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Are there any stable magnetic fields in barotropic stars?
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ABSTRACT
We construct barotropic stellar equilibria, containing magnetic fields with both poloidal and
toroidal field components. We extend earlier results by exploring the effect of different mag-
netic field and current distributions. Our results suggest that the boundary treatment plays a
major role in determining whether the poloidal or toroidal field component is globally dom-
inant. Using time evolutions we provide the first stability test for mixed poloidal–toroidal
fields in barotropic stars, finding that all these fields suffer instabilities due to one of the
field components: these are localized around the pole for toroidal-dominated equilibria and in
the closed-field line region for poloidal-dominated equilibria. Rotation provides only partial
stabilization. There appears to be very limited scope for the existence of stable magnetic fields
in barotropic stars. We discuss what additional physics from real stars may allow for stable
fields.
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1 IN T RO D U C T I O N

At least three different classes of stars appear to harbour strong and
broadly similar magnetic fields: Ap/Bp stars on the main sequence,
magnetic white dwarfs and neutron stars. All three classes exhibit
long-lived fields, with large-scale simple structure. Surface fields
are up to the order of 104 G for Ap/Bp stars, 109 G for magnetic
white dwarfs and 1015 G for neutron stars. Although these values
are very different the resultant total magnetic flux is similar for the
three classes; due to their correspondingly different radii. Given
their high strengths, magnetic fields are expected to play important
roles in the evolution and dynamics of these stars (Wickramasinghe
& Ferrario 2000; Harding & Lai 2006; Donati & Landstreet 2009).
In addition, magnetic fields distort a star (Chandrasekhar & Fermi
1953); this distortion may (in a rotating neutron star) lead to appre-
ciable emission of gravitational waves (Bonazzola & Gourgoulhon
1996).

Observations only give us direct information about the exterior
field of a star, although it may be possible to infer details of the
interior field of neutron stars from magnetar flares and oscillations
(at present) and through gravitational-wave emission (in the fu-
ture). Having no direct probe of the interior is a problem, since the
details of the field geometry can greatly affect the ratio of internal-
to-external field strength; the observed field may provide a poor
estimate of the global value. For example, if a star’s magnetic field
is confined to an outer region (like the crust of a neutron star),
its volume-averaged value could be lower than expected from the
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observed surface value; if the field is predominantly buried within
the star, its strength may be greater than expected. Innumerable
studies have been motivated by the attempt to understand the kinds
of magnetic field that may exist in stars (see Mestel 1999, for a
review).

One approach to the modelling of stellar magnetic fields is to
construct equilibrium configurations of a fluid star and then to show
that they are dynamically stable (and hence credible models for
the long-lived magnetic fields present in many real stars). In prac-
tice, the latter step is very difficult – it requires confirmation that
every possible perturbation about a stellar equilibrium is stable. For
the former step, constructing hydromagnetic equilibria, virtually all
studies make the simplifying assumption of a barotropic (i.e. un-
stratified) stellar model: the pressure is taken as a function of density
alone. This has been criticized as unrealistic – temperature/entropy
profiles provide stratification in main-sequence stars (Mestel 1956)
and white dwarfs (Reisenegger 2009), whilst the varying propor-
tions of charged particles (composition gradients) result in neutron
star stratification (Reisenegger & Goldreich 1992). Stratification
provides an additional degree of stabilization, and numerical sim-
ulations for main-sequence stars with entropy gradients have pro-
vided strong evidence for the existence of stable magnetic equilibria
in this case (Braithwaite & Nordlund 2006; Braithwaite 2009). It is
not clear if this result is applicable to neutron stars, however, where
the origin of the stratification is different.

Despite its limitations, a barotropic equation of state is a sensible
first approximation to stellar matter, and one which is astrophysi-
cally relevant if it allows for stable magnetic equilibria. It is still
unknown whether such stable configurations exist, but there seem
to be two reasons to expect them to. The first is connected with the
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geometry of a mixed poloidal–toroidal field. A poloidal field is
known to be unstable in the region where its field lines close within
the star, whilst a toroidal field suffers localized instabilities around
the pole; in a mixed field, each field component ‘fills in’ the re-
gion where the other field component is unstable. This changes
the magnetic field geometry in these unstable regions, potentially
suppressing the instabilities (Wright 1973; Tayler 1980). The sec-
ond reason to expect stable equilibria is that the ‘twisted-torus’
fields found for barotropic equilibria (Ciolfi et al. 2009; Lander &
Jones 2009) are qualitatively similar to the final state of the non-
linear stratified-star simulations mentioned above (Braithwaite &
Nordlund 2006).

This paper aims to explore the possibility of stable magnetic
fields existing in barotropic stars by testing the stability of a num-
ber of equilibrium models. We begin, in Section 2, by exploring the
range of magnetic equilibria possible in barotropic stars, review-
ing the key equations of the problem and examining the various
classes of solution. Broadly, the resulting equilibria differ in how
their magnetic field and current are distributed. In Section 3, we
discuss properties of perturbations in a magnetic star: the governing
equations, how a mixed poloidal–toroidal field breaks the equatorial
symmetry of the perturbations and potential instabilities. Next, we
use the mixed-field equilibria of Section 2 as background configu-
rations for time evolutions of the linearized perturbation equations
(Section 4). We study perturbations known to result in instabilities
for purely poloidal/toroidal fields to determine whether or not these
perturbations are still unstable in mixed-field stars. Following this,
we discuss some important aspects of stellar physics not accounted
for in barotropic models, and whether these may remove magnetic
instabilities (Section 5). Finally, in Section 6 we summarize our
results.

2 MIXED-FIELD BA ROTROPIC EQUILIBRI A

The first step towards studying the stability of magnetized stars
is to construct suitable background equilibrium models, which we
describe in this section. Although full details may be found in
Lander & Jones (2009), we pause here to focus on the key equations
of the problem and any restrictions imposed by our assumptions.
This is important, since our aim is to produce the widest possible
range of equilibrium models to test for stability.

We model a star as a perfectly conducting barotropic fluid body, in
Newtonian gravity and axisymmetry. The star has a mixed poloidal–
toroidal magnetic field B, and our scheme also allows for rigid
rotation (about the magnetic symmetry axis) with angular velocity
�. We work in cylindrical polar coordinates (� , φ, z), with the z-axis
being aligned with the symmetry axis of the star. An equilibrium
is described by the stationary form of the magnetohydrodynamics
(MHD) Euler equation:

∇P

ρ
+ ∇� − ∇

(
� 2�2

2

)
− j × B

ρ
= 0, (1)

where P is fluid pressure, ρ mass density, � gravitational potential
and j the electric current. This equation needs to be solved together
with Ampère’s law,

4π j = ∇ × B, (2)

Poisson’s equation,

∇2� = 4πGρ, (3)

where G is the gravitational constant, and the solenoidal constraint
on the magnetic field,

∇ · B = 0. (4)

The system is closed with an equation of state. We choose a poly-
trope with index N = 1, a typical approximation for neutron star
matter:

P = P (ρ) = kρ1+1/N = kρ2. (5)

Note that a more suitable value for white dwarfs would be N = 1.5,
whilst main-sequence stars tend to be modelled as N = 3 polytropes.
We are able to generate magnetic equilibria for a variety of values
of N (Lander & Jones 2009), but the resulting field configurations
are all qualitatively similar. Since magnetic field instabilities are
related to the geometry of the field (see Section 3.3), we have some
expectation that our results for N = 1 should be representative of
the stability of barotropic main-sequence stars and white dwarfs,
not just neutron stars.

