“FIESTA-loT

www.fiesta-iot.eu

*
bdal

o HORIZON 2020 AL T
European The EU Framework Programme for Research and Innovation "?,?-3“'

Commission

HORIZONS 2020 PROGRAMME
Research and Innovation Action — FIRE Initiative

Call Identifier: H2020-1CT-2014-1
Project Number: 643943
Project Acronym: FIESTA-IOT

Federated Interoperable Semantic loT/cloud

Project Title: Testbeds and Applications

D4.2.1 Techniques for Secure Access and
Reservation of Resources

Document Id: FIESTAIOT-WP4-D4.2.1-SecureAccessAndReservation

File Name: FIESTAIOT-WP4-D4.2.1-SecureAccessAndReservation-140716-
V10.docx

Document reference: Deliverable 4.2.1

Version: V10

Editor: ITINNOV

AUTHORS: ITINNOV, UNICAN

Date: 22 /08 /2016

Document type: Deliverable

Dissemination level: PU

Copyright © 2016 National University of Ireland - NUIG / Coordinator (Ireland), University of Southampton IT
Innovation - ITINNOV (United Kingdom), Institut National Recherche en Informatique & Automatique - INRIA,
(France), University of Surrey - UNIS (United Kingdom), Unparallel Innovation, Lda - UNINNOVA (Portugal), Easy
Global Market - EGM (France), NEC Europe Ltd. NEC (United Kingdom), University of Cantabria UNICAN
(Spain), Association Plate-forme Telecom - Comdinnov (France), Research and Education Laboratory in
Information Technologies - Athens Information Technology - AIT (Greece), Sociedad para el desarrollo de
Cantabria — SODERCAN (Spain), Ayuntamiento de Santander — SDR (Spain), Korea Electronics Technology
Institute KETI, (Korea).

PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the FIESTA-loT Consortium.
Neither this document nor the information contained herein shall be used, duplicated or communicated by any means to any
third party, in whole or in parts, except with prior written consent of the consortium.

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

DOCUMENT HISTORY

Rev. Author(s) Organisation(s) Date Comments
VoL Paul Grgce, ITINNOV 2015/07/22 Initial content: security anaIyS|§,
Vadims Krivcovs federation styles, and reservation.
V02 | Vadims Krivcovs ITINNOV 2015/08/11 Updating core document sections
V03 Paul Grace, ITINNOV 2016/02/2 Description of FIESTA-lOT Security
Vadims Krivcovs Framework based on 1%t Integration
Meeting in Santander
V04 David Gomez UNICAN Material about securing and
Fernadndez protecting FIESTA-loT Testbeds
V05 Paul Grace ITINNOV 25/07 Update to Security Framework
architecture description and progress
after 2" Integration Meeting in Paris
V06 |Michael Boniface ITINNOV 29/07 Update to use cases. This is the
version sent for internal review
V07 Rachit Agarwal INRIA 05/08/2016 Technical Review 1
V08 Amelie Gyrard NUIG 09/08/2016 Technical Review 2
V09 Konstantinos COM4INNOV 09/08/2016 Quality Review
Bountouris
V10 | Paul Grace, David [ITINNOV, UNICAN | 24/08/2016 Revisions to address Technical

Gobmez Fernandez

Review 1 and 2; and Quality Review

Copyright © 2016 FIESTA-I0T Consortium

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

TABLE OF CONTENTS

EXECUTIVE SUMMARY ...ttt ettt e e e e sttt e e e e e s s bbb e e et e e e e e s aabebe et eeeeeesannbrbrneeaeeeeaanns 8
1 INTRODUCTION ..ttt e e e ettt e e e e e s s bbb ettt e e e e e s anbebe e e e e e e e e sannbrreeeeeeeaeannes 9
1.1 OVERVIEW OF WP/ ... 9
1.2 FIESTA-IOT SECURITY INTRODUCTIONuuuiitttititeeesaiittineeeaeeessanissseeeeeessaannnssneeseeessaannsnnneeseens 10
121 SECUNLY REQUITEMENTS ...ttt ettt e e e 10
1.2.2 SECUNLY ROIES. ...ttt e et e e abre e e 10
1.2.3 FIESTA-I0T Logical Security Architecture and Use Casescccoecveveiiiiireniiiieeeennnn 11

UCL - ProteCted RESOUICE ACCESSciiiuieiiiieeaee e ettt ee e e e ettt et ae e e s aasabeeeaaaaasaasneteeeeaaeaaannnsaeeeaaeeaannsbeeeaaens 12

UC2 - Experimenter registration/ ldentity Management.............ccvvviiiiiiiiiieeiniiee e 13

UC3 — Testhed ReSOUrce ManaAgEMENTcoii ittt e ettt e e e e e et e e e e e e e e snnateeeeaeeeeannneeeeeaaens 14

124 RESOUICE RESEIVALION ...eevieiiiiiiiiiiie ettt e ettt e e e s et e e e e e e s e s eeeeaeeesannnneeees 14

1.3 DOCUMENT OVERVIEW ...iiiiiieie e a s e e s e s s e s e s e s e s aa e a e s aa e s a s aananaaaan e e e e e e 15

2 BACKGROUND & RELATED WORK: SECURITY TECHNOLOGIES..........cccocccvnveeeiiniiiiieennnn 16
2.1 AUTHENTICATION AND SINGLE SIGN ON (SSO) ...uiiiiiii et 16
211 SAML 2.0 .ttt a e e —r e e e e e e et a e e et e aeeeaaarnraeeaeeeeeaanns 16
21.2 OPENID CONMNECTcciiiiieteeei et e e e e e e s e e e e e e s e s rnrreeeeeeseaae 17
2.1.3 Authentication and Single Sign On technology comparisonccccceeeeveieiein e, 17

2.2 TECHNOLOGY COMPARISON FOR AUTHORIZATIONtutututetstsrsrennrnnnnnnnnsnnnsnnnssssenssnmsnsssmsrsmsmsmnnnnes 18
221 OAULN 2.0ttt e e e e e et e e e e e e e e b a e et e e e e e e e bn e e e e e e e e aaan 18
2.2.2 User-Managed ACCESS (UMA) 21
2.2.3 Authorization technology COMPATISONccceiiiiieie e 23

2.3 OTHER SECURITY SOLUTIONS: FIRE AND IOT PROJECTS ...ccoiiiiiiiiiiiiiiiieieeeeeeeeeeee 24
23.1 =0 L S 24
23.2 L@ 01701 [0} IO PP P PR PPRPPPRPPP 25
2.3.3 L 1 SRS 25

2.3.4 Authentication and Authorization technology comparison of FIESTA-loT related FP7
projects 26

2.4 SECURITY IMPLEMENTATION TECHNOLOGIESiuttiitteiitiieeteieieeettiestnessteesaessnestnsesanessneesnessnns 29
24.1 Central Authentication Service (CAS)ocvvviiiiiiii e 29
2.4.2 OPENAM . .. 30
2.4.3 (] 1S TU IS Y/ N 32
24.4 Comparison of Authentication and Authorization Technology Suitesc.ccoeeeo.. 34

25 PROPOSED SECURITY TECHNOLOGIES FOR FIESTA-IOT ...ceiiiie e 35
251 Benefits of using OpenlD Connect for Authentication and Single-Sign On................... 35
25.2 Benefits of using UMA for Authorization and Access Controlcoeccvvveveeeeeiicennnee, 36
253 Benefits of using OpenAM for FIESTA-IOT ..ot 38

3 FIESTA-IOT SECURITY ARCHITECTUREcooee ittt e e e e e eeeeaaes 40

3.1 [T 01U o4 1T] N PN 40

3.2 SECURITY FRAMEWORK BUILDING BLOCKS . .cuuiiitiiiiiiiii ettt ee et s et e st s e eaaesaaas 40

3.3 SECURING THE FIESTA-IOT PORTAL AND SERVICES....uutieuniietiittieiteeetiesiessneessnserasssisesnnssenns 42

3.4 SECURING FIES T A-IOT TESTBEDS . ..uiituiienititnteeteteaeettsestetensesneraesst ettt 46

3.5 EXAMPLE APPLICATION OF THE SECURITY FRAMEWORK TO FIESTA-IOT FUNCTIONALITY 49

4 OPENAM/OPENIG COMPONENTS ...ttt ettt e e et e e e e e s et e e e et e s saaaeeseaan 53

4.1 USER REGISTRATION ..utetttteeettttetesaesetetaeeesassesessasese s esassttstesasres st sesessnresessasreretassesssnreees 53

4.2 [I TR O =] =Ny T 53

4.3 USER IDENTITY DATABASE AND AP ..c. ittt e e e e een 55

5 CON CLUSIONS ..ottt et e et e e e et et e et e e et et e e e eea et e e eaaeeereteeseestareeessneerenas 57
51 IMPLEMENTATION OF USE CASES...uiitiitiiiiiiiii ettt taes s et s s e sttt e st e s st s ettt e saa s st e sasssbsesnenen 57
5.2 [N IS T 1 = =1 TN 57

6 L N O 59

APPENDIX A =SECURING A SERVICE DEPLOYED IN A WILDFLY CONTAINERccovvveereennnn. 60

Copyright © 2016 FIESTA-I0T Consortium 2

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

INSTALL WILDFLY 10 it n e e e e e e 60
INSTALL WILDFLY APPLICATION .. .citiiiiiii i 62
INSTALL OPENIG AS WILDFLY ROOT ...ciiiiiiiiiiriiiieie ettt a e e s e e e s 62
CONFIGURE THE POLICIESooiiiiiiiiiii ettt e e 64

Copyright © 2016 FIESTA-I0T Consortium 3

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

LIST OF FIGURES

FIGURE 1: SECURE ACCESS TO PROTECTED FIESTA-IOT RESOURCESccuuiiitiiiiieiiciieee et
FIGURE 2: OAUTH 2.0 ABSTRACT PROTOCOL FLOW ...uuuiittiiiiniiiteetieittessiasesaessasstnsesanssssnsssnessnessteesnssssnns
FIGURE 3: UMA ABSTRACT PROTOCOL FLOW [8] ...uuuuutiiiieieeeiiiitiiiieeeeeessstnieeeseaessssnsnteseseaessssnsnsnesseaessnnnns
FIGURE 4: CAS (4.0.X) ARCHITECTUREuttttttteeeiiiutteereeeesssaasstssseeeesesaasssssssesessinmssmssseeeessammmnssereeeesennns
FIGURE 5: OPENAM SERVER STACK ..vuuuiiitttieietttetetueeetetaeesesssesssssesstsseesssnnesessesessssessssaeererineesernreres
FIGURE 6: OPENAM POLICY AGENT ARCHITECTURE ...uuiitttttieietieesetieeesetnseessasseesetanesssssnsessssnsessrnsessesnneeees
FIGURE 7: DEPLOYED OPEN IDENTITY GATEWAY IN EXISTING INFRASTRUCTUREcuuiiiiiiiiiiiiieeereteeeeeiaeeees
FIGURE 8: GLUU SERVER STACK ..uutiitttuietttieeeetteesetaseesetasesssansesetsasesassseesssnnsesstaesersssessssnasereraseesernseeres
FIGURE 9: SECURITY FRAMEWORK COMPONENTSittiitieittititeettetetesstaeesasssnsstasesanssstsssnsessnessteesnesssnns
FIGURE 10: HIGH-LEVEL VIEW OF PROTECTING PORTAL SERVICESuuiiittuiieitieieietieeeesetsesessssesetnsssssnnseees
FIGURE 11: SECURING THE FIESTA-IOT PORTAL AND SERVICEScivuiiitiiiiiiiiieeitieeeie st e eansesanessrnsesanesanns
FIGURE 12: HIGH-LEVEL VIEW OF FIESTA-IOT SECURING OF TESTBED RESOURCESuivivvieieierineeeeninenns
FIGURE 13: SECURING THE FIESTA-IOT TESTBED SECURITY ARCHITECTUREcivvinieeietiieeeeeeeeseieeeeenneeens
FIGURE 14: UMA FLOW DIAGRAM (FIESTA-IOT EXPERIMENT LIFECYCLE USE CASE) ...uvvvvteeeesiiniireeeneassennns
FIGURE 15: USER REGISTRATION .. uittuittttetttttteestetsteestaessetssesssesssesstsestetsneesttesnetsneeer .
FIGURE 16: POLICY CREATION uuittuiiittitttetttestteestetstesstttessssssesstessnesstasestessnesstatessesstasesniersneestneesnessnns
FIGURE 17: POLICY ACTION SETUP . ittuiittittt ittt tettetteest e e st e seba e eaa e saaes st s e st e saa s st esaessbssatestnesstareanessans
FIGURE 18: POLICY CONDITIONS ..uuiituuiittetttestt ettt ssttsessnesssessaesssesstasestetsnestatesaesstasstniersesstaresnaersnns

Copyright © 2016 FIESTA-I0T Consortium

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

LIST OF TABLES
TABLE 1 — FIESTA-IOT SECURITY REQUIREMENTSuuuiiiitiieiiieeeeetieeeeett e eeeeae e e e et eeeeata e ssanaeesataneeeerannns 10
TABLE 2: SAML 2.0 ANALY SIS .. uuiitiiiiiitee ittt e e et et et e et st e e et et et s st e e et e s sb s e bt e sanessbasesassbneastnenen 16
TABLE 3: OPENID CONNECT ANALY SIS, . ituuiittiittitittettetstesstaeta ettt sestetansttatest sttt et etaesst e ersasetnaeres 17
TABLE 4: SAML AND OPENID CONNECT COMPARISON .. cuuuiittiiiniiiteettetsnesstniesaesstsssnsersnesstnsessessneesineeees 18
TABLE 5: OAUTH 2.0 AN ALY SIS uiitutiitiitieittettee it estetat sttt ettt saeeaa e taa sttt e et tsstsetaeranesstntesnaessneestnseres 20
TABLE 6: USER-MANAGED ACCESS (UMA) ANALYSIS .eeeeiiiittieeeeeeesssistaeneseeeesssnsstnssesseessaassnssnssessessannsnsnnns 22
TABLE 7: OAUTH 2.0 AND UMA COMPARISON ...ccuuuiiitteieietiieeeetieesetieeesstaessssasessssseesstnsessesnsesesaeeersrs 23
TABLE 8: FEDAFIRE FP7 PROJECT SECURITY ANALY SIS . .iituiiiietiieietieeeeetseeesaeesstaeeesetnsessssnnsssesnneeessnnnns 24
TABLE 9: OPENIOT FP7 PROJECT SECURITY ANALYSIS ...iiitiieieee et etieeeeet e e sea e e s et e e eseba s esseaansssennnseessannes 25
TABLE 10: IOT-A FP7 PROJECT SECURITY ANALYSIS 1ittuiituiiitiiiitetiteettiettnessteestetstesssniessnesstsesnnesseestnneees 26
TABLE 11: AUTHENTICATION REVIEW SUMMARY OF FIESTA-IOT RELATED FP7 PROJECTS......uvevviiiieennnnens 27
TABLE 12: AUTHORIZATION REVIEW SUMMARY OF FIESTA-IOT RELATED FP7 PROJECTS....cccvviivieiiieennneens 28
TABLE 13: ANALY SIS OF C A .ottt ettt e et e e e e ettt et a e e et e e et e s tb s eaa e san s st s eaaesbaesetneeen 30
TABLE 14: ANALYSIS OF OPENAM ...ttt ettt et e et e et e et e e et e st seaa e saa s st s esassaaesetnenen 32
TABLE 15: ANALYSIS OF GLUU...uuiituiiitiiiiiii et es e et et ae e et s e st e s sb s e st e saa e s st s e et s s sbsean e sanessbaseansstnesetneren 33
TABLE 16: CAS, OPENAM AND GLUU COMPARISONuuiiiiituieeieiieeeteriaeeeestnieesstneeesetaaaeessttessenaesssraeeeesnnnns 34
TABLE 17: OPENID CONNECT BENEFITS FOR FIESTA-IOT .iiniiii e 35
TABLE 18: UMA BENEFITS FOR FIEST A-IOT oottt ettt s et e s s e e e s s e et e een 37
TABLE 19: OPENAM SECURITY SOFTWARE SUITE BENEFITS FOR FIESTA-IOT ..coviiiiiiiiiei e, 38
TABLE 20: USE CASE SOLUTIONS ..t utitttiittttttettestteestetsteestatesaesstsestetanessttestetstaeetiersesstnresnerieesnneee 57

