
LINE DISCLINATION DYNAMICS IN UNIAXIAL NEMATIC
LIQUID CRYSTALS

by G. RICHARDSON†

(Department of Mathematics, Technion, Haifa 32000, Israel)

[Received 12 December 1997. Revises 16 November 1998 and 20 May 1999]

Summary
We analyse the motion of a line disclination in a nematic liquid crystal using the methods of
formal asymptotics in the limit as the thickness of its core tends to zero. The disclination
appears as a singularity in the field equations for the director and the fluid velocity. Its motion
is governed by a law obtained from a local analysis about its core.

1. Introduction

So-callednematic liquid crystals are comprised of rigid rod-like molecules with rotational symmetry
about their long axis and reflectional symmetry about the plane made by their two short axes. At
high temperatures nematics are isotropic and behave in every way much like a conventional liquid.
However as the temperature of the substance is lowered it undergoes a phase transition that takes it
from the isotropic state, in which there is no ordering between molecules, to thenematic state in
which the individual molecules show a tendency to align along a common direction. The alignment
of the molecules in the nematic state results in optical anisotropy, which is readily detected, and
may also result in markedly anisotropic flow properties.

Using the concept of a directorn, which is a vector that gives, in some sense, the average direction
of the nematic molecules, Frank and Oseen (1, 2) modelled the static properties of the nematic state.
The resulting theory does not distinguish between−n andn since the ends of a particular molecule
are indistinguishable. The Frank–Oseen theory was subsequently generalized, to include time-
dependence, by Ericksen and Leslie (3, 4, 5, 6) resulting in a model which predicts the evolution of
the director fieldn and the fluid flow fieldv.

While both these theories have been rather successful at modelling many of the phenomena
exhibited by nematics they have not been able to satisfactorily account for singularities in the
director field, termeddisclinations, which are commonly observed in such materials (see de Gennes
(7)). Such disclinations occur either at a point, from which the director radiates, or along a curve.
In the latter case, as a circuit is made about the disclination curve the director field rotates through
an integer multiple ofπ , and thereby preserves, in the sense that−n andn are indistinguishable,
the single-valuedness of the director off the curve but leads to a singularity on the curve. Viewed
in terms of the Frank–Oseen and the Ericksen–Leslie models the disclination line has not only a
singular director field but also infinite energy. In order to resolve this paradox Ericksen (8) has
noted that the degree of alignment between the rod-like nematic molecules may vary spatially (even
at constant temperature) and that the molecules should be totally unaligned (in the isotropic state)
on the disclination curve. Modelling this variable alignment requires the introduction of an order
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parameter S which gives a statistical measure of the orientation of the molecules and is such that if
S = 1 the molecules are all perfectly aligned parallel to the director n; if S = 0 there is no ordering
of the molecules and the material is in the isotropic state; and if S = − 1

2 all the molecules are
aligned in a plane perpendicular to n. Another model along similar lines has been proposed by de
Gennes (7, 9) but requires the introduction of a second-order parameter. Given that no compelling
evidence has been presented to favour either model over the other we opt for the simpler Ericksen
model.

The aim of this paper is to use the methods of formal asymptotics to calculate the velocity of
a rectilinear disclination line in a physically relevant regime in which the ratio of the width of the
disclination core to all other lengthscales in the problem, ε, is vanishingly small. We base our
calculation on the very general model given in (8) making some additional assumptions about the
precise nature of the liquid crystal. The calculation is thus not entirely general and we would expect
the result we obtain to be slightly modified for materials with properties other than those specified.
Our result bears some similarity to a particle-field model proposed by Denniston (10) to describe
nematic disclination dynamics. We start in section 2 by writing down the Ericksen model (8) and
then use this to repeat calculations made by Pismen and Rubinstein (11) and Mottram and Hogan
(12) of the core structure of a static disclination. In section 3 we proceed to derive the law of motion
for a disclination, a calculation that bears some similarity to the derivation of the law of motion for
a superconducting vortex (see Peres and Rubinstein (13) and Chapman and Richardson (14)) and to
the law for defects in a complex scalar field subject to the nonlinear heat equation (see Neu (15)),
but which also has some novel features brought about by the interaction of the disclination with
the fluid velocity field v. In this context we note the work of Pismen and Rubinstein (11) who also
derive the disclination law of motion from (8) but neglect the fluid velocity field and so arrive at
a result substantively different from ours. In section 4 we illustrate the law of motion with some
examples and finally in section 5 we draw our conclusions.

2. The model

The Ericksen model (8) describes the evolution of the director n, the scalar-order parameter S and
the fluid velocity field v within a nematic liquid crystal. In order to write down equations for
these quantities, based on this model, we require knowledge of the Helmholtz free-energy density
φ(n, ∇n, S, ∇S, T ) of the material. This scalar quantity depends on the temperature T of the
material and is such that its integral over the domain of the liquid crystal is minimized when the
system is in stable equilibrium.

In writing down the equations we shall make some simplifications consistent with the material
being sufficiently weakly nematic that, to leading order, the fluid flow is independent of the director
field. In other words we look at a liquid crystal for which the equilibrium value of S is small enough
that the fluid-flow properties are only weakly anisotropic. In terms of the original paper (8) this is
equivalent to setting the anisotropic viscosities α1 = α2 = α3 = α5 = α6 = 0 while retaining the
isotropic fluid viscosity α4/2. It follows that γ1 = γ2 = 0. We shall also assume that the anisotropic
relaxation parameter for the order parameter is negligible and set β3 = 0, from which it can be
inferred that β1 = 0.

Having made these simplifications Ericksen’s model reduces to an equation for the momentum
of the fluid:

ρ
dvi

dt
= σi j, j . (1)
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Here the time derivative is the convective derivative

d

dt
= ∂

∂t
+ (v · ∇),

and the stress is defined as follows:

σi j = − p̂δi j − ∂φ

∂nk, j
nk,i − S,i

∂φ

∂S, j
+ α4

2

(
vi, j + v j,i

)
. (2)

This couples to the incompressibility condition

v j, j = 0, (3)

an equation describing the evolution of the order parameter

∂φ

∂S
− ∂

∂x j

(
∂φ

∂S, j

)
+ β2

d S

dt
= 0 (4)

(here β2 is a positive relaxation parameter for S), and to the two equations describing the evolution
of the director field

|n| = 1, (5)

πππ ∧ n = 0, (6)

where

πi = ∂

∂x j

(
∂φ

∂ni, j

)
− ∂φ

∂ni
. (7)

Introducing the modified pressure

p = p̂ + φ

and using the relation n j n j,i = 0 we rewrite equation (1) as

ρ
dv
dt

= −∇ p − β2∇S
d S

dt
+ α4

2
∇2v. (8)

It remains to specify the Helmholtz free-energy density and, in order to give the reader some idea
why the various terms are included, we split this up into three parts,

φ(n, ∇n, S, ∇S, T ) = φ1(S, T ) + φ2(S, n, ∇n, T ) + φ3(∇S, T ). (9)

The first term φ1 gives the free energy for a bulk transition, that is to say, one for which S = S(T )

and n = const. Following de Gennes (7) we write this as a quartic in S:

φ1(S, T ) = Q(T )S2

(
S2

4
− (S∗(T ) + S(T ))

S

3
+ S∗(T )S(T )

2

)
, S∗(T ) > S(T ), (10)
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this being the simplest functional form that can be used to model a first-order phase transition. The
parameters S∗ and S are, respectively, the values of S at which the energy φ1 has a local minimum
and a local maximum. There is also another local minimum at S = 0, corresponding to the isotropic
state. The values of φ1 at the two local minima determine whether the isotropic state S = 0 or the
nematic state S = S∗ is preferred (that is, is a global minimizer of the energy).

