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Abstract

This paper develops a fault-tolerant iterative learning control law for a class of linear time-delay dif-
ferential batch processes with actuator faults using the repetitive process setting. Once the dynamics
are expressed in this setting, stability analysis and control law design makes use of the generalized
Kalman-Yakubovich-Popov (KYP) lemma in the form of the corresponding linear matrix inequalities
(LMIs). In particular, sufficient conditions for the existence of a fault-tolerant control law are devel-
oped together with design algorithms for the associated matrices. Under the action of this control law
the ILC dynamics have a monotonicity property in terms of an error sequence formed from the dif-
ference between the supplied reference trajectory and the outputs produced. An extension to robust
control against structured time-varying uncertainties is also developed. Finally, a simulation based
case study on the model of a two-stage chemical reactor with delayed recycle is given to demonstrate
the feasibility and effectiveness of the new designs.
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1. Introduction1

Iterative learning control (ILC) is a method of iteratively updating the control input to a system2

that repeats the same task over a finite duration. Each execution is known as a trial, or pass, and3

the sequence of operations is that a trial is completed, where the finite duration is known as the trial4

length, the system resets to the starting position and then the next trial can begin, either immediately5

after resetting is complete or after a further period of time has elapsed. Since the first work, widely6

credited to [1], ILC has become an established area of control systems research, where the survey7

papers [2, 3] are one source of the literature up to their years of publication.8

In most designs, a reference trajectory is specified and the current trial error is the difference9

between this signal and the output. The core aim of ILC is to force the sequence formed by the10
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errors to converge to zero or to within an acceptable tolerance as measured by the norm on the11

underlying function space. Moreover, this convergence should be monotonic in the trial number.12

In application, an ILC law most often constructs the current trial input as the algebraic sum of13

the input used on the previous trial and a correction term. The correction term can be designed14

using data from the complete previous trials or a finite number thereof. A particular feature is the15

possibility to use non-causal temporal information provided it has been generated on a previous trial.16

Since this first work, ILC research has found application in many ares, such as robotic systems,17

e.g., [4, 5], motion systems, e.g., [6], automotive systems, e.g., [7] and batch processes, e.g., [8], where18

for this last area the survey paper [9] is a starting point for numerous applications areas in process19

control. A particular feature of many applications is experimental testing. There has also been an20

application in robotic-assisted stroke rehabilitation, e.g., [10, 11], with supporting clinical trials. In21

this last application, the ILC law is used to control the assistive stimulation applied to the relevant22

muscles in the affected limb as the patient makes repeated attempts at completing a specified finite23

duration task, e.g., reaching out with the affected arm to an object across a table top. Once an24

attempt is complete the arm is reset to the starting location and in this time plus a rest period,25

the control signal for the next attempt can be computed using data collected during the previous26

attempt. If the patient is improving then as the trial number increases the patients voluntary effort27

should increase and the applied stimulation decrease. Exactly this feature was detected in the clinical28

trials.29

A common approach to ILC design for discrete dynamics is by a form of lifting. Consider, for30

simplicity, the single-input single-output (SISO) case where, since the trial length is finite, the input31

and output on any trial can be represented by super-vectors formed by assembling the values at the32

sample instants into column vectors. The result is that the ILC dynamics can be represented by33

a linear matrix difference equation in the error dynamics. Hence tools from discrete linear systems34

theory can be used to analyze trial-to-trial error convergence and control law design.35

Given the finite trial length, trial-to-trial error convergence does not require that the system36

is stable, i.e., all eigenvalues of the state matrix have modulus strictly less than unity. Of course,37

there will be consequences for the transient dynamics along the trials in such a case. One solution38

is to design a feedback control law to stabilize the dynamics and then apply the ILC design to the39

controlled dynamics. An alternative is to use a 2D systems formulation, i.e., systems that propagate40

information in two independent directions, which in ILC are from trial-to-trial and along the trial41

respectively. Early work on this approach includes [12]. Repetitive processes are a particular subclass42

of 2D systems have their origins in modeling physical examples [13] for control purposes. These43

processes are characterized by a series of sweeps, or passes, through dynamics defined over a finite44

duration. On each pass an output, termed the pass profile, is produced that acts as a forcing function45

on and hence contributes to the dynamics produced on the next pass.46

The repetitive process setting for ILC design has progressed through to experimental verifica-47

tion [4]. Design in this setting is a one step process where the control law includes stabilization48

of the state dynamics on each trial. Also the design methods extend naturally to robust control49

design where, unlike the lifted setting, matrices formed as the product of nominal state-space model50

matrices and those from the uncertainty description are always excluded. Moreover, ILC design in51

this setting transfers directly to differential dynamics, i.e., to cases where design by emulation is the52

only or preferred setting for analysis and design.53

In many industrial processes, time-delays often occur, e.g., in the transmission of material or54

information between different parts of a system, which, if not compensated, can cause serious de-55

terioration of the stability and performance. Chemical processes are a common industrial source of56

time-delay systems and there has been research on ILC design for such systems by treating them as57

differential batch processes over a finite time on each trial. For example, a robust 2D ILC law com-58
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bined with the output feedback has been applied to batch processes with state delay and time-varying59

uncertainties [14].60

Industrial control systems usually operate under challenging conditions, which expose the system61

to faults that, in turn, can cause loss, or serious degradation, of stability and/or performance. More-62

over, ILC schemes could be especially sensitive to faults due to the repeated nature of the demand on63

the control actuator. For such cases, a fault tolerant ILC design is required. Of course, this problem64

arises in the non-ILC case, see, e.g., [15], where necessary and sufficient conditions for stabilization65

while retaining a desirable level of the closed-loop performance in the presence of actuator/sensor66

faults or failures, and also plant-model mismatches, are given.67

The design of ILC laws for monotonic trial-to-trial error convergence together with controlled68

dynamics along the trials, in the SISO case for simplicity, requires frequency attenuation over the69

complete spectrum. This could be very difficult to enforce in some cases and also in many practical70

examples, systems properties need only be enforced over finite frequency ranges. Moreover, in other71

examples it will be required to impose different specifications over finite frequency ranges. One way72

of solving these problems is to use the generalized Kalman-Yakubovich-Popov (KYP) lemma, see,73

e.g., [16] for discrete systems with experimental verification in the absence of time delays and no74

