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We conjecture that the mean-field model of superconducting vortices given in [10] is ill-posed

wherever the electric current j has some component in the same direction as the vorticity

vector ω (which gives the average density and direction of the superconducting vortices). The

conjecture is illustrated with a linear stability analysis of a certain solution to the model. A

regularised model is then proposed, and this is used to demonstrate the instability of force-free

steady states in a certain geometry.

1 Introduction

Certain materials when cooled through a critical temperature exhibit a superconducting

state in which they have the ability to conduct electric currents without resistance. A less

well-known property exhibited by such materials when in this state, termed the Meissner

effect, is a strong propensity to exclude magnetic fields. There is, however, a limit to a

material’s capacity to do this and large fields, exceeding the so-called critical field, act

to destroy its superconducting properties. For fields not exceeding, but sufficiently close

to, the critical field this, combined with the Meissner effect, leads to some interesting

behaviour. In so-called Type-I superconductors the field penetrates the material partially

through normal regions, where it is in excess of the critical field. These are then separated

from the superconducting regions, in which the field is extremely small, by a sheet-like

phase boundary. In Type-II superconductors, however, the field penetrates along a number

of separate filaments, each associated with one quantum of magnetic flux. Around these

filaments, or vortices, the superconducting properties are partially destroyed. This state, in

which the magnetic field penetrates throughout the region along vortices, has been termed

the mixed state, because there is no large-scale separation of normal and superconducting

phases as for a Type-I superconductor.

Many models have been proposed to describe the behaviour of superconductors. One

of the most successful of these is the so-called Ginzburg–Landau model [18], which

describes the behaviour in terms of two variables, the magnetic field H and an order

parameter ψ, the modulus of which is related to the local density of superconducting

electrons. Reviews of the mathematical aspects of this model are given in [8, 15]. Its most

notable triumph was the prediction of vortices by Abrikosov [1]. An important feature
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of the model is that the morphology of solutions is found to be crucially dependent on a

certain material parameter κ which gives the ratio of typical variations in the magnetic

field (the penetration depth λ) to typical variations in the order parameter (the coherence

length ξ). In particular, the value of κ determines whether Type-I (κ < 1/
√

2) or Type-II

(κ > 1/
√

2) behaviour is exhibited. Here we shall be interested in the high-κ limit in which

the thickness of the core of the vortex, outside which the size of the order parameter ψ

does not vary appreciably, tends to zero. For a large number of materials, typically alloys,

this limit provides a good description, examples being NbSn, κ = 15.3; NbNi, κ = 28.0

and V3G, κ = 25.3.

In applications fields are usually high enough so that vortices will appear in a Type-II

superconductor, and it is therefore of importance to understand the mixed state. The

dynamics of these vortices is of particular interest, since vortex motion, resulting from

the flow of electric currents across vortices, leads to energy dissipation in superconductors

[21]. This can cause practical problems when a transport current flows in a material and

results in an effective resistivity. One of the aims to this paper is to investigate so-called

force-free configurations in which a transport current flows within a material in the mixed

state without causing motion of vortices [2]. To that end, we note the work of Gor’kov

and Kopnin [20], which uses the Time-Dependent Ginzburg–Landau (TDGL) equations

[25, 19], in the high-κ limit, to derive a law of motion for a single vortex with radius of

curvature much greater than the penetration depth λ. A more mathematical derivation is

given in [22] and this has subsequently been generalised to cover curved vortex lines with

radius of curvature an order of magnitude greater than the coherence length λ/κ [11].

The result from the last of these gives the velocity v of the vortex line, in units such that

the penetration depth λ = 1 and the upper critical field Hc2 = κ2, as

v = 2jext ∧ t + C log(κ)n+ 2jfin ∧ t + ΓCn+ O(|jext|/κ, C log(κ)/κ).

Here jext is that part of the current j = ∇∧H resulting from sources other than the vortex;

jfin is a non-local term arising from the vortex in question; Γ is an O(1) constant; t is the

tangent, C the curvature and n the principal normal to the vortex line. Since |jfin| 6 O(C)

in cases where the vortex line does not come very close to self-intersection, it is frequently

neglected, giving rise to a local velocity law of the form

v = 2jext ∧ t + C log(κ)n. (1.1)

For currents |jext| � C log κ it is common practice, see for example [2], to simplify this

further to

v = 2jext ∧ t. (1.2)

However it has been demonstrated in [13] that vortices obeying the velocity law (1.1) can

develop helical instabilities in circumstances in which jext · t) 0. In [23] it is shown that

this type of instability causes the model (1.2) to be ill-posed whenever jext · t) 0.

