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Abstract—In vehicular networks, information dissemina-5
tion/sharing among vehicles is of salient importance. Although6
diverse mechanisms have been proposed in the existing liter-7
ature, the related information credibility issues have not been8
investigated. Against this background, in this paper, we propose9
a credible information-sharing mechanism capable of ensuring10
that the vehicles do share genuine road traffic information (RTI).11
We commence with the outage-probability analysis of informa-12
tion sharing in vehicular networks under both a general scenario13
and a specific highway scenario. Closed-form expressions are de-14
rived for both scenarios, given the specific channel settings. Based15
on the outage-probability expressions, we formulate the utility of16
RTI sharing and design an algorithm for promoting the sharing of17
genuine RTI. To verify our theoretical analysis and the proposed18
mechanism, we invoke a real-world dataset containing the locations19
of Beijing taxis to conduct our simulations. Explicitly, our simula-20
tion results show that the spatial distribution of the vehicles obeys21
a Poisson point process, and our proposed credible RTI sharing22
mechanism is capable of ensuring that all vehicles indeed do share23
genuine RTI with each other.24

Index Terms—Credibility, information dissemination, informa-25
tion sharing, Poisson point process (PPP), reinforcement learning,26
vehicular networks.27

I. INTRODUCTION28

V EHICULAR communications and their support net-29

works were originally proposed for public safety30

applications and traffic efficiency enhancements, which31

necessitate reliable short-distance vehicle-to-vehicle and32

vehicle-to-infrastructure communications [1]. With the advent33

of advanced automobile technology, the globe’s population has34
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become more mobile. For example, Americans ride 224 miles 35

or more per week either as a driver or passenger, and the total 36

time spent traveling in a vehicle per week is a staggering 18 h 37

and 31 min [2]. Meanwhile, the vehicular users’ demands for 38

in-car communication have also been dramatically increasing, 39

since a wealth of value-added services emerge such as safety 40

message dissemination and in-car entertainment services. 41

Most of the existing works on information dissemina- 42

tion/sharing were focused on designing specific mechanisms, in 43

particular scenarios of vehicular networks. However, the credi- 44

bility of the shared road traffic information (RTI) has not been 45

taken into account in those mechanisms. Although all the vehi- 46

cles act in a cooperative manner, the selfish or malicious ones 47

may share either random or manipulated information for the 48

sake of attaining an unfair road priority. Hence, we consider this 49

problem and propose a mechanism for ensuring that all vehicles 50

share genuine RTI. Furthermore, we define the utility functions 51

of vehicles in the RTI sharing mechanism for the sake of ana- 52

lyzing their incentives in the RTI sharing process, and provide a 53

general analytical framework for the information-sharing outage 54

probability (OP) of vehicular networks. The new contributions 55

of this paper can be summarized as follows. 56

1) We derive the information-sharing OP of vehicular 57

networks both for the general scenario modeled by 58

Nakagami-m fading and for a more specific highway 59

scenario, where Rayleigh fading is considered. 60

2) In order to encourage vehicles to share genuine RTI, we 61

design a mechanism based on the reinforcement learn- 62

ing model, where the concept of “reputation” is intro- 63

duced for circumventing the vehicles’ selfish behaviors by 64

exploiting its similarity to human social networks. 65

3) The real-world dataset containing the locations of Bei- 66

jing taxis is utilized for verifying the vehicles’ spatial 67

distribution characteristics. Based on the parameters in- 68

ferred with the aid of training from this dataset, we ver- 69

ify our analytical outage performance results as well as 70

the proposed mechanism by our real-world data-driven 71

simulations. 72

The rest of the paper is organized as follows. We first 73

summarize the related works in Section II. Then, our sys- 74

tem model is introduced in Section III. Based on the sys- 75

tem model, the information-sharing OP is derived both for the 76

general Nakagami-m as well as for the more specific Rayleigh- 77

distributed highway scenario in Sections IV and V, respec- 78

tively. In Section VI, we present the proposed RTI sharing 79

scheme, while Section VII provides our real-world data-driven 80

simulation results. Finally, we conclude in Section VIII. 81
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II. RELATED WORKS82

The provision of information dissemination/sharing among83

vehicles is of pivotal significance in vehicular networks, which84

has been extensively studied in the literature [3]–[21]. Specif-85

ically, Zhao etal. [3] proposed an architecture and analyzed86

the dissemination capacity, where the data emanating from the87

sources were buffered by vehicles and then it was rebroadcast at88

the intersections. Similarly, the concept of a “smart road” was89

introduced and an integrated vehicular system was conceived for90

the collection, management, and provision of context-aware in-91

formation concerning the traffic density and driver location [4].92

Later, the vehicular ad hoc network (VANET) concept was93

proposed for assisting the dissemination of critical vehicle track-94

ing information [5]. Meanwhile, Cenerario et. al. designed an95

event-related information exchange/sharing protocol relying on96

a VANET in [6]. With the goal of supporting a wide range of97

vehicular networks, Ros et al. [7] proposed a broadcast algo-98

rithm relying on periodic beacon messages, which contained99

acknowledgments of the circulated broadcast messages. The ur-100

ban scenario of vehicular networks was studied based on the101

road map information as prior knowledge in [8] and relying on102

peer-to-peer (P2P) cooperative caching in [9]. The heterogene-103

ity of radio propagation was taken into account in [10], where104

the tradeoffs amongst parameters, such as the cost, delay, and105

optimized system utility, were analyzed. The performance anal-106

ysis of information sharing in vehicular networks was carried107

out in [11]–[15]. More specifically, the distribution of concur-108

rent transmissions was analyzed in [11], while the analysis of109

packet loss rate and packet transmission distance was provided110

in [12]. The analysis of end-to-end reliability was disseminated111

in [13], while the throughput and delay analysis was the subject112

of [14] and [15].113

On the other hand, the security issues of vehicular informa-114

tion dissemination were investigated in [16]–[18]. Explicitly,115

a graph-based metric was proposed for insider attacker detec-116

tion in [16], whilst a trustworthiness verification model was117

advocated in [17] and a cooperative neighbor position verifi-118

cation model was conceived in [18]. Moreover, the informa-119

tion sharing in vehicular networks was modeled by carefully120

adapting the perspective of social networks [19]–[21]. Most of121

the aforementioned contributions were focused on designing122

specific mechanisms for information dissemination/sharing in123

particular scenarios of vehicular networks. However, the credi-124

bility of the shared RTI has not been taken into account in those125

mechanisms, which hence inspired this paper.126

III. SYSTEM MODEL127

As illustrated in Fig. 1, we consider a cooperative vehic-128

ular network constituted by a group of vehicles denoted by129

S = {v0, v1, v2, . . . , vi , . . .}. Since all the vehicles are indepen-130

dent of each other, although their locations are geographically131

constrained by the mesh of roads in a city, they can be viewed132

as being randomly distributed. By exploiting this property, we133

assume that the locations of the vehicles obey a Poisson point134

process (PPP) on the 2-D road mesh with an intensity of λ (the135

number of vehicles per square kilometer). The PPP has been136

Fig. 1. System model.

widely adopted for modeling the distribution of random place- 137

ments, such as the locations of macrocell and femtocell base 138

stations [22], [23], as well as of ad hoc nodes [24]. In contrast to 139

the existing PPP model of an infinite 2-D plane, the PPP model 140

of a vehicular network is constrained by the road-width, which 141

may nonetheless be as wide as say 100 m in metropolitan areas. 142

Let us denote the road-width by W , which is assumed to be a 143

constant. Based on the PPP model, the number of vehicles in 144

any finite rectangle having a width of W and a length of D is 145

Poisson distributed with a mean of λAr , which can be expressed 146

as 147

P (Nr = n) =
e−λW D (λWD)n

n!
. (1)

In our model, all the vehicles are assumed to be selfish, aim- 148

ing for maximizing their own utility. We also assume that each 149

vehicle has the capability of acquiring RTI and that they are will- 150

ing to share it with each other in order to make better-informed 151

decisions. The RTI can be for example the location information 152

invoked for cooperative vehicle localization [25], or the traffic 153

information invoked for cooperative route planning [26]. Our 154

proposed model is general, and hence, it is independent of the 155

specific form of the RTI. As shown in Fig. 1, at the beginning of 156

each time slot, all the vehicles acquire the current RTI by their 157

in-car sensors or by exploiting the driver’s judgment. Then, each 158

vehicle has to decide, whether it will truthfully share this infor- 159

mation with others or whether to manipulate the shared RTI to 160

render it useless, either, for example, due to privacy concerns 161

or with the objective of gaining an unfair road priority. There- 162

fore, although all the vehicles act in a cooperative manner, they 163

occasionally may share random or manipulated information for 164

the sake of improving their own utility. Then, each vehicle ex- 165

changes either its perceived genuine information or the false 166

RTI with the nearest vehicle in a P2P mode. Following the 167

information-sharing phase, each vehicle exploits its own infor- 168

mation, as well as the shared information to make an informed 169

decision as to whether to change speed, lanes, routes, or just 170

maintain the current status. Finally, at the end of each time slot, 171

the vehicle evaluates the performance attained as a result of its 172

decision and then adjusts its actions in preparation for the next 173

round. Here, we consider a practical scenario, where a vehicle 174

is unable to ascertain the credibility of the RTI gleaned, until the 175
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information is actually utilized for its decision making and until176

the resultant performance is evaluated. Note that the time slot177

mentioned in this paper represents a coarse scale, on the order178

of seconds or minutes. Such a coarse synchronization can be179

readily achieved by the GPS, which has been widely deployed180

in vehicles. When it comes to information sharing between two181

vehicles, a fine-grained physical layer synchronization should182

be guaranteed for successful data transmission. However, such183

a fine-grained synchronization is not required for the entire184

network.185

The above-mentioned P2P mode is assumed to be supported186

by the IEEE 802.11p protocol (a.k.a., the Wireless Access in the187

Vehicular Environment (WAVE)) relying on the classic Request188

To Send/Clear To Send (RTS/CTS) mechanism for the sake of189

avoiding the hidden terminal problem [27][28]. In this case, as190

shown in Fig. 1, only a single pair of vehicles is sharing infor-191

mation in a time slot within their carrier-sensing range, such as192

vi and vj . Based on this characteristic, the two-directional out-193

age analysis is not considered in this paper, since only a single194

pair of vehicles is engaged in communication within the range.195

Nevertheless, the vehicles beyond vi and vj ’s carrier-sensing196

area may also impose interference on their communications197

according to the practical interference model of [29]. Accord-198

ing to the experimental results of [30], the 5.9 GHz dedicated199

short-range communications frequency band may be modeled200

by a Nakagami-m fading channel, provided that the distance201

between two vehicles is below 40 m. By contrast, it is modeled202

by a Rayleigh-fading channel when it is above 40 m, which is a203

special case of the Nakagami-m fading associated with m = 1.204

A line-of-sight (LOS) Rician channel may also occur under cer-205

tain circumstances. Nevertheless, we would like to concentrate206

on the Nakagami-m and Rayleigh-fading scenarios, especially207

when it comes to the metropolitan areas, where the presence208

of buildings and of the infrastructure may block the LOS as in209

Beijing city. Thus, the power received by the vehicle vi from its210

peer vj located at a distance of di,j can be expressed as211

yi,j = |hi,j |2d−αi , j

i,j (2)

where αi,j is the channel’s path loss coefficient and hi,j is the212

channel gain. Since the distance between a pair of communi-213

cating vehicles can be 40 m or higher, hi,j should obey the214

Nakagami-m distribution of [31]:215

fhi , j
(x) = 2

(
m

μi,j

)m
x2m−1

Γ(m)
exp

(
−m

x2

μi,j

)
(3)

where Γ(·) is the gamma function, μi,j = E(|hi,j |2) is the aver-216

age received power, and m is the Nakagami-m fading parameter.217

In this paper, we only consider integer m values for the sake of218

mathematical tractability. Let us introduce gi,j = |hi,j |2, where219

gi,j obeys the gamma distribution of220

fgi , j
(x) =

(
m

μi,j

)m
xm−1

Γ(m)
exp

(
−m

x

μi,j

)
. (4)

When using the IEEE 802.11p protocol, all the vehicles that221

impose interference on the vehicle vi in Fig. 1 should be lo-222

cated farther than 40 m [30]. In this case, the Rayleigh-fading223

model should be considered for the link imposing interference 224

by the vehicle vk upon vi , i.e., gi,k should obey the exponential 225

distribution of 226

fgi , k
(x) =

1
μi,k

exp
(
− x

μi,k

)
. (5)

IV. CHANNEL-INDUCED OUTAGE PROBABILITY IN A GENERAL 227

SCENARIO 228

In this section, we theoretically analyze the channel-induced 229

OP of vehicular networks. The classic channel-induced OP of a 230

specific vehicle vi is defined as the probability of vi’s signal-to- 231

interference-plus-noise ratio (SINR) dipping below a threshold 232

of Υ, i.e., 233

pvi
= P [γvi

≤ Υ] (6)

which, in fact, is also the cumulative distribution function (c.d.f) 234

of this vehicle’s SINR. Since the channel-induced OP is a 235

physical-layer metric, the fact of whether a vehicle shares gen- 236

uine or false information is irrelevant in this section. By contrast, 237

in Section V, we will use the channel-induced OP for modeling 238

the vehicles’ future utility trend, depending on whether they are 239

sharing genuine or false RTI. 240

As illustrated in the system model, we consider a P2P 241

scenario, where every pair of closest vehicles exchange their 242

respective RTI within each time slot. For a specific vehicle v0, 243

its closest counterpart v1 should be the intended information- 244

sharing peer. Let us denote the distance and channel gain of v0 245

with respect to the transmitter of the vehicle v1 by d1 and g1, 246

respectively. Then, the SINR of the vehicle v0 can be written as 247

γ0 =
g1d

−α1
1

Λ
(7)

where α1 is the path loss coefficient, and Λ is the interference 248

imposed by the other vehicles on the vehicle v0 plus the noise 249

power. Let us assume that v1 is the vehicle closest to v0. Then, 250

according to the experimental results of [30], the channel gain 251

g1 should obey the gamma distribution as in (4) with a mean of 252

E[g1] = μ1 and Nakagami-m fading parameter of m1. During 253

the information sharing between the pair of vehicles v0 and 254

v1, the signals of all other vehicles, represented by vi (∀vi ∈ 255

S\{v0, v1}), should be considered as interference. Let us denote 256

the distance and channel gain between vi and v0 by di and gi , 257

respectively. In this case, the interference plus noise power Λ 258

can be calculated by 259

Λ =
∑

vi ∈S\{v0,v1}
gid

−α2
i + σ2 (8)

where α2 is the path loss coefficient and σ2 is the vari- 260

ance of the zero-mean circularly symmetric complex-valued 261

Gaussian noise. Assuming that the other vehicles—except 262

for the closest one—are relatively far from v0, Rayleigh 263

fading prevails between vi and v0, i.e., the interfering 264

channel’s gain gi obeys the exponential distribution as in 265

(5). Since all vehicles are independent of each other, the 266

channel gains {gi,vi ∈S\{v0,v1}} are independent identically dis- 267

tributed (i.i.d.), whereE[gi,vi ∈S\{v0,v1}] = μ2. Thus, the SINR of 268
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vehicle v0 becomes269

