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Abstract

This paper introduces a virtual boundary method for compressible viscous
fluid flow that is capable of accurately representing moving bodies in flow and
aeroacoustic simulations. The method is the compressible extension of the
boundary data immersion method (BDIM, Maertens & Weymouth (2015)).
The BDIM equations for the compressible Navier-Stokes equations are de-
rived and the accuracy of the method for the hydrodynamic representation
of solid bodies is demonstrated with challenging test cases, including a fully
turbulent boundary layer flow and a supersonic instability wave. In addition
we show that the compressible BDIM is able to accurately represent noise
radiation from moving bodies and flow induced noise generation without any
penalty in allowable time step.

Keywords: boundary data immersion, immersed boundary method,
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1. Introduction

Accurate computation of fluid flows in the vicinity of moving bodies with
high accuracy is a severe challenge. Immersed boundary methods (IMBM)
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have become a popular tool to impose boundary conditions upon boundaries
that do not coincide with the computational grid (refer to [2] for a review).
Besides the ability to simulate moving bodies this class of boundary methods
enables the simulation of complex geometries on relatively simple meshes,
thus reducing the effort of grid generation. Alongside with the enormous
growth of computational power in recent years IMBMs have enabled the
consideration of multi-physics phenomena such as fluid-structure interaction
problems. Furthermore flow control and optimization problems incorporat-
ing moving control surfaces or morphing bodies can be studied with recent
advances of IMBMs.

However, the majority of previously published IMBMs and their extensions
considered incompressible fluid flow. For aeroacoustics and compressible fluid
flow there are only few methods published, among them two for inviscid flow
3, 4]. For noise propagation problems with prescribed noise sources Casalino
et al.[5] and Arina [6] as well as Cand et al. [7] and Liu & Wu [8] presented
IMBMs in the frequency and time domain, respectively. Hybrid approaches
for aeroacoustic research obtain a noise source field from a flow simulation
which is then used as input for acoustic analogies to calculate the acoustic far-
field. For this class of computational aeroacoustics Seo & Mittal [9] developed
a sharp interface IMBM for the linearized perturbed compressible equations
(LPCE). They validated the method with flow induced noise from stationary
objects and acoustic scattering problems. Another hybrid approach was em-
ployed by Margnat [10] who coupled an incompressible flow solver employing
Goldstein’s feedback forcing [11] approach with Curle’s analogy.

To the authors knowledge all IMBM in the literature for viscous compress-
ible flows were intended and validated to represent stationary bodies [12,
1, 13, 14, 15, 16]. Among these studies that consider aeroacoustics Sand-
berg & Jones [15] used a ghost cell approach to represent stationary flat
plate extensions of airfoils to investigate trailing-edge noise with direct nu-
merical simulations (DNS). Due to the complexity of the boundary recon-
struction and the additional treatment for freshly cleared grid points this
method would increase computational cost critically for moving boundary
problems, rendering it unsuitable for high-fidelity simulations. In the class
of continuous forcing methods Liu & Vasilyev [14] developed a Brinkmann
penalization method with a unique density treatment modelling the solid as
a high impedance medium for application in aeroacoustic simulations, how-
ever without presenting results for flow induced noise. The feedback forcing
character of this approach leads to timestep restrictions when using explicit



time marching which increases computational cost prohibitively.

The “Boundary Data Immersion Method” (BDIM) that has recently been
proposed for incompressible simulations by Weymouth & Yue [17] and ex-
tended by Maertens & Weymouth [18] overcomes many of the aforementioned
weaknesses and limitations of existing IMBMs. The concept of this approach
is to map the governing equations of the solid body and fluid domain at the
interface. This results in a set of meta equations that is valid in both do-
mains and ensures a smooth transition. The smooth transition helps to avoid
freshly cleared cell treatment [19, 20, 21, 22, 23] that is needed for sharp in-
terface approaches when moving bodies are considered. Furthermore the
extension of the BDIM [18] addresses a key problem with smooth IMBMs in
representing the discontinuity of the velocity gradient g—“ at the wall when
considering flows with intermediate to high Reynolds numbers. While the ve-
locity itself is continuous over the interface between fluid and solid due to the
no-slip condition the wall normal gradient of the streamwise velocity compo-
nent is not because of the “kink” in the velocity profile. As the wall velocity
gradient increases with Reynolds number this discontinuity becomes more
significant [18]. Therefore the error made by momentum forcing approaches
increases with an increase in Reynolds number due to the smooth represen-
tation of the discontinuity. Furthermore force interpolation and spreading
schemes used in momentum forcing approaches assume a smooth field oth-
erwise they become first order accurate or need additional treatment [24].
The higher error and lowered order of accuracy has to be compensated by a
finer grid resolution. This typically goes along with a decrease in timestep
when using explicit time integration schemes making such a strategy com-
putationally prohibitively expensive. Maertens & Weymouth [18] increased
the accuracy of the mapping between fluid and solid by taking the normal
derivative to the surface into account which improved the representation of
the jump in the velocity gradient at the wall significantly and lead to a sec-
ond order convergence rate.

When using a compressible flow solver to directly compute the hydrody-
namic and aeroacoustic field simultaneously a method is required that can
accurately include the effects of moving bodies and the associated noise gen-
eration. Such a method would also enable the consideration of vibro-acoustic
problems. To that end the BDIM for the compressible Navier-Stokes equa-
tions is derived in this paper in section 2. The accuracy of the newly devel-
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Figure 1: Subdomains under consideration for the derivation of the BDIM equations.

oped method is evaluated on a set of challenging test cases that are highly
relevant to aeroacoustic simulations. To the best of the authors’ knowledge
most of these cases have not been used to validate IMBMs in the past. In
section 3 the focus is on the representation of the flow around a cylinder
(subsection 3.1) as well as turbulent (subsection 3.2) and supersonic (sub-
section 3.3) flat plate boundary layers. Section 4 validates the compressible
BDIM for the use in aeroacoustic DNS demonstrating its capabilities for
problems involving noise generation from moving (subsection 4.1) and sta-
tionary objects (subsection 4.2).

2. Derivation of the compressible flow boundary data immersion
equations

In the following section 2.1 the concept of the BDIM as introduced in [17]
and [18] is first revisted. Section 2.2 presents the derivation of the BDIM for
the compressible Navier—Stokes equations. Finally the numerical methods of
the code into which the compressible BDIM approach was implemented are
briefly introduced in section 2.3.

2.1. The boundary data immersion method revisited

For the derivation of the BDIM meta equation a domain that incorpo-
rates a solid body subdomain 2, and a compressible fluid subdomain €2



are considered, as sketched in Figure 1. The general formulation for a meta
equation of an arbitrary field variable ® is given by

Od=0b ,forde)

N ﬁ (1)
O =f ,forzeQy

Oy (2,t) = {

Both subdomains can then be smoothly coupled by a convolution of each
governing equation with a nascent delta kernel K. of radius € which results
in

be(®, 7, 1) = / b(®, 7y, ) K.(7, 5)d7,  and (22)
Qp

fe(@,2Z,t) = [ f(®, 2, ) K (7, Zf)dTy (2b)
Qf

respectively. With this step the domain of each individual governing equation
is extended to the whole domain which is the union of both subdomains
Q= O, Uy, Hence the governing equation of the field variable ® is simply

O, = b, + f. for ¥ € Q ) (3)

The role of the convolution is to “switch off” the governing equations in the
complementary subdomain where they are not valid (i.e. fluid equations in
solid domain and vice versa). Furthermore it allows a smooth transition
between both subdomains over a smoothing region with a half-width of e,
where both governing equations contribute to the overall solution. For a
simplification of the convolution integrals two requirements are necessary:

1. smoothing only occurs near the boundary /interface
2. smoothing occurs in the normal but not in the tangential direction of
the boundary.

