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Abstract 
This paper describes the development of railway station choice models suitable for defining 
probabilistic station catchments for use in the aggregate demand models typically used to 
forecast demand for new rail stations. Revealed preference passenger survey data obtained 
from the Welsh and Scottish Governments was used for model calibration. Techniques were 
developed to identify trip origins and destinations from incomplete address information and to 
automatically validate reported trips. A bespoke trip planner was used to derive mode-specific 
station access variables and train leg measures. Results of a number of multinomial logit and 
random parameter (mixed) logit models are presented and their predictive performance 
assessed. The models were found to have substantially superior predictive accuracy 
compared to the base model (which assumes the nearest station has a probability of one), 
indicating that their incorporation into passenger demand forecasting methods has the 
potential to significantly improve model performance. 

1  Introduction 
Rail travel in GB has grown considerably in recent years. This has been accompanied by 
expansion of the network, and many new stations have been built and closed stations 
reopened. This growth is projected to continue and there is considerable interest in opening 
new railway stations to serve local communities across the country. To assess the viability of 
any proposed scheme, it is important that demand for a new station can be accurately forecast. 
The models predominantly used in the UK to forecast demand for new railway stations require 
a catchment for the station to be defined first, so that model inputs, such as the population 
from which demand will be generated, can be specified. The common methods used to define 
catchments are simplistic, for example placing a distance-based circular buffer around a 
station, or dividing the area of interest into zones and assigning each zone to its nearest 
station. However, recent research shows that in reality station catchments are far more 
complex than this (for example, see Blainey & Evens (2011)). Simplistic catchments account 
for only 50-60 percent of observed trips, station choice is not homogeneous within zones, 
catchments overlap, and catchments vary by access mode and station type. The inability of 
these simplistic catchments to capture patterns of abstraction and competition between railway 
stations may have contributed to the limited accuracy of many recent demand forecasts for 
new stations, an issue of sufficient concern that the UK Department for Transport recently 
commissioned a study to investigate the issue (Steer Davies Gleave, 2010). This suggests 
that rail demand models might be more accurate if a probability-based catchment was defined. 

Prior station choice research, which has predominantly adopted the multinomial logit (MNL) 
model or, when jointly modelling access mode choice, the nested logit model, has primarily 
focussed on explaining the factors that influence choice, rather than seeking to calibrate 
models that might be useful in forecasting demand for new stations. Where the aim has been 
to improve demand models, this has usually focussed on addressing specific local needs, such 
as the work of Harata & Ohta (1986) and Kastrenakes (1988). Wardman & Whelan (1999) 
attempted to incorporate probabilistically defined catchments into a flow model as part of a 
larger piece of work to improve rail demand models using Geographical Information Systems 
(GIS), but this was largely unsuccessful; and Lythgoe & Wardman (2002, 2004) developed a 
unique approach to forecasting demand for parkway stations, but its applicability is limited to 
long inter-urban journeys. Previous research has also lacked a rigorous assessment of model 
predictive performance, either against the sample used to calibrate the model or in other 
contexts, and despite broadly consistent reporting of the direction effects of a range of 
explanatory variables, no attempt has been made to develop a generalised and transferable 
model. Unlike previous studies, the research described in this paper has an applied focus, 
seeking to develop station choice models that can be incorporated into the trip end or flow 
models that are used to assess proposals for new railway stations or substantial service 
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changes. This work builds on an earlier pilot study that established suitable data processing 
techniques and developed some initial models using a small survey dataset (Young & Blainey, 
2016a). For a comprehensive review of prior research in this area, see Young & Blainey 
(2016b). 

2  Data considerations 

2.1  Survey data 
Data from a series of ultimate origin-destination (OD) surveys carried out in Wales and 
Scotland were obtained from the Welsh Government (WG) and Transport Scotland’s LATIS 
service. The WG surveys were carried out in the spring of 2015 and primarily covered stations 
in South East Wales (Cardiff, Newport and the South Wales valleys) and Swansea. The LATIS 
surveys were carried out in 2014 and 2015 and, although concentrated in the Central Belt, 
covered stations throughout Scotland. Prior to subsequent processing and validation the WG 
and LATIS datasets contained some 7,000 and 50,000 observations respectively. 