Copyright © 2016 FIESTA-I0T Consortium 5

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

TERMS AND ACRONYMS
AAT Authorization API Token
ABAC Attribute-Based Access Control
AM Authorization Manager
Authn Authentication
Authz Authorization
CAS Central Authorization Service
CMD Command Line
EaaS Experiment as a Service
FIRE Future Internet Research and Experimentation
FlTeagle Semantic Resource Management Framework
FQDN Fully Qualified Domain Name
FRCP Federated Resource Control Protocol
GENI Global Environment for Network Innovations
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IdP Identity Provider
JOSE JSON Object Signing and Encryption
JWT JSON Web Token
J2EE Java 2 Platform Enterprise Edition
LDAP Lightweight Directory Access Protocol
NEPI Network Experiment Programming Interface
OAuth Open standard for authorization (Open Authorization)
OEDL OMF Experiment Description Language
OMF Orbit Management Framework — a reference implementation of
FRCP
OpeniD Simple identity layer on top of the OAuth 2.0 protocol
Connect
OpenlG Open Identity Gateway
PAP Policy Administration Point
PAT Protection APl Token
PEP Policy Enforcement Point
PDP Policy Decision Point

Copyright © 2016 FIESTA-I0T Consortium

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

REST Representational State Transfer
RPT Requesting Party Token

RS Resource Server

SA Slice Authority
SAML Security Assertion Markup Language
SaaS Software as a Service

SFA Slice Federation Architecture
SSO Single Sign On

TLS Transport Layer Security

ucC Use Case

UMA User-Managed Access

XACML eXtensible Access Control Markup Language

Copyright © 2016 FIESTA-I0T Consortium

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

EXECUTIVE SUMMARY

This document presents the first version of the security architecture that will secure
access to and usage of the FIESTA-I0OT applications, services and testbeds.

An analysis of security technologies that can applied to the federation of IoT testbeds
is first carried out; this covers single-sign on authentication; authorization; and
access control functionality. We then make recommendations for the technologies
that should be investigated in greater depth. Further, there is an investigation of
federation examples that are relevant to FIESTA-IoT, e.g. the Fed4FIRE, and XIFI
federations. We analyse each of these technologies and solutions against the
FIESTA-IOT security requirements, and choose a particular security technology that
best meets these needs. This technology is the OpenAM platform.

Subsequently, we present the design of the FIESTA-I0T security architecture. This
describes how OpenAM and its related technologies (e.g. the OpenlG gateway) are
deployed in order to secure the FIESTA-IoT platform, i.e., securing the FIESTA-IoT
portal, securing the FIESTA-IoT tools, and finally, securing the testbeds providing the
loT data resources.

Finally, this deliverable looks at the deployment and implementation of the security
architecture. It describes how various resources have been secured using OpenAM
and OpenlG in the first version of the FIESTA-lIoT platform. Concluding the
document, we then look to the future versions of the FIESTA-IOT security architecture
and what additional features and functionality will be provided.

Copyright © 2016 FIESTA-I0T Consortium 8

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

1 INTRODUCTION

1.1 Overview of WP4

FIESTA-IoT WP4 implements an infrastructure for accessing data and services from
multiple distributed diverse testbeds in a secure and testbed agnostic way. To this
end, it will rely on the semantic interoperability of the various testbeds (realized in
WP3) and implement a single entry point for accessing the FIESTA-IoT data and
resources seamlessly and according to an on-demand EaaS model. The
infrastructure to be implemented will be deployed in a cloud environment and will be
accessible through a unified portal infrastructure.

The objectives of WP4 are:

This

To specify and implement the testbed agnostic operations (e.g., data access,
service execution, data/service management) that comprise the EaaS model
of the project, along with tools and techniques for combining them into
experiments/workflows.

To specify and implement tools and techniques for accessing resources from
the various testbeds in a secure way.

To specify and implement tools and techniques for testbed agnostic access to
data sets stemming from multiple heterogeneous IoT platforms.

To specify and implement a portal infrastructure enabling the submission of
experiments over semantically interoperable testbeds.

To design and implement tools and techniques for managing experiments,
including management of information the sensors and data streams that the
experiments use, the volume of data that they consume/use, the timing of the
execution of the various experiments and more.

deliverable describes the technology solutions created in Task T4.2

Techniques for Secure Access and Reservation of Resources:

“This task will ensure that experimenters will have secure access to the resources of
the federated testbeds. It will deal with the provision of a solution for authentication
and authorization of resources (e.g., devices, data streams), which will be operational
independently of the number and type of underlying 10T platforms and testbeds. This
solution will enable experimenters to gain access to all the FIESTA testbeds through
a single set of credentials. Furthermore, the task will research and provide techniques
for reserving resources through keeping track of the various experiments, the data
streams and 10T resources that they use, the lifetime of the experiments, logging
information about the experimenters and the experiments that they execute and
more. By keeping track of the resources reserved/used (at the level of experiments
and experimenters) this task will provide a foundation for managing experiments and
the loT/cloud resources that they use. In terms of the implementation of the low-level
security and resource reservation functionalities, results for related projects (e.g.,
Fed4FIRE) will be studied and appropriately reused”.

Copyright © 2016 FIESTA-I0T Consortium 9

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

1.2 FIESTA-IOT Security Introduction
1.2.1 Security Requirements

The work to secure the FIESTA-IoOT architecture is closely related to the majority of
architectural components and testbed resources; that is, such elements must be
secured in order that only authorized FIESTA-IOT users can access and utilize them.
The security requirements identified in the initial FIESTA-IOT requirements
specification (from Deliverable D2.1 [1]), and listed in Table 1 define the features and
functionality that the FIESTA-IOT security framework must achieve. Note, from this
point forward we define the FIESTA-IOT security framework to be the components
and technologies that work together to secure the FIESTA-IOT architecture.

Table 1 — FIESTA-IOT Security requirements

Requirement

UNIQUE ID Type

Priority Description

18 FR_SEC_Testbed_ . Testbed providers must provide
Functional

authentication_mecha . MUST authentication mechanisms to (secure)
Requirements

nisms access services/resources
Testbed providers must provide
19 FR_SEC _Testbed_ Functional MUST authorization and access control
manage_priviledges Requirements mechanisms to (secure) access
services/resources
20 FR_SEC_ Experime Functional MUST Single-sign-on mechanism has to be in
nter_single-sign-on Requirements place
21 FR_SEC_Tool_man Functional FIESTA-IoT must have a tool to manage
. MUST : : X
age_users Requirements users and their respective access rights
68 _NFR_SEC_Support Non- i
_certification_authorit Functional SHOULD HIESUAAY I_Dlatfo_rm Sieltlle Sy
. federated identity management
y Requirements
. Non- When a user wants to execute any action
69_N|.:R_SEC_Ver|.fy_a Functional MUST FIESTA-IoT has to verify that he is
uthorise_user_actions
- — Requirements authorized to do this action
Non- FIESTA-IoT must have different profile
70_NFR_SEC_Differen . types (e.g. different kind of experimenters,
X Functional MUST .
t_profile_types . researchers, etc.). Thereby grant different
Requirements .
permissions
71_NFR_SEC_Privac Non-
- — - y Functional CouLD Privacy of collected data

collected data .
— - Requirements

1.2.2 Security Roles

Within the FIESTA-IOT platform there is a set of core roles (these may be extended to
more fine-grained roles in the future) that define which user gets access to which
resources:

e FIESTA-IOT Security Manager: This role is in charge of admin of security
configuration and requests. When a testbed or experimenter sends a request
to participate they are responsible for authenticating their request.

e Observer: This is the most restricted role in FIESTA-lIoT. This user has
access to some of the portal resources and applications e.g. discovering what

Copyright © 2016 FIESTA-I0T Consortium 10

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

testbeds and data is available, what the experimental tools look like etc.
However, they are not able to execute experiments or extract any detailed
data. This role is essentially a taster session for the user to evaluate if
FIESTA-IOT provides what they wish for. In terms of registration and sign-on—
this role uses self-registration; the user fills out a form asking to be an
observer, FIESTA-IoT mails them a validation link to their e-mail address.
Subsequently, they can log onto the FIESTA-IOT portal as an observer.

Experimenter: This role allows the user to create and execute experiments
within the FIESTA-IoT platform. The experimenter registers for FIESTA-I0T via
the portal; the FIESTA-IoT Security Manager then reviews their request,
authenticates the user as a valid experimenter and assigns them the role.

Testbed Admin: A user from the testbed administration team, whose role is to
configure their integration with FIESTA-IOT. This includes the registration of
the testbed resources, and the definition of any security policies. The default
policy is to allow FIESTA-IOT experimenters to access each testbed resource.
However, the testbed themselves can add further more fine-grained policies.

1.2.3 FIESTA-IoT Logical Security Architecture and Use Cases

The FIESTA-IoT architecture defined in Deliverable D2.4 [2] describes the logical
components that form the security framework of FIESTA-IOT, and the use cases
related to secure access and usage of FIESTA-IOT resources. In addition D2.4 [2]
provides a set of use cases (UC) to drive the design and specification of the security
framework. These are summarized below (the full descriptions and diagrams can be
found in deliverable D2.4 [2]).

Figure 1 highlights the key components in the use cases (where experimenters
attempt to access FIESTA-IOT services and testbed resources):

The AuthN component which is the Identity Manager in the FIESTA-IoT
security framework. It deals with user registration, user account management,
and user authentication.

The AuthZ component which is the authorization and access management
component. It deals with the creation and update of access policies for all
FIESTA-IOT resources—for both FIESTA-IoT services (e.g. the portal) and the
individual testbeds (e.g. the data APIs to retrieve testbed data). It is also the
Policy Decision Point (PDP)—when access to a resource is attempted the
AuthZ component evaluates the request against the polices and makes a
decision whether to grant or deny the request.

The Meta-Cloud Data Endpoint, which is the FIESTA-IoT endpoint to allow
an experimenter to access the data resources from the testbed. Hence, the
policy enforcement point (PEP), i.e. where policies are enforced, is deployed
here.

Copyright © 2016 FIESTA-loT Consortium 11

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

Experimenter

EXPERIMENTER SIDE

FIESTA SIDE

i b 4
Meta-Cloud Data Endpoint '“\I
Ciata
Manager @ L g
] (i AN
Data Broker P
o+
- S 5
-
FIESTA SIDE
TESTBED SIDE I
o] Service
Endpaint
5. Annotator
Resource Manager
WOW Semantic Data
Testhed {a h-,’]l {Semantic) Data

Repasitory

Figure 1: Secure Access to Protected FIESTA-IoT Resources

UCL1 - Protected Resource Access

Resources in the FIESTA-IOT federation (e.g. the FIESTA-IoT Meta-Cloud services
and applications, and the testbed resources), are protected and require authorization
in order to be accessed by only FIESTA-IOT experimenters. The logical security
architecture and sequence flow is illustrated in Error! Reference source not found..
Note, the resource presented here is the I0T Service Endpoint (i.e. the API to access
the testbed data), but the security pattern can be equally applied to the other types of
FIESTA-IOT resources.

Each request is checked in order to ensure that the request is from an authenticated
user (e.g. experimenter), and that they are authorized to perform the request.
Resource access in FIESTA-IoT follows a traditional Policy Enforcement Point (PEP)
Pattern — requests are intercepted by the PEP (at FIESTA-IoT endpoints) and these
are sent to a Policy Decision Point (PDP) component, which forms part of the logical
AuthZ component). The PDP implements the grant/deny decision when evaluating
the request against the access policy.

Resource Access can be managed in two ways in FIESTA-IOT.

In the first version of the FIESTA-IoT security framework (described in this
deliverable) — access to resources is fully managed by FIESTA-IoT based upon
inputs from the testbed admin:

Copyright © 2016 FIESTA-I0T Consortium 12

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

e Fully managed by FIESTA-IoT: The testbed trusts FIESTA-IOT to forward
only authorized requests to the testbed (enforcing the policies described by
the testbed in use case 3). That is, the testbed registers its policies with
FIESTA-I0T, and then trusts FIESTA-IOT to enforce these policies. A secure
trusted channel from FIESTA-IOT to the testbed API is managed and
implemented by the testbed. For example, using digital certificates or API keys
(i.e. their own security choice).

In future versions of the FIESTA-I0T security framework we plan to allow more
decentralized control of access. That is, the testbed may manage the access
themselves.

e The testbed manages access on their endpoints: Instead of the AuthZ
component operating at the FIESTA-I0T side it operates at the testbed (i.e. it
does not need to trust FIESTA-IOT to execute access control). Hence, the
PDP executes on site. This case is suited to testbeds who may want greater
control over FIESTA-IOT access—for example, where the resources are
shared beyond FIESTA-IOT and there is a need to ensure FIESTA-I0T does
not starve other users of resources.

UC2 - Experimenter registration/ Identity Management

An experimenter signs up to use FIESTA-IoT (i.e. they register a new user account
and username and password credentials). In this use case, FIESTA-IOT is the central
identity provider manager in the testbed federation—when a FIESTA-IOT user wants
to access either a FIESTA-IoT service, or a testbed’s data APl they must first
authenticate with the central identity manager (part of the FIESTA-IOT security
framework). The steps of this use case are as follows:

1. The experimenter selects a sign-up link on the FIESTA-IoT portal web page;

2. The experimenter fills in his/her information including e-mail address and
password (security credentials selects the role they wish to register for
(Experimenter, Testbed Admin, or Observer). Roles are discussed further in
Section 1.2.2.

3. Where the user signs up as an observer, a self-service approach is followed.
For experimenter and testbed admin, the request is passed to a FIESTA-IoT
member to verify. The experimenter will then be sent an email at his/her
registered email address for verification of his/her identity. When the user
verifies via the link, registration is complete and the use case continues.

The experimenter is now free to authenticate, i.e., they can sign-in to use services.
Whenever, a FIESTA-IOT user tries to access a service (e.g. using a browser) they
will be redirected to a log-in page to authenticate.

The other sub use-cases of the experimenter identity management are:

e The experimenter can update their account info any time using the FIESTA-
loT portal, i.e. change the information FIESTA-IOT has stored about them e.g.
name and contact details;

e The experimenter can delete his/her account from the system at any time
using the FIESTA-IoT portal,

Copyright © 2016 FIESTA-I0T Consortium 13

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

e The FIESTA-IoT administrator can delete an experimenter's account from the
system at any time using the FIESTA-I0T administration portal.

