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ABSTRACT
We investigate a method to incorporate signal models that allow an additional frequency
harmonic in searches for gravitational waves from spinning neutron stars. We assume that
emission is given by the general triaxial non-aligned model of Jones, whose waveform under
certain conditions reduces to that of a biaxial precessing star, or a simple rigidly rotating
triaxial aligned star. The triaxial non-aligned and biaxial models can produce emission at both
the star’s rotation frequency (f) and 2f, whilst the latter only emits at 2f. We have studied
parameter estimation for signal models using both a set of physical source parameters and a
set of waveform parameters that remove a degeneracy. We have assessed the signal detection
efficiency, and used Bayesian model selection to investigate how well we can distinguish
between the three models. We found that for signal-to-noise ratios (SNRs) �6, there is no
significant loss in efficiency if performing a search for a signal at f and 2f when the source is
only producing emission at 2f. However, for sources with emission at both f and 2f, signals
could be missed by a search only at 2f. We also find that for a triaxial aligned source, the correct
model is always favoured, but for a triaxial non-aligned source it can be hard to distinguish
between the triaxial non-aligned model and the biaxial model, even at high SNR. Finally, we
apply the method to a selection of known pulsars using data from the LIGO fifth science run.
We give the first upper limits on gravitational wave amplitude at both f and 2f and apply the
model selection criteria on real data.

Key words: gravitational waves – methods: data analysis – methods: statistical – stars: neu-
tron – pulsars: general.

1 IN T RO D U C T I O N

Several searches have been performed for gravitational waves from
known pulsars in data from the LIGO, GEO600 and Virgo gravita-
tional wave detectors (Abbott et al. 2005, 2007, 2008, 2010; Abadie
et al. 2011; Aasi et al. 2014). These rely on the known phase evolu-
tion of the pulsars from electromagnetic observations (e.g. Manch-
ester et al. 2005) to allow long-duration (of the order of a year)
coherent searches for signals from them in gravitational wave data.
Unfortunately, no signal has yet been seen, but interesting upper
limits on gravitational wave amplitude have been produced, and for
two pulsars (the Crab and Vela pulsars) the ‘spin-down limit’ has
been beaten (Abbott et al. 2008; Abadie et al. 2011). One of the
principal previous methods used for these searches (Dupuis & Woan
2005) has focused on parameter estimation and the setting of upper
limits, but has not provided any measure of detection confidence.

Previous gravitational wave searches targeting known pulsars
have assumed gravitational wave emission at a single frequency,
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taken to be twice (or very close to twice) the spin frequency. How-
ever, there are reasons to consider slightly more general waveforms.
In this paper, we consider the model proposed by Jones (2010), deal-
ing with steadily rotating triaxial stars. Specifically, Jones (2010)
considered a star containing a pinned superfluid. Such a star can
rotate steadily about an axis that does not coincide with the prin-
cipal axis of the solid crust, and will generically emit gravitational
radiation at both the spin frequency f and at 2f. We term this the
triaxial non-aligned case. This contrasts with the ‘standard’ sce-
nario, considered in almost all gravitational wave searches to date,
of rotation about a principal axis, which emits only at 2f. We term
this the triaxial aligned case, and it can be regarded as a special case
of the triaxial non-aligned case. Another special case is that of a
biaxial star, where two moments of inertia of the star are equal. The
waveform in this case is identical to that of a biaxial precessing star
of the sort considered by Zimmermann & Szedenits (1979), which
also produces gravitational waves at two frequencies. However, pre-
cession generically results in a modulation in the electromagnetic
signal produced by a pulsar (see e.g. Jones & Andersson 2001),
something that is not clearly observed in the pulsar population. In
contrast, in the model of Jones (2010), there is emission at f and 2f
even in a steadily spinning star. The attraction of this model is that
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such emission, at both f and 2f, might be being produced by any
of the known pulsars, without leaving any telltale signature in the
radio pulsations. It is therefore clearly of interest to understand the
issues that arise when carrying out gravitational wave searches for
such double-component signals.

In this paper, we study how different parametrizations of the
model affect the estimation of signal parameters and the astrophys-
ical information that can be extracted. We also discuss applying
Bayesian model selection to assess the detection of signals from
these sources and perform comparisons between the different sig-
nal models. A similar study has been performed by Bejger & Królak
(2014) although their analysis was based on a maximum likelihood
approach to parameter estimation. We use the methods we have de-
veloped to analyse data from LIGO’s fifth science run (S5), setting
upper limits on the emission at both f and 2f for 43 known pulsars.

The plan of this paper is as follows. In Section 2 we give a
brief description of the neutron star model and waveform, confining
the details to Appendix A. In Section 3 we describe the Bayesian
methodology we employ. In Section 4 we briefly look at the shape
of the parameter probability distributions for two different signal
parametrizations. In Section 5 we show how these Bayesian methods
can allow us to distinguish between the three different sorts of
signals described above. In Section 6 we present the results from
applying a search for gravitational wave emission at both f and 2f
in LIGO data. We summarize our findings in Section 7.

2 TH E MO D EL

In this section, we describe the physical model and gravitational
wave emission from our triaxial star. In Section 2.1 we use the orig-
inal parametrization of Jones (2010), while in Section 2.2 we use an
alternative simpler set of parameters, as described in Jones (2015).
The ranges of the relevant parameters are given in Section 2.3, again
based on the analysis of Jones (2015).

2.1 The signal written in terms of source parameters

Here we recap the physical model given in Jones (2010). The neu-
tron star is triaxial, with a moment of inertia tensor whose principal
components are (I1, I2, I3). Because of superfluid pinning, it can ro-
tate about an axis, fixed in the inertial frame, that does not coincide
with any one of these principal axes. This gives rise to gravitational
wave emission at both f and 2f. The signal in a detector at the rotation
frequency (f) is (Jones 2010, 2015)

hf (t) = F+(ψ, t) sin ι cos ι
{

I21 sin 2λ sin θ cos φ(t)

+ (I21 cos 2λ − I31) sin 2θ sin φ(t)
}

− F×(ψ, t) sin ι
{

(I21 cos 2λ − I31) sin 2θ cos φ(t)

− I21 sin 2λ sin θ sin φ(t)
}

, (1)

and the signal at twice the rotation frequency (2f) is

h2f (t) = 2F+(ψ, t)(1 + cos 2ι)
{[

I21(sin 2λ − cos 2λ cos 2θ )

− I31 sin 2θ
]

cos 2φ(t) + I21 sin 2λ cos θ sin 2φ(t)
}

− 4F×(ψ, t) cos ι
{

I21 sin 2λ cos θ cos 2φ(t)

−
[
I21(sin 2λ − cos 2λ cos 2θ ) − I31 sin 2θ

]
sin 2φ(t)

}
. (2)

The polarization factors F+ and F× depend upon the polarization
angle ψ of the source. They also depend on the position of the
source on the sky. We have not explicitly labelled this dependence
as these parameters would be known for a targeted gravitational
wave search. The angle ι is the inclination angle of the star’s spin
vector with respect to the observer.

The evolution in phase φ(t) is generated by the rotation of the
star, so that φ(t) = 2π

∫ t

t0
f (t ′) dt ′ + φ0, where f(t) is the frequency

evolution and φ0 the phase at t0. In practice, for targeted gravitational
wave searches, f(t) will be a known function (known e.g. from radio
pulsar observations), and so we will simply write

φ(t) = �t + φ0, (3)

treating � = 2πf as a constant.
The constant angles (θ , φ0, λ) are the Euler angles that specify the

orientation of the star with respect to the inertial frame (at time t0).
Here we have used λ to replace the ‘ψ’ parameter in Jones (2015)
to avoid confusion with the standard use of ψ for gravitational
wave polarization angle. The parameters I21 and I31 are measures of
the asymmetry in the moment of inertia tensor, with factors of the
angular spin frequency � and distance r absorbed for convenience:

I21 ≡ �2(I2 − I1)

r
, I31 ≡ �2(I3 − I1)

r
. (4)

Putting all of this together, and assuming that the sky position and
spin frequency are already known, we have a set of seven source
parameters:

θa
source = {ι, ψ, I21, I31, θ, φ0, λ}. (5)

We term this general case the triaxial non-aligned model of a
spinning neutron star. There are two special cases that we will single
out. The first is a triaxial star spinning about a principal axis. This
can be obtained from equations (1) and (2) by setting θ = 0; there is
then emission only at 2f. We term this the triaxial aligned case. The
second special case is the biaxial case, where two of the principal
components of the quadrupole moment tensor are equal. This can
be found by setting I21 = 0, and produces emission at both f and 2f.
Note that, physically, this is slightly different from the relatively well
known precessional motion of a biaxial star (see e.g. Zimmermann
& Szedenits 1979; Jones & Andersson 2002), as the latter has an
additional slow rotation, superimposed about the symmetry axis.
However, the time variation of the mass quadrupole, and therefore
the corresponding gravitational waveforms, is identical in the two
cases, so all of the discussion of the biaxial case in this paper applies
also to the biaxial precession waveform. Nevertheless, it should be
remembered that in the precession case, there can be modulation
in the observed electromagnetic pulsation frequency, and the time
average of this electromagnetic pulsation frequency can be offset
from the gravitational wave frequency; see Jones & Andersson
(2002) for a detailed discussion.