2.2  Data cleaning 
The WG data had been through some data processing before it was supplied, and nearly all 
observations included valid origin and destination unit-level postcodes. This was not the case 
for the LATIS data, where addresses had not been validated and many observations had 
missing, incorrect or incomplete postcodes. For example, less than 50% of the origin 
addresses included a valid unit-level postcode. Survey respondents are likely to know the 
origin or destination postcode for particular types of trip, such as those beginning or ending at 
their home address, and in order to ensure that the dataset used in model calibration was 
representative of a broader range of trip types, a procedure was developed to match the 
incomplete address information to postcodes using the Ordnance Survey’s AddressBase 
product which contains over 28 million UK addresses from Royal Mail’s postal address file 
(PAF). The aim of this procedure was to either identify a specific postcode from the provided 
address information or, failing that, to approximate the geographic location of an address. The 
AddressBase file was imported into a PostgreSQL database and several new fields were 
generated. The first counted the number of distinct postcodes for each unique postal 
town:thoroughfare combination. The second calculated the centroid of all the individual 
postcode centroids belonging to each thoroughfare, and the third measured the maximum 
Euclidean distance from the calculated centroid to any of the individual postcode centroids. 
This process is illustrated in Figure 1. If the calculated centroid is used to represent the location 
of an origin or destination on a street, the maximum Euclidean distance indicates how far the 
‘real’ address postcode centroid could be from that location. Next, origin and destination 
addresses in the LATIS survey dataset were matched to AddressBase addresses using a 
trigram index, with the top four matches for each observation appended to the dataset. A 
manual review process was then completed, using the following key criteria:   

1) Correctly matched postcode accepted where possible 

2) If street name matched but house number/business name not matched:  

a) if street has a single postcode, that postcode is accepted 

b) if street has more than one postcode, if the maximum Euclidean distance is <= 250m 
use the calculated street centroid as the origin or destination location  

 

Figure 1: Postcode centroids for Ingram Street, Glasgow, showing calculated centroid and maximum 
distance from calculated centroid to any postcode centroid 
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A variety of other data checks were carried out on both the WG and LATIS datasets, including 
removing observations where the access or egress mode was not provided; where the origin 
and/or destination station was missing or the name was incorrect or ambiguous; and where 
the origin station was the same as the destination station. To limit the amount of public transit 
schedule data that needed to be incorporated into the trip planner (see Section 2.4), only those 
observations where the origin was located in Wales (for WG dataset) or Scotland (for LATIS 
dataset) were retained. In addition, any observations with origins or destinations outside of GB 
or located on islands without road access to the mainland were removed, as it would not be 
possible to generate access and egress variables for these using the trip planner. 

2.3  Automated trip validation 
Due to the large number of survey observations in the datasets it was not practical to manually 
check each one to ensure the reported trip was sensible. An alternative strategy was adopted 
that generated information inherent in the reported trip and used that to automatically validate 
the trip. This approach was used to identify excessively long station access and egress legs, 
and unrealistic trips, as detailed below. 

2.3.1  Excessive access or egress legs 
For each observation in the cleaned data, a trip planner was used to obtain the walk-time in 
minutes from the ultimate trip origin to the origin (boarding) station; and the walk-time in 
minutes from the destination (alighting) station to the ultimate destination. A histogram and 
kernel density plot was then produced for access time and egress time and based on the 
observed distribution, any observation with walk-mode access and/or egress time in excess 
of 60 minutes was removed from both datasets. This cut-off point felt intuitively appropriate, in 
addition to being supported by the data. A similar process was used to identify excessively 
long access and egress legs for the other modes, and those in excess of 70km were removed 
from the WG data and those in excess of 200km were removed from the LATIS data1. 

2.3.2  Illogical trips 
There are two main types of illogical trips that are observed in this type of data. The first is the 
‘reversed trip’ where the origin station is located close to the ultimate destination, and the 
destination station is close to the ultimate origin. The second occurs when there is a substantial 
‘back-track’ from the reported destination station towards the trip origin. A range of ratios were 
tested, using measures of components of the trip generated by the trip planner, that might 
reliably identify these illogical trips. Two ratios were found to be particularly effective. The first, 
the RV ratio, captures the ‘reversed trip’ effect and is the distance from origin postcode to 
destination station over the distance from origin postcode to origin station. The closer the ratio 
is to zero, the more pronounced the reversal effect becomes (see Figure 2a). Observations 
with a ratio <0.5, where the distance from the origin postcode to origin station is more than 
double the distance from the origin postcode to the destination station, were removed. 

  

(a) RV Ratio (b) BT Ratio 

Figure 2: Illustrative example of ratios to identify illogical trips 

                                                      
1 The distribution of access and egress distance is skewed further to the right in the LATIS dataset. 
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The second, the BT ratio, captures the ‘back-track’ effect and is the distance from the origin 
postcode to the destination postcode over the distance from the origin postcode to the 
destination station. The closer the ratio is to zero, the more pronounced the back-track effect 
becomes (see Figure 2b). Observations with a ratio <0.5, where the distance from origin 
postcode to destination postcode is less than half the distance from origin postcode to 
destination station, were removed. For both the RV and BT ratios, the distance measures were 
obtained from the trip planner for walk mode. This was found to give more consistent results 
than using drive mode, primarily because the latter can produce longer circuitous routes 
caused by one-way systems that mask the relative geographical positioning of origins and 
destinations that the ratios are intended to detect. To establish the effectiveness of the steps 
taken to remove illogical trips, 100 random observations were selected from the WG dataset 
(after removal of trips as determined by the RV and BT ratios and excessive access and/or 
egress legs) and their reported trips were individually visualised in QGIS. All 100 of the trips 
were considered logical. 