Maertens and Weymouth [18] use a Taylor series expansion of the convolu-
tion integral and the two aforementioned requirements to derive simplified
equations for both extended subdomain equations resulting in

be(®,F, 1) ~ b(D, T, 1) " + ?(cb, Z)ps”  and (4a)
n
. — € af = €
F(®,Z,t) ~ f(O,7,t) us" + %(cb,:c,t) pit (4Db)
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Figure 2: Zeroth and first moment of the kernel for the fluid and solid body domain in
the vicinity of the wall surface.

with pf being the zeroth and pf first moments of the kernel ¢, over their
respective subdomains. Higher order terms are neglected as they would in-
corporate terms that are non-local and therefore violate requirement (1).
Maertens and Weymouth [18] suggest to use the following kernel

i[l—{—cosw} Jor |z —y| < e
B (a,y) = § 2 [N TR orle =l (50)
0 Jor |z —y| > €

which results in the zeroth

L1+ 4+ Lsin(4r)]  for |d] <e
ust(d)y =40 Jfor d < —e and first
1 Jford > e
(6a)
Lo (d) = € [}L <1 - gz) — 5= (Ysin(4m) + £ (1+ COS(%W)))} for |d] < e
0 for |d] > €
(6b)

moment of the kernel 5, respectively, and are visualized in figure 2. In these
expressions for the zeroth and first kernel moment, d is the signed distance
from the surface where values with d < 0 refer to the inside and d > 0 to the
outside of the solid body. For the solid body domain the symmetry of the



kernel functions can be used resulting in p5”(d) = p5" (—d) = 1 — pg" (d)
and 7 (d) = p$" (—d) = —u$" (d), respectively [18]. Using equation 3 with
4 and the kernel moments from equation 6 the resulting meta equation can
be assembled and results in

D, = f(®,7,t) us + b(P, 7, 1) (1— uf)

e N (7)
+ Mla_n (f((I), €, t) - ((1)7 €, t))
This meta equation will be used in the following section to derive the BDIM
equations for compressible flows. In Maertens & Weymouth [18] the deriva-
tive correction term determined the order of accuracy of the method when e
and the grid was refined. In this paper results will be denoted “first order”
when this term is not included in equation 7, hence p{ = 0. The framework
will be called second order when the derivative term is included.
In the vicinity of sharp edges of a body surface, e.g. a rectangular trailing-
edge, the kernel moments need to be interpolated between two line segments
in order to properly account for the contribution of both surfaces. To that
end we use the interpolation approach detailed in AppendixA.

2.2. The Boundary Data Immersion Method for the Compressible Navier-
Stokes Equations

In order to use the BDIM meta equation in a compressible flow solver, the
compressible Navier-Stokes equations governing the fluid need to be mapped
to the governing equation of the solid body. The non-dimensional conserva-
tive fluid equations in tensor notation can be expressed with

dp 0 B

E + a_l‘k (,OUk) =0 > (8&)
0 0 B dp 0
BN (pu;) + 8—@@%%) = —a—xk@k + a—xkﬂk ) (8b)
2(E)—i——a (uE)——a [wiTi — uEp — Qi (8¢)
ot 1% axk PUE = afL’k iTik kD — gk -

In this set of equations the conservation of mass is expressed by 8a, con-
servation of momentum by 8b and finally conservation of total energy(pE)
by 8c. The fluid velocity is denoted by wu;, density by p, static pressure
by p and the temperature by 7. The total energy F is defined as £ =
T/[y(y —1)M?] + 1/2u;u; and the stress tensor and heat-flux vector are
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computed as

, (9)

] (éml- Our 2 0uy
Tik =

— U oT
Re \ Oz}, + ox; 301 k) anc

(v — 1)M?PrRe Oxy,

respectively, where M is the Mach number, Re the Reynolds number and
Pr the Prandtl number which is assumed to be constant at Pr = 0.72. The
Mach and Reynolds numbers are a result of the non-dimensionalization. Fi-
nally the system of equations is closed by obtaining the pressure p with the
non-dimensional equation of state p = (pT')/(yM?) where v = 1.4 is the
isentropic exponent of air.

For the introduction of the governing equation of the solid body the de-
pendence of all quantities on the location is neglected in the notation through-
out the following paragraphs. Nevertheless all quantities can vary in space.
The conservation of mass for a solid results in the same expression as for a
compressible fluid, namely

% + % (pug) =0 . (10)
Furthermore the solid body has a prescribed velocity V(#,¢) which can be
provided a priori with an analytical equation or a time dependent solution
from a structural solver or a flow control framework. In addition the tem-
perature T within the solid body domain is prescribed as a constant or by
another input function. Hence the governing equation for the velocity by and
temperature by of the solid body are

bVi = ui’b(t) = V;J'(t) and (11&)
br = To(t) = To(t) . (11b)

Since the conservation of mass exploits the same physical principle and has
the same expression in both subdomains no mapping of the governing equa-
tions is needed.

Before the velocity equation 11a of the solid can be mapped to the momen-
tum equation 8b of the fluid, both equations need to be reformulated in order
to describe the same physical quantities. The left-hand side of equation 8b



can be expanded as

g(u)+i( uAu)—uA@+ aui+ u%+u%
gt U T g Pt T D Pk T Y

(12)

The sum of the first and the last term of right-hand-side of the expanded
equation are the continuity equation multiplied by u; and therefore are zero.
Hence, after some rearrangement with the right-hand side from equation 8b
the change of the fluid velocity in time is

ou; ou; 1 dp 0
ot _uk(’?xk * p [ g

_ —a—xk ij + 8_1L’I§Tij:| = R]‘.]S%Z . (13)

RHS,,; will be used as an abbreviation for the right-hand-side of the velocity
equation in the following derivation. The expression for the velocity field can
then be obtained by integrating this equation over a time step At resulting
in

to+At
fy(ui, to + At) == ui,f@o + At) == ui’f(t()) + / RHS%Z dt . (14)

to

With an Euler forward integration or a generalized Runge-Kutta substep in
time this equation can be discretized with

Since the governing equations for the velocity in both subdomains are now
defined with equation 11a and 15 they can be replaced in 7 which leads to

Ui,e(to + At) = [Ui,f(tO) + RHSuﬂ‘Aﬂ Ho + Vz‘(t) (1- Mg)
0 (16)
+ Mia—n [u; ¢ (to) + RHS,; — Vi(t)] .