2.2 The signal written in terms of waveform parameters

As previously shown by one of us (Jones 2015), and also explained
in Bejger & Królak (2014), the physical source model, specified by
the seven parameters of equation (5), contains a degeneracy. If we
instead express the model as complex harmonic amplitudes, we find
that equations (1) and (2) can be rewritten as

hf (t) = −1

2
F+(ψ, t)C21 sin ι cos ι cos

(
φ(t) + 	C

21

)

− 1

2
F×(ψ, t)C21 sin ι sin

(
φ(t) + 	C

21

)
, (6)
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and

h2f (t) = −F+(ψ, t)C22[1 + cos 2ι] cos
(
2φ(t) + 	C

22

)
− 2F×(ψ, t)C22 cos ι sin

(
2φ(t) + 	C

22

)
. (7)

There now appear two amplitude-like parameters C21 and C22 with
corresponding phase parameters 	C

21 and 	C
22. Assuming that the

sky location and spin frequency are known, we can identify a set of
six waveform parameters, one fewer than in the case of the source
parameters:

θa
waveform =

{
ι, ψ, C21, C22, 	

C
21, 	

C
22

}
. (8)

When expressed in terms of these waveform parameters, a prob-
lematic degeneracy is removed, as we will illustrate in Section 4
below. Comparing with the source parameters of equation (5), we
see that the two angles (ι, ψ) giving the orientation of the star’s
spin axis relative to the observer are common to both sets. There
is in fact a rather complicated algebraic relationship between the
five remaining source parameters (I21, I31, θ , φ0, λ) and the four
remaining waveform parameters (C21, C22, 	

C
21, 	

C
22). This relation

is derived in Jones (2015), and reproduced in Appendix A, where
we also summarize the form that the waveform parametrization
takes when specialized to the triaxial aligned and biaxial cases. As
shown in Jones (2015), the parameters C21 and C22 are basically the
(moduli) of the (complex) mass quadrupole scalars that describe
the quadrupolar component of the mass distribution of the rotating
star, with a factor of order �2/r absorbed for simplicity. [Note that
in Jones (2015) these quantities are denoted by C̃21, C̃22].

Note that in this analysis we are assuming a search for gravita-
tional wave signals from known pulsars, or sources where a signifi-
cant gravitational wave signal has already been found. This means
that, rather than using the waveforms as written in equations (1)–
(2), or equations (6)–(7), we can remove the oscillations that take
place at the relatively high frequencies f and 2f, using the hetero-
dyne method of Dupuis & Woan (2005) to give instead a pair of
narrow-band complex times series. We do this by using the known
phase evolution of the signal φ(t), multiplying by e−iφ(t) for the f
band and e−i2φ(t) for the 2f band. This heterodyning, and subsequent
low-pass filtering, leaves a signal model for the f and 2f streams of

hf (t) = −C21

4
F+(ψ, t) sin ι cos ιei	C

21

+ i
C21

4
F×(ψ, t) sin ιei	C

21 (9)

and

h2f (t) = −C22

2
F+(ψ, t)[1 + cos 2ι]ei	C

22

+ iC22F×(ψ, t) cos ιei	C
22 (10)

when written in terms of the waveform parameters. A similar het-
erodyning can be applied to the waveform when written in terms of
the source parameters (see Gill 2012).

2.3 Parameter ranges

In order to carry out our analyses, we need to choose sensible
ranges in both the source and waveform parameters, for each of
the triaxial aligned, biaxial and triaxial non-aligned models. The
choice of ranges in these parameters turns out to be rather subtle,
and is described in detail in Jones (2015). Basically, the source

Table 1. Parameter ranges for the waveform parameters for the three signal
models.

Models
Triaxial aligned Biaxial Triaxial non-aligned

C21 – −Cmax
21 , Cmax

21 0, Cmax
21

C22 0, Cmax
22 −Cmax

22 , Cmax
22 0, Cmax

22

	C
21 (rad) – 0, 2π 0, 2π

	C
22 (rad) 0, 2π 2	C

21 0, 2π
ψ (rad) 0,π/2 0,π/2 0, π/2
cos ι −1, 1 −1, 1 −1, 1

Table 2. Parameter ranges for the source parameters for the three signal
models.

Models
Triaxial aligned Biaxial Triaxial non-aligned

I31 – 0, Imax
31 I21, I

max
31

I21 0, Imax
21 – 0, Imax

21

φ0 (rad) 0,π 0, 2π 0, 2π
λ (rad) – – 0,π
cos θ 1 0, 1 0, 1
ψ (rad) 0, π/2 0, π 0, π/2
cos ι −1, 1 −1, 1 −1, 1

parametrization and, to a lesser extent, the waveform parametriza-
tion contain various discrete degeneracies, where changes in some
combination of angle and/or amplitude parameters leave the de-
tected waveform h(t) invariant. This allows the ranges in these pa-
rameters to be reduced as compared to one’s initial expectations,
with there being several options as to how the parameter space is
reduced. The choices given in Tables 1 and 2 represent one of sev-
eral possibilities (see Jones 2015), and are the ranges we have used
for the subsequent analyses presented in this paper. Any point in
these ranges can be mapped into another part of the full parameter
range that gives an identical waveform through the transformations
given in Jones (2015). This enables signal parameter estimation and
evidence evaluation to be performed using this minimal range, but
for posteriors to then be mapped into the full range, if so desired.

3 BAY E S I A N M E T H O D O L O G Y

For this analysis, we want to be able to compute probability dis-
tributions for source and waveform parameters, and also to com-
pare models (noise-only verses triaxial non-aligned verses biaxial
verses triaxial aligned). In Bayesian methodology, the standard way
to compute probability distributions for unknown parameters is to
make use of the Bayes theorem for the posterior probability distri-
bution

p(θ|d,M, I ) = p(d|θ,M, I )p(θ|M, I )

p(d|M, I )
, (11)

where p(d|θ,M, I ) is the likelihood of the data d given model M and
background information I, with a set of parameters θ, p(θ|M, I ) is
the prior on the parameters and p(d|M, I) is the evidence, or marginal
likelihood (in this paper we will use the term evidence throughout
for consistency), of the data given the model. The evidence is the
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factor that normalizes the posterior probability density. It is given
by

p(d|M, I ) =
∫

θ

p(d|θ,M, I )p(θ|M, I ) dθ. (12)

To compare models, we can calculate the Bayes factor, or odds
ratio, between competing models. To this end, note that for any
model we can calculate its posterior probability as

p(M|d, I ) = p(d|M, I )p(M|I )

p(d|I )
. (13)

It is hard (maybe impossible) to calculate the normalization factor
p(d|I) as you have to know all alternative models and marginalize
over them, but we can still compare posterior probabilities between
models provided they use the same data. We can compute the Bayes
factor, or odds ratio O (which we will use from here onwards)
between two models, as e.g.

O12 = p(M1|d, I )

p(M2|d, I )
= p(d|M1, I )

p(d|M2, I )

p(M1|I )

p(M2|I )
. (14)

Note that the normalizing factor p(d|I) has cancelled out. If there is
no known prior preference between the two models, then the ratio
p(M1|I)/p(M2|I), the ratio of the prior odds between each model,
can be set equal to unity. In this case, the odds ratio is just the
ratio between the evidences, given by equation (12), of the two
models. We will adopt this viewpoint here, so all odds ratios will
be calculated as the ratio of evidences.

In the analyses performed in Sections 4 and 5, the likelihood
function p(d|θ,M, I ) we use is the Student’s t likelihood given in
Dupuis & Woan (2005). This likelihood assumes that the noise in the
data is stationary (over the defined length of time) and Gaussian, but
with an unknown noise standard deviation that has been analytically
marginalized out. However, for the analysis of real data in Section 6,
we have instead estimated the noise level for each data point and
therefore use a Gaussian likelihood function in that section. The
reason for this difference in likelihood function is that for real data
it is more efficient to produce our processed data set at a lower
sample rate and with the noise already estimated, which makes the
Gaussian likelihood more appropriate. However, for large numbers
of data points, the two likelihoods will be very similar.

3.1 Priors

To compute evidences and posterior probability distributions, we
must also explicitly define our prior probability distributions. For
the azimuthal-type angular parameters, and uniform in the cosine
of the polar-type angular parameters, the least informative prior is
a uniform prior defined within their allowed ranges. So, given the
ranges in Tables 1 and 2, the prior on the angles in the waveform
parametrization, assuming the triaxial non-aligned model, is

p(	C
21, 	

C
22, ψ, cos ι|M, I ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

const. if 0 ≤ 	C
21 ≤ 2π

and 0 ≤ 	C
22 ≤ 2π

and 0 ≤ ψ ≤ π/2

and − 1 ≤ cos ι ≤ 1;

0 otherwise,

(15)

whilst in the source parametrization, assuming the triaxial non-
aligned model, it is

p(φ0, λ, ψ, cos θ, cos ι|M, I )=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

const. if 0 ≤ φ0 ≤ 2π

and 0 ≤ λ ≤ π

and 0 ≤ cos θ ≤ 1

and 0 ≤ ψ ≤ π/2

and − 1 ≤ cos ι ≤ 1;

0 otherwise.

(16)

Equivalents of these priors for the required parameters are used in
the triaxial aligned and biaxial cases.

We will use priors on the amplitude parameters that are uniform
within a range defined by the limits in Tables 1 and 2. These limits
on the priors vary for the different model types, as described in
Jones (2015). For the waveform parametrization in the triaxial non-
aligned case, our prior is

p(C21, C22|M, I ) =

⎧⎪⎨
⎪⎩

const. if 0 ≤ C21 ≤ Cmax
21

and 0 ≤ C22 ≤ Cmax
22 ;

0 otherwise,

(17)

but for the biaxial case it is

p(C21, C22|M, I ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

const. if − Cmax
21 ≤ C21 ≤ Cmax

21

and − Cmax
22 ≤ C22 ≤ Cmax

22

and C22/C21 ≥ 0;

0 otherwise.

(18)

For the source parametrization in the triaxial non-aligned case, we
choose to use a prior on the amplitudes given by

p(I31, I21|M, I ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

const. if 0 ≤ I31 ≤ Imax
31

and 0 ≤ I21 ≤ Imax
21

and I31 > I21;

0 otherwise.

(19)

These priors on the amplitude parameters are uniform largely for
convenience and simplicity rather than through a physical motiva-
tion. This is consistent with the uniform priors traditionally used
in searches for gravitational waves from known pulsars, where uni-
form amplitude priors play a role of allowing a relatively high upper
limit to be set by the likelihood, consistent with the data. However,
when evaluating evidences a choice of uniform prior does have an
influence, as doubling an allowed parameter range doubles the ef-
fective prior volume. However, we limit the effect of this in our
analysis by assessing the distribution of odds ratios between sig-
nal and noise models empirically and basing thresholds on that
empirical distribution. Additionally, some of the influences of the
size of prior volume cancel when comparing signal models. It is
worthwhile noting that evidence values produced using the min-
imal parameter ranges given in Tables 1 and 2 are equivalent to
those that would be produced using the full parameter space (or,
e.g., just doubling the ψ ranges). This is because the likelihood
volume within the minimal range is exactly reproduced in each of
the equivalent volumes within the total physical range, along with
the prior volume increasing by the same factor. So, the increases in
likelihood volume and prior volume cancel out.
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3.2 Nested sampling

To calculate odds ratios, we need to evaluate the evidence for each
model, and equation (12) shows this to involve multidimensional
integrals. For some parameters, or likelihoods, the integral may be
analytic, or for low numbers of dimensions it may be possible to
evaluate it on a grid, but more generally, efficient numerical integra-
tion techniques must be applied. Here we use the nested sampling
algorithm of Skilling (2006), in particular the implementation of it
based on that developed by Veitch & Vecchio (2010) and available
in the LALINFERENCE software library (Veitch et al. 2015). Nested
sampling attempts to simplify equation (12) into a one-dimensional
integral that can be easily numerically calculated. It samples a num-
ber of live points from the prior parameter volume, calculates the
likelihood at each point, finds the minimum likelihood Lmin point
to add to the evidence integral and then samples a new point with
a higher likelihood than Lmin. This process is repeated until the
integral is computed to sufficient accuracy.

The analysis methods and models we have used have been
incorporated into a code called LALAPPS_PULSAR_PARAMETER_
ESTIMATION_NESTED, which is freely available in the LALSuite soft-
ware repository.1

4 WAV E F O R M V E R S U S SO U R C E
PA R A M E T E R S

It is useful to look at some plots that illustrate the very different
nature of the waveform and source parameters. To do so, we can
make use of the samples produced during nested sampling, by prob-
abilistically drawing a subset that represent the posterior probability
distributions of the model parameters, using either the waveform or
source parameters. The distribution of samples for an individual pa-
rameter (or subset of parameters) represents the posterior probabil-
ity for that parameter marginalized over all other parameters. This
amounts to integrating equation (11) over the prior ranges given
in Tables 1 and 2 for the required parameter(s). In Figs 1 and 2,
the one- and two-dimensional posterior parameter distributions are
shown for the triaxial non-aligned model for an almost linearly
polarized signal (cos ι ≈ 0) with a signal-to-noise ratio (SNR) of
20, when recovered using the waveform and source parameters, re-
spectively. Equivalent plots for an almost fully circularly polarized
signal (|cos ι| ≈ 1) are shown in Figs 3 and 4. We present results for
these two extremes in inclination angle to give the reader an idea of
the range of different posterior probability distributions than can be
obtained.

From Figs 1 and 3, it can be seen that the waveform parame-
ters show a rather simple unimodal probability distribution. This is
especially evident for the close-to-linearly-polarized signal, which
shows the posteriors to be largely uncorrelated and Gaussian in
appearance; as has been seen in previous triaxial aligned analyses,
the extraction of parameters for circular polarizations is slightly
more difficult, due to increased correlations between the parame-
ters (Pitkin 2011). In contrast, the probability distributions in the
source parameter space, shown in Figs 2 and 4, show a large amount
of structure (as originally observed in Gill 2012). As described in
Appendix A, the five source parameters (I21, I31, θ , φ0, λ) can be
related to the four waveform parameters (C21, 	

C
21, C22, 	

C
22). This

leads to the source parameters forming a highly degenerate and
curved tube-like structure, rather than the much simpler form of the

1 http://www.lsc-group.phys.uwm.edu/daswg/projects/lalsuite.html

waveform parameters. The full complexity of this tube-like struc-
ture is probably being somewhat masked by our choice to only show
its projected marginalizations in two dimensions.

We note that non-negligible probabilities exist out to large values
if I21 ≈ I31, due to degeneracies with other parameters. For example,
in Fig. 4, I21 and I31 are truncated to show the bulk of the posterior,
but would otherwise show a long tail along the diagonal of the I21

versus I31 joint posterior plot. This long tail in I21 and I31 is particu-
larly prominent given our choice of a uniform prior in the amplitude
parameters. If we had used a prior uniform in the logarithm of the
amplitude parameters, then this tail would be greatly suppressed.

Clearly, it will be much simpler to work with the waveform pa-
rameters rather than source parameters. There is also the issue of
computational speed. For a stochastic sampling technique such as
nested sampling, the efficiency of the algorithm is greatly increased
if new samples can be drawn from a distribution that closely matches
the actual likelihood distribution. If the true distribution is smoothly
varying, unimodal and relatively unstructured, then it can gener-
ally be well approximated by a multivariate Gaussian. However,
for more complex distributions, such an approximation becomes
invalid.

Indeed, comparisons in which the analysis code has been run
on the same data, but using the waveform and source parameter
spaces, show that to produce a similar number of posterior samples
the former runs ∼1.6 times faster than the latter in the case of no
signal, and ∼1.8 times faster2 for a signal with an SNR of ∼20. This
clearly shows the problems caused when sampling from likelihood
functions with complex structure.

We can therefore see that working with the waveform model
rather than the source model is simpler, both in terms of the di-
mensionality of the parameter space and the shape of the likelihood
function, and the required computations are faster in the waveform
case. For these reasons, in the model comparisons that follow in
Section 5, we will work exclusively in terms of the waveform pa-
rameters.

4.1 Parameter space mapping

In the calculations described above, we have used ranges in the
parameters that were as small as possible, i.e. we used the smallest
possible sets such that one could be sure that if a triaxial non-
aligned signal were present in the data, parameters could be found
that matched the signal; see Jones (2015) for details. However, in the
event of a detection, other parameters can be found that match the
signal, in a way described using the transformations given in Jones
(2015). Some of these other parameter sets correspond to physically
distinct stars. For instance, if one finds a signal with a polarization
angle ψ , there will exist three other solutions with ψ values that
differ by successive additions of π/2, and having different values
for some other parameters; this degeneracy can only be broken
if additional (probably electromagnetic) information is available.
There will also be other parameter sets that correspond to exactly
the same physical star, and differ only in a trivial way, relating to
how one chooses to label the three Cartesian axes that one lays
down on the spinning triaxial body. It is instructive to fill out the
full parameter space, to make clear that these degeneracies exist,
and test the transformation rules given in Jones (2015).

2 However, this speed difference can greatly increase when running with
larger numbers of live points to get better sampled posteriors.
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4404 M. Pitkin et al.

Figure 1. Marginalized posterior probability distribution plots of waveform parameters for an almost fully linearly polarized (cos ι ≈ 0) signal with an SNR of
20 covering the minimal parameter ranges of Table 1. The cross-hairs show the true parameters of the simulated signal. All posterior plots have been produced
with a modified version of the TRIANGLE.PY PYTHON package (Foreman-Mackey et al. 2014).

In the case of the waveform model, we need to only enlarge
the range covered by the polarization angle ψ , whose minimal
range was ψ ∈ [0, π/2], and so covered one quarter of the full
range ψ ∈ [0, 2π] that ψ . So, to construct posteriors in the full
range, we can randomly split the posterior samples into quarters, and
each successive quarter can be mapped into the adjacent parameter
volume by successive application of the transformations given in
the appendix of Jones (2015)

ψ → ψ + π/2,

	C
21 → 	C

21 + π,

	C
22 → 	C

22 + π. (20)

For the source model, the restricted range only covers a 16th of the
full range (where cos θ ∈ [−1, 1], ψ ∈ [0, 2π] and λ ∈ [0, 2π]).
This means that the posterior samples have to be split between the
16 volumes and more complex transforms used to map them as
given in Jones (2015). If one wishes to map out this full param-
eter space, considerable care has to be taken when carrying out
the transformations, particularly when selecting the correct roots
of inverse trigonometric functions. For this reason, we give in Ap-
pendix B an outline of the procedure used here, written as a simple
pseudo-code.

The full posterior plots for the linearly polarized signal used
in Figs 1 and 2, based on this mapping of posterior samples, are
shown in Figs 5 and 6. In the waveform parametrization shown
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Dual-harmonic GWs from NSs 4405

Figure 2. Marginalized posterior probability distribution plots of source parameters for an almost fully linearly polarized (cos ι ≈ 0) signal with an SNR of
20 (the same signal as used in Fig. 1) covering the minimal parameter ranges of Table 2. The cross-hairs show the true parameters of the simulated signal.

in Fig. 5, whilst the amplitude parameters and inclination can be
unambiguously recovered, it is impossible through the gravitational
wave signal alone to be able to distinguish the combination of initial
phases and polarization angle between the four distinct modes.
In the source parametrization, things become even more complex.
Whilst I31 and cos ι can be reasonably well determined, the other
parameters suffer from strong degeneracies. In particular, there are
always combinations of parameters that allow I21 to be close to
zero or large, which means that it may only be possible to ever set
upper limits on this parameter, even in the event of a detection. This
implies that for the triaxial aligned model precise determination
of the individual physical parameters will not be possible even for
high-SNR sources. Only some highly correlated combination of
parameters will be precisely determined.

