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Hybrid Beamforming in mm-Wave MIMO Systems

Having a Finite Input Alphabet
Rakshith Rajashekar, Member, IEEE, and L. Hanzo, Fellow, IEEE

Abstract—Recently, there has been significant research effort
towards achieving high data rates in the millimeter wave bands
by employing large antenna systems. These systems are con-
sidered to have only a fraction of the RF chains compared to
the total number of antennas and employ analog phase shifters
to steer the transmit and receive beams in addition to the
conventional beamforming/combining invoked in the baseband
domain. This scheme, which is popularly known as hybrid
beamforming, has been extensively studied in the literature. To
the best of our knowledge, all the existing schemes focus on
obtaining the beamforming/combining matrices that maximize
the system capacity computed using a Gaussian input alphabet.
However, this choice of matrices may be suboptimal for practical
systems, since they employ a finite input alphabet, such as
QAM/PSK constellations. Hence, in this paper, we consider a
hybrid beamforming/combining system operating with a finite
input alphabet and optimize the analog as well as digital
beamforming/combining matrices by maximizing the mutual
information (MI). This is achieved by an iterative gradient ascent
algorithm that exploits the relationship between the minimum
mean-squared error and the MI. Furthermore, an iterative
algorithm is proposed for designing a codebook for the analog
and digital beamforming/combining matrices based on a vector
quantization approach. Our simulation results demonstrate that
the proposed gradient ascent algorithm achieves an ergodic rate
improvement of up to 0.4 bits per channel use (bpcu) compared
to the Gaussian input scenario. Furthermore, the gain in the
ergodic rate achieved by employing the vector quantization based
codebook is about 0.5 bpcu compared to the Gaussian input
scenario.

Index Terms—Hybrid processing, mm-wave communication,
mutual information, beamforming and combining.

I. INTRODUCTION

The expected increase in the user data rates in future wire-

less systems such as 5G is changing the research focus from

microwave to millimeter wave (mm-wave) communications

owing to the availability of large amounts of unused spectrum

at mm-wave frequencies [1]-[3]. Operating at high frequencies

in the mm-wave band comes however with the drawback of a

high signal attenuation and limited scattering [4], [5], hence

resulting in low signal-to-noise ratios (SNR) at the receiver.

Furthermore, operating at bandwidths of the order of GHz

results in a high thermal noise at the receiver, which would

further deteriorate the received SNR. Thus, in order to achieve

adequate SNR values in the mm-wave bands associated with

high operating bandwidths, directional communication relying

on transmit and receive beamforming (BF) becomes necessary

[6]. Since the carrier frequencies in mm-wave communication
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are often of the order of tens or hundreds of GHz, the λ/2-

based antenna spacing will be of the order of millimeters. This

enables us to accommodate a large number of antennas at both

the transmitter and receiver. Since digital beamforming relying

on a large number of antennas may result in an excessive com-

plexity, a hybrid beamforming (HBF) architecture is conceived

[7]-[13], where beamforming is applied both in the analog

and digital domains. Beamforming in the analog domain

is employed using phase shifters, where the analog signal

gleaned from each radio frequency (RF) chain is appropriately

phase shifted before being forwarded to the transmit antennas.

Similarly, at the receiver, the analog signals gleaned from

various receive antennas are appropriately phase shifted before

being combined and digitized. The HBF concept has been

studied with regard to a pair of antenna array architectures

in the existing literature [7], namely,

1) Full-array structure (FAS), where the signals gleaned

from all the receive antennas are phase shifted prior

to combining for baseband processing at the receiver,

similarly each transmit signal stream is phase shifted

and fed to all the transmit antennas.

2) Array of sub-arrays (ASA), where the signals from only

a subset of the receive antennas are phase shifted prior

to combining for baseband processing at the receiver,

likewise, each transmit signal stream is phase shifted and

fed to only a subset of the antennas at the transmitter.

Naturally, this architecture is less complex than the FAS.

Furthermore, in the existing literature [7]-[13] the precod-

ing/combining matrices of HBF are obtained by maximizing

the system capacity computed under the assumption of a Gaus-

sian input alphabet. Diverse approaches have been considered

in order to obtain a near-optimal solution that approximately

matches the singular vectors of the channel. Table I compares

some of the solutions found in the open literature, all of

which have been obtained by considering a Gaussian input

alphabet. However, practical systems rely on finite-alphabet

input constellations, such as QAM [14], [15]. For instance,

it was shown in [14] that the idealized capacity-achieving

schemes designed for Gaussian inputs would be sub-optimal

for finite input alphabets. This motivates us to study BF in mm-

wave communications, whilst considering finite input alphabet

such as QAM signal sets.

With this background, the following are the contributions

of this paper.

1) We consider an FAS based system and assume full

digital transmit precoding and receive combining across

all the transmit and receive antennas, respectively. We
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TABLE I
COMPARISON OF VARIOUS EXISTING HBF SOLUTIONS.

Digital BF matrix
Antenna array Solution method Analog BF matrix set computation

Oman et al [8] FAS Basis Pursuit Matrices of equal gain elements/ Least squares
Ahmed et al [9], [10] beam steering vectors based solution

Weiheng et al [11] FAS Convex Quadratic Matrices of equal gain elements Least squares
Programming based solution

Jaspreet et al [12] ASA Dominant beam Matrices of beam Predefined set of
selection based approach steering vectors matrices [16]

Linglong et al [13] ASA Successive interference Matrices of equal gain elements Mean Square Error (MSE)
cancellation minimization solution

obtain the necessary condition for the precoding and

combining matrices to maximize the mutual information

(MI) of our system considering a finite input alphabet.

This solution is referred to as the unconstrained solution.

A low-complexity iterative gradient-ascent algorithm is

employed to arrive at the optimal solution1, analogous

to [15]. We then obtain the constrained solution via

matrix decomposition [11] in order to obtain an equal

gain element matrix and a unit norm matrix, which

are used as analog and digital precoding/combining

matrices, respectively. Furthermore, motivated by the

recent developments in directional beamforming (DBF)

in the context of mm-wave communication [17]-[19],

we propose a low-complexity gradient-ascent aided DBF

(GA-DBF) that strikes a beneficial trade-off between the

complexity imposed and the performance attained.

2) Ideally, assuming perfect channel state information

(CSI) at the receiver, the precoding/combining matrices

are computed as stated above under 1) and then both the

associated analog as well as digital precoding matrices

are conveyed to the transmitter. However, since practical

systems operate using a finite-rate feedback channel,

conveying perfect CSI or precoding matrices becomes

infeasible. A simpler approach is to select a beamform-

ing matrix from a finite codebook that is already shared

with the transmitter, thereby reducing the number of bits

to be conveyed. Important results in the existing litera-

ture on beamforming with finite-rate feedback include

[20]-[24]. Note that to the best of our knowledge, the

codebook design based on a vector quantization (VQ)

approach [23], [24] for systems operating with a finite

input alphabet has not been studied in the literature. In

this paper, we propose a novel codebook design based

on VQ for mm-wave systems operating with the aid of

a finite input alphabet. Specifically, we propose a Lloyd

type algorithm for codebook design, which is based on

satisfying two necessary optimality conditions [26], [27].

1The mutual information of the system operating with finite alphabet is not
concave over the set of precoding/combining matrices and hence the gradient-
ascent based solution is locally optimal. The solution referred to as the optimal
solution throughout the paper corresponds to the locally optimal solution.

Please refer to Section IV for more details. Furthermore,

we propose VQ aided DBF (VQ-DBF), where the digital

BF matrices are quantized based on the VQ approach

and show that it achieves nearly the same performance

as that of the GA-DBF.

The remainder of the paper is organized as follows. Sec-

tion II provides the system model that includes both the

transmitter as well as receiver processing schemes and the

mm-wave channel model considered. In Section III, we present

the gradient-ascent method proposed for obtaining the optimal

set of precoders/combiners for HBF based mm-wave systems

operating with a finite input alphabet. Section IV gives the

proposed codebook design based on VQ. Our simulation

results and discussions are presented in Section V. Section VI

concludes the paper.

Notations: Uppercase and lowercase boldface letters repre-

sent matrices and vectors, respectively. The Frobenius norm

of a matrix or the two-norm of a vector is represented by

‖ · ‖. Furthermore, CN (µ, σ2) denotes a complex Gaussian

random variable with mean µ and variance σ2, and the field

of complex and real numbers are represented by C and

R, respectively. If A ∈ Cm×n such that ai,je
jbi,j is the

polar representation of the (i, j)th element A(i,j), then ∡A

represents a matrix whose (i, j)th element ∡A(i,j) = ejbi,j .

Furthermore, the notations of (·)H , (·)T , and (·)∗ indicate the

Hermitian transpose, transpose, and complex conjugate of a

vector/matrix, respectively. The expected value of a random

quantity X is represented by E[X]. If f is a real-valued scalar

function, then the complex gradient vector and matrix are

given by ∇xf ≡ ∂f/∂x∗ and ∇Xf ≡ ∂f/∂X∗, respectively,

and max f represents maximization of the function f over

its domain. Furthermore, B([p : q], :) defines a matrix with

rows p, p + 1, . . . , q − 1, q of B and B(:, [p : q]) is a matrix

with columns p, p + 1, . . . , q − 1, q of B. If A ∈ Cn×n, then

the left Cholesky factor of A is denoted by chol_fac(A).
If A ∈ C

m×n and B ∈ C
m×n, then A ◦ B represents the

Kronecker product of A and B.
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II. SYSTEM MODEL

A. Unconstrained System

Consider an FAS based multiple-input multiple-output

(MIMO) system having Nt transmit and Nr receive antennas.

Let the number of RF chains at the transmitter and the

receiver be Mt and Mr, respectively. The received signal after

combining and noise whitening is given by

y =
√

ρRWHFx + n, (1)

where y ∈ CMr , ρ is the average received SNR, W ∈
CMr×Nr is the receive combining matrix, R ∈ CMr×Mr

is the noise whitening filter given by (chol_fac(WWH))−1,

H ∈ CNr×Nt is the sparse mm-wave flat fading channel,

F ∈ CNt×Mt is the transmit precoding matrix, x ∈ CMt is

the transmit vector whose entries are from a unit-energy finite

alphabet such as a QAM constellation, and the elements of

the noise vector n ∈ CMr are from CN (0, 1). The matrices

F and W are referred to as the unconstrained precoding and

combining matrices, respectively, which satisfy ‖F‖2 ≤ Mt

and ‖W‖2 ≤Mr.

B. Constrained FAS based System

Let Θ = ∡F and Φ = ∡W be the transmit and re-

ceive analog beamforming matrices, respectively, which are

normalized such that ‖Θ‖2 = Mt and ‖Φ‖2 = Mr. Let

C = (ΘHΘ)−1ΘHF and G = WΦH(ΦΦH)−1 be the

digital beamforming and combining matrices, respectively.

Both C and G are normalized to have unit Frobenius norms.

Let W′ = GΦ and F′ = ΘC such that they are normalized

to satisfy ‖F′‖2 = Mt and ‖W′‖2 = Mr. Considering these

analog and digital beamforming matrices, the system model

analogous to (1) can be written as

y′ =
√

ρR′W′HF′x + n, (2)

where R′ is the noise whitening matrix associated with the

effective combining matrix W′ = GΦ. Note that the elements

of Θ (and of Φ) are equal in magnitude and they model the

analog phase shifters of FAS based systems. The analog and

digital BF matrices are chosen such that they together approx-

imate the unconstrained BF matrices, i.e. W′ = GΦ ≈ W

and F′ = ΘC ≈ F. Fig. 1 gives a pictorial depiction of the

aforementioned FAS based system.

Comments on Matrix Decomposition: In this part of the

paper, we show that the matrix decompositions of W′ = GΦ

and F′ = ΘC considered above, result in a low residual error.

Given the optimal BF matrix F, the problem of obtaining the

analog and digital BF matrices is given by

min
‖C‖2=1,|Θi,j |=1/

√
Nt

‖F−ΘC‖2. (3)

Considering C = 1√
Mt

IMt
, it may be readily seen that

the optimal Θ that solves (3) is Θ = 1
Nt

∡F. Note that

this corresponds to phase-only precoding, that is, analog BF

without baseband preprocessing. Given this specific choice of

matrices, the residual error can be expressed as:

‖F−ΘC‖2 = ‖F− 1√
MtNt

Θ‖2 = ‖F− 1√
MtNt

∡F‖2,

= ‖ (|F| ◦ ∡F)− 1√
MtNt

∡F‖2,

=

∥

∥

∥

∥

(

|F| − 1√
MtNt

1Nt×Mt

)

◦ ∡F

∥

∥

∥

∥

2

,

=

Nt
∑

i=1

Mt
∑

j=1

(

|Fi,j | −
1√

NtMt

)2

,

=

Nt
∑

i=1

Mt
∑

j=1

|Fi,j |2 +

Nt
∑

i=1

Mt
∑

j=1

1

NtMt

− 2√
MtNt

Nt
∑

i=1

Mt
∑

j=1

|Fi,j |,

= Mt + 1− 2√
MtNt

Nt
∑

i=1

Mt
∑

j=1

|Fi,j |,

≤Mt + 1− 2
√

Mt√
MtNt

,

where we have used
∑Nt

i=1

∑Mt

j=1 |Fi,j |2 = ‖F‖2 =

Mt and exploited the fact that
∑Nt

i=1

∑Mt

j=1 |Fi,j | ≥
√

∑Nt

i=1

∑Mt

j=1 |Fi,j |2 =
√

Mt. Since the error ‖F−ΘC‖2 is

distributed over NtMt elements, it makes sense to look at the

average per-element error, formulated as:

‖F−ΘC‖2
MtNt

≤
Mt + 1− 2√

Nt

MtNt
(4)

=
1 + (1/Mt)− 2√

NtMt

Nt
<

1 + (1/Mt)

Nt
. (5)

It is evident from (5) that for large values of Nt, as in the

case of mm-wave systems, the error becomes negligible. For

example, when Nt = 32 and Mt = 4, the per-element error

is approximately bounded by 0.0391. Now, considering the

actual problem in (3), we have

min
‖C‖2=1

|Θi,j |=1/
√

Nt

‖F−ΘC‖2 ≤ min
C= 1√

Mt
IMt

|Θi,j |=1/
√

Nt

‖F−ΘC‖2

≤Mt + 1− 2√
Nt

.

Since the minimization problem in the LHS of the in-

equality has a larger domain than that in the RHS, i.e.

the domain
{

C ∈ CMt×Mt | ‖C‖2 = 1
}

includes the case of

C = 1√
Mt

IMt
, the minimization solution in the LHS cannot

be worse than that of the RHS.

The choice of C = (ΘHΘ)−1ΘHF (with appropriate nor-

malization) finds the best linear combination of the columns

of Θ that would further reduce the residual error. Similar

arguments hold also for the case of G = WΦH(ΦΦH)−1.
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Fig. 1. Pictorial depiction of the constrained FAS based system.

C. Channel Model

Unlike the channels at microwave frequencies, the mm-

wave channels suffer from limited scattering [4], [5], which

results in both spatial and temporal sparsity. In this paper, we

consider the geometric channel model often used for modelling

practical mm-wave channel [8]-[11], given by

H =
√

NtNr

L
∑

i=1

βier(θi)e
H
t (φi), (6)

where L is the number of paths between the transmitter and

the receiver, βi ∼ CN (0, 1) is the gain of the ith path, (θi, φi)
represent the angle of arrival (AoA) and angle of departure

(AoD) of the ith path, er and et represent the receive and

transmit spatial signatures of a uniform linear array (ULA),

respectively, which are given by

er(θ) =
1√
Nr

[

1, ej 2π
λ

d sin θ, . . . , ej 2π
λ

d(Nr−1) sin θ
]T

,

et(φ) =
1√
Nt

[

1, ej 2π
λ

d sin φ, . . . , ej 2π
λ

d(Nt−1) sin φ
]T

,

where d is the separation between the antenna elements and

λ is the operating wavelength. The gain of the channel matrix

is normalized for ensuring that E
[

‖H‖2
]

= NtNr.

III. PROPOSED GRADIENT-ASCENT BASED SOLUTIONS

Considering the system model in (1), the MI [28] between

the transmit and receive vectors is given by2

I(x;y) = E

[

log

(

py|x(y|x)

py(y)

)]

, (7)

where the conditional probability density function is given by

py|x(y|x) =
1

πMr
e−‖y−√

ρRWHFx‖2

, (8)

and py(y) = Ex

[

py|x(y|x)
]

. We assume that the transmit

vector x takes values uniformly from a finite set X . The

problem of obtaining the optimal precoding and combining

matrices can be stated as

Problem 1:

max
W,F

I(x;y) (9)

2Information is measured in nats throughout the paper, unless stated
otherwise.

subject to

‖W‖2 ≤Mr, ‖F‖2 ≤Mt.

Proposition 1: The optimal precoding and combining ma-

trices that solve (9) satisfy

W = ζ1R
HRWHFEFHHH , (10)

F = ζ2H
HWHRHRWHFE, (11)

where

ζ1 =
√

Mr

(

‖RHRWHFEFHHH‖
)−1

, (12)

ζ2 =
√

Mt

(

‖HHWHRHRWHFE‖
)−1

, (13)

and E is the minimum mean-squared error (MMSE) matrix

given by

E = E
[

(x− E[x|y])(x − E[x|y])H
]

. (14)

Proof: See Appendix A.

Note that there is no closed form solution for W and F in

(10)-(11), hence we resort to an iterative solution given by

Wk+1 = Wk + µ1ρR
H
k RkWkHFkEkF

H
k HH , (15)

Fk+1 = Fk + µ2ρH
HWH

k+1R
H
k RkWk+1HFkEk, (16)

where µ1 and µ2 are step sizes assumed to be small positive

constants. With sufficiently small µ1 and µ2, (15) and (16)

will converge to a locally optimal solution. The initial values,

W0 and F0, are chosen to be the left and right singular

vectors associated with the largest Mr and Mt singular values

of the channel matrix H, respectively. This serves as a good

reference point for studying the possible improvement in the

achievable ergodic rate with respect to the Gaussian input

alphabet case. Note that Wk+1 and Fk+1 are normalized in

each iteration to have their Frobenius norm equal to
√

Mr and√
Mt, respectively, and the noise whitening matrix Rk+1 is

computed considering Wk+1 in the (k + 1)th
iteration. Given

the maximization problem of (9), the iterations proceed in the

direction of the gradient, and in each iteration, the MMSE ma-

trix Ek is updated using the Monte Carlo method. Equations

(15)-(16) are iterated for a fixed number of iterations, or until

the gain in the achievable rate becomes marginal.