2.4  Deriving explanatory variables 
A key objective of this research was to obtain realistic representations of station access 
journeys by different transport modes and to identify, as accurately as possible, the rail 
services available to each respondent when they made their trip and the characteristics of 
alternative rail legs, thus ensuring that appropriate explanatory variables for the station choice 
models could be generated. This required development of a bespoke route planner that could 
generate routes for a range of motorised and non-motorised transport modes and incorporate 
relevant public transit schedules. It was also recognised that deriving the explanatory variables 
would require the collection and processing of a large amount of data from a range of disparate 
open transport data sources, and that a set of automated processes would be needed to 
handle this in an efficient, reliable and accurate manner. A data processing framework was 
therefore developed that consisted of a PostgreSQL database, the R software environment, 
an instance of OpenTripPlanner (OTP) (an open-source route planner), and various external 
data sources. The framework is described in more detail in Young (2016). 

2.4.1  Access journey 
Various measures of the access journey were obtained by querying the OTP API. These 
included the distance in km using drive mode, and the access time in minutes by the reported 
access mode. To generate journey data for access by bus (and also subway in Glasgow) the 
Scottish and Welsh components of the Traveline National Dataset (TNDS) generated on 9 
June 2015 were incorporated into OTP. As archived versions of TNDS are not publicly 
available, all bus and subway journeys were assumed to take place in the week beginning 8 
June 2015. To take account of varying service levels throughout the week, the day of week of 
travel was calculated for each observation in the dataset, and this was matched to the same 
day in the week beginning 8 June 2015. The desired arrive by time was set to the recorded 
train time.2 Two additional variables related to the access journey were generated. The 
‘nearest station’ dummy variable indicates whether or not a station in an individual’s choice 
set is the closest station by drive distance; and the difference in bearing of origin:origin station 
and origin:destination in degrees (see Figure 3). 

 
Figure  3: Difference in bearing (degrees) origin:origin station and origin:destination 

                                                      

2 For the WG dataset the scheduled station departure time is recorded, whilst for the LATIS dataset the start time of 
the particular service is recorded.  
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2.4.2  Station facilities and service frequency 
Information on a range of potential facilities available at railway stations was obtained from the 
National Rail Enquiries (NRE) Stations XML feed, which forms part of the NRE 
Knowledgebase. This was queried for every station in the UK. The variables recorded 
included: free car park (y/n), car park spaces (number), station CCTV (y/n), ticket machine 
(y/n), waiting room (y/n), toilets (y/n), cycle spaces (number), cycle storage (y/n), cycle CCTV 
(y/n), and staffing level (unstaffed, part-time, full-time). 

To generate service frequencies the GTFS feed for GB rail services dated 25 April 2015 was 
downloaded from the TransitFeeds archive3 and converted into a PostgreSQL database. A 
SQL query was then used to count the number of daily services and peak services (7am - 
9am) that pick-up passengers at each station. 

2.4.3  Train journey 
Two GTFS feeds for GB rail services dated 17 March 2014 and 4 April 2015 were downloaded 
from the TransitFeeds archive4 and incorporated into separate OTP graphs5 to cover the 
survey period for both the WG and LATIS datasets. In addition, to allow London transfers, a 
GTFS feed for London Underground services was created from Transport for London journey 
planner data. A single train journey itinerary from origin station to the observed destination 
station for the date of each trip was obtained by querying the OTP API. Walk mode was also 
permitted, primarily to enable an alternative destination station, for example on a different line, 
to be selected by the planner, with a walk to the observed destination station.6 A minimum 
transfer time of 6 minutes was specified, corresponding to the typical suggested connection 
time for a medium interchange station. The desired trip start time was set to the recorded train 
time7. The variables used in the choice models were the journey duration and its separate 
components, on-train time and waiting time. 

Fares data was obtained using the independent BR Fares web service API (BR Fares Ltd, 
2016). The fare variable was populated dependent on the recorded train time, generally the 
cheapest anytime return fare (train times before 9am), or the cheapest off-peak fare (train 
times after 9am). 