Some algebra is needed to recast the equilibrium equations above
into a convenient form for solution. First let us take the curl of the
Euler equation (1), which – in the case of a barotropic star – yields

j × B
ρ

= ∇M, (6)

for some scalar function M. The solenoidal constraint on the mag-
netic field together with the assumption of axisymmetry allows us
to express the poloidal field component Bpol in terms of a stream
function u:

Bpol = 1

�
∇u × eφ. (7)

Furthermore, the toroidal component is related to the stream func-
tion through some function f ,

Bφ = 1

�
f (u), (8)

and it may also be shown that M = M(u). Therefore, the magnetic
field and the force it exerts on the fluid are both related to the
single scalar function u. Equivalently, it is possible to work with
the φ-component of the magnetic vector potential A instead, since
u = �Aφ . With various algebraic tricks, one may derive a relation
between these functions u, M and f , known as the Grad–Shafranov
equation (Grad & Rubin 1958; Shafranov 1958):

−4πρ� 2 dM

du
= f

df

du
+

(
∂2

∂� 2
− 1

�

∂

∂�
+ ∂2

∂z2

)
u. (9)

Combining the Grad–Shafranov equation with Ampère’s law (2) in
axisymmetry yields a useful relation between the magnetic func-
tions, the current and the field:

j = 1

4π

df

du
B + ρ�

dM

du
eφ. (10)

By rewriting j and B in terms of the stream function (Tomimura &
Eriguchi 2005), we arrive at a version of Poisson’s equation for the
magnetic field:

∇2

(
1

�
u sin φ

)
= −

(
f

�

df

du
+ 4π�ρ

dM

du

)
sin φ. (11)

The above result is the last that one can obtain without loss of
generality. For numerical solution, we now need an integral form
of equation (11), and in choosing a Green’s function to produce
this integral we also implicitly choose a boundary condition for
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the exterior field. All of the equilibria we generate use the integral
equation

1

�
u sin φ = 1

4π

∫
f ′(ũ)f (ũ)/�̃ + 4π�̃ ρ̃M ′(ũ)

|r − r̃| sin φ̃ dr̃, (12)

for which the magnetic field magnitude falls off as a dipole, B →
1/r3 as r → ∞. If one wished instead to solve for fields confined
within the star (for example), a modified Green’s function would be
necessary.

One must also specify the functional forms of M(u) and f (u),
which are chosen on physical grounds. In particular, we see from
equation (10) that the derivatives M′(u) and f ′(u) are related to the
distribution of electric current. Both M and f can be chosen to
allow for smooth or discontinuous current distributions inside the
star, whilst most choices for f result in currents outside the star.
As discussed later, the limited choices of f (u) which avoid exterior
currents all produce qualitatively similar equilibria.

The integral equations for � and u are solved together with the
Euler equation using a numerical scheme which iteratively finds
equilibrium configurations – for details see Lander & Jones (2009)
or Tomimura & Eriguchi (2005). For numerical solution, it is con-
venient to use dimensionless variables, which we denote by a hat
(e.g. �̂). We produce these by dividing each physical quantity by
the requisite combination of powers of G, maximum density ρmax

and equatorial radius req. The results of this section are presented
in dimensionless form to avoid specializing to a specific star. In
addition, the important features of the equilibria – the distribution
and relative strength of the two field components – are clear without
redimensionalizing. We now consider different choices of the two
magnetic functions f (u) and M(u) and the resultant equilibria.

2.1 Exterior poloidal field, no surface currents: ‘type 1’

Our first choice of surface treatment is that employed in Lander
& Jones (2009). Specifically, the toroidal component is confined
within the star and goes to zero smoothly at its surface, whilst the
internal poloidal field matches smoothly to an external component,
which falls off as 1/r3. We feel this is the most natural boundary
condition for a fluid star in vacuum, although it ignores the different
physics present in the outer regions of stars – for example, the
crust, ocean and magnetosphere of a neutron star. One surprising,
perhaps unsatisfactory, aspect of these solutions is that we find the
toroidal component is always weak with respect to the poloidal one
in a global sense; its contribution Etor to the magnetic energy Emag

is never more than a few per cent of the total. Locally the two
field components can be more similar, however, with the maximum
values of poloidal and toroidal components being of comparable
magnitude.

To produce the desired surface behaviour of the toroidal field
component, we need to make a suitable choice of magnetic function
f (u). We take

f (u) =
{

a(u − usurfmax)1.1 u > usurfmax,

0 u ≤ usurfmax,
(13)

where usurfmax is the maximum surface value attained by u, as dis-
cussed by various authors (Tomimura & Eriguchi 2005; Lander &
Jones 2009; Ciolfi, Ferrari & Gualtieri 2010; Lyutikov 2010) and a
is a constant coefficient related to the relative strength of toroidal
and poloidal components (a = 0 produces a purely poloidal field).
Experimenting with different exponents of (u − usurfmax), we have
found that lower values allow for slightly stronger toroidal compo-
nents. At the same time, we wish to avoid producing a step in f ′(u),

so we need the exponent to be greater than unity; hence we chose it
as 1.1. In other cases the equilibria are still qualitatively similar. The
functional form (13) has the effect of enclosing the toroidal field
component within the closed-field line region of the star, producing
equilibria where the toroidal field only occupies a small volume of
the star. Nonetheless, it is the largest volume that does not give rise
to an exterior current.

Within an iterative scheme, we consider this choice slightly in-
consistent with the requirement that f be a function of u alone:
usurfmax is a constant, but one found by evaluating u at ρ = 0. The
value of usurfmax varies between iterative steps, and hence the scheme
involves an implicit density dependence. Instead, it is possible to
produce entirely consistent equilibria using the stream function’s
global maximum uglobmax (which is attained within the star): one
can fit the f function to contours of different fractions of uglobmax

and pick the solution with the largest volume of toroidal component
which does not extend outside the star. The resulting equilibria ap-
pear identical to those using usurfmax, however, suggesting that (13)
is in fact an acceptable choice.

All of our type 1 equilibria use the above choice for f , but differ
in the choice of the other magnetic function M. In Lander & Jones
(2009) we found that only M(u) = κu (where κ is a constant)
produced magnetized equilibria, with other cases resulting in our
numerical scheme iterating to unmagnetized solutions; here we refer
to the M = κu equilibria as type 1a. Physically, κ gives the relative
strength of the Lorentz force compared with gravity and is thus
related to the magnetic field strength; setting κ = 0 produces an
unmagnetized star.