We obtain the constrained solution for our hybrid beam-

forming system formulated in (2) from the unconstrained

solution of (15)-(16) via matrix decomposition as follows. In
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each iteration, we obtain

Θk = ∡Fk, (17)

Φk = ∡Wk, (18)

Ck = (ΘH
k Θk)−1ΘH

k Fk, (19)

Gk = WkΦ
H
k (ΦkΦ

H
k )−1, (20)

and appropriately normalize them in order to meet the power

constraints mentioned in Section II-B. The above steps are

summarized in Algorithm 1. It is worth noting that the residual

errors associated with the above decompositions translate to

additional terms in (15) as well as (16) and cause degrada-

tion in the achievable mutual information compared to that

achieved by the unconstrained system.

Algorithm 1 Proposed Gradient-Ascent Based Algorithm

Require: k = 0, H = UΣVH , max_iterations,

µ1 > 0, µ2 > 0, α > 0
W0 = U(:, [1 : Mr])

H , F0 = V(:, [1 : Mt]),
Φ0 = ∡W0, Θ0 = ∡F0,

G0 = W0Φ
H
0 (Φ0Φ

H
0 )−1, C0 = (ΘH

0 Θ0)
−1ΘH

0 F0,

W′
0 = G0Φ0, F′

0 = Θ0C0,

W′
0 ← W′

0

‖W′

0
‖
√

Mr, F′
0 ← F′

0

‖F′

0
‖
√

Mt,

R0 = (chol_fac(W0W
H
0 ))−1, and E0.

while k < max_iterations do

1.
Wk+1 = Wk + µ1ρR

H
k RkWkHFkEkF

H
k HH ,

Wk+1 ← Wk+1

‖Wk+1‖
√

Mr

2.
Fk+1 = Fk + µ2ρH

HWH
k+1R

H
k RkWk+1HFkEk,

Fk+1 ← Fk+1

‖Fk+1‖
√

Mt

3.
k ← k + 1
µ1 ← αµ1, µ2 ← αµ2

Obtain the following matrices.

Φk = ∡Wk, Θk = ∡Fk,

Gk = WkΦ
H
k (ΦkΦ

H
k )−1, Ck = (ΘH

k Θk)−1ΘH
k Fk,

W′
k = GkΦk, F′

k = ΘkCk,

W′
k ←

W′

k

‖W′

k
‖
√

Mr, F′
k ←

F′

k

‖F′

k
‖
√

Mt,

Rk = (chol_fac(WkW
H
k ))−1, and Ek.

end while

Complexity Analysis: Since Algorithm 1 involves several

matrix computations, it is of practical interest to study its

computational complexity. We mainly focus our attention on

the various operations within the iterative loop, since the

operations outside the loop, such as the SVD are evalu-

ated only once. In Step 1, the computation of the baseband

equivalent channel, i.e. of WkHFk, requires O[Nr(NtMt +
MrMt)] multiplications, while the computation of RH

k Rk

takes O(M3
r ) multiplications. The computation of EkF

H
k HH

is on the order of O[MtNr(Mt+Nt)]. Thus, the order of com-

putational complexity of the term RH
k RkWkHFkEkF

H
k HH

is dominated byO(NrNtMt). Similarly, the order of computa-

tional complexity of the term HHWH
k+1R

H
k RkWk+1HFkEk

in Step 2 is dominated by O(NrNtMr). Note that the com-

putation of the HBF matrices in Step 3 can be done at the

end of the iterations and hence can be omitted in the com-

plexity evaluation. The computation of Rk requires O(M3
r )

multiplications and that of Ek requires O(M2
t )3. Since the

values of Nt and Nr are large in mm-wave systems, the

computational complexity of Algorithm 1 is relatively high.

In the next part of the paper, we propose a low-complexity

directional beamforming based solution that iterates over the

low-dimensional (Mr × Mt) baseband channel and hence

requires significantly lower computational complexity.

A. Proposed Gradient-Ascent aided Directional Beamforming

(GA-DBF)

Motivated by the simplicity of directional beamforming

solutions [17]-[19], we consider a DFT-based directional

codebook for analog BF matrices and for a gradient-ascent

based iterative solution conceived for digital BF matrices. The

proposed low-complexity solution is presented in Algorithm 2.

Algorithm 2 Gradient-Ascent Based Directional Beamform-

ing Algorithm

Require: k = 0, H = UΣVH , max_iterations,

µ1 > 0, µ2 > 0, α > 0
CDFT (Nt) and CDFT (Nr),
Obtain W and F, whose elements are chosen from

CDFT (Nr) and CDFT (Nt) that have maximal correlation

with U(:, [1 : Mr]) and V(:, [1 : Mt]), respectively.

Heff = WHHF and Heff = U′Σ′V′H

W0 = U′H , F0 = V′

R0 = (chol_fac(W0W
H
0 ))−1, and E0.

while k < max_iterations do

1.
Wk+1 = Wk + µ1ρR

H
k RkWkHeffFkEkF

H
k HH

eff
,

Wk+1 ← Wk+1

‖Wk+1‖
√

Mr

2.
Fk+1 = Fk + µ2ρH

H
eff

WH
k+1R

H
k RkWk+1HeffFkEk,

Fk+1 ← Fk+1

‖Fk+1‖
√

Mt

3.
k ← k + 1
µ1 ← αµ1, µ2 ← αµ2

Compute Rk = (chol_fac(WkW
H
k ))−1 and Ek.

end while

The fundamental difference between Algorithm 1 and Al-

gorithm 2 is that the latter operates on the baseband channel

Heff ∈ CMr×Mt , where as the former operates on the analog

channel H ∈ CNr×Nt . Proceeding along the same lines

as before, it can be shown that the dominant terms in the

complexity of Steps 1 and 2 of Algorithm 2 are O(M2
t Mr)

and O(MtM
2
r ), respectively, which are much lower compared

to those of Algorithm 1. This complexity reduction comes at

the cost of a modest performance loss, which is quantified in

Section V.

3Note that the computation of Ek involves evaluation of E[x|y], which
is not considered in our complexity calculation since it does not affect the
overall complexity order.
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Note that we have assumed the availability of full channel

state information at the receiver and rely on the singular

vectors of the channel for

1) the initial values of the precoding matrices in case of

Algorithm 1 and

2) analog BF matrices designed based on the DFT-aided

directional codebook in case of Algorithm 2.

This is in contrast to the existing DBF methods [18], which

require only AoA/AoD information, where the transmis-

sion/reception beams are steered based on the direction of the

dominant paths.

