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The current deliverable is one of the outputs of work package WP3: Player Modelling and Prosocial 

Affect. It is a public document focusing on the Deliverable 3.1: User data acquisition and mapping in 

game environments.  

In this report, user data acquisition channels are distinct into three categories, namely the sensory 

observation channels, In-game data logs and static data. The first comprises the full-range of player 

behavioral data, which is directly observable through any number of audio/visual and motion 

sensors. Each observation channel is examined with regard to player affect recognition, and where 

applicable, hints towards engagement measuring are presented. Sufficient scientific literature works 

are presented to justify the choice of feature descriptors per observation channel. These features are 

further processed to recognize affective properties per channel. Algorithms employed for affect 

recognition are presented, and where possible, evaluated on already existing datasets. The second 

observation channel concerns in-game data logs and player interaction patterns with the game itself 

(using traditional input devices such as the mouse or keyboard) as well as other players (via chat 

message sentiment analysis software to be incorporated onto the data acquisition platform). The 

final observation channel covers player psychological profiles and immediate gaming area contextual 

information to provide a complete description of the conditions in which a prosocial game session 

takes place. 

In order to demonstrate and verify applicability of the observations acquisition channels described 

above, two prototype games have been developed by members of the consortium, with intent on 

collecting player input data for evaluation of the proposed algorithms in real-life scenarios and 

preliminary work on a generic framework for sensor connectivity is carried out. A demonstrative 

mapping of sensors, modalities, features and target output data is presented per game. 

 

  

Executive summary 
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1 Introduction 

This section provides detailed information about the purpose of WP3 in general, placing of this Task 

and accompanying deliverable, as well as the scope and structure of the document, which set the 

tone for the intended audience and interested readers. 

The aim of WP3 is to develop data fusion algorithms for the analysis of prosocial affect as well as 

define player models, all of which are intended for both offline and online adaptation of prosocial 

game content and the assessment of learning outcomes with regard to the Prosocial Learning 

Objectives (PLOs) set beforehand by teachers/parents/caregivers for student game players. Player 

models will encapsulate a summary of key characteristics influencing the students’ potential to 

achieve prosocial learning outcomes, and ultimately will serve as a prosocial abstraction of any given 

player. Each player will have a unique player profile which will be adapted over time according to this 

particular player’s gameplay interaction patterns and ability to reach a number of assigned PLOs. 

Adaptation of the player profile will depend on a persistence mechanism, which will keep track of 

player historical profiles, as well as online data fusion taking place during gameplay sessions, in which 

player interaction patterns are fused with subtle audio/visual affective cues. The results of this fusion 

are mapped to a multiple-axis prosocial affective space in order to determine whether adjustments 

need to be made to the game levels of difficulty (perceived challenge) and game graphical content to 

ensure high levels of player engagement. In turn, maintaining this balance between player skills and 

game challenge will produce the desired amount of engagement, which will maximize the potential 

of students in terms of achieving their assigned PLOs by completing certain tasks in the game 

environment.  

Future deliverables D3.2, D3.3 and D3.4 will outline the continuous work on both prosocial affect 

fusion algorithms and player modelling. This document will focus on the core user data acquisition by 

monitoring gameplay interaction patterns and behavioral response signals captured using a reliable 

and scalable framework of sensory apparatus using a multitude of state of the art techniques.  

1.1 Purpose of the document and positioning of Task 3.1 

The purpose of Task 3.1, which concludes with the delivery of this document, is to identify and 

analyze all player input data coming from various incoming signals as well as player background 

knowledge, explore game input modalities beyond the scope of game interactions and process raw 

observations to provide input to the affect fusion algorithms (Task 3.2). Throughout the timeline of 

this Task, partners involved with player modelling and prosocial affect input modalities have 

identified prosocial observation acquisition channels in the following behavioral signals: 

• Visual information coming from facial analysis, including facial expressions and gaze analysis. 

• Visual information coming from body motion analysis, including full body motion, as well as 

head and hand movements, with the use of consumer-grade motion sensing gaming 

hardware. 

• Audio information coming from speech emotion analysis. 

• Gameplay data, including player interactions with the environment and transactions with 

other players (i.e. via chat messages). 

• Contextual information regarding the conditions of the actual location where students are 

playing prosocial games and are being monitored by the multi-sensor platform. 

• Player background/psychological profile data.  
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Each of these observation acquisition channels is comprised of a multi-layered set of features which 

have been acquired by studying already existing datasets on children interaction with serious games 

monitoring, or collected as part of prosocial studies (WP7). All features extracted as part of the work 

conducted in this Task are well-defined in the related scientific literature on cognitive and emotional 

state analysis. Evaluation schemes on existing datasets and testbeds for observation data local 

processing, i.e. turning low-level features to higher-level concepts of affect have also been 

investigated during this Task. 

In this deliverable, we will describe the algorithms and processes used for person-dependent affect 

analysis using multi-channel observation acquisition, ranging from gameplay interaction features to 

audio/visual cues. This document will present in detail, a complete set of features extracted from 

every observation acquisition channel, and where applicable, elaborate on the evaluation process of 

the implemented algorithms on already existing datasets. A thorough scientific background on each 

modality’s contribution to the affective state and related references on feature extraction techniques 

and algorithms are provided in text to solidify our approach with regards to each channel. 

1.2 Scope and Audience of the document 

The dissemination level of this document is public. This document will be made available on the 

project website for external parties interested in user data acquisition via behavioral signal cues, in-

logging and player profiling. It is hoped that the report will assist interested parties in understanding 

why and how each modality is linked to player current affect and engagement states, and provide a 

base towards mapping this type of input data in prosocial game environments. We present this 

mapping to aid future game developers undertaking the task of creating games for the 

ProsocialLearn platform in incorporating sensory hardware onto their games. Towards this end, a 

number of features is thoroughly presented, that can be collected in real-time and post-session to 

feed forward to the prosocial affect fusion modules. 

1.3 Structure of the Document 

This document contains the following key sections, conveniently detailed in the list below: 

Section 1: Introduction – an introductory section, i.e. this present section, which describes the WP as 

a whole, as well as the main purpose of the Task that generated this document. 

Section 2: Sensory Observation Channels – this section will present and detail all the different 

features extracted through audio/visual sensory observation techniques and related to player subtle 

behavioral response cues during gameplay. An overview of all audio/visual sensors will be delivered. 

Each modality presented will include the total number of features detected, the techniques used for 

detection and feature extraction as well as evaluation on either existing datasets or data collected as 

part of prosocial studies (WP7).  

Section 3: In-game Data Logs – this section describes the data logging process that will be supported 

by the ProsocialLearn platform, as well as propose a summary of tools and features collected online 

and in-game, with regards to student gameplay interaction patterns using keyboard and mouse 

interfaces as well as sentiment analysis performed on non-verbal communication (i.e. chat messages, 

emoticons, etc.) with other players. 

Section 4:  Static Player Data – this Section delves into the data remaining constant throughout the 

duration of the gameplay session. Information stemming from player profiles, persistence 
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mechanisms and contextual information regarding the immediate area surrounding the physical 

space in which students are gaming will be explored in this Section.  

Section 5: Multi-modal/Multi-sensor Capturing Setup – this section describes a generic approach for 

sensor/device connectivity and in-game observation data flow, according to the specifications of the 

overall ProsocialLearn requirements and architecture presented in D2.3. The aim is to present initial 

developments that will ensure input signal processing is available and robust for integration into the 

1
st

 ProsocialLearn prototype platform.  

Section 6: Conclusion – this section presents the conclusion of the document. 
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2 Sensory Observation Channels 

In this Section, the sum of all input modalities will be described in accordance to audio/visual signals 

retrieved from a variety of sensory apparatus plugged into the data acquisition platform. In the 

remainder of this Section, we will focus on describing the different sensors contributing to the data 

acquisition process (2.1), the extraction of audio/speech features (2.2), an overview of all visual data 

acquired for both facial expression and gaze analysis (2.3) and finally an insight on body motion 

analysis data collected using consumer-grade motion sensing techniques (2.4). 

2.1 Capturing sensors 

Below is a full summary of all the sensory hardware used in the ProsocialLearn data acquisition 

framework. Sensors can be used together, where applicable in order to provide multi-modal user 

capturing, although in some cases, the use of one sensor explicitly excludes the use of another (i.e. 

Kinect/LEAP Motion). An overview of a generic framework for sensor connectivity is provided in 

Section 5. 

2.1.1 Microphone 

A microphone is a sensor that converts sound into electrical signals. As it is the only device capable of 

capturing human speech it is commonly used in speech recognition and analysis. In ProsocialLearn 

the built-in microphones on modern computing devices (laptops, tablets) or on cameras are 

employed to extract raw audio data. Due to the proximity to the individual the microphones are able 

to extract voice information well. The voice signal needs to be cleaned and analyzed as described in 

Section 2.2. 

2.1.2 Camera 

Probably the most common sensor device used for monitoring user 

behavior during a multitude of Human-Computer interaction (HCI) 

activities is the standard (web-) camera. HCI activities vary in the 

scientific literature from implicit tagging [Apostolakis & Daras, 2014] 

to affective video viewing [Soleymani et al, 2012a] and monitoring of 

gameplay behavior [Shaker et al, 2011]. Cameras are particularly 

useful for close-up monitoring of the user’s face, or in several cases 

the user’s upper body [Gunes & Piccardi, 2009]. Studies vary in the 

use of only a single or multiple cameras, according to the accuracy 

required and cost-efficiency targeted by each respective proposed framework, and potential 

application uses. It is customary to place the sensor(s) close to the computer monitor, in an attempt 

to record user direct interaction with the viewed content. In this respect, the camera(s) is(are) placed 

either on top or in front of the user’s monitor, depending on the intended best viewing angle per 

application. 

In the ProsocialLearn data acquisition platform, a single standard web camera is used for acquiring a 

continuous flow of user facial images. We impose no special specification in terms of camera type or 

model, other than the capacity to record High Definition (HD) video. We find this specification non-

limiting; as generally, most high- and mid-range laptops on the market at the time of writing this 

document are shipped with an onboard camera right on top of the built-in monitor’s viewing area. In 

cases where a standard desktop PC is to be used, a standard-issue HD webcam is mounted on top of 

the desktop monitor. Raw camera frames obtained from the sensor will serve to capture a clear 
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image of the student’s face and eyes, which will be used for the extraction of facial expression and 

gaze analysis features, as described later in this Section. 

2.1.3 Kinect 

Late in 2010, developer Microsoft attempted to 

revolutionize the way game players interacted with 

their games and gaming hardware (Xbox 3601) by 

introducing the Kinect, the first in a line of motion 

sensing input devices intended to replace the 

traditional controller. The original device featured an 

RGB camera, a depth sensor and a multi-array 

microphone running proprietary software, and builds 

on software technology developed internally and 

range camera technology developed by the now defunct Israeli company PrimeSense. Instantly, the 

device broke the Guinness World Record for fastest selling consumer electronics device, and was 

positively accepted by the homebrew software and 

scientific community [Zhang, 2012]. In 2012, Microsoft 

introduced a Windows version of the device along with an 

official SDK to provide developers with the Kinect 

capabilities in order to build applications with C++, C# and 

Visual Basic using Microsoft Visual Studio 2010 and 

beyond. An upgraded version marketed with the 

company’s latest gaming hardware (the Xbox One2) was 

released late in 2013.  

Since the original Kinect for Xbox 360 sensor broke ground in 2010, several research topics 

surrounding low-cost motion capturing systems emerged [Berger et al, 2011]. More specifically, 

research work capitalized upon full-body skeleton tracking capabilities offered for the device through 

a number of software development kits created for the sensor, most notably by Kinect project 

partner PrimeSense (OpenNI), until the release of the official SDK by Microsoft [Shotton et al, 2012]. 

Shortly, research works on rehabilitation based on bodily activity patterns during gameplay emerged, 

capitalizing on the sensor’s low cost and firmly established affiliation with the games industry [Chang 

et al, 2011] [Lange et al, 2011]. The notion was subsequently extended to include affective studies 

based on the extraction of full body motion features [Piana et al, 2013].  

In the ProsocialLearn data acquisition platform, we utilize both Kinect hardware for the analysis and 

extraction of features related to the players’ 3D full body motion. In this respect, we monitor and 

process data incoming from every visual component provided by, and the SDKs built for the sensor.  

 

 

 

                                                           
1 Microsoft XBOX 360 console, http://www.xbox.com/en-US/xbox-360?xr=shellnav  
2 Microsoft XBOX One console, http://www.xbox.com/en-US/xbox-one?xr=shellnav  
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(a) (b) 

Figure 1 - Sample data captured by the Kinect for Xbox 360 sensor 

Left image (a) shows RGB input, while the right image (b) shows depth and skeleton tracking results obtained 

from the OpenNI library 

More specifically, features are extracted with respect to the RGB camera frame, the 16-bit depth 

map as well as the skeletal joint locations and orientations provided by the OpenNI3 and Kinect SDK 

packages for the original Kinect for Xbox 360 and Kinect for Xbox One respectively. Figure 1 

demonstrates the raw data input of our feature extraction algorithms for both sensors. 

2.1.4 LEAP Motion Sensor 

The LEAP Motion controller is a computer hardware sensor 

device that supports contact-less hand and finger motions as 

input, allowing users to control applications via hand gestures 

and motions. The device is meant to be placed on the tabletop, 

and uses infra-red cameras and LEDs to generate a 

hemispherical, pattern-less IR light which is able to detect hand 

movement to a distance of about 600 millimeters [Guna et al, 

2014]. According to the developer specification, user input is 

detected and analyzed at about 300 frames per second by the 

controller’s built-in software, which uses complex maths to 

generate high-precision 3D hand position and joint data. Much like the Kinect, the LEAP Motion 

controller uses depth information to extract skeleton data, however, it’s smaller observation area 

and higher resolution make it ideal for hand and finger tracking, whereas the Kinect is more suitable 

for full body tracking.  The device was publicly made available in mid-2013, and has since been 

embraced by the Virtual and Augmented reality application development community.  

Several obvious potential use cases of the sensor for the scientific community have since emerged, 

involving hand gesture recognition [Schmidt et al, 2015], sign language interpretation [Potter et al, 

2013] and more recently, rehabilitation [Grubišić et al, 2015]. These studies display the controller’s 

efficiency with hand tracking, concluding however that further development on the device software 

                                                           
3 PrimeSense shutdown the original OpenNI project on which some of the capturing modules used in our data 

acquisition framework are linking to, when it was acquired by Apple on November 24, 2013. The 
modules retain their operability through the latest legacy version of the library (1.5.4.0 as of May 7, 
2012). 
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API is required. At the time of writing these lines however, we are not aware of any studies that 

incorporate the LEAP Motion controller into an affect-sensing framework. Seeing how hand 

movement is considered to have a strong connection with the expression of emotion [Pollick et al, 

2001] [Gunes et al, 2015], we aim at capitalizing on the high precision provided by the sensor to 

extract hand-specific features believed to be related to the expression of emotion [Kessous et al, 

2010]. As the LEAP Motion controller has a limited range and is required to be set on top of an actual 

desktop, it is an ideal candidate for fusion with the facial expression and gaze modalities retrieved by 

positioning a camera on top of the user’s monitor.  

2.1.5 Standard input devices 

We consider traditional HCI interfaces such as the keyboard, mouse or even the occasional game 

controller as standard input devices. Although these barely classify as “sensors”, they provide the 

most recognizable means of interfacing with a game environment. Within ProsocialLearn, monitoring 

of user interaction patterns may implicitly reveal cues in prosocial affect and engagement through 

affect recognition [Salmeron-Majadas et al, 2014], or the inference of user interest via mouse or 

keyboard activity [Claypool et al, 2001]. We will elaborate on the sum of features collected through 

this interface in Section 3.3. 

