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shown that the distribution of the objects predicted to be on-orbit becomes
log-normal as collisions occur, and that Monte Carlo samples larger than
traditionally used are needed to capture the debris simulation uncertainty.
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1. Introduction

The satellite launches that have taken place to date have led to a build-up
of objects in Earth orbit. The number of derelict objects exceeded that of
operational satellites in the early nineteen-sixties (Johnson, 2005). Approxi-
mately a decade later it was realised for the first time that the space debris
would accumulate in Earth orbits and potentially create more debris through
mutual collisions (Kessler & Cour-Palais, 1978). By early March 2016, the
catalogue of space objects, which can be tracked and whose positions were
made publicly available through Space-Track (2016), had grown to 15 447.

Kessler & Cour-Palais (1978) proposed a situation where accumulation
of objects in orbit would trigger collisions creating new debris that would
lead to more collisions. Such a “collision cascade” is often referred to as
the “Kessler syndrome”. Since this early work, space debris modelling has
been extended to understand how the space debris environment is likely to
evolve and what actions may be needed to ensure the safety of spacecraft
operations in the future. In particular, Liou & Johnson (2008) suggested,
based on the results of LEGEND (LEO-to-GEO environment debris model),
that the number of objects in orbit might keep increasing even if no future
launches take place.

The authors of an Inter-Agency Debris Coordination Committee (IADC)
study (Liou et al., 2013) suggested that aggressive measures should be consid-
ered to stabilise the low-Earth orbit (LEO) environment (Liou, 2011; Furuta
et al., 2014). Removal of large, derelict objects, i.e. active debris removal
(ADR), has been suggested by several authors (Liou & Johnson, 2009; Braun
et al., 2013; McKnight et al., 2014; Furuta et al., 2014; Wormnes et al., 2013;
Pas et al., 2014) as a means to prevent the growth of the number of objects in
the debris environment. If five derelicts that are large in mass and have the
highest, relative to other objects, probability of collision are removed every
year, beginning in 2020, the total number of objects on-orbit is predicted to
be approximately constant over the next 200 years (Liou & Johnson, 2009).
However, the assumptions of the debris models give rise to uncertainties in
the prediction results, which might affect decision-making related to actions
needed to preserve the space environment.

This paper briefly reviews certain space debris modelling approaches that
have been used to date, notably the ones that formed a part of the IADC
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comparison study (Liou et al., 2013). The variability in the results inherent
to this subset of the current debris models, which use a Monte Carlo (MC)
approach to generate statistics of the future debris environment, is high-
lighted and its origins identified. An exemplar scenario was simulated us-
ing the Debris Analysis and Monitoring Architecture to the Geosynchronous
Environment (DAMAGE), the evolutionary debris model developed at the
University of Southampton (Lewis et al., 2001). The relationship between
the shape of the distributions of the number of objects in the Monte Carlo
sample and the number of MC runs in this sample is investigated at four
census epochs. The same analysis is performed for the number of collisions
that occurred in every MC run during the projection, and conclusions are
drawn.

2. Space debris modelling approaches

One of the first space debris models, devised by Kessler & Cour-Palais
(1978) and based on the work by Oepik (1952), used the kinetic theory of
gases to compute the average number of collisions per unit time for the
objects in the debris environment, i.e. the collision rates (Kessler, 1981).
Possibly the most significant assumption made by Kessler (1981) is that the
volume, where the collision probabilities between objects are computed, is
small compared to the uncertainties on the orbits of the objects. In an
extreme case, if this volume is large enough to include all Earth-orbiting
objects, this assumption means that every satellite could collide with any
other. Even if this volume is smaller, it is impossible to predict which objects
are going to be involved in collisions, because the objects could be located
anywhere in the small volumes of space. Therefore, random numbers are
generated and compared to the collision rates to decide which objects collide
in the simulations (Liou & Johnson, 2006). The use of random numbers,
which are also employed to simulate explosions, on-orbit failures etc. (Liou
& Johnson, 2008), gives rise to the fact that the debris models predict a range
of possible evolutions of the number of objects. Hence, these models can be
referred to as semi-stochastic, i.e. some of their elements are stochastic,
e.g. occurrence of collisions, but others deterministic e.g. solar activity
predictions. However, the use of the random numbers to simulate collisions
stems from the fact that the kinetic theory of gases cannot predict the actual
collisions.

Predicting the actual close approaches between objects, and estimating the
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associated collision probabilities based on the uncertainties of their states at
the times of the closest approaches, is impossible on time scales of hundreds
of years. This is because the positions of the objects are subject to orbit de-
termination uncertainties, which grow during propagation (Vallado & Seago,
2009) under the influence of orbital dynamics. Therefore, modelling the evo-
lution of the space debris on such long time scales cannot rely on actual
collision forecasts. Instead, collision rates, computed using approaches based
on the work by Kessler & Cour-Palais (1978), are used. Specifically, two dif-
ferent types of derived debris models are being used today: particles-in-box
(PIB) and three-dimensional semi-stochastic approaches. These models have
been in the development since the 1960s, and the dates of the corresponding
references given herein give more up-to-date descriptions of the used algo-
rithms. The purpose of the remainder of this section is not to review the
history of the debris modelling but to give the Reader an overview of how
the models function.

