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MOTION OF VORTICES IN TYPE II SUPERCONDUCTORS*
S. JONATHAN CHAPMAN! AND G. RICHARDSONT

Abstract. The methods of formal asymptotics are used to examine the behaviour of a system
of curvilinear vortices in a type II superconductor as the thickness of the vortex cores tends to zero.
The vortices then appear as singularities in the field equation and are analagous to line vortices in
inviscid hydrodynamics. A local analysis near each vortex core gives an equation of motion governing
the evolution of these singularities.
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1. Introduction. When a superconducting material is placed in an applied mag-
netic field of strength Hy, the state it adopts is conveniently described by Fig. 1.
Here « is a material parameter which determines the type of superconducting mate-
rial; £ < 1/4/2 describes what is known as a type I superconductor, and x > 1/ V2
describes what is known as a type II superconductor.

For type I superconductors, if the magnetic field strength is sufficiently low, then
the field will be excluded from the interior of the material. (This is known as the
Meissner effect.) If, however, the field strength exceeds the critical value H, then it
can no longer be excluded and the sample reverts to the normally conducting (normal)
state, with the field penetrating it fully.

Type Il superconductors are characterised by the existence of a third state, known
as the “mixed state,” in which there is a partial penetration of the magnetic field into
the superconducting material. The mixed state consists of many normal filaments
embedded in a superconducting matrix. Each filament carries with it a quantised
amount of magnetic flux and is circled by a supercurrent vortex; thus these filaments
are often known as vortices (see Fig. 2).

It is important to understand the behaviour of the superconductor while it is in the
mixed state, since it is in this state that most superconductors appear in applications.
The motion of vortices is of particular interest, since this motion dissipates energy
and generates an electric field, which in turn results in an effective resistivity for the
material.

The aim of this paper is to apply the methods of formal asymptotics to a system
of curvilinear vortices in an unbounded superconductor in three dimensions for the
case of an extreme type II material (i.e., as the parameter k — 00). The vortices
will behave as singularities in the field equation, rather like line vortices in inviscid
hydrodynamics. A local examination of each vortex core will then give a “law of
motion” for the evolution of these singularities.

A similar analysis has been applied recently to two-dimensional (i.e., rectilinear,
parallel) vortices by Peres and Rubinstein [12] and Dorsey [8]. We aim to gener-
alise their results to three-dimensional curvilinear vortices. We note also the work of
Gor’kov and Kopnin [11], which has some parallels with the present work.
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F1G. 1. The response of a superconducting material as a function of the applied magnetic field
Ho and the Ginzburg-Landau parameter .

F1G. 2. Schematic diagram of the mized state of a type 11 superconductor.

The model we work with is the time-dependent Ginzburg-Landau theory proposed
by Gor’kov and Eliashberg [10]. In §2 we briefly present this theory and discuss
the steady two-dimensional vortex solution. In §3 we perform a formal asymptotic
analysis of a system of curvilinear vortices which are well separated (which will be
made more precise later) and derive the law of motion governing the evolution of the
system. In §4 we consider a system of densely packed vortices. Finally, in §5, we
present our conclusions.

2. The Ginzburg-Landau theory. For a complete introduction to the
Ginzburg-Landau theory of superconductivity the reader is referred to [4] and [7]
and the references therein. Here we merely state the dimensionless, time-dependent
Ginzburg-Landau equations proposed in [10] as

1) %t‘Ii +ikT® + k2 (TP — T) — (V — ikA)? W =0,

) ~VA(VAA) =a(‘9a;':+v<1>) +i(\p*W—\w\p*)+|\If|2A,
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where VU is the complex superconducting order parameter (with |¥| = 1 representing
wholly superconducting material and ¥ = 0 representing wholly normal material),
U* denotes the complex conjugate of ¥, and A and ® are the real magnetic vector
potential, and electric scalar potential, respectively, which are such that

(3) H=VAA,
OA
(4) E=-—>"-Ve,

where H is the magnetic field and E is the electric field; A is unique up to the addition
of a gradient; once A is given, ® is unique up to the addition of a function of ¢. Here
x and o are material constants; x is known as the Ginzburg-Landau parameter, while
o is the dimensionless conductivity of the normal electrons in the material.

Lengths in (1)—(2) have been nondimensionalized with the penetration depth,
which is a typical length associated with the variation of the magnetic field in the
material. Time has been nondimensionalized with the timescale associated with the
relaxation of ¥ (so that the coefficient of 0¥ /8¢ in (1) is unity).

In the steady state, with ® = 0, equations (1)—(2) result from minimising the
Ginzburg-Landau formulation of the Gibbs free energy [9]; in the time-dependent
case they can be obtained as a limiting form of the microscopic BCS equations [1],
[10] for certain materials. Note that, even though ¥ is complex, (2) is in fact real,
so we have five equations in six unknowns. This degeneracy is due to the property
of gauge invariance, which we shall return to in a moment. A sixth equation can be
provided by constraining the choice of gauge for A, for example by requiring that
div A =0.

