1	Mast cells are permissive for rhinovirus replication: potential implications for asthma
2	exacerbations
3	
4	Charlene Akoto ^a , Donna E. Davies ^{a, b} , Emily J. Swindle ^{a, b} .
5	
6	^a Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton,
7	University Hospital Southampton, Southampton, UK; bNIHR Southampton Respiratory
8	Biomedical Research Unit, University Hospital Southampton, Southampton, UK.
9	
10	Corresponding author: Emily J. Swindle, Rm LF73, MPT 810, South Academic Block, Level
11	F, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of
12	Southampton, University Hospital Southampton NHS Foundation Trust, Tremona Road,
13	Southampton, SO16 6YD, United Kingdom. Tel: 02381 208975,
14	email: e.j.swindle@soton.ac.uk.
15	Running title: IFN-β protects human mast cells from rhinovirus replication.
16	
17	
18	
19	
20 21	
22	

ABSTRACT

- 24 **Background**: Human rhinoviruses (HRVs) are a major trigger of asthma exacerbations, with
- 25 the bronchial epithelium being the major site of HRV infection and replication. Mast cells
- 26 (MCs) play a key role in asthma where their numbers are increased in the bronchial epithelium
- with increasing disease severity.
- Objective: In view of the emerging role of MCs in innate immunity and increased localisation
- 29 to the asthmatic bronchial epithelium, we investigated whether HRV infection of MCs
- 30 generated innate immune responses which were protective against infection.
- 31 **Methods**: The LAD2 MC line or primary human cord blood-derived MCs (CBMCs) were
- 32 infected with HRV or UV-irradiated HRV at increasing multiplicities of infection (MOI)
- without or with IFN- β or IFN- λ . After 24 h, innate immune responses were assessed by RT-
- qPCR and IFN protein release by ELISA. Viral replication was determined by RT-qPCR and
- virion release by TCID₅₀ assay.
- 36 **Results:** HRV infection of LAD2 MCs induced expression of IFN-β, IFN-λ and IFN-
- 37 stimulated genes. However, LAD2 MCs were permissive for HRV replication and release of
- 38 infectious HRV particles. Similar findings were observed with CBMCs. Neutralisation of the
- 39 type I IFN receptor had minimal effects on viral shedding suggesting that endogenous type I
- 40 IFN signalling offered limited protection against HRV. However, augmentation of these
- responses by exogenous IFN- β , but not IFN- λ , protected MCs against HRV infection.
- 42 **Conclusion and clinical relevance**: MCs are permissive for the replication and release of HRV
- which is prevented by exogenous IFN-β treatment. Taken together these findings suggest a
- 44 novel mechanism whereby MCs may contribute to HRV-induced asthma exacerbations.

INTRODUCTION

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

people worldwide [1]. It is characterised by airway inflammation and variable and reversible airway obstruction resulting in symptoms of wheeze, chest tightness and shortness of breath [2]. Human rhinoviruses (HRVs) are a major risk factor for asthma development in early life [3] and are the major cause of viral-induced exacerbations of asthma [4, 5]. There are over 100 serotypes of HRV which fall into 3 species (HRV-A, -B and -C) that use different receptors to enter their target cell [6]. The majority of HRV-A and all of HRV-B use ICAM-1 (major group), the remaining HRV-A use the low-density lipoprotein receptor (LDLR) (minor group) [7] and the recently discovered HRV-C species uses cadherin-related family member 3 (CDHR3) [8]. A number of cell types are susceptible to HRV infection, including the airway epithelium which is the principal site of HRV replication [9], and innate immune cells such as macrophages [10, 11] and dendritic cells [12]. These cells detect HRVs via a number of pattern recognition receptors (PRRs) which trigger immune responses including the expression of type I and III IFNs, cytokines and chemokines [13, 14]. IFNs induce a range of IFN stimulated genes (ISGs) via which they mediate their anti-viral activities [15]. Deficiencies in IFN production have been reported in bronchial epithelial cells and bronchoalveolar lavage macrophages from asthmatic subjects [16-18], however this may relate to severity of disease [19, 20]. Mast cells (MCs) are tissue-resident innate immune cells found predominantly in vascularised tissues which interface with the external environment including the skin, gastrointestinal tract and the airways [21]. They are bone marrow-derived haematopoietic cells which are classically associated with the early-phase allergic reaction in asthma [22]. In asthma, MC numbers are increased in the bronchial epithelium, submucosal glands and bronchial smooth muscle where they have an activated phenotype [23-25]. Recent studies have shown that MC location and phenotype change with increasing asthma severity and are closely related to Th2 biomarkers

Asthma is a complex and heterogeneous chronic respiratory disease affecting over 300 million

[26-29]. During experimental HRV infection, MC numbers are increased in the bronchial epithelium of asthmatics [30] putting them in close proximity to the major site of HRV replication where they may contribute to viral immunity during HRV-induced asthma exacerbations. Aside from their well-established roles in allergic disorders, MCs are ideally placed within the airways to act as sentinels of the immune system and protect the body from invading pathogens. MCs express a range of PRRs including TLRs, retinoic acid-inducible gene (RIG)-I-like family receptors and NOD-like receptors and have roles in immunity to parasite and bacterial infections [31]. Following bacterial exposure, MCs release cytokines and chemokines that recruit and activate effector cells including neutrophils which clear the infection and dendritic cells which induce acquired immune responses [32]. While MCs play a key role in innate immunity towards parasites and bacteria, their role in viral immunity is less clear. In response to dengue virus, MCs release chemokines and cytokines which recruit NK cells and cytotoxic T cells [33-35] and MCs release IFNs following TLR3 activation, influenza virus, respiratory syncytial virus (RSV) [36] and sendai virus infection (a murine virus used to model human parainfluenza virus infection) [37]. Following RSV infection, cord blood-derived MCs (CBMCs) increase type I IFN expression and release CXCL10 (interferon gamma-induced protein 10 (IP-10)), CCL5 (regulated on activation, normal T cell expressed and secreted (RANTES)) and CCL4 (macrophage inflammatory protein-1β (MIP-1β)) which are associated with NK cell, T cell and monocyte recruitment respectively [38]. However in mouse models of influenza A (IAV) infection, MC-deficient mice are less susceptible to influenza-induced weight loss than MC knock-in mice suggesting MC activity was detrimental during the infection [39]. Regarding HRV, there is only a single study which has demonstrated the immature HMC-1 cell line can be infected with HRV14, however this did not trigger any

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

responses unless the cells were also challenged with other stimuli [40].

In view of the importance of HRV-induced asthma exacerbations and the localisation of MCs within asthmatic airways [25], we have investigated the innate immune response of mature LAD2 MCs or primary CBMCs to major and minor group HRV exposure and determined their susceptibility to infection. Exposure of human MCs to HRV induced increases in type I IFNs, ISGs and inflammatory mediators. However, MCs were susceptible to HRV infection and were permissive for viral replication and production of infectious virus particles. Exogenous IFN- β treatment was protective against infection and this may have important consequences in moderate/severe asthma where epithelial IFN responses are impaired [16, 41].

METHODS

Reagents

Human IFN- β and IFN- λ 1 were purchased from the National Institute for Biological Standards and Control (NIBSC, Potters Bar, UK) and stem cell factor (SCF), IL-6 and IL-3 were purchased from Peprotech (London, UK). Mouse anti-human IFN- α / β R chain 2 antibody (anti-IFNAR2, IgG2a, clone MMHAR2) was purchased from PBL assay science (Piscataway, USA) and mouse IgG2a isotype control was purchased from R&D systems (Abingdon, UK). Unless otherwise stated all other cell culture medium and reagents were purchased from Thermo Fisher Scientific (Inchinnan, UK).

Cell culture

- The human MC line LAD2 [42] was maintained in StemPro®-34 serum-free medium supplemented with SCF (100 ng/mL), L-glutamine (2 mM), penicillin (100 U/mL) and streptomycin (100 μ g/mL). Culture medium was replenished weekly by hemi-depletion. Cells were >99% positive for CD117 and FcɛRI expression as determined by flow cytometry.
- Human cord blood-derived MCs (CBMCs) were derived from CD34⁺ cord blood mononuclear cells (Stemcell Technologies, Grenoble, France). CD34⁺ cells were maintained in StemPro®-34 medium supplemented with IL-3 (30 ng/mL, 1st wk only), IL-6 (100 ng/mL) and SCF (100 ng/mL) for a minimum of 8 wks. CBMCs were >99% pure by flow cytometric analysis of CD117 expression.
 - The human bronchial epithelial cell (BEC) line, 16HBE-14o- (16HBE) [43], was maintained in MEM-GlutaMaxTM supplemented with FBS (10% v/v), penicillin (100 U/mL) and streptomycin (100 μ g/mL) (16HBE medium) and seeded in 6 well plates pre-coated with collagen (30 μ g/mL; Advanced BioMetrix, San Diego, USA) prior to use in experiments.

HRV stocks

RV16 (major group) and RV1B (minor group) stocks were generated using HeLa cells as previously described [44]. Virus titres of cell-free supernatant stocks were determined by tissue culture infective dose 50% (TCID₅₀)/mL according to the Spearman-Karber method. Controls of UV-irradiated HRV (1,200 mJ/cm² on ice for 50 min) were included in all experiments.

HRV infection and treatment of cells

LAD2 MCs or CBMCs (0.5x10⁶ cells/mL) were infected with RV16 or RV1B (multiplicity of infection (MOI) 0.3, 3 or 7.5) or UV-HRV (MOI 7.5) or treated with HRV infection medium (MEM GlutamaxTM plus FBS (4% (v/v)), non-essential amino acids (1% (v/v)), penicillin (100 U/mL) / streptomycin (100 µg/mL), HEPES (16 mM), NaHCO₃ (0.12% (v/v)), tryptose (0.118% (v/v)) and MgCl₂ (0.3 mM)) (IM; mock infection) as a control for 1 h before washing with StemPro®-34 medium to remove excess virus. Cells were then incubated at 37°C and cell-free supernatants and cell pellets harvested at 24 h. Cell viability was determined by trypan blue exclusion. As a positive control, 16HBE cells were infected with RV16 (MOI 0.3, 3 or 7.5), UV-RV16 (MOI 7.5) or HRV infection medium following overnight starvation in 16HBE medium with 2% (v/v) FBS. In selected experiments cells were treated with IFN- β (100 IU/mL) or IFN- λ 1 (100 IU/mL) at the time of RV16 infection or pre-treated with anti-IFNAR2 antibody (1 µg/mL) or IgG2a isotype control (1 µg/mL) 1 h prior to RV16 infection.

Real-time quantitative PCR

Total RNA was isolated (Trizol reagent or Qiagen RNeasy mini kit (Manchester, UK)) and treated for genomic DNA contamination prior to quantification and reverse transcription to cDNA (Primerdesign, Southampton, UK). For each quantitative RT-PCR (RT-qPCR), cDNA (12.5 ng) was mixed with PCR master mix containing primer/fluorogenic probes (*IFNB1*,

IFNLI, Interferon regulatory factor-7 (IRF7), MX Dynamin-Like GTPase 1 (MXI), melanoma differentiation-associated gene 5 (MDA5), CXCLI0, CCL5, RV16, RV1B, cadherin related family member 3 (CDHR3) or the house keeping genes (HKGs) GAPDH and ubiquitin C (UBC) for detection of specific amplification products or primer/SYBR green intercalating dye (2'-5'-oligoadenylate synthase 1 (OASI) for detection of double-stranded amplification products as designed by the manufacturer (Primerdesign, Southampton, UK or Thermo Fisher Scientific (CDHR only)). All reactions were performed in duplicate for 50 cycles and gene expression analysed using a real-time PCR iCycler (BioRad, Hemel Hempstead, UK). For SYBR green detection based reactions, melt curves were performed to ensure single PCR product formation. Gene expression was normalised to the geometric means of HKGs and fold changes calculated relative to UV-HRV controls according to the $^{\Delta\Delta}$ Ct method and expressed as $2^{-\Delta\Delta Ct}$. Viral RNA copy number was determined against a standard curve of known copies of RV16 or RV1B (Primerdesign, Southampton, UK).

ELISA

IFN- β and IFN- λ protein was quantified in concentrated cell-free supernatants by ELISA according to the manufacturer's instructions (IFN- λ 1/3; R&D systems, Abingdon, UK. IFN- β ; MSD, Maryland, USA). Supernatants were concentrated (4x) using 3,000 nominal MW limit ultrafiltration units (Merck Millipore, Watford, UK).

Statistical analysis

Paired non-parametric data were analysed with Friedman repeated measures one-way ANOVA by ranks with Dunn's correction for multiple comparisons or Wilcoxon signed rank test for matched pair comparisons. Unpaired non-parametric data were analysed with Kruskal-Wallis one-way ANOVA with Dunn's correction for multiple comparisons or Mann-Whitney ranked sum test for matched pair comparisons. Data are presented as box and whisker plots showing

the median, inter-quartile range and minimum and maximum values or as floating bars showing median and range. Normalised data were analysed by Student's t test and are presented as mean \pm SEM. All data were analysed using GraphPad Prism (GraphPad Software, Inc. CA, USA). p ≤ 0.05 was considered statistically significant.

RESULTS

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

To investigate the role of MCs in HRV immunity, LAD2 MCs were exposed to HRV or UV-HRV (as a control) and innate immune responses assessed by RT-qPCR after 24 h. Exposure to the major group virus, RV16, resulted in a significant MOI-dependent increase in mRNA expression of the type I and type III IFNs, IFNB1 and IFNL1 respectively (Fig. 1A). There was also a trend for increased IFN- β and IFN- λ protein release, as detected by ELISA, but this failed to reach statistical significance (Fig. 1B). There was minimal induction of IFN mRNA or protein with UV-HRV MOI 7.5 (median fold change, IFNB1, 1.3 (IQR 0.6-1.4), IFNL1, 1.1 (IQR 1.0-1.2)) or mock infection (median fold change, IFNB1, 1.2 (0.9-1.8), IFNL1, 2.3 (0.6-11), data not shown) indicating that virus replication was required to induce the observed responses. In control experiments, RV16 did not induce MC degranulation (Fig. S1). Similar results were obtained with RV1B (minor group virus; Fig. S2A). In parallel with the upregulation of IFNs we also observed significant upregulation of anti-viral genes following exposure of LAD2 MCs to HRV. This included the MOI-dependent induction of MDA5, MX1, IRF7 and OAS1 following exposure to RV16 (Fig. 2A). Additionally mRNA transcripts for the inflammatory mediators CXCL10 and CCL5 were also induced (Fig. 2B). In all cases induction of ISG transcripts was dependent on viral replication as a lack of induction was observed with mock infection or UV-HRV (MOI 7.5) controls. Similar results were

198

199

The human MC line LAD2 is permissive for HRV replication and releases infectious virus

200 particles

obtained with RV1B (Fig. S2B-C).

