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Abstract: We study bifurcations between the normal and superconducting states, and between

superconducting states with different winding numbers, in a thin loop of superconducting wire, of

uniform thickness, to which a magnetic field is applied. We then consider the response of a loop with

small thickness variations. We find that close to the transition between normal and superconducting

states lies a region where the leading order problem has repeated eigenvalues. This leads to a rich

structure of possible behaviours. A weakly nonlinear stability analysis is conducted to determine

which of these behaviours occur in practice.
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1 Introduction

Certain materials when cooled sufficiently undergo a second order phase transition which
takes them from the normal state, in which they behave like conventional metals, to a state
in which electric currents can be supported without resistance and in which unusual mag-
netic phenomena are exhibited. This state, termed the superconducting state, is one of the
few examples where quantum mechanics manifests itself over a macroscopic scale. Indeed it
is possible to attribute many of the peculiar properties of superconductors directly to the
quantum mechanical nature of the phenomenon. In this context we note (I) the Josephson

effect whereby two pieces of superconducting material separated by a non-superconductor
interact via quantum mechanical tunelling, and (II) the quantisation of magnetic flux ex-
emplified by a circulating current structure, termed a vortex, which is associated with one
quantum of magnetic flux.

In this work we shall investigate, from a theoretical standpoint, the famous Little–Parks
experiment [4] and other closely related set-ups. The inventors of this experiment used an
extremely thin hollow cylinder to which an axial magnetic field is applied to show that the
transition temperature at the onset of superconductivity has a periodic dependence on the
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flux within the ring. By noting that an integer plus-half-number of magnetic flux quanta
within the ring penalises the superconducting state in comparison to an integer number of
quanta, they argue that the period of variation in the transition temperature is exactly one
quantum of magnetic flux. Recently there has also been considerable interest in a closely
related set-up consisting of a thin closed loop of wire set in an applied magnetic field (see
for example Fomin et al. [5] and Moshchalkov et. al. [6].)

Interest in the Little Parks experiment has not been solely restricted to experiment and
much work has been done on the problem from a theoretical standpoint. In [3] the normal-
superconducting transition is investigated by application of the Ginzburg-Landau model to
a thin circularly-symmetric annulus. The work of Berger and Rubinstein [1] extends that
performed in [3] with the discovery of a further set of transition lines between different
superconducting solutions. It also investigates the effects that variations in the thickness of
the ring have on the phase diagram, revealing novel symmetry breaking effects. Approximate
one-dimensional Ginzburg-Landau models for a non-circularly-symmetric thin ring and a
three dimensional thin loop of wire with varying thickness have been derived in [7] and
[8] respectively and may be used to investigate the Little–Parks effect in non-circularly
symmetric domains.

The present work is an extension of that performed by Berger and Rubinstein in [1]. We
find that by formulating the problem in a different manner from these authors we are able to
build up a detailed picture of the bifurcation structure of the problems, describing: (I) a thin
ring or loop with uniform thickness, and (II) a thin ring or loop with small variations in the
thickness. In the next section we formulate the problem for a thin wire of arbitrary geometry.
In Section 3 we consider a loop of uniform thickness and describe the local behaviour of
the system in the neighbourhood of the normal-superconducting bifurcation line, and in
the neighbourhood of the transition lines between superconducting solutions with different
topological winding numbers. In Section 4 we extend the analysis of the previous section
to a wire with small variations in its thickness. In this section we also conduct a detailed
analysis about the points in the phase diagram where the bifurcation lines intersect and
where the symmetry breaking discovered in [1] is most marked. Finally, in Section 5, we
draw our conclusions.

2 Problem Formulation

In the following we consider a loop of thin wire of length 2πl and with a typical cross
sectional area η (where η � 1) lying along the curve x = q(s).1 Our starting point is the

1We also require that ηl � ξ where ξ is the coherence length. In effect this amounts to requiring that the

temperature lie in some range centred on the critical temperature Tc since at this temperature ξ is infinite.
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Ginzburg-Landau equations [2]

1

ms
(~∇− iesA)2 Ψ = a(T )Ψ + b(T )|Ψ|2Ψ,

∇ ∧

(

B

µ

)

= −
ies~

ms
(Ψ∗∇Ψ − Ψ∇Ψ∗) −

2e2s
ms

|Ψ|2A,

∇∧ A = B.

Here Ψ is a complex order parameter for the superconducting charge carriers, B is the
magnetic field, T is the temperature and es and ms are respectively the charge, and the
effective mass of the superconducting charge carriers. We take the magnetic flux enclosed
by the ring to be of the order of one flux quantum, and employ the nondimensionalisation

x ∼ l Ψ ∼

√

|a(T )|

b(T )
B ∼

~

esl2
A ∼

~

esl
.

Following the analysis presented in [7] then leads to a one dimensional model for the averaged
(over the thickness of the wire) order parameter ψ as a function of the dimensionless distance
along the loop s

(

∂

∂s
− iA

)2

ψ + |Γ|(sgn(Γ) − |ψ|2)ψ +
D′(s)

D(s)

(

∂ψ

∂s
− iAψ

)

= 0. (1)

In the above D(s) is the cross-sectional area of the loop scaled with η, A is is the component
of the vector potential A tangential to the curve x = q(s), and Γ is a temperature-dependent
parameter defined by

Γ =
1

ξ2
=

−l22ma

~2
.