In contrast to incompressible fluid solvers where the pressure equation is
commonly solved separately from the rest of the right hand side of equation
13, all of these terms are commonly treated equally in compressible frame-
works. Therefore the mapped velocity field of the fluid can be summarized



with its integral formulation which results in

€ € € 8
uie(t) = wig (g + Vi(t) (1 — o) + pig - uag(t) = Vi) . (17)
Following the same approach as for the velocity equation the left hand

side of the total energy equation 8c can be expanded as

0 0 dp oF oF Opuy
5 (PE) + prn (purE) = E5 + p— - toug -t ES (18)

The sum of the first and the last terms of the right-hand-side of the expanded
equation are the continuity equation multiplied by the total energy F and
hence add up to zero. By substituting the definition of the total energy F =
T/[y(y —1)M?] + 1/2u;u; and using the abbreviation T'/ [y(y — 1)M?] = x
this yields

a_E+i( E)— [ a_T_|_lauZuZ 6_T+lauzul
ot T oz, P TP T o L L R

T ) [T O
“P e T | TP [N, T oy,

_[.oor oT ou; Ou;

=p _XE +Ul~ch—xJ + pu; {61& + k@xk]
(19)

The two terms in the final brackets of the last line are the left hand side
of the expanded momentum equation 12 multiplied by u;. They represent
the change of kinetic energy of the fluid after applying the chain rule. Using
that fact together with the right hand side of equation 8c, the change of
temperature in time can be expressed by

oT oT 1 0
— = —Ups— + — [w; Tire — WD — Qi + wiDdit, — WiTig]
ot Oxr  px Ox (20)
orT 1 0
= —Up— + — [—ugp — qi + wipdiy) = RH St
oz,  px axk

Analogous to the time integration of the velocity field the temperature at
time t = t, + At is

Fr(T to + At) = Ty(to + At) = Ty(to) + RHSy At (21)

10



and can be substituted into the general meta equation together with the
governing equation for the solid’s temperature 11b

T.(to + At) = [Ty (to) + RHSTA] g + T5(t) (1 — pg)

With the same reasoning that was used for the velocity field the BDIM
equation for temperature can be simplified with its integral formulation

Tt -+ A1) = Tyt + Tu(0) (1 i) + i o (10 = T(0)] - (23)

As the resulting BDIM equations can all be expressed with the integral for-
mulation the boundary data immersion method can be applied after the time
integration and no adaptation of the original time-stepping algorithm for the
right hand side is needed. Furthermore this is consistent with the applica-
tion of body-fitted boundary conditions which are commonly performed at
the same stage of the simulation.

A comparison between the derived meta equations 17 and 23 and discrete
momentum forcing reveals that the first order BDIM is very similar to dis-
crete momentum forcing. When the pf and 1 — i, terms are regarded as the
interpolation and force spreading operators, then the only difference between
both approaches is the physical reasoning for using them and how these op-
erators work. The analytical and general reasoning, however, is a strength
of the BDIM approach, offering robust and smooth coupling where other ap-
proaches such as discrete momentum forcing need additional treatment for
moving bodies. In addition the second order extension of the approach offers
higher order interpolation between both subdomains and reduces bias of the
velocity gradient discontinuity:.

In the incompressible meta equations derived in [17] and [18] there is an
additional weighting for the pressure term as a boundary condition for the
pressure equation. This is a result of the special algorithmic treatment of the
pressure by the Poisson equation in incompressible flow simulations, which
is in principle not required in the present compressible framework. However,
it was found that for bluff bodies where the body surface alignment with
the underlying grid is arbitrary, instabilities on single grid points could grow
just inside the smoothing region. These instabilities would eventually lead to
diverging simulations. Analysis of the contributing terms of the continuity

11



equation
dp 0 Ouy, dp

P LN 2
o= oy P (paxk+“’“axk) (24)

at these grid points showed that the instabilities were caused by the bias in
the derivative terms of the velocity, i.e. the first term which contains the
incompressible contribution. In particular the derivative in the wall tangen-
tial direction lead on average to a non-zero right-hand side of the continuity
equation. In order to ensure robust simulations without prescribing some-
thing unphysical it is suggested to map the right hand side of equation 24

to 5 5
P _ Un,
ot <p on ) ' (25)

Here the subscript and direction n mean the wall normal direction. This is
exactly the simplified right hand side of the continuity equation at the wall
for a stationary body. In this case the second term of equation 24 is zero and
the only non-zero component of the first term is the one in the wall normal
direction. Strictly speaking equation 25 is not the governing equation of the
solid interior but an interface condition. Replacing equation 24 and 25 in the
general meta equation 7 results in

ape _ _a(pUk) € aun €\ _ € a a(puk’) o aun

as meta equation for the right-hand of the continuity equation.

2.3. Numerical methods to solve the compressible Navier-Stokes equations

The code that was used to validate the compressible BDIM solves the
Navier-Stokes equations employing a 4*-order accurate standard-difference
scheme with Carpenter boundary stencils [25] to calculate derivatives. The
scheme can be applied to general geometries by pre-multiplication of metric
terms. Time marching is achieved employing an ultra low-storage five-step
4th_order accurate Runge-Kutta scheme [26]. The stability of the code is
enhanced by a skew-symmetric splitting of the nonlinear terms [27]. Further-
more a sixth-order accurate high-wavenumber cut-off filter [28] with a weight-
ing of 0.1 — 0.2 is employed after every full Runge-Kutta cycle. Unphysical
numerical reflections at the domain boundaries are avoided by using charac-
teristic boundary conditions. At the inflow they are applied in an integral
formulation as described by Jones [29]. For the outflow a zonal characteristic

12



boundary condition [30] is used to avoid spurious pressure-oscillations from
the outflow boundary which is subject to the passage vortical structures.

3. Validation for hydrodynamic accuracy

3.1. Flow around cylinder

The canonical flow around a static cylinder at Reynolds number Rep, , =
100 is considered first as a validation case which offers a large number of
reference data in the literature. The Mach number was set to M = 0.1,
thus compressibility effects are expected to be negligible. The flow is simu-
lated in a domain where the cylinder is placed at the origin and the domain
boundaries are —27D.,; < x < 30D.; and —30D.,; < y < 30D,;. The
cylinder is immersed in a fluid flow with a streamwise velocity of unity which
is prescribed at the inflow. The upper and lower boundaries are modelled
as non-reflective characteristic freestream boundary conditions. At the out-
flow boundary the zonal characteristic boundary condition proposed in [30]
is employed. The grid is spaced uniformly in the x and y directions within
and a region of —2R.; < < 2R, and —2R.; < y < 2R.y,. The uniform
grid spacing was Az = D, /120, thus resulting in 180 points within the
equidistant discretization. The grid was then stretched towards the bound-
aries over 95 grid points with polynomial functions. The smoothing region
half-width is set to ¢ = 2Ax = 2Ay. The mapping of the continuity equation
as introduced in equation 26 is employed in that case.

3.1.1. Assessment of Accuracy

The forces acting on the cylinder are calculated from the pressure and
skin-friction values on the surface of the cylinder. To that end the cylinder
surface was discretized by 360 points equally distributed over the circum-
ference. Since the values within the smoothing region are not physical the
surface quantities were evaluated with a distance of e. The accuracy of the
pressure force is expected to not be affected by that. However, the skin-
friction will be underestimated with this method. This is not a specific prob-
lem related to the BDIM but occurs in other IMBM approaches as well [39].
The relevant flow quantities, i.e pressure and wall normal velocity gradient
are interpolated from the four surrounding fluid grid points onto the surface
grid using bilinear interpolation as described in [40].
The final values for the lift and drag are obtained by a panel integration over
all surface points. The results for the Strouhal number, the lift fluctuations

13



Source St Cp L CDp CDf CLp CLf

Exp. 0.164 1.25 - - - - -
[31] 0.165 1.334+0.009 +0.3321  0.99 £ 0.0082 +0.0010 +0.295 40.042

[32] 1.33 1.00 0.32 - -

[33] 0.172 1.42 +0.3536 - - - -

[34] 0.164 1.344+0.011 +0.315 - - - -

[35] 0.167 1.35+0.012 +0.315 - - - -

[36] 0.165 1.34 +£0.007 +0.276 - - - -
[18]1st order 0.167 1.31 £0.009 +0.321 1.01 £0.0085 0.30 & 0.0008 +0.292 +0.035
[18]2nd order  0.167  1.31 +0.009 +0.313 1.00 +0.0081  0.30 +0.0007  +0.285 £0.034
1st order 0.165 1.354+0.011 +0.348 1.034+0.0104 0.324+0.0010 +0.314 £0.040
2nd order 0.165 1.32£0.011 +0.333 1.024+0.0010 0.30 +0.0008 +0.304 £0.036

Table 1: Summary of the results from the cylinder case employing the first and second
order BDIM to represent the cylinder shape for the baseline resolution of Az = D.,,;/120.
The results are compared to experimental data (St from [37] with estimated uncertainty of
0.8%, Cp from [38] with estimated measurement error of 6%), body-fitted simulations [31,
32, 33] and other IMBMs [34, 35, 36, 18].

as well as the drag are presented in table 1. They are presented alongside
data available in the literature from experiments [37, 38], body-fitted simula-
tions [31, 32, 33] and other IMBMs [34, 35, 36, 18]. Given the scatter among
the reported results the data obtained from simulations with the BDIM agree
reasonably well with the values from literature.