Our data demonstrated that the innate immune responses of LAD2 MCs to HRV was dependent on viral replication as these responses were not observed using the replication deficient UV-HRV control or mock infection media. Therefore we used RT-qPCR to assess viral copy number in MCs and compared this to HRV-infected BECs, which are the main target for HRV replication. RV16 exposure resulted in a significant MOI-dependent increase in viral RNA (vRNA) in LAD2 MCs compared to UV-HRV MOI 7.5 (median, 10 copies (IQR 0-103)) or mock infection (median, 4 copies (IQR 0-65); UV-HRV vs MOI 3, p = 0.02, UV-HRV vs MOI 7.5, p = 0.002) (Fig. 3A). Copies of RV16 RNA in LAD2 MCs exceeded those seen using BECs infected with RV16 in the same experiment. This permissiveness for viral replication prompted us to investigate whether LAD2 MCs, like BECs, had the potential to release infectious virus particles. TCID₅₀ assay revealed a significant MOI-dependent increase in the release of infectious RV16 virions from LAD2 MCs (18 TCID₅₀/mL for UV-HRV MOI 7.5 compared to 3,768 TCID₅₀/mL for HRV MOI 3 (p = 0.03) and 17,461 TCID₅₀/mL for HRV MOI 7.5, (p = 0.002)) (Fig. 3B). Similar results were obtained with RV1B (Fig. S1D). Of note, there was no significant difference in cell viability for RV16 or RV1B infected LAD2 MCs compared to mock-infected control cells (Fig. S3A-B).

217

218

219

220

221

222

223

224

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

Primary human MCs mount an innate immune response to HRV infection and also

release infectious virus particles

Having established the responses of LAD2 MCs to HRV infection, we next investigated the response of primary human CBMCs to RV16 exposure. CBMCs exposed to RV16 for 24 h upregulated the expression of *IFNB1* and *IFNL1* mRNA transcripts (Fig 4, A) which was confirmed at the protein level for IFN- λ but not IFN- β (Fig. 4B). There was also a significant upregulation of the ISGs MX1 and OAS1 in RV16-infected CBMCs (Fig. 4C). The upregulation

of IFNs and ISGs required replication competent virus since UV-irradiated HRV failed to induce mRNA transcripts (Fig. 4). Crucially, CBMCs were also susceptible for the replication and release of infectious RV16 as observed by a significant increase in vRNA transcripts and virion release (Fig. 4D). As with LAD2 MCs, cell viability was unaffected by RV16 infection (Fig. S3C).

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

225

226

227

228

229

Primary human MCs are protected from RV16 infection by exogenous IFN-β

Despite the induction of IFNs and antiviral responses, HRV infection of CBMCs still resulted in release of infectious virus particles. We hypothesised that this was due to low levels of endogenous IFN-β protein induced during HRV infection providing inadequate protection. Therefore, to test the extent of protection by endogenous type I IFNs, we pre-treated CBMCs with a type I IFN receptor blocking antibody (anti-IFNAR2) prior to HRV infection. Although this resulted in a significant reduction in HRV-dependent expression of IFN (IFNB1 and IFNL1) and ISG (OAS1 and MX1, data not shown) mRNAs compared to control (Fig 5, A), it had minimal effects on vRNA levels and there was only a trend for increased virion release (Fig. 5B). This implied a minimal protective effect of endogenous type I IFN signalling against HRV replication. We therefore examined whether we could augment anti-viral immune responses of CBMCs by the addition of IFNs to the cultures. CBMCs responded to exogenous IFN-β with significantly increased expression of IFNB1 and IFNL1 mRNA above that observed with HRV alone (Fig. 5C). In contrast, IFN- λ was without effect suggesting IFN- β is a key driver of type I and type III IFN responses in these cells; this was confirmed by showing upregulation of IFN- λ protein by IFN-β (Fig. S4A). Most importantly, exogenous IFN-β, but not IFN-λ, protected CBMCs from viral replication and release of infectious virus particles (Fig. 5D). The induction of IFNs

- and suppression of viral replication mediated by IFN- β was prevented in the presence of anti-
- 250 IFNAR2 antibody (Fig. S4B-C) confirming the blocking antibody effectively suppressed type
- 251 I IFN signalling.

DISCUSSION

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

Viral infections caused by HRVs are a major cause of asthma pathogenesis and exacerbation [4, 5]. MCs localise to the bronchial epithelium in asthma according to disease severity [28], and are recruited to the bronchial epithelium following HRV infection [30]. While MCs are classically associated with early-phase allergic reactions in asthma, their role in viral immunity is unclear. Here we demonstrate that human MCs exposed to either a major or minor group HRV mount innate immune responses including the induction of type I and III IFNs and ISGs. Despite this, MCs were permissive for viral replication and production of infectious virus particles, suggesting that the endogenous immune response was insufficient to limit HRV replication. Consistent with this, exogenous IFN- β , but not IFN- λ , was sufficient to prevent the release of infective virus particles and protect MCs against HRV infection. The failure of IFNλ to exert an anti-viral immune response suggests that MCs like other hematopoietic cells lack receptors for type-III interferons [37] whose expression is mainly restricted to cells of epithelial origin [45]. Despite mounting innate immune responses to HRV infection, MCs were permissive for HRV replication and released infectious viral particles which increased with increasing MOI in both the human MC line and primary CBMCs and confirms a previous study using the immature HMC-1 cell line and HRV14 [40]. However, this study was limited to investigating a single RV14 infection titre (10⁴ TCID₅₀ U/ml) of unknown MOI and focused on the modulation of PMA/ionomycin- or IgE/anti-IgE-dependent histamine and cytokine release [40]. Our study has expanded the findings of Hosoda et al by demonstrating an MOI-dependent effect on virion release and induction of anti-viral and pro-inflammatory responses of the mature LAD2 cell line and primary MCs following infection with both a major and minor group HRV. The release of infectious HRV virions by MCs is in contrast to infection of MCs by other respiratory viruses including reovirus, RSV and IAV which are capable of infecting human MCs and inducing innate immune responses, however there is little or no release of virus progeny [33, 38, 46]. For instance, plaque assays of RSV infected CBMC supernatants confirm a lack of productive RSV infection of CBMCs [38]. It has been shown previously that CBMCs can support replication of dengue virus with release of infectious virus particles however this process is antibody-dependent [47]. HRV replication and release of infectious virus particles from epithelial cells typically results from lysis [14] but here we show that virus shedding from MCs is not associated with significant cell death. Non-lytic virus shedding has been reported for other picornaviruses including poliovirus [48-50] and may be a mechanism by which infective HRV particles are released from MCs.

Since MCs accumulate in the bronchial epithelium in asthma, they have the potential to come into close proximity with HRV during infection of the bronchial epithelium. Our findings that MCs are permissive for HRV replication and that virus shedding was not associated with significant cell death, suggest that MCs may act as reservoirs for HRV and this may potentiate HRV-induced asthma exacerbations. This mechanism seems unique among common respiratory viruses and may help to explain the high association of HRV infection and asthma exacerbations, with MCs playing a novel pathological role. This may be particularly relevant in HRV-induced asthma exacerbations of difficult-to-treat severe asthma patients where MC numbers [28] and MC-specific mediators [29] are both increased. During experimental HRV infection of adults, MCs have been demonstrated to accumulate in the bronchial mucosa [30], however, it is not known whether MCs *in vivo* are susceptible to HRV infection. This question may be addressed by performing *in situ* hybridisation on bronchial biopsies taken from subjects following experimental HRV infection to determine whether HRV particles localise within MCs. Alternatively MCs may be isolated from these biopsies via laser capture for the detection of vRNA. In children HRV infection is implicated in the inception of childhood asthma where

infection is a major cause of persistent wheeze in infants and is a major risk factor for asthma development in early life [3]. Furthermore, the number of mucosal MCs and reticular basement membrane thickness at age 1yr predicts respiratory morbidity and the use of inhaled corticosteroids at age 3yrs [51]. This suggests an important interaction between viral infection and MCs leading to allergic inflammation and development of asthma in young children. While we demonstrated human MCs are permissive for the replication of major and minor group HRVs, it is unlikely that they would be permissive for HRV-C infection as they do not express CDHR3 (Fig. S5), the cellular receptor for HRV-C [8].

