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Abstract—In the context of Distributed Joint Source-Channel coding
(DJSC), we conceive reduced-complexity Turbo Trellis Coded Modulation
(TTCM)-aided syndrome-based block decoding for estimating the cross-
over probability p. of the Binary Symmetric Channel (BSC), which
models the correlation between a pair of sources. Our joint decoder
achieves an accurate correlation estimation for varying correlation
coefficients at 3 dB lower SNR, than conventional TTCM decoder, despite
its considerable complexity reduction.

Index Terms—Distributed Joint Source-Channel coding, Slepian-Wolf
Coding, Distributed Source Coding, Turbo Trellis Coded Modulation,
Syndrome Decoding.

I. INTRODUCTION

Distributed Source Coding (DSC) refers to the problem of com-
pressing several physically separated, but correlated sources, which
are unable to communicate with each other by exploiting that the
receiver can perform joint decoding of the encoded signals [I]].
The Slepian-Wolf (SW) theorem [2] has laid down the theoretical
foundations of DSC through specifying the achievable rate regions
of the correlated sources {b1} and {b2 }. Upon their separate encoding
and joint decoding, the SW theorem [2] specifies the achievable
compression rate regions for noiseless channel transmission as:
Ry > H(bl‘bz), Ry > H(bz‘bl) and Ry + R2 > H(bhbg),
where H (b1|b2) and H(b1,b2) denote the conditional and joint
entropies, respectively. Remarkably, this bound is identical, regardless
whether joint encoding is used, i.e. regardless of where the joint
processing takes place. Thus, applying techniques in wireless sensor
networks, for example, has led to a new processing paradigm,
where the potential computational complexity has been moved from
the battery-limited sources to the central decoder connected to the
mains supply [[1]]. However, Distributed Joint Source-Channel coding
(DJSC) is specific to the practical case, when the correlated source
signals are transmitted over noisy channels.

Since the correlation between the sources may be interpreted
as the ameliorating effect of a “virtual” error channel, powerful
channel codes such as Low-Density Parity-Check (LDPC) codes
and turbo codes are capable of achieving a significant performance
enhancement in DJSC design [1]]. For example, a practical DJSC
scheme using an LDPC code was proposed in [1], whereas turbo
codes were considered in [3]. Recently the bandwidth-efficient Turbo
Trellis Coded Modulation (TTCM) was invoked in [4]]. The TTCM
code advocated was designed for our DJSC scheme since it con-
stitutes a bandwidth-efficient scheme that incorporates both coding
and modulation functions without extending the bandwidth, where the
parity bits are absorbed without any bandwidth expansion by doubling
the number of constellation points. By contrast, separate channel
codes, such as turbo and LDPC codes, impose a bandwidth expansion
for accommodating the parity bits. An error trellis-based Block
Syndrome Decoder (BSD) (TTCM-BSD) was designed for TTCM
in [5], where the state probabilities of the trellis directly depend on
the channel errors, rather than on the coded sequence. Hence, for
high SNRs or for highly correlated sources, the syndrome decoder
would be more likely to experience a syndrome of all zeros because
of the predominantly near-error-free transmissions. The BSD divides
the received sequence into erroneous and error-free blocks according
to their syndrome, and only the erroneous blocks are decoded by the
BSD decoder, while a straightforward symbol-to-bit hard-demapper
would be applied to the error-free blocks. In comparison to the

conventional TTCM decoder, the TTCM-BSD of [5] was capable
of achieving in excess of 20% complexity reduction at high SNRs.

Blind online estimation of the cross-over probability peﬂ at the
Base Station (BS) still remains a persistent challenge in the practical
design of DJSC schemes, since the correlation coefficient p = 1—2p.
tends to vary over both space and time [6]]. Additionally, at the
BS the information exchanged between the decoders of each user
has to be updated with an accurate p., since its inaccuracy would
mislead the joint decoder, hence potentially inflicting catastrophic
error propagation during the iterative decoding process. Several
solutions have been proposed for addressing this issue, such as
for example that in [[7] were the (Log Likelihood Ratio) LLRs of
the LDPC decoder corresponding to the syndrome bits were used
for estimating highly correlated sources having p > 0.95. On the
other hand, an Expectation Maximization (EM) based decoder was
proposed in [8] where a Maximum-Likelihood (ML) based search
was used for finding an accurate initial estimate. Furthermore, an
Expectation Propagation (EP) based estimator was introduced in [9].
The schemes of [8]], [9] were invoked for handling both weak and
strong correlation scenarios. However, all of the above-mentioned
three schemes [[7]—[9]] considered relying on perfect side-information
DSC, while in this work we consider more practical DJSC scenario,
where both user signals are transmitted over uncorrelated Rayleigh
fading Multiple Access Channel (MAC).