Equations (1)—(2) exhibit vortex solutions, which can be illustrated by looking
for a solution of the form

(5) U = f(r)eN?,
(6) A = A(r)eg,

where N is an integer, » and 6 are cylindrical polar coordinates, and ey is the unit
vector in the azimuthal direction. We find that f and A are solutions of

1 d ([ df N\?,
(7) W%(rd—r)_(fl_n_?) f=7r-1,
d(1d o, N
®) w(raen) = #(a-5)
(9) 7, A bounded as r — 0,
(10) f—1, A—0 as r— oo.

Berger and Chen [3] have shown the existence of a solution for f and A for all N
-which necessarily has f(0) = 0. The supercurrent is given by

(1) j=—F(A—N)w,

TK
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which demonstrates the vortex-like behaviour. The axial magnetic flux through the
vortex is

(12) /H-dS:%\’-.

Thus the flux is quantised and a single “Auxon” has magnitude 27 /k.

The Ginzburg-Landau parameter & is generally small for pure metals but quite
large for superconducting alloys. Peres and Rubinstein give typical values of x = 235
for NbsSn, x = 640 for V3Ga, and k = 785 for Nb-N. They estimate o to be of the
order of 10~3-10~%. We will therefore be interested in the limit K — co, ¢ — 0, with
k20 = o fixed. Our results hold under more general conditions, but the scaling we
consider is the canonical one. We note that ¢ — 0 implies that the timescale for the
relaxation of the magnetic field is much shorter than the timescale for vortex motion,
so that the magnetic field is effectively quasistatic.

To give an indication of what to expect from more complicated vortex lines, we
perform a brief asymptotic analysis of (7)-(10) as kK — oo.

Away from the origin we find that the leading-order outer solution, denoted by
the subscript o, satisfies

(13) f2=1-4
d (1d

14 — | == o) | = A, — A3,

(14) dr (r dr (rd )> °

(15) A, bounded as r — 0,

(16) A, — 0asr — 0.

Hence A, = 0, f, = 1. Thus we find that away from the vortex core f is unity to
leading order and A and H are of order 1/x. This is in agreement with (12).

Near the origin we rescale lengths by setting 7 = R/ to obtain the leading-order
inner behaviour, denoted by the subscript ¢, as

1 d ([, dfi N\?,

a7) ram (R) - (4-%) #i=s- 5
d (1 d
(18) 75 (ﬁgﬁ (RAi)) =0,
(19) fin Ai bounded asr — 0,
(20) fi—=1, A, —0asr — oo.
Hence A; =0,
1d (_d:\ N,

(21) RdR (RE}—%> - ngz =f—J
(22) fis bounded asr — 0,

(23) fi—lasr — oo.
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Not surprisingly, we will find that the leading-order behaviour near the vortex core of
more general vortex lines will also be given by (21)—(23). The existence of a unique
solution to (21)—(23) has been proved recently by Chen, Elliott, and Tang [6].

The fact that A and H are of order 1/k away from the vortex core motivates the
following rescaling of the equations:

! ! /
(24) A=£, H=E, <I>=g.
K K K

Dropping the primes, we now have

(25) %—f+i\p¢>+ei2(qf|m|2—q/) —(V—iA)? ¥ =0,
(26) —VA(VAA)=op€ (‘96—‘:‘ + V<I>> + % (T*VU — TVT*) + |T]2A,

where ¢ = 1/k. As we mentioned earlier, these equations are gauge invariant in the
sense that they are invariant under the transformations of the form

o B
(27) A— A+ Vuw, <I>—><I>——5toi, U — Pe'.
We may write the eqations in terms of real variables by introducing the new, gauge-
invariant potentials

5. X
(29) @—<I>+5t—,

where ¥ = fe'X with f and x real. We then obtain coupled equations for just f, Q,
and O:

7] 1
(30) =S (P -+ siar,
(31) ffO+V-(f?Q)=o,
(32) -V A(VAQ) = f2Q + 0¢e? (%? + V@) ,
with
Taking the divergence of (32) gives
" (34) V- (f2Q) + oo€? (% (V-Q)+V2@) =0,

which will prove useful later.



1280 S. JONATHAN CHAPMAN AND G. RICHARDSON

3. Asymptotic analysis of a system of well-separated vortices. We con-
sider the behaviour of a system of curvilinear vortices as ¢ — 0. We assume the
vortices to be separated by distances of order one in the present nondimensionaliza-
tion. This means that the distance between vortices is comparable of the lengthscale
associated with the decay of magnetic field away for an isolated vortex (i.e., of the
order of the penetration depth).