The second term in the energy φ2 gives the distortional energy. It is required that this decreases to
zero at S = 0 and that it be consistent with the distortional energy used in the Frank–Oseen theory.
We employ the so-called one constant approximation of the Frank–Oseen energy (see deGennes (7))
and a natural choice for the distortional energy is thus

φ2(S, n, ∇n, T ) = 1
2 K (T )S2ni, j ni, j ,

where K (T ) is a temperature-dependent function of proportionality which gives a measure of the
contribution of gradients in the director field to the energy.

The last term in the energy φ3 serves to penalize gradients in the order parameter

φ3(∇S, T ) = 1
2 D(T )|∇S|2,

the function of proportionality D(T ) giving a measure of the contribution of gradients in S to the
energy.

We now make the isothermal non-dimensionalization

S = S∗S′, x = Lx′, v = Uv′,

µ = α4

2
, t = Lt ′

U
, p = µU p′

L
,

where L is a typical lengthscale of the problem (usually the size of the apparatus or a typical inter-
disclination distance) and U is the (as yet undetermined) typical fluid velocity of the problem.†

Then, on substitution of the non-dimensionalized Helmholtz free-energy density (9) into the non-
dimensionalized versions of the governing equations (3) to (8), we find the following dimensionless
system of equations describing the evolutionary behaviour of a nematic liquid crystal:

|n| = 1, (11)

πππ ′ = 2S′(∇′S′.∇′)n + S′2∇′2n, (12)

πππ ′ ∧ n = 0, (13)

−ε̃β̃2
d S′

dt ′
+ D̃∇′2S′ = 1

ε2
S′(S′ − 1)(S′ − b) + S′|∇′n|2, (14)

Re
dv′

dt ′
= −∇′ p′ − β̃2∇′S′ d S′

dt ′
+ ∇′2v′, (15)

∇ · v′ = 0, (16)

† We shall show that the fluid velocity scale depends upon the the velocity of the disclination which itself is dependent on
local gradients in the director field.
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with corresponding dimensionless parameters, which include the Reynolds number Re and the
Ericksen number ε̃, defined as follows:

Re = ρLU

µ
, ε̃ = µLU

K S∗2
, D̃ = D

K
,

ε = 1

L S∗

(
K

Q

)1/2

, β̃2 = β2S∗2

µ
, b = S

S∗ .

Henceforth the primed superscript, denoting the dimensionless variable, is dropped.
It is of interest to note the similarity between (11) to (16) and the time-dependent Ginzburg–

Landau (TDGL) equations of superconductivity (see (14, 16)). This is most marked when the
director field is constrained to lie in the (x, y)-plane (say) and so may be written as n =
(cos ψ, sin ψ, 0). It is not surprising therefore that there should be some similarity between the
derivation of the law of motion for a line defect (vortex) in a superconductor (13, 14) and that for
a line defect (disclination) in a nematic liquid crystal. However, there is an important difference
between these two sets of equations, namely that whereas the time derivatives in the TDGL
equations are partial derivatives those in (11) to (16) are convective derivatives. Thus while there
is a special frame of reference for the TDGL equations (being the frame of the superconducting
medium), equations (11) to (16) are invariant under rigid-body translation. This causes some notable
differences between the calculation of superconducting vortex and nematic disclination velocities
and makes the latter calculation, perhaps, rather more subtle.

2.1 Estimating the size of the dimensionless parameters in the model

The dimensional parameters D, Q and β2 have not, to our knowledge, been measured for any
nematic liquid crystal. Despite this we can make sensible guesses as to the relative sizes of some of
the more important dimensionless parameters. It is known for instance that the core of a disclination
(that is the region in which the order parameter deviates significantly from S∗) is extremely small.
In his book Chandresekhar (17) quotes a figure of 10−6 cm. As we shall show in section 2.2, ε gives
a measure of the radius of the disclination core to the typical lengthscale L of the problem. Taking
an experimental lengthscale in the range L = 10−4 cm to 1 cm gives ε = 10−6to 10−2.

We can estimate sizes of the Ericksen and Reynolds number, up to the undetermined velocity
scaling U , using typical values of ρ, µ and K S∗2 (the elastic constant) taken from (7)

ρ = 1.0 g cm−3, µ = 0.25 g cm−1 sec−1, K S∗2 = 10−6 dyn. (17)

It is harder to say much about the parameters D̃ and β̃2. All we can say for certain is that if D̃
exceeds a certain O(1) size it leads to an unphysical infinite energy density (though not infinite
energy) along the disclination line (see section 2.2). Fortunately though, the method used to
calculate the disclination velocity is fairly robust with respect to the size of these parameters; the
only necessary requirement is that 0 < β̃2  1/ε.

2.2 An isolated disclination

Disclinations are characterized by a singularity in the director field along a line and a zero of the
order parameter S along the same line. The singularity is such that as a circuit is made about the
disclination line the director n rotates through an integer multiple of π (say N ). Although this does
not ensure the single-valuedness of n away from the disclination line it is consistent with n being
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indistinguishable from −n. We now find a disclination solution for equations (11) to (15) making
the solution ansatz

S = S(r),

n = cos
(

c + 1
2 Nθ

)
ex + sin

(
c + 1

2 Nθ
)

ey

= cos
((

1
2 N − 1

)
θ + c

)
er + sin

((
1
2 N − 1

)
θ + c

)
eθθθ ,

v = 0,

where N is an integer, r and θ are polar coordinates. We find that S satisfies

D̃
1

r

d

dr

(
r

d S

dr

)
= 1

ε2
S(S − 1)(S − b) + N 2S

4r2
(18)

and, in order that the Helmholtz free energy be finite, the solution must satisfy the boundary
conditions

S(0) = 0, (19)

d S/dr → 0 as r → ∞. (20)

Far from the origin S asymptotes to a constant with one of three possible values 0, b and 1. In
order to ascertain which of these possible values gives rise to a physically pertinent solution we
must briefly consider their stability. Any solution for which S → b as r → ∞ must be unstable
since S = b gives a maximum of the bulk energy φ1 (see equation (10)). The asymptotic behaviour
S → 0 as r → ∞ will be stable if φ1 has a global minimum for S = 0 but gives rise to a rather
dull solution S ≡ 0 corresponding to a uniform isotropic state. However, if S = 1 is the global
minimizer of φ1 one can expect to find stable disclination solutions with asymptotic behaviour

S → 1 as r → ∞. (21)

We rescale distance with ε|N |, the typical width of the disclination, such that r = ε|N |R. Under
such a rescaling the system (18), (19) and (21) becomes

�2

(
d2S

d R2
+ 1

R

d S

d R

)
= S(S − 1)(S − b) + S

4R2
, (22)

where � = D̃1/2/|N |. In order that this match to the outer solution and satisfy (19) and (21) we
require the boundary conditions

S(0) = t0, (23)

S → 1 as R → ∞. (24)

We have performed several numerical solutions of this problem, using a NAG routine, for different
values of � and b (see Fig. 1). A proof of the existence of a solution to a very similar problem,
describing the core structure of a superconducting vortex, has been given by Berger and Chen (18).
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Fig. 1 Solutions for the order parameter close to an isolated disclination. In (I)a (b, �) = (0.3, 0.5), (I)b
(b, �) = (0.3, 0.35), (II)a (b, �) = (0.5, 0.5), (II)b (b, �) = (0.5, 0.375), (II)c (b, �) = (0.5, 0.25)

REMARK. As R → 0 the solution of (18) has the asymptotic behaviour S ∼ k R1/(2�) (where
k is some constant). This leads to a singularity in the energy density at the origin if � > 1

2 .
The total energy of the disclination, though, remains bounded provided � is positive. There is
something inherently unsatisfactory in the infinite-energy-density scenario which leads us to suggest
that physically relevant values of � lie in the range � � 1

2 .

3. Motion of a rectilinear disclination

We shall consider a two-dimensional setup in which disclinations and boundaries lie parallel to the
z-axis and look for solutions to (11) to (16) which are independent of z and which have director
fields of the form

n = (cos ψ(x, y, t), sin ψ(x, y, t), 0).

We choose as our outer lengthscale L the lengthscale for typical separations between disclinations
and boundaries. This also is the lengthscale for typical variations in the director field.

Inner region. We define a local coordinate system (ς, θ) about one of the disclination cores

x − q(t) = ς cos θe1 + ς sin θe2, (25)

where e1 and e2 are conveniently chosen unit base vectors in the (x, y)-plane and q(t) is the position
of the disclination at time t . Inner coordinates are obtained by introducing the stretched variable R,
such that ς = ε|N |R. Provided that the velocity of the fluid relative to the disclination is not too
large (that is, ε̃β̃2  1/ε) the solution to (11) to (16), at leading order in the inner regions, is the
same as that for the isolated disclination since the convective time derivatives do not enter at this
order; thus we find the leading-order inner solution has the following form:

ψi = c + 1
2 Nθ + o(1),

Si = S(0)
i (R) + o(1),

vi = o(1/ε),
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where S(0)
i (R) satisfies (22) to (24) and c is a constant determined by matching to the outer solution.

Outer region. In the outer region, away from the disclination core, we cannot expect the leading-
order solution to retain cylindrical symmetry yet we require it to match to the inner region. We thus
expand in the outer region as follows:

ψo = ψ(0)
o + O(ε2),

So = 1 + O(ε2),

vo = o(1/(ε2ε̃β̃2)).

Substituting this expansion into the governing equations (11) to (15) yields the leading-order outer
equation

∇2ψ(0)
o = 0. (26)

Matching to the inner solution using Van Dyke’s matching principle (19) gives a boundary condition
on ψ

(0)
o

ψ(0)
o ∼ c + 1

2 Nθ as ς → 0. (27)

Given boundary conditions on the edge of the liquid-crystal domain and the positions and strength
of any other disclination we can solve exactly for ψ

(0)
o . This will enable us to match back to the inner

solution at next order and hence determine the disclination velocity. However, instead of solving for
ψ

(0)
o in some particular domain we seek to relate the next few terms in its expansion for small ς ,

ψ(0)
o = c + 1

2 Nθ + d1ς cos θ + d2ς sin θ + · · · , (28)

to the disclination velocity. We will thus arrive at a law of motion, relating the expansion of ψ
(0)
o

about the disclination to its velocity, which can be used to investigate the motion of disclinations
in arbitary two-dimensional geometries. In section 4 we illustrate its use by considering three
examples: (I) the interaction of two disclinations in an infinite medium; (II) the interaction of a
disclination with a parallel planar wall on which the natural boundary condition ∂ψ

(0)
o /∂n = 0 is

imposed and (III) the interaction of a disclination with a parallel planar wall on which the ‘strong
anchoring’ boundary condition ψ

(0)
o = const. is imposed.

In order to simplify the ensuing calculation we now set

d1 = 0, (29)

by making a judicious choice of the unit base vectors e1 and e2.

Inner expansion. Matching the asymptotic behaviour of ψ
(0)
o for small ς to ψi it becomes clear

how to proceed with the inner expansion:

Si = S(0)
i (R) + εS(1)

i + · · · ,
ψi = c + 1

2 Nθ + εNψ
(1)
i + · · · ,

vi = |N |v(0)
i + · · · ,

pi = 1

ε
p(0)

i + · · · .
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Substituting this expansion into the governing equations (11) to (15) and refering to the definition
of the inner coordinate system (25) we find the following relations for S(1)

i and ψ
(1)
i :

�2

(
1

R

∂

∂ R

(
R

∂S(1)
i

∂ R

)
+ 1

R2

∂2S(1)
i

∂θ2

)
− ε̃β̃2

(
v(0)

i · eR

)
S(0)

i

′ =
(

3S(0)
i

2 − 2(1 + b)S(0)
i + b + 1

4R2

)
S(1)

i + S(0)
i

R2

∂ψ
(1)
i

∂θ
, (30)

S(0)
i

2
(

1

R

∂

∂ R

(
R

∂ψ
(1)
i

∂ R

)
+ 1

R2

∂2ψ
(1)
i

∂θ2

)
+ S(0)

i

R2

∂S(1)
i

∂θ
+ 2S(0)

i S(0)
i

′ ∂ψ
(1)
i

∂ R
= 0, (31)

together with a relation for the leading-order velocity v(0)
i

∇4
i µ

(0)
i = β̃2

S(0)
i

′2

R2

∂2µ
(0)
i

∂θ2
(32)

in terms of the stream function µ
(0)
i defined by

v(0)
i = eR

1

R

∂µ
(0)
i

∂θ
− eθθθ

∂µ
(0)
i

∂ R
. (33)

Here we have made the reasonable assumption that Re = o(1/ε) which allows us to neglect
the inertial terms in the fluid-momentum equation at leading order. In order to match ψi to the
asymptotic behaviour of the outer solution (28), (29) we require ψ

(1)
i ∼ d2 R sin θ as R → ∞. With

this motivation we look for a solution to (30) to (33) of the form

ψ
(1)
i = m(R) sin θ,

S(1)
i = a(R) cos θ,

µ
(0)
i = g(R) sin θ.