The PIB models, for example by Farinella & Cordelli (1991), Talent
(1992), Kebschull et al. (2014) or Lewis et al. (2009), describe the evolu-
tion of the number of objects on-orbit (N) with differential equations. This
set of equations expresses the rate of change of N as a function with co-
efficients corresponding to deposition (A), decay (B), and collisions (C) of
objects (Talent, 1992):

dN

dt
= A+BN + CN2. (1)

Integrating Eq. 1, starting at some initial conditions, yields the number of
objects in orbit at the end of the integration period. Fundamentally, the
kinetic theory of gases manifests itself in the CN2 term, which states that
any object can collide with any other. These models were further improved
by, for example, only allowing objects from distinct altitude bins to collide
with each other (Kebschull et al., 2014). However, the assumption of the
kinetic theory of gases has been retained.

The other group of models, i.e. the three-dimensional semi-stochastic
codes, also uses the kinetic theory of gases assumption, however at a different
spatial scale. These models typically examine every object separately and
compute the collision probability for the examined object (target) using the
flux of other objects at that target (Klinkrad, 2006; Bastida-Virgili, 2016;
Liou, 2006). This flux F , in m−2s−1 (or other units of length and time),
is computed by assuming uniform probability of residence of two objects in
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small volumes of space, which uses the kinetic theory of gases assumption
in these volumes (Klinkrad, 2006). Different shapes of these volumes are
used, e.g. Liou (2006) and Lewis et al. (2001) use cubes, Ariyoshi & Hanada
(2009) spheres, and Bastida-Virgili (2016) bins in right ascension-declination-
altitude space. The volumes of space are small relative to the PIB models -
Liou (2006) recommends using cubes with edge length less than 1% of the
average semi-major axis of all the objects (specifically 10 km). However, if
the volumes were increased to include all the Earth orbiting objects, the
particles-in-box model would be recovered (Liou, 2006). When the flux F
is known, the collision probability PC is computed as PC = Fσ∆t, where σ
is the combined cross-sectional area of the objects and ∆t is the time step
(Klinkrad, 2006). To get accurate representation of PC at any point in the
simulation time, ∆t should be equal to the time the objects spend in the small
volume of space. However, the smaller the ∆t, the more computational time
the simulation requires. Thus, due to computational time restrictions, larger
time steps are normally used.

A random number is generated for every conjunction and a collision sim-
ulated if the random number is lower than PC (Liou & Johnson, 2006). The
number of fragments resulting from every collision is then computed using the
NASA Standard Breakup Model (Johnson et al., 2001) or a similar empirical
algorithm. The breakup model introduces randomness into the simulations
through the use of random samples drawn from probability distributions de-
scribing fragment characteristics.

In this study, DAMAGE was used. Collisions in every Monte Carlo run of
DAMAGE, and the corresponding numbers of fragments, are generated based
on random numbers, hence every MC runs is unique. Moreover, close ap-
proaches, for which PC is computed, are found by randomising mean anomaly
of all the objects and identifying pairs of objects that are within a certain
distance threshold from one another while their mean anomaly is being ran-
domised. This introduces further source of variability between different MC
runs.

Currently, the semi-stochastic evolutionary debris models are predomi-
nantly used for international, collaborative studies. Most importantly, only
such models were used in the IADC comparison study (Liou et al., 2013).
These simulation tools are used to probe plausible future scenarios and enable
additional data, e.g the relative effectiveness of various mitigation measures,
to be extracted from the simulations (DoladoPerez et al., 2015; Lewis et al.,
2009). The use of random numbers creates a need for large Monte Carlo
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samples that have to be generated in order to establish statistics about the
expected number of collisions, their severities and the total numbers of ob-
jects in orbit (Liou & Johnson, 2006). Liou & Johnson (2008) suggested that
10 to 40 MC runs are sufficient for this purpose.

Multiple sources of uncertainty, both dependent and independent of the
debris model implementation details, affect the results of such models. These
factors are reviewed by DoladoPerez et al. (2015) and influence the number
of objects in orbit and how well this can be predicted. The uncertain, model-
independent parameters, e.g. the solar activity or the future launch traffic,
can be included in the Monte Carlo analyses as done by e.g. White & Lewis
(2014). From the uncertainty sources, which depend on the assumptions of
the evolutionary debris model in use, orbital collisions have been found to be
the source of the largest variability between different Monte Carlo runs (Liou
& Johnson, 2008; Lewis et al., 2009). Both sets of uncertain parameters mean
that the predictions of the future debris environment generate a distribution
of the possible number of objects in orbit. However, if sufficiently many MC
runs are analysed, these distributions can be established. Research ques-
tions can be answered based on those, for example the relative effectiveness
of various debris mitigation or remediation measures can be compared and
decisions whether to implement any can be taken.