Far field. We denote the outer solution away from the vortex cores by the sub-
script 0. Equation (30) implies that f, = 1 + O(¢2). Equations (31)—(32) give the
leading-order behaviour of Q, H, and © as

(35) VA(VAQY)+QY =0,
(36) 00 = _v.Q,
(37) VA (VAHO) +HO = —v2HO + HO = 0.

We note that (35) implies that
(38) VAHP = -Q,

which will prove useful later. To solve (37) we need to know the behaviour of H as
a vortex is approached, which we will obtain by matching this outer solution with an
inner solution near each vortex core.

Inner region. We consider an inner region in the vicinity of one of the vortex
cores. Let the vortex lie along the curve T, given by x = (z,y, 2) = q(s,t). We define
a local coordinate system (s, p,6,T) by

(39) x =q(s,t) + pcosOn(s,t)+ psinfb(s,t),
(40) t="T,

where s is arclength, fi(s,t) the unit normal, and b (s,t) the unit binormal to the
curve I'. We define the inner coordinates by introducing the stretched variable R,
defined by p = eR. The coordinate system so defined is not orthogonal away from the
line q(s,t) when the torsion of the vortex is nonzero. However, it is approximately
orthogonal, and the following expressions for Vg, V - B, V2g, VA B and /0t in the
inner region can be obtained:

P 10 dg
(41) Vg = goes+ - gten + R89e0+0(€),
V.B:%(g—(%{—é}%)—!—%)—C(BRcose—BgsinO)
42
(12) b, o5, |
3s o0 €

o _ 1 (0 (,09) 10%

W) Vi9=ar\ar %R ) T Roe

19g . g
<R80 né — ﬁcow) o(1),
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VAB= l [1 < 9 (RBo) GBR)GS-I-—I-Q&G aBseo]

OR o0 R 06 OR
8BR o} aBR
(44) + [T ( 50 aR(RBg)) + CcosbB, + s ] ey
0B, . 0By
+ TR—a—I{‘es + (CSIIIGBS ad —6—S—> eRr + O(G),
16) 1 o} 0
(45) F-rili ((V . eR)a +(v- e")Rao) +0(1),

where C is the curvature and 7 is the torsion of the vortex line.
In the inner variables equations (33) and (32) become

o _1(0 o, \_9Qir Qs 2.
(46) GH%S - R (aR(RQz,9) 80 ) +¢ TR—2~ 6R +O(€ Ql)v
1 an s an [ 2
(47) eH; g = R0 + eC'sin6Q; s 55 + 0(e°Q;),
0Q; s 9Q; 0
Hyp= - 2200 o (FBE_ 2 (RQu0)
OR a0
(48) 5
+€Ccos0Q; o + e—28 Q”‘ +0(2Qy),
2 _1_ 1o} N OH; R O0H; s 2@
(49) effQia = | p(BHi0) = —54~ ) TeTR—R + 0(€2@)),
e 1 0H;, _ OHig .
(50) efiQir = R 90 + eC'sin0H; 4 s (e°9©;),
0H; 0H, o)
e f20. , — ,8 i, R
¢fiQuo =g +”( a6 aR(RH"’)>
(51)
OH; g N
+eCcosfH; s+ € s +0(e°9,),

while equations (30), (31), and (34) become

of: af\ 18
«(v-er)3g o g+ )%a_éﬁ (aR (Rajz;)Jrﬁaof?)

(52)
+eC (R%%sin g{; ¢ > = P f 4 2RIQ + O,
.. 1[0 9 o
(53) €fi0: + = (a—é (RfQir) + 20 (fi Qw))

+ —6C'fi2 (Qircos —Q;9sinb) = O(eZQi, €Qis)s

1281
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% (% (Rf?Qir) + 565 (foi,o)) — €Cf? (Qi rcosd — Qi psind)

b] 10 10Qi0
(54) ~ €00 [(V er)pp +(V: e")Rao] [R&R (RQir) + 750 ]
10 [ 006;\ 1 6%, \
+ eog (Eﬁ (R 8R) + ﬁm) = 0(6 @i,(‘:Qi,s)~

Motivated by the elementary solution (5)—(6), since the vortex line appears rec-
tilinear at leading order in the inner variables, we impose the following boundary
conditions at the origin:

55 f—0, Q—%—&eg as R — 0.
eR

In light of (55) we make the following ansatz for the leading-order behaviour of the
inner solution, which we denote by the subscript i:

(56) Q; ~ Q(O)( R)eg

(57) fir FO(R) + -

Substituting (56), (57) into (46)—(54) we find that the leading-order behaviour is
given by

(58) QP = o,
)’ 2
o”  fi Nk ©) _ (03 40
(59) FO 4t - 0 = O 1O,
(60) 120 =0,
(61) F9(c0) = 1,

where the final boundary condition comes from matching with the outer solution.
Equations (59)—(61) are exactly (21)—(23), obtained in §2 as the leading-order inner
behaviour of a stationary rectilinear vortex. As noted in § 2, the existence of a unique
solution to (59)—(61) has been proved by Chen, Elliott, and Tang [6].

