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Abstract

Channel estimation is conceived for optical wireless scattering channels associated with Laser

Diode transmitters and photon-counting/photomultiplier tube receivers. The proposed channel estimation

approach consists of two stages, namely of the estimation of the channel tap second-order moments

followed by the estimation of the channel taps based on the estimate of second-order moments. In the

first stage, we provide the general framework of the moment estimation complemented by the conception

of an estimation approach based on a sparse pilot structure, as well as by the analysis of the estimation

error. We also propose the sparse pilot design and the associated low-complexity channel estimation,

and prove the optimality of the proposed channel estimation. In the second stage, we conceive the

channel tap estimation based on the eigenvalue decomposition of the matrix of estimated second-order

moments, and analyze the associated performance. It is shown that as the length of the pilot sequence

tends to infinity, the probability of having an estimation distortion above a threshold can be arbitrarily

small. Simulation results show that the proposed sparse pilot sequence can lead to a smaller estimation

error than the pilot design using random 0-1 bits.
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I. INTRODUCTIONS

Optical wireless communication relies on a substantial license-free transmission bandwidth,

whilst avoiding electromagnetic radiation. However, owing to its predominantly line-of-sight

(LOS) propagation, the transmissions may be blocked by an obstacle between the transmitter

and the receiver. Hence it is beneficial to exploit the scattered non-line-of-sight (NLOS)

components [1], [2], where the transmission and the reception directions are not required to be

perfectly aligned. Hence, the direct-link of NLOS optical communication has been extensively

studied for example in [3], [4], [5], [6]. The relevant applications span from short-range

atmospheric ultraviolet communication to sensing. In case of having a weak NLOS optical

path, the received signal cannot be detected by the conventional waveform detector. The photon-

level energy detector, such as the photon-counting receiver or a photomultiplier tube (PMT)

receiver, needs to be employed. Explicitly, the photon-counting receiver counts the number of

photons received; and the PMT receiver converts the received photons to electronic signals, while

applying a certain amplification factor.

Existing contributions on single-input single-output optical wireless scattering channels

predominantly focus on the channel capacity [7], [8], [9], as well as on the associated base-

band digital signal processing [10], [11] and coded modulation aspects [12]. In a nutshell,

those contributions address either the transmission capacity limits or the practical schemes that

are capable of approaching those limits. Recently, a range of advanced transmission protocols

have also been investigated, including the protocols designed for relay channels [13], [14],

[15], [16], [17]. The channels’ correlation and optimal linear receivers designed for single-input

multi-output channels have been studied in [18] and [19], [20], respectively. These schemes are

capable of significantly enhancing the achievable communication performance in the scenario

of weak-link optical wireless scattering based communication. Similarly to the radio-frequency

(RF) communications, the receiver side will suffer poor performance without estimating the

channel state information before the signal detection/estimation. Note that for the indoor visible

light communication, the channel estimation approaches have been proposed in [21], [22], [23].

The received signal for the indoor visible light communication is characterized by continuous

waveforms, while in this work the received signal is characterized by discrete photoelectrons.

Let us consider the scenarios, where the scattering-induced time-domain dispersion is longer

than the symbol duration. Such channel model is typically adopted for the optical wireless

communication in the ultra-violet spectrum, where the length of the NLOS pulse width
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broadening is larger than the symbol duration. Then, inter-symbol interference is imposed on the

received signal. In this treatise, we consider a laser-diode (LD) based transmitter. The channel

dispersion may bring phase change to the coherent optical signal of the LD. Since the energy

detector such as the photon-counter or PMT cannot detect the phase of the received signal,

the receiver only relies on the signal energy for channel estimation. Such channel estimation

problem cannot be solved by utilizing the well-established techniques of RF communication,

such as the linear minimum mean square error based steepest descent schemes, which rely

on having a coherent receiver structure to retrieve the phase of the received signal. Note that

the time-dispersion modeling has been addressed in [24] for the binary channel inputs and the

associated capacity, and later in [25] for the channel estimation and symbol detection. These

works focus on the non-coherent optical source, such as the light emitting diode, where the

channel dispersion only brings the signal intensity change instead of the phase change. Thus the

received signal model in this work is fundamentally different from that considered in [24], [25].

Against this background, our new contribution is that we conceive a novel channel estimation

scheme for the energy-based receivers, where the phase change of the coherent optical signal due

to the channel dispersion is considered. The channel estimation is carried out using a two-stage

procedure. Explicitly, first the second-order moments of the channel taps are estimated, before

estimating the channel taps themselves. The main contributions are outlined as follows.

• For the first stage, we propose a general framework applicable to both photon-counting and

PMT receivers. We also propose the sparse pilot design and the associated low-complexity

channel estimation, and prove the optimality of the proposed channel estimation.

• For the second stage, we propose a channel tap estimator based on the eigenvalue

decomposition of the matrix of the estimated second-order moments obtained from the

first stage.

• We analyze the estimation error of both stages. It is shown that as the length of the pilot

sequence tends to infinity, the probability of having a tap estimation error above any positive

threshold can be rendered arbitrarily small.

Simulations are also conducted both for a random 0-1 bit pilot sequence and for the proposed

sparse pilot sequence. We will demonstrate that the sparse pilot sequence advocated leads to a

smaller estimation error compared with the pilot sequence using random 0-1 bits, whilst imposing

a lower computational complexity.

The remainder of this paper is organized as follows. In Section II, we provide our channel
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model, formulate the channel estimation problem and the channel estimation ambiguity. In

Section III, we set up the framework for the estimation of the second-order moments of the

channel taps. In Section IV, we propose sparse pilots and estimate the moments of the channel

taps. In Section V, we detail the estimation of channel taps, while our simulation results are

provided in Section VI. Finally, Section VII concludes this paper.

II. SYSTEM MODEL

A. Signal Model for Energy-Type Receiver

Let us consider an NLOS optical wireless scattering communication system relying on a laser

transmitter. Assume that the time-domain dispersion is longer than the symbol duration. In such

a scenario, the inter-symbol interference (ISI) based channel model may be adopted.

The received signal consists of two components, the component of the dispersed signal and

the component of the background radiation. Let x(t) be the transmitted OOK symbol. The

component of the dispersed signal, denoted as ydisp(t), is given by

ydisp(t) =
√
P

L∑
n=0

hnx(t− nT ), (1)

where T is the symbol duration; P is the transmission power; and {hn}Ln=0 represents the channel

impulse response (CIR) taps. Note that since the channel dispersion may change the phase of

the coherent optical signal, the channel taps hn can be complex numbers. Such a scenario is

fundamentally different from the previous study on the dispersion of non-coherent optical signal,

where the channel taps are real numbers [24], [25].

We consider the energy-type detector, such as the photon-counting receiver and the PMT

receiver. The energy of the received signal is the superposition of that of the dispersed signal

ydisp(t) and that of the background radiation. The energy of the dispersed signal within the

symbol duration of [mT, (m+ 1)T ], denoted as Em, is given by

Em =

∫ (m+1)T

mT

∣∣∣y2disp(t)∣∣∣dt = P

∫ (m+1)T

mT

∣∣∣ L∑
l=0

hnx(t− lT )
∣∣∣2dt. (2)

Assuming that the transmitted signal x(t) is generated by modulating the data symbols xn using

a rectangular pulse g(t), we have

x(t) =
∑
n≥0

xng(t− nT ), (3)
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where the pulse waveform is given by g(t) = 1 for 0 ≤ t ≤ T and g(t) = 0 otherwise. Then,

according to (2) and (3), the signal energy Em can be expressed as follows,

Em = TP
∣∣∣ L∑
n=0

hnxm−n

∣∣∣2. (4)

Based on the energy Em of the dispersed signal component within the symbol slot m [c.f.

(4)], we characterize the statistical properties of the received signal both of the photon-counting

receiver and of the PMT receiver. Let Λb denote the counting rate of the background radiation,

such that the mean of the signal photons is given by λb = TΛb. Assume that the number

of background radiation photons received obeys a Poisson distribution, which is statistically

independent of the number of dispersed signal components.

1) Photon-Counting Receiver: The received signal is represented by the number of photons,

which obeys a Poisson distribution. The mean of the Poisson distribution for the dispersed signal

component, denoted as λm, is given by,

λm =
Em

Ep

, (5)

where Ep is the energy per photon determined by the Laser wavelength. The number of received

photons Nm is the sum of the numbers for the dispersed signal component and the background

radiation component, which satisfies the following distribution,

P(Nm = n) =
(λm + λb)

n

n!
e−λm−λb . (6)

2) Photomultiplier Tube Receiver: The PMT receiver transforms the discrete number of

received photons to the following analog electronic signals,

zm = NmAe+ vm, (7)

where A is the PMT’s amplification factor, e is the single electron charge, while vm is the zero-

mean Gaussian noise stimulated by receiving Nm photons. Explicitly, the additive Gaussian noise

vm is stimulated by the detected photons and the thermal noise, which satisfies the following

distribution,

vm ∼ N (0, Nmσ
2 + σ2

0), (8)

where σ2 denotes the variance of the zero-mean shot noise stimulated by a single photon, while

σ2
0 denotes the thermal noise variance. The shot noise variance σ2 and the thermal noise variance

σ2
0 are given by,

σ2 = (ξAe)2, σ2
0 =

2keT
o

RL

T, (9)
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where ξ is the PMT spreading factor; ke, T o, and RL are the Boltzmann constant, the receiver

temperature and the load resistance, respectively.

Let G(z;µ, σ2) be the probability density function (PDF) of the Gaussian variable z with a

mean of µ and a variance of σ2, which is given by

G(z;µ, σ2) =
1√
2πσ2

exp
(
− (z − µ)2

2σ2

)
. (10)

Recall that the number of received photons Nm satisfies a Poisson distribution with a mean of

(λm+λb). Then for the PMT receiver, the electronic output signal satisfies the Gaussian mixture

distribution, which is the Gaussian distribution N (0, Nmσ
2 + σ2

0) modulated by the Poisson

distributed number of the received photons. More specifically, the Gaussian mixture distribution

for zm is given as follows,

p(zm) =
+∞∑
n=0

(λm + λb)
n

n!
e−λm−λbG(zm;nAe, nσ

2 + σ2
0). (11)

2

We aim for estimating the CIR taps {hl}Ll=0 of the scattering channel, based on the signals

received from the length-M on-off keying (OOK) pilots {xm}Mm=1 within M symbol durations,

i.e. on the pilot symbols xm ∈ {0, 1} for 1 ≤ m ≤ M . Note that the phase information

contained in the complex-valued channel taps {hl}Ll=0 cannot be resolved if the transmitter only

sends OOK impulses, Explicitly, the complex values of the CIR taps cannot be inferred based

on the amplitudes {|hl|}Ll=0.

For the turbulence channel, the receiver periodically estimates the channel taps, and adjusts

the post-equalization accordingly. The receiver can also feedback the channel; estimate to

the transmitter, such that the transmitter can perform pre-equalization and other pre-distortion

processing.

B. Channel Estimation Ambiguity

There are two types of channel estimation ambiguities, because the phase rotated versions

and complex conjugates of the transmitted signal cannot be distinguished purely based on the

received signal energy. The above arguments are summarized in the following result. The proof

hinges on the energy-receiving nature [c.f. (4)] of the receiver in a straightforward manner, and

thus it is omitted here.

Proposition 1: For real-valued channel taps {hl}Ll=0, the following two types of ambiguities

cannot be distinguished by the energy reception receivers considered:
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1) rotational ambiguity: {hle
jθ}Ll=0, for any rotation angle 0 ≤ θ < 2π;

2) complex conjugate ambiguity: {h∗
l e

jθ}Ll=0, for any rotation angle 0 ≤ θ < 2π, where the

superscript ∗ denotes complex conjugate.

2

It will be shown in Section V that the channel estimation only suffers from the rotational

ambiguity and the complex conjugate ambiguity, as stated in Proposition 1. Explicitly, the

channel estimation approach proposed in Section V does not impose any additional estimation

ambiguities.

C. Overview of the Proposed Estimation Approach

Before delving into further details, we first provide an overview of the proposed channel

estimation approach. Based on (2), the received signal power Pm
△
= Em

T
can be written as

follows,

Pm = P
∣∣∣ L∑
n=0

hnxm−n

∣∣∣2 = P
L∑

n=0

hnxm−n

L∑
n=0

h∗
nxm−n

= P

L∑
n=0

x2
m−nRe(hnh

∗
n) + P

∑
0≤n1<n2≤L

2xm−n1xm−n2Re(hn1h
∗
n2
), (12)

where Re(•) denotes the real part of a complex number.

According to (12), let h denote the vector of the second-order moments of the CIR taps, and

xm denote the vector of the related pilot symbols, given as follows,

h
△
=

[
Re(h0h

∗
0),Re(h1h

∗
1), ...,Re(hLh

∗
L),Re(h0h

∗
1), ...,Re(h0h

∗
L),Re(h1h

∗
2), ...,Re(h1h

∗
L),

Re(h2h
∗
3), ...,Re(h2h

∗
L), ...,Re(hL−1h

∗
L)
]T

,

xm
△
=

[
x2
m, x

2
m−1, ..., x

2
m−L, 2xmxm−1, ..., 2xmxm−L, 2xm−1xm−2, ..., 2xm−1xm−L, 2xm−2xm−3, ...,

2xm−2xm−L, ..., 2xm−L+1xm−L

]T
. (13)

The signal power Pm received within the symbol duration m [c.f. (12)] can be expressed as

Pm = PxT
mh; and the mean λm of the Poisson distributed number of signal photons in slot m

[c.f. (5)] is given by

λm =
Em

Ep

=
T

Ep

Pm
△
= αPm = αPxT

mh, L ≤ m ≤ M. (14)

The channel estimation can be performed in two steps. In the first step, we estimate h according

to (12) by treating all elements of h as independent variables; and subsequently in the second
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step we estimate {hn}Ln=0 based on the estimate of h, which has been obtained from the first

step. The two steps will be addressed in detail in the following sections.

Remark: A preliminary channel estimation technique for the model under consideration has

been investigated in [26], where the two-stage channel estimation framework has been proposed.

In the current work, we propose a more rigorous channel tap estimation method for the second

stage instead of the heuristic one in [26], prove the convergence of the proposed channel

estimation framework, and extend the channel estimation to the PMT receiver.

III. ESTIMATION OF SECOND-ORDER MOMENTS h

Let us now formulate a framework for the estimation of the second-order moments h for both

photon-counting and PMT receivers, based on the received signals {Nm}Mm=L and {zm}Mm=L,

respectively. We also provide the analysis of the estimation error.

A. Estimation for the Photon-Counting Receiver

Recall that according to (14), the number of photons Nm received in slot m, L ≤ m ≤ M ,

satisfies a Poisson distribution with a mean of αPxT
mh + λb. Let X

△
=

[
xL,xL+1, ...,xM

]T
,

N
△
=

[
NL, NL+1, ..., NM

]T
, and 1

△
=

[
1, 1, ..., 1

]T
of length (M−L+1). We have the following

result conceiving the statistics of the first- and second-order moments of the number of received

photons N .

Lemma 1: We have the following result on the number of received photons N ,

E
[
N

]
= αPXh+ λb1, (15)

E
[
NNT

]
=

(
αPXh+ λb1

)(
αPXh+ λb1

)T

+ diag
(
αPXh+ λb1

)
, (16)

where diag(•) denotes the diagonal matrix consisting of the elements of the vector.