Following HRV infection, MCs upregulated type I and type III IFNs (IFN- β and IFN- λ), PRRs (MDA5), ISGs (IRF7, OAS1, MX1) and chemokines (CXCL10 and CCL5). The induction of type I IFNs is likely to be a general response of MCs to virus exposure since these IFNs are also upregulated with dengue virus [35], IAV [36], RSV [36] and sendai virus [37]. While type III IFN is generated following viral infection by many different cell types [17, 52, 53], reports of virus-dependent type III IFN expression and release by MCs is limited [37]. Although not able to respond to IFN- λ , the release of these anti-viral proteins by MCs may help promote anti-viral immunity in epithelial cells which express IFN- λ receptors [54]. Despite the small amounts of IFN-β production, the suppression of IFNB1 and IFNL1, as well as the ISGs OAS1 and MX1, following anti-IFNAR2 treatment of CBMCs, suggests an IFN driven ISG response. ISGs can also be induced via TLR activation [55] and viral dsRNA (including replication intermediates of ssRNA viruses) [56] has been shown to activate MCs via TLR3 [36]. Therefore HRV-induced IFN as well as TLR activation may contribute to the observed ISG induction. Induction of viral sensors and anti-viral genes such as MDA5, MX1, OAS1 has also been observed in human MCs infected with dengue virus [35] and vaccinia virus [54] but reports of upregulation of these genes following infection with respiratory viruses are limited to sendai virus infection, a murine virus used to model human parainfluenza virus infection [37]. Exposure of MCs to many different viruses including dengue virus, reovirus and RSV induces the release of cytokines and chemokines which are speculated to recruit inflammatory cells to help clear the infection [33, 38, 57]. In response to reovirus, MCs release CXCL8 which recruits NK cells [33] and CCL3-5 which recruit a subsets of T cells [34] *in vitro*. Dengue virus infection of mice also results in MC-dependent recruitment of NK and NKT cells, although the specific mediators involved were not investigated [58]. Therefore effector cells including T cells, NK cells and DCs may be recruited via MC-derived chemokines including CXCL10 and CCL5 during HRV infection, however, whether inflammatory cell recruitment would result in viral clearance or contribute to asthma pathology requires further investigation.

Human MCs were highly permissive for HRV infection which appeared to be due to only low level production of IFN-β. Although we did not measure other type I IFNs, we used a type I IFN receptor blocking antibody to investigate whether endogenous IFN-β or IFN-α made a substantial contribution to defence against HRV. This showed minimal effects on viral replication and a trend for enhanced shedding of infectious HRV particles confirming limited protection by endogenous type I interferons. Therefore we investigated whether exogenous IFN-β could boost IFN responses and found significant upregulation of *IFNB1*, *IFNL1* and an associated suppression of viral replication and release. IFN also upregulates the expression of RIG-I, MDA5 and TLR3 in MCs suggesting increased detection of HRV by MCs [37]. The demonstration that boosting IFN responses can protect human MCs from HRV infection is of significance, as bronchial epithelial IFN responses following HRV infection are impaired in moderate/severe asthma [16, 17, 19, 20]. In addition, the localisation of MCs in the bronchial epithelium increases with asthma severity suggesting that in severe asthma, MCs are at an increased risk of HRV infection and viral shedding. Exogenous IFN-β protects asthmatic

primary BECs from HRV infection [16, 59] and inhaled IFN- β has been shown to be particularly effective at reducing symptoms and improving lung function in difficult-to-treat asthmatics during naturally occurring viral respiratory infections [41]. It is currently unknown whether MCs from asthmatic patients have a more severe defect in their IFN response to HRV infection. Nonetheless, our findings suggest that, in addition to protecting the bronchial epithelium against HRV infection, an inhaled IFN- β therapy could protect MCs directly and further boost the innate immune response of the bronchial epithelium by the production of IFN- λ .

In summary, we have shown for the first time that mature LAD2 MCs and primary CBMCs are permissive for the replication and release of HRV which implicates them in HRV-induced asthma exacerbation. Furthermore, exogenous IFN- β is protective against HRV infection and may be particularly relevant in targeting MCs in severe asthma.

CONFLICT OF INTEREST

Professor Donna Davies is a co-founder of Synairgen and is paid consultancy fees and also has a patent for the use of inhaled interferon beta therapy for virus-induced exacerbations of asthma and COPD with royalties paid.

ACKNOWLEDGEMENTS

This work was supported by the Asthma, Allergy and Inflammation Research (AAIR) charity and the Faculty of Medicine, University of Southampton who provided funds for Charlene Akoto's Studentship, the Faculty of Medicine, University of Southampton and a Wellcome Trust Value in people award who supported Emily J Swindle's postdoctoral career track award

and the Medical Research Council, UK (MRC) (G0900453). We thank Dr Arnold Kirschenbaum and Dr Dean D. Metcalfe for the initial gift of LAD2 MCs which were used in this study and Dr David Smart for the CDHR3 primers.

REFERENCES

- 382 1. The global asthma report 2014 Auckland, New Zealand: Global Asthma Network; 2014
- 383 [Available

- from: http://www.globalasthmanetwork.org/publications/Global Asthma Report 2014.pdf.
- 2015 gina report: Global Strategy for Asthma Management and Prevention (GINA); 2015
- 386 [Available from: http://ginasthma.org/gina-report-global-strategy-for-asthma-management-and-
- 387 <u>prevention/</u>.
- 388 3. Jackson DJ, Gangnon RE, Evans MD, Roberg KA, Anderson EL, Pappas TE, et al. Wheezing
- rhinovirus illnesses in early life predict asthma development in high-risk children. Am J Respir Crit Care
- 390 *Med* 2008;**178**:667-72.
- 391 4. Nicholson KG, Kent J, Ireland DC. Respiratory viruses and exacerbations of asthma in adults.
- 392 *Br Med J* 1993;**307**:982-6.
- 393 5. Johnston SL, Pattemore PK, Sanderson G, Smith S, Lampe F, Josephs L, et al. Community study
- of role of viral infections in exacerbations of asthma in 9-11 year old children. Br Med J 1995;310:1225-
- 395 9.
- 396 6. Bochkov YA, Gern JE. Rhinoviruses and their receptors: Implications for allergic disease. Curr
- 397 *Allergy Asthma Rep* 2016;**16**:30.
- 398 7. Hofer F, Gruenberger M, Kowalski H, Machat H, Huettinger M, Kuechler E, et al. Members of
- the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus.
- 400 *Proc Natl Acad Sci U S A* 1994;**91**:1839-42.
- 401 8. Bochkov YA, Watters K, Ashraf S, Griggs TF, Devries MK, Jackson DJ, et al. Cadherin-related
- 402 family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus c binding and
- 403 replication. *Proc Natl Acad Sci USA* 2015;**112**:5485-90.
- 404 9. Kelly JT, Busse WW. Host immune responses to rhinovirus: Mechanisms in asthma. *J Allergy*
- 405 *Clin Immunol* 2008;**122**:671-82.