2.5  Defining choice sets 
Based on experience from an earlier pilot study (Young & Blainey, 2016a), a separate choice 
set was defined for each observation, consisting of the ten nearest stations by road distance. 
For the WG and LATIS datasets a separate database table was first populated with the nearest 
30 stations to each unique origin based on Euclidean distance using the efficient PostGIS 
indexed nearest neighbour query (Ramsey, 2011). Any new stations that were not open during 
the relevant survey periods were excluded. For each origin:station pair the drive distance was 
obtained from an API call to OTP and the stations then ranked by drive distance. These choice 
sets accounted for 92% and 95% of observed choice in the LATIS and WG datasets 
respectively. It was decided to try and improve the choice sets by ensuring the nearest major 
station to each origin was included.8 For Glasgow, Edinburgh and Cardiff, the two main 
stations in these cities were included in the choice set if either of them was the nearest major 
station to the origin. Including the nearest major station increased the proportion of observed 
choice accounted for to 97% in both datasets. Any observation where the chosen station was 
not present in the choice set was, by necessity, removed before model calibration. If an 

                                                      
3 See http://transitfeeds.com/p/association-of-train-operating-companies/284  
4 See Footnote 3 
5 An OTP graph specifies every location in the region covered and how to travel between them. It is compiled from 
OpenStreetMap and GTFS data. 
6 Initially it was planned to request routes from each origin station to the ultimate destination, however this is 
problematic as in some cases the egress mode is by car or coach with the final destination a considerable distance 
from the observed destination station, and the route planner will suggest a much longer rail journey to a station that 
is much nearer the ultimate destination. 
7 See Footnote 2 
8 The stations identified as ’major’ were: Aberdeen, Aberystwyth, Bridgend, Bangor (Gwynedd), Carlisle, Cardiff 
Central, Cardiff Queen Street, Carmarthen, Chester, Dundee, Edinburgh, Glasgow Central, Glasgow Queen Street, 
Hereford, Haymarket, Inverness, Llandudno Junction, Newcastle, Newport (S Wales), Perth, Shrewsbury, Stirling, 
Swansea, and Wrexham General. 



YOUNG: Developing railway station choice 
models to improve rail industry demand models 

January 2017  
Trinity College 

Dublin  
UTSG  

 

 

 
6 

alternative origin station was the observed destination station it was removed from the choice 
set.9 

As it was planned to estimate mode-specific access time parameters some further adjustments 
to the choice sets were necessary. Observations where access mode was recorded as ‘other’ 
were removed, and where access was by bus (or Glasgow subway) alternatives were only 
retained if a bus route was available to the station or OTP suggested walking to the station. 
For walk access mode, choices were not restricted to stations within 60 minutes of the origin 
as this would have resulted in some choice sets with only the chosen station and they could 
not have been included during model calibration. Using the same choice sets for all model 
calibration enabled direct comparison of model fit using log likelihood and R2 measures. 

3  Model calibration 
A summary of the datasets following data cleaning, trip validation and preparation of choice 
sets is shown in Table 1, and Figure 4 disaggregates the choice situations by the distance-
rank of the chosen station.  
 

Table  1: Summary of datasets prepared for model calibration 

 Number of choice situations   Number of cases  Average choice set size 

LATIS   9367   97838   10.44 

WG   5680   59833   10.53 

A series of models were calibrated separately for the WG and LATIS datasets using the 
NLOGIT 5 software package (Econometric Software, Inc, 2012). As this research was seeking 
to develop station choice models that could be incorporated into the rail demand models that 
are typically used to forecast demand for new stations, choice models suitable for use in trip 
end models were distinguished from those suitable for flow modes, with the latter additionally 
incorporating variables relating to the train leg and destination. Explanatory variables were 
entered into the models using a manual forward selection procedure, and a summary of results 
for key models are shown in Tables 2 and 3. In addition to reporting the model log-likelihood 
and McFadden’s adjusted R-squared, these tables include a measure of the predictive 
performance of each model, with a lower value indicating a better model (this measure is 
discussed further in Section 4.1).  

 
Figure 4: Percentage of choice situations where chosen station was of specified rank (based on car 

distance) or a major station not otherwise ranked 1:10 

                                                      
9 In addition, if Glasgow Central or Glasgow Queen Street was the observed destination, then both these stations 
were removed from the choice set if present. Using either of these stations to get to the other would be illogical. This 
is not the case for Cardiff or Edinburgh where travel between the two main stations by rail is a logical trip. 
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Table 3 – WG multinomial model results   
 Nearest 

station. 
Time 
walk 
mins 

Time 
cycle 
mins 

Time 
bus 
mins 

Time 
car  
mins 

Full-
time 
staff 

Part-
time 
staff 

Train 
freq. 
daily 

Cctv Car 
park 
sp. 

Free 
car 
park 

Ticket 
mach. 

Toil-
ets 

Train 
leg 
time 
mins 

On 
train 
time 

Wait 
time 

Bear. 
diff 

Bear. 
<5 km 

Bear. 
5-10 
km 

Bear. 
10-15 
km 

Bear. 
15-20 
km 

Bear. 
20+ km 

logLik AdjR2 Pred. 
perf. 
diff 
(%) 

TE1 3.13***                      -7215 .46 64.0 

TE7 1.06*** -.11*** -.14*** -.05*** -.14***                  -5627 .58 56.5 

TE8 .95*** -.14*** -.14*** -.04*** -.15*** 3.22*** 2.08***                -4068 .69 34.7 

TE9 1.05*** -.14*** -.15*** -.05*** -.16***   .008***               -4618 .65 42.9 

TE10 .95*** -.14*** -.14*** -.04*** -.15*** 2.36*** 1.94*** .003***               -4043 .70 33.3 

TE13 .94*** -.14*** -.15*** -.04*** -.15*** 2.19*** 1.74*** .003*** 1.38***              -3976 .70 32.1 

TE14 .88*** -.13*** -.15*** -.04*** -.18*** 2.38*** 1.76*** .001*** 1.29*** .006***             -3816 .71 27.8 

TE17 .90*** -.13*** -.14*** -.05*** -.18*** 2.05*** 1.56*** .001** 1.11*** .006*** .36*** 1.0*** .28***          -3733 .72 27.4 

FM1 .88*** -.13*** -.16*** -.06*** -.24*** 1.97*** 1.36*** -.002*** 1.16*** .006*** .67*** .83*** .38*** -.07***         -3249 .76 22.7 

FM2 .89*** -.13*** -.16*** -.06*** -.23*** 2.0*** 1.37*** -.002*** 1.14*** .006*** .66*** .85*** .38***  -.07*** -.08***       -3247 .76 22.6 

FM3 .87*** -.13*** -.16*** -.06*** -.23*** 1.96*** 1.38*** -.002*** 1.14*** .006*** .65*** .88*** .31***  -.07*** -.08*** .003***      -3236 .76 22.4 

FM4 .88*** -.13*** -.16*** -.06*** -.22*** 1.99*** 1.39*** -.002*** 1.12*** .006*** .64*** .89*** .32***  -.07*** -.08***  .003*** .002** -.001ns -.008*** -.005ns -3226 .76 22.3 

Table 2 – LATIS multinomial model results   
 Nearest 

station 
Time 
walk 
mins 

Time 
cycle 
mins 

Time 
pt 
mins 

Time 
car  
mins 

Full-
time 
staff 

Part-
time 
staff 

Train 
freq. 
daily 

Cctv Car 
park 
sp. 

Free 
car 
park 

Ticket 
mach. 

Toil-
ets 

Train 
leg time 
mins 

On 
train 
time 

Wait 
time 

Bear. 
diff 

Bear. 
<5 km 

Bear. 5-
10 km 

Bear. 
10-15 
km 

Bear. 
15-20 
km 

Bear. 
20+ 
km 

logLik AdjR2 Pred. 
perf. 
diff (%) 

TE1 2.81***                      -13751 .37 72.0 

TE7 .86*** -.11*** -.08*** -.05*** -.12***                  -10785 .51 62.0 

TE8 .87*** -.11*** -.09*** -.04*** -.14*** 4.40*** 1.93***                -7348 .66 30.0 

TE9 1.02*** -.10*** -.07*** -.05*** -.13***   .006***               -8593 .61 47.3 

TE10 .86*** -.11*** -.09*** -.05*** -.15*** 3.69*** 1.74*** .003***               -7093 .68 28.1 

TE13 .87*** -.11*** -.09*** -.05*** -.16*** 3.57*** 1.61*** .003*** 3.27***              -7015 .68 27.4 

TE14 .85*** -.11*** -.09*** -.05*** -.16*** 3.45*** 1.55*** .002*** 3.27*** .001***             -6965 .68 27.5 

TE17 .84*** -.11*** -.09*** -.05*** -.16*** 2.73*** 1.09*** .002*** 2.82*** .001*** .74** .89*** .56***          -6764 .69 23.5 

FM1 .70*** -.13*** -.13*** -.10*** -.28*** 2.32*** .88*** .001*** 2.84*** .002*** .85** .61*** .44*** -.13***         -4803 .78 14.4 

FM2 .70*** -.12*** -.12*** -.08*** -.24*** 2.13*** .87*** .001*** 2.51*** .002*** .67* .64*** .41***  -.09*** -.15***       -5243 .76 14.8 

FM3 .73*** -.12*** -.12*** -.08*** -.24*** 2.31*** .90*** .001*** 2.53*** .002*** .74* .63*** .44***  -.08*** -.15*** -.005***      -5184 .76 15.1 

FM4 .72*** -.12*** -.11*** -.07*** -.23*** 2.33*** .91*** .001*** 2.44*** .002*** .84** .63*** .47***  -.08*** -.15***  -.004*** -.007*** -.01*** -.01*** -.02*** -5159 .76 14.6 
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3.1  Multinomial logit (MNL) models 

