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Abstract: This paper proposes a novel control methodology to incorporate constraint handling
within generalized iterative learning control (ILC), a overarching methodology which includes
intermediate point and sub-interval tracking as special cases. The constrained generalized ILC
design objective is first described, and then the design problem is formulated into a successive
projection framework. This framework yields a constrained generalized ILC algorithm which
embeds system input and output constraints. Convergence analysis of the algorithm is performed
and supported by rigorous proofs. The algorithm is verified using a gantry robot experimental
platform, whose results reveal its practical efficacy and robustness against plant uncertainty.
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1. INTRODUCTION

ILC is a high performance control design methodology
to improve the tracking accuracy of a system repeating
the same task over a finite time horizon. By updating
the control input based on the data from previous trials,
ILC theoretically enables the tracking error to converge
to zero after sufficient trials. This feature has led ILC to
be widely applied to precision industrial tasks, such as
robotic systems (Hladowski et al. (2010); Norrlof (2002)),
chemical batch processing (Lee and Lee (2007)) and stroke
rehabilitation (Freeman (2016)). See Bristow et al. (2006)
for a detailed overview.

In the classical ILC framework, the tracking requirement is
to follow a given motion profile defined over a finite time
horizon. However, for some applications such as robotic
pick-and-place tasks, the output trajectory is only critical
at a finite number of ‘intermediate’ time instants, and
by eliminating the unnecessary output constraints, signif-
icant control design flexibility can be exploited to embed
additional performance. A novel ILC framework termed
intermediate point ILC has been proposed to address this
problem, and is formulated in Freeman et al. (2011); Free-
man (2012); Freeman and Tan (2013); Chu et al. (2015).
Subsequent research has expanded the intermediate point
ILC framework to allow simultaneous tracking of both the
reference along the whole time horizon and the intermedi-
ate points, in which the tracking error on the latter has a
faster convergence rate than that elsewhere along the time
horizon. This ILC framework is named norm optimal ILC
with intermediate point weighting and is studied in Owens
et al. (2013).

Recent research has expanded the framework to tackle the
spatial ILC problem. Here the output is required only to
follow a path (i.e. a mapping between output variables),
with no specific timing imposed. This problem addresses
the needs of automation tasks such as welding, laser cut-

ting and additive manufacturing. The ILC framework was
generalized in Owens et al. (2015) to embed tracking of any
subset of outputs on defined sub-intervals of the time du-
ration, and at an arbitrary number of intermediate points.
Termed ‘generalized ILC’, it is equivalent to combining
intermediate point ILC with sub-interval tracking. This
paper then showed how linear constraints between outputs
could be used to enforce tracking along lines or planes
with no a priori timing constraints while also minimizing
control effort. This hence provided a formal solution to the
spatial tracking problem.

However, neither hard input nor output constraints have
been embedded in the generalized ILC framework, which
exist widely in practice and have significant impact on
industrial manufacture, e.g. to prevent system damage. In
particular, the absence of output constraints causes poten-
tial overshoot, e.g. the output goes beyond the boundary
of its acceptable space. Hence it is critical to embed both
input and output constraints in the generalized ILC frame-
work. Input constraints have been studied in classical ILC
and intermediate point ILC (Janssens et al. (2013); Mishra
et al. (2011); Bolder and Oomen (2016); Freeman et al.
(2011)), and the successive projection method proposed
in von Neumann (1950) was used to solve the constrained
ILC problem in Chu and Owens (2009, 2010); Chu et al.
(2015). ILC in high order non-linear systems with output
constraints is studied in Jin and Xu (2013). However, out
put constraints remain an open problem.

In this paper, constraints are incorporated into generalized
ILC. As well as solving the spatial ILC problem, this
provides a constrained solution to the special cases of
ILC problems embedded within it, e.g. classical ILC,
intermediate point ILC, generalized ILC and sub-interval
ILC. The successive projection method is used to design
a control algorithm which can be easily implemented in
practice and automatically provides the solution of the
general ILC problem. The proposed algorithm is then



verified experimentally on a three-axis gantry robot test
platform to establish robust performance and practical
effectiveness. This replicates industrial conditions which
unavoidably contains model uncertainty.