More recently, we have found a way of using other functional
forms of M without the numerical scheme iterating to a zero-field
solution. By including a 1/uglobmax factor, the field at each iterative
step is ‘normalized’ to the same magnitude as the previous step
and not driven to zero. These different functional forms of M pro-
duce qualitatively similar equilibria, so we take one representative
example – M = κu2/uglobmax – and refer to it as type 1b.

A different generalization of the original type 1a equilibria is to
relax the requirement that the current density be continuous inside
the star. Allowing for steps in the current means we can choose
forms of M and f with discontinuous u-derivatives. We find that a
step in f ′(u) produces little qualitative difference in equilibria from
types 1a or 1b, so we do not consider these further. More significant
differences emerge by choosing a step in M′(u) – as an example of
these we choose the following:

M ′(u) =
{

κ u > usurfmax,

0 u ≤ usurfmax.
(14)

Note that this corresponds to a step in the interior current, but not
to a surface current; see equation (10). Since we wish to avoid δ-
distribution behaviour of M′(u) (and hence the Lorentz force) in this
class of solutions, however, we must ensure that M itself is smooth
– and so we take

M(u) =
{

κ(u − usurfmax) u > usurfmax,

0 u ≤ usurfmax.
(15)

This choice confines the Lorentz force within the closed-field line
region, with a force-free field existing in the rest of the stellar interior
as well as the exterior. The other magnetic function f is chosen
in the same way as for type 1a. This final choice we refer to as
type 1c.

The three type 1 field configurations are compared in Fig. 1,
where we plot the variation in magnitude of Br, Bθ and Bφ with
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Magnetic stability of barotropic stars 485

Figure 1. Three different type 1 or ‘twisted-torus’ equilibria, all with a relatively large toroidal component: Etor/Emag = 3, 4.5 and 4.5 per cent for types
1a, 1b and 1c, respectively. The variation in magnitude of the three field components is shown as a function of dimensionless stellar radius r/R∗, where R∗ is
the surface of the star. Bθ and Bφ are evaluated along the equatorial axis, whilst Br (zero along this axis) is evaluated along the polar axis. The neutral line of
the poloidal component is located where the Bθ line crosses the x-axis, and the toroidal component is centred around this line. These three equilibria represent
the range of solutions we have found which have an exterior field but no surface/exterior current; nonetheless, all are qualitatively similar.

stellar radius. The maximum value attained by the toroidal field is
greater in type 1b than in type 1a, but it is still confined to the same
small region. The profiles of types 1a and 1c differ mainly in the
relatively weak radial field in type 1c. Overall, however, the three
field configurations appear very similar.

2.2 Confined fields, no exterior poloidal component: ‘type 2’

Next, we consider a very different class of equilibrium from that of
the previous subsection: one where the magnetic field is confined
to the stellar interior. We will refer to such confined-field equilibria
as ‘type 2’. As described earlier, the boundary condition on the
magnetic field is imposed by the choice of Green’s function used
to solve equation (11); to generate equilibria with confined fields
we would need to modify this function. Since the total magnetic
field vanishes at the stellar surface in this case, there would be no
separate need to ensure that the toroidal field vanishes outside the
star.

The major disadvantage in assuming a confined field is the more
limited astrophysical relevance: in particular, many stars have strong
exterior magnetic fields, thought to be comparable in strength with
the internal value. One possible application of this treatment could
be to model accreting neutron stars or white dwarfs, where the
surface field is weak but a strong internal field could still exist,
‘buried’ under the accreted matter.

There are interesting differences between the properties of mag-
netic equilibria in the confined and non-confined cases. The non-
confined models described above (type 1) are ‘poloidal-dominated’
– the poloidal field component contains most of the star’s mag-
netic energy – whilst confined-field solutions seem to be toroidal-
dominated by the same measure (Ioka 2001; Haskell et al. 2008;
Duez & Mathis 2010). Related to this, type 1 magnetic fields induce
oblate distortions in the star’s density distribution, whereas type 2
equilibria have prolate ellipticities. Finally, since the magnetic fields
in the two cases are qualitatively different, it is natural to expect
them to have different stability properties.

Generating confined-field equilibria would not be a straightfor-
ward extension to our work, nor is there strong motivation to do so
from observations. On the other hand, we would like to compare
the two contrasting field geometries of type 1 and type 2 equilibria.
To this end, we turn to the perturbative semi-analytic models in
section B2 of Haskell et al. (2008) for confined mixed-field stars.

Their magnetic field (in spherical polar coordinates) is of the form

B = 2A cos θ

r2
er − A sin θ

r
eθ + πλA sin θ

rR∗
eφ, (16)

with A a radial function given by

A(r) = BkR
2
∗

(λ2 − 1)2y

[
2π

λy cos(λy) − sin(λy)

πλ cos(πλ) − sin(πλ)

+ [(1 − λ2)y2 − 2] sin y + 2y cos y

]
, (17)

where y = πr/R∗ and Bk is a constant governing the field strength.
By demanding that the exterior field vanish and the interior field
be finite and continuous, this becomes an eigenvalue problem to
solve for λ, with only a discrete set of solutions being admissible.
Higher eigenvalues correspond to a stronger toroidal component
with an increasing number of nodes. Haskell et al. (2008) found
that the lowest eigenvalue solution for the magnetic field was λ =
2.362, corresponding to a nodeless toroidal component. We adopt
this field configuration together with a spherical density distribution
as our ‘type 2’ equilibrium, neglecting the (small) distorting effect
of the magnetic field. Unlike our type 1 equilibria, this is not fully
self-consistent, but the resulting models should be accurate enough
for a qualitative idea of stability.

We plot this ‘type 2’ magnetic field in Fig. 2. Even for this
lowest eigenvalue solution, the toroidal component magnetic energy

Figure 2. A type 2 equilibrium, where all field components are confined
within the star, not just Bφ . Plotted here is the lowest eigenvalue solution of
Haskell et al. (2008), corresponding to no nodes in the toroidal field. 65 per
cent of the magnetic energy is contained in the toroidal component – far
higher than for type 1 equilibria.
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Figure 3. Equilibria with the toroidal field component matched to a surface current rather than going smoothly to zero there. For the type 3a model,
Etor/Emag = 50 per cent; for type 3b it is 30 per cent. The right-hand plot is an attempt to produce an equilibrium with a surface current that also looks roughly
like a twisted-torus structure.

is 65 per cent of the total.1 Clearly, the toroidal field is far more
significant globally than for type 1 equilibria, extending throughout
the stellar interior.

2.3 Exterior poloidal component, surface currents: ‘type 3’

The types of magnetic field outlined in the last subsections represent
two extremes of mixed-field equilibria with a confined toroidal
component; in type 1 the poloidal component is non-zero across
the surface and into the exterior, whilst in type 2 it vanishes at
the surface. For both types, the toroidal component goes to zero
smoothly at the surface. Type 1 equilibria are always dominated
by the poloidal component and type 2 equilibria by the toroidal
component. Since we wish to test the dependence of stability on the
relative strength of the two field components, we would like a way
of introducing a ‘sliding scale’ between types 1 and 2 to produce
equilibria with more equal proportions of each field component.