Close to Tc, the critical temperature below which superconducting state is energetically
favourable in the absence of magnetic field, Γ can be approximated by Γ = k(Tc − T ) where
k is a positive constant. Remarkably this model is entirely independent of the geometry
of the wire and depends on the magnetic field solely through the magnetic flux cutting the
loop. Indeed, if we select a gauge for A such that its tangential component along the wire
is constant we find A is related to F as follows:

A =
F

2π
.

Although we are primarily interested in equilibrium states of the Little–Parks set-up,
which can be obtained by solution of equation (1), we will also make use of an analogous
time dependent model to investigate the stability of the equilibrium states. This model

3



is derived in [7] and, where we employ the same nondimensionalisation as above, may be
written as follows:

−|Γ|

(

∂ψ

∂t
+ iΦψ

)

+

(

∂

∂s
− iA

)2

ψ +
1

D

∂D

∂s

(

∂ψ

∂s
− iAψ

)

− |Γ|ψ
(

|ψ|2 − sgn(Γ)
)

= 0, (2)

∂

∂s

(

D

(

|ψ|2A+
i

2

(

ψ∗
∂ψ

∂s
− ψ

∂ψ∗

∂s

)))

+ σ
∂

∂s

(

D

(

∂Φ

∂s
+
∂A

∂t

))

= 0, (3)

where Φ is the dimensionless scalar electric potential. It is sometimes convenient to replace
(3) by

|Γ|i

2

(

ψ
∂ψ∗

∂t
− ψ∗

∂ψ

∂t

)

+ |Γ||ψ|2Φ =
σ

D

∂

∂s

(

D

(

∂Φ

∂s
+
∂A

∂t

))

. (4)

which is easily derived from (2)-(3).

3 A loop with uniform thickness D ≡ 1

Equation (1) has the solution ψ = 0 which corresponds to the normal state. We search for
a bifurcation from this solution to a superconducting solution by linearising about ψ = 0 as
follows:

ψ = εψ1 + · · · ε� 1.

and substituting into (1). At O(ε) we find that ψ1 satisfies the linear equation

LΓψ1 =
∂2ψ1

∂s2
− 2iA

∂ψ1

∂s
− A2ψ1 + Γψ1 = 0, (5)

with periodic boundary conditions on [0, 2π]. This has the non-trivial eigensolution

ψ1 = Eeims for Γ = (m− A)2,

where m is an integer. Hence as Γ increases from zero the first solution to bifurcate is that
with winding number nint(A), where we define nint(A) to be the integer closest to A. In
fact we can extend the solution (6) to all values of Γ > (m − A)2 and hence to |ψ| = O(1)
by noting that

ψ = γeims |γ|2 = sgn(Γ) −
(m− A)2

|Γ|
, (6)

is a solution to the full problem (1) with D ≡ 1. A schematic diagram of this bifurcation,
for constant A, is shown in figure 1a.
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3.1 Linear stability of the normal solution

It is important to distinguish between branches of this bifurcation which correspond to
stable solution, and are thus observable, and those which correspond to unstable solutions.
We begin by investigating the linear stability of the normal solution by expanding about
ψ = 0 in powers of ε (ε� 1)

ψ = εeαtψ1(s) +O(ε2),

Φ = O(ε2),

and then substituting this expansion into the time dependent model (2)-(3). At 0(ε) we find

−α|Γ|ψ1 + LΓψ1 = 0, ψ1(0) = ψ1(2π), ψ′

1(0) = ψ′

1(2π).

This has solutions of the form

ψ1,m = eims αm = sgn(Γ) −
(m− A)2

|Γ|
,

where m is an integer. Hence one can see that small perturbations to the normal state will
in general grow if we can find an integer m such that (m− A)2/Γ < sgn(Γ).

3.2 Linear stability of the superconducting state with winding

number m

The stability of the steady superconducting solution ψ = γeims can be investigated in a
similar manner. We make the following expansion about this solution:

ψ = γeims + εeαtψ1(s) + · · · ,

Φ = εeαtΦ1(s) + · · · .

Making the assumption that γ is real (with no loss of generality) and substituting the above
expansion into (2) and (3) we find, at O(ε),

L̂Γψ1 =
∂2ψ1

∂s2
− 2iA

∂ψ1

∂s
− A2ψ1 + Γ(1 − 2|γ|2)ψ1 − Γγ2e2imsψ∗

1 = Γ
(

αψ1 + iγeimsΦ1

)

, (7)

(

A−
m

2

)

(

eimsψ1
∗ + e−imsψ1

)

+
i

2

(

e−ims∂ψ1

∂s
− eims∂ψ1

∗

∂s

)

+
σ

γ

∂Φ1

∂s
= F, (8)

where F is an arbitrary constant. We look for periodic solutions of the form

ψ1,j = eims
(

bje
ijs + b−je

−ijs
)

,

Φ1,j = i
(

dje
ijs + d−je

−ijs
)

,
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where j is a non-zero integer. Substitution of the above into (7) and (8) leads to the following
equations for (bj, b−j) and (dj, d−j):

Γγdj = Γγ2b∗
−j + Pjbj = Njbj −N−jb

∗

−j, (9)

where

Nj =
Γγ2

σj

(

A−m−
j

2

)

and Pj = ((m + j) − A)2 + Γ(2γ2 − 1 + α).

