ef(1) (X, s) + e2 f(2) (X, s) + ... 

(3.11) Q - Q(?)(X, s) + Q(1)(X, s) + .., . 

B - B(?) (X, s)ez + EB(1) (X, s)ez + J 

Substituting this expansion into (3.5) and expanding to 0(1/e) yields 

(3.12) f(0) = f(0)(s), f(l) = f()(), 

while proceeding to 0(1) gives an equation for f(2): 

(3.13) (2) + f(0) - r(f(O)3 - f(O)) + f(0)(Q(0)2 + Q 2 

Boundary conditions on this problem are then obtained by substituting (3.11) into 

(3.9) and expanding to 0(c); they are 

(3.14) f2) - D'(s)f(?)'(s) = = 0, fx) + D'(s)f(?)'(s) = 0. 

Equations and boundary conditions for Q(O) are obtained from the leading order 
expansions of (3.7), (3.8), (3.9), and (3.10) and have the solution 

(3.15) Q(o) - Q?0)(s)es. 

Proceeding to 0(1) in (3.8) we find the equation for Q,) 

(3.16) f 1) + 
(f(o)2Q)) 

= 0 

with boundary conditions arising from the 0(e) term of (3.10): 

(3.17) Q() -DQ) 0, Q + D' 0. 
2x=D 2x=-D 

Integrating (3.13) and (3.16) between X = -D and D and applying the boundary 
conditions (3.14) and (3.17), respectively, we find the governing equations for f(?)(s) 
and Q0) (s); these are 

(3.18) (D ddfs() =r (f(0)3 - f(o)) + f)Q2) 

(3.19) d (Dfo2Q o)) = 0 
d-s Dr ,? 2 O 
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Consider now the behavior of the magnetic field. Substituting expansion (3.11) 
into (2.10) which holds in Vext, the unbounded part of VC, and the nonsuperconducting 
region enclosed by the cylinder Vint, we see that 

B(?) - Bext in Vext, B(?) - B(?) - const. in Vint 

In the superconducting domain V we find 

B(?) =rf (o) 2 Q (?) 

Integrating this between X = -D and X = D (recall that the inner surface is given 
by X = -D and the outer by X = D) then gives the following expression for the 
magnetic field in the interior of the cylinder: 

(3.20) B(?) Bext - 2aDr f() 2Q(0) 

Consider now the magnetic vector potential A. To leading order this is solely de- 
termined by the magnetic fields in Vext and Vint such that where we expand A as 
A = A(?) + eA(1) +... and substitute this into (2.3), we find 

V A A(?) = Bext in Vext, V A A() = Bi in Vt. 

In order to solve for A(?) an equation giving its gauge must also be specified (typically 
V A(?) = 0). In order to relate (3.18) and (3.19) to the magnetic vector potential it 
is helpful to transform back to complex variables (O, A) where 

-1(?) = f(?)(s)exp(ix(?)(s)), QO) = A)(s) -x(o)(s) 

A(?) (s) - A(?). q'(s)=q( 

Equations (3.18) and (3.19) can easily be shown to be equivalent to 

(d _ i?))2 1) + dD 
(d( ) i = ro) ((0) - ), p 

,g(0) periodic on (0,27r) 

By making the one-dimensional gauge transformation 

(/s 27r 

4(o) - (s)exp i A) (u) - -- du), ) = / (u)du, 
2o 27r / Jo 

this in turn may be shown to be equivalent to 

(d JF(O) 
2 

I dD (d'p y,(O) 

(3.21) ds 2 ) + D d s d-i 21) 

X periodic on (0,27r) 

Here y(O) is the leading order magnetic flux threading the cylinder. It is related to the 
superconducting current flowing in the ring through (3.20) which, when we introduce 
S (the area enclosed by the cylinder), we can write in the following form: 

(3.22) S : Be(xt- 2aDor 1 2 + ( dos ds )) 

By taking 0 multiplied by the complex conjugate of (3.21) and subtracting O* mul- 
tiplied by (3.21), it may be verified that the right-hand side of (3.22) is independent 
of s. 
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Summary. We have derived a model, comprised of (3.21) and (3.22), which de- 
scribes superconductivity in a thin hollow cylinder made from a low-s material. The 

equations (3.21) and (3.22) form a closed system. Given the applied magnetic field 

Bext, we can solve it to find the superconducting order parameter ~ in the cylinder 
and the magnetic flux . enclosed by it. 