UC3 - Testbed Resource Management

Each testbed controls access to their resources using access control policies. Each
incoming request to use testbed resources is checked against these policies to
determine if the request will be granted or denied.

e The access policies are stored centrally in the FIESTA-I0T security framework.

e Only a testbed administrator of a given testbed can manage (change, add,
delete, etc.) the policies of a given testbed (even though it is stored centrally).

Therefore, testbed owners, manage their existing resources at the testbed level.
Each testbed is a set of static resources to be protected. Testbed owners can add to
these over time by registering new resources in the testbed. The testbed owners,
when registering resources, will add control policies for these resources. The testbed
administrator can directly alter both specific resource policies and default policies by
interacting with the AuthZ component via the Access Policy Administration Tool. A
default policy may be:

e “All authenticated FIESTA-IoT experimenters can access and use all
operations on the testbed API.”

Example specific access policies may be:
e Experimenter ID1 can perform GET operations on testbed interface A.

e Experimenter ID2 can perform GET & PUT operations on testbed interface A.

1.2.4 Resource Reservation

In the first version of the FIESTA-lIoT architecture, the testbed resources made
available are data centric. That is, an experimenter can query for data and subscribe
to data streams. Such resources are therefore inherently shareable — multiple
experimenters can access and utilize the resources at the same time without conflict.
Compare this with a testbed providing computational resources (e.g. virtual
machines)—only so many resources can be provided and therefore to ensure that
demands are met — the resources must be reserved in advance. Without such
limitations in FIESTA-IoT a dedicated framework to reserve resources is not
required—and hence in the first version of the FIESTA-IOT security and reservation
framework we provide no functionality beyond the ability to use access control to
manage the usage of resources. For example, if a testbed wishes to allow individual
experimenters access to a resource at a time—they can define a policy for this.

In the future, FIESTA-IoT may encompass IoT testbeds with the need for advance
reservation, e.g. a set of actuators that can be controlled by an experimenter during a
particular time period. We envisage that access policies can again be used to control
such behavior—however, this would need to be integrated with a calendar service
(where reservations for time periods are agreed) to provide input to the policy
decision point. We will investigate this further in future version of the FIESTA-IOT
security and reservation framework.

Copyright © 2016 FIESTA-loT Consortium 14

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

1.3 Document overview

In this document we focus on the security framework and functionality required
across the FIESTA-IoT functional architecture. For this purpose, we present the
following:

An analysis of security technologies that can be applied to the FIESTA-IoT
federation; this covers single-sign on authentication; authorization and access
control functionality. We make recommendations for the technologies that
should be investigated further.

An analysis of federation examples that are relevant to FIESTA-IoT, e.g.
Fed4FIRE?, and XIFI2. We provide a discussion of what FIESTA-IoT can learn
from the services and tools provided in these initiatives. This is taken from the
security and reservation viewpoint.

Presentation of the initial security framework within FIESTA-I0T.

A description of the OpenAM and OpenlG technologies that have been
chosen to implement the security framework. We also identify how these two
technologies are deployed and used to secure specific FIESTA-IOT services
and resources.

A discussion of the future directions of the FIESTA-IoT security framework.

1 http://www.fed4fire.eu

2 https:/ffi-xifi.eu/home.html

Copyright © 2016 FIESTA-loT Consortium 15

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

2 BACKGROUND & RELATED WORK: SECURITY TECHNOLOGIES

This section provides an overview of security technologies relevant to secure access
to the FIESTA-IOT experiment-as-a-service architecture, and the data resources
provided by the testbeds in the FIESTA-lIoT federation. Authentication and
Authorization are the most important security technologies to consider for this
purpose; hence, in turn we describe technologies in these domains, focusing in
particular on approaches that have been employed to secure experimental facilities
and loT platforms. We then analyse these solutions with respect to meeting the
FIESTA-IOT security requirements. Finally, the section concludes with the security
choices made for FIESTA-loT—based upon this analysis.

2.1 Authentication and Single Sign On (SSO)

Authentication is the process of identifying that someone is who they say they are.
SSO (typically using a username and password) is the ability to authenticate using a
single set of credentials in order to access multiple services, and in multiple domains.
Currently the most common SSO techniques are based on username/password,
Security Assertion Markup Language (SAML), and more modern OpenIiD Connect
that was built on top of the new OAuth 2.0 standard.

2.1.1 SAML 2.0

Any conversation about web authentication standards and Web SSO must begin with
the Security Assertion Markup Language (SAML) [3]. This is the current leading
standard for enterprise inter-domain authentication. It is widely supported by off-the-
shelf software, and major Software-as-a-Service (SaaS) vendors like Google,
SalesForce, WorkDay, Box, Amazon, and many others. SAML is the basis for
extensive Business-to-Business (B2B), government and educational networks
around the globe.

Analysis

Table 2 provides a brief analysis of the key benefits and weaknesses of SAML.
SAML can be seen as a reliable solution, but the switch towards devices (sensors,
things) in the future (as opposed to Web technologies) means its weaknesses in this
area will become apparent. This is seen in Gluu’s prediction [4]: providing SAML
endpoints and services will be critical for domains for years to come. However, in the
next 15 years or so, organizations will look to consolidate on OAuth2 based trust
networks, and will look to end-of-life and de-commission SAML relationships.

Table 2: SAML 2.0 analysis

+ | SAML tokens provide information about identity of entity and widely used in SSO
systems

+ Dominant protocol for achieving secure attribute exchange and SSO today

+ Mature and well defined standard

+ | Widely adopted and provides good security based on signed XML documents

- Not really suitable for mobile devices (and most likely sensor devices) without
additions effort to provide broker services etc. (was primary designed for Web-

Copyright © 2016 FIESTA-I0T Consortium 16

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

based applications)

2.1.2 OpenlID Connect

OpenID Connect [5] is a simple identity layer on top of the OAuth 2.0 [6] protocol,
which allows computing clients to verify the identity of an end-user based on the
authentication performed by an authorization server, as well as to obtain basic profile
information about the end-user in an interoperable and REST-like manner.

OpenIiD Connect allows a range of clients, including Web-based, mobile, and
JavaScript clients, to request and receive information about authenticated sessions
and end-users. The specification suite is extensible, supporting optional features
such as encryption of identity data, discovery of OpenlD Providers, and session
management.

Analysis

Table 3 provides a brief analysis of the key benefits and weaknesses of Open ID
Connect. Its greatest advantage being that is a simple web based standard that is
suited to mobile devices; hence, it is well suited to the IoT domain. However, it
remains less established than other solutions; but usage is likely to grow—and many
companies have already started to use OpenID Connect. These include: StruSoft,
Google, Microsoft, Ping Identity, Deutsche Telekom and many more.

Table 3: OpenlID Connect analysis

+ | Built on top of OAuth 2.0 standard

+ | Suitable for mobile devices (and possibly for sensor devices)

+ | OpenID Connect tokens are designed for today’s REST-based application
development practices

+ Lightweight, hence suitable to mobile devices (and possible to sensor devices)

+ | Simpler protocol to realise (great support for open libraries as well)

+ Potentially safer (XML-DSIG changed to JWS what eliminates a range of possible
attacks)

+ Foundation for a far more efficient and scalable enterprise federated SSO
solution

+ | Compare to SAML: OpenID Connect can satisfy these same use cases but with a
simpler, JISON/REST based protocol

+ | Allows to choice of trust provider

- So far not widely adopted, but the situation is rapidly changing (many companies
are currently in a process of adopting it)

2.1.3 Authentication and Single Sign On technology comparison

SAML is not sufficiently interoperable to be the future standard for identity
management federation. SAML is limited in its ability to support mobile & smart-TV

Copyright © 2016 FIESTA-loT Consortium 17

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

applications and requires the implementation of a complex broker Service [7] in order
to support multi-service provider & multi-ldentity provider use cases.

OpenID Connect is a lightweight identity verification protocol built on top of modern
web standards (OAuth 2.0, REST and JSON) superseding OpenIiD 2.0. OpeniD
Connect allows a service provider (Relying Party) to select between varieties of
registered or discovered identity providers. OpenIlD Connect can satisfy all of the
SAML use cases but with a simpler, JSON/REST based protocol.

Based on the initial review of SAML 2.0 and OpenID Connect (which are currently the
most widely used technologies for SSO) for Single Sign-On Authentication; OpenlD
Connect has the following benefits compared to SAML 2.0 which are summarized in
Table 4 below and need to be considered as a strong candidate for archiving Single
Sign-On Authentication in FIESTA-IOT.

Table 4. SAML and OpenID Connect comparison

Discovery Service | No Single discovery service for Requesting
Parties (RP) allowing sites and
(Requires pre-agreed applications to “validate” your users
metadata)
Mobile Apps SSO not supported SSO Supported
Support for SSO Only web based SSO SSO available from multiple device
provided types e.g. mobiles, sensors, etc. that
can implement the standard.

2.2 Technology Comparison for Authorization

This section provides an overview of access control solutions for IoT. It is assumed
that data communication to/from web and 10T devices is encrypted using standards
such as TLS, as well as the identity of requesting party is sufficiently verified and
trusted.

Unfortunately many proposed Authorization frameworks do not provide complete and
efficient mechanisms that allow scalable and effective access control solutions for
IoT; that is, unbound by the number of loT devices and users in a dynamic
environment. We now discuss a subset of different technologies that are currently
used (some of them are during early stages of adoption) in web and loT access
control systems.

2.2.1 OAuth 2.0

OAuth [6] is an open standard for Authorization that provides client applications with
a “secure delegated access” to server resources on behalf of a resource owner. It
specifies a process for resource owners to authorize third-party access to their server
resources without sharing their credentials. OAuth is built upon the following key
party roles:

Copyright © 2016 FIESTA-I0T Consortium 18

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

Resource owner: an entity capable of granting access to a protected
resource. When the resource owner is a person, it is referred to as an end-
user. For example, a user who has stored their pictures on Picasal.

Resource server: the server hosting the protected resources, capable of
accepting and responding to protected resource requests using access
tokens. For example, the Picasa server.

Client: an application making protected resource requests on behalf of the
resource owner and with its authorization. The term "client" does not imply any
particular implementation characteristics (e.g. whether the application
executes on a server, a desktop, or other devices). For example, this could be
a printing client — that prints photographs stored on Picasa.

Authorization server: the server issuing access tokens to the client after
successfully authenticating the resource owner and obtaining authorization.

The interaction sequence for the OAuth 2.0 protocol between the above roles is
shown in Figure 2:

A)

B)

C)

D)

E)

F)

Authorization request phase: the client (print application) requests
Authorization from the resource owner (User with Photos). The Authorization
request can be made directly to the resource owner (as shown), or preferably
indirectly via the Authorization server (OAuth server) as an intermediary.
Authorization grant: the client receives an Authorization grant, which is a
credential representing the resource owner's Authorization, expressed using
one of four grant types defined in this specification [6] or using an extension
grant type. The Authorization grant type depends on the method used by the
client to request Authorization and the types supported by the authorization
server.

Request an access token: the client requests an access token by
authenticating with the Authorization server and presenting the Authorization
grant.

Return an access token: the Authorization server authenticates the client
and validates the Authorization grant, and if valid, issues an access token.
Request protected resource: the client requests the protected resource from
the resource server (Picasa) and authenticates by presenting the access
token.

Use protected resource: the resource server validates the access token, and
if valid, serves the request.

1 https://picasa.google.co.uk/

Copyright © 2016 FIESTA-I0T Consortium 19

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

tommmm -t Fom s +
	--(A)- Authorization Request -> Resource
	Owner
	<-(B)-- Authorization Grant ---
	et +

| | L e +
	--(C)-- Authorization Grant --»	Authorization
Client	Server	
	<-({D}----- Access Token -------	
	et T +	

| | e e EEE T +
	--(E)----- Access Token ------ > Resource
	Server
	<-{Fj--- Protected Resource ---
fmmm et Fommmm e +

Figure 2: OAuth 2.0 abstract protocol flow?
Table 5: OAuth 2.0 analysis

+ | Open standard for Authorization, i.e., publicly available, and developed,
approved and maintained via a collaborative and consensus driven process.

+ | The only framework in its genre and is widely used for similar applications.

+ | More like a framework (not a defined protocol), which leaves a lot of
implementation freedom that we need because of non-standard
requirements.

+ | Easy to configure and deploy which saves time, effort and ease
development process.

+ | Organisations do not need support for password renewal, forgotten
password, authentication of users, and support to let users remove
themselves from the service, etc.

+ | Low-risk for ID theft, etc. The service already has good support to prevent
this. Authentication takes place at provider, the OAuth tokens are encrypted
and not in our application.

+ | Gives great possibility to add new services (many well-known industry and
education organisations already deployed OAuth 2.0 which allows clients to
use resources using their identity).

+ | User can prevent access to the application from the OAuth provider

- | No notion of identity, therefore additional effort is needed to validate an
identity of requesting parties

- | No fine grained authorization (based on scopes only)

- | Requires logic to allow the user to log in with multiple OAuth providers.

1 https://tools.ietf.org/html/rfc6749

Copyright © 2016 FIESTA-IoT Consortium 20

https://tools.ietf.org/html/rfc6749

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

2.2.2 User-Managed Access (UMA)

The User-Managed Access (UMA) [8] protocol is designed to give a web user a
unified control point for authorizing who and what can get access to their online
personal data (such as identity attributes), content (such as data or data streams that
can contain private and sensitive information about users, entities etc.), and services,
no matter where all those things live on the web. Quite importantly UMA allows a
user to make demands of the requesting side in order to test their suitability for
receiving Authorization. The following roles compose the UMA protocols:

Resource owner: an OAuth resource owner is a "user" in UMA. This is
typically an end-user (a natural person) but it can also be a corporation or
other legal person.

Resource set: one or more protected resources that the resource server
manages as a set, abstractly. In authorization policy terminology, a resource
set is the "object" being protected.

Requesting party: an end-user, or a corporation or other legal person that
uses a client to seek access to a protected resource. The requesting party
may or may not be the same party as the resource owner.

Client: An application making protected resource requests with the resource
owner's authorization and on the requesting party's behalf.

Authorization server: centralized authorization server that governs access
based on resource owner policies. Resource owners configure authorization
servers with access policies that serve as asynchronous authorization grants.

The UMA protocol has three phases, as shown in Figure 3:

1. Protect a resource(s): the resource owner, who manages online resources at

the resource server, introduces it to the authorization server for protection. To
accomplish this, the authorization server presents a protection API to the
resource server. This API is protected by OAuth (or an OAuth-based
authentication protocol) and requires a protection API token (PAT) for access.
Out of band, the resource owner configures the authorization server with
policies associated with the resource sets.

Get Authorization: the client asks the resource server for access to an UMA-
protected resource. In order to access, the client must use the authorization
server's authorization API to obtain authorization data and a requesting party
token (RPT) on behalf of its requesting party, and the requesting party may
need to supply identity claims. The API is protected by OAuth (or an OAuth-
based authentication protocol) and requires an authorization API token (AAT).

Access a resource(s): The client successfully presents to the resource server
an RPT that has sufficient authorization data associated with it.

Copyright © 2016 FIESTA-I0T Consortium 21

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

resource
e manage (A)------------ owner
oo +
Phase 1: |
protect a control (C)
resource |
v v
------------- + . GO R
| protection
resource | API authorization
server <-protect (B)--| (needs server
| paT)

------------- + R LT TP
protected authorization
resource API

(needs RPT) (needs AAT)

————————————— + e

I
Phases 2 and 3: authorize (D)
get authorization, |
access a resource v
oo +
e access (E})------------- client
oo +

reguesting party
Figure 3: UMA abstract protocol flow [8]

UMA provides the following important Authorization capabilities that are highly
relevant for loT technologies as detailed in Table 6

Table 6: User-Managed Access (UMA) analysis

+ | Provides dedicated access relationship service that allows resource owners
to control access to their services/resources/etc. that are residing on
different domains, in one central place (no need for expensive and error
prone access policy management throughout different domains).

