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Abstract: The nonlinear model put forward in (Mahmoodi 2016) for early visual 

systems is investigated in details in this paper to explain some nonlinear behaviours of 

complex and some simple cells. Nonlinear cells are modelled as systems with linear-

nonlinear structures where the linear sub-unit is constructed by the layers proposed in 

(Mahmoodi 2016) and nonlinear sub-units are the results of an axon (modelled as a 

transmission line) carrying a series of spikes. In this paper, the nonlinear subsystems of 

complex cells are investigated in more details to show the mechanism by which nonlinear 

neurons work. Here the nonlinear systems modelling nonlinear sub-units of complex cells are 

represented by their first and second order responses. Our analytical as well as numerical 

results show good agreements with biological recordings reported in the literature. 

I. INTRODUCTION 

The scale space theory has been put forward as a linear model to describe early 

visual operations in a universal visual front end (Weickert et al. 1999; Lindeberg 2011). In 

this linear framework, a set of axioms for an early visual system are postulated to derive 

Gaussian kernels and their family as filters employed in the visual system (see e.g. (Weickert 

et al. 1997; Florack 1997; Ter Haar Romney 2003)). Florack et al. (Florack et al. 1992) have 

shown that the class of admissible scale-space kernels becomes limited by considering semi-

group, scale invariance and rotational symmetry properties. In such a framework, a Gaussian 

kernel is derived for the visual system if the property of the spatial separability for the kernel 

in Cartesian coordinate systems is also added to the required characteristics for admissible 

scale space kernels. Gaussian scale space framework is also extended for temporal data 



(Koenderink 1988; Florack 1997; ter Haar Romney et al. 2001). Lindeberg at al. (Lindeberg 

and Fagerstrom 1996) then develop a time-recursive space time separable spatio-temporal 

scale space model. Duits et al. (Duits et al. 2004) also considers a Poisson scale space 

formulation in which the property of the local exterma non-enhancement is not included. 

Lindeberg (Lindeberg 2011; Lindeberg 2013) also presents a continuous time-scale model 

with a time recursive mechanism by exploiting a Gaussian scale space framework. In such a 

framework, a parametrization of the spatio-temporal filters with respect to image velocity and 

deformation is formulated. The fact that filters used in early biological visual systems are 

Gaussian related kernels, confirms the hypothesis that early biological visual systems possess 

the mathematical properties and axioms assumed for an early visual front end in scale-space 

community. A computational model based on RFs of LGN for orientation-selective cells in 

V1 of visual cortex is also presented in (Azzopardi and Petkov 2012). In this model, the RF of 

an orientation-selective neuron consists of a set of aligned RFs of LGN sub-units represented 

as the difference of Gaussians. The response of such an orientation-selective cell is then 

nonlinearly calculated as the weighted geometric mean of all sub-unit responses in the set. 

This model known as CORF exhibits the following three properties of simple cells: 1) 

contrast invariant orientation tuning, 2) cross orientation suppression and 3) response 

saturation. A push-pull inhibition is also included in this model in (Azzopardi et al. 2014) to 

demonstrate that the properties of simple cell that this push-pull model enjoys is extended to 

the relationship between spatial frequency and orientation tuning, and between spatial 

frequency tuning and contrast. Such relationships can be controlled by changing the strength 

of push-pull inhibition. On the other hand, a model for biological visual systems based on 

anatomical and physiological assumptions is proposed in (Mahmoodi 2016). This model is 

nonlinear in nature due to the way the signals are propagated through cascaded neurons. A 

linearity condition is found in (Mahmoodi 2016) to determine how such a visual system acts 



linearly. For situations where this system works linearly, its behaviour is in total agreement 

with scale space theory (Mahmoodi 2016). If the linearity condition, however, is not met, this 

visual system works nonlinearly. Initial attempts have been made in (Mahmoodi and Saba 