Far field. Matching (58) with the leading-order outer solution implies

(62) QSO)N——A;—kee as p—0.

Equations (44) and (38) then give the asymptotic behaviour of HY as
(63) HO ~ —Nylogpes asp — 0.

We can now solve the outer problem (35), (37) together with the asymptotic behaviour
(62), (63) as each vortex is approached. We effect the solution by noting that (37)
with the behaviour (63) can be written as the single equation

(64) VZHO —HO = —2WZ/F Npb(z — 2, (8))6(y — ym(5))6(z — 2m(s)) ds,



MOTION OF VORTICES IN TYPE II SUPERCONDUCTORS 1283

where Qm(s) = (2m(s), ym(s), zm(s)) and § is the Dirac §-function. Noting that the
Green’s function satisfying

(65) V2G - G = —6(z)6(y)6(z)  in R®
is

1 e T
(66) G= E r )

where r = |x|, we see that the solution of (64) is

—Zm
(67) HO — 1ZNm / € " ds
© T2l 7,9

m

where Zyy, = X — Qum, Zm = |Zm|, and T, is the curve representing the position of
the mth vortex. Applying (38) to (67) we find QS,O) is given by

1 e~ 4m
(0)=__§:
(68) Q, 2mNm/rmv<Z )/\ds.

m

At this point it is useful to elaborate on the analogy between vortices in a su-
perconductor and vortices in an inviscid, otherwise irrotational fluid. For a similar
system of fluid vortices I'y,, the fluid velocity u satisfies

(69) div u =0,
(70) curl u =27 Z/r Knb(z — 2m(5))0(y — ym(8))8(2 — 2m(s)) ds,

where K, are the vortex strengths (here not required to be integer valued) and q.,
are parametrisations of the curves I',,, as before. The fluid velocity u is analogous to
the electric current J, which is given by

(71) IO = curl HY = —Q©

at leading order in the outer solution. The variable analogous to HS,O) is the vector
potential €2, which is such that

(72) curl Q = u,
(73) div @ = 0.
We have

(74) Vi = —2WZ/F Knb(x — 2m(5))6(y — ym(8))8(2 — zm(s)) ds.

Hence

ds
(75) Q= 7

N | —

m

o

m

(76) u=%;1{m/rmv<%)/\ds.

Equation (76) is the familiar Biot—Savart integral.
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Before returning to the inner expansion we consider the asymptotic behaviour of
(68) as the vortex line I'y, is approached, so that the distance p from x to the nearest
point on the vortex, qx(S), becomes of order €. This will give motivation for the form
of the inner expansion. The analysis parallels that performed on the Biot-Savart

integral (76) by Saffman [13]. We write QY in the following form:

(7) Q® = Nk /S / /S ’ + 2 )z Ads+ QY
o 2 S—L S+L Z2 Z3 k o,ext)

where

(78) © = ZN / "\ pds
o,ext Zm

m;ék

is the field due to other vortices and 1/|log e|% < L <« 1. The major contribution to
( ) comes from the first integral in (77). We set s = S + el and expand

2l2

(79) qk(S + €l) — aqx(S) =61’5(3)+———C S+

(80) Zy (S +€l) = (eRcosG - 6250) n(S) + eRsin O b(S)
_€l£(5)+...,

(81) t(S +€l) = (S) + elCA(S) +-- -,

for | < 1/e. Then

/S+L 7 ( 1 1 )
e %k Zk/\ds-——eg-——/ du
S—L Z2 Z3 1 +u2)2

( ) C 2 3C 0 7 2
~ €eR €R
(S) / u COs u

édu—eg édu+...’
% 2(1+u?)? 2 ok (1+wd)t

where v = [/R. Evaluating (82) we find that QS)O) has the following asymptotic
behaviour as the vortex line is approached:

QY =-=£ eo(S) ;C log(€R) B(S) ~ =% (log2 — 1)b(S)
(83) ¢ cosfep(S) + Qf,?im.t

Ny, 1 1 1 .
+ 25 lim / e Zx (———I——) Zy ANds — =logLb(s) | +
2 L—>O< |s=S|>L Z/% ZI::’ 2 ) ( )

It can be shown that the artificially introduced log L singularity cancels with the
singular part of the remaining integral so that the limit in (83) gives a term of order
one.
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Inner region. It now becomes clear how to proceed with the inner expansion.
We expand f;, Q;, H;, ©;, and v; as follows:

(84) fi= FOR) + elogefV +efP + -+,
(85) Qi = ~—€]-%eg +logeQM + QP + ...,
(86) H; =logeH + ...