As a way to produce mixed-field equilibria with stronger toroidal
components as well as an exterior field, we consider equilibria
with surface currents in this subsection. We stress that we are not
asserting that surface currents themselves are necessarily significant
in real stars – they simply provide a mathematically convenient way
of producing a surface boundary condition which is different from
that of the type 1 or type 2 equilibria discussed above. There is some
motivation for employing a boundary condition ‘in between’ that of
types 1 and 2, however: in the outer region of a star, the mass density
becomes very low and the resistivity increases, so deviations may
be expected from an ideal-MHD treatment. Furthermore, modelling
a neutron star as a fluid body in vacuum neglects the effect of its
crust, ocean and magnetosphere. A first, crude attempt to account for
these differences could be to modify the boundary condition at the
stellar surface, which may mathematically (though not physically)
resemble a surface current.

For these equilibria we choose a form of f such that Bφ is non-
zero up to the stellar surface. An exterior toroidal field requires
an exterior current; since we still want to avoid this, we appeal
to some (poloidal) surface current to match the non-zero interior
toroidal field to a zero exterior one. This surface current is not
separately modelled; its form is whatever required to produce a

1 Table 1 from Haskell et al. (2008) indicates that Etor/Emag = 90 per cent,
due to a normalization error: their averaged poloidal field is ∼2.2 × 1012 G,
not 1 × 1012 G as reported.

consistent matching for the toroidal field component. A similar
approach to the construction of magnetic equilibria was taken by
Colaiuda et al. (2008). We caution the reader that this surface current
will, in general, induce an azimuthal component of the Lorentz force
at the surface; in reality, this would need to be balanced by other
physics beyond our fluid star model. In practice, for this class of
equilibria only the form of the magnetic function f is changed. One
simple choice is

f ′(u) =
{

a interior,

0 exterior,
(18)

f (u) =
{

au interior,

0 exterior,
(19)

which we refer to as type 3a. Note that since f (u) = �Bφ , this
corresponds to a jump in the toroidal field component at the stellar
surface.

The toroidal field is now distributed throughout the stellar interior.
As a half-way choice between this type of equilibrium and the usual
twisted-torus structures of type 1 (where the toroidal field only exists
in some small torus near the surface), we consider one final class
of equilibrium – type 3b – designed to look like a twisted-torus
configuration but with a larger torus than in type 1. Again, we use
a surface current to achieve this:

f ′(u) =
{

a interior and u > 0.5usurfmax,

0 otherwise,
(20)

f (u) =
{

a(u − 0.5usurfmax) interior and u > 0.5usurfmax,

0 otherwise.
(21)

The relative magnitudes of the r, θ and φ components of the mag-
netic field in these surface-current equilibria are plotted in Fig. 3.
Type 3a equilibria look quite similar to the confined-field solution in
Fig. 2, differing mostly near the surface, since the surface-current
equilibria have exterior fields. The type 3b equilibrium was con-
structed to resemble a twisted-torus (i.e. type 1) equilibrium, but
with a larger toroidal component (cf. Fig. 1).

We conclude this section by comparing the various magnetic
equilibrium models we have constructed. In Fig. 4 we plot poloidal-
field lines and represent the toroidal component magnitude with
coloured shading. Since the three type 1 equilibria are rather similar,
we include only one of these (type 1a) as a representative example.
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Magnetic stability of barotropic stars 487

Figure 4. Comparison of various magnetic field equilibrium structures. The poloidal field lines are shown in black, whilst the strength of the toroidal field is
represented by the colour code. The black arc from x = 1 to y = 1 is the stellar surface. Type 1a is a typical ‘twisted-torus’ configuration, where the toroidal field
component sits inside the closed field lines. The other field configurations do not have this twisted-torus geometry. Type 2 is a confined field, so all poloidal
field lines close within the star, whilst types 3a and 3b are equilibria with surface currents.

3 PE RT U R BAT I O N S O F A M I X E D - F I E L D S TA R

3.1 Perturbation equations and numerics

Given the apparently intractable nature of the analytic problem
(Tayler 1980), we will study the stability of mixed poloidal–toroidal
field stars using a numerical approach. Our code evolves the lin-
earized MHD perturbation equations, taking the equilibria of the
previous section as background configurations. We have success-
fully used this code to study instabilities in stars with purely toroidal
fields (Lander & Jones 2011a) and purely poloidal fields (Lander
& Jones 2011b), and so expect its results for mixed fields to be
reliable. Since full details of our numerical scheme are reported in
Lander, Jones & Passamonti (2010), we content ourselves with a
brief summary of the salient details here.

We wish to study the behaviour of linear perturbations about
MHD equilibrium; this allows us to test the stability of the equilib-
rium, based on whether or not we find unstable modes of the sys-
tem. We work in the Cowling approximation, where perturbations
in the gravitational potential are not evolved. This approximation
is known to overestimate the stability of a system (Moss & Tayler
1969), placing some potential doubt over any magnetic fields we
find to be stable, but not over those systems we find to be unstable.

Instead of working directly with the velocity v and the perturbed
magnetic field δB, we define flux variables f ≡ ρ0v and β ≡ ρ0δB
(zero subscripts denote background quantities). This allows for a
simpler, more numerically stable treatment of the stellar surface.
Our final perturbation variable is the perturbed density δρ. Now, in

the frame corotating with the background star, the linear perturba-
tions of the system are described by the following time-evolution
equations:2

∂ f
∂t

= −γP0

ρ0
∇δρ + (2 − γ )∇P0

ρ0
δρ − 2� × f

− δρ

4πρ0
(∇ × B0) × B0 + 1

4πρ0
(∇ × B0) × β

+ 1

4πρ0
(∇ × β) × B0 − 1

4πρ2
0

(∇ρ0 × β) × B0, (22)

∂δρ

∂t
= −∇ · f , (23)

∂β

∂t
= ∇ × ( f × B0) − ∇ρ0

ρ0
× ( f × B0). (24)

This 3D system of equations may be reduced to 2D, using the ax-
isymmetry of the background to decompose in the azimuthal angle
φ. The desired azimuthal index m is chosen at the outset of each
evolution, which is convenient for studying the stability of particu-
lar modes. Imposing the perturbations’ symmetries at the poles then
reduces our numerical grid to one half-disc. For a purely poloidal or
purely toroidal field, equatorial symmetries allow a further reduc-
tion of the grid to a single quadrant of a disc, but these symmetries

2 Note that in our earlier papers using this time evolution code, an algebra
error affected the Coriolis term of the perturbed Euler equation as printed.
The equations used in the code were, however, correct.
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are broken in the presence of a mixed poloidal–toroidal field, for
which a half-disc grid is required; see the next subsection.