γ0 =
g1d

−α1
1∑

vi ∈S\{v0,v1} gid
−α2
i + σ2

(9)

while the channel-induced OP of vehicle v0 in sharing270

information with v1 is formulated as271

p0 = Eg1,d1,gi ,di
[P (γ0 ≤ Υ)] . (10)

In the following theorem, the channel-induced OP expression272

of vehicle v0 is formulated for a specific time slot.273

Theorem 1: In a vehicular network relying on the 802.11p274

protocol and RTS/CTS, a vehicle’s information-sharing OP can275

be expressed as276

p0 = 1 − 2λW

∫ +∞

τ =0

m 1−1∑
k=0

(−m1τ
α2Υ)k

k!μk
1

dkLΛ(s)
dsk

∣∣∣∣
s= m 1τ α 1 Υ

μ 1

e−2λW τ dτ (11)

where the target SINR is Υ and we have277

Φα (x) = x1/α

∫ +∞

x−1/ α

1
1 + uα

du. (12)

Proof: See the proof in Appendix A.278

V. INFORMATION-SHARING OUTAGE PERFORMANCE IN279

HIGHWAY SCENARIO280

In Theorem 1, (11) provides the information-sharing OP of281

vehicular networks in a general form, which can be used in any282

arbitrary scenario, including both dense and sparse vehicular283

network scenarios. However, when considering specific appli-284

cation scenarios, further approximations can be adopted in the285

derivation of Theorem 1. In this section, we will consider a286

highway-specific scenario, where the distance amongst vehicles287

may be substantially higher than in the downtown area, say288

over 30 m on average. According to the experimental results289

of [30], the channel between a pair of vehicles in this high-290

way scenario is Rayleigh fading, which implies that the channel291

between vehicle v1 and v0 is Rayleigh fading. Hence, g1 in (7)292

obeys follow the exponential distribution with the same mean as293

gi . In essence, this specific Rayleigh-fading highway scenario294

constitutes a special case of Nakagami-m fading associated with295

m = 1. The following corollary formulates the channel-induced296

OP in this highway scenario.297

Corollary 1: In a highway vehicular network relying on the298

802.11p protocol and RTS/CTS, a vehicle’s information-sharing299

OP can be expressed as300

p
hwy1
0 = 1 − 2λW

∫ +∞

τ =0
exp

(
−σ2Υ

μ
τα1

)
· (13)

exp

[
−2λWΥ

1
α 2 τ

α 1
α 2 Gα2

((
τα2−α1

Υ

) 1
α 2

)]
· e−2λW τ dτ

where we have301

Gα (x) =
∫ +∞

x

1
1 + uα/2

du. (14)

Proof: See the proof in Appendix B. 302

According to the experimental results of [30], in the highway 303

scenario the path loss measurements showed a dual-slope model, 304

having a break-point at the distance of 100 m. When the distance 305

between two vehicles is below 100 m, the path loss coefficient is 306

α, while beyond 100 m it is β. Since 100 m is already at the limit 307

of the 802.11p-based P2P information sharing, we can focus our 308

attention on considering the scenario, where all vehicles’ path 309

loss models are identical, i.e., α1 = α2 = α. Specifically, the 310

experimental results of [30] showed that the path loss coefficient 311

is α = 2 under 100 m. The channel-induced OP of this specific 312

scenario is formulated in the following corollary. 313

Corollary 2: In a highway vehicular network using the 314

802.11p protocol and RTS/CTS, where the path loss co- 315

efficients amongst the vehicles are identical, a vehicle’s 316

information-sharing OP can be expressed as 317

p
hwy2
0 = 1 − 2λW

∫ +∞

τ =0
exp

×
[
−σ2Υ

μ
τα − 2λW

(
1 + Φα (Υ)

)
τ

]
dτ. (15)

Specifically, when the channel’s path loss coefficient is α = 2, 318

the closed-form expression of the channel-induced OP can be 319

formulated as 320

p
hwy2
0 = 1 − 2λW

√
π

χ1(Υ)
exp

(
χ2

2(Υ)
4χ1(Υ)

)

× Q

(
χ2(Υ)√
2χ1(Υ)

)
(16)

where χ1(Υ) and χ2(Υ) are 321

χ1(Υ) =
σ2

μ
Υ (17)

χ2(Υ) = 2λW
(

1 +
√

Υ arctan
√

Υ
)

. (18)

Proof: See the proof in Appendix C. 322

It can be seen that (16) gives a simple closed-form expression 323

for a single vehicle’s information-sharing OP, which simply re- 324

lies on the calculation of the Q-function. If we now consider the 325

specific scenario, where the channel noise is negligible com- 326

pared to the interference arriving from the other vehicles vi , 327

i.e., for σ2/Λ → 0, the information-sharing OP can be further 328

simplified using the following corollary. 329

Corollary 3: In a highway vehicular network associated with 330

the 802.11p protocol and RTS/CTS, where the path loss co- 331

efficients of all vehicles are identical and the channel noise is 332

negligible compared to the interference, a vehicle’s information- 333

sharing OP during a specific time slot can be expressed as 334

p
hwy3
0 =

Φα (Υ)
1 + Φα (Υ)

. (19)

Specifically, when the channel’s path loss coefficient is α = 2, 335

we have 336

p
hwy3
0 =

√
Υ arctan

√
Υ

1 +
√

Υ arctan
√

Υ
. (20)
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Proof: Equations (19) and (20) can be readily obtained by337

setting σ2 = 0 in (15) and (16), respectively.338

By now, we have completed the theoretical information-339

sharing OP analysis, which is an important metric that340

reflects whether information sharing can be reliably accom-341

plished. Note that successful information sharing in the ve-342

hicular network relies both on successful transmission in the343

presence of no channel-induced outage and no genuine-344

information-sharing outage. Based on the channel-induced OP345

analysis of this section, the next section will propose a RTI346

sharing mechanism that ensures for the vehicles to share gen-347

uine information.348

VI. ROAD TRAFFIC ENGINEERING SHARING MECHANISM349

In the previous section, we have studied the information-350

sharing OP of the vehicular network considered. Following the351

above performance analysis, this section will consider the ve-352

hicles’ information-sharing strategies, utilities, and interactions353

during the RTI sharing process. Note that the sharing of RTI354

cannot succeed if a channel-induced outage happens between355

the vehicles. Let us consider a cooperative vehicular network356

supporting N selfish vehicles indexed as {v1, v2, ..., vN }, each357

aiming for maximizing its own utility. As mentioned in the in-358

troduction, although all vehicles share the RTI in a cooperative359

manner, their specific degree of altruism/selfishness determines360

whether they may share false or genuine RTI for the sake of im-361

proving their own utility by exploiting unfair priority on the road362

for example. Considering this issue, each vehicle vi is assumed363

to have a binary action space defined as follows:364

ai =

{
SG : sharing genuine RTI

SF : sharing false RTI.
(21)

As a counterpart, a mixed strategy can also be defined for vehicle365

vi in which qi represents the probability of vehicle vi sharing366

genuine RTI, complemented by a (1 − qi) probability of false367

RTI. As mentioned in the system model, each vehicle evaluates368

the RTI gleaned from its peer vehicle at the end of each time369

slot. Additionally, we also consider a binary information reward370

space, where the genuine RTI earns a reward of R, while the371

issuance of false RTI results in a zero reward. In such a case, we372

can summarize vehicle vi’s utility functions as follows:373 ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Uij(SG,SG ) = (1 − pij)R − ci

Uij(SG,SF ) = −ci

Uij(SF ,SG ) = (1 − pij)R

Uij(SF ,SF ) = 0

(22)

where Uij(a, b) represents vehicle vi’s utility, when its strategy374

is a and its peer vj ’s strategy is b with pij denoting the channel-375

induced OP between vj and vi , and ci > 0 represents the ad-376

ditional cost of sharing genuine information. Then, (1 − pij)R377

quantifies the expected reward. Additionally, it is assumed that378

the link’s OP pij should be no higher than 1 − ci

R ; otherwise, no379

vehicle would share genuine RTI under any circumstances.380

The credit mechanism of the vehicular networks considered381

may be designed by observing human social networks. The382

concept of “reputation” is rather important for everyone in the 383

real world, where a person’s credit/reputation is generated and 384

updated according to his/her accumulated behaviors in human 385

social networks. Explicitly, when interacting with a reputable 386

person, we are inclined to maintain future contacts with him/her. 387

On the other hand, if we learned a lesson from interacting with 388

someone having a bad reputation, a long-lasting cooperation 389

may be unlikely. Similarly, in our cooperative vehicular net- 390

work, each vehicle can evaluate the others’ credit through learn- 391

ing from its interactions with other vehicles. In this case, a 392

vehicle can determine whether to share its RTI with a specific 393

vehicle according to that vehicle’s credit/reputation. When a ve- 394

hicle’s credit is below a certain threshold, other vehicles would 395

not share any RTI with it. It is expected that through rounds of 396

interactions, each vehicle’s credit can be gradually learned by 397

the observations and evaluations of its shared RTI. According 398

to this credit information, the vehicles associated with a low 399

credit would obtain less and less shared RTI, and eventually 400

they will have to change their RTI sharing strategy to improve 401

their reputation. We assume that there is a central server and 402

each vehicle can report its experience in sharing RTI with all 403

others. As a result, the database records the vehicles’ credit. 404

The credit established by each vehicle is considered to be pri- 405

vate information, which may not be appropriate for the server 406

to release to the public. This is similar to our human social net- 407

work, where the credit earned by each individual is not directly 408

visible to others. Nevertheless, through rounds of interactions, 409

one vehicle’s credit can be gradually learned by others. Note 410

that the central server is only used by the vehicles to inform the 411

others about their RTI sharing experience and to store the credit 412

value of each vehicle. Since the experience can be quantized to 413

a low number of discrete levels, the amount of data related to 414

each vehicle is relatively small. Therefore, the server does not 415

have to maintain a large-scale database. A potential solution is 416

that each vehicle stores its own experience and the credit values 417

of other vehicles locally. 418

Similar to the human social networks, each vehicle of our 419

vehicular network can have a credit value generated by its past 420

behavior, and also determines its future behavior when sharing 421

RTI with others. Let us define vehicle vi’ reputation value as 422

ri in conjunction with 0 ≤ ri ≤ 1. Note that in human social 423

networks, a person’s behavior is typically consistent with his/her 424

reputation, regardless of the specific credit of the other persons 425

he/she is interacting with. Similarly, vehicle vi’s RTI sharing 426

strategy qi should also be consistent with its reputation ri , and 427

thus these two parameters can be deemed to be identical, i.e., 428

we have ri = qi . When vi has the knowledge of vehicle vj ’s 429

credit/reputation through rounds of RTI sharing interactions, vi 430

can determine whether to cooperate with vj in the future. Let 431

us define vi’s interaction probability and action with respect to 432

other vehicles as 433

κi = [κi1, κi2, . . . , κiN ] (23)