This paper will not investigate the uncertainty in the future prediction of
the number of objects in orbit that arises due to factors independent of the
debris models. Instead, it will focus on the inherent variability in the data
generated by DAMAGE. The algorithms used to simulate collisions imple-
mented in DAMAGE are similar to those used by LEGEND and SDM (Space
Debris Mitigation), but their specifics are different from LEODEEM (LEO
Space Debris Environment Evolution Model), LUCA (Long Term Utility for
Collision Analysis) and DELTA (Debris Environment Long-Term Analysis),
for example (Liou et al., 2013). Even though the details of all the models are
different, the number of objects on orbit in 2209 predicted by them agrees
to within 10% (error relative to the mean of all the models) (Liou et al.,
2013). What is more, collision rate calculation in LUCA is also based on the
work by Oepik (1952) (Radtke et al., 2013), and DELTA also uses flux of the
objects to compute the PC (Bastida-Virgili, 2016). Thus, it is believed that
analysing the variability inherent to DAMAGE is important to understand
the conclusions that can be drawn using other semi-stochastic debris models,
specifically the ones used by the IADC.

The mechanism that leads to large variability between the Monte Carlo
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runs, even if no uncertainty on e.g. the solar activity is simulated, is de-
scribed by Blake & Lewis (2014). Instead of repeating an in-depth analysis
of the origins of this inherent variability, this paper will focus on analysing
its impact on the results of DAMAGE, and thus similar models. It will also
quantify the uncertainty of the predictions of the number of objects in orbit
and the number of collisions in one specific scenario, which was also used in
the IADC comparison study.

3. Future number of objects in orbit

In order to understand how many Monte Carlo runs are needed to generate
a large enough sample, which enables the variability of the used debris model
to be captured reliably, a Monte Carlo projection using 25 000 runs was
carried out. This number of MC runs was at least 90 times greater than used
in the IADC comparison study (Liou et al., 2013) (at most 275 runs were used
in the quoted study). DAMAGE was used to study the possible outcomes of
implementing strict debris mitigation measures, which is one of the commonly
considered options to reduce the growth rate of the number of objects in orbit.
The settings for this “mitigation only” scenario are summarised in Table 1.
They are based on the settings used to generate the DAMAGE projection
for the IADC comparison study (Liou et al., 2013). One notable difference
between the DAMAGE settings and other projections in the study by Liou
et al. (2013) is the simulation of the post-mission disposal compliance rate.
Here, the 90% compliance was applied to all spacecraft in LEO, whereas
other models in the IADC comparison study applied it to only the payloads
with nominal lifetimes greater than 25 years. Despite this difference, the
increase in the number of objects by 2209 predicted with DAMAGE agreed
to within 10% with respect to the mean of all the models (Liou et al., 2013).
The only modification that was made to the “mitigation only” scenario used
here, which was not included in the work by Liou et al. (2013), was simulation
of collision avoidance by active spacecraft. This is to say that for the first
8 years in orbit, i.e. during their operational lifetimes, spacecraft could not
be involved in collisions. Inclusion of this debris mitigation measure reduces
the mean number of objects in 2209 by 6.1% and the number of catastrophic
collisions observed over 200 years by 13.3% when compared to implementing
all other debris mitigation measures, which were included in the work by Liou
et al. (2013) (Lewis et al., 2012).

The evolution of the number of objects larger than 10 cm obtained by
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Figure 1: Evolution of the number of objects larger than 10 cm in the Monte
Carlo sample for the “mitigation only” scenario, summarised in Table 1.
Showing the number of objects in a given fraction of the Monte Carlo runs,
centred on the median. Mean of the sample is also shown. The scenario was
simulated using 25 000 MC runs.

projecting the “mitigation only” scenario from Table 1 is shown in Fig. 1;
in order to represent the evolution of the probability density in the entire
MC sample over time, different fractions of the runs, centred around the
median, were plotted. Several statistical parameters, describing the shape of
the distribution of the number of objects at the end of the projection (in the
end of 2213), are summarised in Table 2.

The mean number of objects increases. The same behaviour was observed
by Liou et al. (2013). However, considerable spread away from the mean can
be observed in Fig. 1, which was also observed by Liou & Johnson (2008). In
9.5% of the cases, the number of objects did not increase by the end of the
projection period c.f. the initial population size. This means that, under the
launch traffic, solar activity and post-mission disposal (PMD) compliance
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Table 1: Simulation settings for DAMAGE used in an IADC comparison
study, which followed the previous study by Liou et al. (2013), and in this
work. The scenario is titled by the name it is referred to in text and in
figures. It is supposed to investigate the outcome of trying to preserve the
debris environment by not polluting it any further, i.e. good compliance with
debris mitigation.