2016) to explain the nonlinear behaviour of complex cells as well as some simple cells by 

using this model. However, the notion of higher order responses for nonlinear systems is not 

employed in (Mahmoodi and Saba 2016). The nonlinearity of the model presented in 

(Mahmoodi 2016) is also investigated here in this paper by incorporating the concepts of the 

first and second order responses of nonlinear systems to demonstrate that the nonlinear 

behaviour of the complex cells and some simple cells can indeed be explained by this visual 

model. Our contribution in this paper is therefore to explain how the nonlinear mechanism of 

the complex cells and nonlinear simple cells work by employing the model proposed in 

(Mahmoodi 2016) for early biological visual systems. Our paper is structured as follows: 

Section II describes the nonlinearity of the visual model investigated in this paper and 

demonstrates how this nonlinearity can account for the nonlinear cells’ behaviour. Numerical 

results of the model investigated here are then compared with experimental recordings in 

biological literature in section III. Section IV finally draws the conclusions. 

  

II. NONLINEAR MODEL FOR NEURONS 

The model of the early visual system proposed in (Mahmoodi 2016) is nonlinear. 

This nonlinear system acts linearly under some certain conditions. The linear properties and 

linear receptive fields derived from this model are explored in (Mahmoodi 2016). In this 

paper, this nonlinear model is exploited to explain the behaviour of nonlinear complex cells 

in visual cortex. According to the model presented in (Mahmoodi 2016), the visual signal is 

propagated from retina to striate cortex through a series of cascaded neural layers. Each 

neural layer consists of interconnected neurons as shown in figure (1-top). Every neuron in 



each layer is also connected to a neuron in the next layer through its axon as shown in figure 

(1-bottom). Vertical and horizontal lines in figure (1-bottom) represent the axons and neural 

layers (consisting of dendrites) respectively. It is reported in the literature (see e.g. (Emerson 

et al. 1987; DeAngelis and Anzai 2004; DeAngelis et al. 1993)) that complex and some 

simple cells are nonlinear and have a linear- nonlinear (ℒ − ℵ) structure. For these cells, the 

linear part is simply Gaussian-related receptive fields followed by non-linear static units 

possessing a nonlinear input/output relationship. For simple cells characterized with 

nonlinearity, the linear part consists of one linear sub-unit (kernel). This is different from 

complex cells which are characterized with parallel (ℒ − ℵ) sub-units. According to the 

model presented in (Mahmoodi 2016), the neural layers are responsible for the linear sub-

units of the nonlinear cells. On the other hand, in this paper we demonstrate that the process 

of spikes propagating on axons behaving like transmission lines under some certain condition 

are responsible for the nonlinearity. In (Mahmoodi 2016), axons transmitting neural spikes 

from a neuron to another one are modelled as transmission lines. Neural spikes are also 

modelled as impulses (Dirac delta functions). As a result, the impulse response of an axon is 

calculated as (Mahmoodi 2016): 
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where, t, z, 
zG , 

zC , and
zR  are the time that a spike reaches to the neuron in next layer from a 

neuron in the current layer, the length of axon, conductance, capacitance, and resistance of 

the axon (transmission line) per unit length respectively. 

Obviously the response of the axon for a single spike propagated at nT  and 

represented by  )( nTt   at z can be written as: 
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Membrane potentials on the dendrites greater than a threshold are transformed 

into a burst of spikes transmitted through the axon. For the cases where the delay of the 

latest spike (the spike with highest temporal distance from the beginning of the burst) in 

this burst is much less than the total time which spikes need to travel to the end of the 

axon (i.e.   tT n  max ), ),( nh Ttzv   in equation (2) is approximated as (Mahmoodi 2016): 
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where 
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z  . If a neuron (neuron A) sends N spikes to another neuron in 

the next layer (neuron B), the potential accumulated in the neuron B’s dendrites before 

neuron B starts firing is calculated as: 
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nT  can be written as a sum of all time intervals between consecutive spikes, i.e.: 
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where T is the mean time interval between consecutive spikes. Equation (5) can 

therefore be rewritten as: 