The system of equations (30) to (33) then reduces to

�2
(

a′′ + a′

R
− a

R2

)
− ε̃β̃2

S(0)
i

′
g

R
=

a

(
3S(0)

i

2 − 2(1 + b)S(0)
i + b + 1

4R2

)
+ S(0)

i m

R2
, (34)

S(0)
i

2
(

m′′ + m′

R
− m

R2

)
− S(0)

i a

R2
+ 2S(0)

i S(0)
i

′
m′ = 0, (35)

1

R2

d

d R

(
R2g′′′ − 3g′ + 3g

R

)
= −β̃2

(S(0)
i

′
)2g

R2
. (36)

We now proceed to look for a solution to (36). In the limit R → 0, S(0)
i and g have the following
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asymptotic behaviour:

S(0)
i ∼ ks R1/(2�)

g ∼ G1(R−1 + O(R−1+1/�)) + G2(R log R + O(R1+1/� log R))

+G3(R + O(R1+1/�)) + G4(R3 + O(R3+1/�))


 as R → 0, (37)

and, if the fluid velocity vi is to remain finite at the origin, we require G1 = G2 = 0. For large R
the asymptotic behaviour is given by

S(0)
i ∼ 1 − 1

4(1 − b)R2
+ · · ·

g ∼ �1(R−1 + O(R−5)) + �2(R log R + O(R−3 log R))

+�3(R + O(R−3)) + �4(R3 + O(R−1))




as R → ∞. (38)

In order to match to the outer expansion we must set �4 = 0. It now remains to determine one more
of the the unspecified constants G3, G4, �1, �2 and �3 to complete the boundary-value problem for
g. We do this by obtaining a solvability condition on the system (34) to (36). Taking the derivative
with respect to R of (22), the equation for S(0)

i gives

�2

(
S(0)

i

′′′ + S(0)
i

′′

R
− S(0)

i

′

R2

)
= S(0)

i

′ (
3S(0)

i

2 − 2(1 + b)S(0)
i + b + 1

4R2

)
− S(0)

i

2R3
. (39)

Multiplying this by a R and subtracting the result from (34) multiplied by RS(0)
i

′
results in a relation

which may, after some manipulations which make use of (35) and (36), be written as an exact
differential. Integrating this between R = δ and R = λ we find

�2
[

R
(

a′S(0)
i

′ − aS(0)
i

′′)]λ

δ
+ ε̃

[
R2g′′′ − 3g′ + 3g

R

]λ

δ

= 1

2


mS(0)

i

2

R
+ S(0)

i

2
m′




λ

δ

. (40)

The idea now is to match ψ
(1)
i and S(1)

i to the outer solution, thereby obtaining the asymptotic
behaviour of a and m as R → ∞, and then find the solvability condition on (34) to (36) by taking
the limits λ → ∞ and δ → 0 in (40). In other words we use the Fredholm alternative to show that a
and m have solutions satisfying appropriate boundary data if and only if g has a certain asymptotic
behaviour at infinity. In order to do this we must first establish the possible asymptotic behaviours
of (35), (36) as R → 0 and R → ∞. In the former limit we find

a ∼ ks

�

[
c0

(
R1+1/(2�) + · · ·

)
+ c1

(
R−1−1/(2�) + · · ·

)
+ c2

(
R1−1/(2�) + · · ·

)

+c3

(
R1/(2�)−1 + · · ·

)
+ ε̃β̃2G3

4�

(
log(R) R1+1/(2�)

1 + 2�
+ · · ·

)]
as R → 0,

m ∼
[
c0 (R + · · ·) + c1

(
R−1−1/� + · · ·

)
− c2

(
R1−1/� + · · ·

)

−c3

(
R−1 + · · ·

)
+ ε̃β̃2G3

4�

(
R (log R − 1 − 2�)

1 + 2�

)]
as R → 0,
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whilst in the latter

a ∼
[

e1

(
R−1/2exp

(
(1 − b)1/2

�
R

)
+ · · ·

)
− e2

(
1

(1 − b)R
+ · · ·

)
− e3

(
1

R3(1 − b)
+ · · ·

)

+e4

(
R−1/2exp

(
− (1 − b)1/2

�
R

)
+ · · ·

)]
−

(
ε̃β̃2�1

2(1 − b)2

log R

R3
+ · · ·

)
as R → ∞,

m ∼
[

e1

(
�2 R−5/2

(1 − b)
exp

(
(1 − b)1/2

�
R

)
+ · · ·

)
+ e2 (R + · · ·) + e3

(
1

R
+ · · ·

)

+e4

(
�2 R−5/2

(1 − b)
exp

(
− (1 − b)1/2

�
R

)
+ · · ·

)]
−

(
ε̃β̃2�1

18(1 − b)2

log R

R3
+ · · ·

)
as R → ∞.

Matching to the leading-order outer solution for ψ
(0)
o (whose expansion close to the inner region is

given in (28), (29)) we find that

e1 = 0 and e2 = d2sgn(N ),

where d2 is an order-one constant determined by solving for ψ
(0)
o in the outer region. Consider now

the expansions for a and m as R → 0. It is clear that unless c1 = c3 = 0 the expansions of Si and
ψi will break down close to the origin. For similar reasons, where � < 1 we also require

c2 = 0. (41)

As remarked upon in section 2.2, unless � < 1
2 the energy density develops a singularity at the

origin. Ruling out this singular behaviour thus enforces the boundary condition (41). Even where
one does not rule out this possibility the only sensible choice for the remaining boundary condition
on (34), (35) is that the solution pair (a, m) has the lowest singularity possible at the origin, which
is equivalent to requiring (41) be satisfied. Finally, by taking the limits δ → 0, λ → ∞ in (40),
we can show that solutions of (34), (35) for a and m exist if and only if the remaining boundary
condition on (36) is

�2 = −d2sgn(N )

4ε̃
. (42)

We now have sufficient boundary data to find a unique solution for g where β̃2 < 0 (see Appendix
B for a proof of the existence of such a solution). Examples of such solutions are given in Figs 2
and 3 (the boundary condition �2 = −1 is used and the constant �̃ which is evaulated from these
calculations is the corresponding value of �3).