ηi = [ηi1, ηi2, . . . , ηiN ] (24)

where 0 ≤ κij ≤ 1 represents vi’s probability of sharing RTI 434

with vj , regardless whether this is genuine or false information, 435
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and ηij = 0 or 1 represents whether or not to cooperate with436

vj in a specific time slot. In such a scenario, at the beginning437

of each time slot, each vehicle first has to determine its next438

action ηij , i.e., whether to cooperate with the nearest vehicle439

vj , according to vi’s interaction probability κij . Then, if it has440

decided to share RTI with vj , it has to further determine the441

RTI sharing action ai , i.e., as to whether to share genuine or442

false RTI with a specific peer vehicle, according to both vi’s443

information-sharing strategy qi as well as to its reputation ri .444

Meanwhile, after rounds of RTI sharing interactions, vehicle445

vi should update its interaction probability κi according to its446

experience with the others or by querying the database. It is447

expected that through a series of alternating decision making448

and learning processes, the vehicles having a bad reputation449

would obtain decreasingly less shared RTI from the others, and450

thus they would have to ameliorate their credit/reputation by451

actively sharing genuine RTI hereafter.452

During the multiround RTI sharing process, none of the ve-453

hicles has access to the other vehicles’ information-sharing454

strategies, actions, and utilities. Moreover, due to the rapidly455

evolving topology of vehicular networks, each vehicle may456

share its RTI with different vehicles during different time slots.457

Hence, from an individual vehicle’s perspective, the network458

including all other vehicles can be regarded as an external envi-459

ronment, within which the vehicle makes decisions and shares460

RTI with the goal of maximizing its own utility. Generally, each461

vehicle learns from its interactions with this dynamic environ-462

ment and adapts to the environment by adjusting its strategies463

for the sake of gleaning an increased utility. Reinforcement464

learning is a powerful tool capable of solving such an adap-465

tive environment-learning and decision-making problem [32].466

Its actions are reminiscent of how an intelligent agent infers the467

unknown statistical features of its environment as well as its468

actions in the environment so as to maximize a certain notion469

of the cumulative reward, where the environment itself is grad-470

ually changed by the agent’s actions. Reinforcement learning471

has been widely adopted in communications and networks [33],472

[34], control [35], finance, and economics [36], as well as in473

social science [37], [38].474

In our model, one of the main technical problems is how475

each vehicle constructs its interaction probability vector κi af-476

ter rounds of RTI sharing interactions with the others. Based477

on the reinforcement learning model, each vehicle should first478

construct its perception through learning the others’ inclination479

in RTI sharing. The perception is a quantitative representation480

of the accumulated utilities, which records all the historical in-481

teractions of the past as well as the new interaction results. In482

other words, it relies on the exploitation of past knowledge and483

on the exploration of a new environment [32]. Let us define484

vehicle vi’s perception of the others’ behaviors as zi , where485

zi = [zi1, zi2, . . . , ziN ] (25)

with zij being vehicle vi’s perception with respect to vj . At the486

end of each time slot, vi first evaluates the utility of information487

received from vj and then utilizes this utility value for adjusting488

its perception associated with vj , while keeping the perception489

of others unchanged, which can be expressed as 490

zt+1
ij =

{
(1 − εt

i)z
t
ij + εt

iU
t
ij, if ηt

ij = 1

zt
ij, if ηt

ij = 0
(26)

where the superscript t represents the time slot, Ut
ij is vi’s utility 491

gleaned through exchanging information with vj during time 492

slot t, and εt
i is a sequence of averaging factors controlling the 493

rate of decay in conjunction with
∑

t εt
i = ∞ and

∑
t(ε

t
i)

2 < ∞. 494

The constraint of
∑

t εt = ∞ is imposed for ensuring εt > 0, 495

i.e., the new learned utility Ut
ij should always be incorporated. 496

By contrast, the constraint of
∑

t(ε
t)2 < ∞ is used for ensuring 497

εt < 1, i.e., the history of the learned experience zt
ij should 498

always be utilized. 499

After updating the perception zi , vehicle vi can utilize it for 500

generating its interaction probability with respect to vehicle vj . 501

Apparently, the more utility vi can obtain through sharing RTI 502

with vehicle vj , the higher the interaction probability κij should 503

be, which represents a proportional relationship between κij 504

and zij . Here, we adopt a normalized performance evaluation 505

method based on the Boltzmann exploration rule formulated as 506

follows [32]: 507

κt
ij =

eξt
i z t

i j

max{eξt
i z t

i j ,∀j}
(27)

where the positive coefficient ξt
j controls the exploration level 508

with ξt
j → 0 leading to a 0.5 interaction probability, while for 509

ξt
j → ∞ the action would concentrate only on one of the pure 510

unconditional cooperation or no cooperation strategy, whichever 511

results in a higher perception. The physical meaning of (27) is 512

that vehicle vi always shares RTI with that specific vehicle, 513

which can give vi the highest utility. Then, vi considers this 514

highest utility as a reference, when it determines its interaction 515

probability with others. 516

To summarize, the reinforcement learning-based credible RTI 517

sharing scheme can be interpreted as a process, in which each 518

vehicle learns about its utilities as well as perceptions, and then 519

updates its estimation regarding the other vehicles’ reputation 520

as well as adjusts its interaction behavior accordingly using its 521

accumulated perception. The evolution from zt
ij to zt+1

ij can be 522

illustrated by a chain of iterative elementary steps: the initial 523

perception gives rise to a random interaction probability that 524

determines the interaction; by following the interaction and the 525

information-sharing action, the resultant utility is evaluated and 526

then the perception can be updated in the next round, and so 527

on. The iterations can be simply expressed by the following 528

illustrative chain: 529

zt
ij → κt

ij → ηt
ij→ Ut

ij → zt+1
ij

↓ ↑

rt
i → qt

i → at
i (28)

where the arrow between κt
ij and rt

i means that when a vehicle 530

discovers that the number of other vehicles sharing RTI with it 531

is less than a certain threshold, the vehicle would consider to 532

increase its credit value in order to enhance its reputation by 533
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Algorithm 1: Credit mechanism for RTI sharing.
1: for each vehicle vi do
2: /********** Initialization **********/
3: Initialize vi’s credit value r0

i and credit adjustment
step size Δri .

4: Initialize vi’s perception z0
i = 0.

5: Initialize vi’s interaction probability κ0
i = 1.

6: Initialize the number of vi’s cooperative vehicles
n0

i = 0 and the threshold nth .
7: Setup the learning speed εi , the exploration level ξi

and the tolerance ζ.
8: /********** RTI sharing interaction **********/
9: for each time slot t do

10: Discover the nearest vehicle vj .
11: Determine ηt

ij using random number generator
rand(κt

ij).
12: /********** Perception adjustment **********/
13: if ηt

ij == 1 then
14: Set st

i = rt
i and the RTI sharing action at

i using
rand(qt

i ).
15: RTI sharing, evaluate the information utility

Ut
ij .

16: Update vi’s perception zt
ij and store nt

i .
17: end if
18: /********** Interaction probability adjustment

**********/

19: if
(
zt

ij − z
(t−1)
ij

)2
≥ ζ then

20: Updatevi’s interaction probability
κt

ij = eξt
i z t

i j /max{eξt
i z t

i j ,∀j}.
21: end if
22: /********** Reputation adjustment

**********/
23: if 1

t

∑
t nt

i < nth then
24: ri = ri + Δri .
25: end if
26: t = t + 1.
27: end for
28: end for

sharing more genuine RTI with the others. The credit mecha-534

nism is summarized in Algorithm 1. In the initialization phase,535

each vehicle may have different prior credit vales and credit536

adjustment preference. Meanwhile, the learning speed ε de-537

termines the weight of new information, the exploration level538

ξ determines the probability of adopting uncharted strategies,539

while the tolerance determines the learning performance. In the540

RTI sharing phase, each vehicle first connects with the near-541

est vehicle and generates the interaction strategy, i.e., whether542

to interact with the vehicle. If the interaction indicator is posi-543

tive, the vehicle then shares the genuine RTI with a probability544

generated by its reputation. Following the information-sharing545

interaction, the vehicle evaluates its perception and updates the546

interaction probability in the next round. If the vehicle finds547

that the number of other vehicles who would like to exchange548

information with it is below some threshold, the vehicle would549

Fig. 2. Locations of Beijing taxis.

TABLE I
VEHICLE INTENSITIES OF DIFFERENT REGIONS AT BEIJING

Region 0 1 2 3 4

Intensity (/km2) 59.6 23.3 72.7 40.7 48.1
Average distance (m) 89.03 227.79 73.01 130.41 110.42
K-S test (P-value) 0.0731 0.1179 0.1061 0.0705 0.0619

Region 5 6 7 8 9
Intensity (/km2) 76.8 46.3 21.2 74.4 59.6
Average distance (m) 69.12 114.57 250.00 71.35 89.05
K-S test (P-value) 0.1169 0.0774 0.0831 0.0584 0.0937

TABLE II
NUMERICAL PARAMETERS FOR PERFORMANCE EVALUATION

Parameter Value

Max Tx Power 20 dBm
Antennas 1 Tx, 1 Rx
Antennas gains 5 dBm
Nakagami-m fading parameter m = 2
Path loss exponent α = 2, 4
Noise power σ 2 = 0.1 dBm
Maximum OP Υ = 0.1

adjust its reputation according to the preferred adjustment step 550

size. In the next section, we will conduct simulations to quantify 551

the performance of the proposed algorithm. 552

VII. SIMULATION RESULTS BASED ON REAL TRAFFIC DATA 553

In this section, we conduct simulations to verify our 554

theoretical analysis and characterize the proposed schemes. The 555

simulations are based on a real-world dataset consisting of the 556

spatial distribution of Beijing taxis. In the following, we will first 557

estimate the intensity of the taxis in Beijing using the dataset. 558

Then, based on the estimated intensity, we will characterize the 559

outage performance of RTI sharing as well as verify the merits 560

of the proposed RTI sharing scheme. 561

The real-world dataset contains the GPS positions of 10 258 562

taxis in Beijing (longitude from 116.25 to 116.55 and latitude 563

from 39.8 to 40.05) during the period of February 2–8, 2008 564

[39]. As shown in Fig. 2, the positions of these vehicles at a 565
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Fig. 3. Taxis position distributions of different regions at Beijing.

specific time instant are illustrated. We can see that the vehicles’566

position distribution reflects the planning structure of Beijing.567

Furthermore, we can distinguish the downtown and suburban568

areas. For the sake of illustrating the specific regional character-569

istics, instead of painting a picture of the whole city, we separate570

Beijing city into nine regions, as shown in Fig. 2. Based on the571

taxi-location information, we can estimate the intensity of vehi-572

cles in the different regions, as shown in Table I, where Region573

0 represents Beijing city as a whole. The estimation process is574

subdivided into the following two steps: 1) We first calculate and575

store the number of taxis within a circle having a radius of 60 m,576

which constitute a series of samples assumed to obey the Poisson577

distribution; and 2) then, we estimate the intensity λ according to578

the distribution in (1) by using the maximum likelihood method.579

Moreover, we run the Kolmogorov–Smirnov test (K-S test) to580

verify that the real data indeed satisfies the PPP. In Table II, we581

show the K-S test output for each region, i.e., the P-value. Note582

that for P ≥ 0.05, the hypothesis of exponential distribution is583

not denied. We can see that the P-values of all regions are higher584

than 0.05, i.e., the taxi location data indeed satisfies the PPP.585

Fig. 3 shows the c.d.f. of the number of vehicles within a circle586

of 60 m radius in different regions, where the bars represent real587

sample data from the dataset and the curve is the fitted PPP c.d.f.588

As we assumed in the system model, the spatial distribution of589

the real-world vehicles may be deemed reasonably consistent590

with the PPP distribution characteristics. Furthermore, we can591

observe that Region 5 representing the central area of Beijing592

city exhibits the highest vehicle intensity shown in Table I,593

while Region 7 as a suburban area has a low vehicle intensity.594

Moreover, the average distance between two vehicles can also595

be obtained from the dataset, as shown in Table I. Note that596

since the dataset only contains the taxi locations of Beijing city,597

the distances between two vehicles appear to be relatively large.598

In the following simulations, we will apply a multiplier of 5 to599

those intensities seen in Table I under the assumption that there600

is one taxi among five vehicles.601

Based on the estimated intensity of vehicles, we can evaluate602

the information-sharing OP using the related parameters for603

the channel model listed in Table II, where the transmission604

power, the path loss, and fading models are configured605

according to [30]. Two typical scenarios are simulated: The606

first is the downtown scenario as in Region 1 of Beijing city, 607

where the signal channel between two peer vehicles should 608

obey the Nakagami-m distribution, and the second is the 609

suburban scenario as in Region 7 of Beijing city, where the 610

channel obeys the Rayleigh distribution. For the downtown 611

scenario, we have to consider the effect of obstacles, such as 612

buildings. The influence of obstacles has been modeled in the 613

well-established simulators like Vergilius [40]–[42] or Veins 614

[43]–[45]. In this paper, we refer to the propagation model 615

introduced in Veins [43], where the obstacle effects Lobs were 616

modeled by 617

Lobs [dB] = βw nw + γw dw (29)

with nw representing the number of walls that the radio wave 618

has penetrated, dw represents the internal dimension of a 619

building, while βw and γw represent a pair of calibration factors 620

having a value of 9.2 dB per wall and 0.32 dB per meter [43], 621

respectively. The building-induced blocking mostly occurs near 622

the street intersections. Thus, we can assume the number of 623

wall penetration occurences between two vehicles to be two, 624

and the building’s internal dimension to be 50 m. In Beijing, 625

the average distance between two intersections is 2 km, and 626

if we consider 50 m to be the blocked area, the percentage of 627

building blocking can be deemed 0.025. 628

The estimated vehicle intensity parameters of Region 1 and 629

Region 7 are multiplied by 5 in our simulations. Considering 630

that the breakpoint-based path loss model is common and prac- 631

tical, we have simulated two path loss settings, i.e., α = 2 and 632

4, which constitute a pair of common path loss parameters ac- 633

cording to the experimental results of [30]. Thus, four cases are 634

simulated in these two scenarios based on whether the channel’s 635

path loss is α = 2 or 4 and whether the SNR is 10 or 20 dB, 636

respectively. The simulations were conducted using MATLAB 637

relying on the following procedure. The channel is first gener- 638

ated according to the fading distribution and to the large-scale 639

path loss. Then, we calculate the expected probability of the 640

SINR value being less than some threshold, given the fading 641

and distance parameters. 642

Figs. 4 and 5 show the channel-induced OP of both the sub- 643

urban and downtown scenarios, where the simulation results 644

are all consistent with the theoretical results. In the downtown 645
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Fig. 4. Outage probability in Region 7.

Fig. 5. Outage probability in Region 5.

scenario, the simulation results are about 1 dB worse than the646

theoretical results, which is due to considering the building-647

induced blocking effects. The curves in those two figures are648

quite similar, which is expected due to having the same simu-649

lation settings. The only difference is that the channel-induced650

OP of the downtown scenario is lower than that in the sub-651

urban scenario owing to the reduced distance between a pair652

of vehicles, as well as due to having benign Nakagami fading653

channels. Generally, we can see that increasing the path loss654

exponent α from 2 to 4 can lead to the increase of channel-655

induced OP due to the higher power attenuation of the channel,656

while increasing the transmission power reduces the channel-657

induced OP. We also simulate the information-sharing OP of658

other regions of Beijing city, as shown in Fig. 6, where the path659

loss exponent is set to α = 2, the transmission SNR is set to660

10 dB, while the target received SINR is set to Υ = −10 dB.661

We can see that the information-sharing OP is proportional to662

the intensity of vehicles in the region. This is because a low663

intensity implies a higher distance between two peer vehicles664

and the channel attenuation is more severe. Although the low665

vehicular intensity can also help reduce the interference im-666

posed by other vehicles, this positive effect is dominated by667

the higher channel attenuation caused by the longer prorogation668

distance.669

Based on the information-sharing OP, we can now conduct670

simulations to verify the benefits of our proposed RTI sharing671

mechanism. We invoke Algorithm 1 over 50 vehicles, where672

Fig. 6. Outage performance of all regions.