The paper is organized as follows: Section 2 formulates
the generalized constrained ILC problem. This ILC design
problem is then solved using successive projection in
Section 3, and a practical implementation algorithm is
proposed, whose convergence is analyzed rigorously in
Section 4. This algorithm is then experimentally verified
on a gantry robot platform in Section 5, and finally
conclusions and future work are outlined in Section 6.

2. PROBLEM FORMULATION

This section introduces the system dynamics and defines
the general tracking requirement. Then input and output
constraints are introduced, to yield a general ILC problem
formulation for constrained intermediate point and sub-
interval tracking.

2.1 System Dynamics

Consider an ℓ-input, m-output linear time-invariant sys-
tem given in state space form by S(A,B,C)

ẋk(t) = Axk(t) +Buk(t), xk(0) = x0

yk(t) = Cxk(t), t ∈ [0, T ], T < ∞ (1)

where the subscript k ∈ N denotes the trial number;
xk(t) ∈ Rn, uk(t) ∈ Rℓ and yk(t) ∈ Rm are the state,
input and output respectively; A, B and C are system
matrices of compatible dimensions; 0 < T < ∞ is the trial
length. At the end of each trial, the state is reset to initial
value x0. The system can be represented in an equivalent
operator form

yk = Guk + d, G : Lℓ
2[0, T ] → Lm

2 [0, T ]

yk, d ∈ Lm
2 [0, T ], uk ∈ Lℓ

2[0, T ] (2)

where the input and output Hilbert spaces Lℓ
2[0, T ] and

Lm
2 [0, T ] are defined with inner products and associated

induced norms

〈u, v〉R =

∫ T

0

u⊤(t)Rv(t)dt, ‖u‖
2
R = 〈u, u〉R (3)

〈x, y〉S =

∫ T

0

x⊤(t)Sy(t)dt, ‖y‖2S = 〈y, y〉S (4)

in which R ∈ Sℓ++ and S ∈ Sm++ (Sn++ denotes the set of
all n× n real positive definite matrices). The convolution
operator G and signal d take the form

(Guk)(t) =

∫ t

0

CeA(t−s)Buk(s)ds, d(t) = CeAtx0 (5)

where, without loss of generality, the constant d(t) can be
absorbed into the reference to give x0 = 0, d(t) = 0 while
performing tracking tasks and see Chu et al. (2015) for
more information.

2.2 Generalized ILC Design Objective

The classical ILC design objective is to update the input
signal, uk, such that the associated output, yk, ultimately

tracks a given reference trajectory, r, defined over the
whole time horizon, i.e.

lim
k→∞

yk = r (6)

To solve the classical ILC problem, the tracking error
ek = r − yk is employed within the following updating
law:

uk+1 = f(uk, ek). (7)

In contrast, the intermediate point ILC design objective is
to update the input signal, uk, such that the output, yk,
tracks the reference, r, at a subset of time instants, i.e.

lim
k→∞

yk(ti) = r(ti), i = 1, . . . ,M (8)

where
0 = t0 < t1 < · · · < tM = T (9)

are distinct intermediate time instants in [0, T ]. The
solution of the intermediate point ILC problem can be
also obtained using an updating law of form (7).

The generalized ILC framework proposed in Owens et al.
(2015) subsumes both by embedding intermediate point
and sub-interval tracking as follows: for any signal β ∈
Lm
2 [0, T ] in output space define the linear mapping

β 7→ βe : βe =

[

Fβ
Pβ

]

∈ H (10)

where H is the Hilbert space denoted by

H = R
f × · · · ×R

f ×L
p
2[t0, t1]× · · · ×L

p
2[tM−1, tM ] (11)

with inner product and associated induced norm

〈(ω, ν), (µ, λ)〉Q̃ =

M
∑

i=1

ω⊤
i Qiµi +

M
∑

i=1

∫ ti

ti−1

ν⊤i (t)Q̂iλi(t)dt

‖(ω, ν)‖
2
Q̃ = 〈ω, ω〉[Q] + 〈ν, ν〉[Q̂] (12)

in which

ω = [ω1, ω2, . . . , ωM ]⊤, µ = [µ1, µ2, . . . , µM ]⊤

ν = [ν1, ν2, . . . , νM ]⊤, λ = [λ1, λ2, . . . , λM ]⊤

ωi, µi ∈ R
f , νi, λi ∈ L

p
2[ti−1, ti], i = 1, . . . ,M

Q̃ = {Q1, Q2, . . . , QM , Q̂1, Q̂2, . . . , Q̂M}

and [Q], [Q̂] denotes the data sets {Q1, Q2, . . . , QM},

{Q̂1, Q̂2, . . . , Q̂M} where for i = 1, . . . ,M each Qi ∈ S
f
++

and Q̂i ∈ S
p
++. Operator F is defined as

Fβ =







F1β(t1)
...