Finally the pressure and wall vorticity distribution on the cylinder sur-
face are presented as a function of the azimuthal position and compared to
reference [31] in figure 3. The distribution of the pressure coefficient C, in
figure 3a shows excellent agreement with the reference for the first and the
second order BDIM frame work. The skin friction was calculated as

2v UL (T +en) -t

Cr=tm— ¢ =

(27)
with the kinematic viscosity v and the freestream velocity UZ. The wall
normal and tangent unit vector are denoted 7 and £, respectively. Figure 3b
compares the skin friction distribution of the two BDIM frameworks to ref-
erence [31]. It is found that the first order BDIM underestimates the skin
friction significantly. However, when the wall normal derivative correction is

14
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(a) Pressure distribution on the cylinder for the first and second order BDIM in
comparison with the reference solution [31].
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(b) Spanwise wall vorticity distribution on the cylinder comparing the first and
second order BDIM with reference data [31].

Figure 3: Comparison of the pressure and skin friction distribution on the surface of the
cylinder.
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employed the maximum distribution is predicted very accurately.

3.1.2. Formal order of convergence

In order to evaluate the formal order of convergence for the numerical
setup the simulation of the flow around the cylinder was repeated on six
grids that were coarser than the one of the baseline simulation from the
previous section. The resolution levels are defined in multiples n of the
baseline resolution with nD.,/120 = [3, 4, 6, 8, 10]. The computational
cost for the study was reduced by setting the Mach number to M = 0.3
which allowed an increase of the time step of the simulation. Since there is
no analytical solution for this flow problem the data from the highly resolved
case presented in the previous section with a grid spacing of Ax = Ay =
D.,1/120 was used as a reference.
Commonly the Ly norm is considered as a measure for the global error made
by the boundary scheme. The L. on the other hand highlights the local
error close to the boundary. Figure 4 presents the results for the convergence
study in the Ly (4a and 4b) as well as in the L, (4c and 4d) norm for the
velocity and pressure fields over the different grid resolutions. In general it
can be found that the results with the first order framework always yield an
error that is higher than that obtained with the second order correction. For
the Ly and L., norms the difference in error of the velocity field from the
first order approach is a factor of 2.6 — 8.6 higher than that of the second
order BDIM. For the pressure field the differences are a bit lower but still
significant with a factor of 2.0 — 3.0. Each plot of figure 4 also shows first
and second order slopes. Comparing these to the convergence data one can
find that the first order approach yields a convergence rate that is slightly
higher than first order for the velocity field (4a and 4c) in both the Ly and
L., norm. In contrast to that the second order framework shows second
order convergence approximately in the L, and L., norm. For the pressure
field the convergence rates of both approaches are approximately the same
with second order for the higher resolution levels and slightly lower for the
coarsest two.

3.2. Turbulent Boundary layer

In many engineering applications featuring fluid flow with moving or sta-
tionary solid objects the flow is turbulent. For IMBMs the main challenge
in representing such flows is the high velocity gradient at the wall which in-
creases with Reynolds number. As a result of that the discontinuity in the

16
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Figure 4: Ly and L., convergence of the velocity and pressure field for the flow around a
stationary cylinder. A first and second order slope are shown as reference.
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velocity gradient profile at the wall will grow as well. In particular aecroacous-
tic noise generation from the interaction of fluid flow with solid objects such
as turbulent interaction or trailing-edge noise is very sensitive to an accurate
representation of the physics in the near wall region. The fully turbulent flow
over a flat plate is used to assess the accuracy of the BDIM in representing
the near wall physics in the presence of the relatively high velocity gradient
discontinuity and to assess the BDIM’s performance for problems featuring
a large range of temporal and spatial scales.

3.2.1. Numerical Setup

The domain for the turbulent boundary layer incorporated the stream-
wise range of 1073 < Rey < 1595 where Rey is the Reynolds number based
on momentum thickness. The wall normal grid spacing was constant along
the streamwise direction. When scaled with the local viscous units the max-
imum spacing was Ay®T = 0.97. In the wall normal direction the grid was
stretched towards the freestream boundary over 90 grid points to Ay™ = 106
at a distance of 20.60*, where 0* is the displacement thickness at the outflow.
The grid spacing in the streamwise direction was uniform with maximum
value of Az™ = 18.0 when scaled with the local viscous units. The span-
wise domain width was [, = 506*. A spectral method with 32 modes was
used to discretize the domain width which yields a spanwise grid spacing of
Azt = 8.13. At the inflow synthetic turbulent fluctuations were superim-
posed to a mean turbulent velocity profile. To that end random fluctuations
were filtered using the digital filter method proposed by Klein et al. [41] and
extended to compressible flows by Touber & Sandham [42]. This method
has been shown to result in good predictions of second order moments such
as velocity fluctuations and integral turbulent length scales downstream of
a development region with roughly 206 length. The freestream and outflow
boundary condition were both prescribed using characteristic boundary con-
ditions. At the outflow the zonal approach was employed [30].
When the BDIM was employed to impose the wall boundary condition 20
grid points were mirrored below the actual surface of the wall and initialized
with zero velocity, uniform density and the wall temperature.

3.2.2. Results
One of the main challenges for immersed boundary methods that do not
modify the discretization at the boundary by reconstructing the boundary is
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Figure 5: Streamwise velocity profile and its gradient in wall normal direction over the
wall normal distances normalized by the smoothing region halfwidth € in direct vicinity of
the wall for the turbulent boundary layer flow at Rey ~ 1410.

posed through the discontinuity of the wall velocity gradient %—1;1. Figure 5
presents the streamwise velocity profile and its wall normal gradient in direct
vicinity of the wall for the body-fitted and the two BDIM simulations. The
kink and discontinuity in the velocity profile and its derivative, respectively,
are immediately apparent in the body-fitted simulation. The results obtained
with the first order BDIM show that the velocity profile is offset towards the
free stream at all wall normal locations. Furthermore the smoothing region of
halfwidth € = 2Ay is hardly used to transition from the governing equations
of the solid body to the fluid. In contrast, the second order BDIM features a
much smoother transition between the two sets of governing equations and
also takes advantage of a larger fraction of the smoothing region. In that
case the deviation in the velocity profile from the body-fitted reference is
very small at the boundary of the smoothing region and can be neglected at
greater wall distances.
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Figure 6: Turbulent boundary layer velocity profile scaled with viscous units comparing
the BDIM to the body-fitted boundary conditions and the reference data from Schlatter
and Orlii [43]. The normalization of the velocity profiles from the BDIM simulations was

calculated with 88? at y = e.