The complex degeneracies of the posteriors for the source param-
eters show that trying to estimate parameter uncertainties using the
Gaussian approximation of the Fisher matrix would most likely lead
to highly biased results even at high SNRs. However, the waveform
parametrization looks to be far more amenable to estimation using
the Fisher matrix (as is done in Bejger & Królak 2014), provided
that the minimal parameter space is used and the multimodal de-
generacies in the full parameter ranges are subsequently accounted
for.

5 M O D E L S E L E C T I O N

In this section, we use simulations of signals and noise to evalu-
ate how well we can distinguish between noise-only data and data
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4406 M. Pitkin et al.

Figure 3. Marginalized posterior probability distribution plots of waveform parameters for an almost fully circularly polarized (cos ι ≈ 1) signal with an SNR
of 20 covering the minimal parameter ranges of Table 1. The cross-hairs show the true parameters of the simulated signal.

containing a signal of the form of one of our three models (triaxial
non-aligned, triaxial aligned or biaxial). In all our simulations, we
have adopted a noise level for the f and 2f data streams based on the
initial LIGO design sensitivity for the 4 km LIGO Hanford Obser-
vatory (H1), i.e. the noise level is not equal between data streams
and SNRs will be affected not just by the signal amplitude, but by
their frequency. All simulations assume one day of heterodyned data
sampled at a rate of one sample per minute, as has been standard
in previous searches (Dupuis & Woan 2005) and that the evidence
evaluation uses a Student’s t likelihood function. For the advanced
detectors, the sensitivity curve shapes will be similar, but with the
low-frequency edge being pushed to lower frequencies. Note that
in all of our analyses, we assume that the signal phase evolution is
tracked exactly, so that the frequency f is a known parameter.

Also in this section we will often refer loosely to the natural
logarithm of the odds ratio, lnO, as the ‘odds ratio’. This number has
the convenience of being far more robust against issues of numerical
precision when dealing with very large or small likelihood values.

5.1 Noise-only simulations

The odds ratio itself tells you how much one model is favoured over
another, but computed odds ratios will be numerically different for
different noise realizations. Jeffreys (1998) gives a rule-of-thumb
table for assessing the significance of odds ratios; however, this can
also be approached empirically by using simulations to determine
their distribution over realizations. In particular, by assessing the
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Dual-harmonic GWs from NSs 4407

Figure 4. Marginalized posterior probability distribution plots of source parameters for an almost fully circularly polarized (cos ι ≈ 1) signal with an SNR of
20 (the same signal as used in Fig. 3) covering the minimal parameter ranges of Table 2. The cross-hairs show the true parameters of the simulated signal.

odds ratios empirically, we can alleviate the effect of our large
prior amplitude volume in shifting the distribution of odds ratios
towards low values even when signals could potentially be seen. We
will therefore follow this second path. The dependence of the odds
ratios we calculate on the prior volume of the amplitude parameters
probably shows that our choice of amplitude priors (uniform up to
some maximum, and zero above the maximum) could be improved
upon. One alternative option is a prior that is uniform up to a lower
maximum value and then uniform in the logarithm of amplitude
for larger values. However, the simple choice we have made has
the advantage that the same prior can be used for all sources, no
matter where they sit within the detector’s sensitivity curve, with the
knowledge that the prior will easily bound the bulk of the likelihood
in all cases.

For our noise-only analysis, we ran 2000 simulations, with f
drawn from a uniform distribution between 50 and 700 Hz, and
the f and 2f data streams generated by drawing the real and imagi-
nary components from Gaussian distributions with zero mean and
a variance set by the expected H1 noise at the given frequency.3 For
each simulation, a random sky location was chosen, generated from
a uniform distribution on the sky, as this determines the antenna
pattern functions F+ and F× of equations (9) and (10). Note that,
for the reasons outlined previously, when calculating odds ratios,

3 The variance is calculated as σ (t)2 = Sn(f)/4�t, with Sn(f) being the one-
sided power spectral density at f and �t being the time series time step,
which is 60 s for this analysis.

MNRAS 453, 4399–4420 (2015)

 at U
niversity of Southam

pton on January 4, 2017
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


4408 M. Pitkin et al.

Figure 5. Marginalized posterior probability distribution plots of waveform parameters for the same signal as used in Fig. 1, but covering the full physical
parameter ranges. The cross-hairs show the true parameters of the simulated signal.

we used signals written in terms of the waveform parameters rather
than source parameters. For each simulation, the odds ratios of ev-
idence for each model versus that for Gaussian noise4 have been
calculated using nested sampling, and the cumulative probability
distributions of all these values are shown in Fig. 7. Note that for
the triaxial aligned model, only the 2f data stream was used.

Fig. 7 has three notable features. First, we see that the odds ratio
(elnO) for all three signal models is, for a large fraction of the sim-
ulations, small, confirming that noise-only data are normally found
to be more consistent with noise than with a signal, as expected.

4 For Gaussian noise the evidence is calculated by setting the signal ampli-
tude to zero in the likelihood function.

Secondly, for a given cumulative probability, the odds ratios for the
biaxial and triaxial non-aligned models are much smaller than for
the triaxial aligned model. There are two related explanations for
this: it is intrinsically less likely for noise to conspire to imitate a
signal with components at both f and 2f, as this would require the
noise to produce signal-like disturbances at the two widely sepa-
rated frequencies, with correlated properties (e.g. with consistent
values for the parameters ι and ψ); and there will be an Occam
factor at play, such that in the absence of any evidence for a par-
ticular signal the simpler triaxial aligned model, which has fewer
parameters and a correspondingly smaller prior volume than the
biaxial and triaxial non-aligned models, will be favoured. In par-
ticular, the large extra prior volume added by the extra amplitude
parameter in the triaxial non-aligned and biaxial models plays the
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Figure 6. Marginalized posterior probability distribution plots of source parameters for the same signal as used in Fig. 1, but covering the full physical
parameter ranges. The cross-hairs show the true parameters of the simulated signal.

predominant role in the shift between the odds ratio distributions.
Thirdly, the curves show that the biaxial model is slightly favoured
over the triaxial non-aligned model. This again can be accounted
for through the Occam factor, due to the additional parameter, and
therefore prior volume, required for the triaxial non-aligned model
over the biaxial model.

From these distributions, we can set an odds ratio threshold at
which we favour one model over noise at a given false alarm prob-
ability. If we choose a false alarm probability of 1 per cent, we find
that threshold odds ratios for each model versus Gaussian noise
alone are −6.3, −13.0 and −13.5 for the triaxial aligned, biax-
ial and triaxial non-aligned cases, respectively. We will use these
thresholds for calculating detection efficiencies below. However, it
is worth noting that analyses of data of different lengths of time,
and/or combining additional detectors, would produce different val-

ues for the odds ratios. This means that a threshold needs to be
calculated for a specific analysis and that the values above are only
relevant if using one day of LIGO H1 data sampled at a rate of
once per minute. A different threshold would be required for the
analysis of real LIGO data presented in Section 6, and indeed in
Section 6.1 we demonstrate a different, but related, assessment of
detection significance. It is also worth noting that these simulations
have used Gaussian noise, whereas the distribution of odds ratios
for real data would most likely be different.

5.2 Signal simulations

To assess detection efficiencies for signals described by the three
different models, we have generated simulations including these
signals. In all three cases, we drew the signal sky positions from a
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4410 M. Pitkin et al.

Figure 7. The cumulative probability distribution of odds ratios comparing
the three signal models to Gaussian noise for data containing only noise.

uniform distribution on the sky, and chose amplitude parameters to
give a uniform SNR distribution between 0 and 20. We chose the
distribution of angular parameters to be uniform within the prior
ranges given in Table 2. In the triaxial non-aligned case, we drew
values from the source parameters, with I21 drawn from a uniform
distribution between zero and an upper range, whilst for each I21

value I31 was drawn from a uniform distribution between I21 and the
same upper range, thus ensuring that I31 > I21. To obtain a uniform
distribution in the overall SNR for the combined f and 2f signal,
each of these pairs of parameter was re-scaled such that the final
distribution was uniform in SNR between 0 and 20.

In this analysis, we define the SNR for a discretely sampled
complex signal, xi, as

ρ = 1

σ

{
N∑

i=1

[�(xi)
2 + �(xi)

2
]}1/2

, (21)

where σ is the noise standard deviation (assumed constant) in both
the real and imaginary components of the data. The coherent SNR
for a combined f and 2f signal is then just given by ρcoh = (ρ2

f +
ρ2

2f )1/2.
We generated a set of 2000 simulations including signals from the

full triaxial non-aligned model, 2000 simulations including signals
from the triaxial aligned model and 2000 simulations including
signals from the biaxial model, with coherent SNRs between 0 and
20. To assess model comparison at much higher SNRs, we generated
further sets of 500 injections of triaxial non-aligned signals with
SNRs of 50, 100 and 500.

For each set of injections, we calculated the odds ratios of signal
versus Gaussian noise for each of the three different models. We then
used these to compute detection efficiencies, and also to compute
odds ratios between the three different signal models. We now
present the results for each type of injected signal.