FMβ(tM )






, Fiβ(ti) ∈ R

f , 1 6 i 6 M (13)

where Fi is an f ×m matrix of full row rank which selects
components of β that are important in the problem to be
specified at t = ti. Also, operator P is defined as

Pβ =







(Pβ)1
...

(Pβ)M






, (Pβ)i ∈ L

p
2[ti−1, ti], 1 6 i 6 M (14)

with

(Pβ)i = Piβ(t), t ∈ [ti−1, ti], 1 6 i 6 M

where Pi is an p×mmatrix of full row rank which extracts
the required linear combination of components of β.

From definitions (13) and (14), it follows that the ‘ex-
tended output’ ye comprises a subset of plant outputs



defined over sub-intervals of the task duration, together
with a subset of outputs at distinct intermediate points.
The dynamics of the extended system can therefore be
modelled by

ye = Geu = (Gu)e =

[

FGu
PGu

]

(15)

where Ge : Lℓ
2[0, T ] → H is a linear operator. In addition,

the ‘extended reference’ re is defined as

re =

[

Fr
Pr

]

∈ H (16)

which represents the requirement of intermediate point
plus sub-interval tracking.

Using the extended output (15) and reference (16), the
generalized ILC design objective is defined as

lim
k→∞

yek = re (17)

and its solution can be obtained using a generalized norm
optimal ILC updating law as follows:

uk+1 = argmin
u

‖re −Geu‖
2
Q̃ + ‖u− uk‖

2
R , k > 0. (18)

Note that the above updating law is the extension of norm
optimal ILC. This is not trivial due to the special structure
of linear operator Ge. See Owens et al. (2015) for more
implementation information.

Remark 1. By setting the values of Q, Q̂, F and P
appropriately, the generalized ILC framework collapses to
well known ILC frameworks, e.g. 1) Qi = 0, Pi = I,

classical ILC; 2) Q̂i = 0, Fi = I, intermediate point ILC.

2.3 Input and Output Constraints

In practice, input and output constraints exist widely in
control systems due to physical limitations or performance
requirements. For example, the input constraint set Ω
typically assumes one of the following forms:

Input saturation constraint

Ω = {u(t) ∈ R
ℓ : |u(t)| � M(t), t ∈ [0, T ]}, (19)

Input energy constraint

Ω = {u(t) ∈ R
ℓ :

∫ T

0

(u(t))⊤u(t)dt 6 M, t ∈ [0, T ]},

(20)
and similarly the output constraint set Φ has the forms:

Output saturation constraint

Φ = {y(t) ∈ R
m : |y(t)| � N(t), t ∈ [0, T ]}, (21)

Output polyhedral constraint

Φ = {y(t) ∈ R
m : a⊤i y(t) 6 bi, ai ∈ R

m, bi ∈ R,

i = 1, . . . ,M, t ∈ [0, T ]}. (22)

In particular, the latter constraint restricts the system
output to a specified convex region, and can be used to
solve the overshoot problem which currently limits spa-
tial ILC. Overshoot beyond the desired region may cause
damage to the device and reduce the product quality, e.g.
laser cutting. The above constraints, combined with the
generalized ILC framework form a powerful comprehen-
sive solution to constrained ILC. The generalized design

objective accordingly founds a combined updating law in
form of (7) such that

lim
k→∞

yek = re, lim
k→∞

yk ∈ Φ, uk ∈ Ω. (23)

3. AN ILC DESIGN FRAMEWORK USING
SUCCESSIVE PROJECTION

A constrained generalized ILC algorithm based on succes-
sive projection is now formulated to solve (23).