+ | UMA allows resource owners to configure their own policies that are
required for appropriate access control to their resources without any
restrictions (i.e. starting with Access Control Lists, simple OAuth 2.0 scopes
and finishing with complex Authorization policies that will be driven by
compound access policy engines).

+ | Allow resource owners to provide claims based Authorization mechanisms
for more fine grained access control decisions to the resources and services
that they provide on the web.

+ | UMA does not define specific format of claims that need to be specified
during Authorization decision which gives a flexibility to use various security
claim based technologies

+ | Provides automatic access policy enforcement mechanisms that will allow
Authorization Manager to ask a requesting party without a presence of a
resource owner (request will be based on specified resource owner access

policy)

+ | Full support for OpenlD Connect (authentication) and OAuth 2.0
(Authorization) that are both modern and well adopted by industry protocols
(in fact some of the core parts of UMA were build based on OAuth 2.0 and
OpenlID Connect is an identity protocol build on top of OAuth 2.0).

Copyright © 2016 FIESTA-IoT Consortium 22

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

- | So far not widely adopted, but the situation is rapidly changing (many
companies, universities, health organizations, security software suites are
currently in a process of adopting it)

2.2.3 Authorization technology comparison

Based on reviewing the latest industry security technologies for Authorization — both
OAuth 2.0 and UMA have their great benefits that should suit many web and loT
frameworks. Making a direct comparison is difficult as they share an underlying
technology. However, in Table 7 we provide an analysis of how well suited the
approaches are for handling security use cases relevant to 10T e.g. support for user-
driven protection of resources, privacy, flexibility, etc.

The analysis indicates that UMA introduces some additional complexity beyond the
simple OAuth protocol. However, there are numerous benefits in terms of user
control, fine-grained Authorization and flexibility in deployment (to heterogeneous
configurations that OAuth may be difficult to apply to).

Table 7: OAuth 2.0 and UMA comparison

User-driven policies

Simple policies (based on
scope)

Possibility to specify own
policies that are required for
appropriate access control to
their resources without any
restrictions

Support for claims-based
access control

No (scopes only)

Yes (full support)

Flexible claims format
approach

No (scopes only)

Yes (for any claims format)

Automatic access policy
enforcement mechanisms

No

Yes (UMA can ask requesting
party for additional claims in
order to grant access to the
resources)

Support for modern
Authentication and
Authorization protocols

No (OAuth 2.0 is an
authorization framework)

Yes (fully support for OpeniD
Connect)

Privacy

Some (OAuth 2.0is a
delegation protocol that
simply limit access to the
resources)

Yes (UMA provides ways to
specify and control fine grained
access to the resources hence
provides better privacy)

Resource Server (RS)

Not stated

RS interface is fully defined
(allows more flexible

Copyright © 2016 FIESTA-I0T Consortium

23

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

configuration and deployment)

Authorization Manager Not stated AM interface is fully defined
(AM) (allows more flexible
configuration and deployment)

2.3 Other Security Solutions: FIRE and IoT Projects

The FIESTA-IOT project crosses the domain of experimental Internet testbeds (as
traditionally found in FIRE-Future Internet Research and Experimentation projects?),
and loT facilities. Hence, we now examine the security solutions applied in other FP7
and H2020 projects to protect resources across these two domains.

2.3.1 Fed4FIRE

Fed4FIRE? is a general framework to federate experimental testbeds across a broad
range of Internet Testbeds, i.e., cloud computing, Wireless radio, Software Defined
networking, etc. The emphasis is on the controlling of access to shared virtualised
resources e.g. a Virtual Machine on a compute or network host, rather than data
being provided by an loT testbed. In terms of security, FedFIRE employs the
following technologies:

Authentication
e Username and password for login to Fed4FIRE portal
e X.509v3 technology is used in various Fed4FIRE tools (i.e. jFed, OMF6 etc.)

Authorization

e Policy Decision Point (PDP) provides federated Authorization using SFA Slice
Credentials

e Fine grained Authorization using Attribute-Based Access Control (ABAC)
model

e Variety of proprietary Authorization software on testbed sides

Table 8 provides an analysis of the technology choices of Fed4FIRE. While
Fed4FIRE has created a mature and secure platform based upon traditional X.509
authentication certificates, and a project developed PDP/PEP solution for
experimental testbeds—these technologies are not well suited to a data-driven facility
built upon Web interfaces and protocols (which are central to the FIESTA-loT
testbeds and semantic data services).

Table 8: Fed4FIRE FP7 project security analysis

+ | X.509v3 is a standards-based technology (X.509v3 certificates as identity provider
and Single Sign-On)

+ | Single credential authentication for cross FIRE testbeds

1 https://www.ict-fire.eu/

2 http:/lwww.fed4fire.eu

Copyright © 2016 FIESTA-I0T Consortium 24

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

Single credential for authorized access on cross FIRE resource controllers

Policy Decision Point provides federated Authorization using SFA Slice Credentials

Fine grained Authorization using ABAC model

+| +| +| +

Allows to choice of trust provider

- Heavyweight technologies to configure and utilise; today’s web-based approaches
offer more flexible lightweight solutions

2.3.2 OpenloT

OpenloT! manages cloud environments for loT resources (such as sensors,
actuators and smart devices) and offers a set of utility-based (i.e. pay-as-you-go) loT
services. This enables the concept of “Sensing-as-a-Service”. Hence, this is similar in
concept to FIESTA-IoT’s collection and annotation of data from multiple experimental
loT testbeds. In terms of security solutions, OpenloT employs the following:

Authentication

e Uses Centralised Authentication Server (CAS) [11] for centralised
authentication between services (username / password approach)
Authorization

e Based on OAuth tokens — short lived tokens are issued after successful
authentication with CAS.

e Very simple (i.e. basic) Authorization policy rules based on lattice-based
access control model [9] that does not provide fine grained access control to
resources/services.

Table 9: OpenloT FP7 project security analysis

+ | The use of CAS APIs simplified development. These are well established APIs with
mature documentation and community usage.

+ | Centralised Authentication. Simplified the complexity of managing authentication.

+ | Authorization using OAuth 2.0 tokens (implemented in addition to CAS)

- Basic username / password authentication; this is limited in comparison to new
standards such as OpenID Connect.

- No fine grain Authorization. Using standard capability of OAuth 2.0 i.e. scopes etc.
(for example to specify that a resource owner would like his/her resource to be
used between 18:00 and 19:00 during weekdays would be impossible!)

2.3.3 IoT-A

IoT-A is an architectural reference model [10] and the definition of an initial set of key
building blocks that are envisioned as the foundations for fostering the emerging
Internet of Things. Concrete 10T systems can be developed following the proposed
principles in order to simply the task, and promote interoperability. In terms of
security building blocks, l0T-A proposes:

1 http://www.openiot.eu/

Copyright © 2016 FIESTA-I0T Consortium 25

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

Authentication

e Proposes to use SAML for SSO
Authorization

e Proposed to use the eXtensible Access Control Markup Language (XACML)
policy engine based on Attribute-Based Access Control. XACML!? is an OASIS
standard that describes both a policy language and an access control decision
request/response language (both written in XML). The policy language is used
to describe general access control requirements, and has standard extension
points for defining new functions, data types, combining logic, etc. The
request/response language lets you form a query to ask whether or not a
given action should be allowed, and interpret the result. The response always
includes an answer about whether the request should be allowed using one of
four values: Permit, Deny, Indeterminate (an error occurred or some required
value was missing, so a decision cannot be made) or Not Applicable (the
request cannot be answered by this service).

Table 10: IoT-A FP7 project security analysis

+ | SAML is widely adopted in SSO systems

+ | XACML gives possibility to specify fine grained access control policies (the only
widely recognised standard that defines declarative access control policy
language)

- SAML is not really suitable for mobile devices (and most likely sensor devices)
without additions effort to provide broker services etc. (was primary designed for
Web-based applications)

- XACML does not solve access policy and privacy issues on its own — need defined
mechanisms for Resource Owners to manage access control to their resources

2.3.4 Authentication and Authorization technology comparison of FIESTA-I0T
related FP7 projects

Table 11 and Table 12 provide a side to side comparison of the authentication and
Authorization technologies of reviewed above FIESTA-I0T related FR7 projects.

! https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

Copyright © 2016 FIESTA-IoT Consortium 26

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

Table 11: Authentication review summary of FIESTA-IoT related FP7 projects

Authentication | Pros: Pros: Pros:
o Central Authorization service provides an ¢ Information about identity of entity is e X.509v3 is a standards-
easy developer API provided using SAML tokens (SAML based technology (X.509v3
tokens are also used for SSO) certificates as identity
o Centralised solution for federated SSO provider and Single Sign-On)
e SAML is widely used in SSO systems
e Widely adopted e Single credential
authentication for cross FIRE
e Support for OpenID Connect and OAuth testbeds
2.0 (SAML support was native) in new
CAS versions e Single credential for
Cons: authorized access on cross
e SAML is mainly designed for Web- FIRE resource controllers
Cons: based applications

e Allows to choice of trust
e SAML is not really suitable for mobile provider
devices without broker services etc. (i.e.
extra effort/overhead is required)

¢ Username and password authentication

e CAS server does not provide any notion
for Authorization (additional solution(s)
for Authorization is/are needed) Cons:

e Can be expensive to setup
up and maintain

Copyright © 2016 FIESTA-loT Consortium 27

Deliverable 4.2.1 — Doc.id: FIESTAIoT-WP4-D4.2.1-SecureAccessAndReservation

Table 12: Authorization review summary of FIESTA-IoT related FP7 projects

Authorization

Pros:

cons:

OAuth 2.0 is well defined modern open
standard for Authorization (both Web and
mobile devices)

Provides secure and robust access
control delegation mechanisms using
short lived API tokens

No fine grained Authorization capability
(instead OAuth 2.0 scopes etc.)

Pros:

Cons:

XACML is de facto standard for
authorization

Consistent access control

Fine-grained and risk-aware

XACML does not solve access
policy and privacy issues on its
own (need defined mechanisms for
Resource Owners to manage
access control to their resources)

Pros:

cons:

Policy Decision Point provides
federated Authorization using
SFA Slice Credentials

Fine grained Authorization using
ABAC model

Depends on OMF 6.0 — not
widely applied.

SFA is not a global standard

Variety of proprietary testbed
Authorization software is in place.

Copyright © 2016 FIESTA-I0T Consortium

28

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

2.4 Security Implementation Technologies

There are several technologies that provide security solutions “out of the box”. It is
important from various perspectives (resources, time etc.) to reuse well defined,
proven and well tested security technologies that are available nowadays and not
‘reinvent the wheel”, especially during implementation and deployment of security
solutions. This is because, many software errors and bugs will have been eliminated
by community evaluation of the software. Furthermore, the use of Open Source
solutions is equally important, as the security community can verify the
implementation to assess its security.

2.4.1 Central Authentication Service (CAS)

The “Central Authentication Service” (CAS) [11] defined one of the first Web SSO
protocols. It's has a simple to use API, and is supported by several open CMS
platforms. Backed by LDAP, it was a good choice for many organizations to
centralize username / password authentication. It also allows access control based
on network address, to restrict which servers can use the enterprise web
authentication service. With the availability of newer, more functional authentication
standards, like SAML and OpenlID Connect, new applications should be directed
away from CAS. An analysis of the CAS is given in Table 13.

Users
oA clene [ﬁ %

Apache App Java App Google Apps

CA‘; Protocol ‘;AM[Frotocal ()Aurh

PM]

Spring MVC/Webflow

CAS Server

[Ticketing
l Authentication

LDAP Database SPNEGO

S
IS S

Daiabase Aclive
Directory

Figure 4. CAS (4.0.x) architecture?

1 http://jasig.qgithub.io/cas/4.0.x/planning/Architecture.html

Copyright © 2016 FIESTA-IoT Consortium 29

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

Table 13: Analysis of CAS

+ Mature developer API (as a result faster development and less prone to errors)

+ | Centralised solution for federated SSO

+ | Widely adopted, mainly because it provides centralised authentication mechanism

+ New versions of CAS provide support for OpenlD Connect and OAuth 2.0 (SAML
support was native)

- CAS server does not provide any concept of Authorization therefore other
technologies in line with CAS need to be implemented (additional and potentially
very expensive overhead)!

2.4.2 OpenAM

OpenAM [12] is an open source access management, entittements and federation
server platform. OpenAM provides core identity services to simplify the
implementation of transparent SSO as a security component in a network
infrastructure. The software stack is illustrated in Figure 5; it can be seen that
OpenAM provides implementations of multiple security technologies e.g., OAuth,
OpenID Connect and XACML. However, the most relevant technologies provided by
OpenAM are the security agents to protect resources (top left in Figure 5).

I User Interface
Managament
Protected Resources
Web JavaEE Web Services Universal
Agents Agents Agents Gateway

| e

(52]) [_moeee] (s

eSS))

P

Figure 5: OpenAM server stack?

1 http://www.slideshare.net/ForgeRock/ois-architecture-review

Copyright © 2016 FIESTA-IoT Consortium 30

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

Policy Agents. A web policy agent is a software library installed at the resource
server and configured to intercept all client requests to access resources. The
interception sequence is as follows:

1. Aclient requests access to a protected resource

2. The policy agents intercepts all requests to a protected resource API. Hence, the
policy agent acts as Policy Enforcement Point (PEP).

3. The policy agent communicates with OpenAM in order to enforce a policy decision
based on the request from a client. A very simple policy might enforce users to be
authenticated. Hence, OpenAM acts as the Policy Decision Point (PDP).

4. OpenAM enforces the policy based on set of claims that are provided by a client (if
applicable) and returns an authorization result back to the policy agent

5. Based on the returned authorization result from OpenAM the policy agent grants or
denies access to the protected resource

Policy agents are available for multiple web server platforms such as Apache,
Tomcat, Microsoft 1IS, Sun Web server, Glassfish, JBoss and others. The downside
of web policy agents are that it is necessary to provide a specific configuration for a
resource server in order to install a web policy agent; this is a complicated task that
requires modification of existing server configurations.

MSumr
Web Agent

Native
Web Servar
Plug-in W{ Module J
.

-

AMSDK

L]

Clignt *

..—.I & OFEN l

T
— : L | agent profile)
[Web Resources J

Figure 6: OpenAM Policy Agent architecture?!

Open Identity Gateway (OpenlG) offers an alternative and transparent solution
compared to policy agents to allow legacy infrastructure to be easily integrated with
OpenAM. Open Identity Gateway (OpenlG) works as an HTTP gateway, also known
as a reverse proxy. OpenlG is usually deployed on a network so that it intercepts
both client requests and also server responses (as illustrated in Figure 7). When a
client requests a protected resource it is intercepted by the Open Identify Gateway
(OpenlG) - this means that there is be no need to configure either servers or clients;
it is handled transparently. The only configuration needed is of OpenlG in order to
add new capabilities to existing services, and to ensure it communicates between the
parties.