Typically, the number of vortices within a sample is very large. This makes the consider-

ation of individual vortices infeasible, and suggests that some sort of averaging technique

be used to replace them with a local vortex density, or vorticity. Just such a technique has

been used in [12] and [10] to arrive at a model describing the evolution of the magnetic

field H and the vorticity ω within a superconductor. However this model makes use of a
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vorticity velocity law based upon (1.2), and while existence and regularity of its solutions

may be shown for geometries in which the current has no component in the direction of

the vorticity ∇∧H ·ω ≡ 0 (see [26, 16]), we conjecture that where ∇∧H ·ω� 0 it results

in an ill-posed problem. We illustrate this conjecture in § 2–§ 3 by considering the linear

stability of a steady state solution, the result of which shows that the growth rate of a

perturbation cannot be bounded, and thus that the problem is indeed ill-posed. The model

is then modified to reinstate the curvature term in the velocity and it is found that the

steady-state solution to the original model is also one for the amended model. In fact this

solution describes an interesting phenomenon mentioned above, namely the “force-free

steady-state” (Campbell and Evetts [2]). From a practical point of view a stable force-free

steady-state is much to be desired because it allows for a non-dissipative transport current

flow in the mixed state. To this end the linear stability of the steady state solution is

investigated using the amended model; it is found that although the growth rate of a

perturbation is bounded its size may still grow, making this solution unstable. In this

context we note works by Brandt [5, 6] on the stability of a vortex lattice to longitudinal

currents in which the onset of instability is calculated using an ad hoc model based upon

the concept of ‘elastic’ moduli of the lattice.

1.1 A review of the mean-field model

In the high-κ limit of the Ginzburg–Landau equations the thickness of a superconducting

core tends to zero. Outside the core, the level of superconductivity (in terms of the

Ginzburg–Landau equations, the magnitude of the order parameter ψ) is approximately

constant and the Ginzburg–Landau equations simplify greatly giving rise to the so-called

London equations. In a domain in which there are a number of vortex lines, lying along

the curves Γm, with position vectors x = qm(s, t) = (xm(s, t), ym(s, t), zm(s, t)), s being arc-

length, and where units are chosen such that the penetration depth λ = 1 and the upper

critical magnetic field Hc2 = κ2, these equations may be written as follows:

∇2Ho −Ho = −∑
m

δm(x), (1.3)

∇ ·Ho = 0 (1.4)

where we have defined

δm(x) = 2π

∫
Γm

δ(x− xm(s, t))δ(y − ym(s, t))δ(z − zm(s, t))ds.

The motion of the vortex lines obeys the velocity law derived in [11] (see equation 1.1),

the ith vortex moving with velocity vi given by

vi = 2 (∇ ∧Ho,i)|x=qi
∧ ti + (log κ)Cini + O(∇ ∧Ho,i/κ, Cini). (1.5)

Here ti is the tangent, Ci the curvature and ni the normal to the ith vortex; Ho,i is the

non-singular part of the magnetic field on the line x = qi which satisfies a modified field

equation, namely

∇2Ho,i −Ho,i = −∑
m�i

δm(x). (1.6)
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It is, in principle, possible to compute the evolution of the magnetic field by tracking

individual vortices using equations (1.5) and (1.6). However in practice, in a sample a few

millimetres across the vortices might number several million, and so any such computation

on the macroscopic scale becomes prohibitively expensive. To circumvent this difficulty,

Chapman [10] considers an average magnetic field and vortex density taken over a region

containing many vortices. He then closes the model by finding an expression for the

conservation of vorticity in terms of the velocity of the vorticity.

We now follow [10] in deriving the model. Consider a system of vortices which are

separated by distances of order ζ which are small compared to the penetration depth

such that 1/
√
κ� ζ � 1/

√
log κ. This choice of ζ leads to a magnetic field O(1/ζ2) which

motivates the following expansion:

Ho =
H(0)
o

ζ2
+ H(1)

o · · · . (1.7)

Note, however, that although Ho is singular as each vortex line is approached, the

singularity occurs in the second term of the expansion. In fact Ho ∼ log ρt for small radial

distances ρ from a vortex line. The leading term is non-singular and satisfies the following

‘averaged’ equation:

∇2H(0)
o −H(0)

o = −ω,
where ω is the averaged vortex density (an O(1) term), and will henceforth will be termed

the vorticity (details of the averaging process are given in [10]). Assuming that the vortices

are all locally parallel we can, by noting that H(0)
o /ζ

2 is also the leading order term in the

expansion of the non-singular part of the magnetic field H0,j , write down an approximate

velocity v for the vorticity ω

v =
2

ζ2
(∇ ∧H(0)

o ) ∧ ω

|ω| .
This, however, assumes that we can neglect the ‘comparatively small’ curvature term, and

while this is true for certain geometries (see, for example, the existence and regularity

proofs in [26] and [16]), it is not, as we shall demonstrate, true for all.