3.1.1  Trip end-related models 
In the first model (TE1), the nearest station dummy variable is added. As would be expected, 
given that in 60-70% of the choice situations the nearest station was chosen, this model is a 
considerable improvement over the null model10 for both datasets. The WG model performs 
rather better than the LATIS model, presumably reflecting the larger proportion of choice 
situations where the nearest station was chosen. The next stage of calibration concentrated 
on identifying which access journey measure produced the best performing model, with both 
distance and time-based variables tested. In addition to estimating a single parameter for a 
variable, which represents only average effects on utility, mode-specific parameters were 
estimated by interacting dummy variables for each access mode, or for motorised and non-
motorised modes, with the time or distance measure. Models that used time-based measures 
were found to consistently out-perform those based on distance-measures. The best model 
for both the WG and LATIS datasets, with adjusted R-squared of .58 and .51 respectively, 
incorporated mode-specific parameters for access time (Model TE7). The parameters suggest 
that access time is a slightly greater cost to car drivers than to pedestrians, but a substantially 
lower cost to bus passengers. For example, using the WG model, a 30-minute access journey 
would reduce the utility of a station by 4.2 units for a car driver, but by only 1.5 units for a bus 
passenger. There are likely to be more critical considerations than access time for someone 
reliant on getting a bus to a station, such as which station(s) is(are) served and the bus 
schedule, and to an extent the travel time has to be accepted. In contrast the car driver has 
greater control and flexibility, including the option not to travel by train at all. The station staffing 
level dummy variables (part-time and full-time) are added to the models next, and these have 
to be interpreted with reference to the excluded unstaffed level. The results show that the utility 
of a station is higher for staffed stations than unstaffed stations, and the models are 
substantially improved, particularly on the predictive performance measure (Model TE8). It is 
not clear how important actual staffing level is in the decision-making process, as it could be 
an indicator of a range of other station facilities, and full-time staffing level is highly correlated 
with daily service frequency (LATIS: 0.72; WG: 0.86). In model TE9 staffing level is replaced 
with daily service frequency, but it is a far inferior model, indicating that staffing level is 
capturing additional information. Model TE10, which includes both staffing level and daily 
frequency, is an improvement over models TE8 and TE9, and the effect of the correlation 
between daily frequency and full-time staffing can be seen in lower parameter estimates for 
these variables. In the subsequent models several station facilities variables are introduced11 
which result in relatively small improvements to the adjusted R-squared, although there is a 
distinct improvement in model predictive performance. It is also noticeable, especially in the 
LATIS models, that the parameters for the staffing level variables become smaller as the 
station facilities variables are added, although they remain large suggesting that staffing level 
is an important factor in and of itself. Model TE17 is the best model suitable for integrating into 
trip end rail demand models, with an adjusted R-squared of 0.69 and 0.72 for the LATIS and 
WG datasets respectively.  

3.1.2  Flow-related models 
In the first of the models suitable for integration into rail demand flow models the length of the 
train-leg (in minutes) is introduced (Model FM1). This is an improvement over model TE17, 
especially for the LATIS dataset where there is a substantial uplift in predictive performance. 
An effect of introducing the train-leg variable is an increase in the size of the mode-specific 
access time parameters, especially for car mode (from -.16 to -.28 and -.18 to -.24 for LATIS 
and WG models respectively). This may be the result of the prior models being unable to 
adequately explain longer access journeys to a chosen station. If decisions to travel further by 
car to board at a station with faster direct train services can now be accounted for by a smaller 
train-leg disutility, then the disutility associated with the access journey per se can increase. 
In model FM2, the train leg is split into on-train time and wait-time (due to transfers). In the 

                                                      
10 As choice sets are defined on an individual basis, the null model is derived on the assumption that within each 
choice set the probability of choosing any of the alternative stations is equal 
11 The car park spaces and free car park variables were interacted with a dummy variable representing car as access 
mode, so these parameters were only estimated against choice situations where access mode was car. 
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LATIS model the wait-time parameter is 1.6 times larger than the on-train parameter, which is 
reasonably consistent with the convention that wait time is valued at twice the rate of in-vehicle 
time (ATOC, 2013), although this is not replicated in the WG model where the wait-time 
parameter is only 1.2 times larger. There is a potential problem with the datasets that may 
impact the estimation of train-leg parameters. The questionnaire used in both the WG and 
LATIS surveys asked respondents for the boarding and alighting station of the train they were 
currently travelling on, rather than their ultimate boarding and alighting station. To ensure that 
the ultimate origin and destination stations were accurately identified it was therefore 
necessary to exclude any observations where the respondent indicated that their access or 
egress mode was another train. In theory this should mean that none of the retained 
observations involved a transfer between trains. In reality, this is not the case, presumably 
because some respondents had the entirety of their trip in mind rather than the current train. 
However, this does mean that there are likely to be artificially fewer observations in the dataset 
where the train-leg from the chosen station involved a transfer between trains. The LATIS FM2 
model performs somewhat worse than the FM1 model on all the measures, whilst there is no 
significant difference between the two WG models. However, it was felt that a model with 
separate parameters for on-train time and wait-time would be more transferable and FM2 was 
used as the basis for subsequent models. The difference in bearing variable, described in 
Section 2.4.1, is added to model FM3. In the LATIS model this has the expected negative sign, 
indicating that a station is less likely to be chosen as the difference in bearing from origin:origin 
station and origin:destination increases, suggesting a preference for a station that is in the 
same direction of travel as the ultimate destination. However, the variable did not have the 
expected sign for the WG model. It was hypothesised that this may become a more important 
factor as the access journey distance increases, and might be of little consequence for short 
access journeys. This was investigated in model FM4 by estimating five separate parameters 
for the variable based on banded access journey time. In the LATIS model the parameters 
show the expected effect with a gradual increase in the size of the negative parameter as 
access distance increases. The effect of a 25-degree difference in bearing ranges from -0.1 
for access journeys <5km to -0.5 for access journeys >20km. The train fare variable was not 
included in the models due to a very high correlation with other train leg variables, for example 
a 0.9 correlation with on-train time in the LATIS dataset. Model FM4 is the best model suitable 
for integrating into rail demand flow models, with an adjusted R-squared of 0.76 for both the 
LATIS and WG datasets.  