Fig. 7. Reputation of all vehicles ξ = 0.1.

Fig. 8. Reputation of deviated vehicles ξ = 0.1.

the reputation adjustment step size was configured according to 673
0.02

t with t being the time index. Fig. 7 shows the dynamics of 674

all vehicles’ reputations during the learning and interaction pro- 675

cess, which also characterizes the vehicles’ information-sharing 676

strategy. Although the vehicles are initially configured to have 677

different reputations below 0.5, i.e., to have a relatively low rep- 678

utation, the final converged all “1” reputation results corroborate 679

the high efficiency of our credit mechanism. To further verify the 680

stability of the proposed algorithm, we arrange for some vehicles 681

to deviate from the converged “1” reputation, as shown in Fig. 8. 682

It can be seen that all the vehicles that have deviated quickly con- 683

verged to reputation “1” again. Note, however, that the success 684
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Fig. 9. Reputation of all vehicles ξ = 5.

of convergence is conditioned on having an appropriate setting685

for the exploration level. An aggressive exploration may lead to686

divergence, as shown in Fig. 9, where the exploration level ξ is687

set as high as 5. This is reasonable, because when the exploration688

level is excessive, the interaction probability tends to become bi-689

nary according to (27), i.e., 0 or 1. In such a case, some vehicles690

may not have the chance to interact with others and thus may691

not learn the reputation of others. Therefore, how to decide on a692

reasonable exploration level can be a promising future research693

topic.694

VIII. CONCLUSION695

In this paper, we studied the RTI sharing problem in vehicu-696

lar networks, including both the theoretical channel-induced OP697

analysis and the genuine RTI sharing mechanism design. The698

theoretical analysis and the simulation results lead to the fol-699

lowing major conclusions: 1) The outage performance is closely700

related to the density of vehicles, where a higher density implies701

having a reduced distance among the vehicles, which improves702

the communication performance; 2) the proposed credit-based703

RTI sharing mechanism is effective, which can ensure that all704

vehicles aspire to a good reputation, when an appropriate ex-705

ploration level is adopted. Future research may include the the-706

oretical information-sharing OP analysis under other vehicular707

network protocols, as well as genuine RTI sharing mechanism708

design relying on other kinds of incentives, instead of the credit709

considered here.710

APPENDIX A
PROOF OF THEOREM 1711

Following (10), we should calculate the expectation of712

P (γ0 ≤ Υ) with respect to vehicle v1’s location and channel,713

as well as all other vi’s locations and channels. First, let us take714

the expectations with respect to d1. Since vehicle v0 is sharing715

its RTI with the nearest vehicle v1, no other vehicles can be716

closer than d1, i.e., only vehicle v0 is within the area 2Wd1. In717

this case, according to (1), the c.d.f. of d1 can be formulated as718

follows: 719

P (d1 ≤ D) = 1 − P (d1 > D)

= 1 − P [No other vehicle in πD2| given the eixstence of v0]

= 1 − e−2λW D (30)

while the corresponding probability density function (p.d.f.) can 720

be written as 721

fd1(d1) =
d
(
1 − e−2λW d1

)
dd1

= 2λWe−2λW d1 . (31)

In this case, the channel-induced OP of vehicle v0 can be 722

expressed as 723

p0 = 1 −
∫ +∞

d1=0
Eg1,gi ,di

[P (γ0 > Υ)] fd1(d1)dd1

= 1 −
∫ +∞

d1=0
Eg1,gi ,di

[
P

(
g1d

−α1
1

Λ
> Υ

)]
2λWe−2λW d1 dd1

= 1 − 2λW

∫ +∞

d1=0
Eg1,gi ,di

[P (g1 > dα1
1 ΥΛ)] e−2λW d1 dd1.

(32)

Let us now concentrate our attention on the derivation of 724

Eg1,gi ,di
[P (g1 > dα1

1 ΥΛ)] shown in (32). 725

Since g1 obeys the gamma distribution in (4), its c.d.f. can be 726

written as 727

Fg1(X) = P [g1 ≤ X] = 1 −
Γ
(
m1,

m 1
μ1

X
)

Γ(m1)

= 1 − e
−m 1

μ 1
X

m 1−1∑
k=0

1
k!

mk
1

μk
1

Xk (33)

where Γ(·, ·) is the upper incomplete gamma function, μ1 is the 728

mean of g1, and the last step is valid because we assume that the 729

Nakagami-m fading parameter m1 is an integer.1 In this case, 730

Eg1,gi ,di
[P (g1 > dα1

1 ΥΛ)] in (32) can be expressed as 731

Eg1,gi ,di
[P (g1 > dα1

1 ΥΛ)] = Egi ,di

×

⎡
⎣Γ

(
m1,

m 1
μ1

dα1
1 ΥΛ

)
Γ(m1)

⎤
⎦

= EΛ

[
e
−m 1

μ 1
d

α 1
1 ΥΛ

m 1−1∑
k=0

1
k!

mk
1

μk
1

(dα1
1 ΥΛ)k

]

=
∫ +∞

0

[
e
−m 1

μ 1
d

α 1
1 ΥΛ

m 1−1∑
k=0

1
k!

mk
1

μk
1

(dα1
1 ΥΛ)k

]
fΛ(Λ)dΛ

1When m is an integer, we have the upper incomplete gama function

Γ(m, x) = (m − 1)!e−x
∑m −1

k= 0
xk

k ! , the gamma function Γ(m) = (m − 1)!,

and Γ(m ,m x )
Γ(m ) = e−m x

∑m −1
k= 0

m k

k ! xk [46].
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732

=
m 1−1∑
k=0

1
k!

(
m1d

α1
1 Υ

μ1

)k ∫ +∞

0

[
e
−

m 1d
α 1
1

Υ

μ 1
ΛΛk

]
fΛ(Λ)dΛ

=
m 1−1∑
k=0

sk

k!
(−1)k dkLΛ(s)

dsk
(34)

where fΛ(Λ) represents the p.d.f. of Λ, and s � m 1d
α 1
1 Υ

μ1
, and733

LΛ(.) represents the Laplace transform of the interference plus734

noise of vehicle v0, while the last step exploits the property of735

xnf(x) L⇐⇒ dk LΛ (s)
dsk

.736

The Laplace transform of Λ can be calculated as follows:737

LΛ(s) = EΛ
[
e−sΛ]

= e−sσ 2
Egi ,di

⎡
⎣ ∏

vi ∈S\{v0,v1}
e−sgi d

−α 2
i

⎤
⎦ . (35)

Since all the vehicles vi (∀vi ∈ S\{v0, v1}) are independent of738

each other, all the channel gains {gi} are i.i.d. and their locations739

generated independently based on the PPP are also i.i.d.; hence,740

(35) can be rewritten as741

LΛ(s) = e−sσ 2
Edi

⎡
⎣ ∏

vi ∈S\{v0,v1}
Egi

[
e−sgi d

−α 2
i

]⎤⎦

= e−sσ 2
Edi

⎡
⎣ ∏

vi ∈S\{v0,v1}

1

1 + sμ2d
−α2
i

⎤
⎦

= e−sσ 2
exp

(
−λ

∫ +∞

d1

(
1 − 1

1 + sμ2ζ−α2

)
2Wdζ

)

= exp

(
−sσ2 − 2λW

∫ +∞

d1

1

1 + ζ α 2

μ2s

dζ

)
(36)

where the second step is based on the assumption of experi-742

encing a Rayleigh-fading channel with a mean of μ2 between743

vehicle vi (except for the closest vehicle v1) and v0. To elabo-744

rate a little further, the third step follows from the probability745

generating functional of the PPP [24] and the lower boundary746

of the integration is d1, since the closest vehicle vi imposing in-747

terference on vehicle v0 should be farther than v0’s peer vehicle748

v1. By invoking the following change of variables u = ζ
(μ2s)1/ α 2

749

in (36), we have750

LΛ(s) = exp

⎛
⎝−sσ2 − 2λW (μ2s)1/α2

∫ +∞

d 1
(μ 2s ) 1/ α 2

1
1 + uα2

du

⎞
⎠

= exp
[
−sσ2 − 2λWd1Φα2(μ2sd

−α2
1 )

]
(37)

where Φα (x) is as in (12). To summarize, by combining (32),751

(34), and (37), we arrive at vehicle v0’s channel-induced OP as752

p0 = 1 − 2λW

∫ +∞

d1=0

m 1−1∑
k=0

(−m1d
α2
1 Υ)k

k!μk
1

dkLΛ(s)
dsk

∣∣∣∣
s=

m 1d
α 1
1

Υ

μ 1

e−2λW d1 dd1 (38)

with LΛ(s) in (37). By setting d1 = τ , we have (11), which 753

completes the proof of Theorem 1. 754

APPENDIX B
PROOF OF COROLLARY 1 755

Since Rayleigh fading is a special case of Nakagami-m 756

fading associated with m = 1, we can calculate vehicle v0’s 757

channel-induced OP in the highway scenario considered by 758

setting m1 = 1 and μ1 = μ2 = μ in (11), which yields 759

p
hwy1
0 = 1 − 2λW

∫ +∞

τ =0
LΛ

(
τα1Υ

μ

)
e−2λW τ dτ

= 1 − 2λW

∫ +∞

τ =0
exp

×
(
−τα1Υ

μ
σ2 − 2λW

∫ +∞

τ

1

1 + ζ α 2

τ α 1 Υ

dζ

)

= e−2λW τ dτ. (39)

By employing a change of variables u = ζ
τ α 1/ α 2 Υ1/ α 2

, we can 760

rewrite (39) as 761

p
hwy1
0 = 1 − 2λW

∫ +∞

τ =0
e−2λW τ− τ α 1 Υ

μ σ 2−2λW Υ
1

α 2 τ
α 1
α 2

× e
Gα 2

[(
τ α 2−α 1

Υ

) 1
α 2

]

dτ

= 1 − 2λW

∫ +∞

τ =0
exp

(
−σ2Υ

μ
τα1

)

× exp

[
−2λWΥ

1
α 2 τ

α 1
α 2 Gα2

((
τα2−α1

Υ

) 1
α 2

)]

· e−2λW τ dτ (40)

where according to [47], we have 762

Gα (x) =
∫ +∞

x

1
1 + uα

du

=
1

α − 1
x

1 + xα
F
(

1, 1; 2 − 1
α

;
1

1 + xα

)
(41)

with the hypergeometric function given by F(a, b; c; z) = 763

1 +
∑+∞

n=1
zn

n !

∏n−1
m=0

(a+m )(b+m )
c+m . Although (40) appears to 764

be complicated, its physical interpretation is quite clear. The 765

first term exp(− σ 2Υ
μ τα1) within the integration represents the 766

channel-induced OP as a function of noise, the second term 767

exp[−2λWΥ
1

α 2 τ
α 1
α 2 Gα2((

τ α 2−α 1

Υ )
1

α 2 )] represents the channel- 768

induced OP influenced by the other vehicles vi , and the last 769

term e−2λW τ is associated with the p.d.f. of the variable τ = d1. 770

This completes the proof of Corollary 1. 771
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APPENDIX C
PROOF OF COROLLARY 2772

By substituting α1 = α2 = α in (13), we have773

p
hwy2
0 = 1 − 2λW

∫ +∞

τ =0
exp

(
−σ2Υ

μ
τα

)
·

× exp
[
−2λWΥ

1
α Gα

(
Υ− 1

α

)
τ
]
· e−2λW τ dτ

= 1 − 2λW

∫ +∞

τ =0
exp

(
−σ2Υ

μ
τα

)

× exp
(
− 2λWΦα (Υ)τ

)
· e−2λW τ dτ

= 1 − 2λW

∫ +∞

τ =0
exp

×
[
−σ2Υ

μ
τα − 2λW

(
1 + Φα (Υ)

)
τ

]
dτ (42)

where the second step is valid according to (12)774

Φα (Υ) = Υ1/α

∫ +∞

Υ−1/ α

1
1 + uα

du = Υ1/αGα

(
Υ−1/α

)
.