5.2.1 Detecting triaxial non-aligned signals

Using the odds ratio threshold for the 1 per cent false alarm proba-
bility found in Section 5.1, we can work out the efficiencies of each
model for detecting an injected triaxial non-aligned signal. We can

do this as a function of the total SNR, but also as a function of the
SNR in both the f and 2f streams individually. We can also use these
odds ratios to compare the signal models against one another.

Fig. 8(a) shows the efficiency for detecting triaxial non-aligned
signals as a function of the combined SNRs in the f and 2f data
streams (the shaded regions give 95 per cent credible intervals cal-
culated using the method of Cameron 2011). The three curves cor-
respond to using the (correct) triaxial non-aligned model, and using
the (incorrect) triaxial aligned and biaxial models. The equivalent
efficiencies as a function of the SNR in each individual stream
are shown in Fig. 9, with Fig. 9(a) assuming the (correct) triaxial
non-aligned model, and Figs 9(b) and (c) assuming the (incorrect)
triaxial aligned and biaxial models, respectively.

From Fig. 8(a) it can be seen that a 95 per cent detection effi-
ciency is achieved for the biaxial and triaxial non-aligned models
for SNRs � 5.5. The detection efficiency using the triaxial aligned
model is systematically lower. The biaxial and triaxial non-aligned
models recover signals with nearly equal efficiency showing that
even though the injected triaxial non-aligned signal contains an ad-
ditional phase parameter, recovery with the biaxial model generally
finds a nearly equivalent parametrization to match it (see below).
It is obvious that the triaxial aligned model will not detect signals
for which there is very little power in the 2f stream, which is the
reason for its detection efficiency curve in Fig. 8(a) always being
slightly lower than that of the triaxial non-aligned and biaxial mod-
els. This is seen as an obvious effect in Fig. 9(b). However, signals
with SNR � 6 in the 2f stream are still well recovered. (In contrast,
when assuming a triaxial non-aligned or biaxial signal, detection is
possible provided the combined SNR is sufficiently large, as made
clear in Figs 9(a) and (c), respectively.) This again shows that, even
for signals with the full triaxial non-aligned model parametrization,
the 2f component can still be well matched with the triaxial aligned
model. This good match is straightforwardly apparent when think-
ing in terms of the waveform parametrization as the signal in the 2f
component has exactly the same form for both models, whereas this
equivalence is not so evident when using the source parametrization.

Using the odds ratio values we have calculated, we are also able
to compare the Bayesian evidences between signal models rather
than just comparing a model to noise. For the biaxial and triaxial
non-aligned cases, we can take the ratio of odds ratios that we
have already calculated as the noise evidence terms will cancel
out. However, for the triaxial aligned case, we need to include the
evidence for there being no signal present in the f data stream as
part of the signal model. Therefore, the evidence for the triaxial
aligned model becomes the product of the evidence for a signal
at 2f and only noise at f. We take model 1 to be favoured over
model 2 if O12 ≡ O1/O2 > 1. For each model pairing (triaxial
aligned versus triaxial non-aligned, triaxial aligned versus biaxial
and biaxial versus triaxial non-aligned), we have computed the
percentage of our simulated signals for which the numerator model
is favoured as a function of SNR, e.g. 50 per cent means that on
average either model is equally likely. Results for this can be seen
in Fig. 10(a).

We see that up to SNRs of ∼10, the simpler triaxial aligned
model is more often favoured, whilst at greater SNR the triaxial
non-aligned and biaxial models become more probable, i.e. the fact
that the signal looks more like the triaxial non-aligned and biaxial
models starts to overcome the Occam factors disfavouring them.
For signals with coherent SNRs of ∼20, we see that the simpler
triaxial aligned model is still favoured ∼30 per cent of the time. This
is mainly a result of the distribution of our population of simulated
signals for which, when the coherent SNR ∼20, about a third of the
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Figure 8. Each panel shows the efficiencies for signal detection (with a
1 per cent false alarm probability) based on the odds ratios recovered as-
suming the three different signal models. In panel (a) the data contained
triaxial non-aligned injections, in panel (b) triaxial aligned injections, and
in panel (c) biaxial injections.

Figure 9. The efficiencies for signal detection (with a 1 per cent false alarm
probability) based on odds ratios for data containing triaxial non-aligned
injections, plotted as a function of the signal SNR in the individual f and 2f
data streams. The analysis in panel (a) assumed the (correct) triaxial non-
aligned model, while the analyses in panels (b) and (c) assumed (incorrectly)
the triaxial aligned and biaxial models, respectively.
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Figure 10. The percentage of simulations favouring a particular model (see legends) when the simulation contains (a) the full triaxial non-aligned model,
(b) the triaxial aligned model and (c) the biaxial model, as a function of the signal coherent SNR. Note that in panel (b) the (blue) triaxial aligned/triaxial
non-aligned results are barely visible beneath the (red) triaxial aligned/biaxial results.

signals have an SNR of �5 in the f component. Therefore, in these
cases the f component is providing very little additional evidence for
the triaxial non-aligned, or biaxial models, and the simpler triaxial
aligned model is being favoured. A striking point to note is that
out to SNRs of somewhere between 20 and 50, the biaxial model is
favoured more than 50 per cent of the time over the true triaxial non-
aligned model. As noted in Appendix A2, the biaxial model is just
a special case of the triaxial non-aligned model with the constraint
that 	C

22 = 2	C
21, so in some small fraction of the simulations this

criterion will be fulfilled and the Occam factor will result in the
biaxial model being favoured (see discussion below and Fig. 12).
However, this does not account for the fraction of the cases that the
biaxial model is favoured. To explain that we must look at another
degeneracy: when the signal is circularly polarized, 	C

22 and ψ be-
come very highly correlated (see, e.g., Fig. 3), and in these cases
a combination of 	C

22 and ψ can be found such that 	C
22 ≈ 2	C

21.
Therefore, these will again look like biaxial signals and the Occam
factor will start to favour them. This is demonstrated in Fig. 11,
which shows the parameter posterior probability distributions for
a triaxial non-aligned signal with SNR ∼20 and | cos ι|∼0.5; even
with |cos ι| some way from unity, the correlation between 	C

22 and ψ

is still strong. This means that for SNRs ∼20 about half the popula-
tion will still be able to support the biaxial model. Indeed in the case
of the signal in Fig. 11, the biaxial model is very slightly favoured
over the triaxial non-aligned model by a factor of ∼1.3. Even at
SNRs as high as 500, this effect still means that ∼15–20 per cent of
triaxial non-aligned signal simulations favour the biaxial model.

We can also see this effect by looking at three illustrative wave-
forms, each corresponding to signals with SNR of 500, in the first
case picking out a waveform where the biaxial model is favoured
by ∼e5.9, in the second case the biaxial and triaxial non-aligned
models are equally likely, and in the third case the biaxial model is
strongly disfavoured by a factor of ∼e4690. The first case is shown in
Fig. 12, which happens to be a simulation in which 	C

22 ≈ 2	C
21 and

cos ι = 0.23, so the waveform is essentially a biaxial waveform and
both the biaxial and triaxial non-aligned models recover the cor-
rect waveform almost perfectly – the parameters are also recovered
consistently for both models. In this case, the triaxial non-aligned
model provides no extra information, so the Occam factor means
that the biaxial model is favoured. The second case is shown in
Fig. 13, in which 	C

22 ≈ 2	C
21, but cos ι = −0.93. In this case, al-

most identical waveforms are recovered for both models, but due
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Figure 11. Marginalized posterior probability distribution plots of waveform parameters for an SNR ∼20 signal with cos ι = −0.49 covering the minimal
parameter ranges of Table 1.

to the 	C
22 and ψ degeneracy the recovered best-fitting parameters

are not the same. The third case is shown in Fig. 14, where again
	C

22 ≈ 2	C
21, but cos ι = 0.23. This shows that whereas the triaxial

non-aligned model produces an excellent fit in both the f and 2f data
streams, the biaxial model sacrifices any attempt at a good fit in the
2f data in favour of getting a very good fit in the higher SNR f data.

5.2.2 Detecting triaxial aligned signals

Using the triaxial aligned injections, we have again calculated odds
ratios for each model. The efficiencies of detecting these signals
for each of the models, using the 1 per cent false alarm probability
thresholds given in Section 5.1, are shown in Fig. 8(b).

The triaxial aligned model is just a special case of the two other
models and we see that, as it is the simplest model, the best efficiency
is achieved when we just use that model. However, the efficiency
increase is relatively small compared to more complex models, with
those models giving almost 100 per cent efficiency for SNR greater
than ∼7.

The main advantage of just performing the analysis assuming
the triaxial aligned signal model is speed. Using the waveform
parametrization, the analysis in this case is ∼2 times faster than
using the triaxial non-aligned model (the speed ratio does not vary
significantly with SNR as the likelihoods in both cases are fairly
simple). However, if the signal does contain significant power at
f, then, as we have seen in Figs 8(a) and 9(b), assuming a purely
triaxial aligned signal model could lead to signals being missed.

MNRAS 453, 4399–4420 (2015)

 at U
niversity of Southam

pton on January 4, 2017
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


4414 M. Pitkin et al.

Figure 12. The real and imaginary waveforms for the f and 2f data streams
of an SNR 500 signal for which the biaxial model is favoured over the triaxial
non-aligned model by ∼e5.9. The black points represent the simulated data,
the overlapping red and blue lines show a distribution of waveforms drawn
randomly from the posterior parameter distributions for the triaxial non-
aligned and biaxial models, respectively, and the dashed black line shows the
injected waveform. In this case, the lines are nearly impossible to distinguish
on the plot, as a consistent waveform is recovered for both models.