Against this background, we propose a Distributed Joint Source
and TTCM (DJSTTCM) coded scheme relying on the reduced-
complexity BSD decoder of [5]], for transmission over Rayleigh fading
MAC. Additionally, our iterative decoder is capable of accurately es-
timating the time-variant cross-over probability pe, hence enhancing
the attainable Bit Error Ratio (BER) performance of the scheme.
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Fig. 1: Schematic diagram of the DJISTTCM scheme when commu-
nicating over uncorrelated Rayleigh fading MAC. The notation L(-)
denotes the Log-Likelihood Ratio (LLR) while the subscripts a and e
represent the a priori and extrinsic nature of the LLRs, respectively.

The schematic of our proposed DISTTCM system is depicted in
Fig. |I| where the binary sources {b1,;} , and {b2;}.\, differ by
the noise process {ei}f\; 1> where N is the length of each source
block. The noise process is constituted by a BSC realization of a

Bernoulli distributed random variable E associated with the parameter

Ipe is the cross-over probability when using the Binary Symmetric Channel
(BSC) model, while the correlation coefficient p signifies the correlation
between the sources and can be estimated as: p = 1 — 2pe.



pe € [0,0.5] (E ~ B(pe)), s.t. ba; = b1; @ e; with a probability
of Pr(b1) # Pr(b2) = pe. Each user will encode its information
sequence using TTCM at a coding rate of Rem = 37 and an
2m+1 — M-level PSK/QAM modulation scheme. Both TTCM-coded
sequences, namely {cu}f{:l and {02,1}5(:1 associated with K =
N - (1/Recm), will be mapped onto the corresponding modulated
symbols {z1} and {z2}, respectively, before transmission over an
uncorrelated Rayleigh fading MAC ﬂ Note that {1} and {z2} are
complex-valued phasors that represent the (m + 1)-bit transmitted
codewords {c1} and {c2}, which can be obtained using the p(-)-
QAM/PSK mapping function.

Our transmission scenario might be interpreted as an Space-
Division Multiple Access (SDMA) [10]] system that support L users,
each of whom is equipped with a single antenna, while the BS has P
receive antennas. Thus, the signal y received at the BS is a (P x 1)-
element vector, which can be written as:

y=Hx +n, (1)

where H is an (P x L)-element channel matrix, while x is a (L X 1)-
element transmitted signal vector and n is an (P x 1)-element noise
vector with a zero mean and a variance of Ny/2 per dimension.
In order to avoid the computational complexity associated with
Maximum Likelihood (ML)-based Multi-User Detector (MUD), we
opted for the low-complexity linear Minimum Mean-Square Error
(MMSE)-based MUD [lOﬂ The MMSE-detected signal can written
as:

Zmmse = Wrﬁ-nsey
_ (HHH n N()Ip) B Hx
+ (HHH+ NOJP)AHHn, @)

where HY is the Hermitian transpose of the channel matrix, while
Ip is an (P x P)-element identity matrix. The performance of a
specific user can be further improved by successively cancelling the
off-diagonal (HHH + ]\70113)71 HY”H element in the left part of
Eq. corresponding to the other user. Thus, we implemented the
low-complexity MMSE-assisted Successive Interference Cancellation
(SIC) MUD of [10, Section 8.3].

A. Joint Source-Channel Decoder
As seen in Fig. [T} our decoder employs two different iterations,
namely:

o Inner Iteration (/iy): is the iteration between the two TTCM-BSD
decoders, in which the correlation is exploited by exchanging
the extrinsic LLRs.

o Outer Iteration (Ioy): is the iteration between the MUD and
BSD-TTCM decoders, which aims for combating the deleterious
effects of channel fading by exchanging the extrinsic probabili-
ties.