3.2  Random parameter (mixed) logit models 
A potential weakness of the MNL model is that it does not allow for individual taste variation in 
the estimated parameters. The random parameter specification of the mixed logit model (RPL) 
allows some or all of the parameters to vary by individual, from a distribution specified by the 
researcher. However, the model is more complex than MNL and the calculation of probabilities 
does not take a closed form. Instead the probabilities have to be simulated, and model 
estimation takes significantly longer to complete. Initial RPL models were run, using the best 
performing MNL models as the starting point, with all parameters specified as random to test 
whether the standard deviation of each parameter was significantly different from zero. If the 
standard deviation is not significant, it indicates that there is no individual taste variation for 
that parameter. As the parameter for all the model variables is expected to have the same sign 
for all individuals, the log normal distribution was specified, with those variables expected to 
have a negative sign entered as negative values. Halton draws were used for the simulation, 
with 75 and 100 draws for the WG and LATIS datasets respectively. Using Model TE17 as the 
starting point, the mode-specific access time parameters had a significant standard deviation 
for both WG and LATIS (excluding cycle mode in the WG model). Additionally, the standard 
deviation of the nearest station and car park spaces parameters were significant in the LATIS 
model. The z-values of the standard deviations for the other parameters were very low, and 
not close to critical values. Based on these findings an RPL model with mode-specific access 
times parameters specified as random was run for both datasets, and the results are shown 
in Table 4. Both the LATIS and WG models have higher log-likelihood and adjusted R-squared 
values than the MNL equivalent model, and while predictive performance was slightly better 
for the WG model, it was marginally worse for the LATIS model. The standard deviations are 
significant for all the random parameters, indicating that the parameter estimates are 
individual-specific and for any individual the parameter may be different from the mean 
parameter estimate (Hensher et. al., 2015). Interestingly, the variability in the parameter for 
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walk access time is much greater in the WG model (sd 0.32) than it is in the LATIS model (sd 
0.07), whilst there is greater variability in the parameter for car access time in the LATIS model 
(sd 0.35) compared with the WG model (sd 0.17). The RPL model also has an effect on the 
non-random parameters, compared with the MNL model, most noticeably a substantially 
smaller parameter for the nearest station variable. 

4  Model appraisal 

4.1  Predictive performance 

Rather than use the fundamentally flawed “% correctly predicted” measure (see Train, 2009 
p.69 for a discussion), which assesses a model by assuming each individual would choose 
the station with the highest predicted probability and compares that to the station actually 
chosen, predictive performance was measured by comparing the sum of predicted 
probabilities for each station with the number of times that station was actually chosen (as 
preferred by Hensher et al., 2015 p.502). To assess the overall performance of the models 
reported in this paper, the absolute difference between the two figures has been summed for 
all stations and expressed as a percentage of the total number of choice situations in the 
model. A predictive performance of zero percent would indicate no deviation between 
observed and predicted choice. The predictive performance of each model is included in 
Tables 2,3 and 4. Table 5 summarises the performance of the best models and, given that the 
aim of this work is to improve on the simplistic models that assume the nearest station is 
chosen, compares them with a base model where the probability of choosing the nearest 
station equals 1. The graphs in Figure 5 show the number of times each station was actually 
chosen and by how much the model under or over-predicted this choice, for the base model 
(a) and LATIS FM1 (b), illustrating the substantially better predictive performance of the latter. 