2.2 Audio data acquisition 

In normal conversation the voice conveys a wide range of emotions. This emotion gives an insight in 

to the emotional state of the individual. This effect has been widely studied by psychologists mostly 

due to its role in diagnosis and treatment of a number of psychiatric illnesses [APA 2013]. More 

recently, the pattern analysis community has become interested in the problem due to the 

usefulness in general speech understanding problems and HCI. In ProsocialLearn we are using speech 

data as another channel from which to analyze the emotion of the children playing the games. This 

section provides an analysis of the problem and some specific techniques by which it can be 

achieved. 

2.2.1 Selection of an appropriate dataset 

In the literature there is a vast number of different datasets collected for extracting emotion from 

speech. These datasets can be analyzed via a number of discrete categories. These are: 

• Natural versus Acted 

• Level of classification 

• Language 

• Adults or children 

Natural and acted datasets are produced via either a natural conversation or an actor following a 

script. Acted conversations are incredibly rare in datasets of children, for obvious reasons. 

Additionally, acted datasets are considered to be very different from natural speech and classifiers 

for acted speech often perform poorly on real speech [Williams & Stevens, 1972]. However, it is 

much easier to collect acted data than natural. The level of classification refers to which level the 

utterances have been classified with a specific emotion. Typically human experts perform this either 

at the sentence or word level. Generally, we would like emotions as they evolves so would like our 

classifications based on sound samples rather than, at a minimum, entire words. The final two 

categories should be self-evident and serve to provide some useful contextual information for our 

system. In Table 1 – Some common emotion from speech databases lists a number of different 

databases used in recent literature classified according to these categorizations.  
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Name Natural/Acted Level Language 
Adults/

Children 

FAU Aibo [Steidl, 2009] natural words german children 

Enterface [Martin et al, 2006] acted sentences english adults 

AVEC [Schuller et al, 2011] natural words english adults 

Recola [Ringeval et al, 2013] natural words french/italian/german adults 

SES [Montero et al, 1998] acted sentence spanish adults 

Table 1 – Some common emotion from speech databases (chosen one highlighted in green) 

As the target audience is children the FAU Aibo dataset was used to build the classifiers. In this 

decision we are asserting that, within the context of emotion that adults and children are distinct 

[Potamianos & Narayanan, 2007], that emotion is independent of language spoken [Bhatti et al, 

2008], and that words are sufficient to build our models.  

2.2.2 The FAU Aibo dataset 

The collection of the data was performed in an experiment with children where they interacted with 

a Sony Aibo robot. There were two specific types of interactions. A short one where the child guided 

the Aibo to one of several feeding bowls and a longer one where they directed the Aibo around a 

course asking it to perform certain activates at various stages. The children were told to treat it as if 

it were a real pet and to praise or reprimand based on the exhibited behavior.  

The data was stored as mono WAV files sampled at 16kHz. The recordings were carried out at two 

different schools in Germany. Further details about the data are described in Table 2 – Simple 

metrics about the datasetTable 2 – Simple metrics about the dataset 

 

Demographics Data Sound 

51 children 

30 female, 21 male 

18216 files 

school 1 = 9959, number school 

2 = 8257 

~9 hours 

Median word length = 1.62s 

Table 2 – Simple metrics about the dataset 

A histogram illustrating the breakdown of the dataset in terms of sample (or word) length is shown in 

Figure 2 – Distribution of sample sizes.  

The key feature to note is that most of the words are short (less than a few seconds). The specific 

range of word lengths is from 0.11s to 24.54s. 
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Figure 2 – Distribution of sample sizes 

 

Figure 3 – Distribution of the ages of the children 

The age distribution by gender of the dataset is illustrated in Figure 3 – Distribution of the ages of the 

children 
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This illustrates a median age of 11 years old with a bias towards girls.  

As the dataset is labelled we can examine the specific makeup of the labels. There are multiple sets 

of labels provided. The specific labels are described in Table 3 – The specific labels in the dataset 

 and a breakdown of the labels is in Figure 4 - Distribution of data labels (a) 2-class (b) 5-class 

Notice that in both sets of labels the class representing no emotion (for 2-class this is Idle and for 5-

class this is Neutral) is approximately two thirds of the label set. Thus the classes are exhibiting a 

large imbalance which must be corrected at the classifier stage. 

 

2-class 5-class 

Negative (NEG)  

Idle (IDL) 

Angry  

Emphatic  

Neutral 

Positive 

Rest 

Table 3 – The specific labels in the dataset 

 

 

 

(a) (b) 

Figure 4 - Distribution of data labels (a) 2-class (b) 5-class 

 

2.2.3 Speech feature extraction 

The work described in this section follows that of the INTERSPEECH 2009 (IS2009) emotional 

recognition challenge [Schuller et al, 2009]. This was the first attempt to bring together all the work 

on automated emotion recognition and perform a standard comparison on standard data. The aim 

was to provide a baseline which new algorithms and features could be evaluated against. 
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Additionally a set of standard profiles were also provided for feature extraction. This profile used 

OpenSMILE [Eyben et al, 2013], which is a tool which allows you to build batch oriented pipelines for 

the analysis of sound. 

The basic flow of analysis of the speech for a single chunk of sound is illustrated in Figure 5 – Feature 

extraction from speech 

Raw sound files enter the pipeline on the left and proceed through all the various processing steps 

until reaching the far right.  

 

Figure 5 – Feature extraction from speech 

To aid in understanding the various steps in the figure a pair of example sound samples will be 

employed. These are illustrated in Figure 6 – Two input waveforms (a) Idle (b) Negative 

There are notable visual differences between the two different waveforms. This is illustrated more 

clearly via the zoomed version of the waveforms on the right of each sub-figure.  

 

 

(a) 
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(b) 

Figure 6 – Two input waveforms (a) Idle (b) Negative 

In Figure 5 – Feature extraction from speech the next two steps serve to flatten the magnitude 

spectrum and balance out the high and low frequencies. The zero crossing rate is the rate of sign 

changes along the time axis of a signal. It occurs when the signal transitions from positive to negative 

or negative to positive. An example of the zero crossing rate for the idle waveform is pictured 

inFigure 7.  

 

Figure 7 -Original waveform compared with the zero crossing rate (green) 

 

 

Figure 8 - Fourier magnitude for the 235 time window in the “Idle” signal 
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The Fourier transform is computed for each specific time window. A visualization of the “Idle” 

waveform for approximately 2.35 seconds is illustrated in Figure 8. Only the magnitude is shown as 

this is used in subsequent stages of the processing chain. 

The energy within each time window is now computed. A figure showing a comparison of the original 

signal with the energy is shown in Figure 9. Note that peaks in the energy correspond to the portions 

of the signal with rapid transitions. These transitions have been shown to be indicative of emotions 

within the speech. 

 

Figure 9 -Energy of the "Idle" waveform 

The Mel-frequency cepstral coefficients (MFCC) are derived from the Fourier transform magnitude of 

the signal. Like the Fourier transform magnitude this computes a number of values for each specific 

frame in the original waveform. Two consecutive frames are shown in Figure 10. Note that the 

coefficients are changing rapidly even within such a short time frame.  The MFCCs have shown 

efficacy in measuring emotion from voice. 

 

Figure 10 - MFCC components of two consecutive frames of the Idle waveform 

The final of the low level descriptors that are computed are the pitch. Intuitively pitch is related to 

emotion as it changes when people are emotionally charged. For a negative emotion the track of the 

fundamental frequency (F0) and the original waveform are shown in Figure 11. 
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Figure 11 - Track of the fundamental frequency for a negative emotion 

Processing the data this way leads to a very large number of features for each sample within the 

original signal. The breakdown is shown in Table 4. In addition the first derivatives of all the 

quantities are also computed. So to compute all the features for the dataset (described in sub-

Section 2.2.2) would involve between 542 and 132790 features.  

Obviously, the large number of features generated is intractable for analysis. The solution is to 

reduce the feature set by modelling the feature values computed across a word. This has the 

secondary effect of reducing the impact of noise. The final reduced set of features is illustrated in 

Table 5. In the table there are a number of low level descriptors (and their first derivatives) and 

functionals (scalar valued functions which can be used to represent the low level descriptors). 

 

Feature Number of values 

Zero crossing 1 

Fourier Magnitude 256 

Mel-frequency cepstral coefficients 12 

Pitch 1 

Voiced probability 1 

total 271 

Table 4 -Features computed each frame 

Low level descriptors Functionals 

Zero crossing rate Mean 

RMS energy Standard deviation 

F0 Kurtosis, skewness 

Harmonic noise ratio Extremes: value, relative position, range 

MFCC 
Linear regression: offset, slope, mean square 

error 
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Table 5 -Complete set of final features 

The low level descriptors are chosen to be ones which have shown to be effective in detecting 

emotion. The functionals are computed for each descriptor. This leads to a total of 384 features for 

each word chunk.  

2.2.4 Building a classifier for speech emotion extraction 

Before training the classifiers the data needs to be partitioned. In the original INTERSPEECH emotion 

challenge the partitioning was performed by school. However, the size of the datasets this way is 

imbalanced (one school has a 1000 more samples than the other). Furthermore the presentation 

order is based on speaker order which may impact the training process. In order to ameliorate these 

issues the training and test set are created from the complete set of all data. To achieve a good 

performance without overfitting the split is set to approximately 75% of the available data. 

Furthermore, the data is randomized in the process. The range on each of the specific features in the 

original dataset is high. In order that one feature does not get treated in preference to another the 

data was initially normalized to remove the mean and contain the spread within a single standard 

deviation. In essence this constrains all the individual features to lie within (-1, 1) and have 0 mean.  

The choice of classifier is huge but in this work support vector machines were chosen as they have 

been shown to perform well on this problem. As the dataset is of high dimensionality and the 

separations may be complex kernel functions based on radial basis functions were chosen. When 

training a cross validation approach was employed. This means that the training set was partitioned 

and training performed on a single partition. Then evaluation was performed against the other 

partitions and the outliers used as the basis for on-going training. This approach has been shown to 

be more effective especially with unbalanced datasets. Specifically, a cross validation ratio of 5 was 

employed.  

The classifier performance is measured in terms of 3 different measures. These are precision, recall, 

and F1-score. These all provide different ways of evaluating the effectiveness of the classifier. 

Precision is the proportion of the true positive results in the total set of true and false positives. It 

measures how likely a random guess is likely to be correct. Recall is the ratio of true positives to the 

set of true positives and false negatives. This is the sensitivity of the classifier in predicting a correct 

outcome for a specific class. F1-score is the weighted harmonic mean of the precision and recall.  

As described in section 2.2.2 there are two sets of labels provided as part of the FAU Aibo dataset. 

These are the 2-class and the 5-class labels. This section will look at both of these in turn.  

2.2.4.1 The two-class problem 

The break down by class for the training and testing set is provided in Table 6.  

 

Class Training Testing 

IDL 9295 3098 

NEG 4367 1456 

total 13662 4554 
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Table 6 - Breakdown of the dataset into training and testing sets 

The results are provided in Table 7. The overall results are slightly better than the baseline results for 

the INTERSPEECH emotion challenge4 though not dramatically so. 

  

 precision recall F1-score 

Idle 0.81 0.89 0.85 

Negative 0.70 0.57 0.63 

Average 0.78 0.78 0.78 

Table 7 - Results on the two class problem 

The table shows expected results given the class imbalance. The Idle class is the best represented. 

Overall the classifier will work well to track the presence of negative emotion in speech versus no 

emotion.  

2.2.4.2 The five-class problem 

For the five class problem Table 8 Illustrates the breakdown of the training and testing sets by class. 

 

Class Training Testing 

Angry 1132 360 

Emphatic 2674 927 

Neutral 8196 2771 

Positive 680 209 

Rest 980 287 

total 13662 4554 

Table 8 - Numbers of each class in the training and testing sets 

The specific results are demonstrated in Table 9. As with the two class case the average results are 

comparable to the results from the baseline INTERSPEECH results5. 

 

 precision recall F1-score 

Angry 0.58 0.35 0.43 

Emphatic 0.56 0.38 0.45 

Neutral 0.70 0.91 0.80 

                                                           
4 The INTERSPEECH emotion challenge achieved a precision of 72% and a recall of 70% for the two class 

problem. 
5 For the 5 class problem a precision of 65% and a recall of 57% was achieved.  
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Positive 0.71 0.22 0.33 

Rest 0.34 0.06 0.11 

Average 0.64 0.67 0.63 

Table 9 - Results for the 5 class problem 

The average results perform well with all but one class being over the random guess possibility 

(20%). The worst performing class is the rest class. However as the rest class is the class of no 

emotion so it is allowable that it has poor performance for our application. 

2.2.5 Outlook 

The work covered here described initial work on building an emotion classifier on a known dataset. 

The results are promising and show good alignment with that of the INTERSPEECH emotion 

challenge. In order to get a feeling for what needs to be improved we will first examine the 

classification in each class by way of a confusion matrix which illustrates the classification for all the 

members of each class. These are shown in Figure 12.  

  

(a)  (b) 

Figure 12 - Confusion matrices for the (a) 2 and (b) 5 class problems 

The first observation to make here is that the imbalance of the initial training set problem was the 

greatest contributor for the results. This can be observed via the ratios of the individual classes to the 

total of all classes (the diagonal). In the 5-class problem the biggest cause of performance 

degradation is from the Neutral class. A quick check via the use of PCA is shown in Figure 13 – PCA 

performed on the set of features for Rest and Neutral (a) entire set (b) zoom of the central region. 

It indicates our intuition in that the features are not well separated. In order to overcome this issue, 

we will focus our efforts on trying and improve the feature set (by using some sort of feature 

selection method) or on modifying the feature sets.  
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(a) (b) 

Figure 13 – PCA performed on the set of features for Rest and Neutral (a) entire set (b) zoom of the central 

region 

Examination of the results from the two- and 5-class classifiers shows that we could achieve benefit 

by fusing them together. This would lead to an improvement in the performance. As another 

alternative we could move to a differing style of classifier.  

Finally, the work here is based on word boundaries within the sequence. This means that before 

feeding to the classifier the sound needs to be chopped into word chunks. The next phase of work 

will be involved with moving the architecture to this. This will involve initially decomposing the 

features and training on smaller time windows. This work will be reported in D3.2 1st Prosocial affect 

fusion and player modelling. 

2.3 Visual data acquisition 

It is said that one image is worth a thousand words. Truthfully, humans display a variety of non-

verbal, mainly visual signals to communicate with their peers as well as during human-computer 

interaction. While audio communication serves as the main channel for transferring raw information, 

it is by decoding visual signals such as facial expressions, gaze and body gestures one can truly 

decipher the true meaning of the words being spoken, and how the communicated message is 

intended to be perceived [Massaro, 1998]. Furthermore, it is through the observation of 

spontaneous reactions and behavior one can understand another’s state of mind when no words are 

being spoken. Through continuous subconscious training during everyday life and the experience of a 

multitude of emotional episodes, humans are able to understand and identify certain emotional 

characteristics in their transactions with others i.e. we can tell if another person is happy, sad, scared 

or surprised without needing to be explicitly told so. In terms of the ProsocialLearn project, visual 

observation of students playing prosocial games holds the key to draw important conclusions about 

the player’s experience during gameplay. Visual cues can tell us whether players are decently 

challenged in the game, whether they are engaged or bored and whether the entire experience is felt 

pleasant or irritating. As described in Section 0, our aim is to use this information along with player 

patterns and historical profiling in order to ensure the proper challenge is being injected to the game, 

and that content is adapted such that engagement levels during gameplay are kept high. Seeing this 

condition met, we can expect players to reach their maximum potential with regards to achieving an 

assigned PLO. 