3.1. Transition to the superconducting state: A first or second order 

phase transition? In this section we shall (I) show how the model (3.21)-(3.22) can 
be used to calculate the value of F at which a superconducting solution bifurcates 
from the normal solution b - 0 and (II) derive a criterion to work out whether this 
bifurcation is subcritical (first order) or supercritical (second order). Dropping the 

superscript on T we look for an asymptotic solution lying close to the normal solution 

by making the following expansion: 

o = 60+ 0 

r = o + ..., 

where 6 << 1. Substituting the above into (3.21)-(3.22) and expanding to leading 
order we find the following eigenvalue problem for !20: 

_ (d .^b2 7 I dD (doo .T7O,- 7 
(3.23) Lo \ds- 27r D ds d s 27r 

0o periodic on (0,27r) 

(3.24) To = SBext. 

Thus, given the applied magnetic field Bext it is possible to calculate F0 and then, 
by looking for solutions to (3.23), calculate the value of F(Bext) at which a super- 
conducting solution first bifurcates from the normal solution as F is increased (and 
temperature decreases); this is the first eigenvalue Fo of (3.23). In order to calculate 
whether this bifurcation is subcritical or supercritical we need to proceed to higher or- 
ders in the asymptotic expansion of X to investigate how the amplitude of b0 depends 
upon small deviations of F away from Fo. The expansion proceeds as follows: 

= 600 + 3i + , 

rF = FO ,I + r , 
= Fo0 + 62F'1 * * '. 

Substituting this into (3.21)-(3.22) and expanding to first order we find the following 
inhomogeneous problem for 'i: 

(~25)IA/)lH(s) (Fo1? do 1 dD - 
oF01b02b0-F1loj 

(3.25) ) 
= = 

( + ( + 
) 

+ - 

41 periodic on (0,27r) 

together with an equation for the constant FO 

(3.26) . -2aSDF Io 2 ' ~ - -2aSDro 2r 2 dso dso 
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Fl rF 

(a) (b) 

FIG. 3.1. The dependence of ICI on Fl. In (a) there is a supercritical bifurcation while in (b) 
there is a subcritical bifurcation. 

Using the solution 0o to the homogenous version of (3.25), we can write a solv- 
ability condition for (3.25): 

27r 

(3.27) A solution exists to (3.25) iff D4*H(s)ds - 0. 
Jo 

We now seek to relate the amplitude of 4o to F1 via this solvability condition. In 
order to do this it proves helpful to write 

'o = Cw, where C E C 

and w is a solution of (3.23) normalized such that fo Dlwl2ds = 1. Making the 
above substitution in (3.27) and evaluating the integral using the definitions of H(s) 
and F1 found in (3.25) and (3.26), we find 

FrlCF2 = FOIC(4 ( Dlw4ds - 4aSK2) , 

K _D (wI2SBext + i ( d dw*)) const. Kw + 2 (w4 
- w-- -- w- const. 

The bifurcation is supercritical (second order) if a superconducting solution exists 
for Fr > 0 (see Figure 3.1(a)) and subcritical if no superconducting solution exists 
for F1 > 0 (see Figure 3.1(b)). It is straightforward to show that Fo > 0, and it thus 
follows that 

27r 

D DIwl4ds - 4aSK2 > 0 == supercritical bifurcation, 
(3.28) 27r 

j DIw 4ds - 4aSK2 < 0 =O subcritical bifurcation 

3.2. An example: The uniform ring. We consider a shell of uniform di- 
mensionless thickness D and set a = 1. A superconducting solution, of the form 

= 5Ceirms, where C is a complex constant, bifurcates from the normal solution at 

= F = (m SBext where m = nint (B 
\ 27r ) \ 27r 

' 
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1 T I 1 * -' l ?' t ? - - 

W+1 05- '\, { 0 - 1/1 o?- . - 0 I - 0 1 

t\ \/ 

I 

o 0 J - 

01 0.2 0.3 04 01 0.2 0 0.4 

r r 
(a) (b) 

FIG. 3.2. The dependence of [ol| on r for a uniform ring with a = 1. In graph (a) (Best/2.0- 
m)2 = 0.25; in case (b) (Bext/2.0- m)2 = 0.125. In each case the three different plots represent 
different values of D. For the dotted line D = 5.0, for the dashed line D = 3.5, and for the solid 
line D = 2.0. 

where nint(A) is defined to be the integer closest to A. We can use the criterion (3.28) 
to show that this bifurcation is subcritical (first order) iff 

2DS ( SBext)2 . 
7r 27r 

> 

Since the solution of the full problem (3.21)-(3.22) has the form 

-- Eeims, E C, 

we can pursue the solution which bifurcates at F = Fo into the fully nonlinear regime. 