- 406 10. Gern JE, Dick EC, Lee WM, Murray S, Meyer K, Handzel ZT, et al. Rhinovirus enters but does
- 407 not replicate inside monocytes and airway macrophages. *J Immunol* 1996;**156**:621-7.
- 408 11. Laza-Stanca V, Stanciu LA, Message SD, Edwards MR, Gern JE, Johnston SL. Rhinovirus
- 409 replication in human macrophages induces nf-κb-dependent tumor necrosis factor alpha production.
- 410 *J Virol* 2006;**80**:8248-58.
- 411 12. Schrauf C, Kirchberger S, Majdic O, Seyerl M, Zlabinger GJ, Stuhlmeier KM, et al. The ssrna
- 412 genome of human rhinovirus induces a type i ifn response but fails to induce maturation in human
- 413 monocyte-derived dendritic cells. *J Immunol* 2009;**183**:4440-8.
- 414 13. Vareille M, Kieninger E, Edwards MR, Regamey N. The airway epithelium: Soldier in the fight
- against respiratory viruses. *Clin Microbiol Rev* 2011;**24**:210-29.
- 416 14. Jacobs SE, Lamson DM, George KS, Walsh TJ. Human rhinoviruses. Clin Microbiol Rev
- 417 2013;**26**:135-62.
- 418 15. Durbin RK, Kotenko SV, Durbin JE. Interferon induction and function at the mucosal surface.
- 419 *Immunol Rev* 2013;**255**:25-39.
- 420 16. Wark PAB, Johnston SL, Bucchieri F, Powell R, Puddicombe S, Laza-Stanca V, et al. Asthmatic
- bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J Exp
- 422 *Med* 2005;**201**:937-47.
- 423 17. Contoli M, Message SD, Laza-Stanca V, Edwards MR, Wark PA, Bartlett NW, et al. Role of
- deficient type iii interferon-lambda production in asthma exacerbations. *Nat Med* 2006;**12**:1023-6.
- 425 18. Rupani H, Martinez-Nunez RT, Dennison P, Lau LC, Jayasekera N, Havelock T, et al. Toll-like
- receptor 7 is reduced in severe asthma and linked to an altered microrna profile. Am J Respir Crit Care
- 427 *Med* 2016;**194**:26-37.
- 428 19. Sykes A, Macintyre J, Edwards MR, Del Rosario A, Haas J, Gielen V, et al. Rhinovirus-induced
- interferon production is not deficient in well controlled asthma. *Thorax* 2014;**69**:240-6.

- 430 20. Edwards MR, Regamey N, Vareille M, Kieninger E, Gupta A, Shoemark A, et al. Impaired innate
- 431 interferon induction in severe therapy resistant atopic asthmatic children. Mucosal Immunol
- 432 2012;**6**:797-806.
- 433 21. Bradding P, Arthur G. Mast cells in asthma state of the art. Clin Exp Allergy 2016;46:194-263.
- 434 22. Metcalfe DD, Baram D, Mekori YA. Mast cells. *Physiol Rev* 1997;**77**:1033-79.
- 435 23. Brightling CE, Bradding P, Symon FA, Holgate ST, Wardlaw AJ, Pavord ID. Mast-cell infiltration
- of airway smooth muscle in asthma. *N Engl J Med* 2002;**346**:1699-705.
- 437 24. Carroll N, Mutavdzic S, James A. Increased mast cells and neutrophils in submucosal mucous
- 438 glands and mucus plugging in patients with asthma. *Thorax* 2002;**57**:677-82.
- 439 25. Bradding P, Walls AF, Holgate ST. The role of the mast cell in the pathophysiology of asthma.
- 440 *J Allergy Clin Immunol* 2006;**117**:1277-84.
- 441 26. Andersson CK, Bergqvist A, Mori M, Mauad T, Bjermer L, Erjefält JS. Mast cell-associated
- 442 alveolar inflammation in patients with atopic uncontrolled asthma. J Allergy Clin Immunol
- 443 2011;**127**:905-12.e7.
- 27. Dougherty RH, Sidhu SS, Raman K, Solon M, Solberg OD, Caughey GH, et al. Accumulation of
- intraepithelial mast cells with a unique protease phenotype in t(h)2-high asthma. J Allergy Clin
- 446 *Immunol* 2010;**125**:1046-53 e8.
- 447 28. Balzar S, Fajt ML, Comhair SA, Erzurum SC, Bleecker E, Busse WW, et al. Mast cell phenotype,
- location, and activation in severe asthma. Data from the severe asthma research program. Am J Respir
- 449 *Crit Care Med* 2011;**183**:299-309.
- 450 29. Hinks TSC, Zhou X, Staples KJ, Dimitrov BD, Manta A, Petrossian T, et al. Innate and adaptive t
- 451 cells in asthmatic patients: Relationship to severity and disease mechanisms. J Allergy Clin Immunol
- 452 2015;**136**:323-33.
- 453 30. Zhu J, Message SD, Qiu Y, Mallia P, Kebadze T, Contoli M, et al. Airway inflammation and illness
- severity in response to experimental rhinovirus infection in asthma. *Chest* 2014;**145**:1219-29.
- 455 31. Marshall JS. Mast-cell responses to pathogens. *Nat Rev Immunol* 2004;**4**:787-99.

- 456 32. Chan CY, St. John AL, Abraham SN. Plasticity in mast cell responses during bacterial infections.
- 457 *Curr Opin Microbiol* 2012;**15**:78-84.
- 458 33. Burke SM, Issekutz TB, Mohan K, Lee PWK, Shmulevitz M, Marshall JS. Human mast cell
- 459 activation with virus-associated stimuli leads to the selective chemotaxis of natural killer cells by a
- 460 cxcl8-dependent mechanism. *Blood* 2008;**111**:5467-76.
- 461 34. McAlpine SM, Issekutz TB, Marshall JS. Virus stimulation of human mast cells results in the
- recruitment of cd56+ t cells by a mechanism dependent on ccr5 ligands. FASEB J 2012;26:1280-9.
- 463 35. Brown MG, McAlpine SM, Huang YY, Haidl ID, Al-Afif A, Marshall JS, et al. Rna sensors enable
- 464 human mast cell anti-viral chemokine production and ifn-mediated protection in response to
- antibody-enhanced dengue virus infection. *PLoS One* 2012;**7**:e34055.
- 466 36. Kulka M, Alexopoulou L, Flavell RA, Metcalfe DD. Activation of mast cells by double-stranded
- rna: Evidence for activation through toll-like receptor 3. *J Allergy Clin Immunol* 2004;**114**:174-82.
- 468 37. Lappalainen J, Rintahaka J, Kovanen PT, Matikainen S, Eklund KK. Intracellular rna recognition
- pathway activates strong anti-viral response in human mast cells. Clin Exp Immunol 2013;172:121-8.
- 470 38. Al-Afif A, Alyazidi R, Oldford SA, Huang YY, King CA, Haidl ID, et al. Respiratory syncytial virus
- infection of primary human mast cells induces the selective production of type i interferons, cxcl10,
- and ccl4. J Allergy Clin Immunol 2015.
- 473 39. Graham AC, Hilmer KM, Zickovich JM, Obar JJ. Inflammatory response of mast cells during
- influenza a virus infection is mediated by active infection and rig-i signaling. *J Immunol* 2013;**190**:4676-
- 475 84.
- 476 40. Hosoda M, Yamaya M, Suzuki T, Yamada N, Kamanaka M, Sekizawa K, et al. Effects of
- 477 rhinovirus infection on histamine and cytokine production by cell lines from human mast cells and
- 478 basophils. *J Immunol* 2002;**169**:1482-91.
- 479 41. Djukanović R, Harrison T, Johnston SL, Gabbay F, Wark P, Thomson NC, et al. The effect of
- 480 inhaled ifn-β on worsening of asthma symptoms caused by viral infections. A randomized trial. Am J
- 481 Respir Crit Care Med 2014;190:145-54.