IV. PROPOSED VQ BASED CODEBOOK DESIGN

In this section, we present our codebook design conceived

for HBF based mm-wave systems operating with finite alpha-

bet. Specifically, we propose an iterative algorithm based on

VQ [23], [24], that suitably partitions the space of channel

matrices for ensuring that a given pair of candidate beam-

forming/combining matrices in the codebook maximizes the

average MI achieved over a particular partition.

One of the main advantages of using VQ in the beam-

forming application considered is its flexibility to optimally

quantize the set of beamforming matrices at a desired reso-

lution. This allows us to strike a flexible trade-off between

the quantization accuracy and the number of bits required for

quantization. Another advantage of VQ worth mentioning is

that this approach does not explicitly depend on the parameters

of the set to be partitioned. For instance, in the context of

mm-wave communication, the set of channel matrices depends

on the AoA, on the AoD, and on the channel coefficients.

The VQ approach does not explicitly depend on any of

these parameters, which makes it useful in a wide range of

scenarios. However, the VQ also exhibits a drawback. Since

the algorithm is generic and does not explicitly depend on the

parameters of the set being partitioned, it becomes analytically

intractable and does not provide insight into the solution given

by this method. For more details on the VQ approach, the

reader is referred to [23]-[27].

The main idea in the VQ approach is to obtain a codebook

such that each of its codeword is optimal over a certain

partition of the set of channel matrices. Such a codebook is ob-

tained offline with the aid of the iterative procedure described

below. Once such a codebook is available at the receiver

explicitly, in each coherence time the receiver estimates the

channel and identifies the specific partition to which it belongs.

Finally, it picks the appropriate codeword from the codebook.

The problem of codebook design is formulated as follows.

Let H represent the set of all possible channel matrices and

the codebook to be designed is

C =
{

(W(1),F(1)), (W(2),F(2)), . . . , (W(N),F(N))
}

,

(21)

where N is the number of partition cells or Voronoi regions.

The problem of obtaining the optimal codebook can be stated

as follows.

Problem 2: Obtain a codebook C =
{

(W(i),F(i))
}N

i=1
and

a partitioning of H =
⋃N

i=1Hi into N regions such that

(W(i),F(i)) = arg max
W,F

E [I(x;
√

ρRWHFx + n|H ∈ Hi)] .

(22)

A natural approach to solve Problem 2 is to start with

an arbitrary partition of H say {H(1)
i }Ni=1 and solve (22)

to get (W(i),F(i))(1), 1 ≤ i ≤ N . As the BF matrices

(W(i),F(i))(1) maximize the average MI achieved over H(1)
i ,

they constitute the centroid of the region H(1)
i . The resultant

codebook is denoted by C(1) = {(W(i),F(i))(1)}Ni=1. The next

step is to obtain a refined region H(2)
i for the BF matrices

(W(i),F(i))(1), which is given by

H(2)
i = {H ∈ H|I(x;

√
ρRW(i)HF(i)x + n) >

I(x;
√

ρRW(j)HF(j)x + n), j 6= i ∀j ∈ {i}Ni=1},
(23)

where (W(i),F(i)) = (W(i),F(i))(1). As (23) describes

a specific partitioning of channel matrices that results in

higher MI for the BF matrices (W(i),F(i))(1) than any other

partitioning, it is referred to as the nearest neighbourhood

of (W(i),F(i))(1). The above steps are iteratively repeated

for obtaining a sequence of partitions {H(j)
i }kj=1 and the

associated codebooks {C(j)}kj=1. This approach is formally

termed as the Voronoi iteration/algorithm [25], [26], [27],

which essentially satisfies the following necessary conditions

of optimality:

1) Nearest neighbourhood condition (NNC);

2) Centroid condition (CC).

The NNC and CC conditions in the present context are

stated as follows:

NNC: Given a codebook C =
{

(W(i),F(i))
}N

i=1
, the

elements in each partition of H should satisfy

Hi = {H ∈ H|I(x;
√

ρRW(i)HF(i)x + n) >

I(x;
√

ρRW(j)HF(j)x + n), j 6= i ∀j ∈ {i}Ni=1}.
(24)

CC: For a given partition {Hi}Ni=1, obtain

(W(i),F(i)) = arg max
W,F

E [I(x;
√

ρRWHFx + n|H ∈ Hi)] .

(25)

Equations (24) and (25) are iterated either until convergence is

reached or for a fixed number of iterations in order to obtain

an optimal codebook C. These iterations are referred to as

NNC-CC iterations in our simulation results.

The optimal precoding/combining matrices in (25) are ob-

tained by an iterative gradient-ascent method analogous to

(15)-(16) given as follows.

F
(i)
k+1 = F

(i)
k + µ1∇FE [I(x;y|H ∈ Hi)] , (26)

W
(i)
k+1 = W

(i)
k + µ2∇WE [I(x;y|H ∈ Hi)] . (27)

The expectation and differentiation operations in (26) and

(27) can be interchanged by invoking Lebesgue’s Dominated
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Convergence Theorem [32] and Lemma 2 [31]. Thus, we have

F
(i)
k+1 = F

(i)
k + µ1E [∇FI(x;y|H ∈ Hi)] , (28)

W
(i)
k+1 = W

(i)
k + µ2E [∇WI(x;y|H ∈ Hi)] . (29)

Furthermore, the analog and digital beamforming/combining

matrices designed for an FAS based system are obtained from

(28)-(29), analogous to the steps mentioned in Algorithm 1.

Encoding/Codeword Identification: Given a codebook C =
{

(W′(i),F′(i))
}N

i=1
and a channel realization H, which is

assumed to be perfectly known at the receiver, the receiver

obtains the optimal pair of BF matrices as

(W′(k)
,F′(k)

) = arg max
(W′,F′)∈C

E [I(x;
√

ρR′W′HF′x + n)] ,

(30)

where the expectation is over the additive noise. The receiver

feeds back the index k through a feedback channel to the

transmitter so that an optimal transmit BF matrix is used in

the subsequent data transmissions.