Proof: Note that, for L ≤ m ≤ N , we have E
[
Nm

]
= αPxT

mh + λb. Thus, (15) follows

from concatenating Nm as a column vector; and (16) follows from the fact that E
[
Nm1Nm2

]
=

E
[
Nm1

]
E
[
Nm2

]
and E

[
N2

m

]
=

(
E
[
Nm

])2

+ E
[
Nm

]
.

Based on Lemma 1, we define the distortion DPC(h) as the norm-2 distortion between a

realization of the number N of received photons and its expectation, given as follows,

DPC(h)
△
=

∥∥∥αPXh+ λb1−N
∥∥∥2

. (17)



9

An estimate of h, denoted as ĥ, can be obtained as the one that minimizes the distortion DPC(h),

formulated as ĥ = argminhDPC(h). The following result provides the estimate ĥ according to

the above arguments. The proof follows from setting ∂DPC(h)

∂h
= 0 to obtain the h that minimizes

DPC(h).

Theorem 1: The estimate ĥ that minimizes DPC(h) is given by,

ĥ =
1

αP

(
XTX

)−1

XT
(
N − λb1

)
. (18)

2

In the following we analyze the estimate ĥ. It can be proved that the estimate ĥ is unbiased,

i.e., we have E
[
ĥ
]
= h. We also determine the covariance matrix E

[(
ĥ − h

)(
ĥ − h

)T]
of

the estimate ĥ, whose trace is the expectation of the estimation distortion E
[∥∥∥ĥ− h

∥∥∥2]
.

Theorem 2: The estimate ĥ is unbiased, i.e., we have E
[
ĥ
]
= h; and its co-variance matrix

is given by,

E
[(

ĥ− h
)(

ĥ− h
)T]

=
1

αP

(
XTX

)−1

XT diag
(
Xh

)
X

(
XTX

)−1

+
λb

α2P 2

(
XTX

)−1

. (19)

Thus, letting Tr(·) denote the trace of a matrix, we have the following

E
[∥∥∥ĥ− h

∥∥∥2]
=

1

αP
Tr

((
XTX

)−1

XT diag
(
Xh

)
X

(
XTX

)−1
)

+
λb

α2P 2
Tr

((
XTX

)−1
)
. (20)

Proof: According to (15) in Lemma 1, we have

E
[
ĥ
]
=

1

αP

(
XTX

)−1

XT
(
E
[
N

]
− λb1

)
=

1

αP

(
XTX

)−1

XTαPXh = h. (21)

Thus the estimate ĥ is unbiased. Moreover, according to (18), we have

ĥ− h =
1

αP

(
XTX

)−1

XT
(
N −

(
αPXh+ λb1

))
. (22)

Then, we arrive that(
ĥ− h

)(
ĥ− h

)T

=
1

α2P 2

(
XTX

)−1

XT
(
N −

(
αPXh+ λb1

))
(
N −

(
αPXh+ λb1

))T

X
(
XTX

)−1

. (23)

Since N is Poissonian with a mean of αPXh+ λb1, according to (15) we have,

E
[(

N −
(
αPXh+ λb1

))(
N −

(
αPXh+ λb1

))T]
= αP diag

(
Xh

)
+ λbI. (24)
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Based on (23) and (24), we can prove (19); and equation (20) follows from the fact that∥∥∥ĥ− h
∥∥∥2

= Tr
((

ĥ− h
)(

ĥ− h
)T)

. (25)

From (19), it is seen that the estimation distortion E
[∥∥∥h − ĥ

∥∥∥2]
contains two terms, the

traces of 1
α

(
XTX

)−1

XT diag
(
Xh

)
X

(
XTX

)−1

and λb

α2

(
XTX

)−1

. The former is due to

the Poisson distributed signal component, which is unique for a Poissonian channel; and the

latter represents the channel estimation distortion imposed by the additive noise, which is also

part of the channel estimation distortion of RF communication. The pilot sequence needs to be

designed to minimize the combination of distortion in the two terms.

B. Estimation for PMT Receiver

The estimation of ĥ for the PMT receiver is similar to that for the photon-counting receiver.

Let z △
= [zL, zL+1, ..., zM ]T . We then have the following result on the statistics of the first- and

second-order moments of z.

Lemma 2: The statistics of the first- and second-order moments of z are given as follows,

E
[
z
]

=
(
αPXh+ λb1

)
Ae, (26)

E
[
zzT

]
= A2e2

(
αPXh+ λb1

)(
αPXh+ λb1

)T

+ αP
(
A2e2 + σ2

)
diag

(
Xh

)
+
(
λbA

2e2 + λbσ
2 + σ2

0

)
I. (27)

Proof: Note that zm satisfied the Gaussian mixture distribution specified in (11) for L ≤
m ≤ N . We then have

E
[
zm

]
=

+∞∑
n=0

(λm + λb)
n

n!
e−λm−λbnAe

= (λm + λb)Ae = (αPxT
mh+ λb)Ae. (28)

Then, (26) follows from concatenating E
[
zm

]
as a column vector.

Note that the elements zm1 and zm2 are statistically independent from each other for m1 ̸= m2.

Thus we have that E
[
zm1zm2

]
= E

[
zm1

]
E
[
zm2

]
, from which the non-diagonal elements of

E
[
zzT

]
follow. The diagonal elements of E

[
zzT

]
follow from the fact that for a mixed Gaussian

distributed random variable zm, we have

E
[
z2m

]
=

(
αPxT

mh+ λb

)2

A2e2 + αP
(
A2e2 + σ2

)
xT
mh

+
(
λbA

2e2 + λbσ
2 + σ2

0

)
. (29)
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Compared with the first-order and second-order moments of the received signals for the

photon-counting receiver [c.f. (15) - (16)], it is seen that first-order and second-order moments for

the PMT receiver contains both the contribution from the background radiation and the additive

shot and thermal noise [c.f. (26) - (27)]. We need to pursue the optimal estimate of h for the

PMT receiver based on its own signal characteristics. Similar to the photon-counting receiver,

we want to minimize the following channel estimation distortion metric for the PMT receiver

DPMT (h) =
∥∥∥(αPXh+ λb1

)
Ae− z

∥∥∥2

. (30)

Similar to Theorem 1, we have the following result on the estimate ĥ that minimizes the distortion

DPMT (h). The proof is similar to that of Theorem 1, and thus omitted here.

Theorem 3: The estimate ĥ that minimizes DPMT (h) [c.f. (30)] is given as follows,

ĥ =
1

αP

(
XTX

)−1

XT
( z

Ae
− λb1

)
. (31)

2

It can also be shown that, similar to the photon-counting receiver [c.f. (18)], the estimate ĥ

of the PMT receiver is unbiased too. Moreover, the estimation distortion of (30) consists of two

terms, namely the one from the Poissonian signal characteristics and the other from the additive

Poisson noise. The proof is similar to that of Theorem 2, and thus it is omitted here.

Theorem 4: The estimate ĥ is unbiased, i.e. E
[
ĥ
]
= h; and its co-variance matrix is given

by

E
[(

ĥ− h
)(

ĥ− h
)T]

=
A2e2 + σ2

αPA2e2

(
XTX

)−1

XT diag
(
Xh

)
X

(
XTX

)−1

+
λbA

2e2 + λbσ
2 + σ2

0

α2P 2A2e2

(
XTX

)−1

. (32)

Thus, letting Tr(·) denote the trace of a matrix, we have

E
[∥∥∥ĥ− h

∥∥∥2]
=

A2e2 + σ2

αPA2e2
Tr

((
XTX

)−1

XT diag
(
Xh

)
X

(
XTX

)−1
)

+
λbA

2e2 + λbσ
2 + σ2

0

α2P 2A2e2
Tr

((
XTX

)−1
)
, (33)

which is a counterpart to equation (20) representing the the photon-counting receiver.