By making the transfromation j → −j in (9) we find a relation between b−j and b∗j . Then,
on use the definition of γ found in (6), we can show that these relations are consistent only
if α, the growth factor, is a solution to the quadratic

Γ2α2 + Γα

(

Γγ2

σ
+ 2j2 + 2

(

Γ − (m− A)2
)

)

+

(

j2 +
Γγ2

σ

)

(

j2 − 6(m− A)2 + 2Γ
)

= 0.

Since Γ ≥ (m − A)2 the coefficient multiplying α in the equation above must be positive.
Hence solutions α of this quadratic have positive real part iff 6(m−A)2 − 2Γ− j2 > 0. The
winding number m solution to (1) ψ = γeims is thus unstable for values of Γ and α for which

fm(Γ, A) = 6(m− A)2 − 2Γ − 1 > 0.

We must now investigate the case j = 0. Here we find a solution to (7)-(8), valid for all Γ
and A2,

ψ1 = iEeims Φ1 = 0 α = 0 E ∈ R. (10)

It follows that the winding number m solution to equation (1) ψ = γeims is only neutrally
stable for {(Γ, A) : fm(Γ, A) < 0}. This should cause little surprise since ψ = γeims+ν is a
steady solution to (1) for all real ν. The reader should note that a change in phase of the
solution makes no difference to the observable quantities of the system and does not alter
the conclusions we draw in this work.

3.3 Bifurcation between superconducting states with different wind-

ing numbers

In §3.2 above we saw that the winding number m solution to (1) ψ = γeims becomes unstable
for 3(m−A)2 − 1/2 > Γ. One can associate the loss of stability with a bifurcation occuring
on Γ = 3(m−A)2 − 1/2. In order to investigate the bifurcation further we look for a steady
solution to (1) of the form

ψ = γeims + εψ1 + · · · ε� 1.
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Figure 1: Bifurcation diagrams for (a) the normal-superconducting transition (b) the onset
of instability of the superconducting solution

At first order we find the following equation for ψ1:

L̂Γψ1 = 0, (11)

together with periodic boundary conditions on [0, 2π]. By comparison with §3.2 above we can
immediately see that this problem has eigenvalue Γ = 3(m− A)2 − 1/2. The corresponding
eigenvector is

ψ1 = Ceims (2i(m− A) sin(s− ν) − cos(s− ν)) C, ν ∈ R.

We now seek to determine the dependence of C, the amplitude of ψ1, on small deviations
in Γ away from the eigenvalue of (11) by proceeding to higher orders in the expansions of ψ
and Γ

ψ = ψ0 + εψ1 + ε2ψ2 + ε3ψ3 + · · · ,

Γ = Γ0 + ε2Γ2 + ε3Γ3 + · · · .

where

ψ0 = γ0e
ims, ψ1 = Ceims (2i(m− A) sin(s− ν) − cos(s− ν)) ,

and

gm = m− A, Γ0 = 3g2
m − 1/2, γ0 =

(

1 −
g2

m

(3g2
m − 1/2)

)1/2

. (12)

At O(ε2) we find the following equation for ψ2

L̂Γ0
ψ2 = H(s) = −Γ2ψ0(1 − |ψ0|

2) + Γ0

(

2ψ0|ψ1|
2 + ψ0

∗ψ1ψ1

)

, (13)
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together with periodic boundary conditions on [0, 2π]. Since nontrivial solutions exist to the
homogenous problem

L̂Γ0
w = 0 w periodic on [0, 2π], (14)

we can use the Fredholm alternative to find a solvability condition on the right-hand side of
(13); this is

Re

(
∫ 2π

0

H(s)w∗ds

)

= 0 ∀ w satisfying (14). (15)

The right-hand side of (13) satisfies (15) for all C and ν; we therefore solve for ψ2 to find

ψ2 = γ0e
ims
(

C2(iM2 sin(2s) +M1 cos(2s)) + h1 + h2C
2
)

+ Pψ1

where

M1 =
3Γ0

2(6g2
m − 2Γ0 − 4)

, M2 = gm (Γ0/2 −M1) ,

h1 =
Γ2g

2
m

2Γ0(Γ0 − g2
m)
, h2 =

Γ0(3/2 + 2g2
m)

2(g2
m − Γ0)

,

and P is an arbitrary constant. Proceeding to O(ε3) we find the following equation for ψ3

L̂Γ0
ψ3 =

[

Γ0(|ψ1|
2ψ1 + 2ψ0ψ1ψ2

∗ + 2ψ0ψ2ψ1
∗ + 2ψ1ψ2ψ0

∗)+

Γ2((2|ψ0|
2 − 1)ψ1 + ψ0ψ0ψ1

∗) − Γ3(1 − |ψ0|
2)ψ0

]

. (16)

together with periodic boundary conditions on [0, 2π]. Applying the solvability condition
(15) to equation (16) leads to the following relation between Γ2 and C

C(C2(18g2
m − 3)(4g2

m + 1) − 4Γ2) = 0. (17)

The coefficient multiplying C3 is positive since g2
m > 1/4. The bifurcation diagram resulting

from (17) is thus qualitatively similar to the picture in figure 1b.