The result given in equation (42) also enables us to determine the velocity scaling U ; our
assumption that v(0)

i is order one necessitates that ε̃ be also order one. A suitable choice for U
is therefore

U = K S∗2

4µL
⇒ ε̃ = 1

4
.
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Fig. 2 This plot shows the results of a numerical calculation for g′ where we impose the boundary condition
g ∼ const.R as R → 0 and g ∼ −R log R as R → ∞. After solving we take a further term in the large R
expansion g ∼ −R log R + �̃R and evaluate �̃. In plot (I) b = 0.3, � = 0.35; with β̃2 = 6.0, �̃ = −0.90; with
β̃2 = 2.0, �̃ = −4.23. In plot (II) b = 0.3, � = 0.5; with β̃2 = 6.0, �̃ = −1.66; with β̃2 = 2.0, �̃ = −5.55
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Fig. 3 This plot shows the results of a numerical calculation for g′ with the same boundary conditions as
above. In plot (I) b = 0.5, � = 0.25; with β̃2 = 6.0, �̃ = 1.22; with β̃2 = 2.0, �̃ = 0.43. In plot (II) b = 0.5,
� = 0.5; with β̃2 = 6.0, �̃ = −0.52; with β̃2 = 2.0, �̃ = −3.70

3.1 Matching the inner velocity to the far field

It remains to match the velocity field in the inner region to the outer and hence to determine the
velocity of the disclination q̇. This is complicated by the fact that the fluid velocity does not decay
over the inner region but has instead a logarithmic singularity as R → ∞,

v(0)
i ∼ −Nd2

(
(log R − �̃)e1 − sin θeθθθ

)
as R → ∞. (43)

Here d2 is the magnitude of the gradient of the regular part of the phase of the director field at
the disclination, e1 is the vector orthogonal to this (see (28) and (29)), and �̃ = �3/(sgn(N )d2).
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The parameter �̃ is thus independent of N and d2 and may be obtained directly by solving (36) with
boundary conditions g ∼ const.R as R → 0 and g ∼ −R log R as R → ∞; �̃ is then obtained by
taking a further term in the large R expansion of g

g ∼ −R log R + �̃R + · · · as R → 0. (44)

We expect this parameter to be O(1) (see Figs 2 and 3) except where β̃2  1 and therefore lie
close to the eigenvalue β̃2 = 0. In such cases we can use an asymptotic method to calculate an
approximate value for �̃ (see Appendix C):

�̃ = − 4

β̃2
∫ ∞

0 RS(0)
i

′2
d R

+ O(1), β̃2  1.

If one now tries to match the leading-order inner-velocity field (43) to an intermediate region
in which inertial terms in the fluid-velocity equation are negligible one finds that the velocity
necessarily grows unboundedly at infinity; this is the Stokes paradox. In the case of a rigid body
moving in an infinite viscous medium, the Stokes paradox is resolved by taking the scale of the
far-field region (in our case the intermediate region) large enough so that inertial terms appear
in the far-field equations (see Oseen (20) and Proudman and Pearson (21)). As far as this work
is concerned, however, an intermediate region is necessary (case I) only if inertial terms become
comparable with viscous terms on a lengthscale much smaller than the outer (the latter is on the
lengthscale of inter-disclination and disclination–wall separations). There are two other possible
scenarios.

Case II: this occurs when inertial terms are insignificant on the outer lengthscale, so that we must
match the singularity in the inner solution onto the Stokes equations, which we then solve in the
bounded outer region.

Case III: this ocurs when inertial terms are comparable with viscous terms on the outer lengthscale
and the outer velocity problem is fully nonlinear.

In order to determine which of these possibilities occurs we must find the lengthscale L̄ at which
the corresponding Reynolds number R̄e becomes comparable with one. In dimensional terms the
fluid velocity v generated by the disclination at a distance L̄ from its core is of order

|v| = O

(
K S∗2

4µL
log

(
1

ε

))
for ε  L̄

L
 1

ε
.

The Reynolds number is thus of order

R̄e = O

(
ρ

K S∗2

4µ2

(
L̄

L

)
log

(
1

ε

))
,

from which we find that inertial terms become significant on a lengthscale much less than the outer
(and we must match to an intermediate Oseen region) if

ρ
K S∗2

4µ2
log

(
1

ε

)
� 1, case I, (45)
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or are insignificant in the outer region if

ρ
K S∗2

4µ2
log

(
1

ε

)
 1, case II. (46)

In practice we only expect to observe case II; using the typical figures given in (17) and taking the
lengthscale L = 10−4 cm to 1 cm gives Re = 4.6 × 10−6 to 5.5 × 10−5. We shall, therefore, only
treat case II here, relegating discussion of case I to Appendix A.

3.2 Disclinations with interacting velocity fields (case II)

We now treat the scenario in which inertial terms are insignificant on the outer lengthscale as
determined by typical disclination–disclination and disclination–wall separations. In such a regime
it is natural to match the inner velocity straight on to an equation for the outer velocity. For
convenience, however, we choose to write down the outer coordinates moving with the disclination,
distinguishing the outer variables written in the moving frame with a hat:

Re(v̂o · ∇)v̂o = −∇ p̂o + ∇2v̂o − β̃2∇ Ŝo
d Ŝo

dt
,

∇ · v̂o = 0,

v̂o = −q̇ on ∂�(t),

where

Re = ρK S∗2

4µ2
 1

and ∂�(t) is the boundary of the domain in the moving coordinates. Matching to the inner region
we see that expansions for v̂o, Ŝo, p̂o and q̇ proceed as follows:

v̂o = log(1/|εN |)v̂(0)
o + v̂(1)

o + · · · ,
Ŝo = 1 + O(ε2),

p̂o = log(1/|εN |) p̂(0)
o + p̂(1)

o + · · · ,
q̇ = log(1/|εN |)q̇(0) + q̇(1) + · · · ,

such that the leading-order fluid velocity satisfies the Stokes equations for viscous flow

−∇ p̂(0)
o + ∇2v̂(0)

o = 0,

∇ · v̂(0)
o = 0,

together with the boundary conditions

v̂(0)
o ∼ −Nd2e1, ς → 0,

v̂(0)
o = −q̇(0) on ∂�(t).

This has the unique solution

v̂(0)
o = −Nd2e1 �⇒ q̇(0) = Nd2e1.
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At next order we again find Stokes equations, which we write in terms of a stream function µ̂
(1)
o ,

∇4µ̂(1)
o = 0,

v̂(1)
o = 1

ς

∂µ̂
(1)
o

∂θ
eςςς − ∂µ̂

(1)
o

∂ς
eθθθ ,

but here the boundary conditions are non-trivial:

µ̂(1)
o ∼ C − Nd2ς log ς sin θ + Nd2�̃ς sin θ as ς → 0,

1

ς

∂µ̂
(1)
o

∂θ
eςςς − ∂µ̂

(1)
o

∂ς
eθθθ = −q̇(1) on ∂�(t),

where C is an unknown constant. We now rewrite the above in terms of coordinates that are
stationary with respect to the boundary ∂�:

∇4µ(1)
o = 0, (47)

µ(1)
o ∼ C − Nd2ς log ς sin θ + (Nd2�̃ + (q̇(1) · e1))ς sin θ − (q̇(1) · e2)ς cos θ as ς → 0, (48)

µ
(1)
o = 0

∂µ(1)
o /∂n = 0

}
on ∂�, (49)

where µ
(1)
o is the stream function for the first-order velocity written in the stationary frame, namely

v̂(1)
o + q̇(1). We may rewrite (47) together with the singular part of (48) as

∇4µ(1)
o = −4π N d2(e2 · ∇)(δ(x − q1)δ(y − q2)), (50)

which can then be solved with boundary condition (49) to obtain the unknown terms in (48), namely
C , (Nd2�̃ + (q̇(1) · e1)) and (q̇(1) · e2).