- 482 42. Kirshenbaum AS, Akin C, Wu Y, Rottem M, Goff JP, Beaven MA, et al. Characterization of novel
- stem cell factor responsive human mast cell lines lad 1 and 2 established from a patient with mast cell
- 484 sarcoma/leukemia; activation following aggregation of fcεri or fcγri. Leuk Res 2003;27:677-82.
- 485 43. Cozens AL, Yezzi MJ, Kunzelmann K, Ohrui T, Chin L, Eng K, et al. Cftr expression and chloride
- 486 secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol 1994;10:38-
- 487 47.
- 488 44. Papi A, Johnston SL. Rhinovirus infection induces expression of its own receptor intercellular
- adhesion molecule 1 (icam-1) via increased nf-kb-mediated transcription. J Biol Chem 1999;274:9707-
- 490 20.
- 491 45. Donnelly RP, Kotenko SV. Interferon-lambda: A new addition to an old family. J Interferon
- 492 *Cytokine Res* 2010;**30**:555-64.
- 493 46. Marcet C, St. Laurent C, Moon T, Singh N, Befus AD. Limited replication of influenza a virus in
- 494 human mast cells. *Immunol Res* 2013;**56**:32-43.
- 495 47. Brown MG, King CA, Sherren C, Marshall JS, Anderson R. A dominant role for fcγrii in antibody-
- 496 enhanced dengue virus infection of human mast cells and associated ccl5 release. J Leukoc Biol
- 497 2006;**80**:1242-50.
- 498 48. Bird SW, Maynard ND, Covert MW, Kirkegaard K. Nonlytic viral spread enhanced by autophagy
- 499 components. *Proc Natl Acad Sci USA* 2014;**111**:13081-6.
- 500 49. Bird SW, Kirkegaard K. Escape of non-enveloped virus from intact cells. Virology 2015;479–
- **480**:444-9.
- 502 50. Jackson WT, Giddings TH, Jr., Taylor MP, Mulinyawe S, Rabinovitch M, Kopito RR, et al.
- 503 Subversion of cellular autophagosomal machinery by rna viruses. *PLoS Biol* 2005;**3**:e156.
- 504 51. Malmstrom K, Pelkonen AS, Malmberg LP, Sarna S, Lindahl H, Kajosaari M, et al. Lung function,
- airway remodelling and inflammation in symptomatic infants: Outcome at 3 years. Thorax
- 506 2011;**66**:157-62.

- 507 52. Okabayashi T, Kojima T, Masaki T, Yokota S, Imaizumi T, Tsutsumi H, et al. Type-iii interferon,
- 508 not type-i, is the predominant interferon induced by respiratory viruses in nasal epithelial cells. Virus
- 509 *Res* 2011;**160**:360-6.
- 510 53. Odendall C, Dixit E, Stavru F, Bierne H, Franz KM, Durbin AF, et al. Diverse intracellular
- pathogens activate type iii interferon expression from peroxisomes. *Nat Immunol* 2014;**15**:717-26.
- 512 54. Sommereyns C, Paul S, Staeheli P, Michiels T. Ifn-lambda (ifn-lambda) is expressed in a tissue-
- dependent fashion and primarily acts on epithelial cells in vivo. *PLoS Pathog* 2008;**4**:e1000017.
- 514 55. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. *Cell*
- 515 2006;**124**:783-801.

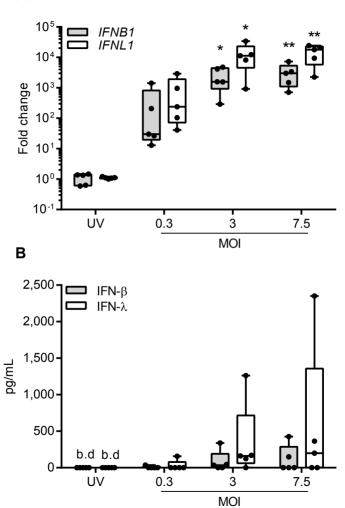
- 516 56. Weber F, Wagner V, Rasmussen SB, Hartmann R, Paludan SR. Double-stranded rna is produced
- 517 by positive-strand rna viruses and DNA viruses but not in detectable amounts by negative-strand rna
- 518 viruses. *J Virol* 2006;**80**:5059-64.
- 519 57. King CA, Anderson R, Marshall JS. Dengue virus selectively induces human mast cell chemokine
- 520 production. *J Virol* 2002;**76**:8408-19.
- 521 58. St. John AL, Rathore APS, Yap H, Ng M-L, Metcalfe DD, Vasudevan SG, et al. Immune
- 522 surveillance by mast cells during dengue infection promotes natural killer (nk) and nkt-cell recruitment
- and viral clearance. *Proc Natl Acad Sci USA* 2011;**108**:9190-5.
- 524 59. Cakebread JA, Xu Y, Grainge C, Kehagia V, Howarth PH, Holgate ST, et al. Exogenous ifn-β has
- antiviral and anti-inflammatory properties in primary bronchial epithelial cells from asthmatic subjects
- exposed to rhinovirus. *J Allergy Clin Immunol* 2011;**127**:1148-54.e9.

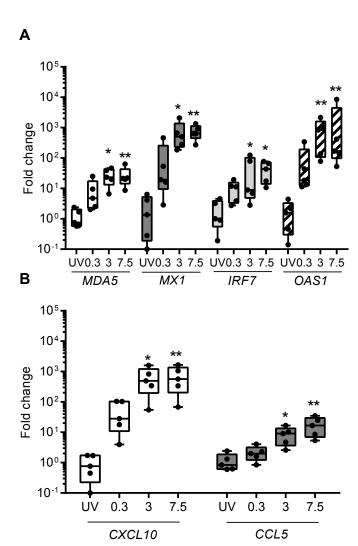
FIGURE LEGENDS

Fig. 1. RV16-induced IFN responses in LAD2 MCs. LAD2 MCs were exposed to RV16 MOI 0.3, 3 or 7.5 or UV-RV16 MOI 7.5 (control). Cell pellets and cell-free supernatants were harvested for gene and protein expression by RT-qPCR and ELISA respectively. (**A**) *IFNB1* and *IFNL1* mRNA expression 24 h post RV16 infection, n=5. (**B**) IFN-β and IFN- λ protein expression 24 h post RV16 infection, n=5 Results are box and whisker plots showing the median, interquartile range and min and max values, * $p \le 0.05$, ** $p \le 0.01$ versus UV-RV16. MOI, multiplicity of infection. b.d., below limit of detection.