Each evolution is started with either an f- or r-mode eigenfunc-
tion as initial data; each excites a different symmetry class of pertur-
bations (next subsection). The code then evolves the perturbation
equations using a predictor–corrector algorithm, and is second-
order convergent. We include artificial viscosity – a fourth-order
Kreiss–Oliger dissipation term added to the Euler equation – but
take care to do so at the minimum value required to damp numer-
ical instabilities, so physical instabilities are minimally affected.
No corresponding artificial resistivity term was added to the in-
duction equation. To prevent growth of ∇ · B errors, we employ
an auxiliary variable and equation for divergence cleaning (Dedner
et al. 2002). As for the background models, we non-dimensionalize
variables here using a combination of G, ρmax and req. Generally
we present results in dimensionless variables, since the important
features of our evolutions are qualitative – the presence or absence
of dynamical instabilities – rather than quantitative.

3.2 The importance of equatorial symmetry

The equatorial symmetry of perturbations is closely related to the
behaviour of modes and instabilities in magnetic stars. Here we
explore this important aspect of the perturbation problem and intro-
duce some useful notation for later.

Let us start with the behaviour of perturbations of an unmagne-
tized fluid star. For this case, the four perturbation variables split
into two sets based on their shared symmetry properties; we de-
note these sets S1 ≡ {f r, f φ , δρ} and S2 ≡ {f θ}. For example,
an initial perturbation in f r which is symmetric (or ‘even’) about
the equator will induce corresponding symmetric perturbations in
f φ and δρ, but an antisymmetric f θ perturbation. A different initial
perturbation, leading to equatorially antisymmetric behaviour of the
perturbations in class S1, would produce symmetric perturbations
in the S2 element.

From this, we can define two symmetry classes for modes (co-
herent global responses of the fluid). The first we refer to as P+,
and corresponds to S1 elements being even and S2 elements odd; the
other class, P−, is that of odd S1 elements and even S2 elements.
Note that the P+ class is equivalent to the set of modes variously
called polar, polar-led or spheroidal – for example, the f mode. The
P− class is the set of modes known as axial/axial-led/toroidal, the
most familiar example being the r mode.

If we now add a purely poloidal magnetic field to the background,
an analysis of the equations shows that the original S1 and S2 classes
are augmented by magnetic variables in the following manner:
S1 ≡ {f r, f φ , δρ, βθ} and S2 ≡ {f θ , βr, βφ}. The chief insta-
bility for a purely poloidal field is a kink mode in the closed-field
line region, as described in the next subsection. This corresponds to
motion in the θ -direction across the equator and hence to a symmet-
ric perturbation there; an antisymmetric vθ is zero along the equator.
For this reason the instability occurs only in theP− symmetry class,
and its development can be prevented in evolutions which enforce
P+ conditions at the equator.

In the case of a star with a purely toroidal magnetic field, the
division of perturbations based on equatorial symmetry changes
from the poloidal-field case, and the two sets become S1 ≡ {f r, f φ ,
δρ, βr, βφ} and S2 ≡ {f θ , βθ}. Since S1 and S2 take different forms
in the purely poloidal and purely toroidal cases, it follows that when
the background has a mixed poloidal–toroidal field, the equatorial
symmetry of the perturbations will be lost. As a result, we will no

longer have a division into P+ and P− classes, and instead the two
will be ‘coupled’ through the magnetic field. Equally, there will no
longer be distinct axial-led or polar-led modes in the conventional
use of the terms.

3.3 Diagnosing instability

Both purely poloidal and purely toroidal magnetic fields are sus-
ceptible to rapidly developing instabilities, of essentially the same
origin: the unstable nature of a cylindrical plasma column. Tem-
porarily neglecting gravity, the simplest instabilities of the cylin-
drical system are the sausage or varicose mode and the kink mode,
illustrated in Fig. 5 (left-hand side). Based on this, one can iden-
tify regions of a star where magnetic instabilities may occur: the
cylindrical region around the pole for a toroidal field and the torus
around a poloidal field’s neutral line (i.e. the line along which the
poloidal field vanishes). Any such instabilities will be related to
the geometry of the magnetic field, so should be present even for
weak fields, albeit with slower growth rates (Markey & Tayler 1973;
Tayler 1973; Wright 1973).

We now turn to the right-hand side of Fig. 5, and consider first a
star with a purely toroidal magnetic field. The geometry is similar
to that of the cylindrical plasma, but the star’s self-gravity must
now be accounted for. Since both sausage and kink instabilities
in this case can operate parallel to shells of constant gravitational
potential, however, neither should be suppressed; accordingly, we
expect m = 0 and 1 magnetic instabilities to exist.3 In a poloidal
field the geometry is different, with the unstable cylinder closed into
a torus, resulting in potential instability in all m > 0 perturbations.
The sausage mode of the cylinder, on the other hand, is suppressed
by gravity; so we do not expect a significant m = 0 instability for a
poloidal-field star.

For a mixed poloidal–toroidal field to be stable, we need to check
that all instabilities that occur for a purely poloidal or toroidal
field are eliminated in the mixed configuration (and that no new
instabilities arise). In this paper, we only consider non-axisymmetric
modes. To test for any instabilities due to the toroidal component,
therefore, we look at the behaviour of m = 1 perturbations in the
vicinity of the pole. By contrast, we anticipate that instabilities of
the poloidal component will be localized in the closed-field line
region, for any m ≥ 1. For a purely poloidal field only P− initial
data will produce these (kink) instabilities, but a mixed field allows
for P+–P− coupling – so that any initial data may result in the
excitation of a poloidal-component instability.

In the initial phase of an instability, an unstable mode is excited
with an amplitude which grows exponentially in time; to study this,
it is sufficient to consider the behaviour of linear perturbations about
an equilibrium. Beyond some amplitude the mode ‘saturates’, caus-
ing a non-linear rearrangement of the magnetic field for which the
perturbative regime is no longer applicable. Since we only evolve
the linearized system, however, the background is stationary and
experiences no reduction in magnetic energy as the amplitude of
a perturbation grows – hence the instability is able to grow indefi-
nitely. This is clearly not realistic, but it does allow us to determine
the growth rate of the initial instability with ease. In all cases, the
onset time of the instability is expected to correspond to the time

3 In the special case of an incompressible star, the sausage mode does have
to move fluid elements along the z-axis and hence will be suppressed by
gravity, but the m = 1 instability will remain.
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Magnetic stability of barotropic stars 489

Figure 5. Left: instabilities of a cylindrical plasma column, with field lines in the φc-direction labelled with arrows. The two main instabilities, in the absence
of gravity, are the sausage/varicose mode (with cylindrical azimuthal index mc = 0) and the kink mode (mc = 1). Right: the corresponding potentially unstable
regions of a mixed-field star – the cylindrical region around the pole, where the toroidal component vanishes, and the torus around the neutral line, where the
poloidal component vanishes. The potentially unstable values of m, now accounting for gravity and working in the spherical polar coordinates of the star, are
shown.

taken for an Alfvén wave to cross the relevant part of the system.
As a diagnostic, we define the following quantity as an order of
magnitude estimate for this time:

τA ≡ R∗
c̄A

= R∗

√
4πρ̄

B̄2
, (25)

where cA is the Alfvén speed and overbars denote volume-averaged
quantities. To ensure we compare configurations of the same phys-
ical field strength, we redimensionalize to typical neutron star pa-
rameters (a mass of 1.4 M� and a radius R∗ = 10 km) and take
a field strength of B̄ = 3 × 1016 G as our canonical value. The
corresponding (dimensionless) Alfvén time-scale τ̂A ≈ 40. This
strong magnetic field and correspondingly short dynamical time-
scale allows for faster numerical evolutions, but we have confirmed
our results also hold at lower field strengths. In addition, we have
checked that the growth rate of any unstable mode converges with
numerical grid resolution, and scales approximately linearly with
the magnetic field strength.