We refer to Visual data as every piece of information that can be acquired through the use of 

camera-like sensors, and by means of, mainly image processing and visual tracking. As is the case in 
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human everyday life, many of the algorithms used to detect features useful for gaining insight on a 

human’s inner emotional experience rely on an offline training procedure using large datasets, 

frequently containing both positive and negative examples [Kanade et al, 2000] [Pantic & 

Rothkrantz, 2003]. In the remainder of this sub-Section, we will describe the full range of features 

obtained through all visual sensors described in a previous paragraph. These include features related 

to the user’s face and eye gaze in particular. 

2.3.1 Facial Expression Analysis  

Facial expressions are probably the most well-studied emotion expression channel, being one of the 

most natural means of emotional communication. Therefore, automatic analysis of facial expressions 

is among the most interesting topics in the scientific community. It is almost impossible to cover all 

the published work, different approaches and multitude of automatic systems implemented in the 

scientific literature, since the field first broke ground in the early nineties. Therefore, a number of 

surveys on the state of the art in facial expression analysis have been published, covering various 

timelines and research trends throughout the years [Pantic & Rothkrantz, 2000] [Bettadapura, 

2009]. 

In the interest of extracting specific features to feed to the online fusion algorithms for extracting 

prosocial affect, output of the visual data acquisition techniques for facial expression analysis has 

been classified into low-, mid-, and high-level abstraction layers, based on the amount of information 

(core data and meta-data) being encapsulated in the extracted signal. This effectively means that 

features extracted by applying facial expression analysis techniques can range from simply geo-

locating and calculating actual anthropometric measurements, to summarizing an entire group of 

feature-group elements under a single emotional category, such as happiness or surprise. Using 

sophisticated and well-trained shape and landmark tracking techniques, specific facial feature points 

can be identified and located for every consecutive frame obtained by a camera-like sensor. We 

obtain this information by fitting an Active Shape Model (ASM) [Cootes et al, 1995] onto each 

consecutive facial image. Early forms of low level data processing can then be applied to identify and 

track specific muscles and muscle groups’ displacement over time, theorized to be involved in the 

formulation of specific facial expressions. The Facial Action Coding System (FACS) proposed by Ekman 

& Friesen [Ekman & Friesen, 1978] provides a useful tool for describing such a mapping, and 

additionally coding detected muscle activity into specific Action Units (AUs). These AUs can be seen 

as a form of mid-level representation of the raw data obtained by fitting the ASM, effectively 

describing mere observations into meaningful muscular activity occurring at any given input frame. In 

turn, specific facial expressions and combinations of AUs can lead to the detection of a specific 

emotion via expression classification [Pantic & Rothkrantz, 2000]. This form of representation is 

usually considered the final step in the automatic emotion recognition using a standard facial 

expression analysis pipeline, as presented in the majority of the scientific literature. However, studies 

show that the fusion with other visual and non-visual modalities can enhance the confidence rates by 

a significant amount [Pantic & Rothkrantz, 2003] [Busso et al, 2004] [Soleymani et al, 2012a].  

In this report we will outline all of the extracted features and signals related to our facial expression 

analysis data acquisition module. We will explain the transitional phases by which low-level features 

are assigned into mid-level AUs, and how groups of the latter are further associated with high-level 

emotional labels. Prosocial affect fusion algorithms described in later reporting periods of the project 

will select which level of feature abstraction is deemed sufficient according to the availability of 

sensory input information (i.e. how many sensors are used for a single gameplay session) and the 

density of the input data (i.e. the total number of features that can be acquired throughout the 
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duration of the session), for improved robustness and reliability of the overall output. Figure 14 

represents the overall structure of facial expression analysis features extracted by our data 

acquisition platform. 

2.3.1.1 Low level facial features 

At the start of every automatic facial features extractor lies a face detection algorithm. This process is 

able to locate a Region of Interest (ROI) in the image where a human face is located and returns its 

coordinates. The process greatly enhances performance of any tracking scheme, as it significantly 

reduces the search area for the algorithm to cover. In the case of the ProsocialLearn facial features 

acquisition platform, an ASM is fitted onto the ROI returned by a standard Viola-Jones Haar-like 

features classifier cascade employed for face detection [Viola & Jones, 2001]. The latter use is rather 

straightforward, as both the detector and classifiers are publicly available through large-scale open 

source computer vision libraries such as OpenCV6. The ASM algorithm used for landmark tracking is 

built on top of this face detection scheme and described in [Wei, 2009], with an implementation 

being available in the form of the ASMLibrary7 library.  

In order to ensure a sufficient number of facial landmarks are pinpointed, we developed a dense- 

 

 

Figure 14 – Facial expression analysis features’ structure. 

                                                           
6 Open Source Computer Vision library http://opencv.org/, started at Intel in 1998, currently led by itseez 

(http://itseez.com/)  
7 ASMLibrary, ©2008-2011 by Yao Wei, available under the MIT licence at 

https://github.com/greatyao/asmlibrary  
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ASM shape representation comprised out of 1,761 points. The shape was trained using an in-house 

web-based landmarking application based on the RAAT library [Apostolakis & Daras, 2013]. The 

application allows a human annotator to overlay the entire shape model as a 2D mesh over a training 

image and make adjustments using a wide range of blendshapes created for the mesh 

representation. The application uses two distinct viewing modes to assist the annotator during the 

process. Namely, the wireframe mode allows the annotator to inspect where each and every one of 

the training feature point landmarks will map onto the image, assisting in approximating the shape of 

the depicted face. The textured mode on the other hand assists in outlining inner-face texture 

features such as the eyebrow shape and lip line. Screenshots of both modes in the application are 

depicted in Figure 15 – Dense – ASM Annotation application used for annotating images with 1,761 

landmarks 

Using this landmarking application, a database consisting of over 1,200 images of faces retrieved 

from a variety of publicly available face datasets [Minear & Park, 2004] [Nordstrøm et al, 2004] 

[Aifanti et al, 2010] [Thomaz & Giraldi, 2010] [Shaker et al, 2011], as well as other sources8,9 was 

annotated. These images include both male and female subjects posing a variety of facial 

expressions, and due to the density of the ASM, are picked for training as a result of their large 

resolution or relatively large size of the depicted face. We demonstrate the effectiveness and 

robustness of the resulting fitting process throughout different subjects and posed facial expressions 

in Figure 16. 

  

(a) (b) 

Figure 15 – Dense – ASM Annotation application used for annotating images with 1,761 landmarks 

(a) shows the application’s wireframe mode used for aligning the shape and basic features (such as the eyes 

and nose), while (b) shows textured mode for approximating the innermost features such as the eyebrows, 

nostrils and lip line  (training image source: [Aifanti et al, 2010]).  

                                                           
8 Ten24 3D Scan Store ©2012, Head Scans, RAW Individual Expressions, product image gallery 

http://www.3dscanstore.com/  
9 Iranian women 2D face set, 369 images, 34 women, mostly with smile and neutral in each of five 

orientations. http://pics.stir.ac.uk/2D_face_sets.htm   
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(a) (b) (c) 

Figure 16 – ASM Fitting results for a variety of facial expressions.  

(Test images source: [Aifanti et al, 2010]). 

We consider the location and tracking of a number of specifically selected facial landmarks over time 

as the lowest level of facial expression analysis feature possible. Therefore 1,761 features can be 

collected per frame in a raw manner. Of course, some level of processing has to be applied in order 

to generate somewhat meaningful data rather than just reporting the location of each landmark at 

any given time to the fusion algorithms. In this respect we have followed the approach described in 

[Soleymani et al, 2012b], in which landmark processing is leading to low-level facial features 

describing the three most expressive regions of the human face: the upper component consisting of 

the forehead and eyebrows, the middle component comprised of the eyes and cheekbones and the 

lower component containing the nose, mouth and chin [Ekman & Friesen, 1978]. In total, 20 low-

level features are extracted from the eyes, eyebrows and mouth areas, as presented in Table 10. The 

following paragraphs describe these measurements in more detail. 

 

Facial Feature Area / Total 

Number of Features 
Extracted low-level features 

Eyes 

Distances between outer eyes’ corner and upper eyelids, distances between outer 

eyes’ corner and lower eyelids, distances between inner eyes’ corner and upper 

eyelids, distances between inner eyes’ corner and lower eyelids, vertical distances 

between upper-lower eyelids. 
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Eyebrows 

Angles between horizontal line connecting the inner corners of the eyes and the 

line that connects inner and outer corner of the eyebrow, vertical distances 

connecting the outer eyebrows to the line that connects the inner corner of the 

eyes. 

Mouth 

Distances between mouth corners and upper lip, distances between mouth corners 

and lower lip, distance between mouth corners, vertical distance between upper-

lower lip. 

Table 10 -Summary of Facial Expression Analysis low-level features. 

Eyes 

It is said that the eyes are the most expressive feature of the entire human face, a “window to the 

soul”. Studies however put the claim to the test· nowadays it is generally accepted that the eyes (and 

particularly eye gaze) are involved with the experience of emotion, although the eyebrows and 

mouth tend to be more salient facial features [Sadrô et al, 2003] [Calvo & Fernández-Martín, 2013]. 

We treat eye gaze as a separate signal comprised of multiple low-level features on its own right later 

in this document. In this paragraph we strictly focus on measurements related to the activity of the 

eyelids, as complementary information to the observations made on the eyebrows and mouth 

regions. 

More specifically, our feature extracting pipeline is able to detect landmarks on the inner/outer eye 

corners, as well as top/bottom eyelid centers. We then measure a total of five Euclidean distances 

defined by these points:  

1. Outer eye corner to upper eyelid	�������. 

2. Outer eye corner to lower eyelid	�������	. 

3. Inner eye corner to upper eyelid	�
����. 

4. Inner eye corner to lower eyelid	�
����	. 

5. Upper eye lid to lower eyelid	������	. 

 

Figure 17 – Visual representation of low level eye features 

The bold black lines indicate low-level distance metrics features. Mid-level features for AU extraction are also 

depicted (see Section 2.3.1.2). 

The actual number of features is doubled through the consideration of both eyes. A visual 

representation of these features is provided in Figure 17 – Visual representation of low level eye 

features. 
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Eyebrows 

The importance of eyebrows in the domain of emotional expression as well as nonverbal 

communication in general has been acknowledged throughout years of psychological research 

[Sadrô et al, 2003]. The eyebrows are generally considered to be able to communicate the extremes 

of aggression and fear, as well as the entire range of human emotion in coordination with other facial 

movements, playing a key role in the expression of happiness, surprise and anger [Ekman & Friesen, 

1978].  

In order to extract low-level eyebrow features for our facial expression analysis data acquisition 

pipeline, we first define the imaginary line connecting the inner eye corners as a reference line. This 

particular line is selected due to the fact that the inner eye corners are considered stable features 

meaning, that their relative positions inside the face area remains constant throughout the display of 

any possible facial expression. After this line is drawn, we are able to calculate angular and Euclidean 

measurements which correspond to the following features:  

1. Angle between the line connecting the inner eye corners and the line connecting selected 

feature points on they eyebrow contour (inner/outer eyebrow)	�
��	. 

2. Vertical distance between outer eyebrow landmark and the line connecting the inner eye 

corners		�
�����. 
As was the case in the extraction of eye region features, the total number of features for the 

eyebrow region is the sum of all measurements for both eyebrows. A visual representation can be 

seen in Figure 18 – Visual representation of low level eyebrow features 

Mouth 

A person’s mouth is the most prominent element in the lower facial regional component which also 

contains the nose and chin. The visual saliency of the mouth region, especially in the case of a smile, 

and subsequent role as a conveyer of emotion has been shown to overpower other expressive facial 

elements, such as the eyes [Calvo & Fernández-Martín, 2013]. 

  

Figure 18 – Visual representation of low level eyebrow features 

The bold black lines indicate low-level distance metrics features. Mid-level features for AU extraction are also 

depicted (see Section 2.3.1.2).  

This effectively means that people are more likely to correctly associate emotions such as happiness, 

sadness and anger when presented with facial images depicting an expressive mouth, even more so 

than being shown only the eyes. For the acquisition of low level mouth features, we rely upon 
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measuring several key Euclidean distances between strategically selected feature points on the ASM. 

These include: 

1. Distance between each mouth corner and the upper lip	������. 
2. Distance between each mouth corner and the lower lip	���	��. 
3. Distance between mouth corners	������. 
4. Vertical distance between upper and lower lip	�������. 

A visual representation of these features is given in Figure 19 – Visual representation of low level mouth 

features 

. 

 

 

Figure 19 – Visual representation of low level mouth features 

The bold black lines indicate low-level distance metrics features. Mid-level features for AU extraction are also 

depicted (see Section 2.3.1.2). 

2.3.1.2 Facial Action Coding System - Action Units (FACS – AUs) 

As mentioned in the previous paragraphs, in addition to extracting low-level features describing 

geometrically the movement flow of specific feature points during the display of a facial expression, 

specific coding units have been developed encapsulate these measurements into a more meaningful 

representation. The FACS is one such mapping system, proposed by [Ekman & Friesen, 1978], and 

still serving as one of the most frequently used tool in the related literature on automatic extraction 

of facial features and emotion recognition. The FACS is a manual of all possible muscle and muscle 

group movements involved in the formulation of a facial expression. Every single possible movement 

of such a construct is described as an Action Unit (AU). The detection and identification of AUs is one 

of the most interesting challenges in human expression recognition [Valstar et al, 2011]. Recently, 

researchers have concluded that intensity and frequency of facial expression AUs can predict 
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moment-by-moment engagement and frustration during learning, efficiently inferring tutoring 

outcomes [Grafsgaard et al, 2013].  

As traditional research work on facial expression analysis and AU recognition would have it, we 

distinct our extracted AU features in two categories, mainly upper face and lower face AUs [Tian et 

al, 2001], [Valstar et al, 2012]. A summary of AUs extracted in each category is given in Table 11. 

 

AU facial region 

Extracted AU features 

AU Code AU Description Visual representation 

Upper face 

AU1 Inner brow raiser 
 

AU2 Outer brow raiser 
 

AU4 Brow lowerer 
 

AU5 Upper lid raiser 
 

AU6 Cheek raiser 
 

AU7 Lid tightener 
 

Lower face 

AU12 Lip corner puller 
 

AU15 Lip corner depressor 
 

AU26 Jaw drop 
 

Table 11 -Summary of extracted AU features. 

In order to extract the aforementioned set of AUs, we follow a similar approach as [Tian et al, 2001], 

which incorporates the feature tracking capabilities offered by our dense-ASM tracking framework. 

More specifically, two three-layer neural networks with one hidden layer to recognize AUs through a 

number of parameters defined by low-level features extracted for the upper and lower face regions 

by standard back-propagation are employed. Our neural networks are trained to recognize the 

corresponding AUs from Table 11 as well as a “neutral” category which represents the case where no 

AUs are visible on the current face. We use 13 low-level parameters as the input layer for the upper 

face AU recognition network, depicted in Table 12.  

 

Left/right facial features Other features 

Inner brow motion  

�
�����  
Outer brow motion 

�
����� 
Eye height 

 �������� 
Brow distance 

�
��	 



 

21/10/2015 | ProsocialLearn | D3.1 User data acquisition and mapping                     

in game environments 

 

  Page | 35 

 

Eye top lid motion 

���� 

Eye bottom lid motion 

�
����  

Cheek motion (angle) 

�!"��#  
- 

Table 12 -Upper face AU recognition network input layer parameters. 

 

Similarly, 6 parameters depicted in Table 13 are used as input for the lower face AU neural network 

input layer. Parameters shown are naturally calculated in a similar manner to the low-level features 

described in the previous paragraph, by measuring distances and angles of selected landmarks on the 

ASM (refer to Figure 17 – Visual representation of low level eye features, Figure 18 – Visual 

representation of low level eyebrow features and Figure 19 – Visual representation of low level 

mouth features for a visual reference of the networks’ input parameters). Through continuous 

experimentation, we set the number of hidden units in each network to be 12, as our networks 

demonstrated much more accurate results. Figure 20 shows the structure of both networks for the 

recognition of AUs in the upper and lower face regions.  