2
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C. Discussions

It is seen from Theorems 1 and 3 that the computation of the estimate ĥ involves the evaluation

of the matrix
(
XTX

)−1

XT and its multiplication with a column vector. While the former can be

done offline, the latter involves a computational complexity on the order of L(L+1)
2

×(M−L+1).

Moreover, as we will demonstrate in Section VI on the numerical results, the pilots {xm}Mm=1

have to be designed for reducing the estimation distortion.

In order to reduce the computational complexity, in the following section we conceive a sparse

pilot sequence structure, for ensuring that the complexity of the multiplication with the matrix(
XTX

)−1

XT can be significantly reduced. Moreover, we will show in Section VI that such

a pilot structure can lead to a reduced estimation distortion compared to certain realizations of

random 0-1 pilot sequences.

IV. SPARSE PILOT DESIGN FOR EFFICIENT ESTIMATION OF SECOND-ORDER MOMENTS h

We conceive a sparse pilot sequence structure, as well as the associated channel estimation

approach, which allows us to construct an efficient estimation scheme for the second-order

moments of h. Moreover, it can be shown that the proposed estimation scheme also conforms

to the optimality criterion of (18) and (31) in our general framework.

A. Estimation Using Sparse Pilots

Note that the non-sparsity of the matrix
(
XTX

)−1

XT stems from the cross-terms

xm−l1xm−l2 , l1 ̸= l2, involved in the transmission power Pm = P |
∑L

l=0 hlxm−l|2 [c.f. (12)].

If there are no such cross-terms, Pm only reflects the norm of the taps {hl}Ll=0, from which the

exact values of the taps cannot be inferred. Thus there should be at least one such cross-term in

the analytical expression of Pm in (12), in order to calculate the exact value of the taps {hl}Ll=0.

In the following we will design pilot sequences, which have at most one cross-term involved in

the calculation of the power Pm.

More specifically, the design conceived guarantees that the convolution Pm =

P |
∑L

l=0 hlxm−l|2 involves one or two non-zero pilots taps xm−l, such that |hn|2 and Re(hl1h
∗
l2
)

can be estimated in an efficient manner. Note that

Pm = P |
L∑
l=0

hlxm−l|2 =

 P |hl|2, if only xm−l = 1;

P |hl1 + hl2 |2, if only xm−l1 = xm−l2 = 1;
(34)
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where

|hl1 + hl2 |2 = |hl1 |2 + |hl2 |2 + 2Re(hl1h
∗
l2
). (35)

From (34), h can be estimated using a successive approach. We first obtain estimates of |hl|2

for 0 ≤ l ≤ L via the power Pm that involves only one non-zero xm−l, and then obtain the

estimates of Re(hl1h
∗
l2
) for 0 ≤ l1 < l2 ≤ L based on (35) and the estimates of |hl|2.

1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0

1 0 0 0 × × × × × × × × × × × ×

. . . . . .

TABLE I

PILOT SYMBOL UNIT FOR L = 7

1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

1 0 0 0 1 0 0 0 0 × × × × × × × × ×

. . . . . .

TABLE II

PILOT SYMBOL UNIT FOR L = 8

Note that, for 0 ≤ l1 < l2 ≤ L, in a pilot pattern that covers the cross-term Re(hl1h
∗
l2
), there

are (l2 − l1 − 1) zeros between two consecutive non-zero pilots. Based on the above intuition,

one unit of our sparse pilot sequence contains a sequence consisting of (L+1) ones, where the

lth one is followed by tl zeros, given by the following time instants

t1 = L, t2 = 0, t3 = L− 1, t4 = 1,

t5 = L− 2, t6 = 2, t7 = L− 3, t8 = 3, .... (36)

Note that the length of such a sequence, denoted as LP , is given as follows,

LP =
(L+ 1)(L+ 2)

2
. (37)

This pilot unit is then repeated several times, where ⌊L
2
⌋ zeros are added before the first unit,

to complete the entire pilot sequence for the estimation of h. Examples for such sequences for

L = 7 and L = 8 are shown in Tables I and II, respectively. The pilot units are formed by

concatenating the line of each table.
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The following result shows that based on this specific pilot sequence structure, all combinations

of {|hl|2}Ll=0 and {|hl1 + hl2 |2}Ll1,l2=0 can be covered.

Theorem 5: All combinations of {|hl|2}Ll=0 and {|hl1+hl2 |2}Ll1,l2=0 can be covered by the pilot

sequence characterized by (36). Moreover, each one is covered only once.

Proof: Let us first consider the combination {|hl1 + hl2 |2}Ll1,l2=0 for l1 < l2. For l2 − l1 =

t > 0, it can be proved that |hl1 + hl2 |2 can be covered by two consecutive ones with t zeros

between them. For tk = t, note that {tk−1, tk+1} = {L − 1 − t, L − t}, which guarantees that

all combinations {|hl1 + hl2 |2}l2−l1=t can be covered by
∑L

n=0 hnxm−n based on the following

pattern [
00...0︸ ︷︷ ︸

L−1−t 0s

1 00...0︸ ︷︷ ︸
t 0s

1 00...0︸ ︷︷ ︸
L−t 0s

]
, or

[
00...0︸ ︷︷ ︸
L−t 0s

1 00...0︸ ︷︷ ︸
t 0s

1 00...0︸ ︷︷ ︸
L−t−1 0s

]
, (38)

which exists in the pilot sequence.

Next consider the representation {|hl|2}Ll=0. It is seen that in the pattern under consideration

we have tL+1 = ⌊L
2
⌋, thus {|hl|2}Ll=L−⌊L

2
⌋ can be covered by the following pilot pattern[

00...0︸ ︷︷ ︸
⌊L
2
⌋ 0s

1 00...0︸ ︷︷ ︸
L 0s

]
. (39)

For 0 ≤ l ≤ L − ⌊L
2
⌋ − 1, |hl|2 can be covered by convolving the following pattern with the

pilot sequence, [
00...0︸ ︷︷ ︸
L−l 0s

1 00...0︸ ︷︷ ︸
l 0s

]
. (40)

Note the length of each unit of the pilot sequence is (L+1)(L+2)
2

and the number of combinations

{|hl|2}Ll=0 and {|hl1 +hl2 |2}Ll1,l2=0 is also (L+1)(L+2)
2

. Thus each combination can only be covered

once by the pilot sequence.

We then outline the successive estimation approach for the second-order moments h. Let Si

and Sij denote the set of m, L ≤ m ≤ M , corresponding to the received signal power Pm

that involves only one non-zero channel tap |hi|2 and two non-zero channel taps |hi + hj|2,
respectively. Let R̂e(hih

∗
i ), 0 ≤ i ≤ L, and R̂e(hih

∗
j), 0 ≤ i < j ≤ L, denote the estimate of

|hi|2 and Re(hih
∗
j), respectively. Based on the expectation E

[
N

]
, we first obtain an estimate

R̂e(hih
∗
i ) for 0 ≤ i ≤ L, and then obtain the estimate R̂e(hih

∗
j) for 0 ≤ i < j ≤ L based on the

estimate {R̂e(hih
∗
i )}Li=0.