3.1 Successive Projection Interpretation

The design objective of the constrained generalized ILC is
to iteratively find an input u∗ ∈ Ω such that the extended
output ye∗ = Geu∗ tracks the extended reference re, i.e.
ye∗ = re, and the output y∗ = Gu∗ satisfies the constraint
y∗ ∈ Φ. This is equivalent to iteratively finding a point
(ye∗, y∗, u∗) in the intersection of the two following convex
sets:

S1 = {(ye, y, u) ∈ Ĥ : ye = Geu, y = Gu} (24)

S2 = {(ye, y, u) ∈ Ĥ : ye = re, u ∈ Ω, y ∈ Φ} (25)

where S1 represent the plant dynamics and S2 represents
the constrained tracking signal requirements; Ĥ is the
Hilbert space denoted by

Ĥ = R
f × · · · × R

f × L
p
2[t0, t1]× · · ·

× L
p
2[tM−1, tM ]× Lm

2 [0, T ]× Lℓ
2[0, T ] (26)

whose inner product and associated induced norm are
naturally derived from (3), (4) and (12).

The problem can be solved by the method of successive
projection. The basic successive projection scheme is il-
lustrated in Figure 1, with convergence performance and
conditions defined in the next theorem.

S1

S2

x0

x̃1

x1

x̃2

S1 ∩ S2

Fig. 1. Illustration of the successive projection algorithm.

Theorem 2. Owens and Jones (1978) Let S1 ⊂ Ĥ , S2 ⊂ Ĥ,

be two closed convex sets in a Hilbert space Ĥ with
S1 ∩S2 nonempty. Define orthogonal projection operators
PS1

: x̂ ∈ Ĥ → x ∈ S1 and PS2
: x̂ ∈ Ĥ → x ∈ S2 as

PS1
(x) = arg inf

x̂∈S1

‖x̂− x‖
2
X , (27)

PS2
(x) = arg inf

x̂∈S2

‖x̂− x‖
2
X . (28)

Then given the initial guess x0 ∈ Ĥ , the sequences {x̃k}
and {xk} generated by

x̃k+1 = PS1
(xk), xk+1 = PS2

(x̃k+1), k > 0 (29)

are uniquely defined for each x0 ∈ Ĥ , and for each ǫ > 0,
there exists an integer N such that for k > N

‖x̃k+1 − xk‖
2
X < ǫ. (30)

Furthermore, if the intersection of the two sets is empty,
i.e. S1 ∩ S2 = ∅, the distance between the two sequences



{x̃k} and {xk} converges to the minimum distance between
the two sets S1 and S2, i.e.

inf
x̃∈S1,x∈S2

‖x̃− x‖
2
X . (31)

3.2 Generalized ILC with Constraint Handling

The direct application of Theorem 2 to the constrained
generalized ILC problem (23) yields the next algorithm.

Algorithm 1. Given system dynamics S(A,B,C), input
constraint set Ω, output constraint set Φ, extended ref-
erence re, any initial input signal u0 ∈ Ω, initial value
r̃0 ∈ Φ, the input sequence {uk} defined by the updating
law

ũk+1 = uk +Gs∗(I +GsGs∗)−1esk (32)

followed by the projections

uk+1 = PΩ(ũk+1), r̃k+1 = PΦ(ỹk+1) (33)

iteratively solves the constrained generalized ILC problem,
where PΦ and PΩ are the orthogonal projection operators
to the sets Φ and Ω defined as

PΦ(y) = arg inf
z∈Φ

‖z − y‖
2
S , PΩ(u) = arg inf

z∈Ω
‖z − u‖

2
R (34)

respectively, the linear operator Gs : Lℓ
2[0, T ] → H ×

Lm
2 [0, T ] and the error esk are defined as

Gsu =

[

Geu
Gu

]

, esk =

[

re − yek
r̃k − yk

]

(35)

and Gs∗ is the Hilbert adjoint operator of Gs..

Proof. To apply Theorem 2 to constrained generalized
ILC problem (23), we first compute the necessary pro-

jections. From the definition of Hilbert space Ĥ in (26),

denote x = (ye, y, u) to be an element belonging to Ĥ . The
projection operator PS1

in Theorem 2 is hence

PS1
(x) = arg inf

x̂∈S1

‖x̂− x‖
2
X

= arg inf
(ŷe,ŷ,û)∈Ĥ

∥

∥

∥

∥

∥

(

ŷe

ŷ
û

)

−

(

ye

y
u

)
∥

∥

∥

∥

∥

2

{Q̃, S, R}

,

s.t. ŷe = Geû, ŷ = Gû

= arg inf
(ŷe,ŷ,û)∈Ĥ

‖ŷe − ye‖
2
Q̃ + ‖ŷ − y‖

2
S + ‖û− u‖

2
R ,

s.t. ŷe = Geû, ŷ = Gû.