Note that confirming the stability of a magnetic field is far more
difficult than showing it is unstable: for the latter, one need only
find a particular mode with exponential growth in time, whilst for
the former, one must establish that every potential perturbation
results only in innocuous oscillations about the equilibrium and not
unstable growth. Within the limitations of our numerics, we are able
to test the stability of equilibria against non-axisymmetric initial
perturbations with P+ or P− symmetry, up to m = 6. Since this test
easily shows up instabilities of purely poloidal and purely toroidal
fields (Lander & Jones 2011a,b), we may have some confidence
that a mixed poloidal–toroidal field showing no such instability is
‘stable’. More accurately, it will not be susceptible to the fastest
growing class of instabilities and is likely to be dynamically stable;
we cannot establish its stability on secular time-scales.

4 STA BI LI TY ANALYSI S OF MI XED-FI ELD
STARS

4.1 Type 1 (twisted-torus) equilibria

We now begin our analysis of the magnetic stability of barotropic
stars containing both poloidal and toroidal field components, using
the various background models discussed in Section 2. In partic-
ular, we are testing for the possible presence of any instabilities
known from the purely poloidal and purely toroidal field cases.
In this subsection we test the stability of twisted-torus equilibria
(type 1), as constructed in Section 2.1. These equilibria are poloidal-
dominated, with a toroidal component only occupying the small
volume within the closed-field line region.

In Fig. 6 we compare the stability of a type 1a mixed field with
that of a poloidal field. It would be reasonable to expect the addition
of a toroidal component to remove, or at least reduce, the instability
of the poloidal field (Wright 1973); despite this, our results show
no such stabilization. On the left-hand side we plot the evolution of
perturbed magnetic energy for P+ (polar) and P− (axial) perturba-
tions, on a poloidal-field background. As expected from Section 3.3,
the P+ class evolve stably, whilst the P− class suffer an instability
that appears at t̂ ≈ 30−50; cf. our Alfvén time-scale estimate of
τ̂A ≈ 40 for this field strength (B̄ = 3 × 1016 G).

The right-hand plot shows the corresponding evolutions for a
mixed-field star with Etor/Emag = 3 per cent, relatively high for
a type 1 equilibrium. As for the poloidal field, after one Alfvén
time-scale the perturbed magnetic energy grows exponentially; fur-
thermore, since the mixed field breaks the equatorial symmetry of
the perturbations (see Section 3.3), even P+ initial data result in an
excitation of unstable modes. The growth rate of the m = 2 instabil-
ity is not reduced by the addition of a toroidal component, nor are
the m = 4 or 6 instabilities (omitted in Fig. 6 to avoid cluttering it).
The m = 1 instability, in fact, grows faster for a mixed field than
for a purely poloidal one. Finally, although we have only plotted
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Figure 6. The instability of type 1 (twisted-torus) equilibria; results are shown for type 1a, but the corresponding plots for types 1b and 1c are very similar.
Plotting the evolution of the perturbed magnetic energy, we compare the behaviour of m = 1 and 2 initial perturbations (with P+ and P− symmetry) in a star
with a purely poloidal field (left) and in one where a toroidal component has been added (right). In both cases, unstable growth is seen after approximately
one Alfvén time-scale (t̂ ≈ 40 in these dimensionless variables). For the mixed-field star, Etor/Emag = 3 per cent; this is a high percentage for this class
of equilibrium, but nonetheless does not produce any stabilization. For a mixed field, magnetic perturbations across the equator have no definite equatorial
symmetry; in a sense, the mixed field allows for ‘mixing’ of the two P classes. For this reason, although P+ initial data start by evolving stably, as for a
poloidal-field background, at later times energy is transferred to the unstable class of perturbations.

Figure 7. The magnitude of the perturbed magnetic field |δB|, in logarith-
mic scale, at late times in the evolution of two stars. The left-hand plot is for
P− perturbations on a poloidal-field background, whilst the right-hand plot
shows perturbations of a mixed field (for which there is no equatorial sym-
metry); m = 2 for both cases. The poloidal-field instability – manifested as
exponential growth around the neutral line – is seen to operate in the mixed-
field star too. The corresponding plot for m = 1 shows similar growth around
the neutral line too, with no evidence for additional instabilities originating
from the toroidal component of the mixed field.

results for type 1a equilibria, type 1b and type 1c mixed fields are
similarly unstable.

Two additional tests help us to confirm that the instability from
Fig. 6 is due to the poloidal component. First, we look at its location
within the star. In Fig. 7 we plot the magnitude of the perturbed field
|δB|, in the case of a poloidal field and a type 1 mixed configuration.
The plots are in logarithmic scale and show the late stages of the
evolution, where the unstable mode is completely dominant. For
both field configurations shown, there is clear exponential growth
around the neutral line – slightly more localized for the mixed
field. Although we only show results for m = 2, the unstable growth
occurs in the same location for m = 1, with no indication in this latter

case of additional growth due to the potentially unstable toroidal
component.

The poloidal-field instability discussed in Section 3.3 should
manifest itself as θ -direction motion localized in the closed-field
line region. Having confirmed that our instability appears in the
expected location, our final test is to study the fluid motion in this
region. In Fig. 8 we take a point in the closed-field line region and
plot the local ratios of vθ to vr and vθ to vφ over time. The behaviour
is consistent with our expectations: after the onset of instability, the
θ -direction motion is always more than two orders of magnitude
greater than that in either of the other directions.

4.2 Type 2 (confined-field) equilibria

Next we turn to a stability analysis for a star with a confined mag-
netic field, as described in Section 2.2. This model does not have
a twisted-torus structure and is not poloidal-dominated; 65 per cent
of its magnetic energy comes from the toroidal component. These
differences allow us to explore whether the twisted-torus structure
or dominant poloidal field is responsible for the instability of type
1 equilibria.

On the left-hand side of Fig. 9 we plot the evolution of perturbed
magnetic energy for m = 1, 2, 4 and 6 azimuthal indices. Although
the m = 2, 4 and 6 instabilities still appear to exist for this mag-
netic field, their growth rates are greatly reduced in comparison
with the type 1 equilibria results. In addition, the onset time for
the instabilities is rather longer: about five times that for type 1.
One similarity between the type 1 and type 2 results is that the
m = 1 instability seems to grow more quickly for a mixed field than
a purely poloidal one.