The signal model comparison is shown in Fig. 10(b). This shows
that when a purely triaxial aligned signal is present, then that model
is always favoured over the more complex models. As we have
noted earlier, the triaxial aligned model is just a special case of
the other models, so this result is purely down to the Occam factor
rather than it being a better fit to the data. We also see the Occam
factor in play when comparing the biaxial and triaxial non-aligned
models, with the biaxial model being favoured for the majority of
signals. There is a slow trend towards the triaxial non-aligned model
being more favoured. The reasons for this are not entirely clear, but
a possible explanation is that the extra free parameter in the triaxial
non-aligned model will allow it to more easily accommodate the
necessary lack of signal in the f data stream.

5.2.3 Detecting biaxial signals

Finally, using the biaxial simulations, we have calculated odds ratios
for each model. Fig. 8(c) shows the efficiencies of detecting these
signals for each of the models, using the 1 per cent false alarm
probability thresholds given in Section 5.1. The results are similar
to those for the triaxial non-aligned injections of Fig. 8(a), with
the triaxial aligned model being somewhat less efficient than the
biaxial or triaxial non-aligned models, due to its inability to detect
signals with low SNR in just the 2f component. Again we see that
the efficiencies of the triaxial non-aligned and biaxial models are
very similar, despite one of them (the latter, in this case) being the
correct model.

The signal model comparison is shown in Fig. 10(c). In common
with the cases described above, at low SNR the triaxial aligned
model is favoured over the other two models. As the SNRs increase,
the biaxial and triaxial non-aligned models become more favoured

Figure 13. The real and imaginary waveforms for the f and 2f data streams
of an SNR 500 signal for which the biaxial model and triaxial non-aligned
models are equally likely. The black points represent the simulated data,
the overlapping red and blue lines show a distribution of waveforms drawn
randomly from the posterior parameter distributions for the triaxial non-
aligned and biaxial models, respectively, and the dashed black line shows
the injected waveform. In this case, the lines are hard to distinguish between
as a consistent waveform is recovered for both models, although in the f data
stream there is a minor discrepancy.

Figure 14. The real and imaginary waveforms for the f and 2f data streams
of an SNR 500 signal for which the biaxial model is disfavoured over the
triaxial non-aligned model by a factor of ∼e4690. The black points represent
the simulated data, the overlapping red and blue lines show a distribution
of waveforms drawn randomly from the posterior parameter distributions
for the triaxial non-aligned and biaxial models, respectively, and the dashed
black line shows the injected waveform. In this case, the biaxial model has
to sacrifice any close fit in the 2f data stream over producing a very good fit
to the higher SNR f data stream.
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over the triaxial aligned model, by approximately equal amounts,
and are more often preferred for SNRs above about 10. The biaxial
model is favoured over the triaxial non-aligned model by a constant
amount of ∼90 per cent over all SNRs except the very smallest ones.

6 SE A R C H I N R E A L DATA

We performed a search for gravitational waves from a selection of
isolated (i.e. non-binary system) known pulsars using data from
the fifth LIGO science run (S5; Abbott et al. 2009). This is the
first gravitational wave search targeted at known pulsars to include
an explicit search for a component at the rotation frequency. We
consider 43 pulsars that had previously been targeted using an anal-
ysis only sensitive to the triaxial aligned model with emission at
twice the pulsars’ rotation frequencies (Abbott et al. 2010). We
used science mode data from the two LIGO Hanford Observatory
detectors (H1 and H2) and the LIGO Livingston Observatory de-
tector (L1) covering 2005 November 4 to 2007 October 1, which
was processed into sets of discrete Fourier transforms using 30 min
sections of data (called short Fourier transforms, or SFTs; as used
in e.g. Aasi et al. 2013). This gave a total of ∼491 d of data for
H1, ∼497 d for H2 and ∼392 d for L1. For each pulsar, we filtered
the SFTs from each detector using a ‘spectral interpolation’ routine
(Davies, Pitkin & Woan, in preparation) to create two narrow-band
complex data streams sampled at one per 30 min: one with the phase
evolution at the pulsars’ rotation frequency removed and the other
with the phase evolution at twice the pulsars’ rotation frequency
removed. For each data stream, we also produced estimates of the
time-varying standard deviation of the corresponding noise.

For each pulsar, we performed parameter estimation and cal-
culated the evidence for each of the triaxial aligned, biaxial and
triaxial non-aligned models. This allows us to perform model com-
parison for each source, assess the detection of signals and produce
95 per cent credible region upper limits (bounded at zero) on the
waveform model amplitudes C21 and C22. We show the results,
based on a joint analysis of data from all three detectors, in Ta-
ble 3. As with the analysis in Abbott et al. (2010) we expect am-
plitude calibration uncertainties of 10 per cent for H1 and H2 and
13 per cent for L1. The table includes results for the triaxial aligned
model giving upper limits on the conventionally quoted gravita-
tional wave strain amplitude h0 (which in this model is related
to C22 via h0 = 2C22). These upper limits are broadly consistent
(within ∼25 per cent5) with those in Abbott et al. (2010), but are
not identical due to differences in the processing pipeline [hetero-
dyned, averaged and low-pass filtered (Dupuis & Woan 2005) versus
Fourier-transformed] and the fact that here we have used a Gaussian
likelihood for the data given our model (using a noise estimate for
each sample), rather than a Student’s t likelihood with its implied
marginalization over an unknown noise level. From Table 3 we see
that the triaxial aligned model is favoured by factors of ∼e12 in all
cases. Given that the previous gravitational wave search reported in
Abbott et al. (2010) found no evidence for triaxial aligned signals
(purely based on examination of posterior probability distributions
of the estimated signal amplitudes), we can conclude that there is no

5 A notable outlier is J1748−2446ac for which our new result is a factor of
1.7 times better than that in Abbott et al. (2010). This seems to be due to
there being a wandering spectral line feature in the H1 data close to 2f for
this pulsar, which the narrower bandwidth and noise estimation procedure
of the spectral interpolation method is able to veto, but that had artificially
biased the noise level on the original result.

evidence for biaxial or triaxial non-aligned signals either. However,
below we will also assess the significance of the odds ratio for the
triaxial non-aligned signal compared to noise, which appears in the
results table.

One advantage of using the waveform parametrization over the
source parametrization is that C21 and C22 directly represent the
search sensitivity at f and 2f, respectively, whereas I31 and I21 con-
tribute to both harmonics in a complicated way that cannot be
disentangled. However, it is important to note that we currently do
not have a good understanding of the physical interpretation of C21

and C22. It is interesting to note from our results in Table 3 that,
although in many cases the detector sensitivities are better at f than
2f (see e.g. fig. 4 of Abbott et al. 2010), we get smaller upper limits
on C22 for all bar two pulsars (J0024−7204C and J2322+2057).
This is because when ι = 0 the f signal is zero and C21 can extend
to arbitrarily large values, which creates a tail on the C21 posterior
probability distribution leading to the larger upper limits. The tail
would be suppressed if a Jeffreys prior were used for the ampli-
tudes, but would still be present at some level as the correlation is
a feature of the waveform. Fig. 15 shows an example of the poste-
rior probability distributions for the triaxial non-aligned model for
pulsar J0024−7204C.

6.1 Results significance

It is useful to have a way to assess whether the signal versus noise
odds ratio value for a particular pulsar is large enough to be consid-
ered a detection (or detection candidate). As mentioned earlier, the
odds ratio itself tells us how much more probable the signal model
is compared to noise given the data, but fluctuations in this value
for different noise realizations and the effect of our large amplitude
prior ranges mean that an understanding of the potential distribution
of values is useful in making a detection decision. We did this in
Section 5.1 using simulations of noise-only data to get a distribution
of odds ratios when no signal was present, from which we could set
a detection threshold, given a chosen false alarm rate. For data in
which the noise is purely Gaussian, this is straightforward, but with
real data we need a way of producing the corresponding noise-only
data with the same statistics to get a representative distributions of
odds ratios. It is also useful to look at extra information such as
the SNR of the maximum a posteriori recovered waveform. Assess-
ing a particular search’s significance using an empirically estimated
‘background’ distribution of some detection statistic versus SNR
is common for many searches for transient gravitational waves,
where in those cases the ‘background’ is generated through many
time-slides of the data.

To estimate a noise-only distribution of log odds ratios for the tri-
axial non-aligned model versus noise for each pulsar, we have made
use of the same data as for the real analysis, but have ‘scrambled’
the data by randomly shuffling the time order. This preserves the
same noise statistics, but would completely de-cohere any signal
present, essentially giving us random realizations of the data. For
each pulsar therefore, we shuffled the data 100 times and calcu-
lated the log odds ratio for the triaxial non-aligned model versus
Gaussian noise, whilst also recording the SNR of the maximum
a posteriori recovered signal model. We calculated the correlation
matrix of these 100 pairs of log odds ratios and SNR and then,
assuming that their distribution is a bivariate Gaussian, calculated
a set of probability contours in the odds ratio–SNR plane for these.
The actual odds ratio and SNR for the pulsar (obtained using the
non-scrambled data) can then be placed on the plot, and its loca-
tion relative to the noise-only distribution’s contour lines gives an
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Table 3. Upper limits on gravitational wave amplitudes, and log odds ratios comparing the triaxial aligned model (1), biaxial model (2)
and triaxial non-aligned model (3) signal models, for 43 isolated pulsars using LIGO S5 data. Also given is the percentile probability
contour in the odds ratio (of triaxial non-aligned signal verses noise)–SNR plane of the background distribution on which the actual data
point sits.