3.4 Weakly nonlinear stability analysis of the bifurcation from the

superconducting solution with winding number m

In the vicinity of this bifurcation, the linear stability analysis carried out in §3.2 reveals that
all single wavenumber perturbations to the solution ψ = γeims decay exponentially in time t
with the exception of the zero’th mode, which is always neutrally stable, and the first mode

ψ1,1 = Ceims (2i(m− A) sin(s− ν) − cos(s− ν)) .
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At leading order the latter has zero growth rate α. In order to investigate the stability of
perturbations of this form in the neighbourhood of the bifurcation one needs to conduct a
weakly nonlinear stability analysis. This we do by introducing the long time scale τ = εt
and looking for a solution to the time-dependent model of the form

ψ = γeims + εC(τ)eims (2i(m− A) sin(s− ν) − cos(s− ν)) + ε2ψ2 + ε3ψ3 · · · ,

Φ = ε3N(τ)φ3(s) + · · · .

By adopting an approach similar to that employed in §3.3 we were able to find an expression
for dC/dτ . As expected the lines upon which dC/dτ = 0 are those given by equation (17).
They divide regions in which dC/dτ is positive from regions in which it is negative. The
stability of a particular bifurcation branch depends on the sign of dC/dτ above and below
it and the importance of the weakly nonlinear stability analysis is in identifying the sign of
dC/dτ in the different regions. The results in this particular case are summarised figure 1b.

Remark It is nearly always possible to infer the sign of the growth rate of the most unstable
mode (in this case dC/dτ) in some region from a linear stability analysis conducted along
any two of the bifurcation branches. It follows that we can also infer the stability of the
other bifurcation branches.

3.5 Description of the behaviour of the uniform ring

In §3 we examined the bifurcation structure of a thin ring with uniform thickness. It was
found, that as Γ increases from zero, the normal solution first becomes unstable when Γ =
(nint(A) − A)2 at which point a stable superconducting solution, of the form ψ = γeims

(m = nint(A)) bifurcates from the normal solution (see figure 1a). We were also able to
analyse the stability of the superconducting solution, with winding number m, far from the
normal-superconducting transition. We found that this solution becomes unstable as the
function fm(Γ, A) = 6(m−A)2 − 2Γ− 1, increases through zero at which point a subcritical
bifurcation occurs (see figure 1b). We expect that after the winding number m solution loses
stability the system will evolve to a solution with winding number m−1 or m+1 depending
on whether fm−1(Γ, A) or fm+1(Γ, A) is negative. Physically this corresponds to a vortex
moving across the ring. These results are summarised in in the phase diagram plotted in
figure 2. Here the solid line represents the normal-superconducting transition; the middle
two dashed lines bound the region of stability of the solution ψ = γeims and the dotted lines
bound the regions of stability of the solutions ψ = γei(m+1)s and ψ = γei(m−1)s. It is noteable
that the transitions between different winding numbers (for instance m and m− 1) occur at
different places in the phase diagram depending on whether A is increasing as a transition
from winding number m−1 to m is made or decreasing as the reverse transition is made (the
arrows in figure 2 show the direction of transition). This phenomenon, commonly termed
superheating or supercooling, is associated with the system adopting a metastable state
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Figure 2: The phase diagram for a ring of uniform thickness

with higher energy than the global minimum. As the parameters of state move through
some critical value there is a catastrophic loss of stability which sends the system into
an equilibrium far from its original state. In common with other systems which exhibit
superheating/supercooling we expect that where the system lies in the metastable state a
sufficiently large perturbation may drive it out of this equilibrium into an equilibrium with
lower energy.

In this context we also note the work of Zhang and Price [9] in which experimental
evidence of this hysteresis is presented.

4 A loop with small variations in thickness

In this section we examine the effect that a small variation in the thickness of the ring has
on the bifurcation structure of equation (1). We write D, the measure of the thickness, as
follows:

D = 1 + δD1 δ � 1 (18)
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and expand D1 as a Fourier series in s, choosing the origin of the s coordinate such that the
coefficient of sin(s) vanishes

D1(s) =
∞
∑

n=1

βn cos(ns) +
∞
∑

n=2

αn sin(ns),

We substitute (18) into equation (1) and look for solutions. Clearly ψ ≡ 0 (the normal
state) is still a solution. We can also find a superconducting solution by looking for a regular
perturbation of the exact solution for a uniform ring (see equation (6)) of the form

ψ = γeims + δψ1 + · · · , (19)

where
γ =

(

1 − g2
m/Γ

)1/2
. (20)

At O(δ) substitution of the above into (1) gives rise to the following equation for ψ1:

L̂Γψ1 = −igmD
′

1γe
ims.