= inf
û

‖Geû− ye‖
2
Q̃ + ‖Gû − y‖

2
S + ‖û− u‖

2
R . (36)

Optimization problem (36) yields solution û = u∗ with

u∗ = u+Gs∗(I +GsGs∗)−1

[

ye −Geu
y −Gu

]

. (37)

It follows from the definition (24) that

PS1
(x) =

(

Geu∗

Gu∗

u∗

)

(38)

where u∗ is given by (37). Performing a similar procedure
for projection operator PS2

yields

PS2
(x) = arg inf

x̂∈S2

‖x̂− x‖
2
X

= arg inf
(ŷe,ŷ,û)∈Ĥ

∥

∥

∥

∥

∥

(

ŷe

ŷ
û

)

−

(

ye

y
u

)
∥

∥

∥

∥

∥

2

{Q̃, S, R}

,

s.t. ŷe = re, û ∈ Ω, ŷ ∈ Φ

= arg inf
(ŷe,ŷ,û)∈Ĥ

‖ŷe − ye‖
2
Q̃ + ‖ŷ − y‖

2
S + ‖û− u‖

2
R ,

s.t. ŷe = re, û ∈ Ω, ŷ ∈ Φ. (39)

In optimization problem (39), the elements ŷe, ŷ and û are
independent of one another, which means this solution can
be obtained separately. Using (34) it follows that

PS2
(x) =

(

re

PΦ(y)
PΩ(u)

)

. (40)

Consider update (29) in Theorem 2, and let xk =
(rek, r̃k, uk) and x̃k = (ỹek, ỹk, ũk). At the kth trial, the
elements x̃k+1 and xk+1 are updated using projection
operators PS1

and PS2
. For x̃k+1 = PS1

(xk), it follows
from the solution (38) that

ũk+1 = uk +Gs∗(I +GsGs∗)−1

[

rek − yek
r̃k − yk

]

, (41)

ỹek+1 = Geũk+1, ỹk+1 = Gũk+1, k > 0 (42)

and for xk+1 = PS2
(x̃k+1), it follows from (40) that

rek+1 = re, r̃k+1 = PΦ(ỹk+1), uk+1 = PΩ(ũk+1), k > 0 (43)

which directly illustrates how the input uk+1 and the
reference r̃k+1 are updated by PS2

. Then, choose an initial
guess x0 = (re0, r̃0, u0) such that

re0 = re, r̃0 ∈ Φ, u0 ∈ Ω (44)

which together with (43) yields

rek = re, k > 0. (45)

Substituting (45) into (41) gives rise to (32), which updates
the input ũk+1 using PS1

. �

The update (32) can be alternatively implemented in
a causal feedback plus feedforward solution to further
embed robust performance in practice by exploiting the
special properties of the linear operator Ge and its adjoint
operatorGe∗. The implementation details are omitted here
for brevity.

Remark 3. Input constraint set Ω is usually a pointwise
constraint in practice, so the solution of the projection
operator PΩ is straightforward. Also the solution of the
projection operator PΦ is guaranteed to be unique, other-
wise the convergence properties may not hold.

4. CONVERGENCE PROPERTIES

When perfect tracking is possible for the generalized con-
strained ILC problem (23), i.e. S1 ∩ S2 6= ∅, Algorithm 1
iteratively solves the constrained generalized ILC problem
(23) and has desirable convergence properties in practice
as shown in the following theorem.

Theorem 4. If perfect tracking is possible, Algorithm 1
yields a sequence {(yek, yk, uk)} such that

lim
k→∞

yek = re (46)



which guarantees perfect tracking. Furthermore, the input
uk at each trial satisfies

uk ∈ Ω. (47)

and the limit of the output yk (if it exists) satisfies

lim
k→∞

yk ∈ Φ (48)

Proof. As both S1 and S2 are closed convex sets in the
Hilbert space Ĥ and S1∩S2 6= ∅, it follows from equation
(30) in Theorem 2 that for a sufficiently small ǫ > 0, there
exists an integer N such that for k > N
∥