 

Left/right facial features Other features 

Lip corner motion 

 ���$�/�
&"�  
Lip height  

�"�
&"� 
Lip width 

 �	
'�"  

- 
Top lip motion 

���� 

Bottom lip motion 

�
����  

Table 13 -Lower face AU recognition network input layer parameters. 

The networks are trained on a collection of AU-coded frames obtained from the Cohn-Kanade AU-

Coded Face Expression Image Database [Kanade et al, 2000]. This particular database contains 

training samples showing AUs occurring singly or in combination. Training samples were gathered 

per AU occurrence (i.e. every image sequence depicting at least one of the AUs displayed in Table 11 

is considered in the training set). We use the first and final frame of each sequence to gather our 

training data. Then the set is doubled by flipping all the images around the Y-axis, resulting in 848 

total training frames. The neutral images are used to train a neutral class for each network, to 

recognize cases where no AUs are being displayed. The training is performed as such, so that when 

AUs occur in combination, multiple output nodes on the neural networks are returned.  
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(a) (b) 

Figure 20 – Neural networks for AU recognition of upper face region (a) and lower face region (b). 

 

2.3.1.3 Emotions 

The ultimate goal of identifying and extracting AUs is to ultimately classify expressions under a 

certain emotion category [Pantic & Rothkrantz, 2000]. According to the FACS creators themselves, 

several AU combinations are associated with emotion [Ekman et al, 2002]. We proceed to follow 

their emotion predictions based on the occurrence of prototypic or major variants of AU 

combinations to extract emotion. We only utilize the criteria formulated through the use of the AUs 

recognized by our neural network recognition systems, as described in the previous paragraph. 

Therefore, the emotion label “Disgust” is not part of our recognition results. Instead, we define a 

“neutral” category to classify all frames where no criteria apply that indicate any of the distinct 

remaining emotion classes. A summary of the criteria for each emotion class is presented in Table 14. 

All of our observations above are provided with caution in terms of the following reasons: 

• Evidence: Universal evidence for de facto association of any of the AU combinations in Table 

14 with its corresponding emotion class does not exist. The above observations may differ 

among cultures and according to psychological and physiological conditions of the observed 

participant and experimental conditions. 

• Conversational signals: Several of the aforementioned AUs may be observed during speech 

and may not necessarily be tied to the experience of emotion. Conversational patterns and 

manners of speech also differ among participants. At any rate, referring to a combination of 

AUs as a sign of emotion does not necessarily indicate that emotion is actually being 

experienced, much like someone may refer to an emotion by name without actually 

experiencing the said emotion [Ekman et al, 2002]. 

Therefore, our entire facial expression analysis feature extraction pipeline enables the extraction of 

features more appropriate for each use case as well as each user group. 
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Emotion AU Criteria - Prototypes AU Criteria – Major Variants 

Surprise 1+2+5+26 1+2+5 1+2+26 

 - 5+26 - 

Fear - 1+2+4+5 1+2+5 

 - 1+2+5+26 - 

Happiness 6+12 - - 

 12 - - 

Sadness 1+4+15 1+4+15+26 6+15+26 

 6+15 - - 

Anger 4+5+7 4+5+7+26 5+7(+26) 

 - 4+7(+26) 4+5(+26) 

Table 14 - Summary of emotion predictions and corresponding AU criteria (prototypic/major variations). 

2.3.1.4 Evaluation 

Seeing how low-level features in our facial expression analysis data acquisition pipeline are well-

established results of the ASM fitting algorithm and our emotion recognition results stem from 

criteria based on AU combination detection, our approach was evaluated in terms of AU recognition. 

We conducted two experiments to evaluate the performance of our system. Both cases consider the 

detection of both single and AU combinations. In the first case, we measure the accuracy of our 

method using the same data for generating the test set. This is formally referred to as the person-

specific case, in which subjects appearing in the test set may also be present in the training set 

[Valstar et al, 2011]. In the second case, we measure the performance of our system using a 

completely different dataset. A summary of our experimental setup for AU detection can be seen in 

Table 15 – Action Units include in the AU detection. 

As mentioned previously in Section 2.3.1.2, and can be seen in Table 15 - Action Units include in the 

AU detection, we used 848 the AU-coded frames obtained from the Cohn-Kanade AU-Coded Face 

Expression Image Database [Kanade et al, 2000] for training of our neural networks. A total of 231 

test frames obtained from the Cohn-Kanade database were used for recognition of AUs in both 

upper and lower face regions. We evaluated our system by testing separately for every single AU. 

The test videos were fed as input to our neural network which detected a sub-set of the nine desired 

AUs. For every frame of the video every AU's value was compared to the ground truth frame. The 

results of the AU detection on the designated test set were measured in F1-measure, according to 

Equation (1): 
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 COHN - 

KANADE 

COHN - 

KANADE 

GEMEP - FERA 

AU Description 
Training 

Frames 
Test Frames Test Videos 

1 Inner Brow Raiser 256 37 10 

2 Outer Brow Raiser 169 56 11 

4 Brow Lowerer 268 26 7 

5 Upper Lid Raiser 136 71 5 

6 Cheek Raiser 202 27 10 

7 Lid Tightener 188 25 9 

12 Lip Corner Puller 206 50 17 

15 Lip Corner Depressor 142 20 4 

26 Jaw Drop 98 35 4 

Overall   848 231 22 

Table 15 – Action Units include in the AU detection 

Training Frames are from Cohn – Kanade dataset. Test Frames denote seen subjects from Cohn – Kanade 

dataset and Test Videos denote unseen subjects from GEMEP-FERA 2011 dataset [Valstar et al, 2011]. 

 

( ) 2 ∙ ,��-�.�/0 ∙ ��-122,��-�.�/0 3 ��-122 					416 
where	,��-�.�/0	is the number of correct positive results divided by the number of all positive 

results and	��-122	is the number of correct positive results divided by the number of positive results 

that should have been returned. The overall results for both classifiers per AU, as well as the 

combined average for complete AU recognition are shown in Table 16 – F1 measure for Action Unit 

detection results on the test set for the person specific participation of the Cohn – Kanade dataset 

 

COHN - KANADE 

Upper face AU F1-measure Lower face AU F1-measure 

1 0.727 12 0.933 

2 0.843 15 0.553 

4 0.778 26 0.806 

5 0.864 - - 

6 0.763 - - 

7 0.566 - - 

Avg. 0.756833333 Avg. 0.764 

Avg. 0.759222222 

Table 16 – F1 measure for Action Unit detection results on the test set for the person specific participation of 

the Cohn – Kanade dataset 
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The first and third column show the specific Action Unit currently measured for each neural network 

recognizer. 

We then proceeded to evaluate our algorithms for feature extraction via facial expression analysis by 

following the baseline set for the Facial Expression Recognition and Analysis (FERA) challenge 

[Valstar et al, 2011], measuring the detection rates of AUs on the designated subset of the GEMEP 

database [Bänziger et al, 2010], made publicly available as part of the challenge10. We formalize our 

comparative results against the baseline method set for the FERA 2011 challenge, focusing on the 

person-independent partition, seeing how our neural networks were trained on an entirely different 

dataset. This partition was designed specifically to showcase the ability of AU detection systems 

partaking in the challenge to generalize to unseen subjects, as the test data are not present in the 

training data.  

Table 17 – F1 measure for Action Unit detection results on the test set for the person independent 

partition of the GEMEP-FERA 2011 dataset shows the results of the AU detection measured in F1-

measure (Eq. 1), for direct comparison of our approach against the FERA 2011 baseline method and 

the corresponding reported results of a naïve AU detector. It is also noted that both methods results 

reported in [Valstar et al, 2011] do not detect AU5 (upper lid raiser) at all, and therefore their 

average F1-measures correspond to the set of remaining AUs only. Our approach’ F1-measure was 

instead averaged by considering all of our detected AUs, as well as the AUs remaining after excluding 

AU5. As can be seen by the summary of results shown in Table 17 – F1 measure for Action Unit 

detection results on the test set for the person independent partition of the GEMEP-FERA 2011 

dataset, our method outperforms both the baseline as well as the naïve classifier in both cases by a 

considerable amount. At this point we should note that the scope of this report is not to achieve 

competition-level results, as we do not consider participation on the next FERA challenge [Valstar et 

al, 2015], but rather demonstrate the effectiveness of the proposed methods and support our claim 

for integrating these techniques onto our data acquisition framework for ProsocialLearn.  

 

AU [Valstar et al, 2011] Random Our method 

1 0.634 0.506 0.612 

2 0.675 0.477 0.682 

4 0.133 0.567 0.728 

5 N/A N/A 0.576 

6 0.536 0.626 0.738 

7 0.493 0.619 0.589 

12 0.769 0.739 0.779 

15 0.082 0.182 0.352 

26 0.371 0.495 0.408 

Avg. 0.461625 0.526375 0.607111111 

Avg. (excluding AU 5) 0.611 

Table 17 – F1 measure for Action Unit detection results on the test set for the person independent partition 

of the GEMEP-FERA 2011 dataset 

                                                           
10 http://sspnet.eu/2011/05/gemep-fera/  
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We display our results in comparison to the baseline method of the FERA 2011 challenge, as well as the 

corresponding reported results of a naïve classifier on the overall test set.   

2.3.2 Gaze Analysis 

Eye gaze is one of the most expressive signals in human non-verbal communication, and the way 

gaze shifts, averts or focuses on perceived stimuli can hold useful information towards the beholder’s 

inner emotional state, explaining liking and disliking motives. Gaze supports information gathering, 

signaling interest and emotional state, and the regulation of conversations by managing turn-taking 

between participants [Argyle and Cook, 1976] [Kendon, 1990]. Gaze communicates information to a 

viewer about internal states, attitudes, attentions and intentions, expresses intimacy, exercises social 

control and also functions as a means of mobile sensory investigation [Kleinke, 1986]. Gaze also 

supports non-verbal feedback behaviors, such as glances towards and away from others, mediating 

flow in conversational situations, indicating the addressee, paying attention, displaying 

attentiveness, effecting turn transitions and signaling requests for backchannels [Heylen, 2006]. 

Psychological research also indicates that gaze can be explained as post-hoc reaction to changes in an 

individual’s core affect state, which manifest themselves with a shift in attention towards the objects 

attributed as being the cause of that change [Russell, 2003]. Eye gaze has been particularly studied as 

part of implicit human-centered tagging (IHCT) experiments, in an attempt to “read” users’ minds 

during video and image browsing by monitoring gaze patterns [Vrochidis et al, 2011] [Hajimirza et 

al, 2012] [Apostolakis & Daras, 2014]. In terms of automatic emotion recognition explored in the 

scientific literature, gaze has only recently been considered as a separate modality for the extraction 

of emotion [Soleymani et al, 2012a]. It has also been proven that combining the information 

retrieved through more traditional modalities such as facial expression analysis with the appropriate 

gaze features, extracted either using specialized, wearable hardware, or remote eye center/pupil 

detection schemes via single or multiple cameras can greatly enhance the performance of the 

classification schemes [Soleymani et al, 2012b]. For the remainder of this document, we will focus 

our feature extraction procedures on remote eye tracking techniques, efficiently utilizing the same 

camera-like devices used for facial expression analysis (see Section 4 for more details on hardware 

specifications). Currently, wearable eye trackers are deemed too expensive for rapid deployment in 

school environments and too sensitive for use by children in the age group 7-10, which constitute the 

target audience of the project’s prosocial games platform. However, many of the features described 

in the next paragraphs can be extracted by using wearable devices and are in fact derivations of 

related work in implicit sentiment tagging through multi-modal monitoring of annotators which used 

a Tobii11 wearable eye tracker during its experiments [Soleymani et al, 2012b]. 

As was the case with facial expressions, multiple levels of feature descriptors are extracted, with 

regards to raw gaze pattern measurements as well as indications on higher level cognitive processes, 

such as engagement and attention. In a similar way to the Facial Expression Analysis features 

described in the previous sub-Section, the fusion algorithms will gain access to either level of feature 

description, and utilize the input in the most efficient and practical way possible in order to reach a 

decision on the player’s prosocial affective state.  

2.3.2.1 Low level gaze features 

Our decision to focus on remote eye tracking techniques stems from the fact that we already deploy 

a robust and reliable ASM to track feature points in the eye area. We therefore utilize the same 

                                                           
11 Tobii AB Group, http://www.tobii.com/  
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scheme to achieve feature extraction from facial expression analysis. We employ the ASM to locate 

the actual eye areas on the face which in turn provide us with a second ROI in which our pupil center 

extraction algorithms operate. We identify as low-level gaze features the actual measurements that 

can be categorized under four distinct eye gaze activity classes, namely the user’s gaze distance, gaze 

locations on the computer screen, pupillary measurements and blinking patterns. We employ several 

techniques proposed in the scientific literature, adjusted to accommodate a re-imagined remote eye 

tracker provided by project partner CERTH [Apostolakis & Daras, 2014] [Papadopoulos et al, 2014] 

in order to obtain these features. Table 18 contains a summative description of the features 

extracted in each of the aforementioned categories. 

 

Eye gaze activity / Total 

Number of Features 
Extracted low-level features 

Gaze Distance Approach time ratio, avoidance time ratio, approach rate, average approach time. 

Gaze location on screen 

Standard deviation, skewness, kurtosis, average fixation time, average scan path 

length, number of fixation zones, average and standard deviation of the SD of 

gaze coordinates in each fixation zone. 

Pupil diameter Average, standard deviation. 

Blinking Blink depth, blink rate, length of longest blink, time spent with eyes closed. 

Table 18 -Summary of Gaze Analysis low-level features. 

Gaze Distance 

We refer to gaze distance, as the result of approaching or withdrawing from the sensor, which is 

strategically placed on top (in case of a standard camera), or in front of the user’s monitor (in case of 

a body motion sensor), indicating an act of approach or withdrawal from the presented game 

content. Psychological reviews argue that such information can be related to action regulation due to 

liking or disliking motives [Russell, 2003], or more specifically, with the experience of positive and 

negative affect [Davidson et al, 1990]. The distance between the user and the screen can also 

provide valuable information on the user’s posture during the activity [Soleymani et al, 2012b]. At 

any rate, gaze distance features extracted by our data acquisition framework are closely related to 

the player’s global positioning in relation to the capturing sensor/gameplay monitor and are thus 

easily calculated by using the information provided by the ASM or face detection algorithm.  

Due to perspective projection, users seen approaching the sensor will appear larger than users who 

move away. We are able to detect such changes by measuring the scale of the ASM model (by means 

of the shape’s width and height in relation to the input frame size) and detecting subsequent 

changes. We demonstrate an example in Figure 21 – ASM scale variations comparison with initial 

measurement (a) with regard to avoidance (b) and approach (c) activity 

Once we are able to determine whether the distance between the user and the sensor has increased 

or decreased, we extract gaze distance features in relation to gameplay time. More specifically we 

extract: 

1. The amount of time spent getting close to the screen (approach time ratio)	�7����7!". 

2. The amount of time spent getting away from the screen (avoidance time ratio)	�78�
'. 



 

21/10/2015 | ProsocialLearn | D3.1 User data acquisition and mapping                     

in game environments 

 

  Page | 42 

 

3. Frequency of users’ movement towards the screen (approach rate)	�7����7!". 

4. Average frequency of users’ movement towards the screen (average approach 

rate)	�7����7!"999999999999. 
 

(a) (b) (c) 

Figure 21 – ASM scale variations comparison with initial measurement (a) with regard to avoidance (b) and 

approach (c) activity 

These features can prove useful for both on-line (measuring gaze distance activity in relation to the 

sum of previous activity during a gameplay session) as well as off-line prosocial affect fusion (by 

obtaining gaze distance metrics for an entire session after gameplay has ceased). 