(87) 0; = bgegm + %e@ +o

(88) vi=vQloge+ v 4....

Equating coefficients of loge in (46)—(54) gives

1
1 0 (1) aQiyR _
(89) R(EE (Ref?) ——5~ ) =0
00 oQp) _ 0l .
(90) 90 OR ’
©)
1[0 o) _9Hir\ _
(O1) R(@R (REG) ~ =55~ ) =0.
0 oHY) oH{) .
(92) 90 _ OR
& 2 ¢(1)
©) . oy (0 0f; 19
) (v -er)f; (R)+R0R (R aR ) * 72 o2
(0) 2 £(1)
2 2N f: N;
3507 1) _ @) _ /gz QW 4+ B{; ’
©0) #(1)
@250 10 [2Nefif; 19 (ps0200
(94) L8 Ré?( R +RR(f Q)
10 (,.02~0) _
+ g (10°Q) =0
o (2NfVF VY 10 (o 02am) L LD [ 2a0
. _Ra< R + 735 (B Q) + 55 (7 Q')
(95)

10 [ 809 1 920"
tool e\ % 8r | TRE 982 ) =©



1286 S. JONATHAN CHAPMAN AND G. RICHARDSON
From (91) and (92) and the fact that H must be divergence-free we find
H" =vw, Viw=0.

Matching with the outer solution (63) gives

(96) H? = —Nye,.
From (94) and (95) we find
(0) 20(0)
(0)2 4 (0) 10 00, 1 079,
97 @290 _, (L9 [p09 ") 100 1}
o) fi7 & = (RBR (R orR ) T’ o0

It is apparent that @EO) must possess a singularity on the vortex line due to the
singularity of the phase parameter x on this line. From (29) we have

(98) 0l ~ —%(v“’) ‘ep) asR—0.

From (89) we see that we may write the ep and eg components of le) in terms of a
scalar potential 1;:

@ _ 10

(99) Qo= 790
1 _ O
(100) Qf) =222

In order to match with the asymptotic behaviour of the outer solution (83) we require
that ¥ ~ constantx Rsinf# as R — oo. With this motivation we look for a solution
of the following form:

(101) Y1 = ¢o(R)sinb,

(102) 0% = Uy Nyn(R) sin ¥,

(103) £ = go(R) cos,

(104) vO = Up(cosfer — sin fey) = Uph.

The system of equations (93), (95), and (97) then reduces to

1 po iy _ 2402 g 2Nef %0 | go(NE+1)
(105) F7 (Rgo') —3f;" g0+ g0 =—Uof; R2 R2 ’
2
T TOLINAY oY B b0 2Nk 90 _
(106) 7 (Rf2 ¢0> + ooUo N, (77 + R) R2 + R2 =0,
2
1, 1 9%

L R [ =0

where ' = d/dR. Equation (98) gives the boundary condition

1
(108) "~ g asR—0
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on equation (107). Matching with @5,0) gives the second condition:
(109) Rn—0 as R — oo.

This gives a well-posed problem for 1, and numerical solutions of (107) with boundary
conditions (108) and (109) have been given by Peres and Rubinstein [12].

We consider (105) and (106). Noting that the derivative of the leading order
solution fi(o) satisfies the homogeneous version of equation (105) we see that there
will be a solution if and only if a certain solvability condition is satisfied. To derive

this condition we multiply (105) by R fi(o)/ and the derivative of (59) by R fi(l) and
subtract to obtain
/
2N, O 1O g, 2N;§fi(0)90

2 ’ N
(110) RUf" + (Rgolfi(O) — Rgof{” ) - N TR

Using (106) to eliminate the final go, integrating over (0, 00), and using the asymptotic
behaviour of the fi(o) and @50) at 0 and oo we find

. $o\ _ UoB

(111) Aim <¢o ) =N
where

e 12 0 2
(112) 8= / RfOdR + N2 / FO%ndR.

0 0
Hence

. W _ Uoﬂ

1) i @f? =275

Before matching with the outer solution we proceed to determine one more term in
the inner expansion. Equating coefficients at the next order in (46)—(54) gives

(2)
1 15] (2) 6Q1‘7R _
(1) R <ﬁ (rel%) - =" ) =°
9 2 a (2)
(115) Qz’ = Q =0,
00 aR

(2) 2 £(2)
W . o) 1O 4 of; L P (O LSS
(v - er)f; R@R (R )—l— Cf; cos

i OR RZ 992
(116)
@2, @ o NefO 8y | NP
=305 f TR V2
i i R2 00 RZ
f(0)2@(1)_2Nkf1,(0) afz(2) + 11 f(0)2a’l/)2
a1 i RZ 00 ' ROR\' 7" R

£O? g2y, , O £O%sing .
R 962 R =5

+
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N fP 8P 1 9 0209\ £ 02,  CNef©’sing
_ 1 ) - Rf( ) /2 + () — 1
R 00 'ROR\'’¢ R R? 962 R

190 ooV 1 820
tool g\ B R | TR og ) =

From (114) we see that again we may write the ey and eg components of QEZ) in
terms of a scalar potential 1)5:

(118)

@2 _ 10
(119) Q) = =5

2 _ O
(120) Qi,R - 6R .