compensation for possible faults. The corresponding results for differential linear systems are given75

in [17].76

This paper develops new results for ILC design applied to differential linear systems with time-77

delays with the following novel contributions:78

• the finite frequency range ILC law design is extended to the fault tolerant control problem for79

time-delay differential batch processes with actuator faults;80

• monotonic trial-to-trial error convergence conditions for the controlled ILC dynamics are de-81

rived;82

• the extension to robust control against structured uncertainty.83

This paper is organized as follows: Section 2 describes a class of linear differential batch processes84

in the state-space form with actuator faults and a time-delay in the state. Also the ILC design85

problem is formulated in an equivalent differential linear repetitive process setting. In Section 3,86

the corresponding fault tolerant ILC law is designed and sufficient conditions for its existence are87

developed in terms of generalized KYP lemma and LMIs constraints, which ensure that the nominal88

and uncertain controlled dynamics are monotonically convergent and stable over a finite frequency89

range. Section 4 illustrates the feasibility and effectiveness of the new design by a simulation-based90

application to a two-stage chemical reactor with delayed recycle streams. Finally, the main results91

are summarized in Section 5 together with some possible areas for further research.92

Throughout this paper, the null and identity matrices with the required dimensions are denoted93

by 0 and I, respectively, and the notation X ≺ Y (respectively X � Y ) is used to represent the94

negative definite (respectively, positive definite) matrix X − Y. The notation (?) denotes transposed95

elements in a symmetric matrix and ρ(·) denotes the spectral radius of its matrix argument, i.e.,96

if λi, 1 ≤ i ≤ q, denote the eigenvalues of a q × q matrix, say H, ρ(H) = max
1≤i≤q

|λi|. The symbol97

diag{X1, X2, · · · , Xn} denotes a block diagonal matrix with diagonal blocks X1, X2, · · · , Xn and98

sym(Λ) = Λ + ΛT , ⊗ denotes the Kronecker matrix product, the superscript ∗ denotes the complex99

conjugate transpose of a matrix and R+ denotes the positive real numbers.100

The following lemmas are used in the proofs of the main results.101

Lemma 1. [18] Given matrices X, Y , Φ = ΦT and ∆(t) of compatible dimensions,102

Φ +X∆(t)Y + Y T∆T (t)XT ≺ 0, (1)
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for all ∆(t) satisfying ∆T (t)∆(t) � I if and only if there exists an ε > 0 such that103

Φ + εXXT + ε−1Y TY ≺ 0. (2)

Lemma 2. [20] Given a symmetric matrix Υ ∈ Rp×p and two matrices Λ, Σ of column dimension104

p, there exists a matrix W such that the LMI105

Υ + sym
{

ΛTWΣ
}
≺ 0,

holds if and only if the following two projection inequalities with respect to W are satisfied:106

Λ⊥
T

ΥΛ⊥ ≺ 0, Σ⊥
T

ΥΣ⊥ ≺ 0, (3)

where Λ⊥ and Σ⊥ are arbitrary matrices whose columns form a basis of the null spaces of Λ and Σ107

respectively.108

2. Problem formulation109

2.1. System description110

Consider a class of differential linear time-invariant batch processes with a single delay and111

dynamics described in the ILC setting by the following state-space model over 0≤ t≤α<∞, k≥0112

ẋk(t) =Axk(t) +Adxk(t− d) +Buk(t),

yk(t) =Cxk(t),
(4)

where the subscript k denotes the trial number, α is the fixed and finite trial length and xk(t) ∈ Rn,113

uk(t) ∈ Rm and yk(t) ∈ Rp are, respectively, the system state, input and output vectors respectively;114

d is the unknown time-delay constant satisfying 0 < d ≤ d̄, where d̄ is a known upper bound. No115

loss of generality arises from assuming xk(t) = x0,k, t ∈ [−d, 0] on each trial.116

To include actuator faults, write the control input vector as117

uk(t) =
[
u1,k(t) · · · ui,k(t) · · · um,k(t)

]T
,

and let118

uFk (t) =
[
uF1,k(t) · · · uFi,k(t) · · · uFm,k(t)

]T
,

represent the failed actuator with the following fault model, see, e.g. [19],119

uFi,k(t) = Γiui,k(t), i = 1, 2, · · · ,m,

where120

0 ≤ Γi ≤ Γi ≤ Γi, i = 1, 2, · · · ,m.

The parameters Γi(Γi ≤ 1), Γi(Γi ≥ 1) in this fault model are assumed to be known, i.e., the unknown121

scalars Γi are assumed to vary within a known range. In particular, Γi = 1, corresponds to the fault-122

free case uFi = ui, Γi = 0 corresponds to a complete failure, 0 < Γi ≤ Γi < 1 and 1 < Γi ≤ Γi123

correspond to partial failures, e.g., partial degradation of an actuator or the abnormal case when the124

faulty actuator output is larger than the normal controller output. Introduce125

Γ =diag
{

Γ1,Γ2, · · · ,Γm
}
,

Γ =diag {Γ1,Γ2, · · · ,Γm} ,
Γ =diag {Γ1,Γ2, · · · ,Γm} ,

(5)
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and126

q =diag {q1, q2, · · · , qm} ,
q0 =diag {q10, q20, · · · , qm0} ,

qi =
(Γi + Γi)

2
, qi0 =

Γi − Γi
Γi + Γi

.

(6)

Introducing the notation127

Γ0 =diag {Γ01,Γ02, · · · ,Γ0m} ,
|Γ0| =diag {|Γ01| , |Γ02| , · · · , |Γ0m|} ,
Γ0i =(Γi − qi)/qi,

and using (5) and (6), Γ can be written as128

Γ = (I + Γ0)q, (7)

where129

|Γ0| � q0 � I. (8)

In this paper it is assumed that the upper and lower bounds on the fault range of each actuator130

fault are known, i.e., Γi and Γi. Hence an additional parameters qi, as the entries in the vector q131

in (6), can be used to scale the original range of the unknown scalars Γi such that Γ in (5) can132

be treated as a structured uncertainty of form (7) with known and unknown vectors q0 and Γ0133

respectively. This model (7) for faults is very useful since the unknown vector Γ0 can be eliminated134

by application of Lemma 1 and hence it is possible to cover a wide range of vectors Γ and obtain135

less conservative conditions than previously reported designs in this area. In comparison to the well136

known polytopic form (7), the number of LMIs required will be lower since in the latter each vertex137

must be considered. Hence for analysis and design, (4) with the actuator faults model included is138

replaced by139

ẋk(t) =Axk(t) +Adxk(t− d) +BΓuk(t),

yk(t) =Cxk(t).
(9)