A. Comments on Convergence

We now show that the NNC-CC iterations given in (24)

and (25) result in monotonic convergence. Let the partition

in the ith iteration be represented by {H(i)
j }Nj=1 and the

corresponding codebook be C(i) =
{

C(i)
1 , C(i)

2 , . . . , C(i)
N

}

,

where C(i)
k = (W(k),F(k))(i). Let furthermore the achievable

average MI over the partition H(i)
j when employing C(i)

j

be represented by MI
(i)
j = E

[

I(x;y|H ∈ H(i)
j , C(i)

j )
]

. In

order to prove monotonicity, it is sufficient to show that

MI
(i+1)
j ≥ MI

(i)
j for all j = 1, 2, . . . , N . From (24), we

have

E

[

I(x;y|H ∈ H(i+1)
j , C(i)

j )
]

≥MI
(i)
j , (31)

and from (25) we have

E

h

I(x;y|H ∈ H(i+1)
j , C(i+1)

j )
i

≥ E

h

I(x;y|H ∈ H(i+1)
j , C(i)

j )
i

,

(32)

for j = 1, 2, . . . , N . Thus, from (31) and (32), we have

E

[

I(x;y|H ∈ H(i+1)
j , C(i+1)

j )
]

= MI
(i+1)
j ≥MI

(i)
j . (33)

This shows that every NNC-CC iteration results in a codebook

with an improved achievable MI. Since the achievable MI

is bounded from above by log2(M) bits, convergence to a

point in [0, log2(M)] is assured. Note that a similar claim

concerning the convergence of NNC-CC iterations in the

Gaussian alphabet case can be found in [24].

B. Parameterized Codebook Design

The NNC-CC iterative algorithm mentioned in (24)-(25)

is applicable in general to any set of channel matrices H.

In mm-wave communication, the channel is spatially sparse

(Section II-C) as indicated by the geometric channel model

in (6). The set of channel matrices in mm-wave communica-

tion can be partitioned based on AoA/AoDs as follows. Let

A = [0, 2π] represent the set of possible AoA/AoDs of all

TABLE II
COLLECTION OF CODEBOOKS ASSOCIATED WITH VARIOUS AOAS AND

AODS.

C1,1 C1,2 · · · C1,M

C2,1 C2,2 · · · C2,M

..

.
..
.

..

.
..
.

CM,1 CM,2 · · · CM,M

Rows correspond to AoAs.
Columns correspond to AoDs.

the paths and Ai =
[

(i− 1)2π
M , (i)2π

M

]

for i = 1, 2, . . . , M ,

represent a partitioning of A into M sets. From (6), we have

the set of channel matrices given by

H =

{

√

NtNr

L
∑

i=1

βier(θi)e
H
t (φi)

∣

∣θi ∈ A, φi ∈ A
}

, (34)

which can be partitioned as H =
⋃M

p=1

⋃M
q=1H(Ap,Aq),

where

H(Ap,Aq) =

(

√
NtNr

L
X

i=1

βier(θi)e
H
t (φi)

∣

∣θi ∈ Ap, φi ∈ Aq

)

.

(35)

This divides the set of AoA/AoDs into M2 regions and each of

these regions is further divided into N regions by employing

VQ (24)-(25). The specific codebook associated with a given

AoA/AoD partition (Ap,Aq) is represented by Cp,q(ρ), which

will have N entries. Since there are a total of M2 partitions,

we will have M2 codebooks given by Cp,q(ρ) for 1 ≤ p ≤M ,

1 ≤ q ≤ M . We denote the effective parametrized codebook

by

CM,N(ρ) =
⋃

p,q

Cp,q(ρ). (36)

Table II depicts this collection of codebooks associated

with various AoAs and AoDs. Thus, the total number of

codebook entries will be NM2. The codebook thus obtained

is characterized by M , N , and the operating SNR ρ. Once

the appropriate codebook is selected based on the AoA and

AoD of dominant components of the channel, encoding the

BF matrix and conveying the index of the optimal BF matrix

pair to the transmitter is analogous to (30). Note that, in case

of other array structures such as uniform patch array (UPA)

or uniform circular array (UCA), we can partition the set

of channel matrices based on the parameters that define the

array directionality. For instance, in case of a UPA, both the

azimuth and elevation angles can be partitioned analogous to

the ’azimuth-only’ case of the ULA.

C. VQ Codebook Aided Directional Beamforming (VQ-DBF)

The partitioning of the set of channel matrices as in (34)

and (35) is suitable, when the channel only has a few signal

paths. When the number of channel paths increases, the

number of partition cells has to be exponentially increased

in order have a reasonable quantization resolution, which in

turn makes the VQ codebook design computationally complex.

Motivated by the low-complexity directional beamforming

solutions of [17]-[19], we propose a VQ codebook based
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solution by partitioning the set of baseband channels, which

are obtained after employing DFT codebook based analog BF,

as seen in Algorithm 2. This scheme is referred to as the

VQ codebook aided directional beamformer (VQ-DBF). The

NNC-CC iterations in this case are the same as those given

by (24) and (25), except that now the set of channel matrices

to be partitioned is of size Mr ×Mt, which is given by

Heff =
{

Heff ∈ C
Mr×Mt |Heff = WHHF,H ∈ H

}

, (37)

where W and F are constructed from DFT codebooks, as seen

in Algorithm 2.

V. SIMULATION RESULTS AND DISCUSSIONS

The geometric channel model given in (6) is used in all our

simulations. The MMSE matrix in (14) is computed using the

Monte Carlo method as

E ≈ 1

Ns

∑

x′,y′

(x′ − E[x|y = y′])(x′ − E[x|y = y′])H , (38)

where Ns is the number of samples x′,y′ generated for

averaging and exploiting E[x|y = y′] =
∑

x′ x
′px|y(x′|y′).

For a given channel realization, the MI is computed as

I(x;y) = E

[

log2

(

py|x(y|x)

p(y)

)]

, (39)

≈ 1

Ns

∑

x′,y′

log2

[

py|x(y′|x′)
∑

x̃ py|x(y′|x̃)p(x̃)

]

. (40)

The achievable ergodic rate is obtained by averaging the MI

over multiple channel realizations. Furthermore, the initial

values of µ1 and µ2 in Algorithm 1 are taken to be sufficiently

large and are scaled down according to the number of iterations

with a constant scaling factor. In case of the simulation results

characterizing our VQ codebooks, we have used µ1 = µ2 = 4
and a scaling factor of 0.8. In case of gradient ascent based

studies we have used different values of µ1 and µ2 at different

SNR values for achieving a faster convergence. At SNR values

of 0 dB, -5 dB and -10 dB we have used µ1 = µ2 = 2, while

at lower SNR values we have used µ1 = µ2 = 10 with a fixed

scaling factor of 0.8.