Parameter “Mitigation only”

Fraction of all LEO
objects that comply with

post-mission disposal
guidelines

90%

Simulation start epoch 1 Jan 2013
Simulation end epoch 31 Dec 2213

Modelled launch traffic Repeated 2005-2012 launch traffic

Modelled solar activity
Repeated average pseudo-sinusoidal

cycle, details given in (Lewis &
Horbury, 2013)

Modelled objects
Objects larger than 10 cm from

MASTER 2013 reference population
Conjunction threshold

distance

√
300 ≈ 17.32 km

Time step at which close
approaches are found to

simulate collisions
5 days

Spacecraft operational
lifetime

8 years
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Figure 2: Cumulative histogram showing the fraction of the MC runs where
the number of objects in 2213 (end of the projection) was less than a given
value. Also showing the mean of the MC sample at that epoch, and the
initial number of objects in 2013. “Mitigation only” scenario from Table 1.

assumptions, mitigation only would be sufficient to prevent the increase in
the number of objects in orbit. Notably, the mean of the sample is always
above the median, which is in the middle of the lightest-blue region in Fig. 1.
Figure 2 shows that for 53.0% of the Monte Carlo runs, the number of objects
at the end of the projection was less than the mean, which was 20 267 objects.

The large variability in the MC sample raises concerns whether sufficiently
many Monte Carlo runs were used to reliably capture the possible future
distribution of the objects. If the number of Monte Carlo runs was sufficient,
the distribution of the number of objects should not change if more MC runs
are added into the sample.

Liou (2008) and White & Lewis (2014) compared the mean numbers of
objects obtained with various Monte Carlo sample sizes to the means ob-
tained with samples consisting of 200 projections. In their analyses, there

10



Table 2: Statistical parameters of the distribution of objects larger than
10 cm in the Monte Carlo sample of 25 000 runs in 2213. “Mitigation only”
scenario from Table 1.

Distribution parameter Value

Mean (no. objects) 20 267
Median (no. objects) 20 019

Variance (no. objects2) 11 402 561
Skewness (unitless) 0.4727
Kurtosis (unitless) 0.3080

was a probability of over 85% that 10 to 40 MC runs were sufficient to yield
a mean number of objects within 10% of the mean of the 200 MC runs (Liou,
2008). However, no analysis has been performed to ascertain whether this
reference mean was reliable, i.e. whether the empirical distribution used
in the Monte Carlo bootstrap method was accurate (DeGroot & Schervish,
2014).

Similarly, no data have been presented that would show how other pa-
rameters of the distribution of the future projections vary with the number
of Monte Carlo runs in the sample. This is important because “mitigation
only” may be sufficient to prevent the growth of the objects in orbit. Ensur-
ing that the distribution of the future projections is well captured by the MC
sample will enable the possible outcomes of “mitigation only” to be assessed
meaningfully. Providing the uncertainty information to the decision mak-
ers will make it possible for them to trade off considerable costs (financial,
political etc.) of performing space debris remediation against implementing
imperative and stricter mitigation measures, for example.

4. Sufficient number of Monte Carlo runs

The data about the number of objects larger than 10 cm in 2213 from the
“mitigation only” scenario in Table 1 were analysed. The relationship be-
tween the shape of the final distribution of the number of objects in the Monte
Carlo sample and the number of runs in this sample was investigated. The
analysed shape parameters were the arithmetic mean, variance, skewness,
kurtosis, and median. These are the first four moments of the distribution
that can be used to describe its shape, as well as the value that divides the
probability space in two halves (DeGroot & Schervish, 2014). Here, the value
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of the kurtosis of the normal distribution was zero, i.e. Fisher kurtosis was
computed (Scipy-Stats, 2015).

The bootstrap technique identical to that by Liou (2008) was used, how-
ever with all the mentioned statistical parameters of the distribution, not
only the MC mean. Varying numbers of Monte Carlo runs were used as
the complete sample, starting at 10 and finishing at 25 000 with increments
of 50. For each MC sample size, the individual MC runs were randomly
selected from the pool of 25 000 and the mentioned statistical parameters
of the distribution recomputed. This random selection was repeated 2000
times, thus giving distributions of the shape parameters for every sample
size. Percentiles of these distributions were computed, the MC sample size
was incremented and the process repeated until all desired sample sizes were
investigated.

The hypothesis of this investigation is that when a sufficient number of
MC runs is present in the sample, the individual runs should not significantly
affect the distribution of the number of objects. Consequently, each of the
shape parameters should reach a steady, distinct value when the number
of MC runs is large enough. The evolution of the mean number of objects
with the number of Monte Carlo runs in the sample is shown in Fig. 3. The
variations of the median and variance are given in Fig. 4, whereas Fig. 5
shows how the skewness and kurtosis of the distribution depend on the size
of the sample.

More Monte Carlo runs were needed to estimate the higher-order moments
of the distribution than the mean. Sample size of 60 MC runs was needed for
the means of all of the 2000 random selections of the MC runs to be within
10% of the mean estimated using 25 000 runs. 60 MC runs were needed to
estimate the median with the same precision. Sample sizes of 3560, 16 060
and 23 960 runs were needed to ensure that variance, skewness and kurtosis
were within 10% of the value estimated using 25 000 runs.