An analysis of OpenAM is provided in Table 14

1 http://openam.forgerock.org/doc/bootstrap/web-users-guide/images/thumb_web-policy-agent.png

Copyright © 2016 FIESTA-I0T Consortium 31

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

OpenlG Deployed

Client OpenlG Service

I 1 Client request not appropriate for service !
I P

2 Appropriate request

3 Service response not appropriate for client

i
i
1
i
i
-
i -
1
i

I
i
I
i
i
i
ke
|
i
i
1
I
i
i
|

. 4 Appropriate response
1

Client OpenlC Service

Figure 7: deployed Open Identity Gateway in existing infrastructure?

Table 14: Analysis of OpenAM

“All-in-one” open source access management solution

Provides single and federated Single Sign-On (SSO) solutions out of the box
(username/password, SAML and OpenlID Connect)

Easily integrates into existing systems

Allows you to build a federated identity and entitlement solution easily

Entitlements engine that supports the latest XACML protocol

Full support for OAuth 2.0 and OpenID Connect

+| +| +| +| +

Support for User-Managed Access (UMA). In the latest release of OpenAM 13.5
(2016), UMA is available and supported.

+ | Variety of Web/J2EE Agent software that enforces Authorization policy decisions
for OpenAM on protected resources (sometimes maybe not suitable for existing
infrastructure configurations)

+ | Gateway/reverse proxy complimentary software (OpenlG) that allows to protect
resources without modifying existing server configurations

+ | Easy configurable using GUI and CMD tools

- Combining with CDDL 1.0 license may rise issues (if the software needs to be
extended).

2.4.3 Gluu Server

The Gluu Server [13] is a direct competitor of OpenAM; it offers a free open source
software stack that enables an organization to deliver a self-hosted, standards-based
authentication and authorization service. As illustrated in Figure 8, Gluu provides
multiple authentication and authorization technologies e.g. OpenID Connect, SAML,
OAuth, etc. Gluu, like OpenAM provides agents to protect resources. However, like
OpenAM these require reconfiguration on the server infrastructure, which is again a

Ihttps://backstage.forgerock.com/static/docs/openig/3.1.0/gateway-quide/images/gateway-
deployed.png

Copyright © 2016 FIESTA-IoT Consortium 32

https://backstage.forgerock.com/static/docs/openig/3.1.0/gateway-guide/images/gateway-deployed.png
https://backstage.forgerock.com/static/docs/openig/3.1.0/gateway-guide/images/gateway-deployed.png

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

complicated task. Unlike OpenAM, Gluu does not provide a reverse proxy solution to
counter this concern.

Gluu Server Stack

‘ & shibboleth SAML SP
LDAPS (Pull) SAML IDP SAML 2.0
Act{‘\gA%irsectorv
or erver
= SAML IDP
ﬁu Asimba or SP
oX SAML Proxy SAML 2.0
IDM ox’l‘rt&st
Platform Admin OveniD
SCIM (Push) Tl T Connéct Client
OAuth2
2-Factor Auth
Service Gy SxAuth UMA RS/Client
OX’ UMA
Python or Java As RAuth2
Gluu
OpenDJ LDAP Client

LDAPS

Figure 8: Gluu server stack?
An analysis of Gluu is provided in Table 15.
Table 15: Analysis of Gluu

+ | A simba SAML Proxy enables an organization to consolidate inbound SAML
authentication from the IDPs of partners to a website or an application

Provides single and federated SSO solutions out of the box

Allows you to build a federated identity and entitlement solution easily

Entitlements engine that supports the latest XACML protocol

Full support for Oauth 2.0 and OpenID Connect

+| +| +| +| +

Full support for User-Managed Access (UMA) (currently resources can be
protected using Apache 2.0 containers)

+ | Web Agent software that enforces Authorization policy decisions for OpenAM on
protected resources (not a very wide choice)

+ | Easy configurable using GUI and CMD tools

- Lack of some administration, development and tutorial documentation that makes
training/integration more complicated, time consuming and more likely more error
prone

- Currently no solutions for gateways/reverse proxies that will allow to protect
resources without modifying existing server configurations (editing existing server
configuration is not the best option!)

1 http://www.gluu.org/open-source/open-source-vs-on-demand/

Copyright © 2016 FIESTA-IoT Consortium 33

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

2.4.4 Comparison of Authentication and Authorization Technology Suites

Based on the reviewed technologies it is important to note that both OpenAM and
Gluu server provide support for UMA therefore both technologies were considered for
further investigation and comparison (see Table 16). Based on the key points in the
comparison table (highlighted in bold) it can be seen that OpenAM is a more
beneficial technology to choose and will be considered as the technology choice.

Table 16: CAS, OpenAM and Gluu comparison

CAS OpenAM Gluu
Open Standards Yes Yes Yes
Single Sign-On (SSO) Yes Yes Yes
Support for modern Yes Yes Yes
Authentication mechanisms
(e.g. SAML, OpenID Connect
etc.)
Support for various Not applicable Yes Yes

Authorization mechanisms
(e.g. custom user policies,
XACML etc.)

User-Managed Access
(UMA) support

Not applicable

Yes (currently under
development/integrati
on)

Yes (currently full
support)

Variety of Web Policy Agents | Not applicable Yes (various) Yes (some)
to serve as a container for

protected resources

Ready and easy configurable | Not applicable Yes (well-defined Yes (some)

Gateways/Reverse Proxy
solutions to serve as a
container for protected
resources

and mature OpenlG
software)

Admin and development Yes (not Yes (detailed) Yes (limited in

documentation applicable for some cases)
AuthZ)

License Open source Open source (CDDL- | Open source (MIT?)

(Apache 2.0%)

1.0. Common
Development and
Distribution License
(CDDL)?)

1 http://opensource.org/licenses/Apache-2.0

2 http://opensource.org/licenses/CDDL-1.0

8 http://opensource.org/licenses/MIT

Copyright © 2016 FIESTA-I0T Consortium

34

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

2.5 Proposed Security Technologies for FIESTA-IoT

Based upon the analysis provided in this section, the following technology decisions
were made to implement the security requirements listed in the introduction to this
document:

¢ Open ID Connect is chosen as the authentication solution.
e UMA is chosen as the Authorization solution.
e OpenAM is chosen as the security implementation suite.

The following sections in turn highlight the benefits afforded by each of these three
decisions.

2.5.1 Benefits of using OpenlID Connect for Authentication and Single-Sign On

Analysis of FIESTA-IOT related FP7 projects showed that projects deployed and
used various Authentication and Single-Sign On technologies:

e Fed4FIRE uses username/passwords to login users to the main portal, as well
as X.509v3 certificates for SSO to experimenter tools such as jFed and OMF.
The username/password approach is a standard practice to provide login
services to users and can potentially be used in FIESTA-IoT (for example to
provide login services to FIESTA-IOT portal). X.509v3 based technology is
more heavyweight, can be expensive to setup up and maintain, and hence
potentially not well suited to 10T devices. In contrast OpenID Connect can
substitute username/password approach (if necessary), it's lightweight, easy
to use and maintain, as well as suitable for mobile and possible 10T devices
(communication data is based on lightweight JWT tokens).

e OpenloT used username/password approach to login users to the main portal
and kept session tokens that allowed users to SSO to various OpenloT
services etc. Using username/password requires more work to provide a SSO
to different domains; but with OpenlD Connect it is quite easy -- you simply
specify what identity providers you trust — if 2 domains trust the same identity
provider then they can automatically allow each other to use their services.

e |0T-A proposed to use SAML 2.0 tokens to authenticate users and SSO.
SAML 2.0 is mainly designed for Web-based applications and can potentially
be not suitable with growing loT device industry (many loT devices are
migrating to OAuth 2.0 based authentication technologies). It is possible to
use SAML 2.0 in loT, but extra effort/overhead will be required.

Table 17 highlights the benefits of using OpenID Connect as the core authentication
and SSO mechanism for FIESTA-IoT.

Table 17: OpenlID Connect benefits for FIESTA-I0T

Technology/Feature Benefits

Build on top of OAuth 2.0 standard Based on an open standard. Well-known industry
and education organisations already deploy OAuth
2.0. FIESTA-IoT can quickly integrate testbeds and

Copyright © 2016 FIESTA-I0T Consortium 35

Deliverable X.Y -

Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model

Specification and Implementation-150527-V01

applications that employ the standard.

Lightweight, hence suitable to mobile

FIESTA-IOT is built around the integration of sensor

devices (and possible to sensor | and data technologies. Existing technologies in this
devices) domain are already switching to OpenID connect.
Simpler protocol to realise (great | Greatly simplifies development and integration

support for open libraries as well)

processes hence save effort, time and resources.

Potentially safer (XML-DSIG changed
to JWS what eliminates a whole
range of possible attacks)

OpenID Connect is proven to be potentially more
secure than signed XML documents therefore
providing direct benefit to build/use more security
services/communications in FIESTA-loT

Become widely adopted standard by
large organisations such as Google,
Microsoft etc.

Improved user experience (SSO using a Google
account for example), as well as potentially bring
users from multiple sites (i.e. Google, Microsoft etc.
users using their credentials to access FIESTA-loT
services).

Foundation for a far more efficient
and scalable enterprise federated
single sign-on solution and allows
to choice of trust provider

OpenID Connect allows configuring and using
multiple identity providers with a minimal effort. An
example would be allowing users to login, authorise
and use FIESTA-loT services using Google and

Microsoft accounts (here we will trust 2 identity
providers). Ease the increase of more users to
FIESTA-IOT.

2.5.2 Benefits of using UMA for Authorization and Access Control

Analysis of FIESTA-IOT related FP7 projects showed that projects deployed and
used various Authorization and Access Control technologies/mechanisms:

Fed4FIRE supports testbeds via an OMF 6.0 based Policy Decision Point
(PDP), as well as permitted testbed providers to use their own Authorization
and access control mechanisms that are perfectly suitable. The restrictions
here are that: the project consisted of wide range of propriety Authorization
and access control mechanisms that can be hard to maintain if something
changes in the future, as it can potentially require maintenance and
development work and as a result it will cause delays/expenses.

OpenloT used modern OAuth 2.0 tokens for Authorization and access control.
The only downside of using purely OAuth 2.0 is — it does not provide fine-
grained Authorization and access control to protected resources since it is
based on scopes only. In contrast UMA is based on OAuth 2.0, which allows
users to protect resources using fine-grained Authorization mechanisms
based on a flexible claims format.

loT-A proposed to use XACML for fine-grained Authorization and access
control. Even though some experts claim that XACML is hard to use and
maintain it is currently the only Authorization standard and its perfectly suitable
for fine grained Authorization. Unfortunately XACML does not solve access
policy and privacy issues on its own (we need defined mechanisms for
Resource Owners to manage access control to their resources etc.). UMA
provides exactly that — it allows resource owners to manage wide range
resources on any domains, specify and control XACML (if needed)

Copyright © 2016 FIESTA-I0T Consortium

36

Deliverable X.Y -

Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model

Specification and Implementation-150527-V01

policies/rules, as well as help them to maintain privacy and access control
issued by providing all security services (i.e. audit, access control etc.) in a

centralised manner.

The UMA protocol [8] is a new technology (its draft was approved by the IETF early
in 2015), is believed to be the future Authorization control protocol. Table 18 provides
the benefits that UMA can provide for FIESTA-loT—this illustrates that it goes
beyond the previously described authorization and access control technologies and
is best suited to the security requirements of FIESTA-I0T.

Table 18: UMA benefits for FIESTA-I0T

Technology/Feature

Benefits

Provides a dedicated access
relationship service that allows
resource owners to control access to
their services/resources/etc. that are
residing on different domains, in one
central place (no need for expensive

and error prone access policy
management throughout different
domains)

This eliminates a resource owner to control access
to his/her resources by managing different sites that
quite often is expensive, complex, time consuming,
cumbersome as well as quite importantly prone to
errors. FIESTA-IoT will greatly benefit here, i.e. it will
allow different stakeholders to apply Authorization
decisions, e.g. testbed owners, knowledge
providers, users (of their submitted data).

Allows resource owners to provide
claims based Authorization
mechanisms for more fine grained
access control decisions to the
resources and services that they
provide on the web

Since we are trying to achieve fine-grained access
control to protected resources in FIESTA-IoT. UMA
allows a resource owner to provide claims based
Authorization mechanisms for more fine-grained
access control decisions. It will allow FIESTA-IoT
administrators to create, configure and deploy any
suitable access control policies that will protect
FIESTA-IOT services (i.e. portal etc.), as well as will
give freedom to specify control policies for FIESTA-
loT testbed administrators (e.g. maybe they will
decide to re-use existing policies which UMA will
allow without any problem).

UMA does not define specific format
of claims that need to be specified
during Authorization decision which
gives a flexibility to use various
security claim based technologies

Claims format is quite important during Authorization
flow (it might affect Authorization sequence flow,
enforce deployment of various policy engines based
on used claims etc.), therefore FIESTA-I0T will
greatly benefit by allowing to use flexible claims
format during Authorization control flow (single
format or a combination of them) and therefore will
allow to find better technology/technique to (re)use.
It is especially important for FIESTA-lIOT testbeds
since they might need specific access control
decisions/flows based on their heterogeneous
resources and therefore most likely will require to
use flexible/various access control claim formats.

Provides automatic access policy
enforcement mechanisms that will
allow an Authorization Manager to
ask a requesting party without a
presence of a resource owner

UMA introduces the notions of claims where a sub-
protocol can ask a requesting party for additional
claims in order to grant access to the resources.
This will highly benefit FIESTA-IOT resource owners
(i.e. testbed providers), as well as FIESTA-loT

Copyright © 2016 FIESTA-I0T Consortium

37

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

administrators because Authorization
Server/Manager will automatically enforce provided
policies and notify requesting parties (whether it
would be users trying to authorise to FIESTA-IOT or
use protected FIESTA-IOT resources) that claims
are missing in order to grant access to protected
resources.

(request will be based on specified
resource owner access policy)

2.5.3 Benefits of using OpenAM for FIESTA-IoT

It is important from various perspectives (resources, time etc.) to reuse well-defined,
proven and well-tested security technologies that are available (i.e. considering open
source technologies only) and not “reinvent the wheel”. During the analysis of
security software suites (CAS, Gluu and OpenAM) OpenAM was identified as the
best technology to choose.

Table 19 highlights the benefits using of OpenAM as a core security software suit for

implementing the security framework of FIESTA-IOT.
Table 19: OpenAM security software suite benefits for FIESTA-I0T

Technology/Feature

Benefits

OpenAM is “all-in-one” open source
identity, audit, and access control
management solutions and much
more

No need to implement and deploy multiple identity,
audit, and access control management solutions.
OpenAM provides core services as one software
suite and that significantly improves integration,
maintenance, configuration and sustainability.

Customizable to different
environments

Customised to fit different environments which
makes it easier to introduce security and solutions
into existing infrastructures. This includes integration
into existing testbeds as well as core FIESTA-loT
services (i.e. portal)

Provides single and federated Single
Sign-On (SSO) solutions out of the
box (username/password, SAML and
OpenID Connect)

Allows FIESTA-I0T to ease user experience by
providing SSO solutions (for example allowing users
to login FIESTA-I0T using their well-known and
trusted identity provider), allows to bring new users
to FIESTA-IoT by integrating trusted OpenID
Connect identity providers, as well as create and
configure federated Single Sign-On solutions
(valuable integration point with other frameworks,
systems and projects)

Allows you to build a federated
identity and entitlement solution easily

Building a federation can be a challenging task, but
OpenAM provides all needed technologies and tools
to build/adopt federated identity solutions easier and
faster.