 
 

   
  
























2
1)exp(

exp)1(exp

21exp

1exp
)exp(),(),(

Ta

NTaNNTaN

t

T

Ta

NTa
Tatzvtzv ho  (7) 

The mean time interval between consecutive spikes, T , is assumed to be much 

smaller than the time needed for spikes to reach to the end of the axon, t, therefore ),( tzvo  

can be approximated as: 
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where N is the total number of spikes in the burst. According to classical 

rectification model (Carandini and Fester 2000) for neural firing rate, the input membrane 

potential of neuron A is proportional to firing rate and therefore N. The classical rectification 

model (Carandini and Fester 2000) indicates that the firing rate and therefore N increases 

linearly with respect to the membrane potential inv , i.e.: inkvN  , where k is a constant. In 

other words, equation (8) is written as: 
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Equation (9) shows the input-output relationship for a neuron behaving nonlinearly. 

As seen from this equation, this nonlinearity is in a form of an exponential function. It is 

interesting to note that the input-output relationship of some neurons represented by equation 

(9) is similar to the input-output relationship of an electrical diode. In this section, we 

therefore demonstrate how such neurons can be exploited in the early visual circuitry to 

implement complex cells and some nonlinear simple cells. But before this, let us explore the 

possibility of a neuron whose input-output relationship is governed by equation (9), to work 

like a linear amplifier. 



II.A) NEURAL SIGNAL AMPLIFICATION 

In order to see the amplification ability of neurons possessing the input-output 

relations similar to (9), let us assume that the input voltage consists of two components: one 

which is constant inV  over a certain period of time and the other one which has small values 

iv  with respect to inV , i.e.: iinin vVv  . The output ov  can then be approximated as:  
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As observed from equation (10), the relationship between iv  and ov  is linear for 

small values of iv .  In a linear circuit, the ratio of the output voltage to input voltage, 
i

o

v

v
, is 

known as the electrical gain of the linear circuit. For ini Vv  , the neuron represented with 

equation (9) acts linearly with respect to iv  as described by equation (10). Therefore, an 

electrical gain can be defined for this neuron. Such an electrical gain is proportional to  

  1exp

)exp(),(

Ta

TaTkatzvh .   The condition under which this linear circuit amplifies the input signal 

is: 
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In the above inequalities, z and t are as usual, the axon length, and the time it takes a 

spike to travel to the end of the axon. In practice, to satisfy the pre-condition ini Vv  , there 



should be enough background illumination (producing inV ) in the visual scene in steady state 

so that changes in illumination ( responsible for iv ) inside the visual scene is small in 

comparison with the background illumination. This is inline with the fact that our visual 

system fails to recognise the colours in a dark room. Here this dark room experience could be 

interpreted as the case where there is no linear electrical amplification of input signals 

(voltages) due to the small values for inV . 

II.B) UNITS WITH INPUT-OUTPUT RELATIONSHIP 

n

ino vv 
  

Biological recordings show that the input-output relationships of most nonlinear 

cells such as some simple neurons have a static unit with a form of 
n

ino vv 
(DeAngelis and 

Anzai 2004; DeAngelis et al. 1993). 

Units whose input-output relationships are represented by equation (9) demonstrate 

an input-output characteristic similar to an electrical diode. Figure (2) shows a circuit 

diagram based on log and anti-log amplifiers in which sub-units with label D represent a 

system with the input-output relationship determined by equation (9). These sub-units are 

used to implement a circuit with input-output relationship of the form 
n

ino vv 
 as shown in 

figure (2).  In fact, these sub-units D represent the axons of some neurons acting nonlinearly 

according to equation (9). The arrow shape in one end of the sub-unit D in figure (2) 

represents the output of the sub-unit. Therefore, the other end (the flat end in figure (2)) of 

the sub-unit corresponds to the input of the sub-unit. The left sub-unit with amplifier A in 

figure(2) constitutes a logarithm function which simply obtains the logarithm of the input 

signal. Amplifier B in this figure is a linear amplifier (such as the one described in section 