Skewness shown in Fig. 5a can be both positive and negative for Monte
Carlo samples smaller than approximately 400 runs. This means that, with
such sample sizes, it is impossible to discern whether the distribution of
the number of objects has a tail (outlying runs) above or below the mean
(DeGroot & Schervish, 2014). At least 410 MC runs were needed to ensure
that the skewness wasf non-negative.

The same bootstrap technique was performed but population snapshots
were examined at different census epochs. The results of this study are pre-
sented in Table 3. Means and medians of the Monte Carlo samples could
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always be estimated with relatively small samples of 60 runs, which con-
firms the findings of other authors (Liou & Johnson, 2006). There is a clear
trend in more MC runs being required to estimate the higher orders of the
distribution at all the investigated census epochs, which corroborates the
findings of the analysis of the distribution in 2213. More MC runs were
needed to estimate the sample skewness and kurtosis at census epochs later
than 2063. However, more runs were needed to estimate the sample variance
in 2063 than at later census epochs. These relationships between sample
sizes required to reach a given level of precision and census epochs may not
be definitive because only four census epochs were analysed. A sensitivity
study to the location of the census epochs and the number of repetitions in
the bootstrap would need to be performed in order to enable drawing binding
conclusions on the relationship between the minimum sample size and the
length of the projection. This was not performed due to computational time
restrictions, as discussed in Section 7. However, the relationship between the
sample size, census epoch, and precision of estimating different moments of
the distribution will be qualitatively discussed in Section 7

Several conclusions may be drawn from the presented investigation. Firstly,
the findings of Liou & Johnson (2006) were corroborated and similar numbers
of MC runs were needed to estimate the means of the MC samples with 10%
precision. However, more Monte Carlo runs were needed to estimate higher
moments of the distribution, i.e. variance, skewness and kurtosis, with the
same precision. Also, the higher the precision on the given distribution pa-
rameter is required, the more MC runs are needed. The Monte Carlo sample
should be large enough so that the probability density in its tail is low, in
order to avoid situations where one additional run with a large final number
of objects will change the parameters of the distribution. Lastly, the skew-
ness of the distribution was found to be positive. This indicates that the
distribution of the number of objects is not normal, which is investigated in
more detail in Section 5.

5. Analysis of the final distributions

The positive skewness shown in Fig. 5a indicates that this distribution of
the number of objects has a tail above the mean. In other words, the MC runs
with the highest final number of objects are further away from the mean of
the distribution than the runs with the fewest objects. This is also visible in
Fig. 1, which shows that certain MC runs had over twice as many objects as
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Figure 3: Variation of the arithmetic mean of the number of objects in the
MC sample of the “mitigation only” scenario from Table 1 at the end of the
projection (2213) with the sample size. Monte Carlo runs corresponding to
the given sample size were randomly selected 2000 times, and the indicated
percentiles of the distribution computed for every sample size. Also showing
the value obtained with 25 000 MC runs, ±10%.
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Figure 4: Variation of the median and variance of the number of objects in
the MC sample of the “mitigation only” scenario from Table 1 at the end of
the projection (2213) with the sample size. Monte Carlo runs corresponding
to the given sample size were randomly selected 2000 times, and the indicated
percentiles of the distribution computed for every sample size. Also showing
the value obtained with 25 000 MC runs, ±10%.
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Figure 5: Variation of the skewness and kurtosis of the number of objects in
the MC sample of the “mitigation only” scenario from Table 1 at the end of
the projection (2213) with the sample size. Monte Carlo runs corresponding
to the given sample size were randomly selected 2000 times, and the indicated
percentiles of the distribution computed for every sample size. Also showing
the value obtained with 25 000 MC runs, ±10%.
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Table 3: MC sample size required to estimate a given parameter of the
distribution of the number of objects with precision of 10% w.r.t. 25 000
runs at different census epochs. “Mitigation only” scenario from Table 1.
The MC sample sizes are estimated to within 50 runs.

Distribution parameter
Census epoch

2063 2113 2163 2213

Mean 60 60 60 60
Median 60 60 60 60
Variance 4260 3260 3460 3560
Skewness 13510 14260 14860 16060
Kurtosis 22160 23160 24010 23960

the mean, whereas none of the runs had half the number of objects. Finally,
more MC runs had the number of objects below than above the mean, as
can be seen in Fig. 2.

This raises a question about how the uncertainty in the results should be
represented. If the distribution is not normal then using mean and standard
deviation to represent the results, as is commonly done (Liou & Johnson,
2006; DoladoPerez et al., 2015; Radtke & Stoll, 2016), may not convey all
the uncertainty information. The final distribution of the number of objects
was therefore analysed further.

The normal probability plot of the final distribution of the number of
objects in the Monte Carlo sample is shown in Fig. 6. The distribution is
not normal, i.e. it is not a straight line on the normal probability plot in
Fig. 6 (R = 0.9937). The presence of a tail above the mean suggests that the
distribution might be log-normal, thus the probability plot for this type of
distribution was created and is shown in Fig. 7. The distribution has a higher
correlation (R = 0.9999) on this probability plot, thus it is more likely that
the distribution is log-normal than normal (DeGroot & Schervish, 2014).