Considering the wall normal derivative of the velocity profile it can be found
that the first order BDIM introduces overshoots towards the solid body and
the fluid. The maximum overshoot is at the fluid boundary of the smooth-
ing region and significant deviations from the reference as well as an offset
towards the freestream can be observed. When the second order correction
is employed there is only a single overshoot towards the solid and the dis-
continuity is bridged in a considerably smoother fashion. The difference to
the reference at the fluid boundary is fairly small and vanishes towards the
freestream.
Maertens and Weymouth [18] found qualitatively the same behaviour for a
laminar channel and showed that the use of the wall normal derivative lead
to second order convergence in the Ly and L., norm.

Turbulent quantities are commonly normalized by viscous scales derived

from the friction velocity u, = 1/V% for which the wall gradient %|y:0

is needed. From the data shown in Figure 5 it is apparent that the value
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at the wall location will not yield any meaningful results when the BDIM is
employed, which is a common difficulty for IMBMs. However, the value of
%7 at the fluid boundary y = € can be used as reasonable approximation
for the value at the wall itself due to the law of the wall. Figure 6 com-
pares the streamwise velocity profile scaled in viscous units from simulations
obtained with our code and the incompressible reference data provided by
Schlatter and Orlii [44]. Tt can be observed that the body fitted simulation
shows slight deviations from the reference in the wake region. This can be
attributed to the short domain and inflow length of the current case and the
relatively low Reynolds number of Rey = 1410. However, for the purpose of
a comparison of the effect of different wall boundary conditions, i.e. body-
fitted and immersed boundary the agreement is reasonable. The comparison
of the first order BDIM with the data from the body-fitted case confirms the
initial observation of an offset in Figure 5. The effect of this offset leads to
considerable deviations from the reference far into the outer region due to
the wrong scaling derived from % However, when the data is scaled with
the velocity gradient from the body fitted simulations the Velomty profile
matches the reference for y* > 20 but shows the same offset for y* < 20. In
contrast to that the second order BDIM shows very good agreement through-
out the entire profile with some minor overestimates. As for the first order
framework the agreement of the case employing the second order correction
with the reference is improving further when the profile is scaled by viscous
units calculated from the body-fitted simulation.

Figure 7 presents Favre averaged velocity fluctuation profiles scaled in
viscous units. The comparison of the body-fitted case and Schlatter’s and
Orli’s [44] data again shows some minor differences in particular for the
streamwise component oy;. This is due to the reasons noted earlier and
for the sake of assessing the BDIM approach the agreement is seen as suf-
ficiently good. The offset in the data obtained with the first order BDIM
is prominent in all components and besides the offset all amplitudes are un-
derestimated. The second order framework improves the offset considerably,
as already seen for the velocity profile before. The shape of the profile as
well as the amplitude is captured well for all components but the streamwise
velocity fluctuations o1; where the amplitude is overestimated. This over-
estimation originates from the differences in the exact values of the viscous
units used to scale the profiles between the body-fitted and the BDIM cases.
As discussed in figure 5 %—?bzo is approximated with the value at y = € in
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Figure 7: Turbulent boundary layer velocity fluctuations profiles scaled with viscous units
comparing the BDIM to the body-fitted boundary conditions and reference data from
literature [44]

the cases employing the BDIM. However, when the data obtained from both
BDIM simulations is scaled with the same viscous units as the body-fitted
case, the deviation in the peak amplitude of the ¢1; component vanishes and
overall good agreement is obtained with the reference data.

In the previous paragraphs the surface of the wall was coinciding with
the underlying mesh in order to assess the accuracy of the framework when
representing a wall adjacent to a turbulent flow. However, the purpose of
the BDIM is to represent bodies immersed in fluid flow that do not necessar-
ily coincide with the underlying grid. Therefore two additional simulations
have been run where the surface of the plate has an offset in the wall normal

22



T T T T —

15|
+
8
10 |-
5,
L L T Lo |
10* 102
y+

— 1st order BDIM --- 1st order BDIM - shifted
— 2nd order BDIM 2nd order BDIM - shifted

Figure 8: Comparison of the streamwise velocity profile in viscous units of the two BDIM
approaches with and without offset in the wall normal direction

direction and is located between the first two grid points of the original grid,
ie. at y© = 0.5 instead of y™ = 0.

In the following comparison of the cases with and without an offset of the wall
location the y* coordinates were always corrected accordingly. In figure 8
velocity profiles with and without offset are compared in viscous units. The
data from the first order BDIM framework reveals differences between the
cases with the two different surface locations from a wall distance of y* ~ 3
which are becoming more and more pronounced towards the freestream. In
contrast to that, profiles obtained with the second order BDIM with offset are
in perfect agreement with data from simulations without offset. That means
that the offset increases the uncertainty in the prediction of the velocity gra-
dient at the wall when using the first order BDIM. Indeed the estimated w.,
(calculated from data at y = €) changes from u, = 0.045 without offset to
u, = 0.043 whereas it does not change in the first two significant digits when
employing the second order BDIM with u, = 0.43.

The velocity fluctuations for the same cases are presented in figure 9. As
for the mean velocity profile hardly any differences can be observed for the
second order BDIM, showing perfect agreement between the cases with and
without offset in shape and amplitude of the velocity fluctuations. At the
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Figure 9: Favre averaged velocity fluctuation profiles in viscous units comparing results
with and with out offset in wall normal direction when using the BDIM.

same time significant differences in the streamwise Reynolds stress compo-
nent oy, can be observed.

Overall the BDIM is capable to model the exact surface location very ac-
curately as shown with the mean and fluctuations of the velocity profiles.
When the first order framework is employed the velocity gradient at the wall
is predicted less accurately and the streamwise velocity fluctuations are over-
estimated. In contrast to that the results from the second order framework
are independent of the exact surface location. Most likely the difference be-
tween first and second order can be attributed to the fact that the first order
framework hardly uses the full extent of the smoothing region as shown in
figure 5.

Thus it can be concluded that the BDIM approach can be used to accu-
rately represent a wall when wall bounded turbulence is considered. It could
be shown that the second order correction improved the results considerably.
This can be attributed to the much better representation of the discontinuity
present in the velocity gradient at the wall. In addition to that the exact
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location of the plate surface can be represented very accurately leading to a
“sharp like” modelling of the surface.

3.3. Oblique wave growth in a supersonic boundary layer

When flow induced noise through fluid solid interaction is considered,
a very accurate representation of the near-wall flow is crucial. This is at-
tributed to the fact that fluctuations in the boundary layer are the “input”
of the noise scattering mechanism. The growth of viscous instabilities, also
denoted oblique waves, in a supersonic flat plate boundary layer at M = 3
is considered as a rigorous test case for the representation of the near-wall
physics. This validation problem assesses the correct modelling of the ther-
modynamic fluctuations close to the wall in particular. In high-fidelity direct
noise computations this is an important aspect since the noise is calculated
directly from the compressible Navier—Stokes equations.
Oblique waves are three dimensional instabilities that can lead to breakdown
into turbulence in supersonic boundary layers. They are considered partic-
ularly relevant in low disturbance environments since they need very low
disturbance thresholds to be initiated. The oblique breakdown features a
linear, an early and a late non-linear regime [45]. For the validation of the
BDIM the focus is on simulating the linear regime.