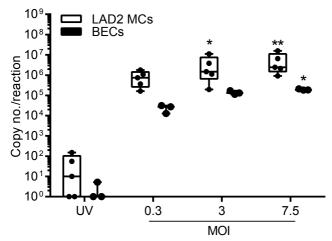
Fig. 2. RV16-induced innate immune responses in LAD2 MCs. LAD2 MCs were exposed to RV16 at MOI 0.3, 3 or 7.5 or UV-RV16 MOI 7.5 (control). Cell pellets were harvested for gene expression by RT-qPCR. (**A**) mRNA expression of interferon-stimulated genes (*MDA5*, *MX1*, *IRF7* and *OAS1*) and (**B**) chemokines (*CXCL10* and *CCL5*) 24 h post RV16 infection. Results are box and whisker plots showing the median, interquartile range and min and max values, n = 5, * $p \le 0.05$, ** $p \le 0.01$ versus UV-RV16. MOI, multiplicity of infection.

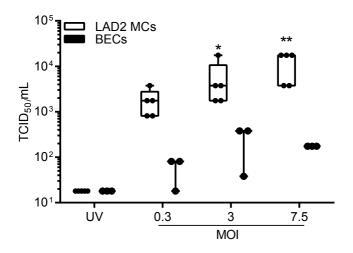
Fig. 3. Comparison of the replication and release of infectious RV16 from LAD2 MCs and bronchial epithelial cells (BECs). LAD2 MCs and BECs were exposed to RV16 MOI 0.3, 3 or 7.5 or UV-RV16 MOI 7.5 (control). Cell pellets and cell-free supernatants were harvested for viral RNA and infectious virus particles by RT-qPCR and TCID₅₀ assay respectively. (**A**) RV16 copy number and (**B**) TCID₅₀/mL 24 h post RV16 infection. Results are box and whisker plots showing the median, interquartile range and min and max values, n=5 (LAD2), n=3 (BECs), * $p \le 0.05$, ** $p \le 0.01$ versus UV-RV16. MOI, multiplicity of infection.

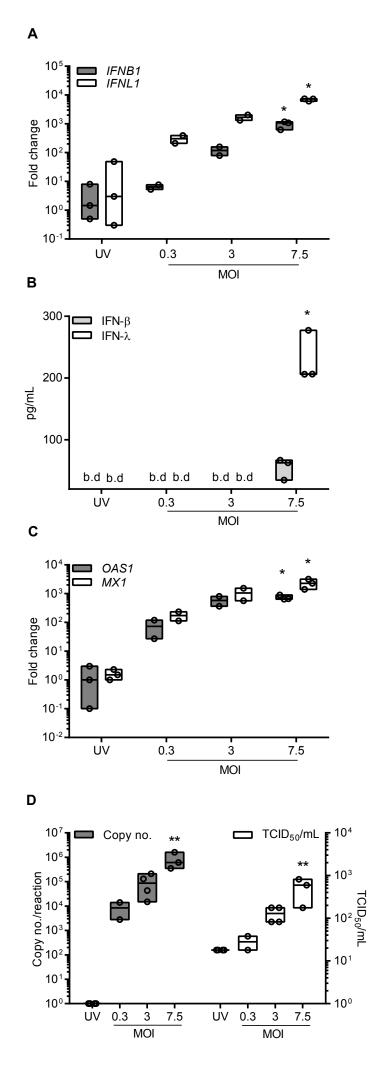

Fig. 4. Innate immune responses and release of infectious RV16 from CBMCs. CBMCs were exposed to RV16 at MOI 0.3, 3 or 7.5 or UV-RV16 MOI 7.5 (control). Twenty-four h post infection cell pellets were harvested for gene expression and viral RNA by RT-qPCR and cell-free supernatants for protein expression by ELISA and infectious virus particles by TCID₅₀ assay. (**A**) *IFNB1* and *IFNL1* mRNA expression. (**B**) IFN-β and IFN- λ protein expression. (**C**) *OAS1* and *MX1* mRNA expression. (**D**) RV16 copy number and TCID₅₀/mL. Results are floating bars representing the median with min and max values, n= 2-4, * $p \le 0.05$, ** $p \le 0.01$, versus UV-RV16 (n=3-4). MOI, multiplicity of infection. b.d., below limit of detection.

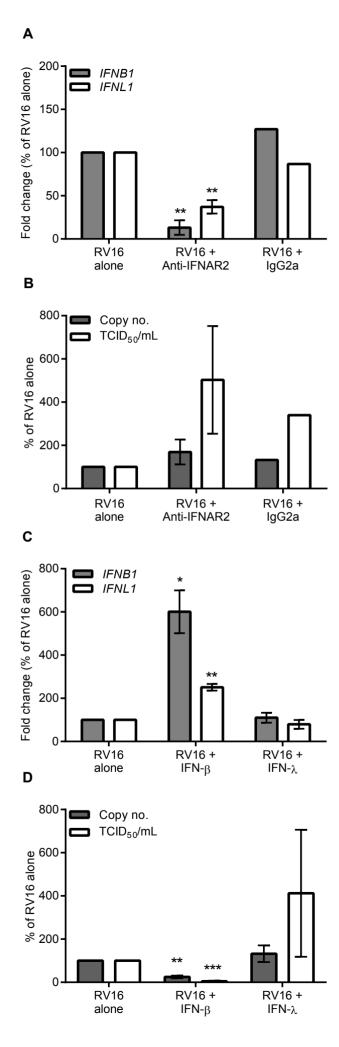

Fig. 5. Type I IFN receptor blockade and the effect of exogenous IFN treatment of CBMCs during RV16 infection. CBMCs were pre-treated with anti-IFNAR2 (1 μg/mL) or IgG2a isotype (1 μg/mL) prior to RV16 MOI 7.5 or UV-RV16 MOI 7.5 exposure. Twenty-four h post infection cell pellets were harvested for gene expression and viral RNA by RT-qPCR and cell-free supernatants were harvested for infectious virus particles by TCID₅₀ assay. (**A**) *IFNB1* and *IFNL1* mRNA expression. (**B**) RV16 copy number and TCID₅₀/mL. CBMCs were exposed to RV16 MOI 7.5 or UV-RV16 MOI 7.5 in the presence or absence of IFN-β (100 IU/mL) or IFN-λ (100 IU/mL). (**C**) *IFNB1* and *IFNL1* mRNA expression. (**D**) RV16 copy number and TCID₅₀/mL. Results are % of control (RV16 alone) means \pm SEM, n=2-3. * $p \le 0.05$, ** $p \le 0.01$ versus control (n=3). Anti-IFNAR2, anti-IFN-α/βR 2 antibody; MOI, multiplicity of infection.

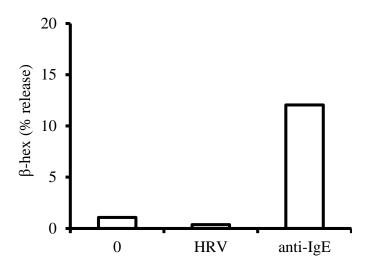
573 Abbreviations


- 574 16HBE: Human bronchial epithelial cell line
- 575 Anti-IFNAR2: Anti-IFN- α/β receptor 2 antibody
- 576 CBMCs: Cord blood-derived mast cells
- 577 HRV: Human rhinovirus
- 578 IAV: Influenza A virus
- 579 ICAM-1: Intracellular adhesion molecule 1
- 580 IRF: Interferon regulatory factor
- 581 ISG: IFN stimulated gene
- 582 LAD2: Laboratory of Allergic Diseases 2 human mast cell line
- 583 LDLR: Low density lipoprotein receptor
- 584 MDA5: Melanoma differentiation-associated gene 5
- 585 MOI: Multiplicity of infection
- 586 MX1: MX Dynamin-Like GTPase 1
- 587 OAS1: 2'-5'-oligoadenylate synthase 1
- 588 RSV : Respiratory syncytial virus
- 589 RT-qPCR: Quantitative reverse transcription PCR
- 590 TCID₅₀: Tissue culture infection dose of 50%
- 591 vRNA: Viral RNA