A physical explanation for this phenomenon is that several large collision
events close to the final simulation epoch or at high altitudes are sufficient
for the number of objects in a given Monte Carlo run to be high. On the
other hand, it is difficult for the number of objects to be low. This requires
collisions to occur only at low altitudes, where the atmospheric drag is high
enough to cause the resulting debris to decay by the end of the simulation, or
for all the collisions to generate few fragments. The presence of outliers with
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Figure 6: Probability plot of the number of objects larger than 10 cm in the
MC sample at the end of the projection (2213). Compared to theoretical
normal distribution and showing how well the data match the assumed dis-
tribution. “Mitigation only” scenario from Table 1 projected with 25 000
Monte Carlo runs.

a high number of objects will increase the mean of the sample and place it
above the median. This means that the probability density below the mean
is higher than at the mean. Thus, there is a higher probability that the
number of objects will be lower than the mean, rather than higher (53.0% of
the Monte Carlo runs had fewer objects than the mean in this study).

6. An alternative figure of merit

The previous discussion in this paper analysed the distributions of the
numbers of objects ≥ 10 cm passing through the LEO region. This is consis-
tent with the way the results of evolutionary debris models were presented
e.g. in the IDAC comparison study (Liou et al., 2013). It was investigated
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Figure 7: Probability plot of the number of objects larger than 10 cm in the
MC sample at the end of the projection (2213). Compared to theoretical
log-normal distribution and showing how well the data match the assumed
distribution. “Mitigation only” scenario from Table 1 projected with 25 000
Monte Carlo runs.
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whether using a different figure of merit describing the evolution of the de-
bris environment would require as many MC runs to reliably capture the
distribution across the Monte Carlo sample, which could offer computational
time savings for future studies. The number of catastrophic collisions that
took place over 200 years in every MC run was found. This distribution of
the number of collisions that occurred until 2213 is shown in Fig. 8. The
distribution does not have considerable tails above or below the mean. This
means that the underlying distribution could not be log-normal, unlike the
distribution of the number of objects in 2213. To test the type of the under-
lying distribution, probability plots were created to compare the empirical
distribution of the number of catastrophic collisions in the MC sample to
normal and log-normal theoretical distributions, and are shown in Fig. 9.
Both theoretical distributions appear equally likely with R = 0.9961 for nor-
mal and R = 0.9960 for log-normal. The fact that the mean (33.56) obtained
with 25 000 MC runs was higher than the median (33.0) suggests that the
distribution could be log-normal. However, this is not as profound as in the
case of the number of objects.

To ensure that the MC sample was large enough to correctly represent the
number of collisions, a bootstrap study identical to that from section 4 was
undertaken and the results are shown in Fig. 10. As before, more runs were
needed to estimate the higher orders of the distribution. 60 and 110 MC runs
were sufficient for the mean and the median to converge within 10% of the
value obtained with 25 000 MC runs. For variance, skewness and kurtosis
the sample sizes that gave the same precision were 3860, 19360 and 24 360,
respectively.

Median number of collisions was varying between 25.5 and 43.0, and all
the permutations of the MC runs reached the median of 33.0 with sample size
of 6510 runs. 75% of all the bootstrap permutations reached this value with
sample sizes of 1060 runs. The remaining 25% of permutations were outliers
with medians of 32.0 and 34.0. The presence of these outliers manifests itself
as “spikes” and “plateaus” in Fig. 10. Such variation can also be seen in
all other bootstrap plots presented here, it is only the scale of the median
plot that amplified this variability for this parameter. Such variability is to
be expected, and it is the reduction in this variability that the bootstrap
technique aims to demonstrate as the MC sample increases. The fact that
this variability reduced in the bootstrap on the median number of collisions
as the sample size increased, signifies that this bootstrap was performed
correctly.
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Figure 8: Histogram of the number of catastrophic collisions that occurred
until 2213. “Mitigation only” scenario from Table 1 projected with 25 000
Monte Carlo runs.

Overall, using the number of catastrophic collisions to, for example, com-
pare different debris mitigation measures does not appear to offer any com-
putational time savings over examining the number of objects ≥ 10 cm. This
is because similar sizes of the Monte Carlo samples (same order of magni-
tude) were needed to achieve the same level of precision with respect to the
distribution parameters obtained with 25 000 Monte Carlo runs in both cases.

7. Discussion

The uncertainty in the number of objects in orbit may not have been well
captured by previous space debris environment studies due to their relatively
small MC sample sizes. This does not need to be the case if the number of
runs in those studies happened to give a precise representation of the final
distribution of the number of objects. However, this cannot be guaranteed
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Figure 9: Probability plots of the number of catastrophic collisions that
occurred until 2213. Comparing the empirical distribution to assumed theo-
retical log-normal and normal distributions. “Mitigation only” scenario from
Table 1 projected with 25 000 Monte Carlo runs.
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sample size. “Mitigation only” scenario from Table 1, details given in text.
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with such small samples. Moreover, smaller Monte Carlo samples may not
accurately represent the probability density of the number of objects, even
if the parameters of the distribution are accurately estimated.