II.A) with a voltage gain of n. Finally, the right sub-unit D parallel with Amplifier C in this 

figure is an exponential function, which obtains the exponential value of its input. The total 



output-input relationship then becomes of the form of 
n

ino vv 
. Biological data from 

nonlinear neurons possessing static nonlinearity of the form 
n

ino vv 
 demonstrates that the 

value of n may vary between unity and 3.2 in a population of nonlinear neurons (DeAngelis 

and Anzai 2004). However a majority of these nonlinear neurons are characterized with a 

value of 2 for n (DeAngelis and Anzai 2004). Therefore the input-output relationship of the 

static unit in a majority of these nonlinear neurons is of the form 
2

ino vv 
. The model 

presented in figure (2) is also in line with the biological recordings reported in (DeAngelis 

and Anzai 2004; DeAngelis et al. 1993) (see e.g figure 44.5 and the related text in 

(DeAngelis and Anzai 2004)) to measure directional similarity index. In the experiment 

presented in (DeAngelis et al. 1993; DeAngelis and Anzai 2004), the exponents of the 

nonlinear cells vary in range between 0.5 to 8. The gain of linear amplifier B shown in figure 

(2) can vary in that range and it is this gain which determines the exponent of the nonlinear 

unit with 
n

ino vv 
 input-output relationship. 

II.C) NONLINEAR NEURONS 

The linear-nonlinear (ℒ-ℵ) structure of complex and some simple cells in biological 

literature (see e.g. (Emerson et al. 1987; DeAngelis and Anzai 2004; DeAngelis et al. 1993)) 

consists of a linear receptive field followed by a nonlinear sub-unit whose input-output 

relationship is of the form of 
n

ino vv 
. The output of the linear receptive field is the input to 

the nonlinear sub-unit. Nonlinear simple cells are characterized with a ℒ-ℵ structure in which 

a single linear receptive field is followed by a nonlinear unit (DeAngelis and Anzai 2004). 

Complex cells, on the other hand, consist of parallel ℒ-ℵ sub-units whose outputs are 

summed together to form the final output (Adelson and Bergen 1985; DeAngelis and Anzai 

2004). 



 

II.D) ℒ-ℵ SYSTEM IDENTIFICATION 

Linear-nonlinear-linear (ℒ-ℵ-ℒ) systems are widely used in biology to identify the 

systems of nonlinear neurons (see e.g. (Spekreijse 1969; Korenberg 1973; Korenberg and 

Hunter 1986)). Nonlinear neurons similar to any nonlinear system are represented and 

identified with higher order kernels such as Wiener or Volterra kernels (Wiener 1958; 

Volterra 1959). For a system consisting of cascaded linear-nonlinear-linear sub-units each 

Wiener kernel is directly proportional to the Volterra kernel of the corresponding order 

(Korenberg and Hunter 1986). If the nonlinearity in this cascade is described by a 

polynomial, i.e.: 
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Where ovv  and invu  . Then the first order Volterra kernel is calculated as 

(Korenberg and Hunter 1986): 
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where 1a  is a non-zero constant coefficient in equation (11) and )(k and )(g are 

the impulse responses of the linear subsystems inside the cascade before and after the 

nonlinear subsystem as shown in figure (3). 

Similarly the second order Volterra kernel is calculated as (Korenberg and Hunter 

1986): 
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where again 
2a  is a non-zero constant coefficient in equation (11). It is reported in 

biological literature that only second order kernels are sufficient to represent nonlinear 

neurons in the early visual system (DeAngelis and Anzai 2004). Here, we therefore employ 

up to only second order responses for nonlinear cells in this paper. Here, we exploit the 

aforementioned ℒ-ℵ-ℒ system identification framework for ℒ-ℵ system identification 

associated with the nonlinear neurons discussed earlier in this paper. To this end, let us 

consider )()(  k  where )(  is a Dirac delta function. In such a case, one can write: 