Gaze Location on Screen 

Observing eye gaze patterns and analyzing scan paths during gameplay may hold information related 

to the player’s engagement and/or frustration during gameplay [El-Nasr & Yan, 2006], or indicate 

players focusing certain amounts of attention towards specific objects in the game world [Sunstedt 

et al, 2013]. In order to generate a user’s gaze location on the screen, distinct facial features, such as 

the eyes corners and pupil centers need to be detected. Then mapping functions can be used to 

relate gaze parameters to screen coordinates, after an off-line calibration procedure is performed. 

Utilizing the ASM fitting algorithm, we are able to extract the user’s eye corners’ coordinates. These 

landmarks are used to generate a ROI image that isolates each eye, and further contribute to the 

localization of the user’s pupil center, by applying an adaptive version of the Otsu histogram shape-

based thresholding algorithm. The process involves the detection of the darker iris/pupil area against 

the lighter-toned sclera. After the contour is extracted, the pupil center is estimated by calculating 

the median of points on the contour. 

To locate user gaze point on the screen we adopt linear 2D mapping of eye corner-to-pupil center 

vectors to a corresponding pair of screen coordinates [Zhu & Yang, 2002]. This procedure associates 

eye corner :4;, =6 to pupil center >4;, =6 vectors for each eye to a set of eight known calibration 

points, which are successively displayed on the screen boundaries during the tracker calibration 

process, as shown in Figure 22. The process requires an eye corner to pupil center vector 

?
4;
 , =
6, � ∈ A1,8C to be stored for each of the eight calibration points	D
4E
, F
6.  To extract the 

top-left/bottom-right screen rectangular area used for the linear 2D mapping, the following 

equations apply with respect to the calibration points displayed in Figure 22: 

;��$� )
;G 3 ;H 3 ;I

3 										426 
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;�
&"� )
;K 3 ;L 3 ;M

3 												436 

 

Figure 22 –Gaze tracker calibration process and point display procedure. 

 

=��� )
=G 3 =N 3 =L

3 				446 

=
���� )
=K 3 =H 3 =P

3 										456 
In this way, the set of camera image plane coordinates 4;��$� , ;�
&"� , =���, =
���� 6 acquired 

through Equations 1-4 can be mapped to the set of screen coordinates	RE��$�, E�
&"� , F���, F
���� S 
which corresponds to the eight calibration points. After the calibration process is complete, each 

new eye corner to pupil center vector ?4;, =6 can be mapped to its corresponding gaze location on 

the screen D4E, F6 according to Equations 5 and 6: 

E ) E��$� 3
; T ;��$�

;�
&"� T ;��$� ∙ RE�
&"� T E��$�S								466 

F ) F��� 3
= T=���

=
���� T =��� ∙ RF
���� T F���S			476 

 

Pupil Diameter 

According to recent psycho-physiological studies, pupil diameter has been known to change in 

different emotional states, reflecting emotional arousal associated with increased sympathetic 

activity [Bradley et al, 2008]. Therefore, monitoring the student’s pupillary reactions to the viewed 

content during gameplay of a prosocial game, might help indicate, along with other features, changes 

in emotional arousal felt during the experience of both positive as well as negatively associated game 

elements (such as graphics or perceived challenge).  

To remotely measure pupil diameter and changes over time, we employ a real-time pupil contour 

extraction algorithm based on the description in [Radu et al, 2011], built within the framework of the 
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CERTH Eye Tracker. More specifically, after the ASM is fitted onto the input image frame, the eye 

regions are located using strategically designated landmarks around the eyes. A ROI image of the eye 

alone is obtained and then decomposed to its RGB channel components, before histogram 

equalization is applied to adjust the contrast on the Red channel image, in order to enhance the 

boundary separation of the iris with the sclera on the resulting ACE (Automatic Contrast 

Enhancement) image. The ACE image is then passed through a threshold, and an ellipse is fitted 

around the extracted iris contour. The latter elliptic shape is then used to construct a binary mask 

which is applied to “crop” the ACE image to the iris, and apply a second histogram equalization to 

enhance the boundary of the darker pupil region. Again, thresholding is applied and a new ellipse is 

fitted around the resulting pupil contour. The ellipses for both the iris and pupil sections are 

computed after interpolating ellipse centers and axes with the ellipses found in the previous frame. 

An example of the procedure is shown in Figure 23 – Real time pupil contour extraction algorithm 

integrated onto the CERTH eye tracker 

 

    

(a) (b) (c) (d) 

 

 

 

 

 

 

 

 

(e) (f) (g) (h) 

Figure 23 – Real-time pupil contour extraction algorithm integrated onto the CERTH eye tracker 

(a) Red channel image; (b) ACE image #1; (c) threshold binary image #1; (d) ellipse fitting mask image; (e) 

Masked ACE image #1 (f) ACE image #2; (g) threshold binary image #2; (h) final output with elliptic contours for 

iris (green) and pupil (red) extracted. Images are shown in their original size (subject very close to the camera). 

A downside to this method is that, due to remote tracking, the subject’s eye image is usually too 

small for the algorithm to produce good results. One way to overcome this issue is to enlarge the ROI 

eye image, although noise is bound to be introduced through scaling. A second option is to employ 

full HD 1080p or 4K webcams during tracking to obtain large eye ROI images. A second issue stems 

from the fact that the thresholds need to be specified at the beginning of the session by hand. 

Enhancement of the described algorithm and automatization of the thresholding procedure in order 

to decouple the framework from human experiment coordinator effort will be explored as part of 

work described in D3.2. In its’ current state, sample results of the pupil ellipse estimate axis sizes in 

pixels measured on consecutive frames of the input video feed (at 720p, enlarged x1.5 times) are 

presented in Figure 24 – Iris (green) and pupil (red) contour extraction in 8 consecutive frames. 

Blinking 

Eye blinks can be categorized as spontaneous, voluntary or reflexive and each has different 

associated dynamics [Van der Werf et al, 2003]. While the frequency of spontaneous blinks has been 

linked to cognitive state and activity [Stern et al, 1984], blink rates typically appear to be highly 

variable during natural interactions, such as conversation [Doughtym, 2001]. 
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Figure 24 – Iris (green) and pupil (red) contour extraction in 8 consecutive frames 

Frame counter and pupillary ellipse axis sizes (in pixels) shown below each image. 

Spontaneous eye blinking serves a critical physiological function, but also interrupts incoming visual 

information. Yet, studies have shown that humans will spontaneously inhibit eye blinks in an attempt 

to minimize this loss, particularly when viewers perceive that information to be important. 

Therefore, inhibition of eye blinking during natural viewing can be used as a quantifiable metric of 

viewers’ moment-by-moment engagement with the visual content [Shultz et al, 2011]. We can 

effectively infer that a similar eye blinking pattern will occur during user engagement with active 

gameplay content. Therefore, eye blinking activity is broken down into several low-level features, 

which hold information on the frequency and length of player blinks. 

To detect blinks in our system, we use two parameters, one for each eye. The first parameter is the 

projection of the upper eyelid to the imaginary line the connects the inner eye corner points, which, 

as explained in Section 2.3.1.1, is considered a good reference, as these points’ relative positions 

inside the face area is accepted to remain constant throughout the display of any possible facial 

expression. The second parameter is the projection of the lower eyelid to the same line. When both 

metrics are found to be below a certain threshold, we confirm can confirm that the eyes are indeed 

closed, and therefore report a single blink that lasts as long as the threshold conditions for each 

parameter hold. Such metrics as time spent with eyes closed and length of each blink can be 

recorded in real time throughout the duration of the session. Others, such as blink rate and length of 

the longest blink are accumulated at the end of the session. 

2.3.2.2 Visual Attention  

In the previous break-down of low-level features acquired through gaze analysis, we have frequently 

mentioned terms such as arousal and engagement. These notions are closely tied to visual attention. 

Scientific research has shown that the interest of a person towards a web page, multimedia 

presentation, video clip or any other form of electronic document is the degree of engagement or 

interest towards the computer screen it is shown on [Asteriadis et al, 2009]. Determining head pose 

as well as the direction of a user’s gaze are a vital part of this kind of feedback. In ProsocialLearn, we 

extend this notion towards the gaming medium, by employing our algorithms for gaze feature in the 

context of HCI to extract the degree of interest and engagement of students playing games on a 

computer screen. In this respect, we can use the position and movement of prominent points around 

the eyes (see Section 2.3.1.1) and the position of the irises (previously mentioned in this Section) to 
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reconstruct vectors which illustrate the direction of gaze and head pose. These vectors will be used 

as an indication of whether the user is currently attentive, i.e. looking into the screen or not and, in 

conjunction with our gaze tracking system, whether the users’ eyes are fixed at a particular spot for 

long periods of time. This information will then be used to determine the behavioral state of the user 

towards the gaming medium. More specifically, the level of interest and attention will be extracted, 

based on concepts from the Theory of Mind [Baron-Cohen, 1995], as well as annotation from experts 

obtained through crowdsourcing schemes. We will utilize these annotations to turn high-level visual 

attention concepts described in the Theory of Mind (such as ‘distracted’) to features detectable with 

computer vision techniques. Several suggestive features derived from study of visual attention on e-

learning environments for the assessment of children’s’ reading performance [Asteriadis et al, 2009] 

are presented in Table 19 – Visual evidence attention features. 

 

Visual Evidence Possible values Related low-level feature 

Eyes looking at the screen Yes/No 
Gaze location on screen (eye gaze 

vector). 

Eyes wide open 
Strong, above normal, normal, 

below normal, reduced 

ASM, distance between points 

around the eye (Section 2.3.1.1). 

Head is moving Yes/No ASM, Gaze Distance. 

Head is moving (direction) 
None, forward, backward, up, 

down, left, right 
ASM, Gaze Distance. 

Head is moving (speed) None, fast, normal, slow ASM, Gaze Distance. 

Eyes blinking Yes/No ASM, Blinking. 

Table 19 – Visual evidence attention features 

Proposed in [Asteriadis et al, 2009] and corresponding related low-level gaze features in this report. 

We will use our findings for relating the process of directing one’s gaze towards the screen to the 

level of interest on the prosocial game, as well as the process of staring away from the screen to 

distraction or lack of interest. These measurements will be collected depending on the time span 

calculated for each process. Measurements with respect to time will provide useful information 

towards game adaptation mechanics (Task 4.1). In this respect, we can correlate sudden and abrupt, 

as well as repeating movements to nervousness and frustration. If the user is not looking at the 

screen, the game needs to reinstate user interest, for example, by playing a sound file to turn the 

user’s attention back at the screen. In case of consistent distraction, adaptation should further 

configure game mechanics and content (such as graphics) in order to minimize the observed gaze 

aversion times. We aim to report on our findings using data collected as part of prosocial studies 

(WP7) in future deliverables. 

2.3.2.3 Evaluation 

Evaluation of the gaze features analysis techniques reported in this Section for both low-level as well 

as visual attention evidence detection involves mainly the evaluation of the employed gaze tracker, 

i.e. the spatial accuracy and temporal coherence of the tracker. We consider the cases of gaze 
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distance, blinking and pupil contour extraction to be certifiably robust as they constitute 

implementations of works reported in the scientific literature (ASM, [Radu et al, 2011]). Since 

changes have been made to the overall framework of the employed eye tracker, we employ a similar 

evaluation experiment as is reported in [Papadopoulos et al, 2014], which reported an average 

measured accuracy (angular error) approximately equal to 0.83 degrees. Gaze accuracy in general, 

describes the angular average distance from the actual gaze point to the one measured by the eye 

tracker. Gaze accuracy is measured in degrees of visual angle. One degree accuracy corresponds to 

an average error of 11 mm (0.45”) on a screen at a distance of 65 cm (26”)12.   

The experiment for measuring accuracy of the tracker involves the display of a red circle following a 

circular trajectory which the experiment subjects are asked to follow with their gaze. Accuracy is 

defined as the mean gaze angle deviation that corresponds to the distance of the estimated gaze 

location on the screen from the center of the trajectorized circle. We replicated the reported 

experiment with five subjects, as described in the aforementioned scientific paper. Every subject was 

granted several experimental tries before recording of the results to get acquainted with the tracker. 

Three-out-of-five subjects had never used remote eye tracking systems before. All of the 

specifications reported were accounted for, except for the use of webcam and tracking resolution 

(720p in contrast to the reported 844x448). All experimental data was logged per participant, by 

recording the eye tracker result gaze point location on the screen (in pixels) as well as the target 

location (again, in pixels). The average accuracy of the tracker per participant as well as the overall 

average angular error is presented in Table 20 – Mean gaze accuracy of the employed remote gaze 

tracker measured in degrees. 

The reported results suggest a slight improvement was observed over the original framework, and 

solidifies our choice to employ the tracker for collecting gaze location on screen features. 

 

Participant Mean gaze accuracy 

Participant #1 0.6723626˚ 

Participant #2 0.7892300˚ 

Participant #3 0.8213406˚ 

Participant #4 0.7574546˚ 

Participant #5 0.7124208˚ 

Avg. 0.75056172˚ 

Table 20 – Mean gaze accuracy of the employed remote gaze tracker measured in degrees 

Results are shown per participant, where mean gaze accuracy over all experimental runs is reported. A mean 

average angular error for all participants is reported as well. 

2.4 Body Motion Analysis 

Most state of the art emotion recognition frameworks capitalize only on facial expression or voice 

analysis; however recent studies have shown that the movements involving the entire human body 

can also be used to infer user affective state [Gunes et al, 2015]. Seeing how ProsocialLearn aims to 

                                                           
12 Specification of Gaze Accuracy and Gaze Precision, Tobii X2-60 Eye Tracker, retrieved at 

http://www.tobii.com/Global/Analysis/Downloads/Product_Descriptions/Tobii_X2-
60_Eye_Tracker_Technical_Specification.pdf  
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achieve a variety of playing styles and through the support of Natural User Interface (NUI) controllers 

using gesture-driven and engagement-based interactions with cameras and/or depth sensors (WP4), 

we set out to extract a set of body motion analysis features that can be fused along with the 

information from the audio/visual channels towards identifying prosocial affect. Furthermore, bodily 

expression provides a means for recognition of affect from a distance [de Gelder, 2009], and 

therefore motion analysis data are crucial in generating multi-modal data in gameplay environments 

where players’ facial analysis data is either too remote (i.e. players interacting with Kinect sensor – 

see subSection 2.1.3) or partially obstructed (i.e. children wearing glasses, hats or other headwear). 

Additionally, the inclusion of bodily expression as an additional channel for affect communication can 

help resolve ambiguity observed in the identification of certain basic mental states, such as anger 

and fear [Gunes et al, 2015].  

Most of the features described in the next paragraphs comprising the body motion modality are 

extracted through joint-oriented skeleton tracking using depth and RGB information. Additionally, 

these data can be collected and processed without compromising anonymity of the players, which 

plays a crucial part in the projects’ ethics board, mainly in terms of collecting experimental data as 

part of prosocial studies (WP7). In the next paragraphs, we will discriminate between body motion 

features extracted by analyzing the whole body skeleton and features gathered by studying the 

motion and posture of the head and the hands. A complete summary of all features in this modality 

is provided in Table 21. 

 

Body motion category / 

Total Number of Features 
Extracted features 

3D Body  
Kinetic energy, contraction index, density, smoothness, symmetry, 

forwards/backwards leaning of the upper body and relative positions. 

Head Motion  Yaw, pitch, roll. 

Hand Motion  Velocity, acceleration, fluidity of hand barycenter. 

Table 21 -Summary of Body Motion Analysis features. 