It cannot be guaranteed that the distribution of the number of objects
obtained here would not vary if more the 25 000 Monte Carlo runs were used.
The uncertainty on the value of the obtained moments of the distribution is
the larger the higher the order of the moment of the distribution. However, as
shown in Fig. 11, the variation in the mean, median, variance and skewness
reduced considerably when more than 500 runs were already present in the
sample, c.f. Fig. 3, Fig. 4, and Fig. 5. However, 24 983 out of 25 000 MC runs
were needed to estimate kurtosis of the number of objects with precision of
10%. The results of this bootstrap on kurtosis with sample sizes from 24 900
to 25 000 MC runs are shown in Fig. 12. The distributions of kurtosis are
well within the upper precision bound even for smaller samples, but they
have a tail below the mean value, which extends to approximately the lower
precision bound. This demonstrates that more runs might be needed to
ensure the distribution of kurtoses is narrower, i.e. does not have a prominent
tail. Similarly, a bootstrap on the number of random MC runs selected for
every sample size would be necessary to ensure that the distributions of the
shape parameters are captured reliably. However, it is the distribution of the
number of objects at the census epoch that is of prime interest. As shown in
Fig. 13 and Fig. 14, the probability density in the tails of the distributions
obtained with 25 000 MC runs were relatively low at all census epochs. Thus,
it is extremely unlikely that larger outliers, which could change the shapes
of the distributions, would be encountered if a larger sample was used. This
is because the probability of generating such runs is very low, albeit non-
zero. Therefore, the distribution of the number of objects is believed to be
well captured, but the recommended sample sizes to reach a given level of
precision should be used as a guideline only.

The uncertainty about the parameters of the distributions of the number
of objects obtained here also extends to classification of these distributions as
log-normal rather than normal. However, in this case, a physical phenomenon
was identified that would give rise to such a behaviour of the number of
objects. Also, several premises, hinting at the type of the distribution, were
identified and thus it is believed that the distribution is log-normal. However,
the nature of the distribution changes with the length of the projection.
Every Monte Carlo run has the same initial number of objects, i.e. the
initial distribution is uniform. Collisions need to occur in the MC runs for
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the tail above the mean to appear and the distribution to become log-normal.
Collisions are simulated based on random numbers and thus the earlier the
census epoch, the fewer collisions have taken place in the MC sample and
the less log-normal the distribution could be.

However, collisions do occur early in the projection in certain MC runs.
By 2063, enough collisions took place to increase the number of objects in
those runs considerably above the mean, as can be seen in Fig.14b. The max-
imum number of objects in 2063 was 33 367, i.e. only 17% different than the
maximum number of objects recorded in 2213 (39 068). These outlying runs
increased the variance of the sample shortly after the start of the projection.
They also made the distribution asymmetric, with few outlying runs being
present in the tail, which was associated with high skewness and kurtosis at
the beginning of the projection. When collisions took place in the rest of the
MC runs in the sample, more MC runs had a large number of objects, the
distribution became less asymmetric and so the the skewness and kurtosis
decreased, as shown in Table 4. This evolution of the tail of the distribution
can also be observed by comparing all the subplots in Fig. 13 and Fig. 14.
Because the probability density in the tail was low in 2063, many MC runs
were needed to estimate the variance of the sample at that epoch, which was
reported Section 4 (the probability of generating runs with a high number
of objects was low). For later census epochs, the distribution was less asym-
metric with a less distinct peak, and so fewer runs were needed to estimate
the sample variance (probability of generating MC runs with a large number
of objects was higher). More runs seem necessary to estimate skewness and
kurtosis of the distribution at later census epochs, which was also reported
in Section 4. However, the variability between the sample sizes needed to
reach a given level of precision for these moments of the distribution was
lower than in case of variance, and so this trend could have been an artefact
stemming from the location of the census epochs. Variance varied by 31%
between the different census epochs analysed in Section 4, whereas skewness
and kurtosis varied by 19% and 8%, respectively. The location of the census
epochs definitely affected the behaviour observed for variance. Still, a MC
run with a relatively large number of objects, which would increase the sam-
ple variance, could appear arbitrarily close to the beginning of the projection.
Because the probability of generating such runs is low, large MC samples are
needed to estimate the sample variance even for projections shorter than
200 years.

The variability in the results presented here was only present due to the
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Table 4: Variance, skewness and kurtosis obtained with 25 000 MC runs at
different census epochs. “Mitigation only” scenario from Table 1.