Similar to the TTCM decoder [11]], each of the BSD-TTCM de-
coders of Fig. [T] consists of two parallel concatenated syndrome-
based TCM MAP decoders. Fig. [2] shows the schematic of one
of the two constituent decoders of the BSD-TTCM decoder. First,
the k™ received symbol associated with our BSD-TTCM decoder’s

2Neither of the TTCM-coded sequences - namely neither {c1} nor {ca}
- is punctured, since we aim for investigating the performance of our joint
decoder in terms of both complexity reduction as well as cross-over probability
estimation. Further details on the rate-region analysis can be found in [3].

3All possible ML combinations of the transmitted symbols have to be
considered when using the ML detector. By contrast, only M - L combinations
are invoked for the MMSE MUD, where M is the number of the constellation
points.

output is hard-demapped onto the nearest constellation point of the
corresponding transmitted symbol zj, yielding the hard-demapped
symbol 7. Recall that in the TTCM scheme, the odd and even
symbols are punctured for the upper and lower TCM encoders,
respectively [11]]. Accordingly, the parity bits associated with the
punctured hard-demapped symbols are set to zero. Next, a pre-
correction sequence ¢ is needed for updating any predicted errors
in the hard-demapped sequence, where this sequence is set to zero
during the first iteration. Then, the syndrome s is computed for
estimating the corrected symbol stream r with the aid of the syndrome
former matrix H” as [5]:

s=rH" , 3)

where each bit of the corrected symbol stream 7, is related to both
U and ¢ as [5[:

rE = Uk D ek, 4)

where 7y, §x and ¢ are represented by (m + 1) bits.

The syndrome sequence is then analysed in order to split the
received sequence into error-free and erroneous sub-blocks. Hard-
decisions are applied to the error-free sub-blocks without feeding
the erroneous sub-blocks into the MAP decoder. The a posteriori
LLRs corresponding to the error-free sub-blocks will be employed
for estimating the cross-over probability pe, as it will be illustrated
in Sec.

B. Syndrome-based Joint MAP Decoder

The syndrome-based MAP decoder of [5] is employed in our
BSD-TTCM decoder. In contrast to the conventional MAP decoder,
which relies upon the codeword trellis, the syndrome-based MAP
counterpart operates on the basis of the error trellis constructed using
the syndrome former HT. In the conventional code-based trellis, each
trellis path represents a possible legitimate codeword. By contrast,
each path in the error-based trellis represents a hypothetical error
sequence. Additionally, every path along the error trellis corresponds
to a unique path in its conventional code trellis counterpart, hence
both trellises have the same complexity [12]. The channel information
probability Pr(yx | zx) of receiving yi given zj, was transmitted
gleaned from the MUD will be modified to Pr(ys | ex) of receiving
yi, given that the channel error ex is encountered, which can be
expressed as:

dwhl)

Prye | ) = exp( 4
The syndrome-based TCM MAP decoder shown in Fig. 2| calculates
the a posteriori probabilities corresponding to the error-free sub-
blocks Pe(by) using the classic forward and backward recursive
coefficients namely «y and i [11]. More explicitly, the channel’s
transition metric is formulated as:

Y (5, 8) = Pr(be) - Pr(yr | ex) , (6)

where Pr(by,) is the a priori probability of the information part of ey,
which is initialised to be equi-probable for the first iteration, while
(8, s) denotes the transition emerging from state 5 to state s. However,
the forward and backward recursions coefficients oy, and 8 have to
consider the side-information provided by the other decoder which
is formulated additionally as:

ar(s) = ar-1(3) - w(3,) - Albx) , ™)

all 3
Breo1(3) =D Bi(s) - (3, 5) - Albr) , ®)
all s

where as shown in Fig. [2| A(by) is the a priori probability provided
by the other BSD-TTCM decoder of Fig.[T|corresponding to the LLRs
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Fig. 2: Schematic of the proposed BSD-TTCM decoder. Here only one constituent decoder is shown, where AW EM ang pMW represent
the a priori, extrinsic and a posteriori probabilities related to the corresponding syndrome-based TCM MAP decoder.