First, we quantify the achievable ergodic rate by the pro-

posed gradient-ascent based solution and compare it to that

achieved by the singular value decomposition (SVD) based

solution, which is optimal for the Gaussian input alphabet.

Consider a MIMO system having Nt = Nr = 32, Mt = Mr =
4, and employing a QPSK constellation. Fig. 2 compares the

ergodic rate achievable by the gradient-ascent based solution

and the SVD based solution in both unconstrained (Fig. 2(a))

and constrained (Fig. 2(b)) BF scenarios. It is clear from

both Fig. 2(a) and Fig. 2(b) that the gradient-ascent based

solution gives a higher ergodic rate than the SVD based

solution. Specifically, at an SNR of about -15 dB, we see

an improvement of about 0.4 bits per channel use (bpcu) in

the ergodic rate in both unconstrained and FAS based systems.

Note that when operating with large bandwidths as in the case

of mm-wave systems, a gain of 0.4 bpcu in the ergodic rate

would translate to a large increase in the effective data rate.
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Fig. 3. Comparison of the achievable ergodic rate in the proposed gradient-
ascent based solution in the unconstrained and FAS based systems. All the
systems are assumed to have Mt = Mr = 4, Nt = Nr ∈ {32, 64} and
employing QPSK.

Fig. 3 compares the achievable ergodic rate of the gradient-

ascent based solution in the unconstrained and FAS based

systems. The achievable performance of the FAS based system

employing Algorithm 1, as well as the gradient-ascent based

directional BF (GA-DBF) of Algorithm 2 and the analog-

only directional BF (DBF) are presented for comparison. It

is evident from Fig. 3 that Algorithm 2 provides a significant

performance gain over the DBF. Specifically, at an SNR of -10

dB, the GA-DBF gives a 0.9 bits/s/Hz gain with respect to the

DBF in a system having Nt = Nr = 32, Mt = Mr = 4, and

employing QPSK. It is also evident from Fig. 3 that there is a

loss in the performance of Algorithm 2 with respect to that of

Algorithm 1. Specifically, at an SNR of -20 dB, the GA-DBF

suffers from a loss of about 0.7 bits/s/Hz with respect to the

FAS based system employing Algorithm 1. Fig. 4 compares

the achievable ergodic rate as a function of the iteration index

in the proposed gradient-ascent based algorithms employed

both in the unconstrained and in the FAS based systems. It is

evident from Fig. 4 that both Algorithm 1 and Algorithm 2

offer significant gains in the achievable rate with respect to

the DBF.

Consider a MIMO system having Nt = Nr = 16, Mt =
Mr = 2, and employing a VQ codebook associated with a

QPSK constellation. Fig. 5 compares the achievable ergodic

rate in both unconstrained and FAS based systems. Fig. 5(a)

and Fig. 5(b) quantify the reduction in the achievable rate of

the FAS based system w.r.t. the unconstrained system, when

employing a VQ codebook associated with the parameters

N = 4, M = 1, and N = 8, M = 1, respectively. Specifically,

we see a reduction of about 0.2 bpcu at an SNR value of about

-5 dB for both codebooks. Also, it is observed that there is

an improvement of about 0.2 bpcu in the achievable ergodic

rate, when the size of the VQ codebook is increased from

N = 4 to N = 8 while keeping M = 1. In both cases

of N = 4 and N = 8, the number of NNC-CC iterations
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Fig. 2. Comparison of the achievable ergodic rates in the proposed gradient-ascent based solution and the SVD based solution in a system having
Nt = Nr = 32, Mt = Mr = 4, and employing QPSK constellation. Plot (a) corresponds to the unconstrained system, and Plot (b) corresponds to the FAS
based system.
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Fig. 4. Variation in the achievable ergodic rate as a function of iteration
index in the proposed gradient-ascent based solution in the unconstrained and
FAS based systems. All the systems are assumed to have Mt = Mr = 4,
Nt = Nr = 32 and employing QPSK. The plot corresponds to the SNR
value of -10 dB.

INNC−CC = 4 and the number of iterations for the gradient-

ascent algorithm IGA = 20. Fig. 6 depicts the variation of the

ergodic rate w.r.t. the number of iterations of the gradient-

ascent algorithm as well as the NNC-CC iterations, while

employing a VQ codebook with N = 4, M = 1. For the sake

of clarity, only the plots corresponding to INNC−CC = 1
and INNC−CC = 4 are provided for SNR values of -15

dB and -5 dB in Fig. 6(a) and Fig. 6(b), respectively. It

is evident that the NNC-CC iterations significantly improve

the achievable ergodic rate in both the unconstrained and

FAS based systems. However, it was observed that the gain

gradually diminishes upon increasing the number of NNC-

CC iterations. Fig. 7 portrays the variation of the achievable

ergodic rate in the aforementioned system, when employing a

VQ codebook associated with N = 8, M = 1. Fig. 8 depicts

the variation of the achievable ergodic rate w.r.t. the NNC-

CC iterations in both unconstrained and FAS based systems

having Nt = Nr = 16, Mt = Mr = 2 and employing a VQ

codebook having N = 4, M = 1 at an SNR value of 0 dB.

It is evident from Fig. 8(a) and Fig. 8(b) that the NNC-CC

iterations converge in about four iterations.

Fig. 9 compares the achievable ergodic rate as a function

of the iteration index in an FAS based system having Nt =
Nr = 32, Mt = Mr = 4 and employing DBF, GA-DBF and

VQ-DBF with QPSK signal set. The VQ-DBF is assumed to

have N = 4, i.e. the VQ codebook is assumed to have four

codewords. It is evident from Fig. 9 that the VQ-DBF achieves

nearly the same performance as that of the GA-DBF. Thus, we

can infer that the VQ codebook having a resolution as low as

four bits is capable of achieving nearly the same performance

as that of the GA-DBF.