Since the type 2 equilibrium is toroidal-dominated, we wish to see
which field component is responsible for its instability. Accordingly,
on the right-hand side of Fig. 9 we plot |δB| throughout the star for
an m = 1 evolution. We see the fastest unstable growth occurring
near the polar surface, indicating that the toroidal component is
now unstable (see Section 3.3). There is also substantial growth
away from the pole, however, and m > 1 perturbations are seen
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Magnetic stability of barotropic stars 491

Figure 8. Confirmation that the instability of poloidal and type 1 mixed-field equilibria involves predominantly θ -direction motion. We compare the magnitude
of vθ with that of the other fluid velocity components, for a point in the closed-field line region. The r and φ components of the velocity are more significant
in the mixed-field configuration than for a purely poloidal-field background, but are still two orders of magnitude weaker than the θ -component.

Figure 9. Left: the instability of a confined-field (type 2) equilibrium, seen from the exponential growth of the perturbed magnetic energy in time. The
background stellar model is very different from type 1: it is toroidal-dominated (Etor/Emag = 65 per cent) and does not have a twisted-torus geometry. Although
the field strength is the same as before (B̄ = 3 × 1016 G), no instabilities manifest themselves until t̂ ≈ 200 – five times our estimated Alfvén time-scale.
Right: the unstable growth in |δB| is fastest around the pole, suggesting that the toroidal component is the main origin of the instability for type 2 equilibria.

to be unstable too; both of these results indicate that the poloidal
component also plays a role in the instability of this field type.

4.3 Type 3 (surface-current) equilibria

In this subsection we test the stability of type 3 equilibria, our
final class of mixed-field configurations, where we have an exterior
poloidal field but nonetheless a strong toroidal component. This
is achieved by allowing for a step in the toroidal component at
the surface and requires a corresponding surface current. Recall,
however, that we are not able to study the surface dynamics of the
perturbed magnetic field directly, since we evolve the flux variable
β = ρ0δB.

We consider two examples of surface-current equilibria, type
3a and type 3b, as described in Section 2.3. Both have substan-
tial toroidal components, with comparable energy to the poloidal
component: for type 3a Etor/Emag = 50 per cent, and for type 3b
Etor/Emag = 30 per cent. In each case, the value was the upper limit
on the percentage of toroidal field possible with our chosen func-
tional forms. From Fig. 10 we see some degree of stabilization in
these equilibria, compared with those of type 1. In the evolution for
type 3b, the m = 6 instability appears to have been removed and the

m = 4 instability considerably reduced. However, the m = 1 and 2
instabilities remain.

Type 3a is the closest to a stable barotropic equilibrium we have
found, with no evidence for the existence of m = 2, 4 or 6 insta-
bilities. Despite this, we still see exponential growth for m = 1 –
which is enough to render this magnetic field unstable. Given the
stabilization of other modes, one might question whether the m = 1
growth is numerical rather than physical in origin. We have checked
this, as for all other unstable configurations, by convergence-testing
the instability growth rate. Furthermore, the unstable growth was
localized around the neutral line, closely resembling the plots in
Fig. 7. This suggests an instability of physical origin, related to the
poloidal component of the magnetic field, even though the toroidal
component contributes 50 per cent of the magnetic energy.

4.4 Rotation

We conclude our stability analysis by looking at the effect of ro-
tation. Rotation may act to reduce magnetic instabilities, though
there is some uncertainty in the literature about how effective the
stabilization will be. Part of the problem is that there are no con-
clusive analytic results for the rotating case, due to the increased
complexity of the stability conditions (Frieman & Rotenberg 1960;
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Figure 10. Behaviour of m = 1, 2, 4 and 6 perturbations on background equilibria with surface currents and fairly high percentages of toroidal-field energy
(50 per cent for type 3a, 30 per cent for type 3b). We see that higher m modes are stabilized, but the m = 1 poloidal-field instability is not removed even in the
case of 50 per cent toroidal energy.

Lynden-Bell & Ostriker 1967; Glampedakis & Andersson 2007)
with respect to the static case (Bernstein et al. 1958).

Although no definitive analytic results exist for the stability of
rotating magnetized stars, the work of Pitts & Tayler (1985) pro-
vides some suggestions, based on approximate treatments of some
model problems. They predict that rapid rotation may remove mag-
netic instabilities already present in the non-rotating star, but that a
new instability will be introduced, albeit one with a lower growth
rate. From numerical studies, there seems to be agreement that
rotation can reduce toroidal-field instabilities (Braithwaite 2006;
Kitchatinov & Rüdiger 2008; Kiuchi, Yoshida & Shibata 2011;
Lander & Jones 2011a), though it cannot necessarily provide com-
plete stabilization. For poloidal fields, Geppert & Rheinhardt (2006)
and Lander & Jones (2011b) find that rotation has some stabilizing
effect, whilst Braithwaite (2007) does not. With somewhat tentative
expectations, we now turn to our results for a rotating star with a
mixed poloidal–toroidal field. We focus on m = 2 perturbations on
a type 1a mixed-field background in this subsection, but the results
are representative of other field types and perturbations we have
tested.

To study the effect of rotation on magnetic instabilities, we mon-
itor the evolution of the perturbed magnetic energy once again. We
quantify the (exponential) instability growth rate using the param-
eter

ζ ≡ 1

�t
�

[
ln

(
δEmag

Emag0

)]
. (26)

From the left-hand plot of Fig. 11 we find that rotation certainly
decreases the growth rate of the perturbations, although some degree
of unstable growth is present in all results. Our code suffers some
numerical instabilities for very rapidly rotating stars, so the highest
rotation rate we include here is 57 per cent of the Keplerian value.

The work of Pitts & Tayler (1985) suggests that a non-rotating
star’s magnetic instabilities should be suppressed when the rota-
tional angular velocity exceeds the corresponding Alfvén velocity
�A ≈ 2π/τA. Using our previous estimate for τA (25), we expect
this suppression to occur at �̂ ≈ 0.11 for B̄ = 2.25 × 1016 G and
at �̂ ≈ 0.14 for B̄ = 3 × 1016 G. As the original instability is re-
moved, however, Pitts & Tayler (1985) predict a new instability will
be induced whose growth rate may be slower but still significant.