(43)
This completes the proof of (15) in Corollary 2.775

Following (42), we can further consider the specific scenario776

of having a path loss of α = 2, which is common in the highway777

vehicular network scenario of [30]. By substituting α = 2 in778

(42), we have779

p
hwy2
0 = 1 − 2λW

∫ +∞

τ =0
exp

(
−σ2Υ

μ
τ 2

)

× exp
(
−2λWΥ

1
2 G2

(
Υ− 1

2

)
τ
)
· e−2λW τ dτ

= 1 − 2λW

∫ +∞

τ =0
exp

×
(
−σ2Υ

μ
τ 2 − 2λW

(
1 +

√
Υ arctan

√
Υ
)

τ

)
dτ

= 1 − 2λW

√
π

χ1(Υ)
exp

(
χ2

2(Υ)
4χ1(Υ)

)

× Q

(
χ2(Υ)√
2χ1(Υ)

)
(44)

where the second step is valid because arctan(1/u) =780 ∫ +∞
u

1
1+u2 du and the last step exploits the following exponential781

integration properties [46]:782

∫ +∞

τ =0
exp(−aτ 2 − bτ)dτ =

√
π

a
exp

(
b2

4a

)
Q

(
b√
2a

)

(45)
with the Q-function given by Q(x) = 1

2π

∫ +∞
x exp(−y2/2)dy.783

This completes the proof of Corollary 2.784
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Abstract—In vehicular networks, information dissemina-5
tion/sharing among vehicles is of salient importance. Although6
diverse mechanisms have been proposed in the existing liter-7
ature, the related information credibility issues have not been8
investigated. Against this background, in this paper, we propose9
a credible information-sharing mechanism capable of ensuring10
that the vehicles do share genuine road traffic information (RTI).11
We commence with the outage-probability analysis of informa-12
tion sharing in vehicular networks under both a general scenario13
and a specific highway scenario. Closed-form expressions are de-14
rived for both scenarios, given the specific channel settings. Based15
on the outage-probability expressions, we formulate the utility of16
RTI sharing and design an algorithm for promoting the sharing of17
genuine RTI. To verify our theoretical analysis and the proposed18
mechanism, we invoke a real-world dataset containing the locations19
of Beijing taxis to conduct our simulations. Explicitly, our simula-20
tion results show that the spatial distribution of the vehicles obeys21
a Poisson point process, and our proposed credible RTI sharing22
mechanism is capable of ensuring that all vehicles indeed do share23
genuine RTI with each other.24

Index Terms—Credibility, information dissemination, informa-25
tion sharing, Poisson point process (PPP), reinforcement learning,26
vehicular networks.27

I. INTRODUCTION28

V EHICULAR communications and their support net-29

works were originally proposed for public safety30

applications and traffic efficiency enhancements, which31

necessitate reliable short-distance vehicle-to-vehicle and32

vehicle-to-infrastructure communications [1]. With the advent33

of advanced automobile technology, the globe’s population has34
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become more mobile. For example, Americans ride 224 miles 35

or more per week either as a driver or passenger, and the total 36

time spent traveling in a vehicle per week is a staggering 18 h 37

and 31 min [2]. Meanwhile, the vehicular users’ demands for 38

in-car communication have also been dramatically increasing, 39

since a wealth of value-added services emerge such as safety 40

message dissemination and in-car entertainment services. 41

Most of the existing works on information dissemina- 42

tion/sharing were focused on designing specific mechanisms, in 43

particular scenarios of vehicular networks. However, the credi- 44

bility of the shared road traffic information (RTI) has not been 45

taken into account in those mechanisms. Although all the vehi- 46

cles act in a cooperative manner, the selfish or malicious ones 47

may share either random or manipulated information for the 48

sake of attaining an unfair road priority. Hence, we consider this 49

problem and propose a mechanism for ensuring that all vehicles 50

share genuine RTI. Furthermore, we define the utility functions 51

of vehicles in the RTI sharing mechanism for the sake of ana- 52

lyzing their incentives in the RTI sharing process, and provide a 53

general analytical framework for the information-sharing outage 54

probability (OP) of vehicular networks. The new contributions 55

of this paper can be summarized as follows. 56

1) We derive the information-sharing OP of vehicular 57

networks both for the general scenario modeled by 58

Nakagami-m fading and for a more specific highway 59

scenario, where Rayleigh fading is considered. 60

2) In order to encourage vehicles to share genuine RTI, we 61

design a mechanism based on the reinforcement learn- 62

ing model, where the concept of “reputation” is intro- 63

duced for circumventing the vehicles’ selfish behaviors by 64

exploiting its similarity to human social networks. 65

3) The real-world dataset containing the locations of Bei- 66

jing taxis is utilized for verifying the vehicles’ spatial 67

distribution characteristics. Based on the parameters in- 68

ferred with the aid of training from this dataset, we ver- 69

ify our analytical outage performance results as well as 70

the proposed mechanism by our real-world data-driven 71

simulations. 72

The rest of the paper is organized as follows. We first 73

summarize the related works in Section II. Then, our sys- 74

tem model is introduced in Section III. Based on the sys- 75

tem model, the information-sharing OP is derived both for the 76

general Nakagami-m as well as for the more specific Rayleigh- 77

distributed highway scenario in Sections IV and V, respec- 78

tively. In Section VI, we present the proposed RTI sharing 79

scheme, while Section VII provides our real-world data-driven 80

simulation results. Finally, we conclude in Section VIII. 81

0018-9545 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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II. RELATED WORKS82

The provision of information dissemination/sharing among83

vehicles is of pivotal significance in vehicular networks, which84

has been extensively studied in the literature [3]–[21]. Specif-85

ically, Zhao etal. [3] proposed an architecture and analyzed86

the dissemination capacity, where the data emanating from the87

sources were buffered by vehicles and then it was rebroadcast at88

the intersections. Similarly, the concept of a “smart road” was89

introduced and an integrated vehicular system was conceived for90

the collection, management, and provision of context-aware in-91

formation concerning the traffic density and driver location [4].92

Later, the vehicular ad hoc network (VANET) concept was93

proposed for assisting the dissemination of critical vehicle track-94

ing information [5]. Meanwhile, Cenerario et. al. designed an95

event-related information exchange/sharing protocol relying on96

a VANET in [6]. With the goal of supporting a wide range of97

vehicular networks, Ros et al. [7] proposed a broadcast algo-98

rithm relying on periodic beacon messages, which contained99

acknowledgments of the circulated broadcast messages. The ur-100

ban scenario of vehicular networks was studied based on the101

road map information as prior knowledge in [8] and relying on102

peer-to-peer (P2P) cooperative caching in [9]. The heterogene-103

ity of radio propagation was taken into account in [10], where104

the tradeoffs amongst parameters, such as the cost, delay, and105

optimized system utility, were analyzed. The performance anal-106

ysis of information sharing in vehicular networks was carried107

out in [11]–[15]. More specifically, the distribution of concur-108

rent transmissions was analyzed in [11], while the analysis of109

packet loss rate and packet transmission distance was provided110

in [12]. The analysis of end-to-end reliability was disseminated111

in [13], while the throughput and delay analysis was the subject112

of [14] and [15].113

On the other hand, the security issues of vehicular informa-114

tion dissemination were investigated in [16]–[18]. Explicitly,115

a graph-based metric was proposed for insider attacker detec-116

tion in [16], whilst a trustworthiness verification model was117

advocated in [17] and a cooperative neighbor position verifi-118

cation model was conceived in [18]. Moreover, the informa-119

tion sharing in vehicular networks was modeled by carefully120

adapting the perspective of social networks [19]–[21]. Most of121

the aforementioned contributions were focused on designing122

specific mechanisms for information dissemination/sharing in123

particular scenarios of vehicular networks. However, the credi-124

bility of the shared RTI has not been taken into account in those125

mechanisms, which hence inspired this paper.126

III. SYSTEM MODEL127

As illustrated in Fig. 1, we consider a cooperative vehic-128

ular network constituted by a group of vehicles denoted by129

S = {v0, v1, v2, . . . , vi , . . .}. Since all the vehicles are indepen-130

dent of each other, although their locations are geographically131

constrained by the mesh of roads in a city, they can be viewed132

as being randomly distributed. By exploiting this property, we133

assume that the locations of the vehicles obey a Poisson point134

process (PPP) on the 2-D road mesh with an intensity of λ (the135

number of vehicles per square kilometer). The PPP has been136

Fig. 1. System model.

widely adopted for modeling the distribution of random place- 137

ments, such as the locations of macrocell and femtocell base 138

stations [22], [23], as well as of ad hoc nodes [24]. In contrast to 139

the existing PPP model of an infinite 2-D plane, the PPP model 140

of a vehicular network is constrained by the road-width, which 141

may nonetheless be as wide as say 100 m in metropolitan areas. 142

Let us denote the road-width by W , which is assumed to be a 143

constant. Based on the PPP model, the number of vehicles in 144

any finite rectangle having a width of W and a length of D is 145

Poisson distributed with a mean of λAr , which can be expressed 146

as 147

P (Nr = n) =
e−λW D (λWD)n

n!
. (1)

In our model, all the vehicles are assumed to be selfish, aim- 148

ing for maximizing their own utility. We also assume that each 149

vehicle has the capability of acquiring RTI and that they are will- 150

ing to share it with each other in order to make better-informed 151

decisions. The RTI can be for example the location information 152

invoked for cooperative vehicle localization [25], or the traffic 153

information invoked for cooperative route planning [26]. Our 154

proposed model is general, and hence, it is independent of the 155

specific form of the RTI. As shown in Fig. 1, at the beginning of 156

each time slot, all the vehicles acquire the current RTI by their 157

in-car sensors or by exploiting the driver’s judgment. Then, each 158

vehicle has to decide, whether it will truthfully share this infor- 159

mation with others or whether to manipulate the shared RTI to 160

render it useless, either, for example, due to privacy concerns 161

or with the objective of gaining an unfair road priority. There- 162

fore, although all the vehicles act in a cooperative manner, they 163

occasionally may share random or manipulated information for 164

the sake of improving their own utility. Then, each vehicle ex- 165

changes either its perceived genuine information or the false 166

RTI with the nearest vehicle in a P2P mode. Following the 167

information-sharing phase, each vehicle exploits its own infor- 168

mation, as well as the shared information to make an informed 169

decision as to whether to change speed, lanes, routes, or just 170

maintain the current status. Finally, at the end of each time slot, 171

the vehicle evaluates the performance attained as a result of its 172

decision and then adjusts its actions in preparation for the next 173

round. Here, we consider a practical scenario, where a vehicle 174

is unable to ascertain the credibility of the RTI gleaned, until the 175
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information is actually utilized for its decision making and until176

the resultant performance is evaluated. Note that the time slot177

mentioned in this paper represents a coarse scale, on the order178

of seconds or minutes. Such a coarse synchronization can be179

readily achieved by the GPS, which has been widely deployed180

in vehicles. When it comes to information sharing between two181

vehicles, a fine-grained physical layer synchronization should182

be guaranteed for successful data transmission. However, such183

a fine-grained synchronization is not required for the entire184

network.185

The above-mentioned P2P mode is assumed to be supported186

by the IEEE 802.11p protocol (a.k.a., the Wireless Access in the187

Vehicular Environment (WAVE)) relying on the classic Request188

To Send/Clear To Send (RTS/CTS) mechanism for the sake of189

avoiding the hidden terminal problem [27][28]. In this case, as190

shown in Fig. 1, only a single pair of vehicles is sharing infor-191

mation in a time slot within their carrier-sensing range, such as192

vi and vj . Based on this characteristic, the two-directional out-193

age analysis is not considered in this paper, since only a single194

pair of vehicles is engaged in communication within the range.195

Nevertheless, the vehicles beyond vi and vj ’s carrier-sensing196

area may also impose interference on their communications197

according to the practical interference model of [29]. Accord-198

ing to the experimental results of [30], the 5.9 GHz dedicated199

short-range communications frequency band may be modeled200

by a Nakagami-m fading channel, provided that the distance201

between two vehicles is below 40 m. By contrast, it is modeled202

by a Rayleigh-fading channel when it is above 40 m, which is a203

special case of the Nakagami-m fading associated with m = 1.204

A line-of-sight (LOS) Rician channel may also occur under cer-205

tain circumstances. Nevertheless, we would like to concentrate206

on the Nakagami-m and Rayleigh-fading scenarios, especially207

when it comes to the metropolitan areas, where the presence208

of buildings and of the infrastructure may block the LOS as in209

Beijing city. Thus, the power received by the vehicle vi from its210

peer vj located at a distance of di,j can be expressed as211

yi,j = |hi,j |2d−αi , j

i,j (2)

where αi,j is the channel’s path loss coefficient and hi,j is the212

channel gain. Since the distance between a pair of communi-213

cating vehicles can be 40 m or higher, hi,j should obey the214

Nakagami-m distribution of [31]:215

fhi , j
(x) = 2

(
m

μi,j

)m
x2m−1

Γ(m)
exp

(
−m

x2

μi,j

)
(3)

where Γ(·) is the gamma function, μi,j = E(|hi,j |2) is the aver-216

age received power, and m is the Nakagami-m fading parameter.217

In this paper, we only consider integer m values for the sake of218

mathematical tractability. Let us introduce gi,j = |hi,j |2, where219

gi,j obeys the gamma distribution of220

fgi , j
(x) =

(
m

μi,j

)m
xm−1

Γ(m)
exp

(
−m

x

μi,j

)
. (4)

When using the IEEE 802.11p protocol, all the vehicles that221

impose interference on the vehicle vi in Fig. 1 should be lo-222

cated farther than 40 m [30]. In this case, the Rayleigh-fading223

model should be considered for the link imposing interference 224

by the vehicle vk upon vi , i.e., gi,k should obey the exponential 225

distribution of 226

fgi , k
(x) =

1
μi,k

exp
(
− x

μi,k

)
. (5)

IV. CHANNEL-INDUCED OUTAGE PROBABILITY IN A GENERAL 227

SCENARIO 228

In this section, we theoretically analyze the channel-induced 229

OP of vehicular networks. The classic channel-induced OP of a 230

specific vehicle vi is defined as the probability of vi’s signal-to- 231

interference-plus-noise ratio (SINR) dipping below a threshold 232

of Υ, i.e., 233

pvi
= P [γvi

≤ Υ] (6)

which, in fact, is also the cumulative distribution function (c.d.f) 234

of this vehicle’s SINR. Since the channel-induced OP is a 235

physical-layer metric, the fact of whether a vehicle shares gen- 236

uine or false information is irrelevant in this section. By contrast, 237

in Section V, we will use the channel-induced OP for modeling 238

the vehicles’ future utility trend, depending on whether they are 239

sharing genuine or false RTI. 240

As illustrated in the system model, we consider a P2P 241

scenario, where every pair of closest vehicles exchange their 242

respective RTI within each time slot. For a specific vehicle v0, 243

its closest counterpart v1 should be the intended information- 244

sharing peer. Let us denote the distance and channel gain of v0 245

with respect to the transmitter of the vehicle v1 by d1 and g1, 246

respectively. Then, the SINR of the vehicle v0 can be written as 247

γ0 =
g1d

−α1
1

Λ
(7)

where α1 is the path loss coefficient, and Λ is the interference 248

imposed by the other vehicles on the vehicle v0 plus the noise 249

power. Let us assume that v1 is the vehicle closest to v0. Then, 250

according to the experimental results of [30], the channel gain 251

g1 should obey the gamma distribution as in (4) with a mean of 252

E[g1] = μ1 and Nakagami-m fading parameter of m1. During 253

the information sharing between the pair of vehicles v0 and 254

v1, the signals of all other vehicles, represented by vi (∀vi ∈ 255

S\{v0, v1}), should be considered as interference. Let us denote 256

the distance and channel gain between vi and v0 by di and gi , 257

respectively. In this case, the interference plus noise power Λ 258

can be calculated by 259

Λ =
∑

vi ∈S\{v0,v1}
gid

−α2
i + σ2 (8)

where α2 is the path loss coefficient and σ2 is the vari- 260

ance of the zero-mean circularly symmetric complex-valued 261

Gaussian noise. Assuming that the other vehicles—except 262

for the closest one—are relatively far from v0, Rayleigh 263

fading prevails between vi and v0, i.e., the interfering 264

channel’s gain gi obeys the exponential distribution as in 265

(5). Since all vehicles are independent of each other, the 266

channel gains {gi,vi ∈S\{v0,v1}} are independent identically dis- 267

tributed (i.i.d.), whereE[gi,vi ∈S\{v0,v1}] = μ2. Thus, the SINR of 268
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vehicle v0 becomes269