PSR f (Hz) 2f (Hz) C
95 per cent
21 C

95 per cent
22 h

95 per cent
0 lnO12 lnO13 lnO23 Percentile

J0024−7204C 173.7 347.4 6.5 × 10−26 3.4 × 10−25 6.5 × 10−25 12.8 12.8 −0.8 94.5
J0024−7204D 186.7 373.3 5.8 × 10−26 2.0 × 10−26 4.7 × 10−26 13.4 13.4 0.7 81.3
J0024−7204F 381.2 762.3 1.1 × 10−25 4.7 × 10−26 8.2 × 10−26 11.1 11.1 0.7 46.0
J0024−7204G 247.5 495.0 1.5 × 10−25 4.2 × 10−26 8.5 × 10−26 12.1 12.1 −1.4 59.8
J0024−7204L 230.1 460.2 6.4 × 10−26 2.8 × 10−26 5.9 × 10−26 12.5 12.5 0.3 44.7
J0024−7204M 272.0 544.0 7.2 × 10−26 3.6 × 10−26 7.4 × 10−26 12.6 12.6 −0.5 43.2
J0024−7204N 327.4 654.9 1.5 × 10−25 3.2 × 10−26 7.3 × 10−26 12.3 12.3 −0.1 58.1
J0711−6830 182.1 364.2 9.5 × 10−26 2.0 × 10−26 4.2 × 10−26 12.1 12.1 −0.2 23.2
J1024−0719 193.7 387.4 1.2 × 10−24 3.3 × 10−26 6.3 × 10−26 11.0 11.0 −0.3 98.0
J1730−2304 123.1 246.2 7.8 × 10−26 3.2 × 10−26 6.6 × 10−26 13.1 13.1 1.3 95.1
J1744−1134 245.4 490.9 6.7 × 10−26 4.3 × 10−26 8.3 × 10−26 13.2 13.2 0.8 63.8
J1748−2446C 118.5 237.1 6.2 × 10−26 2.1 × 10−26 4.4 × 10−26 12.4 12.4 0.7 43.8
J1748−2446D 212.1 424.3 3.8 × 10−25 3.4 × 10−26 7.5 × 10−26 12.7 12.7 −0.3 36.7
J1748−2446F 180.5 361.0 7.7 × 10−26 3.1 × 10−26 6.4 × 10−26 12.2 12.2 0.0 60.0
J1748−2446H 203.0 406.0 7.0 × 10−26 3.5 × 10−26 6.9 × 10−26 12.9 12.9 −0.2 61.1
J1748−2446K 336.7 673.5 2.1 × 10−25 3.2 × 10−26 7.0 × 10−26 11.3 11.3 0.1 61.6
J1748−2446L 445.5 891.0 6.3 × 10−25 6.9 × 10−26 1.7 × 10−25 11.4 11.4 −0.3 81.0
J1748−2446R 198.9 397.7 1.1 × 10−25 3.8 × 10−26 8.7 × 10−26 12.7 12.7 2.2 60.0
J1748−2446S 163.5 327.0 5.5 × 10−26 2.6 × 10−26 5.2 × 10−26 12.6 12.6 −0.7 31.5
J1748−2446T 141.1 282.3 8.3 × 10−26 2.7 × 10−26 5.4 × 10−26 13.7 13.7 0.2 54.9
J1748−2446aa 172.8 345.5 1.1 × 10−25 9.9 × 10−26 2.1 × 10−25 12.7 12.7 0.1 63.0
J1748−2446ab 195.3 390.6 6.0 × 10−26 2.6 × 10−26 5.1 × 10−26 13.1 13.1 0.8 63.1
J1748−2446ac 196.6 393.2 7.9 × 10−26 2.3 × 10−26 4.2 × 10−26 12.8 12.8 −0.1 52.9
J1748−2446af 302.6 605.3 5.5 × 10−25 5.4 × 10−26 1.1 × 10−25 12.0 12.0 −3.1 95.1
J1748−2446ag 224.8 449.6 7.5 × 10−26 5.3 × 10−26 1.1 × 10−25 12.3 12.3 0.3 90.9
J1748−2446ah 201.4 402.8 7.1 × 10−26 3.1 × 10−26 6.2 × 10−26 12.8 12.8 −1.0 74.2
J1801−1417 275.9 551.7 1.2 × 10−25 2.9 × 10−26 5.8 × 10−26 11.7 11.7 −0.0 29.4
J1803−30 140.8 281.6 6.9 × 10−26 3.3 × 10−26 6.5 × 10−26 11.7 11.7 0.9 84.5
J1823−3021A 183.8 367.6 8.7 × 10−26 2.2 × 10−26 4.1 × 10−26 14.1 14.1 0.6 82.0
J1824−2452A 327.4 654.8 8.4 × 10−26 3.9 × 10−26 8.4 × 10−26 13.2 13.2 0.8 91.2
J1824−2452B 152.7 305.5 7.7 × 10−26 2.5 × 10−26 5.2 × 10−26 13.6 13.6 −0.1 94.3
J1824−2452E 184.5 369.1 5.9 × 10−26 3.5 × 10−26 6.7 × 10−26 12.2 12.2 −0.3 47.4
J1824−2452F 408.0 815.9 1.4 × 10−24 4.6 × 10−26 9.1 × 10−26 11.9 11.9 0.6 34.5
J1843−1113 541.8 1083.6 1.8 × 10−25 7.6 × 10−26 1.5 × 10−25 12.5 12.5 −0.2 97.0
J1905+0400 264.2 528.5 6.2 × 10−26 3.8 × 10−26 7.8 × 10−26 12.4 12.4 0.6 47.8
J1910−5959B 119.6 239.3 5.9 × 10−26 1.9 × 10−26 4.2 × 10−26 12.8 12.8 −0.8 49.3
J1910−5959C 189.5 379.0 6.0 × 10−26 2.2 × 10−26 4.6 × 10−26 12.1 12.1 −1.9 70.9
J1910−5959D 110.7 221.4 7.7 × 10−26 1.4 × 10−26 2.9 × 10−26 12.6 12.6 1.3 50.6
J1910−5959E 218.7 437.5 6.3 × 10−26 2.1 × 10−26 4.6 × 10−26 12.4 12.4 0.4 32.7
J1911+1347 216.2 432.3 2.3 × 10−24 2.5 × 10−26 6.0 × 10−26 12.2 12.2 −0.1 51.7
J1939+2134 641.9 1283.9 2.4 × 10−25 7.5 × 10−26 1.6 × 10−25 11.4 11.4 −0.1 37.2
J2124−3358 202.8 405.6 8.3 × 10−26 2.1 × 10−26 4.7 × 10−26 12.5 12.5 −0.4 57.0
J2322+2057 208.0 415.9 4.3 × 10−26 4.4 × 10−26 8.8 × 10−26 13.9 13.9 −0.2 52.5

indication of its significance. For instance, an actual observation
with a percentile contour value � 99.7 per cent would be outside
3σ of the noise-only distribution (under the assumption of a bi-
variate Gaussian distribution). Of our results the actual value lying
on the highest percentile is for J1024−0719 at 98.05 per cent (or
equivalently at 2.34σ from the mean of the scrambled data distribu-
tion). This is shown in Fig. 16. Unsurprisingly, given the use of 100
scrambled data realizations there are three points further out in the
distribution, and we can conclude that this is not a significant event
(although we note that in this case the distribution of scrambled data
points is not quite a bivariate Gaussian as the three outlier points
are beyond the 3σ contour).

The use of the SNR in these plots provides some further level
of discrimination from interference compared to real signals in that

data could return a high SNR signal (e.g. from a spectral line)
that has a low odds ratio due to not matching the signal model or
being incoherent between detectors. Such a situation would give
an obvious outlier on plots such as Fig. 16. Real signals would be
expected to have large values of both odds ratio and SNR and thus
lie roughly along the diagonal of such plots.

7 C O N C L U S I O N S

We have investigated detection and parameter estimation issues for
the model of gravitational wave emission from rotating neutron stars
proposed in Jones (2010). The model is based on the star having
a triaxial crust, coupled to an interior superfluid. In the generic
case of a triaxial non-aligned star, there is emission at both the spin
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Figure 15. The posterior probability distributions for the waveform parameters of the triaxial non-aligned model found using S5 data for pulsar J0024−7204C.

frequency f and at 2f. We have also considered two special cases, of a
biaxial star (also with emission at f and 2f) and a triaxial aligned one
(emission only at 2f), the last of these being the case conventionally
assumed in gravitational wave searches.

We have found that in the generic case of emission from a triaxial
non-aligned star, the set of physical parameters originally used in
Jones (2010), the ‘source parameters’, are correlated in a highly
complex way. However, a re-parametrization in terms of complex
waveform amplitudes using the ‘waveform parameters’ described
in Jones (2015) breaks this degeneracy. When using a stochastic
sampling method (such as nested sampling) to estimate parameter
probability distributions from data containing such a signal, the
complexity of the source parameter space makes a search there
roughly half as computationally efficient as one in the waveform
parameter space.

For a signal described by the triaxial non-aligned model, we
showed that estimates of many of the true individual source param-
eters, including the important parameters giving the asymmetry of
the moment of inertia tensor, will always be poorly constrained due
to the degeneracies in the model. This may limit the astrophysical
information that can be extracted on such a source. We also note
the (often overlooked) fact when discussing parameter estimation
for these sources that for any signal there is a degeneracy in the full
physically allowed parameter space that means the signal can only
ever be constrained to a number of equally likely modes.