Using (117) and (118) we see that @2(.1) also satisfies (97). Matching with the outer
solution gives R@El) — 0 as R — oo, while (29) gives @1(-1) ~ ——-NR&(V(I) -eg) as R — 0.
Motivated by this and the asymptotic behaviour of the outer solution (83), we seek a
solution of (116)—(118) of the form

(121) 42 = ¢1(R)sinf + ¢2(R)sin(d - o),

(122) ¥ = g1 (R) cos b + ga(R) cos(6 — @),

(123) O = Uy Ngn(R) sin 6 + U Nyn(R) sin(6 — a),
(124) v = Ui 4 Uy(cos ah + sin ab)

= Ui(cosfer — sinfeg) + U, (cos(6 — a)er — sin(f — a)ey) .

Substituting (121)-(124) into (116)—(118) we obtain two sets of ordinary differential
equations for (¢1, g1) and (¢2, g2), respectively. The equations for (¢2, g2) are identical
to (105) and (106), with go replaced by g2, ¢o by ¢2 and Uy by U,. Hence

U8R

5N, as R — oo.

(125) P2 ~ —
The equations for (¢1,g;) are

1
R

~ 2Nkfi(0)¢1 (N,? + 1)91 + Cf(o)/
R2 R2 L

’ 2
(126) U157 + = (Rg}) =3 g1 — o1

2
oNef Vg1 ONus

R? RV

2
77)’_ £ +

1 (0)2 / ! ’
(127)  (RAV61) +ooliNe (v + 1) - 2
A similar analysis to that leading to (116) can be employed. Multiplying (126) by

R fi(o)/, subtracting the derivative of (59) multiplied by Rgi, eliminating g; by (127),
and integrating over (0, R) gives

as R — oo,

NkCR 1 Ulﬂ
(128) b1~ — (logR+’7—2 CN,?)
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where

V0P e f0P g1 g
12 = [ L L — ( )
(129) y /0 - dR+/1 E dR+N]§/O RF©%dR

Combining (125) and (128) we have

@, _CNe - LGB\
Q; 5 (cosOeg (logR+'y+2 CN? b

(130) UnB
- 2—]2\[1; (cosaﬁ — sinaﬁ) + QE?S)(S) es asR—oo.

Matching. We complete our analysis by matching the inner terms QEI) and Qgg)
with the outer solution QO , using (113), (130), and (83), following the matching
principle of Van Dyke [14]. We find that for the inner and outer solutions to match
we must have

2 A~
(131) v = _CNeB
B
2
P .
(132) v(1)=C/]BVk (7+log2—%)ﬁ—2 évk (cosaﬁ+sinab),
where

P(cosab —sinah) + Qf,?g(s) t(s) = Qf,"gm

(133) Ny 1
AL —Z v/ —ZlogL b
t5 Il,l—>InO /|s—Sl>Le (Z2 Z3) kA ds log (s)

§(s) is the unit vector tangent to the vortex line, and Qo .zt 1S given by (78). We note
from equation (38) that

JO = curl HO = —Q,

where J is the electric current. Writing

0 0
¢()g:1:t = Qc() gmt
and
© Ny / -z (1 Ad ——1 Lb
Tedin 2 Ll_%( |s—S|>Le (22 * z3 Zic s gL ble)

we see that (132) may be written as

B

‘Finally, combining (131) and (134), we obtain the following law for vortex motion:

1 N2 N2 1 2N .
(135) v—— BN, C k(7+log2_§) At 2t (30 +38)) A

CN? 1 2N, .
(1) k _* k (4(0) (0)
(134) vit) = 5 (7 + log 2 2) n+ (J ezt T 90 fin) At

B B B ofm
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The first two terms here correspond to the local self-induced motion of the vortex
filament. The final term is often interpreted as the Lorentz force on a vortex line
(since the vortex carries a quantised amount of magnetic flux).

Remark. If we had been considering a finite domain, rather than an infinite one,
equation (135) would still be valid, provided that we interpret the meaning of J E)?(Z:zt
correctly. This term is the regular part of the solution of equation (64) evaluated at
a particular vortex, having subtracted the contribution from the vortex itself. In the
infinite case we were able to evaluate J ((,?gzt explicitly to give equation (78). In the
finite case there will in general be no closed-form solution.

Calculation of the electric field. It is of interest to calculate the electric field
associated with a moving vortex. In particular, this will allow us to determine the
size of the voltage pulse generated by the vortex as a function of its velocity.

Outer region. The electric field is given by

__9Q
(136) E=-—~-V6.

In the outer region, away from the vortex core, we expand
EO =E((70)+....

The leading-order electric field is then given simply by
(137) E( = 9 (curl H(O))
o 6t (o} )

which is the London equation.

Inner region. In the inner coordinates (136) becomes
1
(138) Ei=—((v-V)Qi = V6y) + O(1).

We expand

loge 1
Note that E; is greater than O(e~2); hence the integral of E; over the inner region is
greater than O(1), and the outer solution in fact sees a §-function electric field at the
vortex core in the limit as ¢ — 0. This is the cause of the voltage pulse associated
with moving vortices. We calculate the strength of this §-function by considering the

limit as v tends to zero and X tends to infinity of

where t is the tangent to the vortex line. Noting that

v .)Q = v Acurl Q) + v(v® . Q),
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we find
k- / E Atds
= / k-[- (@ r Q") AE)+V (v0.Q - o{”) At as,
= / [- (kA (v A curl Q) -t+kAV (v©-Q -6{”). §] as,

= / [(k -v©®)curl Qz(-o) -t — curl ((V(O) . Qz(-o) - @go))k” ds,

where k is an arbitrary vector in the plane normal to the vortex. Applying Stokes’
theorem and using the fact that k was arbitrary, we find

/ E® Atds =v© / Q¥ Xegdf — v\ / QVvey do
R=X R

=V

- / (V(O) . ng) _ @2(0)) Xepdd
R=X
+ / (V(O) . Qz(.o) - @EO)) veg df.
R=v

When we insert the solution for ng) and ego) into this expression we find
(139) / E AtdS = Nprv(©.

Similarly, we find

(140) /E§1> AtdS = Nprv®,

This result can be combined with the outer solution (137) to give the following
expression for the electric field, valid up to o(1):

(141) E, = % (curl Hp) + 8 A v,
since

lii’% - gf (curl H,) AtdS = —Nymv,

lim (8 AV)AtdS = 2Ng7v,

v—0 r<v

where
8(z,y,2) = / 5z — 2)8(y — y)6(= — ') .
I

4. Asymptotic analysis of a system of densely packed vortices. In the
previous section we considered vortices that were separated by distances of order one.
This generated an outer magnetic field that was also order one, and the leading-
order term in the equation of vortex motion was a local self-induced motion due to
curvature.
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Here we consider briefly the case in which the vortex spacing is O(6), where
€ < 62 < 1. This leads to an outer magnetic field which is of order 1/62. When
we also choose 62 < 1/|loge| we expect that the motion due to this outer field will
replace the self-induced motion as the leading term in the law of vortex motion. We
show that this is indeed the case. There will be three regions to consider, namely,
0O(1), O(8), and O(e) lengthscales.

Outer region. A complete determination of the outer expansions of H, and Q,
will involve averaging over many vortices. Such a procedure is performed in [5], under
the assumption that neighbouring vortices point in the same direction and move with
the same velocity, and results in the equations

1
(142) H,= LHO 4.,
1
(143) Q, = §Q¢(’O) e,
(144) wi + curl(w A v®) =0,
(145) (curl)’H® + HO) = o,
(146) QY = —curl HO,

where w is the vortex density, v(?) is the vortex velocity, and time has been rescaled
with the inverse of the magnitude of this velocity, which we will find to be 2. To
close the model we need to determine v(%), which will again be provided by our inner
analysis of the vortex cores.

Intermediate region. When lengths are rescaled with § we find that the
leading-order equations for H and Q in the intermediate region, denoted by the
subscript int, become

(147) curl Hy,e =0,
(148) curl Qing =0,
(149) div Hips =0,
(150) div Qint =0
with the condition

(151) Qune ~ — 5y

as each vortex line is approached, where r = 6 'R and R and 0 are the curvilinear
coordinates (39)—(40) previously introduced. Hence

H{)
(152) H,, = 5151““" )
_Qf 1 / 1
(153) Qine = =3 %;Nm Fmv 7 Ads+ -,

(154) f0=1+"'7
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(0)
where H; ; and th are constant and Z,, and I',, are as before; H mt and th

are therefore simply HS,O) and QS,O) evaluated at the point about which lengths were
rescaled.

Inner region. The inner expansion becomes

€
(155) F=f0R) + 50+
N 1
(156) Q= _:_Rfe i 6_2Q§1) +logeQ® +---,
(157) o= RO 1°g€@<1>
1
(158) Hl = ﬁHq(,O) + log CHEI) + ceey
1, )
(159) V=6—2v +logev') + ...

A scalar potential may be defined for le) as before:

o _ 104
1 _ Oh

The order-6~2 solution of the inner equations then takes the form

(162) Y1 = ¢o(R)sin(f — a),
(163) 0 = Ugn(R)sin(6 — a),
(164) £V = go(R) cos(9 — a),

v(® = Uy (cos(8 — a)er — sin(6 — a)ey)
(165) .
=0 (cos an + sin ab) .