γ0 =
g1d

−α1
1∑

vi ∈S\{v0,v1} gid
−α2
i + σ2

(9)

while the channel-induced OP of vehicle v0 in sharing270

information with v1 is formulated as271

p0 = Eg1,d1,gi ,di
[P (γ0 ≤ Υ)] . (10)

In the following theorem, the channel-induced OP expression272

of vehicle v0 is formulated for a specific time slot.273

Theorem 1: In a vehicular network relying on the 802.11p274

protocol and RTS/CTS, a vehicle’s information-sharing OP can275

be expressed as276

p0 = 1 − 2λW

∫ +∞

τ =0

m 1−1∑
k=0

(−m1τ
α2Υ)k

k!μk
1

dkLΛ(s)
dsk

∣∣∣∣
s= m 1τ α 1 Υ

μ 1

e−2λW τ dτ (11)

where the target SINR is Υ and we have277

Φα (x) = x1/α

∫ +∞

x−1/ α

1
1 + uα

du. (12)

Proof: See the proof in Appendix A.278

V. INFORMATION-SHARING OUTAGE PERFORMANCE IN279

HIGHWAY SCENARIO280

In Theorem 1, (11) provides the information-sharing OP of281

vehicular networks in a general form, which can be used in any282

arbitrary scenario, including both dense and sparse vehicular283

network scenarios. However, when considering specific appli-284

cation scenarios, further approximations can be adopted in the285

derivation of Theorem 1. In this section, we will consider a286

highway-specific scenario, where the distance amongst vehicles287

may be substantially higher than in the downtown area, say288

over 30 m on average. According to the experimental results289

of [30], the channel between a pair of vehicles in this high-290

way scenario is Rayleigh fading, which implies that the channel291

between vehicle v1 and v0 is Rayleigh fading. Hence, g1 in (7)292

obeys follow the exponential distribution with the same mean as293

gi . In essence, this specific Rayleigh-fading highway scenario294

constitutes a special case of Nakagami-m fading associated with295

m = 1. The following corollary formulates the channel-induced296

OP in this highway scenario.297

Corollary 1: In a highway vehicular network relying on the298

802.11p protocol and RTS/CTS, a vehicle’s information-sharing299

OP can be expressed as300

p
hwy1
0 = 1 − 2λW

∫ +∞

τ =0
exp

(
−σ2Υ

μ
τα1

)
· (13)

exp

[
−2λWΥ

1
α 2 τ

α 1
α 2 Gα2

((
τα2−α1

Υ

) 1
α 2

)]
· e−2λW τ dτ

where we have301

Gα (x) =
∫ +∞

x

1
1 + uα/2

du. (14)

Proof: See the proof in Appendix B. 302

According to the experimental results of [30], in the highway 303

scenario the path loss measurements showed a dual-slope model, 304

having a break-point at the distance of 100 m. When the distance 305

between two vehicles is below 100 m, the path loss coefficient is 306

α, while beyond 100 m it is β. Since 100 m is already at the limit 307

of the 802.11p-based P2P information sharing, we can focus our 308

attention on considering the scenario, where all vehicles’ path 309

loss models are identical, i.e., α1 = α2 = α. Specifically, the 310

experimental results of [30] showed that the path loss coefficient 311

is α = 2 under 100 m. The channel-induced OP of this specific 312

scenario is formulated in the following corollary. 313

Corollary 2: In a highway vehicular network using the 314

802.11p protocol and RTS/CTS, where the path loss co- 315

efficients amongst the vehicles are identical, a vehicle’s 316

information-sharing OP can be expressed as 317

p
hwy2
0 = 1 − 2λW

∫ +∞

τ =0
exp

×
[
−σ2Υ

μ
τα − 2λW

(
1 + Φα (Υ)

)
τ

]
dτ. (15)

Specifically, when the channel’s path loss coefficient is α = 2, 318

the closed-form expression of the channel-induced OP can be 319

formulated as 320

p
hwy2
0 = 1 − 2λW

√
π

χ1(Υ)
exp

(
χ2

2(Υ)
4χ1(Υ)

)

× Q

(
χ2(Υ)√
2χ1(Υ)

)
(16)

where χ1(Υ) and χ2(Υ) are 321

χ1(Υ) =
σ2

μ
Υ (17)

χ2(Υ) = 2λW
(

1 +
√

Υ arctan
√

Υ
)

. (18)

Proof: See the proof in Appendix C. 322

It can be seen that (16) gives a simple closed-form expression 323

for a single vehicle’s information-sharing OP, which simply re- 324

lies on the calculation of the Q-function. If we now consider the 325

specific scenario, where the channel noise is negligible com- 326

pared to the interference arriving from the other vehicles vi , 327

i.e., for σ2/Λ → 0, the information-sharing OP can be further 328

simplified using the following corollary. 329

Corollary 3: In a highway vehicular network associated with 330

the 802.11p protocol and RTS/CTS, where the path loss co- 331

efficients of all vehicles are identical and the channel noise is 332

negligible compared to the interference, a vehicle’s information- 333

sharing OP during a specific time slot can be expressed as 334

p
hwy3
0 =

Φα (Υ)
1 + Φα (Υ)

. (19)

Specifically, when the channel’s path loss coefficient is α = 2, 335

we have 336

p
hwy3
0 =

√
Υ arctan

√
Υ

1 +
√

Υ arctan
√

Υ
. (20)
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Proof: Equations (19) and (20) can be readily obtained by337

setting σ2 = 0 in (15) and (16), respectively.338

By now, we have completed the theoretical information-339

sharing OP analysis, which is an important metric that340

reflects whether information sharing can be reliably accom-341

plished. Note that successful information sharing in the ve-342

hicular network relies both on successful transmission in the343

presence of no channel-induced outage and no genuine-344

information-sharing outage. Based on the channel-induced OP345

analysis of this section, the next section will propose a RTI346

sharing mechanism that ensures for the vehicles to share gen-347

uine information.348

VI. ROAD TRAFFIC ENGINEERING SHARING MECHANISM349

In the previous section, we have studied the information-350

sharing OP of the vehicular network considered. Following the351

above performance analysis, this section will consider the ve-352

hicles’ information-sharing strategies, utilities, and interactions353

during the RTI sharing process. Note that the sharing of RTI354

cannot succeed if a channel-induced outage happens between355

the vehicles. Let us consider a cooperative vehicular network356

supporting N selfish vehicles indexed as {v1, v2, ..., vN }, each357

aiming for maximizing its own utility. As mentioned in the in-358

troduction, although all vehicles share the RTI in a cooperative359

manner, their specific degree of altruism/selfishness determines360

whether they may share false or genuine RTI for the sake of im-361

proving their own utility by exploiting unfair priority on the road362

for example. Considering this issue, each vehicle vi is assumed363

to have a binary action space defined as follows:364

ai =

{
SG : sharing genuine RTI

SF : sharing false RTI.
(21)

As a counterpart, a mixed strategy can also be defined for vehicle365

vi in which qi represents the probability of vehicle vi sharing366

genuine RTI, complemented by a (1 − qi) probability of false367

RTI. As mentioned in the system model, each vehicle evaluates368

the RTI gleaned from its peer vehicle at the end of each time369

slot. Additionally, we also consider a binary information reward370

space, where the genuine RTI earns a reward of R, while the371

issuance of false RTI results in a zero reward. In such a case, we372

can summarize vehicle vi’s utility functions as follows:373 ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Uij(SG,SG ) = (1 − pij)R − ci

Uij(SG,SF ) = −ci

Uij(SF ,SG ) = (1 − pij)R

Uij(SF ,SF ) = 0

(22)

where Uij(a, b) represents vehicle vi’s utility, when its strategy374

is a and its peer vj ’s strategy is b with pij denoting the channel-375

induced OP between vj and vi , and ci > 0 represents the ad-376

ditional cost of sharing genuine information. Then, (1 − pij)R377

quantifies the expected reward. Additionally, it is assumed that378

the link’s OP pij should be no higher than 1 − ci

R ; otherwise, no379

vehicle would share genuine RTI under any circumstances.380

The credit mechanism of the vehicular networks considered381

may be designed by observing human social networks. The382

concept of “reputation” is rather important for everyone in the 383

real world, where a person’s credit/reputation is generated and 384

updated according to his/her accumulated behaviors in human 385

social networks. Explicitly, when interacting with a reputable 386

person, we are inclined to maintain future contacts with him/her. 387

On the other hand, if we learned a lesson from interacting with 388

someone having a bad reputation, a long-lasting cooperation 389

may be unlikely. Similarly, in our cooperative vehicular net- 390

work, each vehicle can evaluate the others’ credit through learn- 391

ing from its interactions with other vehicles. In this case, a 392

vehicle can determine whether to share its RTI with a specific 393

vehicle according to that vehicle’s credit/reputation. When a ve- 394

hicle’s credit is below a certain threshold, other vehicles would 395

not share any RTI with it. It is expected that through rounds of 396

interactions, each vehicle’s credit can be gradually learned by 397

the observations and evaluations of its shared RTI. According 398

to this credit information, the vehicles associated with a low 399

credit would obtain less and less shared RTI, and eventually 400

they will have to change their RTI sharing strategy to improve 401

their reputation. We assume that there is a central server and 402

each vehicle can report its experience in sharing RTI with all 403

others. As a result, the database records the vehicles’ credit. 404

The credit established by each vehicle is considered to be pri- 405

vate information, which may not be appropriate for the server 406

to release to the public. This is similar to our human social net- 407

work, where the credit earned by each individual is not directly 408

visible to others. Nevertheless, through rounds of interactions, 409

one vehicle’s credit can be gradually learned by others. Note 410

that the central server is only used by the vehicles to inform the 411

others about their RTI sharing experience and to store the credit 412

value of each vehicle. Since the experience can be quantized to 413

a low number of discrete levels, the amount of data related to 414

each vehicle is relatively small. Therefore, the server does not 415

have to maintain a large-scale database. A potential solution is 416

that each vehicle stores its own experience and the credit values 417

of other vehicles locally. 418

Similar to the human social networks, each vehicle of our 419

vehicular network can have a credit value generated by its past 420

behavior, and also determines its future behavior when sharing 421

RTI with others. Let us define vehicle vi’ reputation value as 422

ri in conjunction with 0 ≤ ri ≤ 1. Note that in human social 423

networks, a person’s behavior is typically consistent with his/her 424

reputation, regardless of the specific credit of the other persons 425

he/she is interacting with. Similarly, vehicle vi’s RTI sharing 426

strategy qi should also be consistent with its reputation ri , and 427

thus these two parameters can be deemed to be identical, i.e., 428

we have ri = qi . When vi has the knowledge of vehicle vj ’s 429

credit/reputation through rounds of RTI sharing interactions, vi 430

can determine whether to cooperate with vj in the future. Let 431

us define vi’s interaction probability and action with respect to 432

other vehicles as 433

κi = [κi1, κi2, . . . , κiN ] (23)