Substituting for 4 in (3.21)-(3.22) we find the following problem for E and F: 

either E = 0, 

E[2-1- m-~ /F, 
or 3 ( 7r ( ) Bext ) 

-D m-) +D O+) (m-) + (Bet 7) 0. 

Numerical solutions to this problem, which show the dependence of 41| = IE 
upon F, are plotted in Figure 3.2 for the special case of S = 7r, a = 1, and for different 

values of D and (Bext/2 - 7rm/S). 

4. The thin film problem. In this section we consider a thin superconducting 
film occupying the domain 

Ve = {(x,y,z) R3 : (x,y) Vo, -ed(x,y) < z < d2(x,y)} 

and subject to a perpendicular magnetic field Bextez. Here we take 

e 2 < 1, c , ,. ? 1, 
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where a, dl, and d2 are all 0(1). In order to determine the effect of the applied 
magnetic field on the superconductor we need to solve the GL equations in V, and 
couple these to Maxwell's equations in the exterior. Since the film is thin we consider 
a method for approximating the GL equations in V,. We rescale z with the thickness 
of the thin film by introducing the scaled variable Z such that 

z = eZ, 

and rewrite (2.7)-(2.8), which hold in Ve, accordingly: 

(4.1) e-fzz 
+ (fxx + fyy) 

= r (f3 _ f) + flQi2, 

(4.2) eB3,y- B2,z =-aFf2Q1, 

(4.3) B1,z -eB3,x = -rf2Q2, 

(4.4) e (B2,x- B1,y) = -arf2Q3, 

(4.5) Qi,z = O(eIB), Q2,z = O(eIB). 

Taking the divergence of (2.8) gives an additional equation that proves useful when 
carrying out the asymptotic analysis 

(4.6) eaz (f2Q3) + (f2Q1) + (f2Q)) 0 

On the upper and lower boundaries of the thin film the conditions (2.11) yield 

(4.7) 
fz - e2 (di,xfx + dl,yfy)z=dl = 0(e2f), fz + e2 (d2,xfx + d2,yfy) Z=-d = 0(e2f), 

Qa - e (di,xQ1 + di,yQ2)\z=dl = ?, Q3 + e (d2,xQl + d2,yQ2) z=-d2 = 0. 

We now seek an asymptotic solution to (4.1)-(4.6) of the form 

B - B(?) + 0(e), Q = Q() + eQ(1) +... , 

f = f(o) + ef(l) + e2f(2) +.... 

Substituting this expansion into (4.1) (at leading and first order) and (4.5) (at leading 
order) we see that 

f(o) = f() (x,y), f(l) = f(1)(x,y) 

Q(0) = Q(0) (x, y), Q 0) = Q0) (x, y). 

Since f(0) is independent of Z it follows from (4.6) that Q(O) is also independent of 
Z; applying the boundary condition (4.8) leads to the conclusion that Q(O) 0 and 
hence that 

(4.8) Q(o) = Q (x,y)ex + Q) (x, y)e. 

Proceeding to 0(e) in (4.6) we find 

f(O)2Q() + (f(o)2Q()) + (f(0)2Q)) = 0. 
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Integrating this equation with respect to Z between Z = -d2 and Z = d1 and applying 
the boundary condition (4.8) at first order (O(e)) gives rise to the following relation 
between f (0) and Q(O): 

(4.9) 0 Df + 0 Df (2Q)) 

where D(x, y) = d1 (x, y) + d2 (x, y) is the dimensionless thickness of the film. We can 
find a further relation between f(0) and Q(O) by taking the 0(1) expansion of (4.1), 
integrating this with respect to Z between Z = -d2 and Z = di, and applying the 
boundary condition (4.8) at 0(c2); this relation is 

(4.10) - (+ (D y ) + 
a 

(D f ) =r f()3 -f()) + f(?0)Q()2. 

In order to couple (4.9) and (4.10) to Maxwell's equations in the region exterior to 

V, (and thus relate Q(O) and f(0) to the applied magnetic field) it is advantageous to 
reintroduce the original variables ~ and A, and the phase of the order parameter X 
(as defined in (2.6)). These have the following expansions: 

A = A(?) + ,eA(1) +..., 

X=X()+eX(l)+.., 
- = (0O) + e6(1) + . 

Comparing these variables to the leading order behavior of Q, through (2.6) and (4.8), 
we see that 

x = x (xI y), 
-() = f(0)(x, y)exp(ix( (x, y)). 

It follows that the behavior of the superconducting thin film is determined, to leading 
order, by the components of the leading order vector potential A(?) tangential to the 

film. In fact we can rewrite (4.9) and (4.10), in terms of a(?) - A()(x,y, 0)ex + 

A(?)(x,y,O)ey and (0), as follows: 

(4.11) (V - ia(0))2?(0) + JVD. (V0(?)-ia(0))(0)) = f() (I(0) 2- ) (?). 