together with periodic boundary conditions on [0, 2π]. This problem has solution

ψ1 = −γgme
ims

(

∞
∑

n=1

βn

6g2
m − 2Γ − n2

(

2gm cos(ns) +
i(2g2

m − 2Γ − n2)

n
sin(ns)

)

+
∞
∑

n=2

αn

6g2
m − 2Γ − n2

(

2gm sin(ns) −
i(2g2

m − 2Γ − n2)

n
cos(ns)

)

)

. (21)

The regular expansion (19) breaks down close to the normal-superconducting transition as
γ → 0. For non-zero β1 this expansion also breaks down along the transition lines between
winding numbers. This is because the denominator of the first term in (21), 6g2

m − 2Γ − 1,
vanishes. In §4.1, §4.2 and §4.3 we examine the effect that variations in the thickness of the
wire have upon these bifurcations.

4.1 Normal-Superconducting transition

As (1− g2
m/Γ)1/2 decreases towards zero so does the amplitude of ψ. For sufficiently small ψ

small deviations in the loop thickness directly affect the leading order behaviour of the order
parameter. Scaling ψ appropriately will thus allow us to investigate the effect of the small
thickness variations on the normal-superconducting bifurcation. As we shall demonstrate it
is appropriate to scale ψ with δ; this motivates the following expansion:

ψ = δψ0 + δ2ψ1 + δ3ψ2 + · · · ,

Γ = Γ0 + δ2Γ2 + · · · ,
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where Γ0 = g2
m (gm is defined in (12)). Substituting into (1) we find the leading order solution

satisfies

LΓ0
ψ0 = 0, (22)

together with periodic boundary conditions on [0, 2π]. Since Γ0 = g2
m is an eigenvalue of (22)

there is a nontrivial periodic solution, namely

ψ0 = Ceims C ∈ C,

At O(δ2) we find an equation for ψ1

LΓ0
ψ1 = −D′

1 (ψ′

0 − iAψ0) , (23)

together with periodic boundary conditions on [0, 2π]. Although the problem for ψ1 is an
inhomogenous version of the eigenvalue problem for ψ0, the inhomogeneity is such that we
can find a periodic solution for ψ1; this is

ψ1 = Ceims

(

∞
∑

n=1

βn

n2 − 4g2
m

(

2g2
m cos(ns) − ingm sin(ns)

)

+

∞
∑

n=2

αn

n2 − 4g2
m

(

2g2
m sin(ns) + ingm cos(ns)

)

)

+Rψ0,

where R is an arbitrary constant. Proceeding to O(δ3) we find the following equation for ψ2:

LΓ0
ψ2 = H(s) = D1D

′

1 (ψ′

0 − iAψ0) + Γ0|ψ0|
2ψ0 −D′

1 (ψ′

1 − iAψ1) − Γ2ψ0, (24)

together with periodic boundary conditions on [0, 2π]. This is, once again, an inhomogeneous
version of the eigenvalue problem for ψ0 and, in order for it to have a periodic solution, we
require that the right-hand side satisfy the solvability condition

∫ 2π

0

H(s)ψ0
∗ds = 0.

Applying this condition to (24) gives rise to the following relation between C and Γ2:

C = 0 or Γ2 = g2
m

(

|C|2 −
β2

1

2(1 − 4g2
m)

−

∞
∑

n=2

n2(α2
n + β2

n)

2(n2 − 4g2
m)

)

. (25)

Providing g2
m 6= 1/4 the qualitative features of the bifurcation remain unchanged from

those of the uniform ring (see figure 1a). Quantitatively one can see that the effect of the
non-uniformity is to slightly decrease the value of Γ at which the bifurcation occurs (i.e at
which C = 0), although notably this critical value of Γ still has minimum value zero attained
when gm = m− A = 0. Perhaps the most interesting feature of equation (25) is that where
β1 6= 0 there is a singularity of C at the points gm = m−A = ±1/2. This is associated with
the breakdown of the expansion around these points.
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4.2 Transition between superconducting states with different wind-

ing numbers

We now procced to examine the effect of small variations in the thickness of the wire upon the
transition between superconducting states with different winding numbers (these transitions
are represented by dotted and dashed lines in the phase diagram plotted in figure 2). As in
§4.1 above we need to identify the size of the perturbation to the uniform solution ψ = γeims

at which effects resulting from variations in the thickness of the wire are of the same order
as those resulting from the proximity of the bifurcation. It turns out that the appropriate
scaling for the perturbation of ψ is δ1/3; this motivates the following expansion:

ψ = ψ0 + δ1/3ψ1 + δ2/3ψ2 + δψ3 + · · · ,

Γ = Γ0 + δ2/3Γ2 + δΓ3 + · · · .

where

ψ0 = γ0e
ims, γ0 =

(

1 −
2g2

m

6g2
m − 1

)1/2

, Γ0 = 3g2
m −

1

2
. (26)

Substituting the above into equation (1) we retrieve the same equations at first and second
order (i.e O(δ1/3) and O(δ2/3)) for ψ1 and ψ2 as we did in §3.3, namely (11) and (13). Upto
the constants C and ν the solutions of these equations are the same as those in §3.3. However,
since variation in the thickness of the wire is associated with a loss of symmetry, we can no
longer expect the phase ν of ψ1 to remain completely arbitrary. It is thus more convenient
for our present purposes to write ψ1 and ψ2 in the form