2.4.1 3D body features 

Indications in the movement of the entire body are related to specific emotions according to 

experimental psychology literature, for example, contracting the body as an attempt to appear as 

small as possible is shown to be a strong indicator of fear [Boone & Cunningham, 1998]. Accurate 

full-body motion capturing has been an expensive privilege owned by few, specialized movie and 

game industry studios, which use sophisticated tracking techniques based on wearable markers. As 

mentioned earlier in this Section, the introduction of consumer-grade gaming hardware utilizing RGB 

and depth information to remotely track the users’ “skeleton” joint trajectories in 2010, has since 

revolutionized the way researchers and game developers manufacture low-cost motion capturing 

frameworks for natural interaction and emotion recognition during gameplay. In this report, the 

specified set of 3D body features was first defined as part of FP7 ASC-Inclusion13 project by [Piana et 

al, 2013] and is deeply inspired by psychological literature, to be related to the inference of emotion.  

                                                           
13 http://asc-inclusion.eu/  
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2.4.1.1 Kinetic energy 

Kinetic energy provides an estimate of the overall energy spent by the user during movement. The 

amount of movement activity has been shown to be relevantly important for differentiating 

emotions [Camurri et al, 2003]. We employ Kinect skeleton tracking libraries to obtain 3D user joint 

tracking information. Then, the kinetic energy can be measured as the total amount of displacement 

in all of the tracked joints, providing an approximation of the user’s body real kinematic energy. The 

kinetic energy is proportional to the square of velocity. We ignore the mass term in kinetic energy as 

it is not relevant. The velocity can be approximated in our case by considering finite differences of 

position divided by the sampling time interval ΔΤ [Junjie Shan et al, 2014]. So the proportional 

amount of the kinetic energy of each joint W
 is calculated as: 

W
 )
1
2X

K									486 

Then, the kinetic energy of the entire body is calculated as the weighted sum of all joints’ kinetic 

energies. We demonstrate an example real-time measurement in Figure 25 – Kinetic energy data 

measurement using the Kinect sensor during “Path of Trust” gameplay. 

 

 

Figure 25 – Kinetic energy data measurement using the Kinect sensor during “Path of Trust” game play 

(see Section 5.2.1) acquired as part of small experimental studies. The continuous blue line indicates Kinetic 

energy measurements over time throughout the entire session. The dotted red vertical line indicates the 

current frame. The top image shows kinetic energy measurement during gameplay gesture. Spike length on the 

graph is representative of the movement intensity. The image below shows the corresponding kinetic energy 

measurement during a player rest/immobile period. 

2.4.1.2 Contraction index 

The contraction index is measured as an indication of the users’ body spatial extent and is related to 

the definition of ones’ “personal space” [Piana et al, 2013]. It is an estimate of how the body 

occupies the 3D space surrounding it. According to research in experimental psychology, the 

contraction index can be used to infer specific emotional states; people are considered to usually 

spread out when they are happy, angry or surprised, and similarly reduce their size when in fear 

[Boone & Cunningham, 1998]. Contraction index in 3D is therefore defined as the normalized 



 

21/10/2015 | ProsocialLearn | D3.1 User data acquisition and mapping                     

in game environments 

 

  Page | 50 

 

bounding volume containing the user’s body. Given the 3D positions of the user’s limbs’ end 

effectors we can approximate this volume as the minimum parallelepiped surrounding the user’s 

body. The 3D contraction index is then calculated by comparing this bounding volume and an 

approximation of the volume of the density (DY) of the 3D coordinates calculated as follows:  

DY ) 	 NHZ ∙ DY[ ∙ DY\ ∙ DY]								496  
where DY[, DY\, DY] are the approximated density indices calculated respectively on x, y and z axes 

as described in the following Equations: 
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in which	�E
, �F
  and �b
  are the distances between the center of mass and the �th joint. 

The 3D Contraction Index is then calculated as the normalized ratio between DY and the Bounding 

Volume. If the limbs of the user are fully stretched and not lying along the body, the 3D contraction 

index cY will be low, while if the limbs are kept tightly nearby the body, it will be near to 1.0.  

2.4.1.3 Density 

A different measurement of body spatial extent is represented by the density index. Given the center 

of mass of the user’s tracked skeleton	c, the density index is calculated as the average sum of 

Euclidean distances of all tracked joints from	c: 

D:Y ) 	 10_�d

�


`G
						4136 

A graphical representation of this index is shown in Figure 26 – Density index measurement using the 

Kinect sensor during “Path of Trust” gameplay. 
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Figure 26 – Density index measurement using the Kinect sensor during “Path of Trust” gameplay 

(see Section 5.2.1) acquired as part of small experimental studies. The continuous blue line indicates density 

measurements over time throughout the entire session. The dotted red vertical line indicates the current 

frame. Top image depicts density calculation when user body spatial extent is increased through the extension 

of the hands. Bottom image shows the corresponding measurement when the student’s body is contracted. 

2.4.1.4 Smoothness 

Wallbott, in his analysis of qualitative aspects of psychiatric patients’ hand movements, noticed that 

movements judged as smooth “are characterized distally by large circumference, long wavelength, 

high mean velocity, but not abrupt changes in velocity or acceleration (standard deviations of velocity 

and acceleration). Thus, smooth movements seem to be large in terms of space and exhibit a high but 

even velocity” [Wallbot, 1998]. Based on Wallbott’s statements on the qualitative dimensions of 

under-constrained arm movements, we use hands trajectories curvature to identify trajectories’ 

smoothness. Curvature (e) measures the rate at which a tangent vector turns as a trajectory bends. A 

hand trajectory following the contour of a small circle will bend sharply, and hence will have higher 

curvature; by contrast, a point trajectory following a straight line will have zero curvature. The 

curvature is computed for each point trajectory as follows:  

e
 )	
�fgh 	i 	�fjh
|�fgh|N 										4146 

where �fgh is the velocity of the trajectory of the �-th point and �fjh is its acceleration. Based on the above 

formula, the smoothness index for three dimensional curvatures is computed as follows: 

e
 )	
l4Ef ∙g Ffj T 	Ffg ∙ Efj 6K 3	4bfg ∙ Efj T 	Ef ∙g bfj 6K 3	4Ff ∙g bfj T 	bf ∙g Ffj 6K

4EfKg 3 	FfKg 3 	bfKg 6
N
K

						4156 

The estimation of smoothness is depicted in Figure 27 – Curvature index measurement using the 

Kinect sensor during “Path of Trust” gameplay. 
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Figure 27 – Curvature index measurement using the Kinect sensor during “Path of Trust” gameplay 

(see Section 5.2.1) acquired as part of small experimental studies. The continuous blue line indicates curvature 

measurements over time throughout the entire session. The dotted red vertical line indicates the current 

frame. Top image depicts curvature calculation during player immobile/rest period. Bottom image shows the 

corresponding measurement during gameplay gesture. 

2.4.1.5 Symmetry 

A study on human gait demonstrated that lateral asymmetries exist not only in face expressions, but 

also in human emotional full-body movement [Roether et al, 2008]. Twenty-four actors (with an 

equal number of right and left-handed subjects) were recorded by using a motion capture system 

during neutral walking and emotionally expressive walking (anger, happiness, sadness). For all three 

emotions, the experiments showed that the left body side moves with significantly higher amplitude 

and energy. Taking into account the role of asymmetry as indicator of behavioral and affective 

features, we address the symmetry of gestures and its relation with emotional expression. It is 

measured evaluating limbs spatial symmetry with respect to the body computing symmetry on each 

of the available dimensions. Each symmetry (mY[,	mY\,	mY]) is computed from the position of the 

barycenter and the left and right joints (e.g., wrists, shoulders, feet, knees) as described below: 

mYn
 )	
4Eo T	Ep
6 T 4Eo T	Eq
6

Eq
 T	Ep
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Where Eo, Fo, bo are the coordinates of the center of mass, Ep
, Fp
, bp
 are the coordinates of a left 

joint �	(e.g., left hand, left shoulder, left foot, etc.) and, Eq
, Fq
, bq
 are the coordinates of a right 

joint (e.g., right hand, right shoulder, right foot, etc). The three partial indices are then combined in a 

normalized index that expresses the overall estimated symmetry: 

mY ) 	mYn
 3	mYt
 3	mYs
3 										4196 
A graphical representation is shown in Figure 28 – Symmetry data measurement using the Kinect 

sensor during “Path of Trust” gameplay. 

 

 

Figure 28 – Symmetry data measurement using the Kinect sensor during “Path of Trust” gameplay 

(see Section 5.2.1) acquired as part of small experimental studies. The continuous blue line indicates user wrist 

Symmetry measurement over time throughout the entire session. The vertical red line indicates the current 

frame. The top image shows symmetry measurement during player rest/immobile period. The image below 

demonstrates user symmetry index during gameplay gesture. 

2.4.1.6 Forward/backward leaning of upper body and relative positions 

Head and body movement and positions are relied on as an important feature for distinguishing 

between various emotional expressions [Schowstra & Hoogstraten, 1995]. The amount of forward 

and backward leaning of a joint is measured by the velocity of the joint's displacement along its z 

component (depth) respective to the body position and orientation, as follows: 

u
 )	bfg 								4206 
A graphical representation is shown in Figure 29 – Upper body leaning data measurement using the 

Kinect sensor during “Path of Trust” gameplay. 
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Figure 29 – Upper body leaning data measurement using the Kinect sensor during “Path of Trust” gameplay 

(see Section 5.2.1) acquired as part of small experimental studies. The continuous blue line indicates user wrist 

Symmetry measurement over time throughout the entire session. The vertical red line indicates the current 

frame. Images show user backwards (top) and forwards (bottom) leaning examples during gameplay. 

2.4.2 Head Motion Analysis  

Postural configurations of the head [Kleinsmith & Bianchi-Berthouze, 2007], movements [Cohn et al, 

2004] and gestures (for example, head nods and shakes) [Cowie et al, 2010] are some of the more 

representative bodily cues related to affect recognition studies. We therefore use the representation 

the users’ head pose as a sum of its angles in three dimensions (yaw, pitch, and roll) and consider 

them as additional features for the multi-modal fusion algorithms. This information is a priori 

available through the internal head joint tracking built into the Kinect sensor. As our capturing 

framework for gathering full body motion data for affect analysis already capitalizes on the sensor’s 

skeleton tracking capabilities, we find ourselves gaining a reliable measurement of the user’s 3D 

head pose to add to our collection of body features.   

2.4.3 Hand Motion Analysis  

Analysis of arm movements has shown that, considering a dimensional emotional space represented 

by measures for valence and arousal, the velocity, acceleration, and jerk of the hand movement is 

highly correlated with the arousal component [Pollick et al, 2001]. Seeing how the multi-modal 

capturing setup presented previously in this Section considers the use of not only full-body skeleton 

tracking sensors such as the Kinect, but also hand motion sensing technology in the form of the LEAP 

Motion Controller, we additionally measure and extract features related to the user’s motion of the 

hands. More specifically, the features proposed in [Kessous et al, 2010], are extracted. These 

features consider the hand as a singular point in 3D space, represented by its barycenter. Therefore, 

hand velocity and acceleration are directly related to the trajectory of the hand barycenter. Fluidity, 

on the other hand provides a measure of the uniformity of motion. Fluidity is therefore considered 

maximum when the acceleration of the hand during movement between two specific points in 3D 

space is zero. These features are gathered for both hands in case of a full-body movement tracking 
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environment (such as when using a Kinect sensor), resulting in a total of 6 features, or for a single 

hand (i.e. 3 features) in case of hand motion sensing interfacing with the prosocial game (e.g. LEAP 

Motion). 

2.4.4 Outlook 

Due to the nature of the features extracted as part of the body motion analysis data acquisition 

framework we presented in this Section, we are currently unable to map skeleton data acquired 

through the use of a Kinect sensor onto a certain emotion label. Though several databases 

correlating motion capture data with emotion classes exist, as shown in Table 22 – Overview of 

existing databases on emotion from body data, we are unaware of any work that solely maps 

emotional labels to user tracked skeleton movements, thus providing ground truth on which to train 

and choose classification schemes on. Therefore, as part of the ProsocialLearn project, we aim to 

create a database to complement work presented in Table 22 – Overview of existing databases on 

emotion from body data. 

 

Name 
Nr. of 

emotions 
Format Modalities Mode Actors 

FABO [Gunes & Piccardi, 2006] 10 Video Face, Body Elicited 1,900 

GEMEP [Bänziger et al, 2012] 17 Audio, Video 
Face, Body, 

Speech 
Elicited 1,260 

[Savva et al, 2012] 4 
Motion 

capture 
Body Natural 161 

[Sneddon et al, 2012] 8 Audio, Video 
Face, Body, 

Speech 
Natural 1,400 

[Volkova et al, 2014] 11 
Motion 

capture 
Body 

Elicited, 

Natural 
1,447 

Table 22 – Overview of existing databases on emotion from body data 

We will mainly target an audience of game players, preferably within the age groups defined for our 

prosocial studies, and proceed to record Kinect data (RGB + depth channels, skeleton joint tracking 

data) during gameplay sessions. Each session will then be annotated per frame with emotional labels 

through crowdsourcing schemes. We will then proceed to generate baseline emotion classification 

methods utilizing features presented in this report, while hopefully being able to break ground on 

the proposition of new 3D body features as cues on user emotional state. We will then proceed to 

publish our annotated datasets as part of the ProsocialLearn project, hopefully contributing to the 

scientific community while also striving to excel beyond the scope of Task 3.1. Further details on the 

developments concerning this endeavor will be reported in future deliverables. Samples of the 

database showcasing acted emotions being captured by a Kinect for Xbox One device are shown in 

Figure 30 – Samples of the database work in progress on emotional body motion for feature 

extraction and analysis. 
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(a) (b) (c) 

Figure 30 – Samples of the database work in progress on emotional body motion for feature extraction and 

analysis 

Frames are being shown for happiness (a), sadness (b) and surprise (c). Full-body skeleton joint tracking and 

hand motion patterns are shown highlighted, in accordance to the features presented in this Section. 
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3 In-game Data Logs 

In this Section, the acquisition of in-game data logs will be described, along with proposed format 

based on current popular online multiplayer games. We categorize in-game logging channels into 

low-level behavioral observations and high-level game mechanics, which will comprise the input to 

the game logging service.  Additionally, in this Section, behavioral cues stemming from chat message 

sentimental analysis as well as interaction patterns with standard I/O devices such as the mouse and 

keyboard will be explored. A thorough survey on proposed features in the related literature will be 

provided, with the intent on detecting users’ affective states from their keyboard and mouse 

interaction features and chat messages, which is aimed to enrich the multimodal approach we are 

following for automatic prosocial affect and engagement detection through the sensory observation 

channels described in Section 2. 

3.1 In-game logging channels 

In parallel with sensor data acquired during at run-time, ProsocialLearn games are also expected to 

generate ‘in-game’ data describing important logical behaviors related to game interactions, 

mechanics and transactions. ProsocialLearn game logging is used to support the capture of data that 

is a) generated directly from within the game logic (rather than by a separate and de-coupled sensor 

acquisition process) and b) intended specifically for use in down-stream WP3 related fusion 

processes. In-game logging is therefore categorized in two main types: 

• Behavioral observations (for down-stream emotion analysis) 

o Mouse input signals 

o Text input via keyboard 

• High-level game mechanics (for down-stream prosocial state management) 

o High-level game constructs and events 

o Game transactions 

3.1.1 Behavioral observation data logging 

Behavioral observation data logging focusses on the relatively low-level data related to conventional 

input events taken from the keyboard and mouse. Streamed data representing mouse movement 

and button signals are candidates for inferring further evidence of user emotion and engagement at 

run-time. Conversational interactions between players can also be re-constructed through the 

aggregation of player messages; this then leads on to the possibility of inferring additional evidence 

of emotion and engagement through sentiment analysis. A brief overview on these subjects will be 

presented in Section 3.3. 