Figure 11. Left: the evolution of the perturbed magnetic energy in a rotating mixed-field star, for different dimensionless rotation rates. Rotation is seen to
reduce, but not remove, the instability. Note that the Keplerian frequency in these units �̂K ≈ 0.72. Numerical instability prevents us from studying more
rapidly rotating stellar models than �̂ = 0.412, around 57 per cent of the Keplerian value. Right: instability growth rate ζ as a function of rotation rate, for
two field strengths. The instability present for � = 0 seems to be reduced by rotation, but at around �̂ = 0.15 the lines plateau, suggesting the appearance of a
second instability.
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With these results in mind, we now turn to the right-hand plot
of Fig. 11. Here we quantify the effect of rotation, plotting the
rate of exponential growth of the magnetic energy as a function
of rotation rate. We consider stars with B̄ = 2.25 and 3 × 1016 G
(a ratio of 3:4) to investigate the scaling of instability growth rate
with field strength. At zero rotation rate the more highly magnetized
star has a growth rate 4/3 that of the other, confirming the linear
dependence we expect in this case. Adding rotation causes an initial
decrease in growth rate which is roughly linear in �, up to some
threshold value: �̂ ≈ 0.13 for the weaker magnetic field, �̂ ≈
0.16 for the stronger field. These values agree rather well with the
estimates of the previous paragraph. Beyond the threshold rotation
rate for each star, the unstable growth rate seems to reach a plateau
value of ∼10 per cent that of the non-rotating case. We believe
this corresponds to the new magneto-inertial instability predicted to
occur for sufficiently rapid rotation.

5 D ISCUSSION: POSSIBLE STABLE
E QUILIBRIA

The aim of this paper has been to construct as wide a range of mixed
poloidal–toroidal magnetic fields as possible in barotropic stars, and
then to test their stability. We have found that all of these equilibria
are unstable: poloidal-dominated twisted-torus models (like those
of Tomimura & Eriguchi 2005, Lander & Jones 2009 and Ciolfi et al.
2009), toroidal-dominated fields confined within the star (Haskell
et al. 2008; Duez & Mathis 2010) and equilibria with surface cur-
rents (Colaiuda et al. 2008). For equilibria where Etor/Emag ≤ 50 per
cent, the instability’s origin appeared to be the poloidal component;
for the confined-field model we tested, with Etor/Emag = 65 per cent,
we found evidence of a toroidal-field instability, but some indica-
tions of instability in the poloidal component too. This seems to
leave little scope for configurations where all magnetic instabilities
are suppressed. On the other hand, we have observational evidence
for long-lived stellar magnetic fields, so stable magnetic equilibria
clearly exist. Here we discuss possible mechanisms to suppress the
instabilities we have found.

Rotation: highly magnetized stars (like many Ap/Bp stars, mag-
netic white dwarfs and magnetars) often rotate relatively slowly.
In some, however, the kinetic rotational energy greatly exceeds the
magnetic energy and one might expect suppression of magnetic in-
stabilities. We find, however, that when rotation seems rapid enough
to suppress the original magnetic instability (of a non-rotating star),
a new instability appears to be introduced. This new magneto-
inertial instability has a growth rate of ∼10 per cent the non-rotating
value – still very short on stellar time-scales.

Non-axisymmetry: our code uses a decomposition of the perturba-
tion equations in the azimuthal angle, which relies on having an ax-
isymmetric background star. It is possible that a non-axisymmetric
magnetic field will not suffer from the same instabilities we have
found. Indeed, the non-linear evolutions of Lasky et al. (2011) and
Ciolfi et al. (2011) seem to show unstable initial fields developing
non-axisymmetric structure. At the end of these reported simula-
tions, however, the field remains highly dynamic in the closed-field
line region, so it is probably too early to regard the results as stable
equilibria. It would be very interesting to see whether these fields
settle down over longer evolution times.

Stratification: perhaps the easiest way to explain our results is to
say that they are irrelevant for real stars, where the equation of state
is not barotropic but instead stratified. Indeed, the only numerical
evolutions which seem to produce stable magnetic equilibria use a
stratified stellar model, where the stratification is due to tempera-

ture/entropy gradients (Braithwaite & Nordlund 2006; Braithwaite
2009). Whether these equilibria are, in fact, stable is not completely
settled: Bonanno & Urpin (2011) discuss a generic magnetic in-
stability whose lengthscale can be very short, and hence may not
show up in numerical simulations (for which the grid is necessarily
relatively coarse).

In any case, results for entropy-based stratification may not be
applicable to neutron stars, where the stratification comes from
composition gradients. Recently, some first attempts have been
made to model such equilibria (Mastrano et al. 2011; Glampedakis,
Andersson & Lander 2012; Lander, Andersson & Glampedakis
2012), but these are qualitatively similar to barotropic results and
their stability is unknown. Note that there is no guarantee that radial
stratification will suppress the instabilities we find, which mainly in-
volve θ -direction motion (although it does appear to in Braithwaite
& Nordlund 2006 and related papers).

Elastic crust: in the case of neutron stars, the outermost layer
of the star (around a kilometre in thickness) consists of an elastic
crust. This crust does have the potential to suppress unstable motion
of the kind studied in this paper, up to some critical field strength
roughly corresponding to when the magnetic energy exceeds the
crustal elastic energy. The precise value depends on the poorly
known yield strain of the crust, but is estimated at around 1014 G
(Thompson & Duncan 1993). Above this field strength, a magnetic
instability can cause the crust to crack, which is a plausible scenario
for the triggering of magnetar bursts (Thompson & Duncan 1995).
For white dwarfs and Ap/Bp stars, there is no analogous outer region
to hold an unstable field in place.

Superconductivity: relatively little is known about the equi-
libria and stability of magnetic fields in superconducting stars.
The magnetic force takes a very different form from the normal
Lorentz force, however, so it is not unreasonable to expect signif-
icant differences in the magnetic field configurations too (Mendell
1998; Glampedakis, Andersson & Samuelsson 2011). Neutron stars
quickly become cool enough to contain superconducting regions
(Page et al. 2011; Shternin et al. 2011), so this aspect of their
physics may help stabilize (or destabilize!) their magnetic fields.

6 SU M M A RY

We construct a wide range of barotropic stellar equilibria, with
mixed poloidal–toroidal magnetic fields. These include poloidal-
dominated and toroidal-dominated configurations, as well as those
where both components have comparable energies. Every field con-
figuration is found to suffer instabilities whose origin appears to be
one of the two field components. Starting with a poloidal-dominated
field, increasing the strength of the toroidal component suppresses
unstable poloidal-component modes of higher azimuthal number,
but the m = 1 instability is difficult to remove. For a sufficiently
strong toroidal component, the origin of the m = 1 instability ap-
pears to change from the poloidal to the toroidal component. Ro-
tation reduces the instability growth rate, but seems to introduce a
new instability of slightly weaker growth rate (around 10 per cent
of the non-rotating value).

Although this paper does not prove the non-existence of stable
fields in barotropic stars, it suggests that any such fields form – at
best – a very restricted set (which we have been unable to obtain).
By contrast, many classes of stars are observed to have long-lived
magnetic fields, so we expect that stable magnetic equilibria do ex-
ist. Our results indicate that barotropic models may, therefore, be of
limited astrophysical relevance. For main-sequence stellar models,
the addition of entropy-gradient stratification seems to allow for
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stable equilibria, and the same may then be true for white dwarfs.
For the modelling of neutron star fields, we believe that it is now
particularly important to account for additional physics beyond the
barotropic fluid model, including the effect of a crust, composition
gradients and superconductivity.
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