∥re − ỹek+1

∥

∥

2

Q̃
+ ‖r̃k − ỹk+1‖

2
S + ‖uk − ũk+1‖

2
R < ǫ (49)

which is equivalent to

yek = re, yk = r̃k, uk = ũk+1, ∀k > N. (50)

As the sequence {yek} converges to a constant value re, the
limit (46) holds. In addition, the input uk and reference
r̃k are obtained from the projection operators PΩ and
PΦ respectively. Therefore, the input uk at each trial
belongs to the input constraint set and if the sequence {yk}
converges we know that its limit belongs to the output
constraint set Φ due to yk = r̃k, which gives rise to (47)
and (48). �

On the other hand, if the intersection of the sets S1 and
S2 is empty, perfect tracking is impossible. However, the
algorithm still attempts to meet the constrained tracking
requirement with the given system dynamics. The next
theorem illustrate this property.

Theorem 5. If perfect tracking is not possible, the distance
between the two sequences {(ỹek, ỹk, ũk)} and {(rek, r̃k, uk)}
yielded by Algorithm 1 converges to the minimum distance
between S1 and S2, i.e.

inf
u

‖re −Geu‖
2
Q̃ + ‖r̃ −Gu‖

2
S + ‖ũ− u‖

2
R , r̃ ∈ Φ, ũ ∈ Ω.

(51)

Furthermore, the input uk at each trial satisfies

uk ∈ Ω. (52)

Proof. From Theorem 2, as both S1 and S2 are closed
convex sets in Hilbert space Ĥ and S1 ∩S2 = ∅, it follows
that the distance between the two sequences {(ỹek, ỹk, ũk)}
and {(rek, rk, uk)} converges to the minimum distance
between two sets. Similar to the previous theorem, the
condition (52) holds for the input uk at each trial as it is
obtained from the projection operator PΩ. �

Remark 6. In practice, an appropriate extended reference
re should be designed to avoid an impossible tracking task,
i.e. S1 ∩ S2 = ∅. More information on the application of
successive projections is omitted here for brevity.

5. EXPERIMENTAL VERIFICATION ON A GANTRY
ROBOT

In this section, the proposed algorithm is validated exper-
imentally on a three-axis gantry robot test platform to
demonstrate its effectiveness.

5.1 Test Platform Specification

The multi-axis gantry robot shown in Figure 2 is employed
as test platform. The control design objective is to use both

Fig. 2. Multi-axis Gantry Robot Test Platform.

the x-axis and z-axis (m = 2) to perform a generalized ILC
tracking task during the given tracking time T = 2s. The
x-axis and z-axis have been modelled based on frequency
response tests in Ratcliffe (2005) with transfer functions

Gx(s) =
1.67× 10−5(s+ 500.2)(s+ 4.9× 105)...

s(s2 + 24s+ 6401)...

(s2 + 10.58s+ 1.145× 104)(s2 + 21.98s+ 2.9× 104)

(s2 + 21.38s+ 2.017× 104)(s2 + 139.5s+ 2.162× 105)

and Gz(s) =
15.8869(s+ 850.3)

s(s2 + 707.6s+ 3.377× 105)
(53)

and a proportional feedback controller with gain 300 is
added on the z-axis. The saturation constraint for the
input voltage has form (19) with M(t) = [3, 2]⊤. A special
tracking task is selected, with a piecewise linear path
composed of five line segments (M = 5) defined as

r(t) = ri−1 +

(

t− ti−1

ti − ti−1

)

(ri − ri−1), t ∈ [ti−1, ti],

i = 1, . . . ,M (54)

where ri are the vertices in Cartesian space defined by

r1 =

[

0.00345
0.00476

]

, r2 =

[

0.00905
0.00294

]

, r3 =

[

0.00905
−0.00294

]

,

r4 =

[

0.00345
−0.00476

]

, r5 =

[

0
0

]

. (55)

as shown in later figures. The spatial problem is solved
by selecting the projection matrices Fi and Pi in (13) and
(14) to be

Fi = I, Pi = 100 · [(r2i − r2i−1), − (r1i − r1i−1)]. (56)

To avoid overshoot problem, the output constraint is
defined as

Φ = {y ∈ Lm
2 [0, T ] : a⊤i ri−1 6 a⊤i y(t) 6 a⊤i ri,

t ∈ [ti−1, ti], i = 1, . . . ,M}, ai = ri − ri−1. (57)

For implementational simplicity, the weighting matrices
Qi, Q̂i, S and R are chosen to be diagonal matrices.
The above parameters define (15) such that objective (23)
enables spatial ILC tracking using minimum control effort.