REMARK. Even where β̃2  1 and �̃ is thus O(1/β̃2) the matching procedure described above
gives the correct disclination velocity provided we evaluate it up to and including the ‘ O(1) terms’
(which now contain a term of O(1/β̃2) arising from �̃).

3.2.1 Summary. Consider a situation where there are a number of disclinations inside the liquid-
crystal domain with strengths N j and at positions qj. In order to find the velocities of the
disclinations we must first solve

∇2ψ(0)
o = 0, (51)

∇ψ(0)
o ∼ N j

2

(
(x − q1, j )ey − (y − q2, j )ex

(x − q1, j )2 + (y − q2, j )2

)
as |x − qj| → 0, (52)

with appropriate boundary conditions on ∂�, to find the phase of the director. We then determine the
regular part of the gradient of the phase at the j th disclination, d2, j e2,j, by expanding the solution
for ψo

(0) about the disclination

∇ψ(0)
o ∼ N j

2

(
(x − q1, j )ey − (y − q2, j )ex

(x − q1, j )2 + (y − q2, j )2

)
+ d2, j e2,j + · · · as |x − qj| → 0. (53)
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We must now distinguish between case I, in which the criterion (45) is satisfied, and case II, in
which the criterion (46) is satisfied.

Case I: in this scenario the result obtained in (53) is sufficient to obtain both the leading-order and
the first-order terms in the velocity; we find

q̇j = N j d2, j

(
λ(ε, N j ) + log

∣∣∣∣ 4

N j d2, j

∣∣∣∣ + 1 − γ − �̃

)
(e2,j ∧ ez) + o (1) . (54)

Here λ(ε, N j ) is defined by the transcendental equation

λ = log

(
1

εRe|N j |
)

− log λ.

Case II: here we can use the result obtained in (53) to find the leading-order velocity:

q̇j = N j d2, j log(1/|εN j |)e2,j ∧ ez + O(1). (55)

The next term is found by solving an auxiliary problem for the stream function µ
(1)
o of the fluid

velocity

∇4µ(1)
o = −4π

∑
j

N j d2, j (e2,j · ∇)(δ(x − q1, j )δ(y − q2, j )), (56)

µ
(1)
o = 0

∂µ
(1)
o /∂n = 0

}
on ∂�, (57)

and expanding the solution about each disclination core

µ(0)
o ∼ −N j d2, j log

((
(x − q1, j )

2 + (y − q2, j )
2
)1/2

)
(e2,j · ∇)

(
(x − q1, j )

2 + (y − q2, j )
2

2

)

+C + (P · ∇)

(
(x − q1, j )

2 + (y − q2, j )
2

2

)
+ O((x − q1, j )

2 + (y − q2, j )
2). (58)

The two-term dimensionless velocity law for the j th disclination follows from this expansion and
that made in (53); it is

q̇j = N j d2, j log(1/|εN j |)e2,j ∧ ez

− (
P · (e2,j ∧ ez)

)
e2,j +

(
P · e2,j − N j d2, j �̃

)
e2 ∧ ez) + O(ε log ε). (59)

4. Examples of disclination motion

In this section we apply the law of motion obtained in the previous section to some particular
examples. For brevity we restrict our discussion to the physically relevant scenario in which the
Reynolds number is small (that is, case II).
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4.1 Disclination–disclination interaction

Consider two disclinations of strengths N1 and N2 lying in an infinite medium at positions x =
(Q1, 0) and x = (Q2, 0) respectively. Solving for ψ

(0)
o from (51) and (52) we find

∇ψ(0)
o = N1

2

(x − Q1)ey − yex

(x − Q1)2 + y2
+ N2

2

(x − Q2)ey − yex

(x − Q2)2 + y2
. (60)

By comparing our solution with equation (53) we calculate the regular parts of the gradient of the
phase, d2,1e2,1 and d2,2e2,2, on the disclinations at x = (Q1, 0) and x = (Q2, 0) respectively.
Substituting these results into the law of motion (55) we obtain the velocity of the disclination at
leading order

Q̇1 = N1 N2

2(Q1 − Q2)
log

∣∣∣∣ 1

εN1

∣∣∣∣ + O(1), Q̇2 = − N1 N2

2(Q1 − Q2)
log

∣∣∣∣ 1

εN2

∣∣∣∣ + O(1).

If we require the next term in the velocity we must solve the auxiliary problem for the fluid
velocity (57)

∇4µ(1)
o = N1 N2

2(Q1 − Q2)

(
δ(x − Q2)δ

′(y) − δ(x − Q1)δ
′(y)

)
.

Requiring that the velocity ∇ ∧ (µ
(1)
o ez) be bounded at infinity allows us to determine a unique

solution for µ
(1)
o , namely

µ(1)
o = N1 N2

2(Q1 − Q2)

(
y log

((
y2 + (x − Q2)

2
)1/2

)
− y log

((
y2 + (x − Q1)

2
)1/2

))
;

from this and (60) we obtain the disclination velocities

Q̇1 = N1 N2

2(Q1 − Q2)

(
log

∣∣∣∣ Q1 − Q2

εN1

∣∣∣∣ − �̃

)
+ O(ε log ε),

Q̇2 = − N1 N2

2(Q1 − Q2)

(
log

∣∣∣∣ Q1 − Q2

εN2

∣∣∣∣ − �̃

)
+ O(ε log ε).

REMARK. Thus same-sign disclinations repel each other, moving along their line of centres,
whilst opposite-sign disclinations are attracted to each other along their line of centres.

4.2 Disclination–wall interaction

Consider a situation in which a disclination at x = (q1, 0, 0) lies parallel to an infinite planar wall
stretching along the (y, z)-plane.

Natural boundary conditions. Firstly we shall investigate the motion of the disclination where the
natural boundary condition ∂ψ

(0)
o /∂x = 0 on x = 0 is imposed on the wall. Solving (51) and (52)

for ψ
(0)
o we find

∇ψ(0)
o = N

2

(
(x − q1)ey − yex

(x − q1)2 + y2
− (x + q1)ey − yex

(x + q1)2 + y2

)
.
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We evaluate the regular part of the gradient of the phase on the disclination, which we find to be
d2e2,j = −Ney/(4q1), and hence deduce the velocity at leading order:

q̇1 = − N 2

4q1
log

(
1

ε|N |
)

+ · · · .

To obtain the first-order correction to the velocity we must first solve for the stream function of the
fluid flow which satisfies

∇4µ(1)
o = π N 2

q1
δ(x − q1)δ

′(y),

µ
(1)
o = 0

∂µ
(1)
o /∂x = 0

}
on x = 0.