1) Photon-counting Receiver: Given the number of photons {Nm}Mm=L received over the

slots L ≤ m ≤ M , R̂e(hih
∗
i ) and R̂e(hih

∗
j) can be estimated in a successive manner as
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follows,

R̂e(hih
∗
i ) =

∑
m∈Si

Nm − λb|Si|
αP |Si|

, 0 ≤ i ≤ L;

R̂e(hih
∗
j) =

∑
m∈Sij

Nm − λb|Sij|
2αP |Sij|

−
R̂e(hih

∗
i ) + R̂e(hjh

∗
j)

2
, 0 ≤ i < j ≤ L. (41)

2) PMT Receiver: Given the number of photons {zm}Mm=L received over the slots L ≤ m ≤
M , R̂e(hih

∗
i ) and R̂e(hih

∗
j) can be estimated in a successive manner as follows,

R̂e(hih
∗
i ) =

∑
m∈Si

zm − λb|Si|Ae
αP |Si|Ae

, 0 ≤ i ≤ L;

R̂e(hih
∗
j) =

∑
m∈Sij

zm − λb|Sij|Ae
2αP |Sij|Ae

−
R̂e(hih

∗
i ) + R̂e(hjh

∗
j)

2
, 0 ≤ i < j ≤ L. (42)

B. Optimality of the Sparse Pilot Sequence

The successive estimation approaches (41) and (42) serve as low-complexity solutions to the

estimation of the second-order moments h. It can be proved that this successive estimation

approach conforms to the optimality criterion (18) and (31).

We specify the structure of the pilot matrix X for the particular type of the pilot sequence

specified by (34). Let G be a L(L+1)
2

× (L + 1) matrix, where in each row two elements are

one and all other elements are zero. It characterizes the terms |hl1 |2 and |hl2 |2 involved in the

computation of |hl1 + hl1 |2. The entire pilot structure can be characterized by the following

matrix,

Q =


I 0

−−− −−−

G 2I

 , (43)

where the upper portion and lower portion characterize the pilots for the terms |hl|2 and |hl1 +

hl2 |2 = |hl1 |2 + |hl2 |2 + 2Re(hl1h
∗
l2
), respectively. According to Theorem 5, the output of each

unit of the pilot sequence shown in (36) is given by Qh. Assuming that the unit of the pilot

sequence is repeated r times for constructing the entire pilot sequence, we have

X =
[
QT QT ... QT

]T
, (44)

in conjunction with r component matrices QT .
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According to (44), we have(
XTX

)−1

XT =
1

r

[(
QTQ

)−1

QT
(
QTQ

)−1

QT ...
(
QTQ

)−1

QT
]
, (45)

with r repetitions of the component matrices
(
QTQ

)−1

QT . According to (43), we have

QTQ =

 I +GTG 2GT

2G 4I

 . (46)

In order to further analyze the inverse matrix
(
QTQ

)−1

, we outline the following result on the

matrix inversion, which has been provided in [27].

Proposition 2: If both matrices D and A −BD−1C are nonsingular, we have (47) on the

matrix inversion. A B

C D

−1

=


(
A−CD−1B

)−1

−
(
A−BD−1C

)−1

BD−1

−D−1C
(
A−BD−1C

)−1

D−1 +D−1C
(
A−BD−1C

)−1

BD−1

 .(47)

2

Upon substituting A = I + GTG, B = C = 2GT , and D = 4I into (47), we have the

following result on the inverse matrix
(
QTQ

)−1

.

Lemma 3: According to (43), we have the following,

(
QTQ

)−1

=

 I −1
2
GT

−1
2
G 1

4
I + 1

4
GGT

 , and
(
QTQ

)−1

QT =

 I 0

−1
2
G 1

2
I

 . (48)

2

According to (48), we can prove the conformance of the proposed low-complexity solution

(41) and (42), to the optimality criterion (18) and (31) for the general estimation framework,

respectively. The equivalence is summarized in the following result. The proof is straightforward

and thus omitted here.

Theorem 6: The estimates (41) and (42) are equivalent to the solution provided in (18) and

(31), respectively, for photon-counting and PMT receivers.

2

Finally we analyze the variance of the estimate ĥ generated with the sparse pilot structure

based on Theorems 2 and 4. For the term arriving from the additive Poisson noise, we have

Tr
(
XTX

)−1

=
1

r
Tr

(
QTQ

)−1

=
(L+ 1)(3L+ 4)

4r
; (49)
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and for the term engendered by the Poisson derived signal variance, we have(
XTX

)−1

XT diag
(
Xh

)
X

(
XTX

)−1

=
1

r

(
QTQ

)−1

QT diag
(
Qh

)
Q
(
QTQ

)−1

=
1

r

(
2

L∑
l=0

|hl|2 +
1

2

L+1∑
l1=1

L+1∑
l2=l1+1

Re(hl1h
∗
l2
)
)
. (50)

We can then obtain the variance of the estimate h based on (49) and (50), for both the photon-

counting receiver and the PMT receiver. The estimation variances are consistent with those

obtained directly from (41) and (42).

V. ESTIMATION OF THE CHANNEL TAPS {hn}Ln=0

Let the channel taps be represented by hc
△
= [h0, h1, h2, ..., hL]

T . Assume that we have obtained

an estimate of h, given by

ĥ
△
=

[
R̂e(h0h

∗
0), R̂e(h1h

∗
1), ..., R̂e(hLh

∗
L), R̂e(h0h

∗
1), ..., R̂e(h0h

∗
L), R̂e(h1h

∗
2), ..., R̂e(h1h

∗
L),

R̂e(h2h
∗
3), ..., R̂e(h2h

∗
L), ..., R̂e(hL−1h

∗
L)
]T

, (51)

where R̂e(hih
∗
j) denotes the estimate of Re(hih

∗
j). Let us now define R

△
= Re

(
hch

H
c

)
, where

hH
c denotes the complex conjugate of the vector hc and Re(•) represents the real part of a

complex matrix. An estimate of R, denoted as R̂, can be obtained from (51) as follows,

R̂ =



R̂e(h0h
∗
0) R̂e(h0h

∗
1) ... R̂e(h0h

∗
L)

R̂e(h0h
∗
1) R̂e(h1h

∗
1) ... R̂e(h1h

∗
L)

... ... ... ...

R̂e(h0h
∗
L) R̂e(h1h

∗
L) ... R̂e(hLh

∗
L)


. (52)

We have to obtain an estimate of hc, denoted as ĥc, based on the estimate R̂, as elaborated

on in this section. We first investigate several properties of R, then propose an algorithm for

estimating hc, and finally analyze the performance of the proposed algorithm.

A. Properties of R

Note that the complex channel taps hc can be decomposed as follows

hc = hcr + hci ·
√
−1, (53)
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where hcr and hci are the real and imaginary parts of hc, respectively. Then, the matrix R can

be expressed based on hcr and hci as follows,

R = Re
(
hch

H
c

)
= hcrh

T
cr + hcih

T
ci

△
= HHT , (54)

where H
△
=

[
hcr hci

]
is an L× 2 matrix consisting of the real and imaginary parts of hc. It is

readily seen from (54) that R is a rank-two real symmetric (Hermitian) matrix, which we use

for reconstructing H .

We next investigate the eigenvalue decomposition of R. Since R is a Hermitian matrix, all its

eigenvalues are real. Since R is a rank-two real symmetric (Hermitian) matrix, the eigenvalue

decomposition of R can be written as follows,

R = κ1v1v
T
1 + κ2v2v

T
2 = Ṽ Ṽ

T
, (55)

where Ṽ
△
=

[√
κ1v1,

√
κ2v2

]
. We now have to investigate the relationship between H and Ṽ .

If hci = ρhcr for some real number ρ, then R is a rank one matrix [c.f. (54)]. Then we have

κ2 = 0, and

v1 =
hcr∥∥∥hcr

∥∥∥ , and κ1 = (1 + ρ2)
∥∥∥hcr

∥∥∥2

. (56)

Otherwise, we can prove that κ1, κ2 > 0, and v1,v2 lie in the space spanned by hci and hcr.

More specifically, we have the following result.