Entitlements engine that supports the
latest XACML protocol

It is vital from UMA point of view to allow users to
protect their resources using fine-grained policies
such as XACML.

Full support for OAuth 2.0 and
OpenlID Connect

Full implementation of the chosen authentication
solution.

Support for User-Managed Access

Implementation of the chosen Authorization solution.

Copyright © 2016 FIESTA-I0T Consortium

38

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

(UMA) (under development)

Gateway/reverse proxy
complimentary software (OpenlG)
that allows to protect resources
without modifying existing server
configurations

One of the great benefits of OpenlG is complete
avoidance of editing protected resource host
services. By using OpenlG it is possible to route all
requests to protected APIs in any required way
(without a need to edit any infrastructure/service
configurations).

Multiple authentication mechanisms

OpenAM allows users to be authenticated by using
various authentication mechanisms such as
username/password, OpenlD Connect and SAML
2.0. There is also a possibility to configure X.509v3
certificate authentication that can potentially allow
linking Fed4FIRE users to use FIESTA-I0T platform.

Easy configurable using GUI and
CMD tools

OpenAM deployment is shipped with Graphical User
Interface (GUI) that is clear, easy to use and allows
configuring any feature/service without much hassle.

Copyright © 2016 FIESTA-I0T Consortium

39

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

3 FIESTA-IOT SECURITY ARCHITECTURE
3.1 Introduction

In this section, we describe how OpenAM is employed within the FIESTA-lI0T
platform. In this respect, there are two important dimensions to consider:

1. Protecting the FIESTA-I0T Meta-cloud services. That is, ensuring that authenticated
users (e.g. experimenters, testbed owners, administrators) have secure access to the
applications and services that are deployed and available via the FIESTA-IoT Web
Portal. Hence, securing the usage of the EaaS services and GUIs by users.

2. Protecting access to the individual testbeds by the FIESTA-lIoT services and
applications.

Underpinning these are two core elements—the user roles (section 1.2.2), and the
security building blocks (in the following section) that will be applied to the FIESTA-
IoT architecture. In Section 5, we conclude this work by tracing this architecture
implementation against the requirements and use cases documented in Section 1.

3.2 Security Framework Building Blocks

Figure 9 illustrates the software components that are used to implement and
configure the security within the FIESTA-IOT architecture. These components (in
green) are directly provided by the OpenAM software. The core components for
Authorization and Authentication are deployed on a server as a running OpenAM
instance. Each resource (i.e. REST API to resources deployed on a Web Server) is
then protected behind an OpenlG component deployed on the resource server itself
(acting as a PEP that communicates directly with the central OpenAM server).
Hence, the OpenAM components (left) are deployed centrally in FIESTA-I0T, and the
OpenlG components (right) are deployed multiply across the resource servers to be
protected.

| Identity Manager [OpenAM] |
| (AuthN)
| (FIESTA IdP) |

Policy Administration Point
(PAP)

Authorization Server[OpenAM]
(AuthZ)

Protection API

Token APl

Policy Store

Policy Decision Point
(PDP)

(UMA Authorisation API)

Policy Enforcement Point
(PEP)

(OpenlG Gateway)

Protected
resource API
listeners

Access Policy
Enforcement
Agents

OpenAM Server

g

Resource Server
REST APIs

Protected
Resource Server

Figure 9: Security Framework Components

Copyright © 2016 FIESTA-I0T Consortium

40

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

We now briefly summarize the functionality of these building blocks; subsequent
sections will then describe how these are configured and integrated together to
achieve the security requirements of FIESTA-I0T:

Identity Manager [OpenAM]: This is the concrete instance of the AuthN logical
component within the FIESTA-IOT architecture. The identity manager is the
implementation of the functionality to register and manage user accounts and
credentials. The component also deals with identifying individuals in a system and
control their access to resources within that system by associating user rights and
restrictions with the established identity.

Authorization Server [OpenAM]: This is the concrete instance of the AuthZ
logical component within the FIESTA-IOT architecture. The authorization server is
the implementation of the policy decision point. Its purpose is to make decisions
about whether to grant or deny access to particular client requests. OpenAM was
chosen as the software component to provide this building block. Some of the
core components of OpenAM are:

o Admin Tool (acts as Policy Administration Point): here policies are defined, stored
and managed. OpenAM uses the configuration directory to store entitlements,
whereas profiles are stored in the identity repository (user data store).

o Protection API: the main API endpoint that allows resource owners to register
their resources

o Authorization API (acts as Policy Decision Point): evaluates policies and issues
authorization decisions, and as a policy information point, providing the
information needed for authorization decisions.

o Token API: the centralized location that is responsible for issuing UMA OAuth 2.0
based tokens (i.e. Protection API Tokens, Authorization API tokens etc.).

o Policy Store: the centralized place where authorization policies are stored (profiles
are stored in the identity repository i.e. user data store)

Resource server: the server hosting the protected resources (or reference to
protected resource APIs), capable of accepting and responding to protected
resource requests using access tokens.

Gateway / reverse proxy [OpenlG]: works as an HTTP gateway, also known as
a reverse proxy. It is deployed on a network so that it intercepts both client
requests and server responses. Core components of the are:

o Protected resource API listeners: intercepts HTTP requests to/from protected
resources, calls the authorization manager for authentication and authorization
decisions etc. It can be thought of as the middleware component that is
responsible for communication between experimenters and protected resources.

o Access Policy Enforcement Agents: called by the protected resource API listeners
(described above) when a client requests access to a protected resource. Access
Policy Enforcement Agents communicate with OpenAM in order to enforce a
policy decision based on the request from a client. OpenAM in turn enforces the
policy based on set of claims that were provided by a client and return
Authorization decision back to Access Policy Enforcement Agents.

Copyright © 2016 FIESTA-loT Consortium 41

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

3.3 Securing the FIESTA-IoT Portal and Services

This section describes how the previous building blocks are used to protect access to
the various FIESTA-IoT portal services and applications—that is, the usage of Ul and
tools rather than accessing the data on testbeds directly (securing the testbed data
resources is described in the next section). A high-level visualization of this objective
iIs shown in Figure 10. Here, an experimenter tries to access the FIESTA-IoT portal
(1). The request is intercepted by OpenlG (2) and redirected to login to FIESTA-IOT
(using their previously registered credentials) via the browser. This input is passed to
OpenAM (3) to authenticate the user as a FIESTA-IoT experimenter. Once
authenticated, OpenAM redirects the initial request to OpenlIG again (4). At this point,
the request is checked against authorization policies (e.g. All authenticated FIESTA-
IoT users can access the portal), i.e. OpenAM acts as the PDP to decide if the
request is granted or not (5). Finally, OpenAM sends the Grant result to OpenlG that
allows the request to proceed (6).

Y

Browser

3. login
1. Access Portal

2. Redirectto OpenAM
login

-
+%

l. Redirect to resource

5. Check policy
6. Grant

Fiesta Web Portal

Figure 10: High-level view of protecting portal services

Detailed architecture. We now explain how this high-level procedure is carried out
in detail (using the protocols and standards chosen in the previous section). This is
illustrated in Figure 11 where the components interact via carrying out the numbered
steps:

1. Obtain tokens for authorization to use FIESTA-I0T portal and services: The
FIESTA-IoT Security Manager will obtain a special Protection APl token that is
needed to register resources (or set of resources). In this case the resources are the
FIESTA-IoT portal and service APIs. A request to obtain Protection API token(s) is

Copyright © 2016 FIESTA-I0T Consortium 42

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

made by an admin tool using a HTTP REST call to the OpenAM UMA “Token API”
endpoint.

2. Registering users/experimenters: The FIESTA-I0T Security Manager will register
users and experimenters using the admin GUI tool to interact with the Identity
Manager API.

3. Registering services The FIESTA-IoT Security Manager will register FIESTA-lIOT
services (some services will need to be defined as entities since they will be making
requests to protected APIs hence they must be authenticated and authorized to do
s0). Protected resources will be the FIESTA-IoT portal and service APIs. He/she will
specify URLs of protected resources.

4. Set policies for protected resources: at this point the FIESTA-IOT Security
Manager will be ready to specify fine grained access control policies that will be used
to enforce access to protected resources (i.e. FIESTA-IoT portal and services).
Different users, experimenters and services will require different access rights to
protected FIESTA-IOT resources, hence access to that resources will need to be
enforced by different access control policies. UMA will provide all necessary tools and
options to achieve that task.

5. Attempt to use FIESTA-IoT portal or service: A FIESTA-IoT user, experimenter or
service will attempt to use protected FIESTA-IOT portal or service by issuing a HTTP
request to the protected portal or service APl. HTTP request to protected API will be
intercepted by OpenlG Gateway / Reverse Proxy configured on the Portal’s web
server. Since FIESTA-IoT requesting party (i.e. user, experimenter or service) will not
have special UMA RPT that is needed to use protected resource Access Policy
Enforcement Agent will redirect a requesting party to OpenAM Token API in order to
get needed access request token (i.e. RPT token).

6. Experimenter/User/Service requests an Access Token: as was already mentioned
in the previous step since a requesting party did not provide a UMA RPT token that is
needed to access protected resources it will be redirected to OpenAM Token API.
UMA RPT generation involves exchange of several UMA OAuth 2.0 tokens (for
simplicity not covered here). It can be done explicitly by a requesting party contacting
OpenAM UMA Token API before accessing protected resource (not covered here) or
implicitly by a protected resource wrapper redirecting experimenters/users/services to
the Token API (shown in this example).

7. Check initial experimenter/user/service authentication: before issuing UMA
Requesting Party Token that will be used to access protected resources it is
necessary to make sure that user, experimenter or service is actually authenticated
as well as authorized to perform such action (usually simple/default policies will be
setup by a FIESTA-loT admin that will allow requesting parties to acquire UMA
Requesting Party Tokens that will be used to access protected resources i.e. an
example of simple/default policy might state that a requesting party need to be
authenticated in order to access OpenAM UMA Token API). Final result of several
interactions between requesting party and OpenAM UMA Token API (though
Gateway / Reverse Proxy) would be a return of short lived (for security purposes)
UMA Requesting Party Token (RPT) to a requesting.

8. Check experimenter/user/service authentication/Authorization: as soon as
UMA RPT token will be returned to a requesting party Gateway/Reverse Proxy will
issue an HTTP request to OpenAM UMA Authorization APl endpoint where the
identity of the requesting party and access rights will be checked.

9. Check experimenter/user authentication: the identity of a requesting party will be
checked and verified at this point (need to the done before any authorization checks).

Copyright © 2016 FIESTA-I0T Consortium 43

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

10. Authorization Policy Check: an authorization check will be then be performed
against policies specified by a resource owner (i.e. FIESTA-IoT administrator or its
authorized delegates in this case). At this stage OpenAM UMA Authorization Server
might request additional claims from a requesting party in order to fulfill access
control policy requirements (e.g. for example extra claims about an identity of a
requesting party).

11.Use protected resource: if a requesting party is authorized to use a resource (i.e.
passed all authentication and authorization checks) then access to a protected
resource (i.e. FIESTA-IoT portal or services) will be granted.

Copyright © 2016 FIESTA-loT Consortium 44

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model Specification and Implementation-150527-V01

Experiment 1

5. Attempt to use FIESTA-loT)|
portal or service

AN

11. Use the FIESTA-loT
portal/service

(if authenticated and
authorised)

FIESTA-loT Eaa$ APl
v ()
5 e I
?j rE)(perirneht‘I 4 Data b .
3 g | S
g g gt B N\
] Reservationsl Discovery |
g N~
J
u —1 \
o
8 Semantic Semantic
< Resource Data
E Directory Directory
[
LFJ‘E.!tT ‘A Meta-Directory
| FIESTA-loT Testbed API
.
.2)
F8= [Testbed-specific wrappers]
< s8 /
288
g 3s [Testbed-specific wrappers)
LT S
IoE ..
S \ J

FIESTA-loT Testbed APls

Testbed N
(FIESTA compliant/non-compliant]

)

Gateway / reverse proxy
(acts as Policy Enforcement Point)

Protected Access Policy

resource Enforcement
APl listeners Agents

6. Request Access
Token

(involve several tokens
exchange)

1. Obtain Protection APl Tokens (PAT)
(done by tested admin for FIESTA-loT
portal and service APIs)

4. Set policy for protected
resources (FIESTA-loT portal
and service APls)

Admin Tool
(acts as Policy Administration
Point)

Authorisation Server
(OpenAM)

Token AP|
Protection API

Policy Store

8. Request
Authentication and
authorisation checks

check

7. Initial Authentication \

Authorisation API
(acts as Policy Decision Point)

9. Authentication
check

FIESTA-loT
Admin

2. Register FIESTA
Users/Experimenters/
Services

3. Register (protect)
resources (FIESTA-loT portal
and service APls)

Identity Manager

10. Authorisation
Policy check

Figure 11: Securing the FIESTA-IoT Portal and Services

Copyright © 2016 FIESTA-IoT Consortium

45

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

3.4 Securing FIESTA-IoT testbeds

To secure testbed resources, the same PEP/PDP model is applied. However, there
are certain assumptions that must be made, and concessions made by the testbed in
joining the FIESTA-IOT platform:

e Testbeds trust FIESTA-IoT to authenticate users.

o Testbeds trust FIESTA-I0T to enforce authorization decisions (the policies they have
registered.

e Testbeds must secure the channel from the FIESTA-IoT platform technologies to their
resource API. That is, if their APl uses digital certificates, or API keys—it is up to the
testbed to integrate the security implementation.

e FIESTA Side

1. Access TPS API

2. PDP decision

4. Grant 2. Check policy

Choice of
security

Testbed Side

Figure 12: High-level view of FIESTA-I0T securing of testbed resources

A high-level view of the testbed security is shown in Figure 12. Here it can be seen
that as per the FIESTA-IOT platform approach to connect testbeds—the testbed
implements the TPS API to connect and interoperate with FIESTA-I0T. This TPS
interface is the one that is protected by the authentication and authorization methods
described earlier. It is then up to the testbed to secure the implementation of this
component when it talks to their own testbed API.

Copyright © 2016 FIESTA-I0T Consortium 46

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

When a request is invoked on the TPS API, the PEP (OpenlG) intercepts the
request; takes the authorization token from the request (this will have been
generated earlier e.g. as described in the portal protection); and checks the user has
authorization to access this testbed API. If granted, the request is passed on to the
TPS component implementation.

11. Use the resource (if
authenticated and
authorised)

Resource Server

Resources

4. Set policy for protected
resources
FIESTA-loT

Testbed Admin

5.Attempt to use protected
resource

Gateway / reverse proxy
(acts as Policy Enforcement Point)

Protected Access Policy
resource Enforcement
API listeners Agents

/

1. Obtain Protection AP
Token (PAT)
(done by tested admin)

2. Register FIESTA
Users/Experimenters

Admin Tool
(acts as Policy Administration
Point)

3. Register (protect)
resources

.