The solution to this problem is

µ(1)
o = N 2

4q1

(
y log

((
(x − q1)

2 + y2
)1/2

)
− y log

((
(x + q1)

2 + y2
)1/2

))

+ N 2

2π

∫ ∞

−∞
s

q2
1 + s2

(
x2

(x2 + (y − s)2)

)
ds.

Expanding the stream function about the disclination, comparing the result with (58) and then
referring to (59) we find the disclination velocity, correct to first order,

q̇1 = − N 2

4q1

(
log

(
2q1

ε|N |
)

− �̃

)
+ N 2

π

∫ ∞

−∞
s2q2

1

(q2
1 + s2)3

ds + O(ε log ε).

The phase of the director constant on the boundary. We now investigate the motion of the
disclination where the boundary condition

ψ(0)
o = const. on x = 0,

is imposed on the wall. With this boundary condition we find that the gradient of ψ
(0)
o satisfies

∇ψ(0)
o = N

2

(
(x − q1)ey − yex

(x − q1)2 + y2
+ (x + q1)ey − yex

(x + q1)2 + y2

)
.

Evaluating the regular part of the gradient of the phase on the disclination we find d2e2 =
Ney/(4q1). It follows that the leading-order velocity is equal and opposite to that in the previous
example (natural boundary conditions imposed on the wall). It is easy to show that the stream
function for the fluid flow is also the same, except for a sign change, as for the previous example.
The disclination velocity, correct to first order, is thus

q̇1 = N 2

4q1

(
log

(
2q1

ε|N |
)

− �̃

)
− N 2

π

∫ ∞

−∞
s2q1

(q2
1 + s2)3

ds + O(ε log ε).
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Summary. We find that a disclination is attracted, along the shortest path, towards a planar
boundary on which the natural boundary condition ∂ψ

(0)
o /∂n = 0 holds, whereas, if the angle of

the director ψ
(0)
o is specified equal to some constant along the boundary, the disclination is repelled

from the boundary along a path perpendicular to the boundary.

5. Conclusion

We have derived a law of motion for a line disclination in a nematic liquid crystal from an asymptotic
analysis of the Ericksen model. We found that the disclination velocity q̇ is determined by a local
expansion of the phase of the director field about the disclination. Where ψ

(0)
o has the expansion

(with θ defined in the standard way about the point (x, y) = (q1, q2))

ψ(0)
o ∼ Nθ

2
+ c + d2 ((y − q2) cos ν − (x − q1) sin ν) + · · · as (x, y) → (q1, q2),

such that the local behaviour of the director field as (x, y) → (q1, q2) is

n ∼
(

cos
(

1
2 Nθ + c

)
ex + sin

(
1
2 Nθ + c

)
ey

)
+d2 (y cos ν − x sin ν)

(
cos

(
1
2 Nθ + c

)
ey − sin

(
1
2 Nθ + c

)
ex

)
+ · · · ,

the leading-order dimensional disclination velocity q̇ is

q̇ = d2
N K S∗2

4µL
log(1/ε)

(
cos νex + sin νey

) + O

(
N K S∗2d2

4µL

)
. (61)

Remarkably the leading-order disclination velocity depends only on the structure of the core through
the dimensionless parameter ε which gives a measure of its radius in comparison to a typical
lengthscale of the problem. Moreover the other parameters which appear in the velocity law, K S∗2

(the elastic constant) and µ (the viscosity), are parameters occurring in the standard Leslie–Ericksen
model in which it is assumed that S = const. = S∗.

In cases where the Reynolds number of the fluid flow generated by the moving disclination is
either very large or very small (experimental data suggests that it is almost always very small)
we were able to calculate the fluid flow field and, from this, the next term in the expansion of the
disclination velocity. We note that it is possible to generalize our analysis to situations in which there
is a fluid flow in the liquid crystal, resulting from sources other than the motion of the disclination
itself, and that in such circumstances the disclination is transported with a velocity equal to the sum
of the velocities arising from the regular part of the gradient of the director field and of the flow field
on the disclination line.

Finally we draw the reader’s attention to some areas of future work arising from the work in
this paper. The present work uses almost the simplest continuum model with which it is possible
to describe the motion of a disclination. It is therefore of interest to examine the effects of the
terms (describing the action of the director field on the fluid flow and vice versa) which have been
neglected in our treatment of Ericksen’s model. These terms lead to anisotropic flow properties
and, in order to examine their effects on the disclination velocity, it is necessary to solve a linear
partial differential equation for the leading-order fluid velocity field in the inner region. Again the
velocity field will grow like log R for large values of R (here R is the distance from the centre
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of the disclination on the inner lengthscale). The direction and magnitude of the logarithmic term
can be obtained by looking for a solvability condition on the inner equations at first order. In
essence, therefore, it is necessary only to find two ‘basis’ solutions for the leading-order inner
velocity field (using some numerical method) and then derive a solvability condition to find the
appropriate coefficients of the basis solutions. We also think that it is possible to extend our analysis
to look at the effects that biaxiality may have on the motion.
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APPENDIX A

Matching the inner solution to an intermediate solution and determination of the disclination velocity in case I

Consider now the scenario where the Oseen lengthscale is much smaller than the outer lengthscale, determined
by typical disclination–disclination and disclination–boundary separations (the regime given by (45)). In line
with Proudman and Pearson (21), who were the first to satisfactorily resolve the Stokes paradox, we introduce
an intermediate Oseen region that moves with the disclination and has polar length coordinate r̂ ; this is defined
by the scaling

ς = L̄

L
r̂ = ε|N |R, where

L̄

L
= 4µ2

ρK S∗2λ
= 1

Reλ(ε, N )
, (A1)



LINE DISCLINATION DYNAMICS IN UNIAXIAL NEMATIC LIQUID CRYSTALS 69

and λ(ε, N ) is an, as yet undetermined, large parameter. In this region (15), (16) become

1

λ(ε, N )

dvint

dt
= −

(
L̄

L

)
∇ pint + ∇2vint − β̃2

d Sint

dt
∇Sint, (A2)

∇ · vint = 0, (A3)

vint ∼ −q̇ as r̂ → ∞, (A4)

where the subscript int denotes an intermediate variable. Matching to the inner region at leading order we see
that

vint ∼ −d2 N log

(
L̄

Lε|N |
)

e1 − d2 N
((

log r̂ − �̃
)

e1 − sin θeθθθ

)
as r̂ → 0.

The expansions for vint, Sint, pint and q̇ thus proceed as follows:

vint = λ(ε, N )v(0)
int + v(1)

int + · · · ,

Sint = 1 + O

((
Lε

L̄

)2
)

,

pint = L

L̄

(
λ(ε, N )p(0)

int + p(1)
int + · · ·

)
,

q̇ = λ(ε, N )q̇(0) + q̇(1) + · · · ,
where the unknown parameter λ and the unknown lengthscale L̄ are determined by matching the velocity to
the inner solution and by the rescaling carried out in (A1). This leads to a transcendental equation for λ:

λ = log

(
1

εRe|N |
)

− log λ.