Lemma 4: If hci and hcr are linearly independent, we have κ1, κ2 > 0; and v1 and v2 lie in

the space spanned by hci and hcr.

Proof: Note that, since hci and hcr are linearly independent, R = HHT is a rank-two

matrix. Then we have that the two eigenvalues satisfy κ1, κ2 > 0. Since v1 and v2 are orthogonal

to each other, we have

κ1v
T
1 = vT

1 (κ1v1v
T
1 + κ2v2v

T
2 ) = vT

1 (hcrh
T
cr + hcih

T
ci)

= (vT
1hcr)h

T
cr + (vT

1hci)h
T
ci; (57)

and thus v1 lies in the space spanned by hci and hcr. Using similar arguments, we can prove

that v2 lies in the space spanned by hci and hcr.

According to Lemma 4, the eigenvectors satisfy Ṽ = HT , where T is the linear combinations

matrix. Then, since both Ṽ and H are real matrices, we have

Ṽ = HT = H∗T ∗ = HT ∗, (58)
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where H∗ and T ∗ denote the element-wise complex conjugate of H and T , respectively. Again,

since H is of full column rank, we have that T = T ∗, and thus T is a real matrix.

According to (54), we have R = Ṽ Ṽ
T
= HTT THT = HHT . Since H is of full column

rank, we have TT T = I . Based on this we can further characterize the matrix T . Letting

T
△
=

 t11 t12

t21 t22

 , (59)

we have t211 + t212 = t221 + t222 = 1. Let t11 = cosα, t12 = sinα, t21 = sin β, t22 = cos β. Since

t11t21 + t12t22 = 0, we have sin(α + β) = 0, i.e., the matrix T can be written as follows,

T =

 cosα sinα

− sinα cosα

 △
= R+(α), or T =

 cosα sinα

sinα − cosα

 △
= R−(α). (60)

As V = HT , we have the following relationship,

H = V R+(−α), and H = V R−(−α), (61)

for any angle 0 ≤ α < 2π. Note that R+(α) represents the rotation matrix in the two dimensional

x-y plane; and R−(α) represents the rotation matrix followed by the mirror transform over the

x-axis.

It may be obtained from (55) that a feasible complex channel tap solution hc is given by

hc0 =
√
κ1v1 +

√
κ2v2 ·

√
−1, (62)

which corresponds to the matrix Ṽ . According to (61), it may be shown that all feasible solutions

can be formulated based on the following expression,

hc = hc0e
−jα, or hc = h∗

c0e
−jα, for any 0 ≤ α < 2π. (63)

Observe from Proposition 1 of Section II-B that the channel estimation may suffer from

both a rotational ambiguity and a conjugate ambiguity, which serve as a “lower bound” on the

channel estimation ambiguity. According to (63), it is seen that the proposed approach relying

on first estimating R and then estimating hc suffers from both of the above ambiguities, which

shows that such an “lower bound” is tight. Therefore, the channel estimation problem under

consideration suffers from both types of ambiguities, while the proposed estimation approach

does not introduce any more ambiguities.
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B. Estimation of the Taps {hn}Ln=0

We now propose an algorithm for estimating hc based on the eigenvalue decomposition of

the estimate R̂. Since R̂ is a real symmetric matrix, all its eigenvalues and the corresponding

eigenvectors are real. For 1 ≤ j ≤ L + 1, let κ̂j be the jth largest eigenvalue of R̂ and v̂j be

the associated real eigenvector, obtained from the following equation(
R̂− κ̂jI

)
v̂j = 0. (64)

The estimation of ĥc is based on the fact that the rank of R is at most two and that the two

non-zero eigenvalues of R are both positive. More specifically, we find the largest two positive

eigenvalues of R̂ and the corresponding eigenvectors. Then we obtain an estimate ĥc based on

these eigenvalues and eigenvectors. An outage is reported if there is no positive eigenvalue.

The details of the proposed algorithm are outlined in Algorithm 1, as follows.

Algorithm 1 - Estimating hc based on the estimate R̂

1: Obtain the eigenvalues decomposition of R̂.

Let κ̂1 ≥ κ̂2 ≥ ... ≥ κ̂L+1 be the eigenvalues and the corresponding eigenvectors be {v̂j}L+1
j=1 .

2: If κ̂1 > 0, κ̂2 > 0, then let ĥc =
√
κ̂1v̂1 +

√
κ̂2v̂2 ·

√
−1;

if κ̂1 > 0, κ̂2 ≤ 0, then let ĥc =
√
κ̂1v̂1;

otherwise, output estimation outage.

3: Output ĥc as an estimate of hc.

C. Performance Analysis

It is seen from Algorithm 1 that the estimate ĥc can be written as follows,

ĥc =
√

κ̂1v̂1 +
√
(κ̂2)+v̂2 ·

√
−1, (65)

where (·)+ denotes the real part of a number. In the following we analyze the estimation distortion∥∥∥ĥc −hc

∥∥∥2

, assuming that the channel taps hc = hc0 obey (62). Note that the estimate ĥc is an

approximation of hc under the perturbation of R̂ from its true value R. The estimation distortion∥∥∥ĥc −hc

∥∥∥2

is based on the perturbation of eigenvalues and eigenvectors of a Hermitian matrix.

The following result shows that the distortions of eigenvalues and eigenvectors are bounded

under a small perturbation of the matrix R [28], [29].

Proposition 3: We have the following bound on the perturbation of the eigenvalues,

|κi − κ̂i| ≤
∥∥∥R− R̂

∥∥∥. (66)
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Let us consider the angle between the eigenvectors vi and v̂i, 1 ≤ i ≤ L + 1, denoted as θi.

Then sin θi is also bounded as follows,∣∣∣ sin θi∣∣∣ ≤ 1

minj ̸=i |κj − κ̂i|

∥∥∥R− R̂
∥∥∥. (67)

2

Note that, from the definition of h [c.f. (13)] and R [c.f. (52)], we have the following,∥∥∥R− R̂
∥∥∥ ≤

√
2
∥∥∥h− ĥ

∥∥∥. (68)

Naturally, the distortion
∥∥∥R−R̂

∥∥∥ tends to zero, as the distortion
∥∥∥h− ĥ

∥∥∥ approaches zero. Note

that according to (49) - (50), for sparse pilot sequences consisting of r repeated pilot sequence

units, the expected distortion obeys

E
[∥∥∥h− ĥ

∥∥∥2]
≤ C

r
, (69)

for some constant C, which approaches zero as the number of repeated units r approaches

infinity.

Let us first analyze the eigenvalues of R̂. According to (66), we have

E
[
|κi − κ̂i|2

]
≤ E

[∥∥∥R̂−R
∥∥∥2]

≤ E
[
2
∥∥∥h− ĥ

∥∥∥2]
≤ 2C

r
. (70)

Then, according to Chebyshev’s inequality, given any distortion threshold δ > 0, we have

P
(
|κi − κ̂i| > δ

)
≤ 2C

rδ2
, (71)

which approaches zero as the number of repeated units r approaches infinity.

Based on the above arguments, we analyze the estimation induced perturbation imposed on

linearly dependent pair and linearly independent pair hcr and hci. We construct a set of “typical

scenarios” conceiving the eigenvalues of R̂, whose probability approaches one as the number

of repeated units r approaches infinity, and then prove that the distortion
∥∥∥ĥc − hc

∥∥∥2

can be

reduced arbitrarily small for those events.