 
Table 5: Summary of model predictive performance 
Model Predictive 

performance (abs. 
diff as % of total 
choice situations) 

 

 LATIS WG Comments 

Base model (prob. Nearest = 1) 50.91 40.99  
TE17 23.53 27.35  
RPL2 23.58 25.85  
FM4 14.61 22.35  
RPL4 n/a12 21.13 RPL for flow-related model 
FM2 (model calibrated on other dataset) 20.16 34.80  

                                                      
12 Model failed to fit. Initial iterations unable to improve log-likelihood fn. of MNL model (used for starting values). 

Table 4: Trip end station choice models (RPL) 

 WG – Trip end station choice model (RPL2) 
AdjR2 = .73 
LogLik = -3649 
Pred. Perf. Diff (%) = 25.9 

 LATIS – Trip end station choice model (RPL2) 
AdjR2 = .70 
LogLik = -6553 
Pred. Perf. Diff (%) = 23.6 

  Random Parameters1 Non-
random 
parameters 

  Random parameters1 Non-
random 
parameters 

 Mean of 
ln(coef.) 

Std. dev 
of 
ln(coef.) 

Median  
coef. 

Mean 
coef. 

Std. 
dev. 
of 
coef. 

Coefficient  Mean of 
ln(coef.) 

Std. dev 
of 
ln(coef.) 

Median 
coef. 

Mean 
coef. 

Std. 
dev. 
of 
coef. 

Coefficient 

Nearest station      .54***       .46*** 

Time (walk) mins -1.56*** .87*** .21 .31 .32   -1.93**** .44**** .14 .16 .07  

Time (cycle) mins      -.17***  -2.26**** .38**** .10 .11 .04  

Time (bus\pt) mins -2.80*** .67*** .06 .08 .06   -2.66**** .85**** .07 .10 .10  

Time (car) mins -1.41*** .56*** .24 .29 .17   -1.39**** .83**** .25 .35 .35  

Full-time staff      2.30***       2.92*** 

Part-time staff      1.80***       1.15*** 

Daily frequency      .003***       .002*** 

CCTV      .92***       2.85*** 

Car park spaces      .006***       .002*** 

Free car park      .52***       .73ns 

Ticket machine      1.19***       1.04*** 

Toilets      .08ns       .73*** 

1Log normal distributions specified and inverse of variables expected to have negative coefficients entered into model 
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(a) Base model (nearest prob = 1) (b) Model FM1 

Figure 5: Model predictive performance (LATIS) 

4.2  Transferability 
One of the ultimate objectives of this research is to develop a generalised station choice model 
that is readily transferable and has wide applicability, rather than one that is restricted to 
application in the local context in which it was developed. A weakness of the predictive 
performance assessment reported above, is that the models are validated against the sample 
that was used to calibrate them, which can result in an overly optimistic assessment of model 
performance. As an initial step to assess model transferability, the graph in Figure 6 plots the 
parameter estimates along with confidence intervals for model FM2 for both case study areas. 
It suggests reasonable correspondence of many of the parameters, but also identifies 
potentially problematic variables, such as provision of CCTV. This parameter has very wide 
confidence intervals in the LATIS model, and the large standard error may be due to the very 
high proportion of chosen stations (99.8%) that have CCTV installed. This could indicate that 
chosen stations have CCTV because nearly all stations have CCTV (88% of unique 
alternatives in the LATIS dataset), and it may only be a factor that actually influences choice 
for a small number of observations. 

 

Figure 6: Parameter estimates for WG and LATIS model FM2 showing 95% and 99% confidence 
intervals 

In the next step to assess model transferability, the parameters from the LATIS FM2 model 
were used to predict choice in the WG dataset, and vice versa. The predictive performance of 
these models when applied to the alternative dataset are reported in Table 5. The WG model 
performs reasonably well against the LATIS dataset, slightly better than TE17 but not as good 
as FM4. However, the LATIS model does not perform particular well against the WG dataset, 
it is an improvement over the base model but not as good as TE17. 
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5  Conclusions and future work 
This paper has shown that it is possible to calibrate station choice models, using two 
independent datasets, that are suitable for integration into both trip-end and flow rail demand 
models. The models have a very good fit as measured by adjusted R-squared and predict 
station choice substantially better than the base model that assumes the nearest station has 
a probability of one. There is good coincidence in parameter estimates for many of the 
explanatory variables across the two datasets, suggesting that calibration of a transferable 
model may be possible. Transferability has been tested by applying a WG calibrated model to 
the LATIS dataset and vice versa, with somewhat mixed results. Further work is needed to 
identify if problematic variables are having an adverse effect on model transferability, and to 
review poor predictive performance at the level of individual or neighbouring stations with a 
view to identifying shortcomings of the models that can be addressed. There is also scope to 
introduce additional explanatory variables, for example related to land-use characteristics. The 
superior predictive performance of the models compared to the base model, suggests that 
using them to define probabilistic station catchments could significantly improve the accuracy 
of the aggregate demand models that are commonly used in the UK to assess the viability of 
proposed schemes for new stations. Future work will now focus on developing a methodology 
for incorporating probabilistic catchments derived from the station choice models into the rail 
demand models. The accuracy of rail demand models using either deterministic or probabilistic 
catchments will then be compared, ideally under a real-world scenario. 
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