Working in the waveform parametrization, and assuming sta-
tionary Gaussian noise in the data, we have used simulations to
calculate the odds ratio for three different signal models compared
to noise alone. We find that for a 1 per cent false alarm rate, cal-
culated from an odds ratio threshold value, all three models have
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Figure 16. The distribution of log odds ratios (for the triaxial non-aligned
model versus noise) against SNR for 100 ‘scrambled’ noise-only realiza-
tions of the data set for pulsar J1024−0719. The actual (i.e. not randomized
in time) value is plotted as the red cross. Assuming that the noise-only
distribution is a bivariate Gaussian, the 1σ , 2σ and 3σ (or 68.3, 95.4 and
99.7 per cent) probability contours are also plotted, along with the probabil-
ity contour on which the actual value lies.

efficiencies of close to 100 per cent for purely triaxial aligned signals
with SNR �6. The simplicity of the triaxial aligned model com-
pared to the others does make it slightly more efficient in this case,
but only marginally so. For signals from the triaxial non-aligned and
biaxial models, with significant power at f, when assuming either
of those models, efficiencies are close to 100 per cent for SNRs �6,
while assuming that the triaxial aligned model leads to some loss
in efficiency, due to some proportion of signals having very little
power at 2f. Without some idea of the true distribution of signal
strengths between f and 2f, we cannot say whether only searching
a 2f would cause any real signals to be missed. But, the ease of
searching at both frequencies, and the only very minor efficiency
loss, makes performing such a search seem sensible in the future.

When comparing model evidences, we find that for simulations
containing any of the three models, at very low SNR (�2.5) the
triaxial aligned model is always favoured. If the simulated signal is
from the triaxial aligned model, then this is always favoured over
the other two models, whilst there is a strong preference for the
biaxial as compared to the triaxial non-aligned one due to the biaxial
model being the simpler one. For simulations containing triaxial
non-aligned signals, the triaxial non-aligned and biaxial models are
favoured over the triaxial aligned model for coherent SNRs �10. We
see a similar situation in simulations containing biaxial injections:
at low SNR the triaxial aligned model is favoured, but at higher SNR
the biaxial and triaxial non-aligned models become favoured over
the triaxial aligned one, while the biaxial model becomes favoured
over the triaxial non-aligned one.

Our results show that, even though to detect all triaxial non-
aligned (or biaxial) signals at SNR of 20 one should use the triaxial
non-aligned (or biaxial) model when computing the evidence, the
Occam factor still significantly penalizes a reasonable percentage
of those models when deciding which best fits the data. As such it
is worth noting that even at high SNR it is often not possible to dis-
tinguish a triaxial non-aligned signal from a biaxial one. However,
the cost of searching for a triaxial non-aligned signal compared to a

biaxial signal is relatively minor, so there is no reason to not include
such a search in the future.

Having developed the machinery needed to search for such sig-
nals, we then applied our methods to real gravitational wave detector
data. Specifically, data from the S5 LIGO science run were used to
search for two harmonic signals from 43 known pulsars with accu-
rately known timing solutions, whose spin frequencies lie within the
LIGO band. We found no gravitational wave signals, and so upper
limits were given on the amplitude-like parameters C21 and C22 on
the triaxial non-aligned model. This is the first time gravitational
wave detector data have been searched for such signals. The tech-
niques developed here will be applied to the more sensitive data
soon to come from the new generation of advanced gravitational
wave detectors (Aasi et al. 2015; Acernese et al. 2015).

There is further work to do on the choice of prior probability
distributions that one assumes for the parameters, particularly for
the amplitude-like parameters. A simple choice, uniform up to some
fixed maximum amplitude, was used here, but other choices are
possible and will affect the results obtained. Closely related to this
is the issue of the physical interpretation of the parameters C21 and
C22; it is useful to consider whether they have a direct physical
interpretation. Their maximum values are presumably related to
the shear modulus and breaking strain of the crust, and also to the
strength of the interaction between the superfluid and non-superfluid
parts of the star, but the relation is not obvious, and is clearly worthy
of further study.
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A P P E N D I X A : R E L AT I N G T H E SO U R C E
A N D WAV E F O R M PA R A M E T E R S

In this appendix, we briefly describe the relation between the source
parameters and the waveform parameters, for all three of our chosen
physical models. Full details can be found in Jones (2015). Note
that there a few small differences in notation between the equations
given here and those of Jones (2015). The angle ψ of Jones (2015)
is denoted by λ in this paper, as we reserve the symbol ψ for the
polarization angle, describing the projection of the star’s spin axis
on the plane of the sky. Also, the quantities denoted by (C̃22, C̃21)
of Jones (2015) are denoted by (C22, C21) in this paper.

A1 Triaxial non-aligned case

For the triaxial non-aligned case, the waveform is given in terms of
source parameters by equations (1) and (2), and by equations (6)
and (7) in terms of waveform parameters. It can be shown that the
relationship between the five source parameters (I21, I31, θ , φ0, λ)
and the four source parameters (C21,	

C
21, C22, 	

C
22) is as follows:

C22 = 2{[I21(sin2 λ − cos2 λ cos2 θ ) − I31 sin2 θ ]2

+ (I21 sin 2λ cos θ )2}1/2, (A1)

C21 = 2{(I21 sin 2λ sin θ )2 + (I21 cos2 λ − I31)2 sin2 2θ}1/2, (A2)

tan[2φ0 − 	C
22] = I21 sin 2λ cos θ

I21(sin2 λ − cos2 λ cos2 θ ) − I31 sin2 θ
, (A3)

tan[φ0 − 	C
21] = (I21 cos2 λ − I31) sin 2θ

I21 sin 2λ sin θ
; (A4)

see equations 62– 65 of Jones (2015). Given the set of five source
parameters, one can calculate unique values for the four waveform
parameters. However, for a set of four waveform parameters, the
corresponding solution for the five source parameters will have one
degree of freedom, generating the sorts of complex structure in
source parameter space seen in Figs 2 and 4.

A2 Biaxial case

If we set I21 = 0 in equations (1) and (2), we obtain the biaxial
signal in terms of source parameters:

h
2f
+ = −2I31(1 + cos2 ι) sin2 θ cos 2(�t + φ0), (A5)

h
2f
× = −4I31 cos ι sin2 θ sin 2(�t + φ0), (A6)

h
f
+ = −I31 sin ι cos ι sin 2θ sin(�t + φ0), (A7)

h
f
× = I31 sin ι sin 2θ cos(�t + φ0), (A8)

where we have separated out the ‘+’ and ‘×’ polarization compo-
nents.

It can be shown that the corresponding waveform parametrization
can be written as equation (6) and (7), with the extra condition

	C
22 = 2	C

21; (A9)

see equation 90 of Jones (2015). The relation between the source
and waveform parameters can be shown to be

θ = tan−1

(
2C22

C21

)
, (A10)

I31 = −1

2
C22

[
1 +

(
C21

2C22

)2
]

, (A11)

φ0 = 	C
21 − π

2
; (A12)

see equations 82, 88 and 89 of Jones (2015).

A3 Triaxial aligned case

If we set θ = 0 in equations (1) and (2), we obtain the triaxial
aligned signal in terms of source parameters. There is no signal at
frequency f, leaving only

h
2f
+ = −2I21(1 + cos2 ι) cos 2[�t + (φ0 + λ)], (A13)

h
2f
× = −4I21 cos ι sin 2[�t + (φ0 + λ)]. (A14)

The angles φ0 and λ are now degenerate, with only their sum ap-
pearing in the waveform. This sum can now be taken as replacing
the separate parameters, or else one can simply set one of them to a
constant value and search over the other (e.g. set λ = 0 and search
over φ0).

The corresponding waveform parametrization has C21 = 0 so that
we only have the 2f signal given by equation (7), with the source
and waveform parameters being related by

I21 = 1

2
C22, (A15)

2(φ0 + λ) = 	C
22; (A16)

see equations 103 and 104 of Jones (2015).

A P P E N D I X B : A L G O R I T H M TO F I L L I N T H E
FULL SOURCE PARAMETER SPAC E

In this appendix, we present (as pseudo-code) the algorithm used
to map the minimal source parameters space, whose ranges were
given in Table 2, to the full parameter space.
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Algorithm 1 Transformations required to map from the minimal
range in the source model parameter space to the full space. The
values with the superscript ‘min’ represent the original samples
from the minimal parameter range.

1: for i ← 1 to 4 do
2: draw a random unique set consisting of one quarter of the

samples, such that j i is a vector of those samples’ indices for
loop i

3: ψ( j i) = ψmin( j i) + (i − 1)π/2
4: θ ( j i) = θmin( j i)
5: φ0( j i) = φmin

0 ( j i)
6: λ( j i) = λmin( j i)
7: I21( j i) = Imin

21 ( j i)
8: I31( j i) = Imin

31 ( j i)
9: for k ← 1 to i do

10: θnew = arctan

(√
1−(sin θ ( j i ) sin λ( j i ))2

sin θ ( j i ) sin λ( j i )

)
11: φ0( j i) =

arctan
(

cos φ0( j i ) cos λ( j i )−sin φ0( j i ) cos θ ( j i ) sin λ( j i )
− cos φ0( j i ) cos θ ( j i ) sin λ( j i )−sin φ0( j i ) cos λ( j i )

)
12: λ( j i) = arctan

(
− cos θ ( j i )

sin θ ( j i ) cos λ( j i )

)
13: I21( j i) = I31( j i) − I21( j i)
14: I31( j i) = I31( j i)
15: θi = θnew

16: end for
17: end for
18: randomly select half the samples, such that k1 is a vector of

those sample indices
19: apply λ(k1) = λ(k1) + π

20: randomly select half the samples, such that k2 is a vector of
those sample indices

21: apply θ (k2) = π − θ (k2), φ0(k2) = φ0(k2) + π and λ(k2) =
−λ(k2)

22: φ0 = φ0 (mod 2π)
23: λ = λ (mod 2π)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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