The design of the ILC law can now proceed in one of two general settings. The first is to sample140

the dynamics and then apply the lifting approach, i.e., since the trial length is finite a column vector141

of, e.g., the input, can be constructed where, in the SISO case for ease of presentation, the entries142

are the values at the sampling instants along the trial. Repeating this step for the output enables the143

ILC trial-to-trial error dynamics to be described in terms of a linear difference equation in the trial144

number k. The basic ILC design problem then is to ensure that trial-to-trial error convergence occurs145

to zero or ‘sufficiently close’ as measured by an appropriate norm and standard systems theory can146

be used.147

Given that the trial length is finite, trial-to-trial error convergence can be enforced for systems148

that are unstable, which, of course, produces unacceptable dynamics along the trials since the trial149

length is finite and the along trial dynamics are bounded but not uniformly. If this behavior is150

unacceptable the lifted model based design requires that a stabilizing control law is first designed151

and implemented and then ILC applied to the resulting dynamics. This is a two-step design procedure152

for which an alternative is to use a 2D systems setting where one direction of information is from153

trial-to-trial and the other along the trial.154

Repetitive processes are a particular class of 2D systems where a series of sweeps are made through155

a set of dynamics defined over a finite duration. Once each sweep is completed, the dynamics reset to156
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the starting location and the next sweep is made. On any sweep, the output on the previous sweep157

explicitly contributes to the current sweep output and hence the link to ILC dynamics.158

Repetitive processes are a natural setting for ILC design and previous results have been ex-159

perimentally validated. This setting is a one-step design and can be extended to robust control.160

Moreover, it extends naturally to cases where design in the differential domain and then sampling161

for implementation is the preferred or only option. Next the representation of differential repetitive162

processes and the associated stability theory are given as background to the new ILC design in this163

paper.164

2.2. ILC as a repetitive process165

The state-space model of a differential linear repetitive process [13] over the finite pass length α166

is167

ẋk+1(t) =Axk+1(t) + Buk+1(t) + B0yk(t),
yk+1(t) =Cxk+1(t) +Duk+1(t) +D0yk(t),

(10)

where, on pass k, xk(t) ∈ Rn, uk(t) ∈ Rm and yk(t) ∈ Rp are respectively, the process state, input168

and pass profile (output) vectors. To complete the process description it is necessary to specify the169

boundary conditions, i.e., the pass state initial vector sequence xk(0), k ≥ 1, and the initial pass170

profile y0(t). In this paper, the initial state vector on each pass is taken as the zero vector and the171

initial pass profile vector entries are assumed to be specified over the pass length as known functions172

of t.173

In (10), B0yk(t) and D0yk(t) represent the contributions of the previous pass profile vector to the174

current pass state and pass profile vectors respectively. This inter-pass interaction is the source of the175

unique control problem for these processes where the sequence of pass profiles {yk}k≥1 can contain176

oscillations that increase in amplitude from pass-to-pass, i.e., with increasing k. Such behavior cannot177

be regulated by the application of standard linear systems control action and this has motivated the178

development of a stability theory and control law design algorithms, which is an ongoing area of179

research.180

The stability theory [13] for these processes splits into the properties of asymptotic stability and181

stability along the pass respectively. Asymptotic stability guarantees a bounded sequence of pass182

profiles (i.e. output signals) for a bounded initial pass profile over the finite and fixed pass length183

α, whereas stability along the pass is stronger since it requires this property uniformly, i.e., for all184

possible values of the pass length. Asymptotic stability is a necessary condition for stability along185

the pass. To conform with the ILC literature, the terms pass is replaced by trial in the remainder of186

this paper.187

Stability along the trial of processes described by (10) is characterized by the following result.188

Lemma 3. [13] A differential linear repetitive process described by (10) is stable along the trial if189

and only if190

i) ρ(D0) < 1,191

ii) all eigenvalues of the matrix A have strictly negative real parts, and,192

iii) all eigenvalues of G(jω) = C(jωI − A)−1B0+D0, have modulus strictly less than unity ∀ real193

frequencies ω.194

The first condition in the above Lemma is the necessary and sufficient condition for asymptotic195

stability. This condition is independent of the along the trial dynamics and holds even if A has196

eigenvalues with real parts greater than or equal to zero. Even if this matrix is required to be stable197
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in the standard linear systems sense then this does not guarantee stability along the trial, a counter-198

example to this claim is given in [13]. To achieve stability along the trial also requires condition iii)199

and this condition requires that each frequency component of the initial trial profile is attenuated200

from trial-to-trial.201

To formulate the ILC design problem in the repetitive process setting, consider a system de-202

scribed (9) and a ILC law that constructs the current trial input as that used on the previous trial203

plus a corrective term, i.e., a law of the form204

uk(t) = uk−1(t) + rk(t), (11)

where rk(t) is the correction term computed using an algorithm that makes use of previous trial data.205

Given the reference signal yd(t), the error on trial k is206

ek(t) = yd(t)− yk(t), (12)

and introduce for analysis purposes only the vector207

ηk(t) =

∫ t

0
[xk(τ)− xk−1(τ)]dτ. (13)

Without loss of generality, it is assumed that yd(0) = yk(0) = Cxk(0) and, due to the initial conditions208

assumed for (4), ηk(0) = 0. Hence209

η̇k(t) =

∫ t

0
[ẋk(τ)− ẋk−1(τ)] dτ = Aηk(t) +Adηk(t− d) +BΓ

∫ t

0
rk(τ)dτ, (14)

and210

ek(t)− ek−1(t) = −C [xk(t)− xk−1(t)] = −CAηk(t)− CAdηk(t− d)− CBΓ

∫ t

0
rk(τ)dτ. (15)

Suppose that the modification term in the ILC law (11) takes the form211

rk(t) = K1η̇k(t) +K2ėk−1(t), (16)

where K1 and K2 are the control law matrices to be determined. This control law correction term is212

the sum of state feedback control based on ηk(t) plus a feedforward term based on the previous trial213

error (ek−1). Moreover, by (11)-(16) the controlled ILC dynamics can be written as a differential214

repetitive process with time-delays as215

η̇k(t) =Aηk(t) +Adηk(t− d) + B0ek−1(t),
ek(t) =Cηk(t) + Cdηk(t− d) +D0ek−1(t),

(17)

where216

A =A+BΓK1, C = −C (A+BΓK1) = −CA,
Cd =− CAd, B0 = BΓK2, D0 = I − CBΓK2.