The model is then closed by requiring conservation of vorticity which, on rescaling time

t with ζ2/2 and dropping sub- and superscripts, may be written in its entirety as follows:

∇ ∧ (∇ ∧H) + H = ω

∇ ·H = 0

v = (∇ ∧H) ∧ ω

|ω|
ωt + ∇ ∧ (ω ∧ v) = 0


in Ω, (1.8)

where Ω is the domain occupied by the superconductor. Outside the superconductor,

Maxwell’s equations are satisfied:

∇ ∧H = 0

∇ ·H = 0

}
in Ω

c
, (1.9)

and these couple to the interior via standard jump and boundary conditions. When we
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take µ, the magnetic susceptibility, to be constant throughout the whole region, these may

be written as follows:

[H] = 0

∇ ∧H · n̂ = 0

}
on ∂Ω, (1.10)

where n̂ is the outward normal to the boundary. Initial conditions must be given for ω,

together with boundary conditions for H at infinity and for ω on ∂Ω. If the boundary

condition on the vorticity is ω · n̂|∂Ω = 0, it is enough to specify the flux of vorticity in

through those sections of the boundary for which v · n̂|∂Ω < 0. In line with the work in

[9], which demonstrates that an energy barrier exists to the formation of vortices on the

boundary, it is reasonable to take this flux to be zero, and we shall do so. The conditions

on H at infinity depend upon the geometry of the domain and should be determined by

the field applied to the sample and the total transport current flowing along the body.

We shall consider a superconducting slab occupying the region −b < x < b; requiring the

field to satisfy

H→ H− as x→ −∞ and H→ H+ as x→∞
determines the applied field Happl = (H− + H+)/2 and the average transport current

density
∫ b
−b jtransdx/(2b).

2 Stability of a force-free steady state

2.1 The unperturbed solution

We now look for a one-dimensional steady-state solution to the mean-field model describ-

ing a transport current flow, in the presence of vortices, inside the slab −b < x < b. For

vortices to be present in equilibrium, we must also allow for an external magnetic field.

Outside the slab, in the two regions x < −b and x > b, Maxwell’s equations (1.9) are

satisfied by constant magnetic fields H = H− and H = H+. In the slab, a general steady

state solution may be written down as follows:

Hstdy = (0, H2(x), H3(x)) ωstdy = (0, 0, ω(x)),

where

H2(x) = A sinh(x− d) in − b < x < b,

H3(x) = B cosh(x− a1)

ω(x) = 0

}
in − b < x < a1,

H3(x) = B

ω(x) = B

}
in a1 < x < a2,

H3(x) = B cosh(x− a2)

ω(x) = 0

}
in a2 < x < b,

(2.1)

Note the presence of the free-boundaries at x = a1 and x = a2 separating the region of

non-zero vorticity from regions of zero vorticity on either side of it. Referring to the jump
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conditions (1.10), it is clear that the exterior fields giving such an interior solution are

Hstdy = H− = (0,−A sinh(b+ d), B cosh(b+ a1)) x < −b,
Hstdy = H+ = (0, A sinh(b− d), B cosh(b− a2)) x > b.

These in turn may be related to the applied magnetic field Happl by

Happl =
H− + H+

2
= (0, A(sinh(b− d)− sinh(b+ d))/2, B(cosh(b+ a1) + cosh(b− a2))/2),

and the transport current density jtrans averaged over the width of the slab by

1

2b

∫ b

−b
jtransdx = (0, B(cosh(b+ a1)− cosh(b− a2)), A(sinh(b− d) + sinh(b+ d))).

This still leaves some indeterminacy in the choice of unknown parameters (A,B, a1, a2, d)

given any particular values for the applied field and transport current. To completely

determine the unknowns, we must also specify the total vorticity trapped inside the

slab ∫ b

−b
ωdx = (0, 0,W ) = (0, 0, B(a2 − a1))).

Remark Without loss of generality, we can choose B ≡ 1. This corresponds to assigning

a particular value to the typical vortex spearation ζ.