FIESTA-loT User/Experimenter

Authorisation Server
6. Request Access (OpenAM)
Token
(involve several tokens

exchange)

Token API
Protection API

Identity Manager

Authorisation API

8. Request
(acts as Policy Decision Point)

Authentication and

Policy Store
h 10. Authorisation

Policy check

authorisation checks

7. Initial Authentication K

check

9. Authentication
check

Figure 13: Securing the FIESTA-IOT testbed security architecture

Detailed architecture. We now explain how this high-level procedure is carried out
in detail (using the protocols and standards chosen in the previous section). This is
illustrated in Figure 13 where the components interact via carrying out the numbered
steps:

1. Obtain UMA tokens for protected resources: first of all FIESTA-IoT testbed admin
will obtain special UMA OAuth 2.0 based “Protection API token” that is needed for
registering resources (or set of resources). A request to obtain Protection API
token(s) will be made using HTTP REST call to OpenAM UMA “Token API”
endpoint!?>. NOTE: testbed admin must be authenticated and authorized to make that
call (testbed admin privilege setup will be usually done during initial OpenAM UMA
setup). In this case, the API is invoked by the web-based admin tool; however, it can
also be invoked programmatically using the referenced APIs in the footnotes.

2. Registering users: FIESTA-I0T testbed admin will register users/experimenters.
Alternatively testbed admin can point them to the URL for self-registration (e.g. as an
example would be allowing experimenters to register and login using OpenID
Connect if they have account on trusted testbed identity server such as Google or

1 https://forgerock.org/openam/doc/bootstrap/dev-guide/index.html#sec-rest-uma

2 https://forgerock.org/openam/doc/bootstrap/dev-guide/index.html#rest-api-tokens

Copyright © 2016 FIESTA-loT Consortium 47

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

10.

use standard username/password approach if it would be more preferable by a
testbed).

Register protected resources: testbed admin will then register details of protected
resources at OpenAM (using UMA resource set Protection API). He/she will specify
UMA Protection APl OAuth 2.0 based tokens, URL of protected resource (or set of
URLs of protected resources) as well as additional information such as ID, name and
even URL to a simple (i.e. default) access policy that will be usually stored at
OpenAM.

Set policies for protected resources: Testbed admin will specify fine-grained
access control policies that will be used to enforce access to protected resources.
There are no restrictions for resource owners on the choice of access policies — it
might be a simple access policy based on OAuth 2.0 scopes or a complex XACML
access control policy logic.

Attempt to use protected resource: FIESTA-IOT user/experimenter will attempt to
use protected FIESTA-IOT testbed resource (or a set of resources) by issuing a HTTP
request. The request to protected API will be intercepted by OpenlG Gateway /
Reverse Proxy by one of the protected resource API listeners. Since FIESTA-IoT
requesting party (i.e. user or experimenter will not have special UMA “Requesting
Party Token (RPT)” that is needed to use protected resource Access Policy
Enforcement Agent will redirect a requesting party to OpenAM Token API in order to
get the needed access request token (i.e. RPT token)

Experimenter/User requests an Access Token: before using UMA protected
resource experimenters/users would acquire special UMA “Requesting Party Token”
(RPT) from OpenAM UMA “Token API” which involves exchange of several UMA
OAuth 2.0 tokens (for simplicity not covered here). It can be done explicitly by a
requesting party contacting OpenAM UMA Token API before accessing protected
resource (not covered here or implicitly by a protected resource wrapper redirecting
users/experimenters to the OpenAM UMA Token API (show in the example in Figure
13).

Check initial experimenter/user authentication: before issuing UMA Requesting
Party Token that will be used to access protected resources it is necessary to make
sure that the user/experimenter is authenticated as well as authorized to perform
such action (usually simple/default policies will be setup by a FIESTA-IoT testbed
admin that will allow requesting parties to acquire UMA Requesting Party Tokens that
will be used to access protected resources i.e. an example of simple/default policy
might state that a requesting party need to be authenticated in order to access
OpenAM UMA Token API). Final result of several interactions between requesting
party and OpenAM UMA Token API (though Gateway / Reverse Proxy) would be the
return of short lived (for security purposes) UMA Requesting Party Token (RPT) to a
requesting part.

Check experimenter/user authentication/Authorization: Gateway/Reverse Proxy
will issue an HTTP request to OpenAM UMA Authorization APl endpoint where
identity of the requesting party and access rights to a protected resource (or set of
protected resources) will be checked.

Check experimenter/user authentication: identity of a requesting party will be
checked and verified at this point (need to the done before any authorization checks).

Authorization Policy Check: after identity of a requesting party will be checked and
verified authorization check will be performed against specified by a resource owner
(i.,e. FIESTA-loT testbed administrator in this case) access control policy. At this
stage OpenAM UMA Authorization Server might request additional claims from a

Copyright © 2016 FIESTA-I0T Consortium 48

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

requesting party in order to fulfill access control policy requirements (e.g. for example
extra claims about location of experimenter/user).

11.Use protected resource: if a requesting party will be authorized to use the resource
(i.e. passed all authentication and authorization checks) then he/she will be allowed
to use a protected resource (or a set of protected resources).

3.5 Example Application of the Security Framework to FIESTA-I0T
Functionality

The following UML sequence diagram (see Figure 14) accentuates how steps
depicted on the FIESTA-IoT architecture (Figure 13) can be mapped to the FIESTA-
loT functionality—in this case the execution of a defined experiment.

Please note that for simplicity purposes some of the steps are not shown on the UML
sequence diagram (such as setup of OpenAM, User-Managed Access, Gateways,
Enforcement Policy Agents etc.), but instead some are described (or briefly
mentioned) during UML sequence diagram description steps. Each step of the flow
diagram (marked from 1 to 16) matched the description sequence (Figure 14):

Preparation (protecting resources)

1. First of all resource owner(s) (i.e. in this case it will be FIESTA-IoT testbed
administrator of their authorized delegate) registers their protected resources (as it is
mentioned earlier, it is assumed that appropriate protection container Open Identity
Gateway was installed and properly configured i.e. protected resource API listeners,
Policy Enforcement agents etc.). At this state a resource owner will provision the
location of OpenAM UMA Authorization Manager (i.e. simply specify URL of
authorization server), UMA Protection API tokens, and UMA tokens validation URLs
etc.

2. After a resource owner registers protected resources with OpenAM UMA
Authorization Server he/she will define and setup fine-grained access control policies,
then store them on the OpenAM UMA Authorization Server. As was already
mentioned UMA does not restrict resource owners on defining access policy formats
(which is very valuable feature from the usability, maintenance, management and
implementation points of view) — from simple policy matrices as Access Control Lists,
OAuth 2.0 scope based or fine grained complex XACML powered policies). NOTE:
this is access Policy Administration Point (PAP).

Experiment execution

3. FIESTA-IoT experimenter/user will define an experiment using a specific set of tools
(not described here) and execute it.

4. Actual experiment execution will be performed and controlled by a Client tool (i.e.
FIESTA-lIoT experimenter tool); or the experiment execution engine. The Client tool
will issue appropriate HTTP request(s) to available experiment resources (i.e. to their
protected APIs). HTTP request will be intercepted by a Web/J2EE or
Gateway/Reverse Proxy (for simplicity it is not shown on the diagram) and will act as
a Policy Enforcement Point (PEP).

5. User identity will be checked at this point. We need to make sure that a user is
authenticated to the system before processing actual experiment request. If

Copyright © 2016 FIESTA-I0T Consortium 49

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

10.

11.

12.

experimenter/user will not be authenticated (i.e. was not previously logged in to the
system and session ticked was not registered) then he/she will be redirected to the
OpenAM for authentication.

OpenAM will return authentication decision back to the protected resource (i.e. to the
service that is protecting it). If authentication was successful then the request
execution will continue, otherwise it will stop here.

Resource Server that will be protected by container with Open Identity Gateway
installed (mentioned in step 4 above) will register a permission request with OpenAM
on behalf of a client. The permission request will typically contain the ID of a
protected resource (or set of resources) that was requested, request scoped (i.e.
usually scoped will be requested methods/actions), details of identity that requested
access etc.

OpenAM will return permission ticket (usually short lived). This ticket will be needed
later for acquiring OAuth 2.0 based UMA Requesting Party Token (RPT) that in turn
will be used to access a protected resource (or set of resources).

Since a request did not contain a special UMA Requesting Party Token (RPT) that
must be used to access UMA protected resources an HTTP 403 (forbidden) response
will be send back to a Client. HTTP response will contain the following information:

a. OpenAM Authorization Server details (i.e. location of the Authorization Server,
how to contact it etc.) that is used to protect a resource (or a set of resources)

b. Protected resource access permission ticket that was previously mentioned

Now a client should have all necessary information in order to acquire UMA
Requesting Party Token (RPT) in order to finally get access to a protected resource
(or set of protected resources). A Client will issue a request to Authorization Server
and include the following information:

c. UMA request permission ticket that was occurred in the previous step

d. Special Authorization API Token (AAT) what was occurred when a Requesting
Party (i.e. FIESTA-IOT experimenter) registered its Client application. AAT
token is needed by Client application to access protected APIs of the
Authorization Server when acquiring Requesting Party Token (RPT)

e. Set of claims (depending on Resource Server authorization policy
specification) such as claims about the identity, scopes, locality etc.

OpenAM UMA Authorization Server will parse a request from the previous step and
check it against the Resource Owner access control policy in order to determine
whether a Client provided enough information (i.e. valid permission ticket, valid
Authorization APl Token, valid set of claims etc.) in order for the Authorization Server
to issue a Requesting Party Token (RPT). It is also possible that the Authorization
Server will request additional claims from a Client in order to fulfil access request
requirements (i.e. for example additional claims about location of a Client etc.).
NOTE: this is the main Policy Decision Point (PDP).

If the Authorization Server validates the permission ticket, then the Authorization
Server will grant and issue a Requesting Party Token (RPT) back to a Client.

Copyright © 2016 FIESTA-I0T Consortium 50

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

13. At this point a Client will have all necessary information to access a protected
resource (or set of resources). A Client will issue an HTTP request back to a
protected experiment resource (or a set of resources), but this time include the UMA
Requesting Party Token (RPT) that is needed in order to access protected UMA
resource.

14. The OpenlG Gateway/Reverse Proxy will intercept an HTTP request from a Client
(same as was done in step 4 above), will detect a presence of a UMA Requesting
Party Token and contact OpenAM UMA Authorization Server for RPT token
introspection. The Authorization Server will examine the Requesting Party Token
(RPT) and check its validity.

15. If Requesting Party Token (RPT) is valid the Authorization Server returns a success
status code.

16.1f the Authorization Server returns a status code indicating that the Requesting Party
Token (RPT) was valid then the Resource Server returns HTTP 20X back to the
Client (i.e. Client is authorized to use the requested resources).

Copyright © 2016 FIESTA-loT Consortium 51

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model Specification and Implementation-150527-V01

authorisation

client
[FIESTA

resource owner
(FIESTA testbed

requesting party

resource server
[FIESTA

Server
(central or local)
[[

| 1. resource owner registers "resources” |
|setup their access APls, UMA scopesetc)
|
|
|
2. resgurce owner specify fine grain accezscontrol policies for registered resources
MOTE: thisisPolicy Administration Point [PAP)

(FIESTA testbed)

admin} experimenter tool) experimenter)

- ___

.} 3. start experimant
'
4. sttempt to use experiment resources
NOTE 1: thisis Policy Enforcement Point (PER)
MOTE 2: request will be intercepted by ldentity Gateway,/Reverse Proxy
ar Web/J2EE Polic Agent
I

I
5. check user identity [i.e. suthentication}——

I

I

&. return authentication decision :

= [=ssume success otherwise execution i
would stop here) |

|
I) - |
I—?. register permission for access mmH
|
|

]

I

I

I

I

I

|

|

I

|

|

|

|

|

|

I

|

|

|

|

|

|

|

|

|

|

|

|

|

|

8. return 403 [forbidden) with authz server location and permission tickst A
I |

I 10. request suthz dats, sending permission |
|}—————— ticket and the claims about identity ~———
I

| possibly other claims as well)
I

1

|

|

t

|

|

|

|

|

|

|

| 11. az==szagainst resource owner sharing preferences
| [i.e. check if infformation provided is enough to issue "Requesting Party Token"
| or request additional infformation if necessary)

| NOTE 1: thizisPolicy Decision Point [i.e. PDF)

: NOTE 2: additional authentication check willmade here
|

|

|

|

|

f

|

|

I

[12, if success [othwenwise execution would stop here)

[‘then add authz data and return "Regquesting Party Token" (RPT)
I

I
- 13. attempt to access resources with "Requesting Party Token" [RPT }
I

I
|14 introspect "Requesting Party Token" [RFT}—— s
| I
| I
ks 15, return token status code |
| I
|

1
Lo 16. if successful allow experimenter to use the resources

R

Figure 14: UMA flow diagram (FIESTA-I0T experiment lifecycle use case)

Copyright © 2016 FIESTA-loT Consortium 52

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

4 OPENAM/OPENIG COMPONENTS

In this section we describe in more detail how the OpenAM and OpenlG components
are utilized to configure the security setup.

4.1 User Registration

The OpenAM identity manager components allow the registration and management
of FIESTA-IOT users via a web browser. To illustrate this we demonstrate via the
FIESTA-IoT portal, how new users can register and authenticate to use FIESTA-IoT.

When the user accesses the portal, they are presented with a login screen. There is
a link to sign up to FIESTA-IOT portal. The registration screen (in Figure 15) is
displayed and the user submits the listed details (this is the registration screen for the
Observer role). A validation link is then sent to the user’s email address. Once, they
select this link their account is activated and the user can log into the FIESTA-IoT
system with their provided credentials.

ontinueRegister - Mozilla Firefox

‘\

FORGEROCK

Register your account

Email address
Username
First Name
Last Name

Phone number

Figure 15: User Registration

4.2 Policy Creation

Policies are specified using the web policy tool available to FIESTA-I0T service/tool
owners and testbed admin (i.e. FIESTA-IoT admin role and testbed admin role).

e The admin create a new policy for a given REST resource (see Figure 16). Here, the
URL and the wildcard pattern is entered for the URL resource or resources to be
protected by the policy. For example: http://www.example.com/* means to apply the
policy to all resources in this domain.

Copyright © 2016 FIESTA-I0T Consortium 53

http://www.example.com/*

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

® et 4 1129 2 fiesta

OpenAM Policy Editor - App - IPlanetAMWebAgentService - Policy - Mozilla Firefox

OpenAM Policy Editor

€ Fiesta-iot.eu ve *Ee U3 AaS =

%

FORGEROCK

Create Policy @

Modifications can be made after the Policy has been created.