The calculation proceeds as for (105)—(107) and leads to

im Q) = _ o8 -
(166) Rh—I)réoQi oI, (cosab sman)—l—Q (s)es.

Matching this with the solution in the intermediate region we find that
2PN, -
(167) v0 = —Tk (cos of + sin ab) ,

where

(168) th (cos ab — sin an) + th s(s)es.
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Hence
2N 2N
(169) v® = ﬂ’“Qf,?z At ﬁkJ(O) At
where JSP) = —Qf,o) = curl HS,O) is the leading-order electric current in the outer

region. Thus we see that the motion of the vortex is dominated by the mean-field
behaviour. Equation (4) closes the model (144)—(145) in the outer region.

Remark. We have considered the cases § ~ 1 and 62 < 1/|loge|. Vortex velocities
are dominated by the self-induced motion in the first case and by a mean-field motion
in the second. Clearly we could also consider the case 62 ~ 1/|loge|, in which case
the self-induced motion and the mean-field motion are of the same order. We would
find that the law of motion, as expected, is simply the sum of self-induced and mean-
field motions. However, in formulating the outer, mean-field model of vortex motion
(144)-(145) we needed to assume that neighbouring vortices point in roughly the same
direction and move with the same speed. This will clearly not be the case while the
vortex velocity depends on its curvature. Thus, although the case 62 ~ 1/|loge| is
a canonical scaling which bridges the gap between our examples, the outer model is
hard to formulate for this scaling of the parameters.

5. Conclusion. We have performed a formal asymptotic expansion of the solu-
tion of the Ginzburg—Landau equations for a system of curvilinear vortices in a type II
superconductor as the core size of the vortices tends to zero. In this limit the vortices
behave as line singularities in the equation for the magnetic field.

This simplified model is then closed by considering a local analysis of each vortex
core which results in a law of motion for the singularities. The leading term in this
law of motion is a local self-induced term proportional to the curvature of the vortex
line and in the direction of the principal normal.

In the corresponding law of motion for vortices in an inviscid fluid the leading-
order term is also a local self-induced motion proportional to the curvature but is
directed in this case along the binormal. This difference of behaviour may be illus-
trated by the following simple example.

Consider the following helical line singularity:

(170) a(s,t) = (a(t) cos k(t)s, a(t) sin k(t)s, c(t)s + d(t)) .
Then
(171) Eq = (d cos ks — aksin ks, asin ks + ak cos ks, és + d) ,
(172) t= ﬁ (—aksin ks, akcosks, c),
(173) i = (—cosks,—sinks,0),

- 1
(.174) b= W/ (csinks, —ccos ks, ak),

2

(175) ak

2+ a2k
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where a dot represents d/dt. For a fluid vortex we have v = Cb, giving

(176) a = constant,
77 ¢ = constant,
; —ck?
(178) k= CEY TR
. a%k3

Hence the amplitude and pitch of the helix remain constant, but the vortex precesses
and translates. For the particular case of a circle (¢ = 0) we have k = constant,
d = t/a, and the vortex translates uniformly. We note that a helix is the only known
exact solution of the equations of motion of an isolated fluid vortex [2].

For a superconducting vortex, we have v = Cn, giving

(180) d = constant,
(181) ¢ = constant,
(182) k = constant,
—ak?
(189) Y EraR
Therefore
2 a?
184 — loga + — = —t + constant.
k2 2

Hence the vortex does not precess or translate, the pitch of the helix remains constant,
and its amplitude tends to zero in infinite time. For the particular case of a circle we
have a = 1/2(to — t), and the vortex extinguishes itself in finite time.

At the next order the law of motion of a superconducting vortex contains three
terms. The first is again a local self-induced term, proportional to curvature and
along the principal normal. The second is a nonlocal self-induced term which is due
to the current generated by the “arms” of the vortex line. The third is a term due to
the current generated by all the other vortices present.

Unlike fluid vortices, for which the corresponding terms give the vortex a velocity
equal to the underlying fluid velocity, vortices in a superconductor do not move with
the current but in a direction perpendicular to both it and the vortex line. This change
in the direction of motion again leads to behaviour in a system of superconducting
vortices very different from that in the corresponding system of fluid vortices. For
example, a pair of parallel rectilinear vortices in a superconductor will move along
the line of centres (like vortices repel, opposite attract), whereas the corresponding
motion of fluid vortices would be perpendicular to the line of centres.

Finally, we considered a situation in which the density of vortices was such that
the self-induced term in the law of motion was replaced by the motion due to the
mean-field as the leading term. Such a situation is important when we formulate
a mean-field model of superconducting vortices, in which the individual vortices are
replaced by a vortex density, as in [5].
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