2.2 Linear stability of the basic solution

We now investigate the stability of this class of solution by imposing a small perturbation

onto the original solution, so that

ω = ωstdy + ε(α(x, t) cos(mz), β(x, t) sin(mz), γ(x, t) sin(mz)) + · · · , (2.2)

H = Hstdy + ε(φ(x, t) cos(mz), θ(x, t) sin(mz), ψ(x, t) sin(mz)) + · · · , (2.3)

where we take α = β = γ = 0 for x < a1 and x > a2 and replace the stationary free

boundaries at x = a1 and x = a2 by the moving boundaries

x = a1 + εχ1(z, t) + · · · and x = a2 + εχ2(z, t) + · · · ,
respectively. We can obtain a linear problem for the evolution of α, β, γ, φ, θ, ψ and ζ

by substituting (2.2) and (2.3) into (1.8)–(1.10), and taking the order ε term. We can then

either solve this problem, with given initial data, by use of a Laplace transform, or look

for solutions to it with uniform growth rate such that

α(x, t) = eσtα̃(x),

with β̃(x), γ̃(x), χ̃1(z), · · · similarly defined. For the moment, we opt for the latter choice,

which results in the following coupled ODEs for φ̃, θ̃ in a1 < x < a2:

(−φ̃′′ + (m2 + 1)φ̃)(σ(σ + 1)− A2m2 cosh2(x− d))
= α̃(σ(σ + 1)− A2m2 cosh2(x− d)) = (σφ̃+ Am3 cosh(x− d)θ̃), (2.4)
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(−θ̃′′ + (m2 + 1)θ̃)(σ(σ + 1)− A2m2 cosh2(x− d))
= β̃(σ(σ + 1)− A2m2 cosh2(x− d)) = −(Am cosh(x− d)φ̃+ (σ + 1)m2θ̃), (2.5)

and

−φ̃′′ + (m2 + 1)φ̃ = 0

−θ̃′′ + (m2 + 1)θ̃ = 0

}
in − b < x < a1 and a2 < x < b, (2.6)

where

φ̃′ + mψ̃ = 0 in − b < x < b, α̃′ + mγ̃ = 0 in a1 < x < a2. (2.7)

In Ω
c
, substitution of (2.2) and (2.3) into (1.9) gives

−φ̃′′ + m2φ̃ = 0

θ̃ = 0

φ̃′ + mψ̃ = 0

 in x < −b and x > b, (2.8)

Requiring continuity of the field H and the current ∇∧H across the two moving boundaries

x = a1 + ε exp(σt)χ̃1(z) + · · · and x = a2 + ε exp(σt)χ̃2(z) + · · · and linearising onto x = a1

and x = a2, respectively, amounts to requiring

[φ̃] = [θ̃] = [φ̃′] = [θ̃′] = 0 on x = a1 and x = a2. (2.9)

On the boundaries between the superconductor Ω and the exterior Ω
c
, (1.10) is satisfied

by requiring

[φ̃] = [φ̃′] = 0, θ̃ = 0, on x = ±b. (2.10)

Finally, we note that the requirement that perturbations remain everywhere small enforces

the far-field conditions

φ̃→ 0, θ̃ → 0, as x→ ±∞, (2.11)

thus closing the eigenvalue problem given by (2.4)–(2.11).

Turning now to the evaluation of the unknown functions χ̃1(z) and χ̃2(z), which

determine the position of the two moving boundaries, we note that the normal velocity

of the moving boundary vn is equal to that component of the velocity of the vorticity in

the direction of the normal n to the moving boundary. The vorticity velocity v is given by

the following expression:

v =
(
(−mφ̃+ ψ̃′ + A cosh(x− d)β̃) sin(mz), (A cosh(x− d)α̃+ mθ̃) cos(mz), 0

)
.

Using this expression in conjunction with (2.4)–(2.5), and noting that if ∇ · ω|t=0 = 0 is

to hold in a weak sense on the boundary then ω · n|t=0 = 0 on the moving boundary, one

finds

χ̃1(z) =
α̃(a1) sin(mz)

m
, χ̃2(z) =

α̃(a2) sin(mz)

m
.

The position of the moving boundaries are thus determined by the solution to the

eigenvalue problem, and are such that for all subsequent times ω · n = 0 (on the moving

boundary).