Substituting the expansion of the intermediate variables into the governing equations (A2) to (A4) and matching
to the inner solution gives the following problem for the leading-order velocity:(

v(0)
int · ∇

)
v(0)

int = −∇ p(0)
int + ∇2v(0)

int ,

∇ · v(0)
int = 0,

v(0)
int ∼ −N d2e1 as r̂ → 0,

v(0)
int ∼ −q̇(0) as r̂ → ∞.

This system has uniform solution

v(0)
int = −N d2e1, p(0)

int = 0 �⇒ q̇(0) = N d2e1.

At first order we obtain a non-trivial problem for the velocity, which we formulate in terms of µ
(1)
int , the

stream function for v(1)
int , as follows:(

∇2 + Nd2(e1 · ∇)
)

∇2µ
(1)
int = 0, (A5)

µ
(1)
int ∼ −N d2(r̂ log r̂ − �̃) sin θ as r̂ → 0, (A6)

1

r̂

∂µ
(1)
int

∂θ
er̂ − ∂µ

(1)
int

∂ r̂
eθθθ ∼ −q̇(1) as r̂ → ∞. (A7)



70 G. RICHARDSON

By imposing the boundedness of ∂µ
(1)
int /∂ r̂ at infinity we can find a unique solution of (A5), (A6). Referring

to (21, 22) we see that this solution is

µ
(1)
int = −Nd2

∞∑
n=1

φn

( |Nd2|r̂
2

)
r̂ sin(n(θ + π))

n
+ mr̂ sin θ for Nd2 > 0, (A8)

µ
(1)
int = Nd2

∞∑
n=1

φn

( |Nd2|r̂
2

)
r̂ sin(nθ)

n
+ mr̂ sin θ for Nd2 < 0, (A9)

where

φn(·) = 2K1(·)In(·) + K0(·)(In+1(·) + In−1(·)),
and In and Kn are modified Bessel functions of the first and second orders respectively. In order that the
matching to (A6) be complete we require m = d2 N (γ −1− log(4/(|Nd2|))+ �̃), where γ is Euler’s constant.
By considering the asymptotic behaviour of (A8) in the limit r̂ → ∞ and the boundary condition (A7) we may
obtain the contribution to the disclination velocity at this order:

q̇(1) = N d2

(
1 + log

(
4

|Nd2|
)

− γ − �̃

)
e1.

APPENDIX B
The existence of a solution to the inner-fluid-velocity problem

We write equation (36) in the following way:

d

d R

(
1

R

d

d R
(R�(R))

)
= −β̃2η(R)g(R), (B1)

d

d R

(
1

R

d

d R
(Rg(R))

)
= �(R), (B2)

where η(R) is the positive function η = (S(0)
i

′
)2/R2. Multiplying (B1) by Rg and integrating by parts twice

we find the following relation:[
g

d

d R
(R�) − �

d

d R
(Rg)

]λ

δ

+
∫ λ

δ
R�2 + β̃2ηRg2d R = 0.

Taking the limits δ → 0 and λ → ∞ and referring to the asymptotic behaviour of g given in (37) and (38) we
see that, where β̃2 > 0, no non-trivial solution exists to the homogeneous problem given by equation (B1) and
the boundary conditions G1 = G2 = �2 = �4 = 0.

The rest of the proof is standard. We write g in terms of basis functions

g(R) = Ag1(r) + Bg2(R) + Cg3(R) + Dg4(R),

where the gi are solutions to (B1) with the asymptotic behaviours

g1 ∼ R−1, g2 ∼ R log R, g3 ∼ R, g4 ∼ R3,

as R → 0. Thus where g satisfies the boundary conditions G1 = G2 = 0 we find that A = B = 0. As
R → ∞ we make the following series expansions of g3 and g4:

g3 = α1(R−1 + O(R−5)) + α2(R log R + O(R−3 log R)) + α3(R + O(R−3)) + α4(R3 + O(R−1)),

g4 = β1(R−1 + O(R−5)) + β2(R log R + O(R−3 log R)) + β3(R + O(R−3)) + β4(R3 + O(R−1)).
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If no non-trivial solution exists to (B1) with the homogeneous boundary conditions G1 = G2 = �2 = �4 = 0
it follows that α4β2 − α2β4 �= 0. Hence a unique solution exists to (B1) with the non-homogeneous boundary
conditions G1 = G2 = �4 = 0, �2 �= 0; it is g = �2(g3β4 − g4α4)/(α2β4 − α4β2).

APPENDIX C
Calculation of �̃ for β̃2 small

In order to obtain �̃ we must solve equation (36) together with the boundary conditions

g ∼ const.R as R → 0, g ∼ −R log R as R → ∞. (C1)

Then �̃ is obtained by taking a further term in the large R expansion of g (see equation (44)). However, no
solution to this problem can be found where β̃2 = 0 since a solution exists to the homogeneous problem given
by equation (36) and the boundary conditions g ∼ const.R as R → 0 and g ∼ const.R as R → ∞; namely
g = const.R. Where β̃2  1 we can calculate an approximate solution to the problem by writing (36) in the
form (B1) and (B2) and expanding g and � in powers of β̃2:

g = g0

β̃2
+ g1 + · · · , � = �0

β̃2
+ �1 + · · · .

Substituting this expansion into (B1), (B2) and (C1) and taking the leading term we find

d

d R

(
1

R

d

d R
(R�0)

)
= 0,

d

d R

(
1

R

d

d R
(Rg0)

)
= �0, (C2)

with boundary condition g0 ∼ const.R as R → 0 and g0 ∼ const.R as R → ∞. This has solution

g0 = AR, �0 = 0. (C3)

In order to determine the coefficient A we proceed to next order in the expansion where we find

d

d R

(
1

R

d

d R
(R�1)

)
= − (S(0)

i
′
)2

R2
g0,

d

d R

(
1

R

d

d R
(Rg1)

)
= �1, (C4)

with boundary conditions

g1 ∼ const.R as R → 0, g1 ∼ R log R as R → ∞. (C5)

Multiplying (C4)1 by Rg0 and subtracting (C2)1 multiplied by Rg1 and then integrating by parts twice results
in the following relation:

[
g0

d

d R
(R�1) − g1

d

d R
(R�0) − �1

d

d R
(Rg0) + �0

d

d R
(Rg1)

]λ

δ

= −
∫ λ

δ

(S(0)
i

′
)2

R
g2

0d R.

We then substitute the result obtained for g0, take the limits δ → 0 and λ → ∞, and apply the boundary
condition (C5) to find a condition on A; this is

A = − 4∫ ∞
0 R(S(0)′

i )2d R
.

It follows that

�̃ = − 4

β̃2
∫ ∞

0 R(S(0)′
i )2d R

+ O(1) for β̃2  1.


