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A b s t r a c t - - T h e  mixed boundary condition for the Ginzburg Landau model of superconductivity is 
considered in thin films. A simplified model is derived in the asymptotic limit of very small thickness. 
We also show that under certain conditions there is no nucleation of superconductivity at all. (~) 2000 
Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

T h e  G i n z b u r g  L a n d a u  (GL) model  for supe rconduc t iv i t y  concerns  two unknown fields, see [1]. A 

complex  o rde r  p a r a m e t e r  u and  the  magne t i c  vec tor  po ten t i a l  A. We consider  the  GL mode l  in 

cy l indr ica l  doma ins  of  the  form 

f~ = { z ,  y,  z ] ( z ,  y)  ~ f~o, - I  < z < I}, (I) 

where  f~o is a b o u n d e d  two-d imens iona l  domain .  The  lengthsca le  of the  p rob lem is no rmal i zed  

by  R = (f~0/2cr) 1/2. 

T h e  energy  func t iona l  is t hen  wr i t t en  as [2] 

G(u, A) = ~ ([ul 2 - 1) 2 + I(V - iA) u[ 2 + n2;~-1 3 I v  × A - H~I 2 . (2) 

Here  He is the  ex te rna l  magne t i c  field, the  p a r a m e t e r  A is re la ted  to  the  t e m p e r a t u r e  T t h r o u g h  

R 2 T¢ - T  

- ~02 T~ ' (3) 

t~ is a t e m p e r a t u r e  i ndependen t  m a t e r i a l  pa rame te r ,  Tc is the  cr i t ica l  t e m p e r a t u r e  in t he  absence  

of m a g n e t i c  fields, and  ~0 is a ma te r i a l  pa r ame te r .  E q u a t i n g  the  first va r i a t ion  to  zero gives rise 
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to the associated Euler Lagrange equations 

- -  Au + i~7. Au + iA Vu + IAl~u + Au (lul 2 - 1) = 0, z • ~ ,  (4) 

~7 x (V x A - He) = a-2A~(fi(~7 - iA)u) ln ,  x • R 3, (5) 

(~7 - iA)u  . v = O, x • 012. (6) 

In [3], de Gennes has proposed to modify (6) when the superconducting region is adjacent to a 
metal. His new condition takes the form 

(V - iA)u . v = - ~ u ,  (7) 

where/7  is a positive parameter and v is the normal to the boundary. Equivalently, one can 
modify the GL functional by adding a surface energy term fo~ ~IuI 2 to G(u, A). We shall refer to 
the new functional as the Modified Ginzburg Landau (MGL) functional, and to the parameter /7  
as the de Gennes coefficient. The mutual interaction between the superconducting material and 
its surrounding normal material is termed the proximity effect. 

Considerable experimental activity in superconductivity concerns materials with a small lateral 
dimension. It  is, therefore, useful to compute the asymptotics of the MGL functional as the 
thickness tends to zero. Such limits provide simpler equations for the equilibrium states and 
prevent the need to define a very fine mesh in the process of seeking a numerical solution. Limits 
of this kind have been derived [4,5] for GL functionals of type (2). We shall derive the associated 
asymptotic limit for the MGL model. For this purpose, we set l = e, where e is a small positive 
parameter,  and denote the superconducting domain by ~ .  

We expect the energy in the thin film to be of O(e). We thus rewrite a scaled version of the 
MGL in the form 

Oe(u ,A)=~-~  <7(lu12-1)2+l(V-iA)u12+~ I V x A - H e l 2 + 7  a. 

Notice that  we implicitly assume the canonical scaling ~ = eb. It is convenient to split the 
boundary of 12~ into 

3 

0 ~  = U Di, O1 = ~0 x [-e], D2 = ~0 x [e], 93 = 0~20 x [-e,  e]. (9) 
i = l  

To characterize the minimizers (u¢, A~) of G~, we introduce the functional 

F(v) = o g (Iv12 - 1)2 + blvl: + I(V2 - iAe) vl 2, (10) 

where Ae is the vector potential associated with the applied field, i.e., ~7 x Ae = He, and W2 
is the two-dimensional gradient operator. The natural setting to formulate a convergence result 
is to associate with a function u, defined over ~e, its lateral average f = (1/2c) f~-e u(x, y, z) dz. 
The natural  function space for minimizing F is the Sobolev space Hl (~0) .  

THEOREM. Let (ue, A~) be a sequence of minimizers orgy.  Then it is possible to extract from it 
subsequences (fe,Ae) such that fie converges in Hl(~o)  to a minimizer of F(v) ,  and Ae converges 
in H I ( R  3) to Ae. 

PROOF. Consider the functional 

G I ( u , A ) = ~ - ~  o g ( l u l 2 - 1 ) 2 + b l u l 2 + l ( V - i A l u l 2 + ~  I V × A - H a l  2. (11) 

Clearly G~ - Ge = bRe, where Re = (l /2e) fn~ lul 2 - ~-'~(1/2) fD~ I ul2" 
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The statement of the theorem holds for the minimizers of G~ (u, A) by the same arguments as 
in [4,5]. Therefore, it remains to show that  G~ is a small perturbation of G, i.e., that  lim~_+0 Re(u~) 
= 0 .  

A minimizer u~ of Ge satisfies the maximum principle [u~ I _< 1. Therefore, fD3 lull  2 "-=- ce.  
Define the restriction of u~ to D~, i = 1, 2 by u~,~. We can write 

2 

= X :  ÷ 
1 • 

Since all terms in a~ are positive, the inequality 

implies 

In particular, 

G~(uE, A~) <_ GE(1, Ae) _< C 

~ I(V -iA~)u~l 2 <_ 2Ce. 

< 2Ce. (13) 

Combining (12) and (13), we obtain the desired estimate for Re and complete the proof. 

REMARK. It is easy to generalize the theorem to include the case in which the de Gennes coeffi- 
cient b and the domain thickness l vary with x and y. 

When the temperature (or the magnetic field) is sufficiently high, the global minimizer is given 
by the pair (u,A) = (O, Ae), where V x Ae = He. This solution is called the normal state. A 
phase transition occurs when this state bifurcates into a stable nontrivial solution for the order 
parameter. Returning to our original formulation (4)-(6), the bifurcation equation for the MGL 
is given by the spectral problem for the first eigenvalue Ap for the operator - ( V  - iAe) 2, i.e., 

(V - iAe)2¢ = -Ap~b, x E a, (14) 

together with the boundary condition 

( v  - iAe)~" u = - ~ ¢ ,  z ~ 0 n .  (15)  

The eigenvalue Ap is determined by the applied field He through the potential A e. The transition 
temperature T is then determined by (3). It is clear that  the effect of the de Gennes coefficient 
is to increase ),p, i.e., to reduce T. One might think that  if ¢/is above a certain critical value fl0, 
the shift in Ap will push the transition temperature below absolute zero, and therefore, there will 
be no phase transition at all. 

We note, however, that  Ap(CJ) < A0, where A0 is the first eigenvalue for (14) with a homogeneous 
Dirichlet boundary condition. In addition, (g/R 2 is typically very small. Thus, the effect of 
shifting Ap(¢/) is not significant. The situation is different in a thin film. Assume that  the 
nondimensional thickness e is of order {o/R. Then if ¢/= O(1), we get )~p = O(e-2). Thus, if ~ is 
larger then some O(1) critical value, the transition temperature will be too small, and therefore, 
the normal state will not lose stability and no phase transition will occur. 
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