1) Analysis for the Linearly Dependent hcr and hci Pair: For linearly dependent hcr and hci,

we only have a single positive eigenvalue κ1. Let us define the following event,

E1
△
=

{
κ̂1 >

κ1

2

}
. (72)

It can be shown that the probability P
(
E1
)

of event E1 approaches one as the number of

repeated units r approaches infinity. More specifically, since{
|κ̂1 − κ1| ≤

κ1

2

}
⊆ E1, (73)
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we have the following lower bound on P
(
E1
)

based on (71),

P
(
E1
)
≥ P

({
|κ̂1 − κ1| ≤

κ1

2

})
≥ 1− 8C

rκ2
1

. (74)

Under the event E1, we can further bound the estimation distortion of
∥∥∥ĥc−hc

∥∥∥2

based on (66)

and (67) for the perturbation of the eigenvalues and eigenvectors, respectively. The following

results show that the estimation distortion can be reduced arbitrarily small with the probability

arbitrarily close to one, given that the number of repeated pilot units r approaches infinity.

Theorem 7: For any δ > 0, we have the following upper bound on the estimation distortion∥∥∥ĥc − hc

∥∥∥2

≤ 6δ +
24δ2

κ1

, (75)

with the probability of at least

P1(δ, r)
△
= 1− 2C

rδ2
− 8C

rκ2
1

. (76)

Proof: Please refer to Appendix VIII-A.

2) Analysis for the Linearly Independent Pair hcr and hci: Note that in this scenario, the

eigenvalues obey κ1 ≥ κ2 > 0, and κi = 0 for i ≥ 3. We consider the following the event,

E2 =
{
κ1 > κ2

}∩{
κ̂1 >

κ1 + κ2

2
> κ̂2 >

κ2

2

}
. (77)

Note that the nonzero eigenvalues of HHT are also the eigenvalues of HTH . Then, it is seen

that, if the two eigenvalues of HTH are the same, i.e. κ1 = κ2
△
= κ, then we have HTH = κI .

In such a scenario, we have that
∥∥∥hci

∥∥∥ =
∥∥∥hcr

∥∥∥ and hT
cihcr = 0. Note that the above scenario

happens with probability zero. Since P
({

κ1 > κ2

})
= 1, we have

P
(
E2
)

≥ 1− P
(
|κ1 − κ̂1| > δ12

)
− P

(
|κ2 − κ̂2| > δ23

)
= 1− 2C

rδ21
− 2C

rδ22
, (78)

where δ1
△
= 0.5 · (κ1 − κ2) and δ2

△
= 0.5 ·min{κ1 − κ2, κ2}.

We analyze the distortion
∥∥∥ĥc−hc

∥∥∥2

in case that E2 is satisfied. Again, we can prove that the

estimation distortion
∥∥∥ĥc−hc

∥∥∥2

can be made arbitrarily small with a probability arbitrarily close

to one, given that the number of repeated pilot units r approaches infinity. More specifically, we

have the following result.

Theorem 8: For any δ > 0, we have the following upper bound on the estimation distortion,∥∥∥ĥc − hc

∥∥∥2

≤ 8δ +
(8κ1

δ21
+

8κ2

δ22

)
δ2, (79)
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which holds with a probability of at least

P2(δ, r)
△
= 1− 2C

rδ2
− 2C

rδ21
− 2C

rδ22
. (80)

Proof: Please refer to Appendix VIII-B.

VI. SIMULATION RESULTS

A. Simulation Setup and Parameters

We adopt the following system parameters. The receiver temperature is T o = 300K; the

load resistance is RL = 5MΩ; the PMT spreading factor is ξ = 0.10; the photon noise rate is

Λb = 14500s−1; and the bit rate is Rb = 2Mbps and thus the symbol duration is T = 1/Rb =

0.5µs. The Planck Constant is h = 6.62606957 × 10−34m2kg/s; the Boltzmann Constant is

ke = 1.3806505× 10−23J ·K−1; and the single electron charge is e = 1.602× 10−19C.

The CIR taps are generated according to stochastic physics. Consider the transmission optical

signal with a wavelength 260nm. Accordingly, each photon has energy Ep = 7.65× 10−19J ; the

Rayleigh scattering coefficient is given by kr = 0.266× 10−3m−1; the Mie scattering coefficient

is given by km = 0.284 × 10−3m−1; and the absorption coefficient is given by ka = 0.802 ×
10−3m−1. Set γ = 0.017, f = 0.5, and g = 0.72 in the atmosphere scattering model, and

the receiver area SR = 1.77 × 10−4m2. Let the positions of the transmitter and the receiver

be (100, 0, 0)m and (0, 0, 0)m, respectively. Let the pointing angles of the transmitter and the

receiver be both π/3; and the transmitter beamwidth after beam expansion and receiver field of

view be both π/6. Let the azimuth angles of the transmitter and the receiver measured from the

positive x-axis be π and 0, respectively. We have that the number of channel taps is L+ 1 = 4,

and
[
|h0|2, |h1|2, |h2|2, |h3|2

]
=

[
6.5, 3.7, 1.0, 0.2

]
× 10−11. Here we generate the phases of h0,

h1, h2, and h3 randomly within the interval [0, 2π), to test the effectiveness of the proposed

two-stage channel estimation.

Let us now characterize the performance of the proposed channel estimation approach, for both

a 0-1 random pilot sequence and the sparse sequence, where for the former the probabilities of

both the 0 and 1 OOK symbols are 0.5. Recall that hc and ĥc denote the original and estimated

CIR taps, respectively. The normalized channel estimation error, denoted as ECE , is given by

ECE =
∥∥∥ĥc − hc

∥∥∥2/∥∥∥hc

∥∥∥2

, (81)

which is employed as our metric of evaluating the channel estimation performance. In this

section, we compare both the complementary cumulative distribution function (CCDF) of ECE ,



24

as well as the mean of ECE , for both the 0-1 random and the sparse pilot sequences. A total

number of 500, 000 channel realizations are simulated for generating the CCDF and the mean

value of ECE . The same lengths are adopted for both types of pilots, which consists of four

repeated units of the pilots. The length of the pilot sequences is given by (L+1)(L+2)
2

×4+1 = 41.

B. The Estimation Distortion for the Photon-counting Receiver

The CCDF of the normalized channel estimation error for the 0-1 random pilot sequence

relying on the photon-counting receiver is shown in Figure 1, for two different pilot sequences

and transmission power P varying from −10dBW to 10dBW. Observe for the random pilot

sequence in Figure 1(a) that there is a probability of around 0.3 that the normalized distortion is

about 0.3, resulting in a high “distortion floor”. By contrast, for the pilot sequence in Figure 1(b),

such “distortion floor” is reduced. Hence Figure 1 demonstrates the importance of the pilot

sequence design.

By contrast, the CCDF of the normalized channel estimation error ECE recorded for the sparse

pilot sequence and the photon-counting receiver is shown in Figure 2. Again, the “distortion

floor” is reduced upon increasing the transmission power. We can contrast the average normalized

estimation distortion of the random 0-1 pilot sequence and of the sparse sequence, by comparing

Figure 1 to Figure 2. The distortion recorded in Figure 1(a) for the random 0-1 pilot sequence

with a high distortion floor is above 0.1; while the sparse pilot sequence shows a slightly lower

distortion in Figure 2.

Figure 3 compares the distortion of the proposed sparse pilot design with those of the 0-1

random pilots with high distortion floor and low distortion floor. It is seen that the distortion of

the sparse pilot is close to that of the 0-1 random pilots with low distortion floor, and significantly

lower than that of the 0-1 random pilots with high distortion floor.

C. The Estimation Distortion for the PMT Receiver

Next we study the CCDF of the normalized channel estimation error for the PMT receiver.

Figure 4 shows the CCDF for both 0-1 random pilot sequence and the sparse sequence, for

the transmission power ranging from −2dBW to 10dBW and for the PMT amplification factors

of A = 100, 200, 500, and 1000. As shown in both figures, the CCDFs plotted for the same

transmission power are grouped, where the trend is that in each group the CCDFs decrease

with the amplification factor. This is because a higher amplification factor can lead to a reduced
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(a) The 0-1 random pilot sequence with high distortion floor.
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(b) The 0-1 random pilot sequence with low distortion floor.