)()(*)()( tvtvtty          (14) 

where y and v are the output signals of the cascaded system and the nonlinear 

subsystem respectively as shown in figure (3). In this case, the ℒ-ℵ-ℒ system is reduced to a 

ℒ-ℵ system. Consequently, equations (12) and (13) are changed to equations (15) and (16): 
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)()(),( 212212 tgtgatth         (16) 

Neurons are characterized with spatial as well as temporal profiles. Equations (12) 

and (13) for ℒ-ℵ-ℒ systems should therefore be extended and written with respect to both 

spatial and temporal domains, i.e.: 

   dydxdtyyxxgyxkatyxh ),,(),,(),,( 11    (17) 

 dydxdtyyxxgtyyxxgyxkattyyxxh   ),,(),,(),,(),,,,,( 22211122121212

           (18) 

Similar to the treatments for equations (15) and (16), the first and second order 

kernels for ℒ-ℵ systems can be calculated by assuming ),,(),,(  yxyxk  , i.e.: 
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It is usually more convenient to write equation (20) in terms of 12 xxx  , 

12 yyy  , and 12 ttt  , i.e.: 
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(21) 

Complex cells are considered to possess a structure consisting of parallel ℒ-ℵ 

systems (Adelson and Bergen 1985) as shown in figure (5). If the input-output relationships 

for m(.) and p(.) nonlinear subsystems shown in figure (5) are written in a form of 

polynomials as: 
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Then the first and second order Volterra kernels are written as: 
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where ),,( tyxf  and ),,( tyxg are the impulse responses of linear subsystems in 

parallel. In the next section, we exploit equations (24) to (26) with conditions (22) and (23) to 

calculate the second order Volterra (and therefore Wiener) kernels for biological visual 

systems modelled as ℒ-ℵ systems and therefore compare our simulation results with the 

biological recordings. 

 

III. RESULTS 

In this section, the simulation results obtained from our model described in section II 

are presented and compared with the biological recordings reported in the literature. It is 

reported in biology that nonlinear simple cells are characterized with a half-squaring property 

as a nonlinear system. As indicated in section II.B, figure (2) shows a circuit diagram 

producing a powering relationship (function) between input and output of the subsystem. The 

subsystem presented in figure (2) consists of an amplifier (amplifier B) with the gain of n 

sandwiched between a log and anti-log amplifier. It is easy to see that the input membrane 

potential of a neuron appears as the firing frequency of spikes in equation (8) and 

consequently equation (9). The input-output relationship of the circuit diagram presented in 

figure (2) is of the form 
n

ino vv  . It is reported in the biological literature that n is around two 

(DeAngelis and Anzai 2004). Since frequency is never negative, the input-output relationship 

of a subsystem described in figure (2) for n=2 is a half-squaring function which is in total 

agreement with biological recordings presented in (DeAngelis and Anzai 2004) and shown in 

figure (4). 



According to energy model (Adelson and Bergen 1985), complex cells contain 

parallel linear-nonlinear subsystems as depicted in figure (5). In this paper, we argue that the 

nonlinear sub-unit of nonlinear neurons such as complex cells exists due to the process of the 

propagation of a series of spikes propagating through the cell’s axon behaving like a 

transmission line (see section II). This is to say that a complex cell could consist of some 

simple cells whose nonlinear sub-unit is their axon behaving nonlinearly in the presence of 

neural spikes. Here we expand equation (9) by using Taylor’s series for the nonlinear sub-

unit m(.) shown on the top of figure (5) to obtain the nonlinear input-output relationship in a 

form of polynomial expansions such as equations (22) and (23).  
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where  immmmi Tkab   and, ma  and mT are constants discussed in the previous section 

and related to the nonlinear sub-unit m(.) in the complex cell. Similarly for the nonlinear sub-

unit p(.), we can write: 
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where  ippppi Tkab   and, pa  and pT are constants associated with the nonlinear 

subsystem p(.) in the complex cell. Equations (27) and (28) are in the form of the conditions 