The repetitive process stability theory [13] applies to this case and gives, on applying Lemma 3, the217

following necessary and sufficient conditions for stability along the trial of the controlled dynamics.218

Lemma 4. A differential linear repetitive process described by (17) is stable along the trial ∀ d ∈ [0, d]219

if and only if220
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i) ρ(D0) < 1,221

ii) all eigenvalues of the matrix (A+ e−jωdAd) have strictly negative real parts ∀ω ∈ R+ ∪∞ and222

d ∈ [0, d],223

iii) all eigenvalues of G(jω) =
(
C+e−jωdCd

)(
jωI−A−e−jωdAd

)−1 B0+D0 have modulus strictly224

less than unity ∀ω ∈ R+ ∪∞ and d ∈ [0, d].225

The last condition in this result requires frequency attenuation of the previous trial error over the226

complete spectrum for any delay d ∈ [0, d], a point returned to later in this paper.227

Remark 1. It is important to stress that the repetitive process dynamics, i.e., where the previous228

trial output affects the current trial output arises only from the application of the ILC law. Hence the229

analysis in this paper is not relevant to other batch processes where such a property is not present.230

3. Design of a fault tolerant controller over a finite frequency domain231

Applying the Laplace transform to (17) (see [13] and the cited references on how detrimental232

effects due to the finite trial length can be avoided) gives233

Ek+1(s) = G(s)Ek(s), (18)

with234

G(jω) = G(s)|s=jω =
(
C+e−jωdCd

)(
jωI−A−e−jωdAd

)−1
B0+D0. (19)

Hence the tracking error converges as k →∞ if and only if235

ρ (G(jω)) < 1, ∀ω ∈ R+ ∪∞. (20)

The last inequality can be replaced by the requirement that there exists a Hermitian matrix P(jω) � 0236

such that237

G(jω)∗P(jω)G(jω)− P(jω) ≺ 0, ∀ω ∈ R+ ∪∞,

but the dependence of P(jω) on ω is unknown. One possible approach to solve this problem is to238

use the same constant matrix ∀ω ∈ R+ ∪∞.239

Lemma 5. Consider a differential repetitive process described by (17) with corresponding transfer-240

function matrix (19). Then (20) holds if there exists P � 0 such that241 [
G (jω)
I

]∗ [ P 0
0 −P

] [
G (jω)
I

]
≺ 0, ∀ω ∈ R+ ∪∞. (21)

Proof. Omitted since the result follows from direct application of Lyapunov stability theory for242

standard linear systems.243

Remark 2. As shown in [21] the use of real symmetric matrix P instead of a Hermitian matrix244

introduces no additional conservatism and hence the computational load is reduced.245

It is known, see, e.g. [22], that some ILC laws exhibit poor transients during the convergence process246

even if (20) is satisfied. In particular, the tracking error may grow over the initial trials before247

converging as k → ∞. To avoid this problem, a stronger convergence criteria is required and, in248

particular, monotonic trial-to-trial error convergence holds if249

σ(G(jω)) < 1, ω ∈ R+ ∪∞, (22)
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where σ(·) denotes the maximum singular value of its matrix argument. In common with much of250

the ILC literature (22) is used from this point onwards. Moreover, since251

σ(G(jω)) < 1 ⇔ ‖G(jω)‖∞ < 1, ω ∈ R+ ∪∞,

then (22) implies that
‖ek+1(t)‖2 ≤ ‖G(s)‖∞ ‖ek(t)‖2 ,

where || · ||2 denotes the L2 norm. Hence, it is obvious that

‖ek(t)‖2 ≤ ‖G(s)‖k∞ ‖e0(t)‖2 ,

and therefore if252

‖G(jω)‖∞ < 1, ω ∈ R+ ∪∞, (23)

then monotonic trial-to-trial error convergence occurs in L2. Additionally, (22) holds provided (21)253

is feasible for P = I.254

In applications, it may be required to impose different frequency constraints over finite frequency255

ranges, e.g., over a low range of frequencies, depending on the application considered. Moreover,256

at least finite frequency ranges for any disturbances present can often be obtained for physical257

examples. The stability theory of Lemma 4, or equivalents, imposes the same condition over the258

complete frequency spectrum and this may be conservative in some cases. An alternative whereby259

different specifications can be specified over different frequency ranges is possible as developed in the260

remainder of this paper using the generalized KYP lemma.261

One practically relevant case would be where it is only required to impose stability along the trial262

over a finite frequency range, i.e., ‖G(jω)‖∞ < 1, ∀ω ∈ Ω, where Ω denotes the finite frequency range263

of interest. Hence each design specification should be given not for the entire frequency range but for264

a certain frequency range of relevance. Thus a set of specifications would generally consist of different265

requirements in various frequency ranges. One way of dealing with this case is to modify (23) to266

‖G(jω)‖∞ < 1, ∀ω ∈ Ω, where Ω is a finite frequency range of interest. In general, it could be267

required to impose different specifications over a low frequency range specified by |ω| ≤ $l, a middle268

frequency range specified by $1 ≤ ω ≤ $2 and a high frequency range specified by |ω| ≥ $h, where269

the frequency limits are application dependent. See [16] for results with experimental verification for270

discrete systems without time delays and fault free.271

The analysis in the remainder of this paper makes use of the following result, which is Theorem272

1 in [23] for the single delay case.273

Lemma 6. [23] For a given real symmetric matrix Π of compatible dimensions and any delay d274

satisfying 0 < d ≤ d̄, a transfer-function matrix G(jω) defined by (19) satisfies the condition of (20)275

over a specified frequency range Ω if there exist P � 0, Z � 0, Q � 0 and X � 0, such that276 [
A Ad B0
I 0 0

]T (
Φ⊗ P + Ψ⊗Q+ Ψ0 ⊗ d̄Z

) [ A Ad B0
I 0 0

]

+

[
C Cd D0

0 0 I

]T
Π

[
C Cd D0

0 0 I

]
+

 X − d̄−1Z d̄−1Z 0
d̄−1Z −X − d̄−1Z 0

0 0 0

 ≺ 0.