3.1.2 High-level game mechanics logging 

High level game mechanics message data will carry common game constructs and events, such as: 

• Game title and instance identifiers 

• Game player and avatar identifiers 

• Common game events (i.e., the beginning & ending of games, levels or scenarios) 

In addition to these, specific interactions between players, expressed using a well-defined vocabulary 

defined for ProsocialLearn, will also be used to log a series of game events that collectively represent 

a game transaction. These data, along with classifications of emotional responses from sensor data, 
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will be used later to calculate prosocial state changes in a player, downstream from the fusion 

process (described in D2.3 and to be discussed further in D3.2). 

3.2 Acquisition of in-game logging data 

The actual route any particular game log message takes will depend on whether it is game play or 

game mechanic data. Messages destined for emotion classification can either be routed via the game 

logging service (as illustrated in Figure 31) or be transmitted using another network protocol and 

third party service, if required by the game server. Game mechanics data are expected to be handled 

directly by the game logging service. 

 

Figure 31 -The role of the game logging service in the fusion pipeline 

In support of log message acquisition, the logging service will provide a message brokering service; 

any messages intended for emotion/engagement analysis will be routed on to the appropriate 

classifiers. Game mechanics data will be processed and persisted in a game history store. Aggregated 

messages that combined to form game transactions will be pushed forward to the PSL state 

manager. A common format for all logging messages will be used, based on a widely recognized 

formalism already in use in the game industry and exemplified by the “World of Warcraft” format, an 

example of which is shown in Figure 32. 
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Figure 32 -A well-known game logging format: World of Warcraft example. 

A similar approach will be adopted in the ProsocialLearn project since game developers will be 

familiar with the approach; a full specification of the logging format and API will be provided in D3.2. 

3.3 Behavioral observation in-game data acquisition 

The following paragraphs provide a summative survey into the behavioral observation in-game data 

acquisition channels defined in Section 3.1. The aim is to lay a foundation on which ProsocialLearn 

will build on to generate gameplay data to complement the observation channels presented in 

Section 2. Additional details on how this data will be fused with the audio/visual modalities will be 

presented in D3.2. 

3.3.1 Mouse/Keyboard input signals 

As already described in Section 2, expressive, non-intrusive audio/visual methods for recognizing 

user affective states have primarily dominated the scientific literature on affective computing. 

However, interaction with the most common interfacing devices such as the keyboard and mouse, 

have also been extensively studied for obtaining affective indicators. Mouse or keyboard Input 

behavioral patterns have been studied in the scientific literature mainly as an indicator of interest 

[Claypool et al, 2001], interface design [Sengupta & Jeng, 2003] or as evaluation metrics on user 

experience [Tullis & Albert, 2010]. In this Section we focus on the affective computing element, 

which has studied the use of these devices extensively for recognizing user affective states from 

behavioral patterns [Salmeron-Majadas et al, 2014]. We present the results of this survey in the 

state of the art in the following paragraphs, focusing on mouse and keyboard input devices.  More 

recent studies relating user affective states with other standardized methods of common device 

input arise with the increased popularity of touch-screen interfaces [Gao et al, 2012], as well as 

recent smartphone and tablet sensors for device environmental data and gyroscopes (e.g. device 

shaking, inclination etc.) [Lee et al, 2012a].   

Affect extraction from mouse and keyboard interaction has been explored in several studies in the 

related literature. Mouse interactions are mainly studied in relation to movement, and movement 

rate has been shown to be related to arousal in an attempt to recognize the user’s mood [Sottilare & 

Proctor, 2012]. More prominently, features such as average speed, inactivity, speed and orientation 

of mouse movements have been proposed for the detection of students’ affective state detection 
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during online lessons [Tsoulouhas et al, 2011]. Biometrics can be applied to these measurements 

when using specialized biometric mouse hardware, which are able to efficiently extract indicators 

such as hand shaking, temperature, humidity and pressing intensity [Kaklauskas et al, 2009]. Other 

popular unique features that relate to biometry and do not necessarily require the use of specialized 

hardware include the time between mouse button presses [Tsai et al, 2012] and analysis of mouse 

movements in terms of coordinates, distance, path etc. [Lin et al, 2012]. Biometrics is then used to 

identify users from these patterns. 

Keyboard input has also been studied as an input signal for determining user affective states. More 

prominently, these studies relate to the typing of text rather monitoring keyboiard activity during 

gameplay sessions. Therefore, typical features extracted include typing speed, number of typed 

characters during set intervals, relative timing (total time taken for typing during a single session), 

number of errors (backspaces) and idle times [Khanna & Sasikumar, 2010] [Felipe et al, 2012] [Bixler 

& D’Mello, 2013]. These features can be used to recognize between the reported states of boredom, 

engagement and neutral [Bixler & D’Mello, 2013]. As is the case with mouse interactions, biometrics 

are also studied for keyboard interactions during short text (e.g. passwords) [Karnan et al, 2011] 

[Bakelman et al, 2013] or large text input [Villani et al, 2006] [Monaco et al, 2012]. Biometrics 

mainly focusing on keystroke time, interval, input rate, errors, key press durations, key pressure, text 

length, difficulty etc. is then mainly used to enrich security systems, recognizing and modeling users, 

rather than recognizing a particular user’s affective state. 

Multimodal input interactions using both mouse and keyboard input have also been subjected to 

studies in the related state of the art [Zimmermann et al, 2006] [Lee et al, 2012b] [Salmeron-

Majadas et al, 2014]. The multi-modal approaches typically consider a wide range of features 

collected by both devices, and have recently been used in a similar manner to ProsocialLearn’s aim of 

enriching multi-modal affective computing systems that utilize behavioral signals incoming from 

sensory units, most prominently physiological signals and facial expressions [Salmeron-Majadas et 

al, 2014]. A summative view on a large number of proposed features in the multi-modal approach 

scientific literature is presented in Table 23.  

Within ProsocialLearn, we aim to proceed with appropriate features’ selection for the fusion 

algorithms further down the player modelling and prosocial affect pipeline, according to availability 

of devices per game. Our selection schemes should also take into consideration, how each device is 

intended to be used for providing input (e.g. only measuring features during intervals when player 

input is expected). Additionally, feature reduction may be necessary due to high correlation between 

parameters. More details on this feature selection process will be given in future deliverables.  

3.3.2 Sentiment analysis on chat messages 

Sentiment analysis refers to the evaluation of a piece of text. This statement includes various 

aspects, as sentiment analysis has been used to detect the polarity of messages (positive, negative or 

neutral), the detection of objective or subjective sentences, detecting emotions such as joy, anger or 

fear and applying sentiment analysis in various domains such as healthcare, commerce and disaster 

management [Kiritchenko et al, 2014]. 

 

Work Mouse features Keyboard features 

[Zimmermann et al, 2006] 
Total number of mouse clicks, single 

mouse clicks (multiple clicks counted 

Number of keystrokes, median 

length of a keystroke, etc. 
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as one click), total distance of mouse 

pointer, mouse speed, median click 

time (time between pressing and 

releasing a mouse button), number of 

pauses in mouse movement, median 

distance of single mouse movement, 

mouse acceleration, angle and 

direction of mouse movements. 

[Salmeron-Majadas et al, 2014] 

Number of button presses 

(left/right/both), overall distance, 

distance covered between two button 

press events (1), distance covered 

between button press and following 

button release (2), distance covered 

between two button release events 

(3), distance covered between a 

button release and the following 

button press events (4), Euclidean 

distance in cases (1), (2), (3) and (4), 

difference between covered and 

Euclidean distance in cases (1), (2), (3) 

and (4), times elapsed between events 

in cases (1), (2), (3) and (4). 

Individual keystroke indicators 

Number of key press events, 

average time between key press 

events, average time per stroke, 

number of times a given key has 

been pressed, number of times a 

set of keys has been pressed. 

 

Digraph/Trigraph 

Time between down keys, duration 

of each key event, time between a 

key up and following key down, 

duration of digraph/trigraph, 

number of events in the key events 

combination 

Table 23 -Summary of Mouse & Keyboard multi-modal input behavioral features in the scientific literature. 

Sentiment analysis generally aims at determining the writer’s attitude (i.e. the emotional state of the 

writer at the time of writing), the emotional effect bestowed upon the written medium by the author 

or the overall contextual polarity of the written segment. Textual information takes on numerous 

forms (articles, blogs, SMS messages, chatrooms, tweets, etc.). In ProsocialLearn, we will focus on 

sentiment analysis performed on short, informal textual messages, which may be sent among players 

collaborating or competing within a shared game environment. These messages are limited in length, 

usually spanning one sentence or less. Some characteristics associated with these messages are the 

many occurrences of misspellings, slang terms, and shortened forms of words, as well as the 

occasional inclusion of special markers, such as hashtags and emoticons. Such markers may be used 

to facilitate search, but can also indicate a topic, trend or sentiment. 

Due to an explosive amount of scientific literature concerning sentiment analysis, a large portion of 

which is beyond the scope of this document (or this project in general), we will point out the 

interested reader to some of the more prominent surveys on the topic [Pang & Lee, 2008] [Kim et al, 

2011] [Cambria et al, 2013] [Kiritchenko et al, 2014]. In ProsocialLearn, we aim at utilizing available 

solutions in the form of Application Programming Interfaces (APIs) for integrating sentiment analysis 

on player chat messages, whenever chatting is available as an option in the prosocial game. The 

preferred APIs should generate sentimental values that concern both individual words as well as 

whole phrases, while also demonstrating robustness against the use of emoticons. Some early 

suggestions on state of the art APIs are presented in Table 24. Further down the player modelling 

and prosocial affect pipeline, heuristic approaches will be used to attempt an identification of 

prosocial signals. This topic will be further elaborated in future deliverables of the project. 
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API License Output 

Stanford NLP
14

 academic 
5-scale Polarity values  (Very Negative, Negative, 

Neutral, Positive, Very Positive) 

Alchemy API
15

 commercial 
Score-based Polarity value (Negative, Neutral, 

Positive) 

Semantria
16

 commercial 
Score-based Polarity value (Negative, Neutral, 

Positive) 

Sentiment140
17

 commercial 3-scale Polarity values (Negative, Neutral, Positive) 

Table 24 -Sample academic and commercial APIs for online text sentiment analysis. 

 

                                                           
14 http://nlp.stanford.edu/sentiment/  
15 http://www.alchemyapi.com/  
16 https://semantria.com/demo  
17 http://help.sentiment140.com/api  
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4 Static Player Data 

All player data stemming from player profiles, parent/teacher/caregiver input as well as session data 

considered constant throughout the duration of the session (i.e. physical and contextual conditions 

in which a gameplay session is progressing), are categorized in the ProsocialLearn project as ‘Static’ 

player data. In this Section, we will elaborate on the nature and acquisition procedures for these 

particular factors, effectively differentiating from audio/visual player behavioral cues and game-

related behavioral patterns and wrapping up our observation data acquisition pipeline features. This 

breakdown of player data into the distinct categories of sensory observations, in-game logs and static 

data presents a solid and consistent structure of observations, which will greatly assist in enhancing 

future work on player profile modelling (Task 3.3) and dynamic fusion of modalities (Task 3.2). 

4.1 Contextual data acquisition 

Data concerning relevant contextual issues is useful for strengthening our understanding of, and 

providing additional meaning to automatically acquired data. Contextual data relates to the 

multitude of aspects outside of the recorded audiovisual streams and game play interaction 

recordings that may be judged to be important factors in influencing behavioral interactions in the 

game (to be differentiated from ‘Contextual factors affecting prosocial learning’, as described in 

D2.1, which relates to player profile acquisition in this document – see Section 4.2). It is useful as a 

means for increasing confidence in inferences made from behavioral data, for example, that 

behaviors are a result of in-game interactions and not due to other causes, such as physical space 

constraints or disruptions in the environment. Contextual data is therefore of use to human 

annotators, whose awareness after the fact during playback sessions is sometimes limited due to the 

available sensor equipment and game footage, and to automated learning mechanisms. 

Examples of contextual data categories include: 

• Physical set-up: The presence of a window behind the main game screen may cause 

attention to be shifted from the game and help explain fixations outside of the game screen 

that may otherwise be interpreted as nervousness or a decrease in engagement. 

• Physical space constraints: The use of the Kinect sensor in a constrained room may alter body 

motion strategies producing more contracted motions. 

• Cohort and peer presence: Games played with peers may be more stressful than those 

played alone. 

• Educational context: The use of the system for graded activities may result in different 

behaviors to usage as leisure activity. 

• Disruption level: Events taking place outside the range of the audio and visual sensing 

equipment described in sub-Section 2.1 may cause distraction. 

Typically, due to the complex and dynamic nature of contextual data, it may be gathered manually 

via an online questionnaire before or after the session and, for practical purposes, relate solely to 

issues considered to be salient or noteworthy by the experimenter/teacher in that particular gaming 

instance. 

4.2 Player Profile data acquisition 

A player profile is a repository of information about an individual, merging multiple sources of data 

from psychometric questionnaires (or subsets of questionnaires), previous interactions, and other 
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sources from parents, teachers and caregivers (based on questionnaires assessing the value systems 

of schools, for example). The purpose of the profile is to assist in the estimation of an individual’s 

prosocial disposition in order to inform adaptation mechanisms and provide a foundation for into 

which to place their likely future decisions and behaviors related to prosociality. 

4.2.1 Psychometric questionnaires 

Psychometrics is concerned with the objective measurement of skills and knowledge, abilities, 

attitudes, personality traits, and educational achievement. In relation to ProsocialLearn, as described 

in Deliverable D2.1, contextual factors affecting prosocial learning primarily concern temperament, 

personality, attachment style, demographics (age, gender, and income), culture, family and 

characteristics of the beneficiary. In principle, this data may be captured offline by means of 

questionnaires that are distributed to the individuals (questionnaires may be intended for the 

children, teachers or parents). An overview of the questionnaires is provided in Table 25. See 

Deliverable D2.1, Appendices 1 and 2 for a more detailed description of each of the questionnaires. 

 

Questionnaire name Participant Languages 
Time to 

complete 

Age 

group 

TMCQ: Temperament in middle 

childhood questionnaire 

Child /  Parent  /  

Teacher 
English, Italian 10-20 mins 7-10 

EAQ: Emotional Awareness 

Questionnaire 
Child English, Italian 10-20 mins 9-16 

CBS: Child behavior scale Teacher English 10-20 mins 6-13 

BFQ-C: Big Five Questionnaire in late 

childhood (personality) 

Child  / Parent /  

Teacher 
English, Italian 10-20 mins 7-13 

ICID-s: Inventory for Child Individual 

differences 

Child  /  Parent /  

Teacher 
English 10-20 mins 2-15 

The Junior Temperament and 

Character Inventory 
Parent English, Italian 10-20 mins 6-16 

Parenting Styles Parent English 5-10 mins - 

ASCQ: attachment Child English <5 mins 7-14 

Table 25 -Summary of psychometric questionnaires for children, parents and teachers. 

In practice, the approach of filling out questionnaires may not be feasible due to the time and 

organizational requirements involved, often in classroom environments. While the player profile 

could contain substantial information covering all aspects of these questionnaires, are more feasible 

approach involves the development of questionnaire subsets that are acquired directly within the 

game environment, ideally as part of the game scenario. 

4.2.2 Other inputs from parents, teachers and caregivers 

The player profile also contains other potentially relevant data elicited, for example, as feedback 

from teachers, parents and caregivers. For example, data relating to the value systems of schools and 
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the ways in which prosociality is already being taught (see Deliverable D2.1, Section 4) is of relevance 

to developing the profile of individuals. Data sources are typically derived from questionnaires 

probing how valued various aspects of prosociality are in specific cultures, for example, asking 

teachers to rank empathy, fairness, cooperation concern for others, and so on. These data sources 

provide a valuable backdrop for better understanding individual profiles. 
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5 Multi-modal / Multi-sensor capturing setup 

Player input data and processes necessary for affect fusion described in this document stem from the 

identification and exploration of all available game input modalities, which can be summarized in 

Section 2.1. Games developed for the ProsocialLearn project may embed use of these sensors in the 

game control, and should definitively include reasons in the game logic for using the sensors input 

(e.g. collaboration through voice channel) that are in general provided by the platform and not by 

the game. Sensor data collected can be then pre-processed and fused (Task 3.2) with the ultimate 

goal of inferring emotional and engagement status of the player. 