Step 1: Name the Policy

Step 2: Specity Resources
Asiehic penss

~~~~~ hitp:/ffiesta-openam fiesta-iot eu:808/api*

Step 3: Select Actions

Step 4 D

Step 5: Del
Step 6: Specily Response Attributes

Siep 7: Review Configuration and Finish

Figure 16: Policy Creation

e The next step is to set the access permissions for actions (HTTP actions e.g. GET,
POST, PUT, DELETE, PATCH) on the specified protected URL. Permission can be
granted or denied to the users who match the conditions.

® Avplications Places

OpenAM Policy Editor - App - IPlanetAMWebAgentservice - Policy - Mozilla Firefox

OpenAM Policy Editor

€ fiesta-ot.eu vie "B U+ AaS =

%
FORGEROCK

Create Policy w

Step 2: Specily

Step 3: Select Actions

[ oewete Alow @ Deny
M cer w O Deny
[0 neao O aliow @ Deny
O nliow © peny

[ parcH QO aliow @ peny
M post © allow O peny
PUT O nlow © Deny

(e

Step 4: Define Subject Conditions

Figure 17: Policy Action setup

o The final step is to define the user roles and conditions that the policy applies to
(Figure 18)

Copyright © 2016 FIESTA-IoT Consortium 54



Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

Step 6 5§

Figure 18: Policy Conditions

An extension of this use-case that will be considered in the final iteration of the
architecture, is that of federated identity management. Experimenters who have a
user account at a testbed or 3™ party in the FIESTA-IoT federation can authenticate
with FIESTA-I0T using their testbed credentials. When the experimenter signs in to
FIESTA-IOT, they are redirected to authenticate with their own identity provider
(trusted by FIESTA-loT)—once authenticated they are free to leverage the FIESTA-
loT services.

4.3 User Identity Database and API

OpenAM uses OpenDJ as the underlying directory for storing user information and
credentials. This is a traditional LDAP based directory, with a REST API atop for
access to information about users.

For example:
¢ Information about a user stored in OpenDJ
GET http://opend].fiesta-iot.eu:8080/api/users/newuser

" id": "newuser",

" rev": "0000000023257469",

" schema": "frapi:opendj:rest2ldap:user:1.0",
" meta": {

" "created": "2016-06-24T12:20:452"
by

"userName": "newuser@example.com",
"displayName": ["New User"],
"name": {

"givenName": "User",

Copyright © 2016 FIESTA-IoT Consortium 55



http://opendj.example.com:8080/api/users/newuser
http://opendj.example.com:8080/api/users/newuser
http://opendj.example.com:8080/api/users/newuser

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

"familyName": "New"
by
"contactInformation": {
"telephoneNumber": "+1 408 555 1212",
"emailAddress": "newuser@example.com"
b
}

e To get the information about a user based on the bearer token attached to a
http request. This returns the user id which can be used for further queries

POST —header "token: dsfsdjhfsdjh84758437*" http://vm1.fiesta-
iot.eu:8080/openam/json/users? action=idFromSession

{
"id":"demo",
"realm":"/",
"dn":"id=demo, ou=user, dc=openam,dc=forgerock, dc=org",
"successURL":"/openam/console",

"fullLoginURL":null

The important fields are explained as follows:
e “id” is the user’s unique identifier in the FIESTA-IoT domain.

e ‘realm” labels the security realm that the user is registered in; “/” means they
are in the top level realm i.e. FIESTA-IoT.

e “dn” is the fully qualified domain name of the user.

Copyright © 2016 FIESTA-I0T Consortium 56



http://vm1.fiesta-iot.eu:8080/openam/json/users?_action=idFromSession
http://vm1.fiesta-iot.eu:8080/openam/json/users?_action=idFromSession

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

5 CONCLUSIONS

5.1 Implementation of Use Cases

In this document we have presented the first version of the FIESTA-IoT security
framework to secure and protect resources in the FIESTA-IOT architecture. The
solution is based upon the usage of a well-established, open source, and community-
based framework i.e. OpenAM. This reduces development effort because re-
implementation of existing standards is not required. Further, such mature
implementation has undergone significant scrutiny in the community and is there
likely to have fewer security bugs and issues.

We now document the extent to which the use cases that were illustrated in the
introduction have been realised by the configuration of the security technologies. It
can be seen from Table 20 that the three use cases have been fully realised by
OpenAM and OpenlG solutions presented in this document.

Table 20: Use Case Solutions

Use Solution applied Complete
Case
uc2 OpenAM ldentity Manager. User sign up and registration pages Y
on FIESTA-IoT portal. Identity API for programmatic usage.
UC3 OpenlG PEP to secure resource. GUI and APIs to enter Y

policies. Appendix A describes how to deploy the PEP. Section
4 describes how policies can be created.

UC1i OPENAM with OpenlG to authenticate and authorize access Y

5.2 Next Steps

In the second part of the work in Task 4.2—the work will focus on the security of data
relevant to 10T data. In particular, this will concentrate on the requirement that data
privacy can be maintained during the experimentation carried out on the FIESTA-IoT
platform.

For this purpose, three key paths will be followed and implemented:

e User driven policies. Users may submit data e.g. from their own resources
within a testbed (smart home), or as part of a crowdsourcing platform. Rather
than treat all resources in a testbed the same (i.e. the testbed sets the access
policies), the user is able to set the policy for their data within the broader
testbed. The use of UMA makes the implementation of this case feasible and
we will investigate deploying it for the final release of the FIESTA-IoT
platform.

e Fine-grained access control. FIESTA-I0T focuses on data. It may be beneficial
for finer grained sub data to be made available e.g. part of the data may be

Copyright © 2016 FIESTA-loT Consortium 57



Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

available to the experimenter, but not all of it. It might also be that the content
itself informs who is allowed access to it. Again, the use of UMA and XACML
will help allow these features to be implemented in the next version.

e Controlled delegated access. Users should be able to delegate access to
other users (or groups). For example, an experimenter may have produced a
set of results and wants to share these with a subset of experimenters, and/or
allow one experimenter to execute the experiment that created them. We will
seek to support delegated authorization in the FIESTA-I0T platform. The
usage of OAuth 2.0 will provide a first step in reaching this implementation.

Copyright © 2016 FIESTA-I0T Consortium 58



Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

6 REFERENCES

[1] FIESTA-IoT Consortium, Bruno Almeida, Tiago Teixeira (Eds.), “Stakeholder
Requirements, FIESTA-I0T Deliverable D2.1, July 2015.

[2] FIESTA-loT Consortium, Francois Carrez (ed.), “FIESTA-IoT Meta-Cloud
Architecture”, FIESTA-IoT Deliverable D2.4, December 2015.

[3] OASIS Standards, “SAML Specifications: SAML v2.0”, http://saml.xml.org/saml-
specifications, last viewed August 2016.

[4] Gluu Inc. “Gluu Web Authentication / SSO Protocol Adoption
Predictions”, https://www.gluu.org/blog/gluu-web-authentication-sso-protocol-
adoption-predictions, last viewed August 2016.

[5] N. Sakimura et al., “OpenlD Connect Core 1.0 incorporating errata set 17,
http://openid.net/specs/openid-connect-core-1 0.html

[6] D. Hardt (ed.), “The OAuth 2.0 Authorization Framework”, http://oauth.net/2/

[7] APICrazy. “Identity Broker Service in SAML: Supporting Multiple Identity
Providers & Service Providers”, https://apicrazy.com/2014/08/04/identity-broker-
service-in-saml-supporting-multiple-identity-providers-service-providers

[8] Thomas Hardjono (ed.), “User-Managed Access (UMA) Profile of OAuth 2.0,
http://kantarainitiative.org/confluence/display/Juma/Home, December 2015.

[9] Wikipedia, “Lattice-based access control®, http://en.wikipedia.org/wiki/Lattice-
based access_control, Last viewed August 2016.

[10] M. Bauer et al. “Introduction to the Architectural Reference Model for the Internet
of Things”, http://www.iot-a.eu/public/public-documents/copy of d1.2, 2014.

[11] Jasig, “Central Authentication Service”, https://wiki.jasig.org/display/CAS/Home,
last viewed August 2016.

[12] Forgerock, “OpenAM — Access Management”, http://openam.forgerock.org/,
2016.

[13] Gluu Inc, “Gluu Server Overview”, https://www.gluu.org/gluu-server, 2016.

Copyright © 2016 FIESTA-I0T Consortium 59


http://saml.xml.org/saml-specifications
http://saml.xml.org/saml-specifications
http://openid.net/specs/openid-connect-core-1_0.html
http://oauth.net/2/
https://apicrazy.com/2014/08/04/identity-broker-service-in-saml-supporting-multiple-identity-providers-service-providers
https://apicrazy.com/2014/08/04/identity-broker-service-in-saml-supporting-multiple-identity-providers-service-providers
http://kantarainitiative.org/confluence/display/uma/Home
http://en.wikipedia.org/wiki/Lattice-based_access_control
http://en.wikipedia.org/wiki/Lattice-based_access_control
http://www.iot-a.eu/public/public-documents/copy_of_d1.2
https://wiki.jasig.org/display/CAS/Home
http://openam.forgerock.org/
https://www.gluu.org/gluu-server

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

APPENDIX A -SECURING A SERVICE DEPLOYED IN A WILDFLY
CONTAINER

This document provides the sequence of instructions to secure a web application
deployed in a Wildfly container. This security will ensure that only authenticated
FIESTA-IOT users are authorized to access the web application.

Pre conditions

e The service must be a web application utilised by a web browser client. For a

web service/application that a client tool/service interacts with, see the
documentation (Security using a FIESTA-IOT client tool).

Java 8 is installed

The following installation is to be carried out in a virtual machine running
Ubuntu Server 14.04. While this installation and configuration is likely to work
with other Operating System flavours - there may be minor changes required.
Please seek support from the FIESTA-IoT team if you encounter configuration
difficulties.

The FIESTA-IoT OpenAM server is deployed at a Fully Qualified Domain
Name, i.e., FQDN (URL: http:// vm1.fiesta-iot.eu:8080/openam)

The VM must be on the same domain as the OpenAM server (using this
configuration) e.g. vmz2.fiesta-iot.eu

Edit /etc/hosts to point change all IP addresses to the domain name

This document goes through the following steps:

Install Wildfly 10

Install an example Wildfly application

Deploy the OpenlG gateway as a root application in Wildfly
Configure the OpenlG gateway to protect the resource

Demonstration of protected resource

INSTALL WILDFLY 10

SN

. Set to root: Sudo -i

. sudo unzip wildfly-10.0.0.Final.zip -d /opt/

. sudo 1n -s /opt/wildfly-10.0.0.Final /opt/wildfly

. sudo cp /opt/wildfly/bin/init.d/wildfly.conf /etc/default/wildfly
. Edit variables in /etc/default/wildfly:

##Location of JDK

JAVA HOME="/usr/lib/jvm/java-8-oracle"

## Location of WildFly

JBOSS HOME="/opt/wildfly"

## The username who should own the process.

Copyright © 2016 FIESTA-IoT Consortium 60



http://www./???.eu:8080/openam

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

JBOSS USER=wildfly

## The mode WildFly should start, standalone or domain
JBOSS MODE=standalone

## Configuration for standalone mode

JBOSS CONFIG=standalone.xml

## Configuration for domain mode

# JBOSS DOMAIN CONFIG=domain.xml

# JBOSS HOST CONFIG=host-master.xml

## The amount of time to wait for startup
STARTUP WAIT=60

## The amount of time to wait for shutdown
SHUTDOWN_WAIT=6O

## Location to keep the console log

JBOSS CONSOLE LOG="/var/log/wildfly/console.log"
## Additionals args to include in startup

# JBOSS OPTS="--admin-only -b 172.0.0.1"
6. sudo cp /opt/wildfly/bin/init.d/wildfly-init-debian.sh
/etc/init.d/wildfly
7. sudo chown root:root /etc/init.d/wildfly
8. sudo chmod +X /etc/init.d/wildfly
9 sudo update-rc.d wildfly defaults

10. sudo update-rc.d wildfly enable

Create directory for logs:

11. sudo mkdir -p /var/log/wildfly

Add system user to run WildFly:

12. sudo useradd --system --shell /bin/false wildfly

Change the owner of WildFly directories:

13. sudo chown -R wildfly:wildfly /opt/wildfly-9.0.2.Final/
14. sudo chown -R wildfly:wildfly /opt/wildfly
15. sudo chown -R wildfly:wildfly /var/log/wildfly

Next, edit the standalone.xml file using your preferred file editor and do the changes:

cd /opt/wildfly-8.2.0.Final/standalone/configuration

1 <interface name="management">
2 <any-address/>
3 </interface>
4 <interface name="public">
5 <any-address/>
6 </interface>
Start WildFly:

Copyright © 2016 FIESTA-IoT Consortium 61



Deliverable X.Y — Doc.id: FIESTAlIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS
Specification and Implementation-150527-V01

Model

sudo service wildfly start

INSTALL WILDFLY APPLICATION

Check out the wildfly examples
1. git clone https://github.com/wildfly/quickstart.git
2. cd /quickstart/helloworld-ws
3. mvn clean package wildfly:deploy

Check at http://vm2.fiesta-iot.eu:8080/wildfly-helloworld-ws

INSTALL OPENIG AS WILDFLY ROOT
Get OpenlG and rename to ROOT.war

Create the OpenlG configurations:

Config.json

{
"handler": {
"type": "Router",
"audit™: "global",
"baseURI": "http://fiesta-iot-portal .eu:8080/example”,
"capture™: "all"

}
"heap": [
{
"name": "LogSink",
"type": "ConsoleLogSink",
"config": {
"level": "DEBUG"

}
hg
{

"name": "JwtSession",
"type": "JwtSession"

{

"name": "capture",
"type": "CaptureDecorator",
"config": {
"captureEntity": true,
"_captureContext": true

}
}
]
}

e cp config.json /home/wildfly/.openig/config/config.json
e mkdir /home/wildfly/.openig/config/routes

Copyright © 2016 FIESTA-I0T Consortium

62



https://github.com/wildfly/quickstart.git
http://vm2.fiesta-iot.eu:8080/wildfly-helloworld-ws

Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

{

"handler": {
"type": "DispatchHandler",
"config": {
"bindings": [

"condition": "${request.cookies['iPlanetDirectoryPro’] == null}",
"handler": {
"type": "StaticResponseHandler",
"config": {
"status": 302,
"reason"; "Found",
"headers™: {
"Location"; [
"http://lvm1.fiesta-
iot.eu:8088/openam/XUl/#login/&goto=${urlEncode(contexts.router.originalUri)}"
]
h
"entity": "Redirecting to OpenAM..."
}
h
{

"comment": "This condition is optional, but included for clarity.",
"condition": "${request.cookies['iPlanetDirectoryPro" != null}",
"handler": {
"type": "Chain",
"config": {
"filters": [
{
"type": "PolicyEnforcementFilter",
"config": {
"openamUrl": "http://vm1.fiesta-iot.eu:8088/openam/",
"pepUsername™: "policyAdmin",
"pepPassword": "password",
"ssoTokenSubject": "${request.cookies['iPlanetDirectoryPro"[0].value}"

}
}
I,
"handler": "ClientHandler"
}
}
}
]
}
h
"condition": "${matches(request.uri.path, */pep') and not contains(request.uri.path, 'not-
enforced’)}"

}

e cp O4-pep.json /home/wildfly/.openig/config/routes/04-pep.json

Restart Wildfly

Copyright © 2016 FIESTA-IoT Consortium 63




Deliverable X.Y — Doc.id: FIESTAIoT-WP4-Task4.1-DeliverableDraftBrainstorming-EaaS Model
Specification and Implementation-150527-V01

1. sudo service wildfly restart

CONFIGURE THE POLICIES
Create a Policy in OpenAM

Follow these steps:

1. Log into OpenAM console as administrator (amadmin).
2. Inthe top-level realm, create an authorization policy in the
iIPlanetAMWebAgentService policy set called Policy for OpenlG as PEP.
3. Configure the policy with the following characteristics:
4. Resources
5. Protect the URL for the minimal HTTP server
app.example.com:8081/pep.
6. This policy applies to resources served by the minimal HTTP
server as they are accessed through OpenlG.

7. Actions
8. Allow HTTP GET.
9. Subjects

10. Add a subject condition of type Authenticated Users.
11. Make sure all the changes are saved.

Create a Policy Administrator in OpenAM
Follow these steps:

1. Inthe top-level realm, create a subject with ID policyAdmin and password
password.

Create a policyAdmins group and add the user you created.

In the privileges configuration, add the REST calls for policy evaluation privilege
for the policyAdminsgroup.

This allows the user to request policy decisions.

Make sure all the changes are saved.

wn

ok

Copyright © 2016 FIESTA-I0T Consortium 64


about:blank
about:blank