ηi = [ηi1, ηi2, . . . , ηiN ] (24)

where 0 ≤ κij ≤ 1 represents vi’s probability of sharing RTI 434

with vj , regardless whether this is genuine or false information, 435
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and ηij = 0 or 1 represents whether or not to cooperate with436

vj in a specific time slot. In such a scenario, at the beginning437

of each time slot, each vehicle first has to determine its next438

action ηij , i.e., whether to cooperate with the nearest vehicle439

vj , according to vi’s interaction probability κij . Then, if it has440

decided to share RTI with vj , it has to further determine the441

RTI sharing action ai , i.e., as to whether to share genuine or442

false RTI with a specific peer vehicle, according to both vi’s443

information-sharing strategy qi as well as to its reputation ri .444

Meanwhile, after rounds of RTI sharing interactions, vehicle445

vi should update its interaction probability κi according to its446

experience with the others or by querying the database. It is447

expected that through a series of alternating decision making448

and learning processes, the vehicles having a bad reputation449

would obtain decreasingly less shared RTI from the others, and450

thus they would have to ameliorate their credit/reputation by451

actively sharing genuine RTI hereafter.452

During the multiround RTI sharing process, none of the ve-453

hicles has access to the other vehicles’ information-sharing454

strategies, actions, and utilities. Moreover, due to the rapidly455

evolving topology of vehicular networks, each vehicle may456

share its RTI with different vehicles during different time slots.457

Hence, from an individual vehicle’s perspective, the network458

including all other vehicles can be regarded as an external envi-459

ronment, within which the vehicle makes decisions and shares460

RTI with the goal of maximizing its own utility. Generally, each461

vehicle learns from its interactions with this dynamic environ-462

ment and adapts to the environment by adjusting its strategies463

for the sake of gleaning an increased utility. Reinforcement464

learning is a powerful tool capable of solving such an adap-465

tive environment-learning and decision-making problem [32].466

Its actions are reminiscent of how an intelligent agent infers the467

unknown statistical features of its environment as well as its468

actions in the environment so as to maximize a certain notion469

of the cumulative reward, where the environment itself is grad-470

ually changed by the agent’s actions. Reinforcement learning471

has been widely adopted in communications and networks [33],472

[34], control [35], finance, and economics [36], as well as in473

social science [37], [38].474

In our model, one of the main technical problems is how475

each vehicle constructs its interaction probability vector κi af-476

ter rounds of RTI sharing interactions with the others. Based477

on the reinforcement learning model, each vehicle should first478

construct its perception through learning the others’ inclination479

in RTI sharing. The perception is a quantitative representation480

of the accumulated utilities, which records all the historical in-481

teractions of the past as well as the new interaction results. In482

other words, it relies on the exploitation of past knowledge and483

on the exploration of a new environment [32]. Let us define484

vehicle vi’s perception of the others’ behaviors as zi , where485

zi = [zi1, zi2, . . . , ziN ] (25)

with zij being vehicle vi’s perception with respect to vj . At the486

end of each time slot, vi first evaluates the utility of information487

received from vj and then utilizes this utility value for adjusting488

its perception associated with vj , while keeping the perception489

of others unchanged, which can be expressed as 490

zt+1
ij =

{
(1 − εt

i)z
t
ij + εt

iU
t
ij, if ηt

ij = 1

zt
ij, if ηt

ij = 0
(26)

where the superscript t represents the time slot, Ut
ij is vi’s utility 491

gleaned through exchanging information with vj during time 492

slot t, and εt
i is a sequence of averaging factors controlling the 493

rate of decay in conjunction with
∑

t εt
i = ∞ and

∑
t(ε

t
i)

2 < ∞. 494

The constraint of
∑

t εt = ∞ is imposed for ensuring εt > 0, 495

i.e., the new learned utility Ut
ij should always be incorporated. 496

By contrast, the constraint of
∑

t(ε
t)2 < ∞ is used for ensuring 497

εt < 1, i.e., the history of the learned experience zt
ij should 498

always be utilized. 499

After updating the perception zi , vehicle vi can utilize it for 500

generating its interaction probability with respect to vehicle vj . 501

Apparently, the more utility vi can obtain through sharing RTI 502

with vehicle vj , the higher the interaction probability κij should 503

be, which represents a proportional relationship between κij 504

and zij . Here, we adopt a normalized performance evaluation 505

method based on the Boltzmann exploration rule formulated as 506

follows [32]: 507

κt
ij =

eξt
i z t

i j

max{eξt
i z t

i j ,∀j}
(27)

where the positive coefficient ξt
j controls the exploration level 508

with ξt
j → 0 leading to a 0.5 interaction probability, while for 509

ξt
j → ∞ the action would concentrate only on one of the pure 510

unconditional cooperation or no cooperation strategy, whichever 511

results in a higher perception. The physical meaning of (27) is 512

that vehicle vi always shares RTI with that specific vehicle, 513

which can give vi the highest utility. Then, vi considers this 514

highest utility as a reference, when it determines its interaction 515

probability with others. 516

To summarize, the reinforcement learning-based credible RTI 517

sharing scheme can be interpreted as a process, in which each 518

vehicle learns about its utilities as well as perceptions, and then 519

updates its estimation regarding the other vehicles’ reputation 520

as well as adjusts its interaction behavior accordingly using its 521

accumulated perception. The evolution from zt
ij to zt+1

ij can be 522

illustrated by a chain of iterative elementary steps: the initial 523

perception gives rise to a random interaction probability that 524

determines the interaction; by following the interaction and the 525

information-sharing action, the resultant utility is evaluated and 526

then the perception can be updated in the next round, and so 527

on. The iterations can be simply expressed by the following 528

illustrative chain: 529

zt
ij → κt

ij → ηt
ij→ Ut

ij → zt+1
ij

↓ ↑

rt
i → qt

i → at
i (28)

where the arrow between κt
ij and rt

i means that when a vehicle 530

discovers that the number of other vehicles sharing RTI with it 531

is less than a certain threshold, the vehicle would consider to 532

increase its credit value in order to enhance its reputation by 533
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Algorithm 1: Credit mechanism for RTI sharing.
1: for each vehicle vi do
2: /********** Initialization **********/
3: Initialize vi’s credit value r0

i and credit adjustment
step size Δri .

4: Initialize vi’s perception z0
i = 0.

5: Initialize vi’s interaction probability κ0
i = 1.

6: Initialize the number of vi’s cooperative vehicles
n0

i = 0 and the threshold nth .
7: Setup the learning speed εi , the exploration level ξi

and the tolerance ζ.
8: /********** RTI sharing interaction **********/
9: for each time slot t do

10: Discover the nearest vehicle vj .
11: Determine ηt

ij using random number generator
rand(κt

ij).
12: /********** Perception adjustment **********/
13: if ηt

ij == 1 then
14: Set st

i = rt
i and the RTI sharing action at

i using
rand(qt

i ).
15: RTI sharing, evaluate the information utility

Ut
ij .

16: Update vi’s perception zt
ij and store nt

i .
17: end if
18: /********** Interaction probability adjustment

**********/

19: if
(
zt

ij − z
(t−1)
ij

)2
≥ ζ then

20: Updatevi’s interaction probability
κt

ij = eξt
i z t

i j /max{eξt
i z t

i j ,∀j}.
21: end if
22: /********** Reputation adjustment

**********/
23: if 1

t

∑
t nt

i < nth then
24: ri = ri + Δri .
25: end if
26: t = t + 1.
27: end for
28: end for

sharing more genuine RTI with the others. The credit mecha-534

nism is summarized in Algorithm 1. In the initialization phase,535

each vehicle may have different prior credit vales and credit536

adjustment preference. Meanwhile, the learning speed ε de-537

termines the weight of new information, the exploration level538

ξ determines the probability of adopting uncharted strategies,539

while the tolerance determines the learning performance. In the540

RTI sharing phase, each vehicle first connects with the near-541

est vehicle and generates the interaction strategy, i.e., whether542

to interact with the vehicle. If the interaction indicator is posi-543

tive, the vehicle then shares the genuine RTI with a probability544

generated by its reputation. Following the information-sharing545

interaction, the vehicle evaluates its perception and updates the546

interaction probability in the next round. If the vehicle finds547

that the number of other vehicles who would like to exchange548

information with it is below some threshold, the vehicle would549

Fig. 2. Locations of Beijing taxis.

TABLE I
VEHICLE INTENSITIES OF DIFFERENT REGIONS AT BEIJING

Region 0 1 2 3 4

Intensity (/km2) 59.6 23.3 72.7 40.7 48.1
Average distance (m) 89.03 227.79 73.01 130.41 110.42
K-S test (P-value) 0.0731 0.1179 0.1061 0.0705 0.0619

Region 5 6 7 8 9
Intensity (/km2) 76.8 46.3 21.2 74.4 59.6
Average distance (m) 69.12 114.57 250.00 71.35 89.05
K-S test (P-value) 0.1169 0.0774 0.0831 0.0584 0.0937

TABLE II
NUMERICAL PARAMETERS FOR PERFORMANCE EVALUATION

Parameter Value

Max Tx Power 20 dBm
Antennas 1 Tx, 1 Rx
Antennas gains 5 dBm
Nakagami-m fading parameter m = 2
Path loss exponent α = 2, 4
Noise power σ 2 = 0.1 dBm
Maximum OP Υ = 0.1

adjust its reputation according to the preferred adjustment step 550

size. In the next section, we will conduct simulations to quantify 551

the performance of the proposed algorithm. 552

VII. SIMULATION RESULTS BASED ON REAL TRAFFIC DATA 553

In this section, we conduct simulations to verify our 554

theoretical analysis and characterize the proposed schemes. The 555

simulations are based on a real-world dataset consisting of the 556

spatial distribution of Beijing taxis. In the following, we will first 557

estimate the intensity of the taxis in Beijing using the dataset. 558

Then, based on the estimated intensity, we will characterize the 559

outage performance of RTI sharing as well as verify the merits 560

of the proposed RTI sharing scheme. 561

The real-world dataset contains the GPS positions of 10 258 562

taxis in Beijing (longitude from 116.25 to 116.55 and latitude 563

from 39.8 to 40.05) during the period of February 2–8, 2008 564

[39]. As shown in Fig. 2, the positions of these vehicles at a 565
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Fig. 3. Taxis position distributions of different regions at Beijing.

specific time instant are illustrated. We can see that the vehicles’566

position distribution reflects the planning structure of Beijing.567

Furthermore, we can distinguish the downtown and suburban568

areas. For the sake of illustrating the specific regional character-569

istics, instead of painting a picture of the whole city, we separate570

Beijing city into nine regions, as shown in Fig. 2. Based on the571

taxi-location information, we can estimate the intensity of vehi-572

cles in the different regions, as shown in Table I, where Region573

0 represents Beijing city as a whole. The estimation process is574

subdivided into the following two steps: 1) We first calculate and575

store the number of taxis within a circle having a radius of 60 m,576

which constitute a series of samples assumed to obey the Poisson577

distribution; and 2) then, we estimate the intensity λ according to578

the distribution in (1) by using the maximum likelihood method.579

Moreover, we run the Kolmogorov–Smirnov test (K-S test) to580

verify that the real data indeed satisfies the PPP. In Table II, we581

show the K-S test output for each region, i.e., the P-value. Note582

that for P ≥ 0.05, the hypothesis of exponential distribution is583

not denied. We can see that the P-values of all regions are higher584

than 0.05, i.e., the taxi location data indeed satisfies the PPP.585

Fig. 3 shows the c.d.f. of the number of vehicles within a circle586

of 60 m radius in different regions, where the bars represent real587

sample data from the dataset and the curve is the fitted PPP c.d.f.588

As we assumed in the system model, the spatial distribution of589

the real-world vehicles may be deemed reasonably consistent590

with the PPP distribution characteristics. Furthermore, we can591

observe that Region 5 representing the central area of Beijing592

city exhibits the highest vehicle intensity shown in Table I,593

while Region 7 as a suburban area has a low vehicle intensity.594

Moreover, the average distance between two vehicles can also595

be obtained from the dataset, as shown in Table I. Note that596

since the dataset only contains the taxi locations of Beijing city,597

the distances between two vehicles appear to be relatively large.598

In the following simulations, we will apply a multiplier of 5 to599

those intensities seen in Table I under the assumption that there600

is one taxi among five vehicles.601

Based on the estimated intensity of vehicles, we can evaluate602

the information-sharing OP using the related parameters for603

the channel model listed in Table II, where the transmission604

power, the path loss, and fading models are configured605

according to [30]. Two typical scenarios are simulated: The606

first is the downtown scenario as in Region 1 of Beijing city, 607

where the signal channel between two peer vehicles should 608

obey the Nakagami-m distribution, and the second is the 609

suburban scenario as in Region 7 of Beijing city, where the 610

channel obeys the Rayleigh distribution. For the downtown 611

scenario, we have to consider the effect of obstacles, such as 612

buildings. The influence of obstacles has been modeled in the 613

well-established simulators like Vergilius [40]–[42] or Veins 614

[43]–[45]. In this paper, we refer to the propagation model 615

introduced in Veins [43], where the obstacle effects Lobs were 616

modeled by 617

Lobs [dB] = βw nw + γw dw (29)

with nw representing the number of walls that the radio wave 618

has penetrated, dw represents the internal dimension of a 619

building, while βw and γw represent a pair of calibration factors 620

having a value of 9.2 dB per wall and 0.32 dB per meter [43], 621

respectively. The building-induced blocking mostly occurs near 622

the street intersections. Thus, we can assume the number of 623

wall penetration occurences between two vehicles to be two, 624

and the building’s internal dimension to be 50 m. In Beijing, 625

the average distance between two intersections is 2 km, and 626

if we consider 50 m to be the blocked area, the percentage of 627

building blocking can be deemed 0.025. 628

The estimated vehicle intensity parameters of Region 1 and 629

Region 7 are multiplied by 5 in our simulations. Considering 630

that the breakpoint-based path loss model is common and prac- 631

tical, we have simulated two path loss settings, i.e., α = 2 and 632

4, which constitute a pair of common path loss parameters ac- 633

cording to the experimental results of [30]. Thus, four cases are 634

simulated in these two scenarios based on whether the channel’s 635

path loss is α = 2 or 4 and whether the SNR is 10 or 20 dB, 636

respectively. The simulations were conducted using MATLAB 637

relying on the following procedure. The channel is first gener- 638

ated according to the fading distribution and to the large-scale 639

path loss. Then, we calculate the expected probability of the 640

SINR value being less than some threshold, given the fading 641

and distance parameters. 642

Figs. 4 and 5 show the channel-induced OP of both the sub- 643

urban and downtown scenarios, where the simulation results 644

are all consistent with the theoretical results. In the downtown 645
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Fig. 4. Outage probability in Region 7.

Fig. 5. Outage probability in Region 5.

scenario, the simulation results are about 1 dB worse than the646

theoretical results, which is due to considering the building-647

induced blocking effects. The curves in those two figures are648

quite similar, which is expected due to having the same simu-649

lation settings. The only difference is that the channel-induced650

OP of the downtown scenario is lower than that in the sub-651

urban scenario owing to the reduced distance between a pair652

of vehicles, as well as due to having benign Nakagami fading653

channels. Generally, we can see that increasing the path loss654

exponent α from 2 to 4 can lead to the increase of channel-655

induced OP due to the higher power attenuation of the channel,656

while increasing the transmission power reduces the channel-657

induced OP. We also simulate the information-sharing OP of658

other regions of Beijing city, as shown in Fig. 6, where the path659

loss exponent is set to α = 2, the transmission SNR is set to660

10 dB, while the target received SINR is set to Υ = −10 dB.661

We can see that the information-sharing OP is proportional to662

the intensity of vehicles in the region. This is because a low663

intensity implies a higher distance between two peer vehicles664

and the channel attenuation is more severe. Although the low665

vehicular intensity can also help reduce the interference im-666

posed by other vehicles, this positive effect is dominated by667

the higher channel attenuation caused by the longer prorogation668

distance.669

Based on the information-sharing OP, we can now conduct670

simulations to verify the benefits of our proposed RTI sharing671

mechanism. We invoke Algorithm 1 over 50 vehicles, where672

Fig. 6. Outage performance of all regions.