Figure 10 portrays the variation of the MI for differ-

ent angular spreads of the paths between the transmit-

ter and the receiver. Specifically, the following AoA/AoD

spreads are considered: (π/2, π/2), (π/4, π/4), (π/8, π/8),
and (π/16, π/16). The VQ codebooks corresponding to these

angular spreads are C4,4(ρ), C8,4(ρ), C16,4(ρ), and C32,4(ρ),
respectively. It is observed that the MI attained when the

AoA/AoD angular spread is (π/4, π/4) is marginally higher

than that achieved with other angular spreads. Essentially, the

MI attainable for different angular spreads remains the same

owing to the channel normalization, i.e. E
[

‖H‖2
]

= NtNr

and due to the fact that the channel’s rank remains L with

a probability of one, independently of the angular spread. An

important observation to be made from Fig. 10 is that the FAS

based system is capable of completely capturing the energy

in the transmit and receive beams regardless of the angular
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Fig. 5. Comparison of the achievable ergodic rates in the unconstrained and the FAS based system, both having Nt = Nr = 16, Mt = Mr = 2, and
employing VQ codebook with QPSK constellation. Plot (a) corresponds to a codebook having N = 4, M = 1, and Plot (b) corresponds to a codebook
having N = 8, M = 1.
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Fig. 6. Variation of the achievable ergodic rate w.r.t. the number of iterations in the direction of ascent in the unconstrained and the FAS based system, both
having Nt = Nr = 16, Mt = Mr = 2, and employing a QPSK constellation and a VQ codebook having N = 4, M = 1. Plot (a) corresponds to the SNR
value of -15 dB, and Plot (b) corresponds to the SNR value of -5 dB.

spreads.

Discussions: While this paper proposes a simple iterative

algorithm for generating the transmit and receive beamforming

matrices for systems operating with a finite alphabet, it is

beneficial to reduce the complexity of the algorithm further.

This may include employing line search based methods [29]

for adaptively controlling the step size. Furthermore, the

MMSE matrix of Algorithm 1 is computed independently in

each iteration. It is promising to study the performance of

the algorithm by considering the iteratively updated MMSE

matrix. Furthermore, it is assumed that the receiver has perfect

CSI. It is of salient practical importance to study the training

and channel estimation in the context of FAS based systems

operating with finite alphabet and employing the VQ based

codebook. In this paper, we have partitioned the set of channel

matrices into M2 regions and obtained the VQ codebook for

each partition. It is an interesting problem to study the possible

extension of the proposed approach to scenarios, where the

channel has components from different partitions. Although

all the results presented in the paper are for the FAS based

system, it is of practical significance to study the performance

of the ASA based system that employs the proposed algorithm.

VI. CONCLUSIONS

We have considered the FAS based system operating

with finite input alphabet and proposed a gradient-ascent
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Fig. 7. Variation of the achievable ergodic rate w.r.t. the number of iterations in the direction of ascent in the unconstrained and the FAS based system, both
having Nt = Nr = 16, Mt = Mr = 2, and employing a QPSK constellation and a VQ codebook having N = 8, M = 1. Plot (a) corresponds to the SNR
value of -15 dB, and Plot (b) corresponds to the SNR value of -5 dB.
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Fig. 8. Plots (a) and (b) depict the variation of the achievable ergodic rate w.r.t. the number of NNC-CC iterations in the unconstrained and the FAS
based system, respectively. Both are assumed to have Nt = Nr = 16, Mt = Mr = 2, and employing a QPSK constellation and a VQ codebook having
N = 4, M = 1 at SNR value of 0 dB.

based iterative algorithm in order to obtain the analog/digital

beamforming and combining matrices that maximize the MI.

We first obtained the optimal beamforming and combining

matrices without any constraints and then imposed the

constant amplitude condition in order to obtain the analog

beamforming/combining matrices. Furthermore, we proposed

a VQ codebook in order to reduce the number of feedback

bits in practical systems that operate with the aid of a

finite-rate feedback channel. Our simulation results have

revealed that the proposed solution offers significantly higher

MI compared to the scenario where a Gaussian input alphabet

is considered.

VII. APPENDIX A

PROOF OF PROPOSITION 1

The problem in (9) is non-concave in general and hence

we look for the necessary conditions for the precoding and

combining matrices to allow operation at the stationary points.

The first-order or Karush-Kuhn-Tucker conditions [29] are

obtained with the aid of the Lagrangian approach as follows.

Let

L(W,F, λ1, λ2) = −I(x;y)−λ1(Mr−‖W‖2)−λ2(Mt−‖F‖2),
(41)
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where λ1 ≥ 0, λ2 ≥ 0. The first-order necessary conditions

are given by

∇WL = −∇WI(x;y) + λ1W = 0 (42)

∇FL = −∇FI(x;y) + λ2F = 0 (43)

λ1(Mr − ‖W‖2) = 0 (44)

λ2(Mt − ‖F‖2) = 0 (45)

λ1 ≥ 0 (46)

λ2 ≥ 0. (47)

If ‖F‖2 = Mt, ‖W‖2 = Mr, λ1 and λ2 are non-zero4, then

the solution (F⋆,W⋆) should satisfy

W⋆ = λ−1
1 ∇WI(x;y) (48)

F⋆ = λ−1
2 ∇FI(x;y). (49)

The gradients ∇WI(x;y) and ∇FI(x;y) are computed

using the results from [30], [31], as follows.

Lemma 1 (Proof of Theorem 2, [31]): If f is a real-valued

function, which depends on B through Heff = ABC, where

A and C are arbitrary fixed matrices, then we have:

∇Bf = AH∇Heff
fCH . (50)

Considering Heff =
√

ρRWHF and the scalar function f
to be I(x;y), we have

∇WI(x;y) =
√

ρRH∇Heff
fFHHH , (51)

∇FI(x;y) =
√

ρHHWHRH∇Heff
f. (52)

Invoking Theorem 1 [31], we have ∇Heff
f = HeffE, which

gives

∇WI(x;y) = ρRHRW∗HF∗EF∗H
HH , (53)

∇FI(x;y) = ρHHW∗H
RHRW∗HF∗E. (54)

Thus, we have

W⋆ = λ−1
1 ρRHRW⋆HF⋆EF⋆H

HH , (55)

F⋆ = λ−1
2 ρHHW⋆H

RHRW⋆HF⋆E. (56)

Now, choosing λ1 = ρ‖RHRW⋆HF⋆EF⋆HHH‖/√Mr =
ρ/ζ1 and λ2 = ρ‖HHW⋆HRHRW⋆HF⋆E‖/√Mt = ρ/ζ2,

we arrive at (10) and (11). This concludes the proof.

4When λ1 (or λ2) is zero, it implies that ‖W‖2 < Mr (‖F‖2 < Mt).

In this case, a new combiner (precoder) matrix can be defined as Ŵ =
W/‖W‖ (F̂ = F/‖F‖) that achieves a higher mutual information, since
∂I(x;y)

∂ρ
> 0.
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