In this Section, we will describe how a multi-modal/multi-sensor gameplay input capturing setup can 

be deployed for use with the already implemented or planned early prosocial games, providing a 

thorough mapping of the data acquisition processes to their respective game environments. This will 

serve as a general guide towards the development of future prosocial games later in the project’s 

lifetime.  

5.1 Introduction to the implemented capturing platform 

As is apparent from previous Sections in this document, a multi-channel acquisition of observations is 

supported as part of the work carried out in Task 3.1 of the ProsocialLearn project. Each channel has 

its own architecture, strictly related to the nature of the observation. The observations themselves 

are categorized under the audio/visual sensory data (Section 2) and in-game/player background 

knowledge (Sections 3 and 4) classes.  

During the project’s first system requirements and architecture report (D2.3), an explanation of the 

in-game data flow, in which the observation acquisition manager, sensors and processing are 

mounted on the client-side, was presented. Observations are collected and processed locally on the 

user’s machine and are only authorized to leave the platform according to specifications set by the 

client regarding data sensitivity. As a reminder, we append this data flow in Figure 33 – 

ProsocialLearn architecture in game data flow, defined in D2.3, to better emphasize on the 

positioning of the observation acquisition pipeline in the overall platform architecture. In this 

respect, observation sensors and I/O devices create input streams to the observation acquisition 

platform, while a two-way I/O stream with the game client is used to handle direct player input 

interactions with the game. From the sensors’ detailed presentation provided in Section 2.1, it is 

apparent that any type of sensory hardware used as part of the observations acquisition can also be 

considered an input device. Synchronization of the game client and any sensory hardware is also 

required, as sensors and input devices need to collect game-related data and observe player 

behavior patterns during gameplay, to properly infer prosocial affect signs and trigger adaptation. 

Furthermore, any device used to directly provide input to the game environment needs to obtain 

signals during which player activity is analyzed and translated to in-game commands (for example, 

Kinect gestures or voice commands). During these timeframes, observations still need to be acquired, 

as they may provide cues towards player engagement (i.e. vigorously shouting out commands as 

opposed to indifferently repeating keywords).  

Seeing how observations are made locally, the activation and synchronization of all available sensors 

needs to be handled by a generic framework for input device communication. The framework needs 

to ensure that each sensor is turned on and properly initialized at the precise moment, for acquiring 

observations with respect to and throughout the duration of the gameplay session only.  
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Figure 33 – ProsocialLearn architecture in game data flow, defined in D2.3 

The red dotted line area represents the observations acquisition pipeline, i.e. sensor/device communication 

with the game client. 

Simple interactions between the game client and all possible sensory input devices can be carried 

out, for example, through the use of local sockets. Observation channels need to be open and closed. 

We envisage different possibilities for doing so; for example, a function in the game calling the 

start/stop or it can be a function exposed by the platform itself. Another approach would be to 

support a combination of the two. The logic binding between game and observation channels is 

performed via the platform SSO. 

The framework is generic in that, it utilizes the same protocol to communicate with a multitude of 

sensory hardware and I/O devices described in Section 2.1, regardless of their type, making the 

process of plugging in or omitting a specific sensor before a session is started a trivial process. 

5.2 Mapping to the ProsocialLearn games’ environments 

Throughout the course of this report, we have elaborated on our observation acquisition pipeline per 

category (sensory, in-game and static), modality (audio, visual, body and input) and feature level 

(speech, facial expression, eye gaze, motion, interaction patterns, chat). In this Section we present 

how these observations can be applied to games developed as part of the ProsocialLearn project, to 

aid future game developers in choosing how and why to incorporate these observations in their own 



 

21/10/2015 | ProsocialLearn | D3.1 User data acquisition and mapping                     

in game environments 

 

  Page | 68 

 

games. A comprehensive summary that maps observations to intended yielding results with respect 

to prosocial player affect and engagement is presented in Table 26. As a further aid, we conclude this 

Section by providing an overview of the initial games developed for small scale experimental studies 

conducted for analyzing and extracting the features presented in Section 2 and Section 3. Each game 

is reserved a Table summarizing the entire range of feature modalities supported, as well as the 

actual observed features themselves. We present these studies in hopes of helping incoming SMEs 

later in the lifetime of the project by providing a baseline and target outputs on which to build their 

own gaming worlds. 

 

Category Modality Hardware  Type Level Target output 

Sensory 

Observations 

Audio Microphone Speech 

Low-level 

Player affect Two-class 

Five-class 

Visual Camera 

Facial 

Expression 

Low-level Player affect / 

Engagement AU 

Emotions Player Affect 

Gaze 
Low-level 

Player affect / 

Engagement 

Attention Engagement 

Body 
Kinect/Kinect2 

LEAP Motion Controller 
Motion 

3D Body / Head / 

Hand 

Player affect / 

Engagement 

In-game Logs Input 

Mouse 

Keyboard 

Interaction 

pattern 
Behavioral 

Player affect / 

Engagement 

Keyboard Chat Sentiment analysis Player Affect 

Static data Questionnaire - 

Contextual Basic 
Player affect / 

Engagement 

Player Profile  
Psychometric 

Player Affect 
Third-party input 

Table 26 -Mapping overview of observations acquisition to target outputs. 

 

5.2.1 Path of Trust 

Path of Trust (PoT) is a two-player, endless 

running maze game in which players strive to 

collect treasure while trying to avoid mummies 

and traps. One player assumes the role of the 

Guide, a character assumed to have explored the 

maze before and therefore able to navigate 

through the corridors via a top-down view of the 

dungeon map. The other player is put in control of 

the endless running Muscle character, which is 

responsible to navigate the maze, but has no 

information on the layout, of the maze or the room contents. The duo navigates the maze by having 

the Muscle carry the Guide on his back. During each game cycle, the characters find themselves in 

one of the maze’s many rooms, which end up in junctions leading up to 3 different directions. Before 

entering the room, the Guide has already been shown a short glimpse of the contents in each of the 

adjacent rooms and has to pick a decision for the Muscle character to follow. The Muscle then gets a 

small time window to decide whether to actually heed the Guide’s advice and proceeds to take one 
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of the available routes. Afterwards, the Muscle gets a short time to either collect the treasure or 

avoid a hazard running inside a small corridor leading up to the next room/junction while the Guide 

is again shown the contents of the adjacent rooms there, from which point the cycle repeats. 

Characters are rewarded for collecting treasure, yet the Muscle player is rewarded twice the amount 

of points for each treasure piece collected. The game offers a way for players to switch characters in 

the form of a magic portal, and therefore players get the chance to reap equal rewards by planning 

their character swaps carefully. The game furthermore features a time limit and 5 different endings 

for players to reach. PoT was designed to help children understand the benefits of Cooperation and 

when to express Trustworthiness, as described in D2.2. The Muscle player must learn to trust the 

Guide to provide guidance away from danger and towards mutual interests while the Guide must 

learn to trust the Muscle to listen to directions. This trust and cooperation element is a crucial 

component to progress in the game, as players may be caught by one of the mummies and thus lose 

hard-earned treasure or fall into a trap and instantly lose the game, meaning none of the players 

actually succeeds. Figure 34 – Path of Trust gameplay cycle for Guide (top) and Muscle (bottom) 

players shows screenshots of the game taken during a complete game cycle. 

 

Figure 34 – Path of Trust gameplay cycle for Guide (top) and Muscle (bottom) players 

Guide is briefly shown the contents of the adjacent rooms (G1) while the Muscle runs through the corridor 

(M1). Then the Guide is called upon to pick a direction to suggest to the Muscle (G2), who is in the meantime 

entering the junction room (M2). The Muscle is displayed the Guide’s direction and has to choose whether to 

follow while arriving at the junction (M3), as the Guide awaits the outcome (G3). The Muscle then enters a 

corridor connecting to the chosen room and takes action in accordance to the found content (M4), while the 

Guide progresses towards the next space on the top-down map (G4). The cycle then repeats at {G1, M1}. 

Two players connect to a server which propagates game-related information between the two to 

maintain a balance in the game. The game clients are responsible for rendering the game and 

deploying the NUI, while the server updates the game state on both clients based on inputs received 

in the previous game cycle. The game can be played either using a traditional approach (e.g. 

keyboard) or through a gesture-driven NUI. More specifically, two distinct sensor-driven 

configurations are set up according to the generic framework for input device communication, 

described in sub-Section 5.1. 

One involves the Kinect sensor while the other utilizes the LEAP Motion controller. Students playing 

PoT using the Kinect have to perform three distinct hand gestures to interact with the game during 

input acquisition time windows. The same applies for students playing using the LEAP Motion 

controller. These gestures are shown in Figure 35. Seeing how students playing the game using the 
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LEAP Motion configuration get to be seated in front of a standard computer monitor, a camera 

observation modality can be additionally plugged in for the acquisition of multi-modal observations. 

PoT therefore makes use of almost every possible visual observation acquisition method, as is shown 

in Table 27.  

 

 

Figure 35 -Hand gestures for controlling player Muscle/Guide actions using LEAP Motion controller. 

 

Sensor Feature Modality Feature Level Actual features 

Camera 

Facial Expression 

Analysis 

Low-level features Eyes, Eyebrows, Mouth. 

AUs 

AU1, AU2, AU4, AU6, AU7, 

AU10, AU12, AU15, AU17, 

AU25, AU26. 

Emotions 
Happiness, Sadness, Surprise, 

Anger, Fear, Neutral. 

Gaze Analysis 

Low-level features 
Gaze Distance, Pupil Diameter, 

Blinking 

Visual Attention Attentive/Non-attentive 

Microphone Speech Analysis 

Low-level features 
Zero crossing rate, RMS energy, 

F0, Harmonic noise ratio, MFCC 

Two-class Idle, Negative 

Five-class 
Angry, Empathic, Neutral, 

Positive, Rest 

Kinect Body Motion Analysis - 
3D Body, Head Motion, Hand 

Motion. 

LEAP Motion Controller Body Motion Analysis - Hand Motion 

Traditional Input 

Controllers: Keyboard 

Gameplay Data 

Analysis 

Behavioral observation 

data logging 
Individual keystroke indicators 

Table 27 -Summary of features mapped onto the PoT game environment. 
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5.2.2 Kitty King’s Candy Quest 

Kitty King’s Candy Quest (KKCQ) provides a set of 

scenarios that present specific moments for pairs of 

participants to make decisions of Generosity and 

Fairness in nature, as described in D2.2. KKCQ is a 

web-based, two-player game, focused on decision 

points that deal with prosocial concepts of fairness 

and generosity. There are four variations of the game, 

each one contained within the same game package.  

A single gameplay cycle is broken down into the following player actions: at the start of the cycle, 

players complete a short round of collecting candy by clicking on a candy jar. One player is assigned 

the role of the Giver. This player gets all of the candy collected and has to decide how much to share 

with the other player, who takes on the role of the Receiver. The Receiver then decides if the sharing 

was done in a fair manner. A game consists of several cycles, involving different variants of the above 

situation with subtle variation that test different generosity and fairness attitudes and responses (i.e. 

a second variant allows both players to collect candy simultaneously, each player having his own 

candy jar, while clicking contributes to a shared total). Each of the mini-games takes 1 or 2 minutes 

to complete. Screenshots of the game flow are provided in Figure 36 – Kitty King’s Candy Quest game 

flow. 

 

 

 

(a) (b) (c) 

 

 

 

(d) (e) (f) 

Figure 36 – Kitty King’s Candy Quest game flow 

Top row displays Giver gameplay, where candy is being collected from a jar (a), then an offer to the Receiver is 

made (b) and finally a message of the offer’s evaluation is displayed (c). The bottom row shows the gameplay 

flow from the Receiver point of view. The player waits for the Giver to collect candy (d) and receives the offer, 

which the player has to decide if they think it’s fair with a Yes/No answer (e). Then, the assessment is displayed 

to both players (f). 
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While KKCQ does not take input from any particular observation sensor like in the PoT game, 

unobtrusive player observation can be collected by plugging in camera and microphone sensors for 

player behavior monitoring. As shown in Figure 36 – Kitty King’s Candy Quest game flow, after each 

section subjects are asked by the game to respond to their decision, prompted by “Look at the screen 

and tell me how you feel about this”. This allows observations made by the audio channel to analyze 

speech features, as described in Section 2.2. A complete mapping of observations to the Giver-

Receiver game environment is presented in Table 28. 

 

Sensor Feature Modality Feature Level Actual features 

Camera 

Facial Expression 

Analysis 

Low-level features Eyes, Eyebrows, Mouth. 

AUs 

AU1, AU2, AU4, AU6, AU7, 

AU10, AU12, AU15, AU17, 

AU25, AU26. 

Emotions 
Happiness, Sadness, Surprise, 

Anger, Fear, Neutral. 

Gaze Analysis 

Low-level features 
Gaze Distance, Pupil Diameter, 

Blinking 

Visual Attention Attentive/Non-attentive 

Microphone Speech Analysis 

Low-level features 
Zero crossing rate, RMS energy, 

F0, Harmonic noise ratio, MFCC 

Two-class Idle, Negative 

Five-class 
Angry, Empathic, Neutral, 

Positive, Rest 

Table 28 -Summary of features mapped onto the KKCQ game environment. 
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6 Conclusions 

In this report, a complete summary of observations and input acquisition data was presented, along 

with general guidelines on applying these observations into future prosocial games and how each 

modality could map to a game environment.  

Three distinct categories of player input data acquisition were defined.  These include the sensory 

observations acquired through audio/visual student behavior monitoring, in-game data logs being 

constantly recorded during gameplay, and player static data, collected per gaming session and 

through the player’s personal profile, defined for each student. For each of the aforementioned 

categories, a sufficient set of features were proposed for extraction, and categorized according to the 

achieved level of player affective abstraction (i.e. low-level observational measurements, emotions, 

or mid-level representations, such as AUs). All features presented in this report are considered 

candidates for dynamic fusion algorithm input (Task 3.2). Emotional qualities, being the highest level 

of features are directly calculated from lower-level features representations, using certified 

algorithms for person-dependent affect analysis. In this report we have thoroughly presented the 

state-of-the-art in affect recognition using multi-modal input modalities, and have thus justified our 

choices of employed algorithms. Where applicable, evaluation schemes were proposed, and 

experimental results presented, solidifying the choice of components per approach. Where such an 

evaluation was not possible due to a current lacking in relevant or existing data in the scientific 

literature, the partners in WP3 of the ProsocialLearn project have proposed their plans on further 

work to go beyond the requirements of this Task and contribute towards the goals of the project, 

and the scientific community as well. All of these additional developments being mentioned in this 

report will be included in future deliverables, later in the project’s lifetime. 

Furthermore, in this report, an overview of the current state of early developed prosocial games and 

mapping of the observations acquisition procedures onto the respective game environments was 

presented. Towards this end, a generalized framework for unobtrusive capturing of students during 

gameplay was explored and tied-in with the overall architecture and requirements of the 

ProsocialLearn platform (D2.3). Early prosocial studies taking place in schools in Greece (WP7) have 

encouraged us to proceed with this approach. We hope to have set a comprehensive and thorough 

example on how to build an observations acquisition pipeline, choose algorithms and hardware and 

draw a mapping of affective/engagement-based outputs within game environments in a way that will 

allow future game developments being invited to join the project to rapidly prototype new prosocial 

games and corresponding game adaptation mechanisms (WP4). 
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