ψ1 = Ceims (2igm sin(s) − cos(s)) + Eeims (2igm cos(s) + sin(s)) ,

ψ2 = γ0e
ims
(

(C2 − E2)(iM2 sin(2s) +M1 cos(2s)) + 2CE(iM2 cos(2s) −M1 sin(2s))

+h1 + h2(C
2 + E2)

)

,

where C and E are real constants still to be determined and M1, M2, h1 and h2 are as
defined in §3.3. Proceeding to O(δ) we find the following inhomogenous equation for ψ3:

L̂Γ0
ψ3 =

[

Γ0(|ψ1|
2ψ1 + 2ψ0ψ1ψ2

∗ + 2ψ0ψ2ψ1
∗ + 2ψ1ψ2ψ0

∗)+

Γ2((2|ψ0|
2 − 1)ψ1 + ψ0ψ0ψ1

∗) − Γ3(1 − |ψ0|
2)ψ0 −D′

1(ψ
′

0 − iAψ0)
]

. (27)

together with periodic boundary conditions on [0, 2π]. In order to find a solution for ψ3 we
require the right hand side of (27) to satisfy the solvability condition (15). Applying this
condition results in two coupled relations for C and E which are independent of αn, βn for
n ≥ 2 ,

(C3 + E2C)(72g4
m + 6g2

m − 3) = 4β1

√

4g2
m − 1

6g2
m − 1

+ 4Γ2C,

(E3 + C2E)(72g4
m + 6g2

m − 3) = 4Γ2E.
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It is straightforward to show that E = 0 and thus that

C3(18g2
m − 3)(4g2

m + 1) − 4Γ2C = 4β1

√

4g2
m − 1

6g2
m − 1

.

The presence of the term on the right hand side of this equation, for β1 6= 0, is enough to
cause a qualitative change in the dependence of C on Γ2 from that found in the uniform
ring. Without loss of generality where β1 is non-zero we can set it equal to 1. Having made
this simplification we plot C versus Γ2, for two values of gm, in figure 3. In accordance
with the remark made in §3.4 we can infer the stability of the bifurcation branches from our
knowledge of the stability of the solution for large |Γ2| (see §3.1).

We can use the results obtained above to describe the transition from one winding number
to an adjacent winding number in a slightly non-uniform ring. One can see that as Γ
approaches the critical value 3(m − A)2 − 1/2 from above the perturbation to the solution
ψ = γeims, caused by the non-uniformity, grows from size O(δ) to O(δ1/3) until a certain
value of Γ is reached, of O(δ2/3) greater than 3(m − A)2 − 1/2, at which there is a fold in
the bifurcation diagram (see figure 3). Once this point has been reached the system jumps
to a solution with winding number m− 1 or m+ 1. Thus, despite the qualitative difference
in the relation between C and Γ2, the physical behaviour of the system is little altered from
that of the symmetric ring.

It is also of note that as g2
m → 1/4 so γ → 0 and the expansion breaks down.

4.3 Transitions close to the critical point

In §4.1 and §4.2 above we examined the behaviour of the slightly non-uniform wire in the
vicinity of the normal-superconducting transition line and the transition lines between states
with different winding numbers. However we were not able to resolve about the critical

points gm = (m − A)2 = 1/4, Γ = 1/4 where the two sorts of transition line intersect.2 In
the following we examine the behaviour of solutions to (1) around the general critical point
(Γ, A) = (1/4, m + 1/2). We investigate a region about this point of a size such that the
effect of a typical deviation of (Γ, A) from (1/4, m+ 1/2) on ψ is comparable with the effect
of an O(δ) perturbation in the thickness of the wire where, as above, we choose δ such that
β1 = 1. The appropriate scale for the deviation in (Γ, A) about the critical point is O(δ) and
we thus expand as follows:

ψ = δ1/2ψ0 + δ3/2ψ2 + · · · ,

A = (m + 1/2) + δA2 + · · · ,

Γ =
1

4
+ δΓ2 + · · · ,

2In figure 2 the critical points are represented by the intersection of dotted and dashed lines with the

solid curve.
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Figure 3: Bifurcation from a solution with winding number m for a ring with small variations
in thickness; the plots are of C versus Γ2 with A held constant. In (a) gm = m− A = 0.65
and in (b) gm = m− A = 0.85.

Substituting into (1) we find an equation for ψ0 at O(δ)

L̃1/4ψ0 = ψ0
′′ − 2i(m+ 1/2)ψ0

′ − (m + 1/2)2ψ0 +
1

4
ψ0 = 0, (28)

together with periodic boundary conditions on [0, 2π]. Here the operator L̃Γ is equivalent to
LΓ (see equation (5)) where we set A = m + 1/2.

The reason for the singular behaviour of the system about the critical point becomes
apparent when we search for solutions to (28); we find that Γ = 1/4 is a repeated eigenvalue
of the problem associated with the doubly degenerate eigensolution

ψ0 = Reims + Uei(m+1)s U,R ∈ C.