It now remains to find one more set of equations relating a(?) to (0) and the 
applied magnetic field B = Bextez. Returning to (4.2)-(4.4), we see that there is an 

0(1) jump in the magnetic field across the film. Integrating these equations between 
Z = -d2 and Z = dl we find 

(4.12) 

[B]z--dl = j0) (X, y) + 0(E), [B2]z-Ed2 = -j) (X, y) + 0(E), [B3]ZE-d2 = 0(C), 

where 

j(o) = -aF(O)D (of)12a(o) + i (p0)*v 0) - 4(0) V(o)* . 
( 2 ,v f ) 
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By taking account of the continuity of magnetic field across the boundaries z = ed, 
and z = -ed2, linearizing (4.12) onto z = 0, and applying Maxwell's equations (2.10), 
we can write the leading order problem for the magnetic vector potential outside the 
film as follows: 

V2A(0) = -j(O)(x, y)6(z), 
V A() = 0, 

V A A( -) Bextez as Ix- oc. 

Solving for AM gives 

(4.13) A(?)(x, y, z) BextA(,y) + ((xf )2 + (y_ )2 
+ 

/2 47r JJv0 ((x - ?)2 + (y - 7j)2 + z2)1/ 

where A is such that 

(4.14) V A A = ez, V A = 0. 

Setting z = 0 in (4.13) thus gives rise to a further relation between a(?) and (?), 
namely, 

1 [D ((0) 2a0 + 20 (l()V() - ?)V^0())*))] ded 
ao 

X - 2 (( - 
y -)2 )2)1(2- 

(4.15) = 47r (BextA(x,) - a(O)(x, y)) 

In order to close the system comprised of (4.11) and (4.15) we need to specify the 
boundary conditions on OVo; it is clear that this is 

(4.16) N. (v - ia(O)) (0) = 0. 

The system (4.11) and (4.15) together with the boundary condition (4.16) bear 
some similarity to a system of integral equations proposed in [16] for the particular 
case of superconducting disks. 

4.1. Transition to the superconducting state: A first or second order 
phase transition? In this section we use the model (4.11), (4.15), and (4.16) to find 
an eigenvalue problem whose solution gives the values of F, as a function of the applied 
magnetic field Bext, at which a superconducting solution bifurcates from the normal 
solution X/ = 0 a = BextA. By taking account of the nonlinear terms in the model 
we then find a criterion which can be used to work out whether the bifurcation of the 
superconducting solution is supercritical (second order) or subcritical (first order). 

Henceforth the superscripts on 0 and a, in (4.11), (4.15), and (4.16) are dropped. 
We search for superconducting solutions of these equations bifurcating from the nor- 
mal solution by looking for an asymptotic solution of the form 

'0 = 60+ ., 
a = ao + *- * 

r =ro + * * 
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where 6 << 1. Substituting this expansion into (4.11), (4.15), and (4.16) and taking 
the leading order terms in 6 leads to the following eigenvalue problem for 00: 

Loo = (V - iao)200o + VD. (Vbo - iaooo) + Fo0o = 0, 
(4.17) D 

N (V - iao)2 o =0,o 

(4.18) ao = BextA(X, ). 

For any given applied field Bext the value of F at which a superconducting solution 
first bifurcates from the normal solution, as F is increased, is the first eigenvalue of Fo 
of (4.17). In order to investigate whether this bifurcation is subcritical or supercritical 
it is necessary to proceed to higher orders in the expansion of b, a, and F: 

0 = 6^00 + ^1 + * * * , 
a = aO + 62al + * *, 

r = Fo + ^2Fl+ . 

Substituting the above into (4.11), (4.15), and (4.16) and expanding to first order 
gives rise to the following inhomogeneous problem for 1: 

(4.19) ZL,1 = H(x, y)= (ro - l rio + 2ao- aio 

+i a V0o + V (a +V o) + !VD. aio) ), 

(4.20) N. (V - iao) 1ivo = iN. ailolov, 

(4.21) a1(x,y) = 4 [ ( o 2ao + (0Vo - oVo ))] ((, ) 
d(d 47r J Jv((x 

- 
()2 _ (y _- )2)1l2 

Since 0o is a solution to the homogeneous version of (4.19)-(4.20), H(x, y) will need 
to satisfy a solvability condition in order to show that a solution to these equations 
exists. It is possible to derive this condition starting from the relationship 