3.3.1. Numerical Setup

The flow under consideration is a supersonic flat plate boundary layer
at M = 3.0 and Re = 1,578,102. In order to trigger the instabilities the
flow was disturbed close to the wall by adding a forcing term to the right
hand side of the wall normal momentum component in the second spanwise
Fourier mode. The amplitude of the volume force was A = 1.0 x 1072 and
the frequency was f = 12.558. The forcing was spread over a circular area
in the x — y—plane, thus mimicking the effect of a vibrating ribbon. At
the inflow boundary the integral formulation of the characteristic boundary
condition [29] was used to prescribe a Blasius boundary layer profile with
a Reynolds number, based on displacement thickness, of Res- = 273. At
the freestream and outflow boundaries non-reflective characteristic bound-
ary conditions were applied.
For the body-fitted baseline reference case a rectangular Cartesian grid with
1.593 x 1073 < 2 < 0.456 and 0.0 < y < 4.702 x 1072 was employed. In
the streamwise direction the 281 grid points were distributed equidistantly
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Figure 10: Amplitude of streamwise velocity disturbance as a function of the stream-
wise position comparing data from [46] with simulations using the BDIM and body-fitted
boundary conditions.

with Az = 1.623 x 1072 over the whole domain. In the wall normal di-
rection the grid spacing stretched from Ay = 3.510 x 107° at the wall to
Ay = 1.644 x 1072 at the freestream boundary. The spanwise direction was
discretized with a spectral method using two Fourier modes for a spanwise
extent of Az = 0.030.

In the validation case where the BDIM represents the wall boundary con-
dition, 20 grid points were mirrored in the wall normal direction. The void
below the original position of the wall was initialized with zero velocity and
uniform density and temperature. The smoothing region half-width € in units
of wall-normal grid spacing in the simulations was € = 2.0Ay.

3.3.2. Results - Accuracy

After the initial transient instantaneous snapshots of the flow field were
gathered for two forcing cycles. From the temporal Fourier transform of the
streamwise velocity component the maximum amplitude across the boundary
layer was determined as a function of x and then normalized by the lowest
amplitude of all streamwise positions during post-processing. Figure 10 com-
pares the results obtained with the BDIM to represent the wall with data
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Figure 11: Amplitude distribution of perturbations of streamwise velocity U, density p
and temperature T in the wall-normal direction at Res« = 700 from the simulations using
the BDIM in comparison to simulations with body-fitted boundary conditions and to the
results from Husmeier et al. [46]. The wall normal distance y is represented with the
similarity variable n = y+/U/(vx), where U is the streamwise velocity component, v the
viscosity and x the streamwise position. All amplitudes are normalized by the maximum
of the velocity amplitude.

using body-fitted boundary conditions with the same code and a reference
DNS [46]. It can be noted that there are slight differences between the refer-
ence [46] and the body-fitted case in the region of the onset of the instability
growth. These can be explained by the fact that the forcing was introduced
differently in both cases. Overall it can be appreciated that both the first
and second order BDIM reproduce the growth rates very accurately. The av-
eraged deviation in the velocity disturbance amplitude from the body-fitted
case for Resg« > 300 is 1.43% for the first order and 0.48% for the second
order BDIM.

In addition to the instability growth rate, the fluctuation amplitudes of
the streamwise velocity u, the density p and the temperature 7" are evaluated
in figure 11 as a function of the normalized wall distance at Res« = 700. The
amplitudes are normalized by the maximum velocity amplitude. The velocity
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Figure 12: Skewed grid for the oblique wave test case used to validate the method for grids
that are not aligned with the surface. Note, the figure only shows part of the streamwise
extent of the domain.

amplitude profile proves that the very good agreement between the BDIM
and the references is not limited to the maximum amplitude of the velocity
fluctuations as presented before. It also matches the shape of the profile
along the wall normal direction perfectly. Furthermore the fluctuations of
the thermodynamic quantities density p and temperature 7" are computed
very accurately. In addition, the normalization that was chosen shows that
density fluctuations are almost as high as the velocity fluctuations and the
temperature fluctuations are a factor of roughly 2.4 higher that the velocity
fluctuations, thus underlining the importance of a good representation of the
near wall thermodynamic quantities. Computing these quantities accurately
even for low energies is crucial for direct noise computations.

The results presented in the previous paragraphs were obtained using a
grid that was aligned with the body surface and the boundary was either
represented by body-fitted boundary conditions or the BDIM. To evaluate
the accuracy of the BDIM when the boundary is not aligned with the grid
lines a new grid, as presented in figure 13, was generated. It was obtained by
shifting grid points up to 12Ayy.n in the wall normal direction and making
this shift sinusoidally dependent on the streamwise location. Towards the
inflow and the forcing location the maximum shift was ramped down to zero
over 100 grid points.
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Figure 13: Amplitude distribution of perturbations at Res« = 700 from the simulations
using the BDIM with straight and skewed grids. The wall normal distance y is represented
with the similarity variable n = y/U/(vz), where U is the streamwise velocity component,
v the viscosity and z the streamwise position. All amplitudes are normalized by the
maximum of the velocity amplitude.

Figure 13 compares the thermodynamic fluctuations in the boundary layer
between the straight and the skewed grid using the BDIM to represent the
wall. The fluctuations of both, the first and the second order BDIM, cases
show excellent agreement between straight and skewed grid. When the data
is compared quantitatively the largest difference that can be found is in the
maximum amplitude of the density fluctuations p. When using the first
order BDIM it is 0.51% and with the second order BDIM it is 0.43%. For
the growth rates, which are not replotted here for conciseness, the difference
is slightly higher with 1.75% for the first and 1.40% for the second order
BDIM.

Overall the results show that the BDIM is capable of accurately rep-
resenting highly sensitive instability growth adjacent to a wall in a three
dimensional compressible flow independent of the underlying grid.
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Figure 14: Ly convergence of the instability growth rates comparing the first and second
order BDIM. A first, second and third order slope are plotted as reference.

3.3.3. Results - Convergence

A study with 4 additional resolution levels all together spanning a factor
of 16 change in resolution was carried out in order to establish convergence of
the instability growth rate for this supersonic case. The results are compared
employing the Ly norm of the disturbance amplitude in the streamwise extent
300 < Res« < 800 relative to the body-fitted reference in Figure 14. The first
order BDIM yields a convergence rate that varies between an order of 1.5 and
3 and tails off at the highest resolution. The second order BDIM shows a
constant convergence rate that is estimated to be 2.5 — 3. It also shows the
tail-off at the highest resolution. Overall the error level is lower than in the
first order case. From visual inspection of the instantaneous flow field the
tail-off is most likely due to a shock downstream of the inflow.

4. Validation for aeroacoustic problems

A great advantage of compressible direct numerical simulations is that the
generation of flow noise can be investigated without any further modelling
as the relevant physical mechanisms are incorporated in the governing equa-
tions, i.e. the hydrodynamic and acoustic field are solved simultaneously.
The use of the BDIM in such simulations enables the consideration of noise
generation by flow interaction with moving objects or bodies with complex
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Figure 15: Introduction of the nomenclature for the physical problem and instantaneous
visualization of the acoustic field.

shapes. The following section validates the BDIM for the use in aeroacous-
tic simulations and considers the noise radiation from a moving body in a
medium at rest and trailing-edge noise from an airfoil.

4.1. Noise radiation from transversely oscillating cylinder

This section considers the noise radiation from a transversely oscillating
cylinder. The cylinder is assumed to have an infinite extension in the span-
wise direction and can therefore be simplified to a two dimensional problem.
The focus of this case is purely on the noise radiation from a moving body
and therefore the surrounding medium of the cylinder is assumed to be at
rest.