Procceding to O(δ3/2) we find the following equation for ψ2:

L̃1/4ψ2 = H(s),

H(s) = (2iA2 −D′

1) (ψ0
′ − i(m+ 1/2)ψ0) +

1

4
|ψ0|

2ψ0 − Γ2ψ0.

together with periodic boundary conditions on [0, 2π]. In order that this have solution H(s)
must satisfy the solvability conditions

∫ 2π

0

e−imsH(s)ds = 0

∫ 2π

0

e−i(m+1)sH(s)ds = 0.
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These conditions gives rise to the following relations:

R
(

4(A2 − Γ2) + (|R|2 + 2|U |2)
)

= U, (29)

U
(

−4(A2 + Γ2) + (|U |2 + 2|R|2)
)

= R. (30)

It is clear that R and U must have the same argument. Matching to the other regions,
in which we assume that the coefficients multiplying eims are real, one can see that R and
U must also be real. Even after making this simplification it is still tedious to search for
solutions to (29)-(30). In order to transform these equations into a more tracteable form we
introduce new variables η and ρ such that

R = ρ cos η U = ρ sin η.

Substituting the above into equations (29) and (30) and performing some manipulations
leads to the following decoupled relations for η and ρ:

either ρ = 0 (31)

or















cos 2η =
6A2 sin 2η

2Γ2 sin 2η − 1

ρ2 =
2

3

(

4Γ2 +
1

sin 2η

)

.
(32)

These equations are relatively straightforward to solve numerically and in figure 4 we show
solutions to (29) and (30), obtained in this manner, for various values of Γ2. The solutions
plotted are not complete. In particular, since equations (29)-(30) are invariant under the
transformation (R,U) → (−R,−U), solutions occur in pairs, and we plot only one of every
pair. We have also ommited the zero solution (R,U) = (0, 0) from some of the plots.

The reader should observe how the dependence of (R,U) on A2 changes as Γ2 increases.
For sufficiently small Γ2 (figure 4(a)) there is a region centred on A2 = 0 where the only
solution is the zero solution. Beyond Γ2 = −1/4 this region dissapears such that for all values
of A2 a non-zero solution pair exists. As Γ2 is increased still further the curves representing
the original solution pairs R = R(A2) and U = U(A2) develop a fold and, for some values of
A2, another solution pair appears. It is possible to find formulae which give the positions, in
the (Γ2, A2) plane, of (I) the boundary of the normal region in which only the zero solution
exists and (II) the fold in the solution surface. We calculate the former by linearising (29)
and (30) about (R,U) = (0, 0) and looking for bifurcations from the zero solution. These
occur along the lines

Γ2 = −

(

A2
2 +

1

16

)1/2

and Γ2 =

(

A2
2 +

1

16

)1/2

.

The normal region is bounded by the first of these two lines and lying in

Γ2 < −

(

A2
2 +

1

16

)1/2

.
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We look for the fold in the solution surface by searching for infinities of ∂η/∂A2. These occur
for values of η satisfying

sin 2η =

(

1

2Γ2

)1/3

and cos 2η =

(

3A2

Γ2

)1/3

. (33)

The fold thus lies along a curve in the (Γ2, A2) plane satisfying

(

1

2Γ2

)2/3

+

(

3A2

Γ2

)2/3

= 1. (34)

This curve is plotted, along with the boundary of the normal region, in figure 5. The dashed
and dotted lines represent the fold and the solid line the boundary of the normal region.

4.3.1 Weakly nonlinear stability analysis.

We need now to investigate the stability of the large number of solutions to equation (1) that
exist in the vicinity of the critical point. A linear stability analysis about the normal state
reveals that all single wavenumber perturbations to the solution ψ = 0 decay exponentially
in time with the exception of the m′th and (m + 1)′th modes which have zero growth rate
at leading order. This motivates us to examine the growth rate of these modes by looking
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for solutions to the time dependent model (2) and (4) of the form

ψ = δ1/2
(

R(τ)eims + U(τ)ei(m+1)s
)

+ δ3/2ψ2 + · · · ,

A = (m + 1/2) + δA2 + · · · ,

Γ =
1

4
+ δΓ2 + · · · ,

Φ = O(δ2),

where τ is the long time variable given by τ = δt. Adopting an approach similar to that in
§4.3 above we find the following equations for R′(τ) and U ′(τ):

dR

dτ
+R

(

4(A2 − Γ2) + (|R|2 + 2|U |2)
)

= U, (35)

dU

dτ
+ U

(

−4(A2 + Γ2) + (|U |2 + 2|R|2)
)

= R. (36)

We can ascertain the stability of solutions to the steady problem (29) and (30) for any given
(Γ2, A2) by plotting a phase diagram. Alternatively we can attempt to make a more general
statement regarding the stability of the solution manifold by linearising equations (35)-(36)
about the steady solution (R,U) = (ρ sin η, ρ cos η)

R = ρ sin η + εeλτr1,

U = ρ cos η + εeλτu1,

where ε � 1. Substituting the above into (35)-(36) and proceeding to O(ε) one finds that
(r1, u1)