(22) and (23). According to equations (24) to (26), the first and second order kernels can 

therefore be written as: 
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As an example, for a complex cell, the impulse responses g and f  in equations (29) 

and (30) and figure (5) can be: 
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where );( ztvh  is given in equation (1) and ),(*),(),( 1 yxKyxKyxK nn   in which 

),( yxK  is the modified Bessel function of the second kind and zero degree (see section 2.3 in 

(Mahmoodi 2016) for more details about ),( yxKn  and );( ztvh ). In the early visual system, 

the outputs of a few simple cells can be the inputs to the complex cell. These simple cells can 

be, for example, spatially arranged in the way shown in  

1) red circles of figure (1-top) for complex cells with elongated non-isotropic second 

order response (see section 3.3 in (Mahmoodi 2016) for elongated cells for more details) or 



2) blue and red circles in figure (1-bottom) for complex cells with directional 

selectivity in their second order response (see section 3.4 in (Mahmoodi 2016) for cells with 

directional selectivity for more details ). 

For complex cells with elongated second order response, our numerical result shown 

in figure (6-a) and computed by using equation (21) is in good agreement with the biological 

recording shown in figure (6-b) and reported in (DeAngelis and Anzai 2004).  In the case of a 

nonlinear complex cell with directional selectivity appearing in its second order response, the 

first and second order spatio-temporal responses are shown in figure (7-a and b). For such a 

complex cell, 11 pm BB   and 22 pm BB  . Figures (7-c and d) also show the first and second 

order spatio-temporal responses recorded for a complex cell in biological experiments 

(DeAngelis and Anzai 2004). As can be seen from this figure, the second order spatio-

temporal response of the complex cell predicts a directional selectivity; however, the first 

order response shows no directional selectivity. Our simulation results shown in this figure is 

therefore in total agreement with experimental results recorded in biological literature. Let us 

now investigate the effects of coefficients such as 1mB , 2mB , 1pB  and 2pB  in the first and 

second order responses of a complex cell. To this end, we assume that the spatial impulse 

responses of the linear subsystems of a complex cell with parallel sub-units and an ℒ-ℵ  

structure similar to the one depicted in figure (5), are shown in figures (8-a) and (8-b) 

respectively. The three neurons in the tenth layer are arranged as the red circles shown in 

figure (1-top). The outputs of these three neurons are the inputs of a complex cell whose first 

and second spatial responses are determined by equations (29) and (30). Figure (9) shows the 

first order spatial response determined by equation (29) for six different values of 
1

1

m

p

B

B
 (see 

the caption of figure (9) for more details). As can been seen from figures (9), the first order 

spatial response corresponds to the spatial impulse response of one of linear subsystems for 
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B
(figures (9-a) and (9-b)). Figures (9-c) to (9-f) also show other scenarios where 

the first order spatial response is a combination of the two spatial impulse responses of the 

linear sub-units. The second order spatial responses given by equation (30), are also depicted 

in figure (10) for six different values of the ratio
2

2

p

m

B

B
.  As observed from this figure, for 

10

1
0

2

2 
p

m

B

B
, the second order spatial responses shown in figures(10-a) and (10-b) are very 

similar to one of the spatial impulse responses of the linear subsystems of the complex cell 

shown in figure (8). Other second order spatial responses determined in equation (3) and 

depicted in figures (10-c) to (10-f) are a linear combination of the two spatial impulse 

responses. Figures (11) and (12) illustrate the similar results for the first and second order 

spatiotemporal responses of a complex cell with an ℒ-ℵ structure in which the spatiotemporal 

impulse responses of the linear subsystems are depicted in figures (7-a) and (7-b). As can be 

observed from figures (11) and (12) and similar to the cases in figures (9) and (10), the first 

and the second order spatiotemporal responses of a complex cell are similar to one of the 

spatiotemporal impulse responses of the linear subsystems when 
10

1
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1

1


m

p

B

B
 and 

10

1
0

2

2 
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m

B

B
 in equations (29) an (30). The recorded data from biological experiments 

shown in figures (7-a) and (7-b) suggest that the range of ratios 
1

1

m

p

B

B
 and 

2

2

p

m

B

B
 is expected to 

be in the interval of ]
10

1
  0[ .  