A considerable simplification to the eigenvalue problem (2.4)–(2.11) can be made by
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solving explicitly in the regions x < a1 and x > a2, and then using these solutions, which

contain some arbitrary constants, to derive boundary conditions on (2.4)–(2.5). Doing so

in x < a1 we find

φ̃ = P exp(m(x+ b)), θ̃ = 0, in x < −b,
and, for −b < x < a1

φ̃ = P cosh((m2 + 1)1/2(x+ b)) +
Pm

(m2 + 1)1/2
sinh((m2 + 1)1/2(x+ b)),

θ̃ = S sinh
(

(m2 + 1)1/2(x+ b)
)
,

These solutions may then be used to obtain the following boundary condition on x = a1

for equations (2.4)–(2.5):

φ̃
(
m cosh((m2 + 1)1/2(b+ a1)) + (m2 + 1)1/2 sinh((m2 + 1)1/2(b+ a1))

)
= φ̃′

(
cosh((m2 + 1)1/2(b+ a1)) +

m

(m2 + 1)1/2
sinh((m2 + 1)1/2(b+ a1))

)
, (2.12)

θ̃(m2 + 1)1/2 cosh((m2 + 1)1/2(b+ a1)) = θ̃′ sinh((m2 + 1)1/2(b+ a1)).

By a similar method, one can obtain the other required boundary condition on x = a2

φ̃
(
m cosh((m2 + 1)1/2(b− a2)) + (m2 + 1)1/2 sinh((m2 + 1)1/2(b− a2))

)
= −φ̃′

(
cosh((m2 + 1)1/2(b− a2)) +

m

(m2 + 1)1/2
sinh((m2 + 1)1/2(b− a2))

)
, (2.13)

θ̃(m2 + 1)1/2 cosh((m2 + 1)1/2(b− a2)) = −θ̃′ sinh((m2 + 1)1/2(b− a2)).

In the next section, we examine the properties of the eigenvalue problem comprising

equations (2.4)–(2.5) and boundary conditions (2.12)–(2.13).

3 Properties of the eigenvalue system

For simplicity, we now consider only the eigenvalue system arising from those steady

solutions to the mean-field model for which the applied field Happl is parallel to the

transport current jtrans. This requirement neccesitates that

d = 0 and a1 = −a2 = −a. (3.1)

Hence, such steady-state solutions are symmetric about the origin. It is then readily

verified that boundary conditions (2.12)–(2.13), when written in the form

φ̃′ = Υ1φ̃ and θ̃′ = Υ2θ̃ on x = −a, (3.2)

φ̃′ = −Υ1φ̃ and θ̃′ = −Υ2θ̃ on x = a, (3.3)

have the property that both Υ1 and Υ2 are positive.

Non-singular eigenfunctions

We can now use the above property to find limits on the range, in the m-σ plane, in which

it is necessary to search for non-singular eigenvalues. Multiplying (2.4) by φ̃, then adding
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Figure 1. Location of eigenvalues in the m-σ plane for the case A = 1 and a = 1. The four

curves plotted on the picture are, from the bottom upwards, σ = σ3(m), σ = σ1(m), σ = σ2(m) and

σ = σ4(m).

the result to (2.5) multiplied by m2θ̃ and integrating from x = −a to x = a yields the

following relation:∫ a

−a
φ̃′2 + m2θ̃′2dx− [φ̃φ̃′ + m2θ̃θ̃′

]a
−a

= −
{∫ a

−a
φ̃2

(
m2 + 1− σ

(σ(σ + 1)− A2m2 cosh2 x)

)
+m2θ̃2

(
m2 + 1 +

(σ + 1)m2

(σ(σ + 1)− A2m2 cosh2 x)

)
dx

}
.

Reference to (3.2) and (3.3) shows that the left-hand side of (3.4) is always positive. The

right-hand side can only be positive if one of the two inequalities

σ/(σ(σ + 1)− A2m2 cosh2 x) > m2 + 1,

m2(σ + 1)/(A2m2 cosh2 x− σ(σ + 1)) > m2 + 1,

is satisfied in some part of the range −a < x < a. Restricting our attention to positive

values of σ, we see that neither of these inequalities is satisfied, and thus that no eigenvalues

exist, in those parts of the m-σ plane in which either 0 < σ < σ3(m) or σ > σ4(m) (see

Figure 1), where

σ3(m) =
− (1 + m2/(m2 + 1)

)
+
((

1 + m2/(m2 + 1)
)2

+ 4
(
A2m2 − m2/(m2 + 1)

))1/2

2
,

σ4(m) =
− (1− 1/(m2 + 1)