(24)

Moreover, the following frequency domain inequality also holds277 [
G (jω)
I

]∗
Π

[
G (jω)
I

]
≺ 0, ∀ω ∈ Ω, (25)
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where278

Φ =

[
0 I
I 0

]
,Ψ0 =

[
I 0
0 0

]
,

and Ω is specified by the following choices for Ψ279

Ψ :=



[
−1 0
0 $2

l

]
, if |ω| ≤ $l (low frequency range)[

−1 j$1+$2
2

−j$1+$2
2 −$1$2

]
, if $1 ≤ ω ≤ $2 (middle frequency range)[

1 0
0 −$2

h

]
, if |ω| ≥ $h (high frequency range)

Remark 3. This last result requires P � 0 and X � 0 to guarantee that all eigenvalues of the280

matrix (A+ e−jωdAd) have strictly negative real parts [23].281

The inequality conditions of Lemma 6 are not convex and to obtain LMI conditions on which282

to base control law design further development (not given in [23]) is required, based on decoupling283

the repetitive process state-space model matrices using matrix variables arising from the generalized284

KYP Lemma and the projection lemma (Lemma 2). To proceed set Π = diag {I,−I} in (24) and285

then (25) implies that (22) is satisfied for the different frequency ranges defined by the matrix Ψ.286

Next, introduce287

Υ =


I 0
0 I
0 0
0 0

Ξ


I 0
0 I
0 0
0 0


T

+


0 0
CT 0
CTd 0
DT0 I

Π


0 0
CT 0
CTd 0
DT0 I


T

+


0 0 0 0
0 X−d̄−1Z d̄−1Z 0
0 d̄−1Z −X−d̄−1Z 0
0 0 0 0

 , (26)

where Ξ =
(
Φ⊗ P + Ψ⊗Q+ Ψ0 ⊗ d̄Z

)
is the only matrix whose block entries depend on chosen288

frequency range, i.e., low, middle or high. Also the matrix Ξ can be partitioned as289

Ξ = Φ⊗ P + Ψ⊗Q+ Ψ0 ⊗ d̄Z =

[
Ξ1 Ξ2

(?) Ξ3

]
, (27)

where290

• for the low frequency range291

Ξ =

[
Ξ1 Ξ2

(?) Ξ3

]
=

[
−Q+ d̄Z P

(?) $2
lQ

]
, (28)

• for the middle frequency range292

Ξ =

[
Ξ1 Ξ2

(?) Ξ3

]
=

[
−Q+ d̄Z P + j$1+$2

2 Q

(?) −$1$2Q

]
, (29)

• and for the high frequency range293

Ξ =

[
Ξ1 Ξ2

(?) Ξ3

]
=

[
Q+ d̄Z P

(?) −$2
hQ

]
, (30)
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and (24) can be rewritten as294 
A Ad B0
I 0 0
0 I 0
0 0 I


T

Υ


A Ad B0
I 0 0
0 I 0
0 0 I

 ≺ 0.

This last inequality is of the form of the first of those in (3) where295

Λ⊥ =


A Ad B0
I 0 0
0 I 0
0 0 I

 ,
and for this Λ⊥, Λ =

[
−I A Ad B0

]
. Moreover, to use the result of Lemma 2 it is required to296

find Σ⊥ that satisfies the second inequality of (3). Choosing297

Σ =
[
βI I 0 0

]
, (31)

gives298

Σ⊥ =


I 0 0
−βI 0 0

0 I 0
0 0 I

 ,
where β is a given scalar and the desired formulations for low/middle/high frequency range are299

obtained by selecting β as:300

• β = 0 for low and middle frequency range,301

• β > 0 for high frequency range.302

The above analysis introduces a slightly different formulation for the high frequency range since Ξ1303

in (30) cannot be negative definite because Q and Z are positive definite. Also with the Σ and Σ⊥304

given above, the second inequality in (3) becomes305

Σ⊥
T

ΥΣ⊥=

 Ξ1−β2(Ξ3−CTC−X+d̄Z)−β(Ξ2+ΞT2 ) −βCTCd − βd̄Z −βCTD0

(?) CTd Cd−X−d̄−1Z CTd D0

(?) (?) DT0 D0 − I

 ≺ 0. (32)

The first two new results in this paper can now be derived where, unlike Theorem 1 in [23], the high306

frequency range is considered separately since it requires β > 0 (not β = 0) and hence the resulting307

LMI is more complex.308

Theorem 1. An ILC scheme described as a differential linear repetitive process of the form (17)309

under an actuator fault of the form (5)-(8) is stable along the trial and hence monotonic trial-to-trial310

error convergence occurs for the performance specifications over low and middle frequency ranges311

given in (25) and any delay d satisfying 0 < d ≤ d̄ if there exist matrices P̂ � 0, Q̂ � 0, X̂ � 0,312

Ẑ � 0, S, L and a scalar ε1 > 0, such that313

Θ11 =

[
Θ1 Θ2

(?) Θ3

]
≺ 0, (33)
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where314

Θ1 =


Ξ̂1 Ξ̂2 − ST 0 0
(?) T1 T2 qBL
(?) (?) T3 0
(?) (?) (?) −I

 , Θ2 =


0 0 0

T4 ε1q0B (qX1)
T

T5 0 0
T6 0 qLT

 , Θ3 =

 −I −ε1q0CB 0
(?) −ε1I 0
(?) (?) −ε1I

 ,
and315

S =W−1, Ξ̂1 = STΞ1S, Ξ̂2 = STΞ2S, Ξ̂3 = STΞ3S, X̂ = STXS, Ẑ = STZS, Q̂ = STQS,

T1 =Ξ̂3 + X̂ − d̄−1Ẑ+sym {AS+qBX1} ,T2 = AdS + d̄−1Ẑ,T3 = −X̂ − d̄−1Ẑ,
T4 =− (CAS+qCBX1)

T ,T5 = − (CAdS)T ,T6 = (I−qCBL)T , P̂ = STPS.