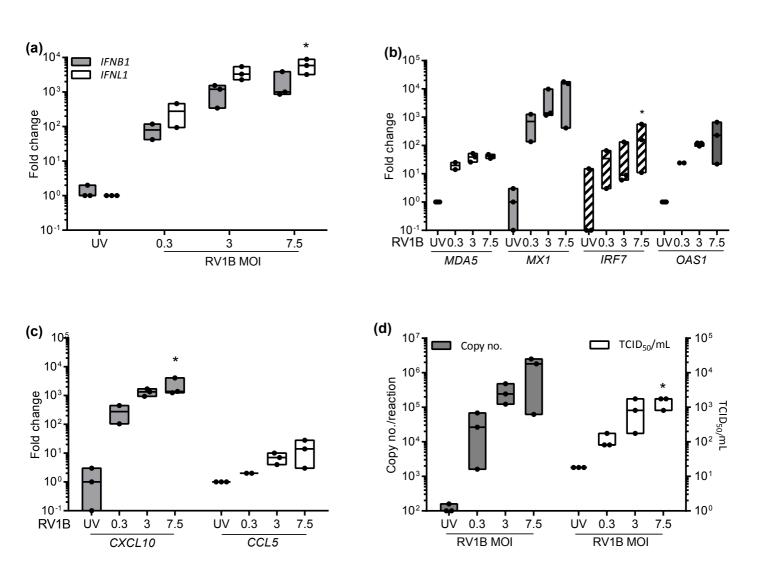




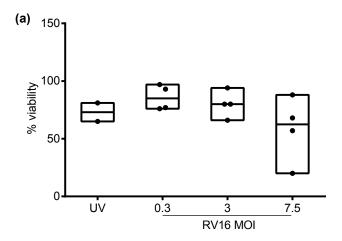


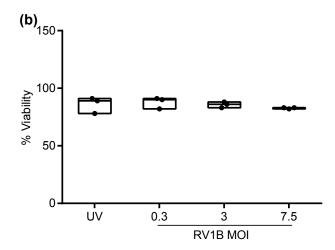

Supplemental information

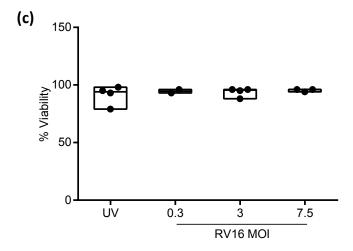
Mast cells are permissive for rhinovirus replication: potential implications for asthma exacerbations

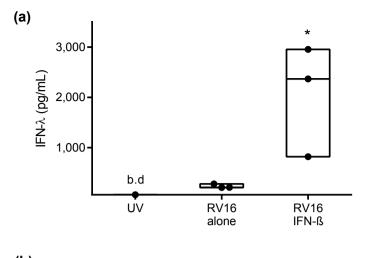

Charlene Akoto^a, Donna E. Davies^{a, b}, Emily J. Swindle^{a, b}.

^aClinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK; ^bNIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK.


Corresponding author: Emily J. Swindle, Rm LF73, MPT 810, South Academic Block, Level F, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, United Kingdom. Tel: 02381 208975, email: e.j.swindle@soton.ac.uk.




Fig. S1. HRV does not induce MC degranulation. LAD2 MCs were sensitised with human myeloma IgE (500 ng/mL) overnight prior to stimulation with HRV16 (MOI=1), anti-IgE (10 μ g/mL, positive control) or medium (negative control). Cell-free supts were collected after 1h and quantified for net β-hexosaminidase release. Results are a representative experiment performed in duplicate (n=1)


Fig. S2. LAD2 MC response to RV1B exposure. LAD2 MCs were exposed to RV1B at MOI 0.3, 3 or 7.5 or UV-RV1B MOI 7.5 (control). Twenty-four hours post infection cell pellets were harvested for gene expression and viral RNA by RT-qPCR and cell-free supernatants were harvested for infectious virus particles by $TCID_{50}$ assay. (a) *IFNB1* and *IFNL1* mRNA expression. (b) Interferon stimulated gene mRNA expression (*MDA5*, *MX1*, *IRF7*, *OAS1*). (c) Chemokine mRNA expression (*CXCL10*, *CCL5*). (d) RV1B copy number and $TCID_{50}$ /mL. Floating bars represent the median with min and max values, n=2-3, * $P \le 0.05$ versus UV-RV1B (n=3). MOI, multiplicity of infection.

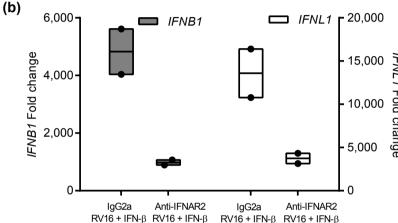


Fig. S3. Cell viability following rhinovirus infection of human mast cells. MCs were exposed to HRV (RV16 or RV1B) at MOI 0.3, 3 or 7.5 or UV-RV16/RV1B MOI 7.5. Twenty-four hours post infection cell viability was determined as a percentage of total cell number by trypan blue exclusion. (a) Cell viability of LAD2 MCs following RV16 infection, n=2-5 or (b) RV1B infection, n=3. (c) Cell viability of CBMCs following RV16 exposure, n=2-4. MOI, multiplicity of infection.

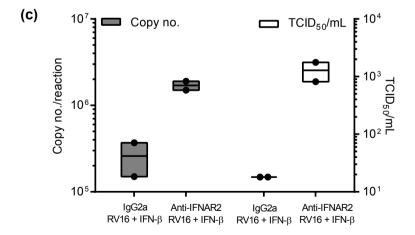
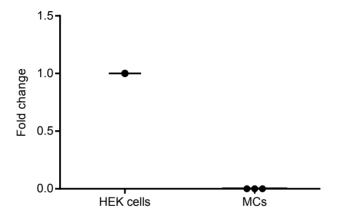



Fig. S4. IFN-β treatment and RV16 exposure of CBMCs and type I IFN receptor blockade. CBMCs were exposed to RV16 MOI 7.5 with IFN-β (100 IU/mL) and cell-free supernatants collected 24 hours post infection for protein quantification by ELISA. (a) IFN- λ protein expression, n=3, * $P \le 0.05$ versus UV-RV16. CBMCs were pre-treated with anti-IFNAR2 antibody (1 µg/mL) or IgG2a isotype (1 µg/mL) prior to RV16 MOI 7.5 or UV-RV16 MOI7.5 infection in the presence of IFN- β . Twenty-four hours post infection cell pellets were harvested for gene expression and viral RNA by RT-qPCR and cell-free supernatants were harvested for infectious virus particles by TCID₅₀ assay. (b) *IFNB1* and *IFNL1* mRNA expression. (c) RV16 copy number and TCID₅₀/mL. n=2. Floating bars represent the median with min and max values, b.d. below limit of detection.

Fig. S5. CDHR3 expression following RV16 infection of LAD2 mast cells. MCs were exposed to RV16 at MOI 0.3, 3 or 7.5 or UV-RV16 MOI 7.5. Twenty-four hours post infection cell pellets were harvested for gene expression by RT-qPCR. Fold change (where an amplification product was detected) was expressed relative to HEK-293 cells stably transfected with *CDHR3*. LAD2 MCs n=5. MOI, multiplicity of infection.