J D (0*l1 - i1 (Lo)) dV = j D [0 (V - iao) 1 - )1 (V + iao) O}].NdS. 
Vo 

We can substitute for various terms in the above using the complex conjugate of 
(4.17), (4.19), and (4.20) to find the following condition: 

(4.22) J/ D OH(x, y)dV= iD o,012al . NdS. 
Jv~ JVoavo 

Finally, by manipulating DiO*H(x, y) we can find a surface term to cancel with that 
on the right-hand side of (4.22) and this leaves the following solvability condition: 

(4.23) 

I/ / (Po1ol14 - rFllol2)+ 2al (D (aoOol 
2 + (0*Vo - oV0))) dV = 0. 
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Our goal now is to use this condition to relate some norm of 40o to Fi and in 
particular to find out whether there is a nontrivial solution of b0 for positive values of 
F1 (a supercritical bifurcation) or for negative values of Fi (a subcritical bifurcation). 
In order to do this it is helpful to write 0o in terms of w, a normalized solution of the 

eigenvalue problem (4.17): 

0o = Cw, where C C and / Dw 2dV = 1. 

Substituting for $o and a1 in (4.23) we find the following relationship between ICI 
and F1: 

(4.24) rF C12 = rTIC4, where 

T Fo -- 0 D\w4dV-K- Ix y) - K o J Dw4 dV - )2J J (JJ 

_ 

( y 
_ 

) 7)2)1/2 
d(d) dx dy 

K = D (BextAlwl2 + 2 (w*VW - wVw*)) . 

The bifurcation is supercritical (second order) if a superconducting solution exists for 
F1 > 0 (see Figure 3.1(a)) and subcritical if no superconducting solution exists for 
FI > 0 (see Figure 3.1(b)). It thus follows that 

(426) .T > 0 ==> supercritical bifurcation, } 
(4.26) T < 0 => subcritical bifurcation J 

4.2. An example: Calculation of the normal/superconducting transi- 
tion in an annulus. We consider the annular domain {Vo : r c [7, 3]} where (r, 0) 
are radial coordinates with origin at the center of the annulus (we shall also make use 
of the corresponding cartesians x = r cos0 and y = rsin 0). In order to determine 
how a thin annular superconducting film of uniform dimensionless thickness D (and 
with a = 1) makes the transition from the normal to superconducting states, we look 
for solutions to the eigenvalue problem (4.17) of the form 

Vo0 = Cw(r, 0), ao = BextA, 

w(r,0) = f(r)eimO, 27rj Df2(r)rdr = 1, A eo. 

Substitution of the above into (4.17) yields the following: 

(4.27) f" + 
fl 

+?f ro(- Bor- ) 
2 

0, 
(.27) /"-^(r ( (2 r)) 

(4.28) f (y) = f' (3) = 0. 

We compute the normal/superconducting transition curve by solving this eigen- 
value problem numerically with different integer values of m. The value of F at which 
the transition occurs is given by F = Fcrit(Bext) = minmEz(Fo(Bext, mn)). In Figures 
4.1 and 4.2 plots of Fcrit versus Bext are made for annulus of inner radius a = 0.5 and 
outer radius b = 1.0. 
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FIG. 4.1. The normal/superconducting transition curve for an annulus of inner radius a = 0.5 
and outer radius b = 1.0 and dimensionless thickness D = 5.0. Dashed lines represent a second 
order phase transition and solid lines a first order one. 
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FIG. 4.2. The normal/superconducting transition curve for an annulus of inner radius a = 0.5 
and outer radius b = 1.0 and dimensionless thickness D = 7.0. 
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In order to calculate whether this transition is subcritical (first order) or super- 
critical (second order) we need to evaluate T in (4.25). We note first that 

f () ( 2 r)2 r 

and then that 

I fo ((x- )2 + (y - q)2)1/2 

(4.29)=|f 
27 

Df2(R) (BextR/2 - m/R) (e cos e sin)RdRd, = 
=0 (r2 + f2 - 2rRfcos(q- 0))1/2 

( 

where ( = Rcos b, 7/ = Rsinq , and x = rcosO , y = rsin . With the aid of 

some simple substitutions and formulas 3.674 (part 3) and 8.126 (parts 2 and 4) of 
Gradshteyn and Ryzhik [9] we can perform the integral in > contained in (4.29). After 
some algebra we obtain the following expression: 

(4.30) 

Jvo ((x - )2 + (y - r)2)1/2 Df2(R) 2 R m (R 

where 

1 I+P2 2A,p\(2/P vVp G (p) K - K - (1l+p)E 
() 2 1 +p l + p + p 

and where K(.) and E(.) are the complete elliptic integrals of the first and second 
kind, respectively. 