(34)

If this LMI is feasible, the corresponding matrices in the control law (16) are given by316

K1 = X1S
−1, K2 = L. (35)

Proof. Suppose that there exist P̂ � 0, Q̂ � 0, X̂ � 0, Ẑ � 0, S, L and a scalar ε1 > 0, such that317

the LMI (33) is feasible. Then application of the Schur’s complement formula to (33) gives318

Φs + ε1q0
2H1H1

T + ε1
−1F1

TF1 ≺ 0,

where319

Φs =


Ξ̂1 Ξ̂2 − ST 0 0 0
(?) T1 T2 qBL T4

(?) (?) T3 0 T5

(?) (?) (?) −I T6

(?) (?) (?) (?) −I

 , H1 =


0
B
0
0
−CB

 , F1 =
[

0 qX1 0 qL 0
]
.

Based on (8) and applying Lemma 1, this last inequality yields320

Φs + sym {H1Γ0F1} ≺ 0.

Next, by introducing
_

Ξ3 = Ξ̂3 + X̂ − d̄−1Ẑ + sym{AS}, this last inequality can be rewritten as321 
Ξ̂1 Ξ̂2 − ST 0 0 0

(?)
_

Ξ3 d̄−1Ẑ +AdS B0 STCT
(?) (?) −X̂ − d̄−1Ẑ 0 STCTd
(?) (?) (?) −I DT0
(?) (?) (?) (?) −I

 ≺ 0,

and pre- and post-multiplying this last inequality by diag
{
S−T , S−T , S−T , I, I

}
and its transpose,322

respectively, gives323 
Ξ1 Ξ2 −W 0 0 0

(?) Ξ̃3 d̄−1Z +W TAd W TB0 CT
(?) (?) −X − d̄−1Z 0 CTd
(?) (?) (?) −I DT0
(?) (?) (?) (?) −I

 ≺ 0, (36)
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where Ξ̃3 = Ξ3 +X − d̄−1Z + sym{ATW}. Another application of the Schur’s complement formula324

gives that (36) holds if and only if325 
Ξ1 Ξ2 −W 0 0

(?) Ξ̃3 + CTC CTCd + d̄−1Z +W TAd CTD0 +W TB0
(?) (?) CTd Cd −X − d̄−1Z CTd D0

(?) (?) (?) DT0 D0 − I

 ≺ 0.

Clearly, feasibility of this last inequality implies that DT0 D0− I ≺ 0 and therefore the condition i) of326

Lemma 4 must hold. Moreover, the last inequality can be rewritten as327

Υ + sym
{

ΛTWΣ
}
≺ 0, (37)

where Υ is defined in (26) and Λ =
[
−I A Ad B0

]
, Σ =

[
0 I 0 0

]
. Moreover, Σ =328 [

0 I 0 0
]

is obtained by setting β = 0 in (31). Therefore, by Lemma 2 it follows that (37) is329

feasible if and only if (24) holds. Hence conditions ii) and iii) of Lemma 4 must hold and the proof330

is complete.331

Selecting β > 0 and using a similar approach gives the following result for control law design in332

the high-frequency range.333

Theorem 2. With the notation of (34), an ILC scheme described as a differential linear repetitive334

process of the form (17) under an actuator fault of the form (5)-(8) is stable along the trial and335

hence monotonic trial-to-trial error convergence occurs for performance specifications over the high336

frequency range (25) and any delay d satisfying 0 < d ≤ d̄ if there exist P̂ � 0, Q̂ � 0, X̂ � 0, Ẑ � 0,337

matrices S, L and positive scalars β, ε2 such that338

Θ12 =



Ξ̂1−βS−βST Ξ̂2−ST +AS+qBX1 βAdS βqBL 0 0 0

(?) T1 T2 qBL T4 ε2q0B (qX1)
T

(?) (?) T3 0 T5 0 0
(?) (?) (?) −I T6 0 qLT

(?) (?) (?) (?) −I −ε2q0CB 0
(?) (?) (?) (?) (?) −ε2I 0
(?) (?) (?) (?) (?) (?) −ε2I


≺ 0, (38)

If this LMI is feasible, the corresponding matrices in the control law (16) are given by (35).339

Proof. This follows from routine changes to the proof of the previous result to account for β > 0.340

Hence the details are omitted.341

3.1. Practical implementation issues342

In applications terms a critical problem is to achieve the desired shape of σ(G(jω)) over the343

complete frequency range to account for the spectra of exogenous signals, to penalize regulated344

variables and to specify the level of plant model uncertainty. In particular, the possibility to impose345

different performance specifications has considerable practical significance since common performance346

issues occur over different frequency ranges. For example, trial-to-trial error convergence rate is in the347

‘low’ frequency range whereas low sensitivity to disturbances and sensor noise are in ‘high’ frequency348

range. To impose different performance specifications in different frequency ranges, divide the entire349

frequency range, i.e., from ω = 0 to ω = ∞, into H intervals (not necessarily containing the same350

number of frequencies) such that351

[0,∞) =

H⋃
h=1

[ωh−1, ωh], (39)
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where ω0 = 0 and ωH = ∞. Then the LMI conditions in Theorems 1 and 2, respectively, can be352

applied over these frequency intervals. In particular, the control performance for low frequency range353

is imposed over the first interval, i.e. h = 1 and those for the high frequency range over the last354

interval, i.e. h = H. The specifications for the middle frequency range can be defined over remaining355

intervals for 2 ≤ h ≤ H − 1. Furthermore, the LMI condition in Theorems 1 and 2 guarantee that356

σ(G(jω)) < 1 (where G(jω) is defined in(19)) over the prescribed frequency ranges. However, some357

practical control specifications require that σ(G(jω)) < µ where 0 < µ ≤ 1. This means that the358

prescribed level of attenuation of some frequencies is required. For instance, by minimizing µ in the359

low frequency range a higher speed of monotonic trial-to-trial error convergence is obtained. These360

specifications can be easily included in the LMI conditions of Theorems 1 and 2, respectively, by361

replacing the term −I by −µ2I in block (4,4) of Θ1 in (33) and block (4,4) in (38).362

The last issue is to solve the problem when control specification cannot be satisfied over some363

frequency ranges. This means that the learning has to be performed over these frequencies where the364

LMI condition of Theorem 1 is satisfied. The remaining frequencies should be cut-off by a low-pass365

filter (which can be implemented as the zero-phase filter, e.g., by using the filtfilt routine in366