4.1.1. Osciallting cylinder - Numerical setup

The cylinder’s diameter D.,; was set to unity and the vibration amplitude
Ay, was 5% of the diameter. The vibration frequency was f,; = 0.03 which
results in an amplitude for the vibration velocity of |v,| & 9.42x 1073, With
a Mach number of M = 1 these parameters result in an acoustic wave length
of A\y = M/ fuir = 33.3Dcy. The nomenclature and definition of the param-
eters is also visualized in figure 15a. The cylinder was discretized with 160
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equispaced grid points per diameter and surrounded by another 1.25d.,; of
equispaced grid with the same resolution in each direction. For the transition
between the near and the far-field the grid was stretched over 200 grid points
to a resolution of 20 grid points per acoustic wave length. The far field of the
domain with that resolution covers 6\, approximately. Since the oscillating
cylinder is the only noise source and its strength is rather low even minor
reflections from the domain boundaries can contaminate the acoustic field.
Therefore the outgoing acoustic waves were damped with strong stretching
towards the boundaries over an additional 40 grid points in conjunction with
the non-reflective boundary conditions.

4.1.2. Osciallting cylinder - results

Figure 16 shows the distribution of pressure and skin friction in two dif-
ferent phases during the oscillation cycle. In phase one (figures 16a and 16¢)
the cylinder is moving with the maximum velocity and passes the origin. The
angles # = 0° and 6 = 180° are on the sides of the cylinder tangential to the
direction of motion. The angle of § = 90° is aligned with the direction of
motion and the location of the front stagnation point. On the opposite side
at @ = 270° is the rear stagnation point. It can be appreciated that the pres-
sure distribution presented in figure 16a features two positive peaks at the
stagnation points with a higher amplitude at the front stagnation point at an
angle of # = 90°. At the sides of the cylinder the pressure is reduced as the
relative velocity to the fluid is highest here. Overall the first and second or-
der BDIM show good qualitative and quantitative agreement. However, the
first order BDIM induces non-physical oscillations at the side of the cylin-
der. These are eliminated by the use of the derivative correction, i.e. the
second order framework. With the distribution of the skin friction coefficient
in figure 16¢ both stagnation points mentioned earlier can be confirmed with
the zero-crossing at # = 90° and # = 270°. At the sides of the cylinder the
amplitude of the skin friction is highest as the relative velocity to the fluid
is highest at these locations. Both BDIM frameworks show a very smooth
distribution and can hardly be distinguished.
In phase two (figure 16b and 16d) the cylinder is at the location with the
maximum displacement from the original position and the velocity is zero
before the direction of motion is reversed. The pressure distribution pre-
sented in figure 16b is symmetric with ambient pressure at the sides of the
cylinder, i.e. at 0°, 180°, and features symmetric peaks on the sides that
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Figure 16: Pressure and skin friction coefficient distribution around cylinder during oscil-
lation. In phase one the cylinder is moving with the maximum velocity and phase two is
when the velocity is zero and the direction of motion is reversed.

are aligned with the direction of motion, i.e. 90° and 270°. In the direc-
tion the cylinder was moving in the previous phase, i.e. 90°, the pressure is
lowered compared to the ambient pressure and the opposite is true for the
rear stagnation point of the previous phase, i.e. 270°. Both amplitudes are
approximately an order of magnitude higher than in phase one with a very
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smooth distribution. This can be explained with the motion induced flow
field that leads to a comparably high relative velocity between cylinder and
fluid, despite the fact that the cylinder is not moving in this phase. The two
peak amplitudes are slightly higher in the first order framework. In the skin
friction distribution presented in figure 16d it is found that the higher rela-
tive velocity leads to a skin friction that is two orders of magnitude higher
than in previous phase.

The analytical solution for the pressure fluctuations p,,,, of this radiation
problem is

HP (k,r)
M H® (kyRey)

1
Prms = E

—Jjpovuincos(f) e/mhont : (28)

where H{Q) is a Hankel function of the second kind and first order and H{Q)/
its derivative with the wave number k, = 1/)\, as part of its argument.
Furthermore py is the mean density of the medium at rest [47]. The near
field approximation can be expressed by

1 , 1
Prms = E ‘—JQvaibﬂovviszylM2;‘ ; (29)
and the far field approximation is
1
Prms = E 27T2f1}£p0R(2:ylvvibM1.5W (30)

Figure 15b presents the dilatation contours at an arbitrary instance of
time from the simulation with the first order BDIM. The dilatation contours
show the expected dipole like radiation pattern with no signs of any spu-
rious oscillations from either the domain boundaries or the BDIM. This is
confirmed by the averaged directivity of the radiated sound pressure levels
(SPL) in Figure 17a. The data is extracted from the acoustic far-field at a
radial distance of r = 2)\,. It can be appreciated that the shape of the di-
rectivity pattern simulated by the BDIM is in excellent agreement with the
analytical reference. The amplitudes of the two simulations employing the
BDIM agree reasonably well with the reference but overestimate the noise
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Figure 17: Quantitative validation comparing the data from the simulation to the analyt-
ical reference.

level by 0.53dB for first order and 0.29dB for the second order BDIM at this
resolution level of Ax = Ay = D,,,;/160.

Figure 17b compares the SPL as a function of the radial distance of the two
simulations with the analytical solution. The data was extracted along the
radial direction aligned with the cylinder’s motion. The findings from the
SPL directivity are confirmed in that the simulations employing the BDIM
slightly overestimate the SPL by a constant value. It is apparent that the
second Order BDIM agrees better with the reference than the first order
approach. Table 2 compares the averaged deviation from the analytical
reference along the main radiation direction for the first and second order
BDIM for different resolution levels. The deviation from the analytical solu-
tion is a factor of 1.39 to 1.92 higher when the first order BDIM is employed
compared to the second order. Even for the highest resolution the deviation
from the analytical solution is not vanishing for either case. It is argued that
the simulation converges to a different solution as is also suggested by the
constant offset found in the previous discussion. The most likely reason for
that is the assumption of an inviscid fluid in the derivation of the analytical
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Npis/Deyi Avn/Ax 1st Ord BDIM ASPL[AB] 2nd Ord BDIM ASPL[dB]

20 1 291 1.64
40 2 1.64 0.88
80 4 0.92 0.48
160 8 0.53 0.29
320 16 0.34 0.21
640 32 0.25 0.18

Table 2: Summary of deviation from the analytical reference for different resolution levels
using the first and second order BDIM .

solution. However, the simulations do have a finite viscosity. An additional
test simulation showed that when the viscosity is increased by two orders or
magnitude the deviation between the analytical solution and the simulated
result decreased to ASPL = 0.47dB on the Ns/D.,; = 80 grid using the
second order framework. When viscosity was reduced by two orders of mag-
nitude this deviation grew to ASPL = 1.72dB on the same grid and with
the same method. The action of viscosity adds an additional component of
fluid acceleration tangential to the translation direction.

The formal order of convergence of the data presented in table 2 is visu-
alized in figure 18. The data is referenced against the case with the highest
resolution. It is obvious that the first and second order BDIM converge with
the same rate of approximately two for the cases with higher resolution. The
major difference between the two is the level of the deviation, as discussed
before. The fact that both cases yield the same rate of convergence is not
surprising. As shown with the results from the turbulent boundary layer in
Figure 5, the main effect of the second order correction is the improved rep-
resentation of the wall velocity gradient in the wall bounded shear flow. In
the current case considering an oscillating cylinder in a medium at rest the
shear is very small and hence the contribution of the derivative correction
term of equation 7 is small.