Distribution parameter
Census epoch

2063 2113 2163 2213

Variance (no. objects2) 5.87E6 8.05E6 1.08E7 1.14E7
Skewness (unitless) 0.83 0.62 0.53 0.47
Kurtosis (unitless) 1.05 0.55 0.33 0.31

differences in the number of collisions in different MC runs, as well as their
epochs and resulting numbers of fragments. This is to say that the pre-
sented results follow a simplified scenario, which does not account for all
the uncertainties affecting predictions of the future space debris population
(DoladoPerez et al., 2015). That being said, the investigated scenario is the
one on which the discussion regarding e.g. space debris remediation is based
(Liou et al., 2013). Therefore, investigating the uncertainty in the results of
this scenario is of particular importance.

8. Conclusions

It was shown that at most 60 Monte Carlo runs of space debris simulations
are sufficient to estimate the mean number of objects in orbit with precision
of 10%. This is consistent with the findings of previous studies.

Previous space debris studies used means of the Monte Carlo samples to
present the results, sometimes accompanied by standard deviation bands. It
was shown here that the distribution of the number of objects in 2213 and
earlier census epochs is most likely not normal. Therefore, means with stan-
dard deviations may not convey the information needed in decision making
relating to the management of the debris environment, because they do not
closely represent the underlying probability density function (Wisniewski,
2009). Associated with this nature of the distribution is the fact that it is
more probable that the number of objects in orbit will be below rather than
above the mean.

It was shown that Monte Carlo samples larger by orders of magnitude
than traditionally used are needed to represent the uncertainty in the final
distributions of the number of objects as well as the number of catastrophic
collisions, even for projections shorter than 200 years. No definite minimum
size of the sample can be recommended, however. Certain investigations, e.g.
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scenario from Table 1, details given in text.

27



24900 24920 24940 24960 24980 25000

No. MC runs

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

0.34

K
u
rt
os
is
of

th
e
fi
n
a
l
n
u
m
be
r
of

ob
je
ct
s 100.0%

75.0%

50.0%

25.0%

25k MC runs

25k MC runs ±10%

Figure 12: Variation of the kurtosis of the number of objects in the MC
sample of the “mitigation only” scenario from Table 1 at the end of the
projection (2213) with the sample size. Showing the largest sample sizes
that were examined. Monte Carlo runs corresponding to the given sample
size were randomly selected 2000 times, and the indicated percentiles of the
distribution computed for every sample size. Also showing the value obtained
with 25 000 MC runs, ±10%.

28



10000 15000 20000 25000 30000 35000 40000
Number of objects > 10 cm

0.00000

0.00005

0.00010

0.00015

0.00020
P
ro
ba
bi
li
ty

d
en
si
ty

of
M
C
ru
n
s

Assumed log−normal distribution Mitigation only

(a) 2213

10000 15000 20000 25000 30000 35000 40000
Number of objects > 10 cm

0.00000

0.00005

0.00010

0.00015

0.00020

P
ro
ba
bi
li
ty

d
en
si
ty

of
M
C
ru
n
s

Assumed log−normal distribution Mitigation only

(b) 2163

Figure 13: Histograms comparing the Monte Carlo sample distributions of
objects larger than 10 cm in 2213 and 2163 to the assumed theoretical log-
normal distributions. “Mitigation only” scenario from Table 1 projected with
25 000 Monte Carlo runs.
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Figure 14: Histograms comparing the Monte Carlo sample distributions of
objects larger than 10 cm in 2113 and 2063 to the assumed theoretical log-
normal distribution. “Mitigation only” scenario from Table 1 projected with
25 000 Monte Carlo runs.
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comparing one mitigation strategy to another, may be carried out based on
samples using only tens of MC runs. Others, bearing larger consequences,
e.g. making decisions whether to implement active debris removal, require
larger samples to ensure that the uncertainty in the results is well captured.
It is recommended to carry out bootstrap analyses on higher orders of the
distribution, not only on the mean as done thus far. One should also examine
the probability density at the largest outliers in the sample and be satisfied
that probability of generating even larger outliers is as close to zero as deemed
appropriate for the analysis at hand.

It should be appreciated that active debris removal may be unnecessary to
halt the increase of the number of objects in orbit. In order to make a decision
about implementing ADR, the uncertainty in the outcome of performing or
not performing ADR should be taken into account. In order to do this, ADR
should be simulated such that the distribution of the number of objects in
orbit is reliably captured, and compared to this (or a similar) study where
ADR is not implemented.

If certainty about whether or not to perform any actions cannot be ascer-
tained with traditionally used small MC samples, even less can presumably
be inferred regarding the specific details of the policies or actions needed.
For example, it is unlikely that decisions about how many objects should
be removed from the environment, which ones and in what order, can be
relied upon fully if they do not use Monte Carlo samples larger than were
traditionally used.

Overall, it is recommended that the way in which space debris simulation
results are presented is revised to incorporate the uncertainty information in
an easy to understand manner, e.g. by quoting the probability that a given
action will achieve a certain result (Wisniewski, 2009). This uncertainty
should also be appreciated by policy makers and actors with authority to
shape the future of the space debris environment. However, in order to have
confidence in the uncertainty estimated using current evolutionary debris
models, larger Monte Carlo samples are needed.
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