Fig. 7. Reputation of all vehicles ξ = 0.1.

Fig. 8. Reputation of deviated vehicles ξ = 0.1.

the reputation adjustment step size was configured according to 673
0.02

t with t being the time index. Fig. 7 shows the dynamics of 674

all vehicles’ reputations during the learning and interaction pro- 675

cess, which also characterizes the vehicles’ information-sharing 676

strategy. Although the vehicles are initially configured to have 677

different reputations below 0.5, i.e., to have a relatively low rep- 678

utation, the final converged all “1” reputation results corroborate 679

the high efficiency of our credit mechanism. To further verify the 680

stability of the proposed algorithm, we arrange for some vehicles 681

to deviate from the converged “1” reputation, as shown in Fig. 8. 682

It can be seen that all the vehicles that have deviated quickly con- 683

verged to reputation “1” again. Note, however, that the success 684
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Fig. 9. Reputation of all vehicles ξ = 5.

of convergence is conditioned on having an appropriate setting685

for the exploration level. An aggressive exploration may lead to686

divergence, as shown in Fig. 9, where the exploration level ξ is687

set as high as 5. This is reasonable, because when the exploration688

level is excessive, the interaction probability tends to become bi-689

nary according to (27), i.e., 0 or 1. In such a case, some vehicles690

may not have the chance to interact with others and thus may691

not learn the reputation of others. Therefore, how to decide on a692

reasonable exploration level can be a promising future research693

topic.694

VIII. CONCLUSION695

In this paper, we studied the RTI sharing problem in vehicu-696

lar networks, including both the theoretical channel-induced OP697

analysis and the genuine RTI sharing mechanism design. The698

theoretical analysis and the simulation results lead to the fol-699

lowing major conclusions: 1) The outage performance is closely700

related to the density of vehicles, where a higher density implies701

having a reduced distance among the vehicles, which improves702

the communication performance; 2) the proposed credit-based703

RTI sharing mechanism is effective, which can ensure that all704

vehicles aspire to a good reputation, when an appropriate ex-705

ploration level is adopted. Future research may include the the-706

oretical information-sharing OP analysis under other vehicular707

network protocols, as well as genuine RTI sharing mechanism708

design relying on other kinds of incentives, instead of the credit709

considered here.710

APPENDIX A
PROOF OF THEOREM 1711

Following (10), we should calculate the expectation of712

P (γ0 ≤ Υ) with respect to vehicle v1’s location and channel,713

as well as all other vi’s locations and channels. First, let us take714

the expectations with respect to d1. Since vehicle v0 is sharing715

its RTI with the nearest vehicle v1, no other vehicles can be716

closer than d1, i.e., only vehicle v0 is within the area 2Wd1. In717

this case, according to (1), the c.d.f. of d1 can be formulated as718

follows: 719

P (d1 ≤ D) = 1 − P (d1 > D)

= 1 − P [No other vehicle in πD2| given the eixstence of v0]

= 1 − e−2λW D (30)

while the corresponding probability density function (p.d.f.) can 720

be written as 721

fd1(d1) =
d
(
1 − e−2λW d1

)
dd1

= 2λWe−2λW d1 . (31)

In this case, the channel-induced OP of vehicle v0 can be 722

expressed as 723

p0 = 1 −
∫ +∞

d1=0
Eg1,gi ,di

[P (γ0 > Υ)] fd1(d1)dd1

= 1 −
∫ +∞

d1=0
Eg1,gi ,di

[
P

(
g1d

−α1
1

Λ
> Υ

)]
2λWe−2λW d1 dd1

= 1 − 2λW

∫ +∞

d1=0
Eg1,gi ,di

[P (g1 > dα1
1 ΥΛ)] e−2λW d1 dd1.

(32)

Let us now concentrate our attention on the derivation of 724

Eg1,gi ,di
[P (g1 > dα1

1 ΥΛ)] shown in (32). 725

Since g1 obeys the gamma distribution in (4), its c.d.f. can be 726

written as 727

Fg1(X) = P [g1 ≤ X] = 1 −
Γ
(
m1,

m 1
μ1

X
)

Γ(m1)

= 1 − e
−m 1

μ 1
X

m 1−1∑
k=0

1
k!

mk
1

μk
1

Xk (33)

where Γ(·, ·) is the upper incomplete gamma function, μ1 is the 728

mean of g1, and the last step is valid because we assume that the 729

Nakagami-m fading parameter m1 is an integer.1 In this case, 730

Eg1,gi ,di
[P (g1 > dα1

1 ΥΛ)] in (32) can be expressed as 731

Eg1,gi ,di
[P (g1 > dα1

1 ΥΛ)] = Egi ,di

×

⎡
⎣Γ

(
m1,

m 1
μ1

dα1
1 ΥΛ

)
Γ(m1)

⎤
⎦

= EΛ

[
e
−m 1

μ 1
d

α 1
1 ΥΛ

m 1−1∑
k=0

1
k!

mk
1

μk
1

(dα1
1 ΥΛ)k

]

=
∫ +∞

0

[
e
−m 1

μ 1
d

α 1
1 ΥΛ

m 1−1∑
k=0

1
k!

mk
1

μk
1

(dα1
1 ΥΛ)k

]
fΛ(Λ)dΛ

1When m is an integer, we have the upper incomplete gama function

Γ(m, x) = (m − 1)!e−x
∑m −1

k= 0
xk

k ! , the gamma function Γ(m) = (m − 1)!,

and Γ(m ,m x )
Γ(m ) = e−m x

∑m −1
k= 0

m k

k ! xk [46].
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732

=
m 1−1∑
k=0

1
k!

(
m1d

α1
1 Υ

μ1

)k ∫ +∞

0

[
e
−

m 1d
α 1
1

Υ

μ 1
ΛΛk

]
fΛ(Λ)dΛ

=
m 1−1∑
k=0

sk

k!
(−1)k dkLΛ(s)

dsk
(34)

where fΛ(Λ) represents the p.d.f. of Λ, and s � m 1d
α 1
1 Υ

μ1
, and733

LΛ(.) represents the Laplace transform of the interference plus734

noise of vehicle v0, while the last step exploits the property of735

xnf(x) L⇐⇒ dk LΛ (s)
dsk

.736

The Laplace transform of Λ can be calculated as follows:737

LΛ(s) = EΛ
[
e−sΛ]

= e−sσ 2
Egi ,di

⎡
⎣ ∏

vi ∈S\{v0,v1}
e−sgi d

−α 2
i

⎤
⎦ . (35)

Since all the vehicles vi (∀vi ∈ S\{v0, v1}) are independent of738

each other, all the channel gains {gi} are i.i.d. and their locations739

generated independently based on the PPP are also i.i.d.; hence,740

(35) can be rewritten as741

LΛ(s) = e−sσ 2
Edi

⎡
⎣ ∏

vi ∈S\{v0,v1}
Egi

[
e−sgi d

−α 2
i

]⎤⎦

= e−sσ 2
Edi

⎡
⎣ ∏

vi ∈S\{v0,v1}

1

1 + sμ2d
−α2
i

⎤
⎦

= e−sσ 2
exp

(
−λ

∫ +∞

d1

(
1 − 1

1 + sμ2ζ−α2

)
2Wdζ

)

= exp

(
−sσ2 − 2λW

∫ +∞

d1

1

1 + ζ α 2

μ2s

dζ

)
(36)

where the second step is based on the assumption of experi-742

encing a Rayleigh-fading channel with a mean of μ2 between743

vehicle vi (except for the closest vehicle v1) and v0. To elabo-744

rate a little further, the third step follows from the probability745

generating functional of the PPP [24] and the lower boundary746

of the integration is d1, since the closest vehicle vi imposing in-747

terference on vehicle v0 should be farther than v0’s peer vehicle748

v1. By invoking the following change of variables u = ζ
(μ2s)1/ α 2

749

in (36), we have750

LΛ(s) = exp

⎛
⎝−sσ2 − 2λW (μ2s)1/α2

∫ +∞

d 1
(μ 2s ) 1/ α 2

1
1 + uα2

du

⎞
⎠

= exp
[
−sσ2 − 2λWd1Φα2(μ2sd

−α2
1 )

]
(37)

where Φα (x) is as in (12). To summarize, by combining (32),751

(34), and (37), we arrive at vehicle v0’s channel-induced OP as752

p0 = 1 − 2λW

∫ +∞

d1=0

m 1−1∑
k=0

(−m1d
α2
1 Υ)k

k!μk
1

dkLΛ(s)
dsk

∣∣∣∣
s=

m 1d
α 1
1

Υ

μ 1

e−2λW d1 dd1 (38)

with LΛ(s) in (37). By setting d1 = τ , we have (11), which 753

completes the proof of Theorem 1. 754

APPENDIX B
PROOF OF COROLLARY 1 755

Since Rayleigh fading is a special case of Nakagami-m 756

fading associated with m = 1, we can calculate vehicle v0’s 757

channel-induced OP in the highway scenario considered by 758

setting m1 = 1 and μ1 = μ2 = μ in (11), which yields 759

p
hwy1
0 = 1 − 2λW

∫ +∞

τ =0
LΛ

(
τα1Υ

μ

)
e−2λW τ dτ

= 1 − 2λW

∫ +∞

τ =0
exp

×
(
−τα1Υ

μ
σ2 − 2λW

∫ +∞

τ

1

1 + ζ α 2

τ α 1 Υ

dζ

)

= e−2λW τ dτ. (39)

By employing a change of variables u = ζ
τ α 1/ α 2 Υ1/ α 2

, we can 760

rewrite (39) as 761

p
hwy1
0 = 1 − 2λW

∫ +∞

τ =0
e−2λW τ− τ α 1 Υ

μ σ 2−2λW Υ
1

α 2 τ
α 1
α 2

× e
Gα 2

[(
τ α 2−α 1

Υ

) 1
α 2

]

dτ

= 1 − 2λW

∫ +∞

τ =0
exp

(
−σ2Υ

μ
τα1

)

× exp

[
−2λWΥ

1
α 2 τ

α 1
α 2 Gα2

((
τα2−α1

Υ

) 1
α 2

)]

· e−2λW τ dτ (40)

where according to [47], we have 762

Gα (x) =
∫ +∞

x

1
1 + uα

du

=
1

α − 1
x

1 + xα
F
(

1, 1; 2 − 1
α

;
1

1 + xα

)
(41)

with the hypergeometric function given by F(a, b; c; z) = 763

1 +
∑+∞

n=1
zn

n !

∏n−1
m=0

(a+m )(b+m )
c+m . Although (40) appears to 764

be complicated, its physical interpretation is quite clear. The 765

first term exp(− σ 2Υ
μ τα1) within the integration represents the 766

channel-induced OP as a function of noise, the second term 767

exp[−2λWΥ
1

α 2 τ
α 1
α 2 Gα2((

τ α 2−α 1

Υ )
1

α 2 )] represents the channel- 768

induced OP influenced by the other vehicles vi , and the last 769

term e−2λW τ is associated with the p.d.f. of the variable τ = d1. 770

This completes the proof of Corollary 1. 771



12 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 00, NO. 00, 2016

APPENDIX C
PROOF OF COROLLARY 2772

By substituting α1 = α2 = α in (13), we have773

p
hwy2
0 = 1 − 2λW

∫ +∞

τ =0
exp

(
−σ2Υ

μ
τα

)
·

× exp
[
−2λWΥ

1
α Gα

(
Υ− 1

α

)
τ
]
· e−2λW τ dτ

= 1 − 2λW

∫ +∞

τ =0
exp

(
−σ2Υ

μ
τα

)

× exp
(
− 2λWΦα (Υ)τ

)
· e−2λW τ dτ

= 1 − 2λW

∫ +∞

τ =0
exp

×
[
−σ2Υ

μ
τα − 2λW

(
1 + Φα (Υ)

)
τ

]
dτ (42)

where the second step is valid according to (12)774

Φα (Υ) = Υ1/α

∫ +∞

Υ−1/ α

1
1 + uα

du = Υ1/αGα

(
Υ−1/α

)
.

(43)
This completes the proof of (15) in Corollary 2.775

Following (42), we can further consider the specific scenario776

of having a path loss of α = 2, which is common in the highway777

vehicular network scenario of [30]. By substituting α = 2 in778

(42), we have779

p
hwy2
0 = 1 − 2λW

∫ +∞

τ =0
exp

(
−σ2Υ

μ
τ 2

)

× exp
(
−2λWΥ

1
2 G2

(
Υ− 1

2

)
τ
)
· e−2λW τ dτ

= 1 − 2λW

∫ +∞

τ =0
exp

×
(
−σ2Υ

μ
τ 2 − 2λW

(
1 +

√
Υ arctan

√
Υ
)

τ

)
dτ

= 1 − 2λW

√
π

χ1(Υ)
exp

(
χ2

2(Υ)
4χ1(Υ)

)

× Q

(
χ2(Υ)√
2χ1(Υ)

)
(44)

where the second step is valid because arctan(1/u) =780 ∫ +∞
u

1
1+u2 du and the last step exploits the following exponential781

integration properties [46]:782

∫ +∞

τ =0
exp(−aτ 2 − bτ)dτ =

√
π

a
exp

(
b2

4a

)
Q

(
b√
2a

)

(45)
with the Q-function given by Q(x) = 1

2π

∫ +∞
x exp(−y2/2)dy.783

This completes the proof of Corollary 2.784
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