L (br), which is the interleaved and updated version of L. (bg).

C. cross-over Probability Estimation using BSD-TTCM

During the Ii,, the exchanged LLRs have to be updated using an
accurate estimate of the cross-over probability p. by invoking the
following update function:

(1 — pe)exp[Le(b1,2)] + Pe
(1 = pe) + peexp[Le(b1,2)] ’
which is shown in Fig.[T] As stated previously, inaccurate BSC cross-
over estimate p. could lead to an error propagation during the joint
iterative decoding. Our proposed joint decoder would provide an
accurate estimate of p. based on the reliable error-free LLRs gleaned
from the two BSD-TTCM decoders’ output from Fig. 2} namely,
L‘Zf(bLg) that are linked to the error-free sub-blocks as follows:

1 Neg
pe:mz

f i=1

U(LE (b172)) =In

©)

exp[Lg' (b1)] + exp[Lg' (b3)]
(1 + exp[Lsf (1)) (1 + exp[Lsf (b3)])

where N is the error-free LLR sub-block size. Similarly, the
conventional codeword-trellis based TTCM benchmark employs the
same formula of Eq. (I0) when evaluating p.. However using the
entire LLR block as the conventional TTCM decoder is unable to
separate the received sequence into erroneous and error-free sub-
blocks.

Fig. B(a) demonstrates the accuracy of our probability estimator
based on the DJISTTCM-BSD in comparison to the conventional
DJSTTCM based method that its performance is shown in Fig. Ekb),
where p. is artificially varied sinusoidally between 0.025 and 0.42.
Note that in order to make the figure legible, we portray the exact
pe based cosine curve at two values, namely at Fy/No = 6 dB and
Ey/No = 9 dB, which are represented by filled circles. We opted
for using 2/3-rate TTCM-8PSK transmission over a uncorrelated
Rayleigh fading MAC using a block length of 12 000 8PSK symbols.
Additionally, the decoder invokes “f;, = 2 and “Io, = 27, while the
iteration between the two TCM components of the TTCM decoder
I = 8 iterations were used inside the TTCM and BSD-TTCM
decoders, respectively. As Fig. [B(a) demonstrates, our proposed
estimator was capable of achieving an accurate p. estimation of the
sinusoidally varied p. values. More explicitly, observes in Fig. [3[a)
that our proposed estimator is capable of attaining an accurate BSC
cross-over probability prediction at E,/No = 6 dB. Quantitatively,
our BSD-based estimator exhibits a Mean Squared Error (MSE)
of 3.5 x 1075, while its conventional counterpart imposes more
than 100 times higher MSE of 5.5 x 107%. By contrast, the
conventional DJSTTCM estimator characterised in Fig. [B(b) only
achieved a similar estimation accuracy at the 3 dB higher value
of Ey/Ng = 9 dB. This observation was also confirmed by our
BER simulation results seen in Fig. E[ In order to ensure an accurate
Pe estimation, we first have to determine the optimum size of the
error-free sub-block LLR L% (b*?). This is achieved by heuristically

(10)

finding the minimum size of L‘C’f(bl’2
LS (b5 min > 2400.

)min, Which was found to be

ITII. SIMULATION RESULTS
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Fig. 4: BER result of both the DJSTTCM-BSD and DJSTTCM-
Conventional, when considering ML and MMSE-SIC MUD, for the
cases when p. is known or estimated at the decoder.

The BER versus Ej/No performance of our proposed scheme is
shown in Fig. [d] where the two user signals are transmitted over a
Rayleigh fading MAC. Again, both users employ 2/3-rate TTCM-
8PSK where “I, = 2” and “Io, = 2” are used by the decoder, while
the correlation coefficient is p = 0.4 which corresponds to p. = 0.3.
Additionally, for all simulation scenarios the BS employs the MMSE-
SIC as the MUD, while a single ML base MUD detection is invoked
that is labelled by the triangle markers in Fig. []