Matlab) with cut-off frequency equal the highest frequency for which the result of Theorem 1 is367

valid.368

3.2. Uncertain dynamics369

The results of Theorems 1 and 2 can be extended to case when there is uncertainty in the model370

of the system to be controlled. As in other areas, it is assumed that the uncertainty lies in a371

particular model structure and in this paper the case considered is where the matrices A and Ad of372

a process (4) are not exactly known. In particular, it is assumed that dynamics are subject to time-373

varying structured uncertainties, resulting in dynamics to be controlled described by the state-space374

model375

ẋk(t) = (A+ δA)xk(t) + (Ad + δAd)xk(t− d) +BΓuk(t),

yk(t) =Cxk(t),

where the uncertainty is assumed to be of the form376 [
δA δAd

]
= E∆(t)

[
F Fd

]
, (40)

and E, F , Fd are known constant matrices of compatible dimensions. Also ∆(t) is an unknown, real377

and possibly time-varying matrix with elements satisfying378

∆T (t)∆(t) ≤ I, ∀t ∈ [0, α], (41)

i.e., ∆(t) belongs to a ball of matrices of unit radius ∀t ∈ [0, α].379

Applying the same control law as in the ideal model case results in the controlled dynamics380

state-space model381

η̇k(t) =Âηk(t) + Âdηk(t− d) + B̂0ek−1(t),
ek(t) =Ĉηk(t) + Ĉdηk(t− d) + D̂0ek−1(t),

(42)

where382

Â =A+ δA+BΓK1, Âd = Ad + δAd, B̂0 = BΓK2,

Ĉ =− C (A+ δA+BΓK1) = −CÂ, Ĉd = −C (Ad + δAd) , D̂0 = I − CBΓK2.

The following results are the uncertain model versions of Theorems 1 and 2 respectively.383
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Theorem 3. With the notation of (34), an ILC scheme described as a differential linear repetitive384

process of the form (42) with uncertainty structure modelled by (40)-(41) and under the actuator385

fault description (5)-(8) is stable along the trial and hence monotonic trial-to-trial error convergence386

occurs for the performance specifications over low and middle frequency ranges (25) and any delay d387

satisfying 0 < d ≤ d̄ if there exist matrices P̂ � 0, Q̂ � 0, X̂ � 0, Ẑ � 0, S, L and positive scalars388

ε1 and λ1 such that389  Θ11 λ1H2 F T2
(?) −λ1I 0
(?) (?) −λ1I

 ≺ 0, (43)

where Θ11 is given by (33) and390

H2 =
[

0 ET 0 0 − (CE)T 0 0
]T
, F2 =

[
0 FS FdS 0 0 0 0

]
.

If this LMI is feasible, the control law matrices K1 and K2 are given by (35).391

Proof. Suppose that the LMI (43) is feasible. Then application of Schur’s complement formula392

to (43) gives393

Θ11 + λ1H2H
T
2 + λ−11 F T2 F2 ≺ 0, (44)

and by Lemma 1, this inequality is feasible if and only if394

Θ11 + sym {H2∆(t)F2} ≺ 0,

holds. This last inequality is (33) applied to uncertainty case and by the result of Theorem 1 feasibility395

of (43) ensures that a differential linear repetitive process of the form (42) is stable along the trial396

and the proof is complete.397

Theorem 4. With the notation of (34), an ILC scheme described as a differential linear repetitive398

process of the form (42) with uncertainty structure modelled by (40)-(41) and under the actuator399

fault description (5)-(8) is stable along the trial and hence monotonic trial-to-trial error convergence400

occurs for performance specifications over the high frequency range (25) and any delay d satisfying401

0 < d ≤ d̄ if there exist matrices P̂ � 0, Q̂ � 0, X̂ � 0, Ẑ � 0, S, L and positive scalars β, ε2 and402

λ2 such that403  Θ12 λ2H2 F T2
(?) −λ2I 0
(?) (?) −λ2I

 ≺ 0, (45)

where Θ12 is given in (38). If this LMI is feasible, the control law matrices K1 and K2 are given404

by (35).405

Proof. This result is proved, with routine changes, in the same way as Theorem 3. Hence the406

details are omitted.407

For implementation, back substituting in (16) for ηk(t) and ek(t) gives408

uk(t) = uk−1(t) +K1(xk(t)− xk−1(t)) +K2(ẋk(t)− ẋk−1(t)). (46)
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4. Case study409

To illustrate the application of the new design, a two-stage chemical reactor with delayed recycle410

streams is considered, where it is assumed that both of the reactors are isothermal continuous stirred411

tank reactors (CSTR). A reactor recycle does not increase the overall conversion and reduces the412

cost of a reaction and therefore it is commonly used in industrial applications. The input to be413

recycled must be separated from the yields and then travel through pipes. The total recycle time414

therefore introduces delays into the state. Consider the irreversible reaction Ap → Bp with negligible

Figure 1: Two-stage chemical reactor train with delayed recycle streams.

415

heat effects that is completed in a two-stage reactor system. The reactor temperature is maintained416

constant and therefore only the composition of the product streams from the two reactors needs to417

be controlled. The manipulated variables are the feed compositions to the two reactors. Also, the418

flow rates to the reactor system are fixed and only the compositions vary.419

Suppose that the fresh feed of pure Ap is to be mixed with the recycle stream of unreacted Ap420

with recycle flow rate R. The mass balance equations that govern the reactors shown in Fig. 1 are [24]421

422  ẋ1,k(t) = −
(

1
θ1

+ k1

)
x1,k(t) + R

V1
x2,k(t− d) + F1

V1
u1,k(t),

ẋ2,k(t) = −
(

1
θ2

+ k2

)
x2,k(t) +

Fp2−F2+R
V2

x1,k(t) + F2
V2
u2,k(t),

(47)

where x1,k(t) and x2,k(t) are the compositions and for i = 1, 2,, θi are the reactor residence times,423

ki are the reaction constants, F1 is the feed rate, F2 is the interstage feed rate and Fp2 is the424

second product stream, respectively. Also Vi are the reactor volumes and the time-delay range is425

0 < d ≤ d̄ = 1, where d = 1 is used in the simulation results given below. In operation, this time-delay426

differential system needs to execute the same reaction task over a finite duration and introducing427

xk(t) =
[
xT1,k(t) xT2,k(t)