5.2 Performance of the Proposed Algorithm

Firstly, the generalized ILC update is applied to this task
on the gantry robot for 100 trials without constraints
to illustrate the limitation of existing method. This cor-
responds to Algorithm 1 with Ω = Lℓ

2[0, T ] and Φ =
Lm
2 [0, T ] so that PΩ(ũk+1) = ũk+1 and PΦ(ỹk) = ỹk. The

final converged hybrid output of the two axes is plotted in
Figure 3, and the red dots are the intermediate points, i.e.



ri, i = 1, . . . ,M . Although the converged hybrid output
performs perfect tracking along the piecewise linear refer-
ence path, it is clear from the figure that the overshoot
problem takes place and hence the unconstrained general-
ized ILC objective cannot solve this problem. In the gantry
robot test platform, the overshoot problem may lead to the
collision between the end-effector and the frame, which
definitely cause damage to the machine.
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Fig. 3. Final Converged Hybrid Output Trajectory using
Generalized ILC without Constraints.

We next apply Algorithm 1 to handle the system con-
straints. In the experiment, we choose Q̂i = 100, 000I,
Qi = 500, 000I, S = 10, 000I and R = I, and a total
of 100 update trials are performed. The corresponding
output paths over different trials are shown in Figure 4
with red dots denoting the intermediate point positions, ri.
Compared to the overshoot results in Figure 3, it is clear
from Figure 4 that Algorithm 1 not only achieves the gen-
eralized tracking requirement, but keeps the hybrid output
trajectory within the constraint set Φ defined in (57), i.e.
this algorithm solves the overshoot problem. Furthermore,
the input voltages of the two axes over different trials are
plotted in Figure 5, and it is clear that both converge and
stay within the imposed bounds.
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Fig. 4. Hybrid Output Trajectories at Trial 1, 5, 10 and
100 with Output Constraints.

We further apply the proposed algorithm with different
parameters to compare convergence properties. We keep
Q̂i = 100, 000I, S = 10, 000I and R = I constant,
and Qi is selected to take the values 200, 000I, 300, 000I,
500, 000I, 800, 000I, and 1, 200, 000I. A total of 100 up-
date trials are performed for each value of Qi, and the
corresponding mean square error, esk, at each trial is plot-
ted in Figure 6. From this figure, it is obvious that the
convergence rate increases as we increase the weighting
value Qi. It is noted that all plots converge to below 0.01

Time, t (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2In

pu
t V

ol
ta

ge
, u

x(V
)

-1

-0.5

0

0.5

1
ux,1

ux,5

ux,10

ux,100

Time, t (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2In

pu
t V

ol
ta

ge
, u

z(V
)

-2

0

2

4
uz,1

uz,5

uz,10

uz,100

Fig. 5. Input Trajectories at Trial 1, 5, 10 and 100 with
Output Constraints.

mean square error, which verifies accurate tracking in prac-
tice despite of model uncertainty and random disturbance.
It is noted that there are no particular concerns about
the fluctuation in the figure as the mean square errors all
converge and satisfy the practical tracking requirement.
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Fig. 6. Mean Square Tracking Error over 100 Trials with
Output Constraints.

Experiments with other combinations of Qi, Q̂i, S and
R yield similar convergence performance to the results in
Figure 6. For brevity, these results are omitted.

6. CONCLUSION

In this paper, a novel ILC framework is developed to
solve the generalized (intermediate point and sub-interval
tracking) ILC problems with input and output constraints.
This is the first algorithm capable of handling these form of
constraints, and in so doing solves the output constrained
classical ILC problem. It hence has substantial novelty.
The algorithm is verified on a gantry robot platform by
tracking a given piecewise linear reference with stipulated
output constraints, and is founded to provide the first
general solution for spatial ILC.

Although the experimental results reveal that the algo-
rithm has a high degree of robustness against model un-
certainty and random disturbance, a rigorous analysis will
be performed on this algorithm. Other alternative spatial
path tracking tasks besides the piecewise linear case will
be applied. These constitute the focus of future research
and will be reported separately.
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