T is an eigenvector of the matrix

(

−(ρ2(3 sin2 η + 2 cos2 η) + 4(A2 − Γ2)) 1 − 2ρ2 sin 2η
1 − 2ρ2 sin 2η 4(A2 + Γ2) − ρ2(3 cos2 η + 2 sin2 η)

)

with corresponding eigenvalue λ. This eigenvalue satisfies the quadratic equation

aλ2 + bλ + c = 0, (37)

whose coefficients are determined in the usual manner. After considerable manipulation, in
which we eliminate ρ and cos 2η by reference to equation (32), we find that these may be
written in the form

a = 3 sin2 2η b = 2 sin2 2η

(

8Γ2 +
5

sin 2η

)

c = 8 sin 2η

(

Γ2 +
1

sin 2η

)

(

1 − 2Γ2 sin3 2η
)

.
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In order for a solution to be stable we require that both solutions to equation (37) have
negative real part. Since a > 0 this amounts to requiring both b and c be positive. Referring
to equation (32b) we see that the physically relevant solutions are those for which

4Γ2 +
1

sin 2η
> 0. (38)

For Γ2 > 0 such solutions are stable (i.e b > 0 and c > 0) iff

0 < sin 2η <

(

1

2Γ2

)1/3

.

For Γ2 < 0 all solutions which satisfy the condition (38) are stable.

Remark It is clear form equation (32a) that sin 2η = 0 is never a solution. It follow that
a sheet of the solution manifold may only change from unstable to stable or vice-versa along
lines on which sin 2η = (1/(2Γ2))

1/3 and Γ2 > 0. It is straightforward to show that solutions
of (32a) can only adopt this value of sin 2η at positions in the (Γ2, A2) plane satisfying (34)
and furthermore that cos 2η = (3A2/Γ2)

1/3. Referring back to equation (33) we can see
that the switch in stability occurs along a fold in the sheet. Hence the sheet that bifur-
cates from the normal solution along the line Γ2 = −(A2

2 + 1/16)1/2 is always stable except
where it has folded over on itself (this sheet is represented by the solid curve in figure 4).
The other non-zero sheet to the solution manifold bifurcates from the zero solution along
Γ2 = (A2

2 + 1/16)1/2 and is always unstable R and U take opposite signs along this sheet,
corresponding to negative vales of sin 2η (this sheet is represented by the dashed line in figure
4c).

We can investigate the stability of the normal solution (R,U) = (0, 0) by adopting
a similar approach to that taken above. We linearise equations (35)-(36) about the zero
solution by substitution of

R = εeλτr1, U = εeλτu1, ε� 1.

At O(ε) we find an eigenvalue problem for (r1, u1)
T with corresponding eigenvector λ. De-

termining λ in the usual manner we find

λ = 4

(

Γ2 ±

(

A2
2 +

1

16

)1/2
)

.

The normal solution is therefore stable only for

Γ2 < −

(

A2
2 +

1

16

)1/2

.
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Physical interpretation of the solutions. We have investigated the solution structure,
and stability, of a loop with slightly non-uniform thickness in the vicinity of a critical point.
We can interpret the results physically with the aid of figure 5. To the left of the solid line the
only solution is ψ = 0 corresponding to the normal state. As this line is crossed the normal
solution loses stability and a stable superconducting solution bifurcates. This solution has
winding number m+ 1 for A2 > 0 and winding number m for A2 < 0. A completely smooth
transition between winding numbers occurs if the system traverses the phase plane, from
top to bottom or vice-versa, without crossing the dotted or dashed lines (see figure 4(b)).
If however a transversal of the phase plane is made from bottom to top which crosses the
dashed line the transition between winding number occurs suddenly; as the dashed line is
crossed the winding number m solution loses stability and the system evolves to the winding
number m + 1 solution. The reverse transition, from winding number m + 1 to m, occurs
along the dotted line.

5 Conclusion

In this work we have investigated the bifurcations of a loop of superconducting wire between
different states. For a wire of uniform thickness we found, in agreement of the results of
Berger and Rubinstein [1] and Gorff and Parks [3], a supercritical bifurcation between the
normal state and a superconducting state whose topological winding number is determined
by the magnetic field. We also found a series of subcritical bifurcations occuring between
superconducting states with different winding numbers. Investigation of the stability of
these states led us to infer that the system exhibits hysteresis as a transition is made from
one winding number to an adjacent one and back again. The lines representing these two
different types of transition in state space (see figure 2) intersect at a series of points (the
critical points).

In the latter portion of this paper we investigated the effect that small nonuniformities
in the thickness of the wire loop have upon the bifurcation structure of the system. We
found that a supercritical bifurcation still occurs between the normal and superconducting
states; the effect of the nonuniformity is only to increase the temperature (lower Γ) at which
it occurs. The transition between superconducting states of different winding numbers no
longer occurs at a subcritical bifurcation, but on a fold (see figure 3). The most marked
change, though, is in the vicinity of a critical point. Here variations in the thickness cause the
folded region of the solution surface to separate from the normal-superconducting bifurcation.
Thus in a narrow region close to this bifurcation the transition between superconducting
states with different winding numbers is completely smooth.
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dation research fellowship.
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