By substituting (4.30) into (4.25) we find that 

T = 27rDrF0 rf4(r)dr- rG ( ) (f2(R) et )) 

(4.31) x (f2 (r) (er - )) dRdr 

Where T > 0 the normal/superconducting transition is supercritical, and where T < 0 
it is subcritical. 

This criterion is used in Figures 4.1 and 4.2 to distinguish between sub- and 
supercritical sections of the curve F = Fcrit(Bext). We observe alternating sections 
of supercritical and subcritical transitions. This peculiar result means that the phase 
transition depends not only on the geometry but also on the applied magnetic field. 

5. The thin wire. We consider a thin wire with typical variations in its cross- 
section occuring on a lengthscale comparable with its length (i.e., an 0(1) lengthscale), 
and of typical nondimensional width e, where e << 1. Following a previous paper by 
the authors [13] we represent points x inside, or sufficiently close to, the wire in terms 
of local coordinates (X, Y, s) defined about the centerline of the x = r(s) (here s is 
arclength). These are such that a point x with coordinates (X, Y, s) is at position 

x = r(s) + eXn(s) + ?Yb(s), 
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where n and b are, respectively, the normal and the binormal to the curve x = r(s) 
(again note that n is not the same as N the normal to the surface to the wire). This 
coordinate system is nonorthogonal since the basis vectors 

Ox/OX _ Ox/Y _ Ox/Os 
ex IOx/OX' ey- Ox//Y' es ~ 

Ox/Os 

are not all mutually orthogonal off the curve x = r(s). However, for 0(1) values of 
X and Y they are close to being orthogonal. This property is used in [13] to find 
asymptotic expansions, in powers of e, for the vector operators gradient, divergence, 
and curl in terms of (X, Y, s) and the curvature k and torsion r of the centerline of 
the wire. These expressions are as follows: 

(5.2) VF = - (ex + ey, ) 
+ es (1 + ckX + O(e2)), 

(53) DY 
- -p - 

I(tP- + P2) + -- kPi +O(EIPI), 

(5.4) V A ) aP2 Ppj es + 3 - ey) 

_ ( ( P2 P1) %_ aP2) + rY eD OXJ 

+( kP + X +Y Y )eOX aP 

where we write the vector P in the form P = Piex+ P2ey + P3es. It proves convenient 
to define a function G(X, Y, s) which takes negative values inside the wire V, is zero 
on the boundary DV, and is positive outside the wire in VC. The cross section of the 
wire Q(so) about the point x = r(so) is then given by 

Q(so) = {(X, Y): G(X, Y, so) < 0}. 

We write the vector operators in (2.7), the divergence of (2.8), and the boundary 
conditions (2.11) in terms of the local coordinates. We obtain 

? (fxx + f ) - fx = [r(f3-f) + Q|2- ] 

(5.5) +0 (fx, fY, efs), 

(5.6) Gxfx + Gyfy + e2GsfSlQ(s) = 0 (e2fx, 2fy, 3fs), 

(5.7) 

e ( (2Q1) + aY (f2Q2)) + a 
(f2Q3) - kf2 2Q 0 (Ef, E\QI), 

(5.8) GxQ1 + GyQ2 + eGsQ3oIQ(s) 
= 0 (e21QI). 

We assume that f and Q have expansions in e which have an 0(1) term at leading 
order; this assumption is justified a posteriori. Solving for f in Q(s) using (5.5) and 
(5.6) gives 
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while solving for Q on Q(s) using (5.7) and (5.8) gives 

(5.10) Q = Q3es + O(e). 

Integrating (5.5) over Q(s) then yields 

(5.11) 
1 

( fxGx + fyGy dl = D [F(F3 - F)- F"] + F J Q2dXdY + 0(e), 

where we define D(s), the dimensionless thickness of the wire, by 

D(s)= / dXdY. 
(s) 

Substituting for (fxGx + fyGy)alo(s) in (5.11), using (5.6), and then making use of 
the relation 

(5.12) 0(X, Y, s)dX dY = -dX dY - Gs dl, 
ds J ^(5s) J J{(s) os Q (s) -G + G2 

which holds for any smooth function O(X, Y, s), we find the following equation for 

F(s): 

(5.13) 
d 

(DF') = Dr(F3 - F) + F f ( Q3dXdY + O(e), ds (s) 
(5.14) F(s) periodic on [0, 27r]. 