)
+
((

1− 1/(m2 + 1)
)2

+ 4A2m2 cosh2 a
)1/2

2
.
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Singular Eigenfunctions

Where σ lies in the range σ1(m) < σ < σ2(m),

σ1(m) =
−1 + (1 + 4A2m2)1/2

2
, σ2(m) =

−1 + (1 + 4A2m2 cosh2 a)1/2

2
, (3.4)

the coefficient of the highest derivatives in (2.4) and (2.5), (A2m2 cosh2 x − σ(σ + 1)), has

zeros in the range −a < x < a occurring at the positions

x = Xσ = arcosh

(
(σ(σ + 1))1/2

Am

)
, and x = −Xσ,

(see Figure 1). Eigenfunctions (φ̃, θ̃) with eigenvalues in the range σ1 < σ < σ2 will

therefore have singularities at x = ±Xσ and of the form (x − Xσ) log |x − Xσ|. If the

spectrum of the eigenvalues σ in this range is discrete, any linear combination of the

corresponding eigenfunctions will be singular. Such eigenvalues/eigenfunctions clearly

have no bearing on the evolution of the linearised problem describing the growth of

small, initially smooth, perturbations to the steady-state solutions of the mean-field model

given in § 2.1. However if the spectrum of the eigenvalues is continuous it is possible to

form a regular linear combination of the corresponding eigenfunctions of the form

φ(x, t) =

∫ σ2

σ1

eσtK(σ)φ̃(σ, x)dσ, θ(x, t) =

∫ σ2

σ1

eσtK(σ)θ̃(σ, x)dσ,

where K(σ) is a smooth function of σ.

Continuous eigenspectra resulting from singular eigenvalue problems occur in many

applications and our treatment follows the methods described by Case & Drazin [14, 7].

Before proceeding with this treatment, we simplify matters still further by restricting our

search to pairs (φ, θ) that are even in x such that

∂φ

∂x
= 0 and

∂θ

∂x
= 0 on x = 0. (3.5)

It is easy, but slightly tedious, to generalise our arguments to (φ, θ) which do not satisfy

this condition, and since this generalisation leaves our conclusions unchanged, we omit it

from the following.

To investigate the possibility of a continuous eigenspectrum it is helpful to introduce

the Laplace transforms of φ and θ, which are defined as follows:

φ(x, p) =

∫ ∞
0

e−ptφ(x, t)dt, θ(x, p) =

∫ ∞
0

e−ptθ(x, t)dt.

We then take the Laplace-transformed version of the linear problem obtained by sub-

stituting (2.2) and (2.3) into (1.8)–(1.10) and taking the order ε term. By following steps

similar to those outlined in § 2.2, it is possible to show that this Laplace transformed

problem may be written in following form:

L1(η, $) = R(x, p) =
α(x, 0) + β(x, 0)

√
(p+ 1)/p

(
√
p(p+ 1) + Am cosh x)

, (3.6)

L2(η, $) = Q(x, p) =
α(x, 0)− β(x, 0)

√
(p+ 1)/p

(
√
p(p+ 1)− Am cosh x)

. (3.7)
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Here the linear operators L1 and L2 are defined as follows:

L1(η, $) = −d
2η

dx2
+ (m2 + 1)η

−1

2

(
η
(√

p/(p+ 1)− m2
√

(p+ 1)/p
)

+ $
(
m2
√

(p+ 1)/p+
√
p/(p+ 1)

))
(
√
p(p+ 1) + Am cosh x)

,

L2(η, $) = −d
2$

dx2
+ (m2 + 1)$

−1

2

(
$
(√

p/(p+ 1)− m2
√

(p+ 1)/p
)

+ η
(
m2
√

(p+ 1)/p+
√
p/(p+ 1)

))
(
√
p(p+ 1)− Am cosh x)

,

the functions $ and η are defined in terms of φ and θ by

η(x, p) = θ +

√
p+ 1

p
φ, $(x, p) =

√
p+ 1

p
φ− θ,

and $ and η satisfy certain homogeneous boundary conditions on x = 0 and x = a.

We can write the solution to (3.6) and (3.7) in terms of convolutions involving Green’s

functions:

η(x, p) =

∫ a

0

R(ξ, p)g1(x, p; ξ) + Q(ξ, p)g2(x, p; ξ)dξ,

$(x, p) =

∫ a

0

R(ξ, p)h1(x, p; ξ) + Q(ξ, p)h2(x, p; ξ)dξ,

where the Green’s function pairs (g1(x, p; ξ), h1(x, p; ξ)) and (g2(x, p; ξ), h2(x, p; ξ)) are

obtained by solving

L1(g1(x, p; ξ), h1(x, p; ξ)) = δ(x− ξ), L2(g1(x, p; ξ), h1(x, p; ξ)) = 0,

and

L1(g2(x, p; ξ), h2(x, p; ξ)) = 0, L2(g2(x, p; ξ), h2(x, p; ξ)) = δ(x− ξ),

respectively. Finally, we can calculate φ(x, p) and θ(x, p), in terms of these Green’s

functions, and invert to find φ(x, t) and θ(x, t):