In summary the overall agreement with the analytical reference is excel-

lent considering the very low energies that are involved in this acoustic test
case. This validation case demonstrates that the BDIM is an appropriate
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Figure 18: Convergence of the pressure fluctuations relative to the analytical reference
over the lowest grid spacing Ay for the first and the second order BDIM.

method to perform high-fidelity simulations featuring noise radiation from
moving bodies.

4.2. Noise radiation from an airfoil with a trailing-edge extension

We next consider trailing-edge noise from a trailing-edge extension of an
airfoil at angle of attack. In this validation case the aeroacoustic noise gener-
ation is caused by the interaction of a stationary body with the unsteady flow
around it. The noise radiation from the trailing-edge will be the strongest
source of noise in this case as the interaction of pressure fluctuations in the
flow with the rigid trailing-edge increases the efficiency of the radiation pro-
cess.

4.2.1. Airfoil trailing-edge noise - Numerical setup

The flow parameters of this case are the chord based Reynolds number
Re. = 5 x 10*, Mach number M = 0.4 and angle of attack AoA = 5°.
At these flow conditions the flow separates on the suction side and forms a
laminar separation bubble as can be seen in the spanwise vorticity contours
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(a) Snapshot of the spanwise vorticity field indicating where
the BDIM is employed and the separation on the suction side.
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(b) Dilatation contours of a simulation (c) Noise levels at a radial distance of r = 4
where the 1st order BDIM is employed to chord lengths comparing simulation results
represent the the airfoil’s extension. The with body-fitted boundary conditions(—)
spread of the wake close to the outflow and the first (-#-) and second (-=-) order
origniates from the action of the zonal BDIM.

boundary condition.

Figure 19: Body-fitted airfoil simulation where the extension is represented by the BDIM.

presented in figure 19a. The computational grid was derived from the grid
G3 in Jones et al. [48]. In order to optimize the resolution close to the air-
foil surface and reduce numerical cost the airfoil body is represented by a
body conforming grid and body-fitted boundary conditions. As indicated in
figure 19a the trailing-edge extension was represented by the BDIM. This
hybrid approach reduces the computational cost significantly but leaves the
flexibility to change the shape of the extension or make it an actuated moving
control surface.
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4.2.2. Airfoil trailing-edge noise - Results

The acoustic field of this case is visualized with contours of dilatation in
figure 19b. It can be seen that the noise originates from the trailing-edge
of the extension and travels predominantly in the upstream direction. The
acoustic field is very clean and shows no signs of spurious oscillations from
the domain boundaries or the BDIM.
Figure 19¢ compares the noise directivity when the flat plate extension is
represented by either body-fitted boundary conditions and by the BDIM.
This plot shows excellent agreement between the two cases employing the
BDIM and the body-fitted boundary conditions for the noise level as well as
for the directivity shape. This demonstrates that the first and second order
BDIM are able to represent the acoustic scattering of pressure disturbances
from a trailing-edge accurately.

5. Conclusion

The compressible extension of the Boundary Data Immersion Method
originally developed for incompressible flows [18] has been introduced. The
compressible formulation uses the BDIM meta equation to map the velocity
and temperature fields between a solid body and a fluid subdomain. For cer-
tain applications such as the simulation of bluff bodies the proposed mapping
of the continuity equation as an interface condition between fluid and solid
can enhance robustness of the simulation.

A thorough validation of the novel compressible BDIM framework showed
that the second order extension increases accuracy of the simulations com-
pared to the first order approach. In particular the discontinuity of the ve-
locity gradient at the wall is modelled much more accurately. This is shown
for the very challenging case of a fully turbulent boundary layer where the
discontinuity of the velocity gradient is relatively high and a broad range of
scales in time and space is present in the flow.

The case of a transversely oscillating cylinder in a medium at rest showed
that the BDIM is able to predict the noise radiation from a moving body with
high accuracy. Furthermore flow induced noise generated by the interaction
of a solid body with unsteady fluid flow can be modelled accurately with the
BDIM. To the authors’ knowledge this is the first virtual boundary method
that has been validated for direct noise simulations considering moving bod-
ies.
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There is no penalty in allowable time step compared to body-fitted sim-
ulations when using the BDIM. Also the grid resolution does not need to be
higher than in an equivalent body-fitted simulation to accurately reproduce
the compressible flow physics given that the grid is aligned with the im-
mersed surface. In all cases considered the second order correction reduced
the solution error and improved the convergence rate. Hence the BDIM for
compressible flows offers a computationally efficient yet accurate approach to
represent stationary or moving bodies in high-fidelity numerical simulations
with application to aeroacoustics. The method has already been employed
successfully for fluid-structure interaction problems [49]. We also envision it
to be appropriate for aero-vibro-acoustic studies and other applications that
require accurate representation of arbitrary moving boundaries.
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AppendixA. Weighting functions at the intersection of two planes

In Section 2, kernel moments are analytically evaluated in order to ac-
curately immerse the boundary data from the solid mechanical system onto
the fluid mechanical equations of motion. In the appendix, the case of a
geometry with sharp corners (which requires special care) is locally treated
as the intersection of two component planar geometries.

First we use Eq 6a to determine the moment at point Z of each of the
component planes a and b, and call them 4, 110p. We name these planes
such that p, < pop, ie 7 is further into the fluid relative to a. In the case

that x is not near the intersection, the moment of the shape ¢ defined as the
intersection of a and b is simply the moment of a,

Ho,e = Ho,a (A1>

However, when 7 is in the smoothing region of both a and b, such that
0 < poa < top < 1, then both planes contribute to the compound moment.
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An approximate value for the compound moment in this case is

logy, =
Ho.c = Joallyy "’ (A.2)
subject to the bound
o, > max(0, po o + fop — 1) (A.3)

We see that the angle 6 between a and b determines how heavily p 5 influences
the compound moment. For # = 7, the compound shape is flat and there is
no change to Eq A.1. For 6 < 7, the shape is a sharp corner, and the moment
decreases sharply as you approach the intersection of the two planes. The
bound ensures that the compound moment is still accurate for very small
angles when the kernel regions of the two planes do not overlap.

Once this moment is established, it implicitly defines the effective distance
d. and normal 7, of the compound shape. If p. is given by Eq A.1 then
d. = d, and n. = n,. Otherwise, the distance d. is found by inverting Eq 6a.
Note that the bounds on i . ensure we only need the first line of Eq 6a. Let
us call the inverse of the Eq 6a h, ie

d(T) = h(po(7))

Then d. = h(juo.) is used in Eq 6b to find the effective first moment p; .
without issue.
The normal n is defined as

(%) = Vd(Z) = I’ (1) V j10(7) (A4)
where o
h =—
It

and we note that b’ only scales the magnitude not the direction of the normal.
First, let’s assume that the lower bound Eq A.3 is active, then the normal is
proportional to

A

Mg be
h'(Mo,a) h/(Mo,b)

where Eq A.4 is used to substitute the normal for each component. We see

ﬁc X 6/140,0, + 6:LLO,b =
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the effective normal is a weighted sum of the component normals.
Next, using Eq A.2, applying the chain rule, and substituting the normals
for each component as before gives

~ 1 ﬁa log2(%) ﬁb
Ne X / /
Ho,a h (No,a) Ho,b h (,uo,b)

where again we see that the angle 6 determines the relative influence of plane
b.
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