Performing similar manipulations on (5.7) and (5.8) as we did for (5.5) and (5.6) 
above, we find an equation for the conservation of electric current in the wire: 

(5.15) 
d 11( F2(s)Q3(X, Y, s)dXdY = O(e). 
ds (s) 

We can now use (2.8) to calculate the total current I flowing across any cross section 

Q(s), 

(5.16) I - 7 + (e), where = - F 2Q3dXdY = const. + O(e). 
-K2 - ](s) 

We obtain an equation for Q3(X, Y, s) in a cross section Q(s), valid to O(e), by 
substituting (2.9) into (2.8) and using the expansion of curl found in (5.4), 

2(5.17) Q + 3, + 0 in (s). (5.17) Q3,xx + Q3,YY - - FQ3 + O(c) in Q(s). 

This couples to Maxwell's equations (2.10a) (with zero current density) outside the 
wire in Qc. We choose to write these in the form V A (V A Q) = 0, V A Q = B, where 
Q and its first derivatives are continuous across the boundary O9Q(s). Taking the es 
component of the former of these two equations we find 

Q3,XX + Q3,Y,Y = O() in C(s). 
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As R = (X2 + y2)1/2 tends to infinity, the right-hand side of (5.17) appears as a point 
source for the potential Q3. Therefore Q3 has the following asymptotic behavior: 

e2T 
(5.19) Q3 - 2- logR + (s) + 0(elog R) as R -* oo, 

where T is given by (5.16). Notice that this behavior represents the effect of a current 
size e2_T/2 flowing along the wire. Notice also that the logarithmic growth uniquely 
determines the far field behavior, and that the additive 0(1) term /3(s) is determined 
by the shape of the cross section Q(s). 

Hence, if we can find f, we shall have sufficient boundary data to solve for F(s) 
and Q3(X, Y, s) up to 0(e). In what follows we shall consider how, by matching the 
preceding inner analysis for Q (X, Y, s) to the vector potential A in a far field region 
we can find a relation between I7 and the average of /3(s) over the ring. In order to 
accomplish the matching it is helpful to write down the following relation between Q3 
and A3 (the tangential component of the vector potential in the inner region) which 
is based on (2.6): 

(5.20) Q3 = A3 - n- h'(s) + 0(e). 

Here n is an integer, termed the winding number, defined by 

n 2r aX ds, 
O As X=Y=O 

and h(s) is a 27r periodic function of s. 
Far field region and matching. We consider a far field with characteristic length- 

scale comparable to the length of the wire (i.e., 0(1)). On this lengthscale the thick- 
ness of the wire is small 0(e) and we thus write B and A as follows: 

e2 3 62 3 
Bo = -bo + Betez + 0 , Ao = -ao + BetA + 0 ( . 

Here the subscript o denotes a far-field term and A is defined by (4.14). Substituting 
the above into (2.10) we find the following system for bo: 

(5.21) VAbo = Ij (x-q(s))t(s)ds, V bo = 0, 

(5.22) bo - 0 as I|x -' o, 

where 7 is the curve x = q(s) and t(s) is the tangent to this curve. Here the singular 
term on the right-hand side of (5.21) arises because a current size e21/r2 flows along 
the wire. We solve this system in terms of ao for which we choose the gauge 

V . ao = 0. 

Substituting for bo = V A ao in (5.21) yields an equation for ao0, 

V2ao = fT 6 (x - q(s)) t(s)ds, 

with solution 

(5.23) ao= I t(Xr) dr. 
47a- ix - q-(r)I 
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In order to use Van Dyke's matching principle [18] we need to calculate the expansion 
of ao(x(X, Y, s)) in terms of the inner variables defined in (5.1). We write R = 
(X2 + y2)1/2 and expand the integral in (5.23) as follows: 

(.4 f t(T) 0 S-L 27r S+L t(T) 

(524) Ix(X, Y, s) -- q()IdT =I L +l + S x(X, Y, s) - q() 

where e ?< L <4 1. Following Batchelor [1] we write eu = (T - s)/R in the last of 

these integrals and expand t(r) and jx(X, Y, s) - q(T)[ in powers of e about r - s to 

obtain an asymptotic expansion for the term 

S+L t() d 

S-L x(X, Y, s) 
- q(T) 

= t(s) f1 d kX LIER 
uO2 

-Lt() /R (1 + 2)1/2 
+ 2 L/,R (I + U2)3/2 du + O(eL). 

Evaluating the integrals in the above expansion and substituting the result into (5.24) 
and (5.23) yields the leading terms of the expansion in inner variables of aO: 

(5.25) ao(x(X, Y, s))= I (- log (e) + M(s)) t(s) + O(e loge), 

1 (js" 2-L 
f2~l 

(5.26) M(s) = lim + dT + 21ogLt(s) 
47rL-,O o J+L \q(s) 

- 
q(T)l 

From this it follows that the expansion of the tangential component of the far-field 
vector potential (in inner coordinates) is 

t(s) . Ao(x(X, Y, s)) =- 2 log R + log ) + M(s) + BextA. t(s) +. 