φ(x, t) =
1

2πi

∫ a

0

∫ γ+i∞

γ−i∞
ept

2

(
p

p+ 1

)1/2

[R(ξ, p)(g1(x, p; ξ)

+h1(x, p; ξ)) + Q(ξ, p)(g2(x, p; ξ) + h2(x, p; ξ))]dpdξ, (3.8)

θ(x, t) =
1

2πi

∫ a

0

∫ γ+i∞

γ−i∞
ept

2
[R(ξ, p)(g1(x, p; ξ)

−h1(x, p; ξ)) + Q(ξ, p)(g2(x, p; ξ)− h2(x, p; ξ))]dpdξ. (3.9)

Since Q(ξ, p) has poles in p for ξ = Xp = arcosh
(
(p(p+ 1))1/2/Am

)
, and the range

of ξ is [0, a], the solutions for φ and θ will in general exhibit growth rates eσt for
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σ1(m) < σ < σ2(m) (see equation (3.4) for the definitions of σ1(m) and σ2(m)). The Green’s

functions h1(x, p; ξ) and h2(x, p; ξ) also exhibit (x − Xp) log |x − Xp| type singularities

because of the singular terms in the left-hand side of (3.7), but these are smoothed out by

the integrals in p in equations (3.8) and (3.9). Thus φ(x, t) and θ(x, t) are regular in x.

3.1 Summary

We have shown there is a continuous spectrum of positive eigenvalues σ ∈ (σ1(m), σ2(m))

associated with singular eigenfunctions. However, since the spectrum of eigenvalues is

continuous, small smooth perturbations added to the steady state solution to the mean-

field model (2.1), and of the form given in (2.2)–(2.3), potentially have growth rates σ as

large as σ2(m).1 The problem given by the mean-field model with initial conditions defined

by (2.1) and (3.1) is thus ill-posed, a consequence of σ2(m) having no upper bound

σ2(m) ∼ Am cosh(a) for m� 1.

4 A possible regularisation of the mean-field model

In the previous section we demonstrated that not only are the force free steady states

given by (2.1) unstable, but when used for initial data to the mean-field model (1.8), result

in an ill-posed problem. Comparison with the behaviour of a single vortex in an applied

current reveals why this should be so. It has been shown [23] that, where the current j has

some component in the direction of the tangent to the vortex t, the vortex velocity law

v = j ∧ t, (4.1)

leads to an ill-posed problem. If, however, the small self-induced curvature term is retained

(see equation (1.5)), such that the vortex now obeys the velocity law

v = j ∧ t + (log κ)Cn,

then the resulting problem, even where j · t� 0, is well-posed. This suggests that in the

case of the mean-field model whenever j ·ω� 0 it is wrong to neglect the curvature term.

We can incorporate this by replacing the velocity v in (1.8) by

v = (∇ ∧H) ∧ ω

|ω| + ν

((
ω

|ω|
)
· ∇
)(

ω

|ω|
)
, (4.2)

where the coefficient ν is given by

ν =
ζ2

2
log κ.

We now proceed to examine the consequences of adding such a term for the stability of

the steady state solution we found in § 2.1, namely (2.1). First, we note that this solution

is still a steady state solution of the model with the self-induced curvature term retained

in the velocity. Then proceeding exactly as we did in § 2.2, we look for a perturbation to

1 We could find no numerical evidence of a discrete spectrum in the range σ2(m) < σ < σ4(m)

suggesting that σ2(m) is indeed the maximum growth rate that can occur.
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this solution of the form

ω = ωstdy + ε exp (Σt)(α̃(x) cos(mz), β̃(x) sin(mz), γ̃(x) sin(mz)) + · · · ,
H = Hstdy + ε exp (Σt)(φ̃(x) cos(mz), θ̃(x) sin(mz), ψ̃(x) sin(mz)) + · · · ,

and find after pursuing essentially the same steps that φ̃ and θ̃ satisfy the same eigenvalue

problem as they did there, namely that given by equations (2.4), (2.5), (2.12) and (2.13).

The one notable difference is that the growth rate of the perturbation Σ is no longer

given by the eigenvalue σ, but related to it as follows:

Σ = σ − νm2.