It may be readily observed from Fig. [ that for the MMSE-SIC ar-
rangement which is referred to as “DJSTTCM-Conventional MMSE-
SIC” outperforms our proposed scheme for the idealised scenario
when p. is perfectly known at the BS side by about 1 dB at a BER
of 1075, This is not unexpected, because the BSD scheme of Fig.
has been proposed mainly as low-complexity design [5]. However,
for the realistic scenario, when the p. is unknown at the decoder,
our proposed “DISTTCM-BSD-MMSE-SIC” scheme has a valuable
1.5 dB gain over the conventional DJSTTCM scheme as seen in
Fig. [i] Moreover, as expected, when invoking the complex ML-based
MUD in the DISTTCM-BSD scheme the “DJSTTCM-BSD-ML”
scheme outperforms the MMSE-SIC-based scheme “DJSTTCM-
BSD-MMSE-SIC”, by an E,/No gain of 2.5 dB as seen in Fig.
In order to investigate the achievable decoding complexity reduction,
we have analysed the complexity of the “DJSTTCM-BSD-MMSE-
SIC” scheme for the Ep/No values spanning from 5.2 dB to 6.2 dB,
as shown in Fig. ] Here the complexity reduction is quantified
by determining the number of error-free symbols that would avoid
entering the error-trellis based MAP-BSD decoder of Fig. |Z| at each
iteration as a percentage of the total frame length. 3 373 seconds
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Fig. 3: Estimated p. versus both E,/No and time comparison between DJSTTCM-BSD and DJSTTCM-Conventional for sinusoidal

variation of p., where MMSE-SIC has been invoked as our MUD.

TABLE 1. Computational complexity comparison between
DJSTTCM-BSD and DJSTTCM-Conventional, when considering
MMSE-SIC MUD, for the cases when p. is known at the decoder
and [, = 1.

[ Ev/No | BSD | Conventional | Complexity Reduction

52 3017 | 3048 1.0%

5.6 2797 | 3048 8.2%

6.0 1608 | 3048 47.2%
6.4 556 3048 81.75%
6.8 229 3048 92.5%
7.2 65 3048 97.8%
7.6 25 3048 99.0%

more for attaining the same scenario. As Fig. [f] suggested, upon in-
creasing the Ej, /Ny value the complexity was considerably reduced.
Quantitatively, at E,/No = 5.6 dB only 40% of the transmitted
sequence will be fed to the MAP-BSD block of Fig. |Zl Note that
conventional turbo-like decoders would consider all symbols into
the codeword for decoding, i.e. 100% of the transmitted sequence.
Moreover, the effect of “Ii,” on the overall scheme’s performance is
also investigated in Fig. [4 It can be readily observed that doubling
the number of iterations between the BSD-TTCM decoders from
“Iin = 17 to “Iin = 2” here the turbo-cliff region of the Ej;/No scale
would lead to a significant increase in the percentage of the error-
free symbols. For example, at F/No = 5.6 dB, 40% more error-free
symbols will attained by invoking one additional inner iteration. More
precisely, our computational complexity comparison is summarised
in Table [II'| Observe from Fig. 4 that a very significant complexity
reduction can be achieved by invoking our BSD-TTCM decoders.
Explicitly, more than 90% complexity reduction can be attained at
E,/No = 6.8 dB, as seen in Table [I]

IV. CONCLUSIONS

In this letter, we have conceived a reduced-complexity DJISTTCM-
aided BSD technique for practical DJSC design. The proposed

“The computational complexity is calculated using C' = I-(4n + 18)-2™—
3 [13]], where m is the code memory, while n = 1/R¢y,. In our simulations
the corresponding parameters are given by m = 4 and n = 3/2. Again, the
number of iterations between the two TCM components of the TTCM decoder
is I = 8. Explicitly, the complexity C' includes the multiplications, divisions,
comparisons, maximum, minimum and look-up table evaluations required by
our max-log-MAP algorithm-based TTCM decoder.

iterative decoder was shown to be capable of estimating the BSC’s
cross-over probability with the aid of the LLR blocks that were
deemed to be error-free, as identified by the syndrome sequence.
Additionally, the decoding complexity is reduced further by invoking
a MMSE-SIC based MUD, which has a complexity that is linearly
proportional to both the number of users and to the constellation size.
Our iterative decoder accurately estimated the time-variant cross-over
probability, requiring about 3 dB less power for the same correlation
than the conventional benchmark decoder, which was achieved at a
considerable complexity reduction.
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