Matching fo Q3ds to fo t(s) . Aods, using (5.20), we find the following relation 
between I and the averaged value of 3(s): 

(5.27) O B3(s)ds = - (log - + ? M(s)ds + Bext j A t(s)ds - 27rn. 

Given the winding number n, the equation above is sufficient to close the inner prob- 
lem, consisting of equations (5.13), (5.14), (5.16), (5.17), (5.18), and (5.19), for F(s) 
and Q3(X,Y,s). 

5.1. Asymptotic solution of the model given by equations (5.13), (5.14), 
(5.16), (5.17), (5.18), (5.19), and (5.27). Since F and Q3 are expected to have 
expansions in e with 0(1) leading terms I will likewise have an 0(1) leading term. 
The solution of the system under discussion will only differ at leading order from the 
model discussed previously in [12, 14] if the first term on the right-hand side of (5.27) 
is of comparable size to the other term on the right-hand side of this equation. The 
canonical scaling for e is thus 

e2 
log(1) = 2 
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Having made this assumption we seek an asymptotic solution to (5.13), (5.14), (5.16), 
(5.17), (5.18), (5.19), and (5.27) in powers of log(1/e) of the form 

_(7 ) .( 1 ) 27- Z? + /(1 
) 

\ = ') + -(t\ 
log(l/e) log(1/e) 

Q- Q(?)+ log(1/) + ... , F + log(l/e) 

Substituting this expansion into (5.13), (5.14), (5.16), (5.17), (5.18), (5.19), and 

(5.27), taking the leading order term, and solving for Q() we find the following: 

(5.28) Q() = ) 

(5.29) +d (DF(?)') = r(F()3 - F()) + F(Q(2 
D ds 3 

(5.30) l'(?) = -FDF(?)2Q(?) = const., 
(27r /27r 

(5.31) 3 (?)ds + 27rn = Bext A . t(s)ds + ZT(. 

We adopt the same methods as those used in section 3 to formulate this model in 
terms of the complex variable V(?) and the leading order magnetic flux cutting the 
ring F(?) such that 

,(O) - F(O)(s)exp(ix(o)(s)), Q() = -() x()'(s). 

In terms of these new variables (5.28)-(5.31) are 

(d y(O \ (O) I1 /D d _ -i (0) -r ) fl 0) 1 1 
(5.32) ds i27- ) D D ds ds 27r 

) 
) (1 - 1 ) ,' 

(0) periodic on (0,27r) 

(5.33) 

.z( - Bext jo A. t(s)ds - DIr(P 2 2 (()), ds ) ds)). 

To leading order we have just the same problem that we derived for the thin cylindrical 
shell, namely, (3.21) and (3.22). At this order the analysis of the phase transition 
therefore proceeds as in section 3.1. A higher degree of accuracy can be obtained 
by taking further terms in the expansions of f, f3, Q3, and F in inverse powers of 

log(I/e). 

6. Conclusion. We have derived canonical models for thin superconducting ge- 
ometries in certain distinguished limits as the thickness of the superconducting do- 
main and the GL parameter K tend to zero. These models capture the competing 
effects of small n,, which favors type-I behavior (a first order normal/superconducting 
transition), and the small aspect ratio of the domain, which favors type-II behavior 
(a second order normal/superconducting transition). We found that the preferred 
scaling in which the various effects are of the same order depends crucially on the 
geometry. For example, the scaling for thin shells and thin films was ,2 ~ e, while 
the scaling for thin wires was n,2 ~ e2 log e-1, where e is the domain aspect ratio. Our 
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main results are found in (3.21) and (3.22) for thin cylindrical shells, (4.11), (4.15), 
and (4.16) for thin films, and (5.13), (5.14), (5.16), (5.17), (5.18), (5.19), and (5.27) 
for thin wires. 

We used our new equations to compute the boundaries in the parameter space 
that separate regimes corresponding to different kind of phase transition. Of partic- 
ular interest are Figures 3.2 and 4.1 for the case of annular thin films. While the 
normal-superconducting transition curves exhibit the expected Little-Parks oscilla- 
tions, a large set of superconducting solutions, bifurcating from the normal state, are 
subcritical (first order). This effect becomes more pronounced as the applied magnetic 
field is increased. This is in agreement with the heuristic argument we presented in 
the introduction, according to which the Meissner effect favors a subcritical transition. 
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