This is an important difference and means that whereas the growth rate of the unmodified

model grows linearly with m the growth rate for the amended model has a maximum

value; for ν � 1 this is given by

Σmax ≈ A2 cosh2 a

4ν
at m ≈ A cosh a

2ν
. (4.3)

Thus, it transpires that, at least for this initial data, the modified model is linearly well-

posed. However, the steady-state solution is clearly not stable (since Σmax is positive). It

proves rather interesting to compare the maximum growth rate for this solution with that

for a single vortex in a constant applied current j (see [23]) for which it is found that

σmax ≈ (j · t)2

4 log κ
at m ≈ (j · t)

2 log κ
.

By noting that time has been rescaled with ζ2/2 in the mean-field model and that

jo = ∇ ∧Ho ≈ ∇ ∧Hstdy/(ζ
2) one can see that the maximum growth rate for the modified

mean-field model, and the wavenumber at which this occurs, are the same as they would

be for vortices positioned along the lines of maximum longitudinal current x = ±a.

4.1 Applicability of the model

A basic assumption of the mean-field approach is that on the scale of vortex separation

ζ vortices are almost parallel. Variations of the vorticity ω over a lengthscale smaller, or

of the same order as ζ, therefore violate this assumption. Equating the wavenumber m at

which the maximal growth of the instability occurs (see equation (4.3)) with the length

in which longitudinal variations in ω typically occur, we can see that for validity of the

model we require

2πζ log κ

A cosh a
� O(1),

or in terms of the original units in which Hc2 = κ2 and the penetration depth λ = 1,

jlong � 2π log κ

ζ
, (4.4)

where jlong gives a measure of the size of the current running parallel to the vorticity (in

this case ζ2A cosh a).
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Remark

Referring back to the original expansion of the magnetic field (1.7) we see that the

expansion for the current is as follows:

jo =
j(0)
o

ζ2
+

j(1)
o

ζ
+ · · · .

Note that whereas the second term in the expansion for Ho is O(1), for the current jo
it is of order (1/ζ). This is a consequence of the singularity at this order. If we require

that variations in ω occur over a longer lengthscale than vortex separation ζ we impose

such a severe restriction on the longitudinal part of the current that we must be resigned

to its being hardly greater than the second term in the expansion for the current j(1)
o /ζ.

This term is composed of intervortex currents which give rise to local interaction forces

between neighbouring vortices but which average to zero over many vortex separations

(see [24]). Where locally dominant, it results in the formation of a vortex lattice with a

resistance to shearing motions. However for sufficiently high temperatures, thermal energy

is enough to ‘melt’ a vortex lattice (see, for example, [17]), and in these regimes one might

reasonable expect the mean-field approach to hold.

5 Conclusion

We started by conjecturing that the mean-field model given in [10] is ill-posed unless

the current and vorticity is everywhere perpendicular so that j · ω ≡ 0. We proceeded to

illustrate this conjecture by finding a force-free steady-state solution to the model (for

which j ∧ ω = 0 and j · ω) 0) and then conducting a linear stability analysis about this

solution. The result of the stability analysis revealed that, with initial data close to the

steady-state solution, the mean-field model is indeed ill-posed. In § 4 a regularised model

was proposed and was used to repeat the stability analysis of the force-free steady-state

solution. This gave an indication of the well-posedness of the new model and showed this

force-free steady-state to be unstable. This last result has some inherent interest because

there have been various attempts to use force-free steady-states to overcome dissipation

in Type-II superconductors. Finally, we discussed the parameter regime over which one

would expect the regularised model to hold and noted that, although this might be fairly

restrictive for very low temperatures where there is a strong tendency for vortices to

form a lattice, for temperatures high enough to ‘melt’ the vortex lattice the model has a

considerably larger domain of validity.

A natural extension to this work would be to investigate the case where a small

transport current is applied to a collection of vortices held together in a stiff lattice by

larger intervortex currents. Work by Clem [13] on the stability of a single vortex in a

circular superconducting cylinder shows that a combination of line tension (the curvature

term in the velocity law) and an azimuthal screening current (resulting from a longitudinal

applied magnetic field) is enough to stabilise the vortex for sufficiently small longitudinal

currents. By analogy with this, we might well expect to find a critical longitudinal current

below which the stiff vortex lattice is stable.

The other extreme case, in which a large longitudinal current flows resulting in typical

radii of curvature of the vortices with sizes much smaller than the vortex separation, has
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already been investigated in [23] revealing the unfeasability of stable force-free steady

states (without pinning) in this regime.
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