 

 



IV. CONCLUSIONS 

The nonlinearity of a visual model proposed in the previous work (Mahmoodi 2016) 

is investigated in this paper. This nonlinearity exists due to axons behaving like a 

transmission line at the presence of neural spikes. It is demonstrated here that the 

characteristics of nonlinear simple cells and also complex cells can be explained by this 

nonlinearity. By using the ℒ-ℵ configuration, the first order and second order responses of the 

nonlinear simple cells and complex cells are explained by the model considered in this paper. 

The nonlinear unit of this ℒ-ℵ system is associated with the transmission line behaviour of 

the axons of the cells. Our formulations here show that such a nonlinear sub-unit behaves in a 

similar fashion to an electrical diode. It is discussed here that such a nonlinear element can be 

configured to work linearly and therefore can be used as a linear amplifier in neural circuits. 

Our formulations here also demonstrate why complex cells may not show any directional 

selectivity in their first order response but their second order response demonstrates a 

directional selectivity. 
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Figure (1): (top) A layer consists of interconnected neurons (bottom) A cross-section of a 

series of neural layers 
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Figure (2): A circuit diagram for a unit whose input-output relationship is 
n

ivv 0  

Figure (3): A cascaded subsystems of linear and nonlinear systems to compose a ℒ-ℵ-ℒ 

system. 

 

Figure (4): Biologically recorded input-output relationship according to [DeAngelis Anzai 

2004] 
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Figure (5): The structure of a complex cell containing parallel linear and nonlinear 

subsystems. 

 

a                                                              b 

Figure (6): a) The second order responses of a complex cell whose inputs are from the 

simple neurons arranged as the red circles in figure (1-top ) calculated by using equation (21), 

b) The second order response of a V1 complex cell from a monkey reported in biological 

literature (DeAngelis and Anzai 2004) 
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a                                                              b 

 

c                                                              d 

Figure (7): (a) The first order spatio-temporal response of the complex cell model (b) the 

second order spatio-temporal response of the complex cell model based on equations (29)-

(32) for n=10, 8002 zCR zz  and 01.0
z

z

C

G
, (c and d) the first and second order spatio-

temporal responses of a complex cell recorded in biological experiments (DeAngelis and 

Anzai 2004). 

  



 

a                                                             b 

Figure(8): a) the first order and b) the second order spatial responses of a complex cell in the 

model proposed here. The simple cells whose outputs are input to the complex cell, are 

arranged as the red circles in figure (1-top).  



 

a                                                  b 
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e                                                  f 

Figure (9): The first order spatial response of the complex cell model based on equations 

(29)-(32) for n=10 (after ten layers), for a) 11 pm BB   b) 11 10 pm BB  , c) 11 5 pm BB  , d) 

11 2 pm BB  , e) 11
7

10
pm BB   and f) 11 pm BB   
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Figure (10): The second order spatial response of the complex cell model based on equations 

(29)-(32) for n=10, for a) 22 pm BB   b) 
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Figure (11): The first order spatio-temporal response of the complex cell model based on 

equations (29)-(32) for n=10, 8002 zCR zz  and 01.0
z

z

C

G
, for a) 11 pm BB   b) 

11 10 pm BB  , c) 11 5 pm BB  , d) 11 2 pm BB  , e) 11
7

10
pm BB   and f) 11 pm BB   
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Figure (12): The second order spatio-temporal response of the complex cell model based on 

equations (29)-(32) for n=10, 8002 zCR zz  and 01.0
z

z
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, for a) 22 pm BB   b) 
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