Fig. 1. The CCDF of the normalized estimation distortion for the 0-1 random pilot sequence (high and low distortion floor)

in conjunction with a photon-counting receiver.
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Fig. 2. The CCDF of the normalized estimation distortion using the sparse pilot sequence for a photon-counting receiver.

channel estimation distortion. It is seen in Figure 4 that sparse sequence leads to a lower distortion

floor than the 0-1 random pilot sequence.

The average normalized estimation distortions recorded for both the 0-1 random pilot and the

sparse pilot sequences are shown in Figure 5. It is seen that the normalized channel estimation

error decreases with the amplification factor for both types of pilot sequences. Note that for the

ultraviolet LD source, the transmission power can reach between 200mW and 400mW, which is

between −7dBW and −4dBW. In such a power regime, the sparse pilot sequence is capable of
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Fig. 3. The normalized estimation distortion for photon-counting receiver.

reducing the distortion compared with the 0-1 random pilot sequence.
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(a) The 0-1 random pilot sequence.
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Fig. 4. The CCDF of the normalized estimation distortion with 0-1 random and sparse pilot sequence for PMT receiver.

For the sparse pilot, the mutual interference of “1”s can be well controlled by the pattern

design, which contributes to the reduced distortion. For the randomly chosen pilot pattern, the

number of “1”s and the number of “0”s are approximately equal, but for the sparse pilot design

the number of “1”s is much smaller. This implies that the sparse pilot design can reduce the

estimation distortion at the cost smaller average transmission power. In this work we assume

the same peak transmission power for both the random pilots and the sparse pilot, which is the
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Fig. 5. The normalized estimation distortion for PMT receiver.

typical scenario of the external modulator for the UV laser.

VII. CONCLUSIONS

We have proposed a two-stage channel estimation framework for the energy-type receivers

of optical wireless scattering communications. Based on the framework, we have also proposed

a sparse structure for the pilot sequences as used, which guarantees a reduced computational

complexity. We have also analyzed the performance of the proposed estimation approach for both

stages. We prove that as the length of the pilot sequence approaches infinity, the probability of

having an estimation distortion larger than any positive threshold may approach zero. Numerical

results show that compared to the pilot sequence using 0-1 random bits, the proposed sparse

structure is capable of reducing the estimation distortion.

VIII. APPENDIX

A. Proof of Theorem 7

The estimation distortion
∥∥∥ĥc − hc

∥∥∥ may be expressed as∥∥∥ĥc − hc

∥∥∥ =
∥∥∥(√κ̂1 −

√
κ1

)
v̂1 +

√
κ1

(
v̂1 − v1

)
+

√(
κ̂2

)+

v̂2 ·
√
−1

∥∥∥
≤ |

√
κ̂1 −

√
κ1|+

√
κ1

∥∥∥v̂1 − v1

∥∥∥+ |
√

κ̂2 −
√
κ2|

≤
√
|κ̂1 − κ1|+

√
|κ̂2 − κ2|+

√
κ1

∥∥∥v̂1 − v1

∥∥∥. (82)
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For the event E1, if κ̂1 >
κ1

2
, the angle between v̂1 and v1, denoted as θ1, satisfies∣∣∣ sin θ1∣∣∣ ≤ 2

κ1

∥∥∥R− R̂
∥∥∥. (83)

Without loss of generality, let θ1 < π/2, and thus∥∥∥v̂1 − v1

∥∥∥ = 2
∣∣∣ sin θ

2

∣∣∣ = 2 sin θ

2 cos θ
2

≤ 2
√
2

κ1

∥∥∥R− R̂
∥∥∥. (84)

Then according to (82) and (84), we have∥∥∥ĥc − hc

∥∥∥ ≤
√

|κ̂1 − κ1|+
√
|κ̂2 − κ2|+

2
√
2

√
κ1

∥∥∥R− R̂
∥∥∥. (85)

Based on the perturbation of eigenvalues [c.f. (66)], we have the following upper bound on the

estimation distortion∥∥∥ĥc − hc

∥∥∥2

≤ 3|κ̂1 − κ1|+ 3|κ̂2 − κ2|+
24

κ1

∥∥∥R− R̂
∥∥∥2

≤ 6
∥∥∥R− R̂

∥∥∥+
24

κ1

∥∥∥R− R̂
∥∥∥2

. (86)

Note that, according to (71), for any δ > 0, we have

P
(∥∥∥R̂−R

∥∥∥ > δ
)
≤ 2C

rδ2
; (87)

and we arrive that
∥∥∥R̂ −R

∥∥∥ < δ with a probability of at least 1− 2C
rδ2

. Noting that (84) holds

for the event E1, we have that (75) holds under the event

Ẽ1
△
= E1

∩{∥∥∥R̂−R
∥∥∥ < δ

}
. (88)

Note that the probability of the event Ẽ1 can be bounded as follows,

P
(
Ẽ1
)
≥ P

(
E1
)
− P

(∥∥∥R̂−R
∥∥∥ > δ

)
, (89)

which leads to (76).

B. Proof of Theorem 8

Note that the estimate distortion satisfies∥∥∥ĥc − hc

∥∥∥ =
∥∥∥√κ̂1v̂1 −

√
κ1v1 +

√
κ̂2v̂2 ·

√
−1−

√
κ2v2 ·

√
−1

∥∥∥
≤

∥∥∥(√κ̂1 −
√
κ1

)
v̂1 +

√
κ1

(
v̂1 − v1

)∥∥∥+
∥∥∥(√κ̂2 −

√
κ2

)
v̂2 +

√
κ2

(
v̂2 − v2

)∥∥∥
≤

√
|κ̂1 − κ1|+

√
κ1

∥∥∥v̂1 − v1

∥∥∥+
√
|κ̂2 − κ2|+

√
κ2

∥∥∥v̂2 − v2

∥∥∥. (90)
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According to (67), the angle between v1 and v̂1, denoted as θ1, as well as that between v2 and

v̂2, denoted as θ2, satisfy∣∣∣ sin θ1∣∣∣ ≤ 1

δ1

∥∥∥R− R̂
∥∥∥, ∣∣∣ sin θ2∣∣∣ ≤ 1

δ2

∥∥∥R− R̂
∥∥∥. (91)

Similar to (84), we have the following upper bound on the distortion
∥∥∥v1− v̂1

∥∥∥ and
∥∥∥v2− v̂2

∥∥∥,∥∥∥v̂1 − v1

∥∥∥ ≤
√
2

δ1

∥∥∥R− R̂
∥∥∥, ∥∥∥v̂2 − v2

∥∥∥ ≤
√
2

δ2

∥∥∥R− R̂
∥∥∥. (92)

According to (66) and (92), we have∥∥∥ĥc − hc

∥∥∥2

≤ 4|κ̂1 − κ1|+ 4|κ̂2 − κ2|+
8κ1

δ21

∥∥∥R− R̂
∥∥∥2

+
8κ2

δ22

∥∥∥R− R̂
∥∥∥2

≤ 8
∥∥∥R− R̂

∥∥∥+
(8κ1

δ21
+

8κ2

δ22

)∥∥∥R− R̂
∥∥∥2

. (93)

Noting that (93) holds under the event E2, (79) holds under the event

Ẽ2
△
= E2

∩{∥∥∥R̂−R
∥∥∥ < δ

}
. (94)

We have the following lower bound on the probability P
(
Ẽ2
)

,

P
(
Ẽ2
)
≥ P

(
E2
)
− P

(∥∥∥R̂−R
∥∥∥ > δ

)
, (95)

which leads to (80).
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