]T
, yk(t) = xk(t) =

[
yT1k(t) yT2k(t)

]T
,

the nominal system state-space model of the form (4) is obtained with C = I and428

A=

 −( 1
θ1

+ k1

)
0

Fp2−F2+R
V2

−
(

1
θ2

+k2

)  , B=

[
F1
V1

0

0 F2
V2

]
, Ad=

[
0 R

V1
0 0

]
, θ1 = V1

F1+R+Fd
, θ2 = V2

Fp2+R
.
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In the simulations below the model parameters used are k1 = k2 = 0.5, V1 = V2 = 0.25, F1 = F2 =429

0.25, Fd = 0.15, Fp2 = 0.4, R = 0.1. Suppose that the recycle flow rate R, the raw material feed rate430

F1 and the interstage feed rate F2 are subject to uncertainty. Then431

A =

[
−2.5 0

1 −2.5

]
, Ad =

[
0 0.4
0 0

]
, B =

[
1 0
0 1

]
, C =

[
1 0
0 1

]
,

and the uncertainty (see (40)) is specified by432

E =

[
1 0

0.5 1

]
, F =

[
0.4 0
0 0.5

]
, Fd =

[
0 0.5
0 0

]
,∆(t) = sin(2t).

The state initial vector xk(0) and the input vector uk(0) are assumed to be zero ∀k ≥ 0 and the433

reference trajectories, termed set-points from this point onwards, are:434

y1d(t) =


1
20 t, 0 ≤ t < 40,

2 + 1
120 t, 40 ≤ t < 100,

2.5 + 1
300 t, 100 ≤ t < 250,

3 250 ≤ t ≤ 300,

435

y2d(t) =



1
120 t, 0 ≤ t < 60 ,

0.5 + 1
60 t, 60 ≤ t < 120 ,

1.5, 120 ≤ t < 150 ,
1.5 + 1

100 t, 150 ≤ t < 250 ,
2.5, 250 ≤ t ≤ 300 .

Applying the Fast Fourier Transform (FFT) (sampling at 300 Hz) gives the plot of Figure 2,436

where the significant harmonics are in the range 0 to 10 Hz, which is taken as the low frequency437

range. Hence $l = 62.84 rad/sec.438

Partial degradation and wear from repeated control operation could lead to faults arising during439

the trials and it is assumed that an actuator fault in the operation valve for the feed rate could occur440

in this low frequency range. As a numerical example, it is assumed that 0.5 ≤ Γ ≤ Γ ≤ Γ = 1 and441

hence q = diag{0.75, 0.75}, q0 = diag{0.33, 0.33}. It is also assumed that no actuator faults occur442

arise before k = 25 trials have elapsed.443

To evaluate tracking performance from trial-to-trial, let eik, i = 1, 2 denote the errors on trial k.444

Then the convergence measure is the root mean square (RMS):445

RMS(ik) =
1

300

∫ 300

0
(yid(t)−yik(t))2 dt,

where the smaller the value of this quantity the better the tracking performance along the kth trial.446

Next two possible scenarios are considered.447

Scenario 1. Nominal system with a constant fault448

Consider the case when the operating valve is always partially blocked in the reaction process (47).449

This constant partial fault in the nominal system causes the actuator to drop to 70% of its normal450

value from 20 th trial onwards. Hence Γ = diag{0.7, 0.7} and completing the ILC design gives the451

corresponding matrices in (35) as452

K1 =

[
1.6914 −0.0301
−0.5838 1.6821

]
, K2 =

[
0.5513 0

0 0.5513

]
,
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Figure 2: The output reference trajectory (a) and its corresponding frequency spectrum (b).

and the achieved minimum performance level µ in the chosen frequency range is 0.4762. The simu-453

lation results obtained for this design are shown in Figs. 3-7. Before the fault occurs, the tracking454

errors display the monotonic decreasing property with rapid reduction from trial-to-trial. Once the455

fault on trial 25 occurs, the tracking performance deteriorates for some subsequent trials but then456

recovers to achieve close tracking again.457

Scenario 2. Uncertain system with a time-varying fault458

In this scenario, the operation valve is partly blocked by a time-varying fault in the reaction459

process (47). In this case the time-varying fault matrix Γ = diag{0.6 + 0.1 sin(t), 0.6 + 0.1 sin(t)} is460

used from trial 25. Solving the LMI of (43) in Theorem 3 gives the control law matrices461

K1 =

[
1.7673 −0.0321
−0.8766 1.8847

]
,K2 =

[
0.5702 0

0 0.5702

]
,

and the achieved minimum performance level µ in the chosen frequency range is 0.5020. The sim-462

ulation results obtained for this design are shown in Figs. 8-12. These confirm that the fault does463

affect the outputs produced and hence the tracking performance but this is still a baseline acceptable464

design.465

5. Conclusion466

This paper has considered the iterative learning fault tolerant tracking control problem for a467

class of differential linear time-delay batch processes. Based on the repetitive process setting and468

the generalized KYP lemma, a fault-tolerant control law design has been developed and extended to469

the uncertain model case. The KYP lemma setting enables the application relative case of imposing470

performance specified over finite frequency ranges to be included. To highlight the new results, a471

simulation-based study on the model of a two-stage chemical reactor with delayed recycle streams472

has been given.473

These results are the first on this approach and there are many areas to which further research474

could profitably be directed. One area is that the current control law is state feedback based and if475

all states are not available for measurement either an observer is required or the theory is extended476
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Figure 3: The set-points and tracking performance for the controlled dynamics with and without faults for scenario 1.
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Figure 4: The RMS performance against trial number for scenario 1.

19



Figure 5: The tracking errors for scenario 1.

Figure 6: The outputs for scenario 1.
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Figure 7: The control inputs for scenario 1.
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Figure 8: The outputs for scenario 2.
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Figure 9: The RMS performance against trial number for scenario 2.

Figure 10: The tracking errors for scenario 2.
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Figure 11: The outputs for scenario 2.

Figure 12: The control inputs for scenario 2.
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to a control law that uses only output information. Given that the trial length is finite and all data477

is available once a trial is complete, zero-phase filtering can be applied to the previous trial data478

before computing the next control mitigate against unmeasurable disturbance effects. Extending the479

theory to include disturbance attenuation is also a possible topic for future work. Also the inclusion480

of H∞/H2 performance measures is another area for possible future research.481
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