Observation of gravitational waves from a binary black hole merger
Observation of gravitational waves from a binary black hole merger
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10?21. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203?000 years, equivalent to a significance greater than 5.1?. The source lies at a luminosity distance of 410+160?180??Mpc corresponding to a redshift z=0.09+0.03?0.04. In the source frame, the initial black hole masses are 36+5?4M? and 29+4?4M?, and the final black hole mass is 62+4?4M?, with 3.0+0.5?0.5M?c2 radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger
Abbott, B.P.
20b32f53-5355-40eb-9d69-91c95d56e693
Abbott, R.
ceb7bd1e-f214-46dd-9972-a194692a86aa
Abbott, T.D.
40955bf8-1011-46ab-a787-34050875d7fe
Jones, D.I.
b8f3e32c-d537-445a-a1e4-7436f472e160
LIGO Scientific Collaboration and Virgo Collaboration
11 February 2016
Abbott, B.P.
20b32f53-5355-40eb-9d69-91c95d56e693
Abbott, R.
ceb7bd1e-f214-46dd-9972-a194692a86aa
Abbott, T.D.
40955bf8-1011-46ab-a787-34050875d7fe
Jones, D.I.
b8f3e32c-d537-445a-a1e4-7436f472e160
Abbott, B.P., Abbott, R. and Abbott, T.D.
,
LIGO Scientific Collaboration and Virgo Collaboration
(2016)
Observation of gravitational waves from a binary black hole merger.
Physical Review Letters, 116 (6), [061102].
(doi:10.1103/PhysRevLett.116.061102).
Abstract
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10?21. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203?000 years, equivalent to a significance greater than 5.1?. The source lies at a luminosity distance of 410+160?180??Mpc corresponding to a redshift z=0.09+0.03?0.04. In the source frame, the initial black hole masses are 36+5?4M? and 29+4?4M?, and the final black hole mass is 62+4?4M?, with 3.0+0.5?0.5M?c2 radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger
Other
PhysRevLett.116.061102
- Version of Record
More information
e-pub ahead of print date: 11 February 2016
Published date: 11 February 2016
Organisations:
Applied Mathematics
Identifiers
Local EPrints ID: 404321
URI: http://eprints.soton.ac.uk/id/eprint/404321
PURE UUID: 759c6a15-e7b7-4a91-a98e-aa0a46ceec9d
Catalogue record
Date deposited: 05 Jan 2017 14:03
Last modified: 16 Mar 2024 03:06
Export record
Altmetrics
Contributors
Author:
B.P. Abbott
Author:
R. Abbott
Author:
T.D. Abbott
Corporate Author: LIGO Scientific Collaboration and Virgo Collaboration
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics