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Abstract

One of the most intriguing questions in evolution is how organisms exhibit suitable phenotypic variation

to rapidly adapt in novel selective environments. Such variability is crucial for evolvability, but poorly

understood. In particular, how can natural selection favour developmental organisations that facilitate

adaptive evolution in previously unseen environments? Such a capacity suggests foresight that is incom-

patible with the short-sighted concept of natural selection. A potential resolution is provided by the idea

that evolution may discover and exploit information not only about the particular phenotypes selected

in the past, but their underlying structural regularities: new phenotypes, with the same underlying

regularities, but novel particulars, may then be useful in new environments. If true, we still need to

understand the conditions in which natural selection will discover such deep regularities rather than

exploiting ‘quick fixes’ (i.e. fixes that provide adaptive phenotypes in the short term, but limit future

evolvability). Here we argue that the ability of evolution to discover such regularities is formally analogous

to learning principles, familiar in humans and machines, that enable generalisation from past experience.

Conversely, natural selection that fails to enhance evolvability is directly analogous to the learning problem

of over-fitting and the subsequent failure to generalise. We support the conclusion that evolving systems

and learning systems are different instantiations of the same algorithmic principles by showing that

existing results from the learning domain can be transferred to the evolution domain. Specifically, we

show that conditions that alleviate over-fitting in learning systems successfully predict which biological

conditions (e.g., environmental variation, regularity, noise or a pressure for developmental simplicity)

enhance evolvability. This equivalence provides access to a well-developed theoretical framework from

learning theory that enables a characterisation of the general conditions for the evolution of evolvability.
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Author Summary

A striking feature of evolving organisms is their ability to acquire novel characteristics that help them adapt

in new environments. The origin and the conditions of such ability remain elusive and is a long-standing

question in evolutionary biology. Recent theory suggests that organisms can evolve designs that help

them generate novel features that are more likely to be beneficial. Specifically, this is possible when the

environments that organisms are exposed to share common regularities. However, the organisms develop

robust designs that tend to produce what had been selected in the past and might be inflexible for future

environments. The resolution comes from a recent theory introduced by Watson and Szathmry that

suggests a deep analogy between learning and evolution. Accordingly, here we utilise learning theory to

explain the conditions that lead to more evolvable designs. We successfully demonstrate this by equating

evolvability to the way humans and machines generalise to previously-unseen situations. Specifically, we

show that the same conditions that enhance generalisation in learning systems have biological analogues and

help us understand why environmental noise and the reproductive and maintenance costs of gene-regulatory

connections can lead to more evolvable designs.

Introduction 1

Linking the Evolution of Evolvability with Generalisation in Learning Systems 2

Explaining how organisms adapt in novel selective environments is central to evolutionary biology [1–5]. 3

Living organisms are both robust and capable of change. The former property allows for stability and 4

reliable functionality against genetic and environmental perturbations, while the latter provides flexibility 5

allowing for the evolutionary acquisition of new potentially adaptive traits [5–9]. This capacity of an 6

organism to produce suitable phenotypic variation to adapt to new environments is often identified as 7

a prerequisite for evolvability, i.e. the capacity for adaptive evolution [7,10,11]. It is thus important to 8

understand the underlying variational mechanisms that enable the production of adaptive phenotypic 9

variation [6, 7, 12–18]. 10

Phenotypic variations are heavily determined by intrinsic tendencies imposed by the genetic and the 11

developmental architecture [18–21]. For instance, developmental biases may permit high variability for a 12

particular phenotypic trait and limited variability for another, or cause certain phenotypic traits to co- 13
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vary [6, 15, 22–26]. Developmental processes are themselves also shaped by previous selection. As a result, 14

we may expect that past evolution could adapt the distribution of phenotypes explored by future natural 15

selection to amplify promising variations and avoid less useful ones by evolving developmental architectures 16

that are predisposed to exhibit effective adaptation [10, 13]. Selection though cannot favour traits for 17

benefits that have not yet been realised. Moreover, in situations when selection can control phenotypic 18

variation, it nearly always reduces such variation because it favours canalisation over flexibility [23,27–29]. 19

Developmental canalisation may seem to be intrinsically opposed to an increase in phenotypic variability. 20

Some, however, view these notions as two sides of the same coin, i.e., a predisposition to evolve some 21

phenotypes more readily goes hand in hand with a decrease in the propensity to produce other phenotypes 22

[8,30,31]. Kirschner and Gerhart integrated findings that support these ideas under the unified framework 23

of facilitated variation [8,32]. Similar ideas and concepts include the variational properties of the organisms 24

[13], the self-facilitation of evolution [20] and evolution as tinkering [33] and related notions [6, 7, 10,12]. 25

In facilitated variation, the key observation is that the intrinsic developmental structure of the organisms 26

biases both the amount and the direction of the phenotypic variation. Recent work in the area of 27

facilitated variation has shown that multiple selective environments were necessary to evolve evolvable 28

structures [25, 27, 34–36]. When selective environments contain underlying structural regularities, it 29

is possible that evolution learns to limit the phenotypic space to regions that are evolutionarily more 30

advantageous, promoting the discovery of useful phenotypes in a single or a few mutations [35,36]. But, 31

as we will show, these conditions do not necessarily enhance evolvability in novel environments. Thus 32

the general conditions which favour the emergence of adaptive developmental constraints that enhance 33

evolvability are not well-understood. 34

To address this we study the conditions where evolution by natural selection can find developmental 35

organisations that produce what we refer to here as generalised phenotypic distributions — i.e., not only 36

are these distributions capable of producing multiple distinct phenotypes that have been selected in the 37

past, but they can also produce novel phenotypes from the same family. Parter et al. have already shown 38

that this is possible in specific cases studying models of RNA structures and logic gates [34]. Here we wish 39

to understand more general conditions under which, and to what extent, natural selection can enhance the 40

capacity of developmental structures to produce suitable variation for selection in the future. We follow 41

previous work on the evolution of development [25] through computer simulations based in gene-regulatory 42

network (GRN) models. Many authors have noted that GRNs share common functionality to artificial 43
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neural networks [25, 37–40]. Watson et al. demonstrated a further result, more important to our purposes 44

here; that the way regulatory interactions evolve under natural selection is mathematically equivalent to 45

the way neural networks learn [25]. During evolution a GRN is capable of learning a memory of multiple 46

phenotypes that were fit in multiple past selective environments by internalising their statistical correlation 47

structure into its ontogenetic interactions, in the same way that learning neural networks store and recall 48

training patterns. Phenotypes that were fit in the past can then be recreated by the network spontaneously 49

(under genetic drift without selection) in the future or as a response to new selective environments that are 50

partially similar to past environments [25]. An important aspect of the evolved systems mentioned above 51

is modularity. Modularity has been a key feature of work on evolvability [6, 29, 41, 42] aiming to facilitate 52

variability that respects the natural decomposable structure of the selective environment, i.e., keep the 53

things together that need to be kept together and separate the things that are independent [6, 12,20,41]. 54

Accordingly, the system can perform a simple form of generalisation by separating knowledge from the 55

context in which it was originally observed and re-deploying it in new situations. 56

Here we show that this functional equivalence between learning and evolution predicts the evolutionary 57

conditions that enable the evolution of generalised developmental organisations. We test this analogy 58

between learning and evolution by testing its predictions. Specifically, we resolve the tension between 59

canalisation of phenotypes that have been successful in past environments and anticipation of phenotypes 60

that are fit in future environments by recognising that this is equivalent to prediction in learning systems. 61

Such predictive ability follows simply from the ability to represent structural regularities in previously seen 62

observations (i.e., the training set) that are also true in the yet-unseen ones (i.e., the test set). In learning 63

systems, such generalization is commonplace and not considered mysterious. But it is also understood 64

that successful generalisation in learning systems is not for granted and requires certain well-understood 65

conditions. We argue here that understanding the evolution of development is formally analogous to 66

model learning and can provide useful insights and testable hypotheses about the conditions that enhance 67

the evolution of evolvability under natural selection [42,43]. Thus, in recognising that learning systems 68

do not really ‘see into the future’ but can nonetheless make useful predictions by generalising past 69

experience, we demystify the notion that short-sighted natural selection can produce novel phenotypes 70

that are fit for previously-unseen selective environments and, more importantly, we can predict the general 71

conditions where this is possible. This functional equivalence between learning and evolution produces 72

many interesting, testable predictions (Table 1). 73
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In particular, the following experiments show that techniques that enhance generalisation in machine 74

learning correspond to evolutionary conditions that facilitate generalised phenotypic distributions and 75

hence increased evolvability. Specifically, we describe how well-known machine learning techniques, such 76

as learning with noise and penalising model complexity, that improve the generalisation ability of learning 77

models have biological analogues and can help us understand how noisy selective environments and 78

the direct selection pressure on the reproduction cost of the gene regulatory interactions can enhance 79

evolvability in gene regulation networks. This is a much more sophisticated and powerful form of 80

generalisation than previous notions that simply extrapolate previous experience. The system does not 81

merely extend its learned behaviour outside its past ‘known’ domain. Instead, we are interested in 82

situations where the system can create new knowledge by discovering and systematising emerging patterns 83

from past experience, and more notably, how the system separates that knowledge from the context in 84

which it was originally observed, so that it can be re-deployed in new situations. 85

Some evolutionary mechanisms and conditions have been proposed as important factors for improved 86

evolvability. Some concern the modification of genetic variability (e.g., [36, 44, 45] and [46]), while others 87

concern the nature of selective environments and the organisation of development including multiple 88

selective environments [36], sparsity [47], the direct selective pressure on the cost of connections (which 89

can induce modularity [27, 44] and hierarchy [48]), low developmental biases and constraints [49] and 90

stochasticity in GRNs [50]. In this paper, we focus on mechanisms and conditions that can be unified 91

and better understood in machine learning terms, and more notably, how we can utilise well-established 92

theory in learning to characterise general conditions under which evolvability is enhanced. We thus 93

provide the first theory to characterise the general conditions that enhance the evolution of developmental 94

organisations that generalise information gained from past selection, as required to enhance evolvability in 95

novel environments. 96
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Learning Theory Evolutionary Theory

(a) Generalisation; ability to produce an appropri-
ate response to novel situations by exploiting
regularities observed in past experience (i.e.,
not rote learning).

Facilitated variation; predisposition to produce fit pheno-
types in novel environments (i.e., not just canalisation of
past selected targets). Confirmed by experiment Conditions
that Facilitate Generalised Phenotypic Distributions.

(b) The performance of online learning algorithms
(i.e., processing one training example at a time)
are learning-rate dependent. Both high and low
learning rates can lead to situations of under-
fitting; failure of the learning system to capture
the regularities of the training data [51].

The evolution of generalised phenotypic distributions is de-
pendent on the time-scale of environmental switching. Both
high and low time-scales can lead to inflexible developmental
structures that fail to capture the functional dependencies
of the past phenotypic targets. Confirmed by experiment
Rate of Environmental Switching (Learning Rates).

(c) The problem of over-fitting: improved perfor-
mance on the training set comes at the expense
of generalisation performance on the test set.
Over-fitting occurs when the model learns to
focus on idiosyncrasies or noise in the training
set [52]. Accordingly, the model starts learning
the particular irrelevant relationships existing
in the training examples rather than the ‘true’
underlying relationships that are relevant to
the general class. This leads to memorisation
of specific training examples, which decreases
the ability to generalize, and thus perform well,
on new data.

Failure of natural selection to evolve generalised develop-
mental organisations: improved average fitness gained by
decreasing the phenotypic variation of descendants comes
at the expense of potentially useful variability for future se-
lective environments. Favouring immediate fitness benefits
would lead to robust developmental structures that canalise
the production of the selected phenotypes in the current
selective environment. Yet, this sets up a trade-off between
robustness and evolvability, since natural selection would
always favour inflexible developmental organisations that
reduce phenotypic variability and thus hinder the discov-
ery of useful phenotypes that can have fitness benefits in
the future. Confirmed by experiment How Generalisation
Changes over Evolutionary Time.

(d) Conditions that alleviate the problem of over-
fitting: (1) training with noisy data, i.e.,
adding noise during the learning phase (jitter-
ing), (2) regularisation (parsimony pressure),
i.e., introducing a connection cost term into
the objective function that favours connections
of small values (L2-regularisation) or fewer con-
nections (L1-regularisation).

Evolutionary conditions that facilitate the evolution of gen-
eralised phenotypic distributions, and thus evolvability: (1)
extrinsic noise in selective environments, (2) direct selection
pressure on the cost of ontogenetic interactions, which favour
simpler developmental processes and sparse network struc-
tures. Confirmed by experiments Conditions that Facilitate
Generalised Phenotypic Distributions and How Generalisa-
tion Changes over Evolutionary Time.

(e) L2-regularisation results in similar behaviour
as early stopping; an ad-hoc technique that
prevents over-fitting by stopping learning when
over-fitting begins [51].

Favouring weak connectivity via connection costs results in
similar behaviour as stopping adaptation at an early stage.
Confirmed by experiments Conditions that Facilitate Gen-
eralised Phenotypic Distributions and How Generalisation
Changes over Evolutionary Time.

(f) Training with noise results in similar behaviour
to L2-regularisation [51].

Noisy environments can enhance the evolution of generalised
developmental organisation in a similar manner as favouring
weak connectivity. Confirmed by experiments Conditions
that Facilitate Generalised Phenotypic Distributions and
How Generalisation Changes over Evolutionary Time.

(g) Generalisation performance is dependent on
the appropriate level of regularisation and the
level of noise, i.e., it depends on the induc-
tive biases, or prior assumptions about which
models are more likely to be correct, such as a
priori perference for simple models via parsi-
mony pressures.

The evolution of generalised phenotypic distributions is
dependent on the strength of selection pressure on the cost of
connections and the level of environmental noise. Confirmed
by experiment Sensitivity Analysis to Parameters Affecting
Phenotypic Generalisation.

Table 1. Predictions Made By Porting Key Lessons of Learning Theory to Evolutionary Theory; Each
is Confirmed by Our Experiments.
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Experimental Setup 97

Fig 1. Pictorial representation of phenotypes. (Top) Schematic representation of mapping from
phenotypic pattern sequences onto pictorial features. Each phenotypic ‘slot’ represents a set of features
(here 4) controlling a certain aspect of the phenotype (e.g., front wings, halteres and antennae). Within
the possible configurations in each slot (here 16), there are two particular configurations (state A and B)
that are fit in some environment or another (see S2 Appendix). For example, ‘+ +−−’ in the second slot
(from the top, green) of the phenotypic pattern encodes for a pair of front wings (state B), while ‘−−++’
encodes for their absence (state A). States A and B are the complement of one another, i.e., not
neighbours in phenotype space. All of the other intermediate states (here 14) are represented by a
random mosaic image of state A and B, based on their respective distance. dA indicates the Hamming
distance between a given state and state A. Accordingly, there exist

(
4
dA

)
potential intermediate states

(i.e., 4 for dA = 1, 6 for dA = 2 and 4 for dA = 3). (Bottom) Pictorial representation of all phenotypes
that are perfectly adapted to each of eight different environments. Each target phenotype is analogous to
an insect-like organism comprised of 4 functional features. The grey phenotypic targets correspond to
bit-wise complementary patterns of the phenotypes on the top half of the space.For example, in the
rightmost, top insect, the antennae, forewings, and hindwings are present, and the tail is not. In the
rightmost, bottom insect (the bitwise complement of the insect above it), the antennae, forewings, and
hindwings are absent, but the tail is present. We define the top row as ‘the class’ and we disregard the
bottom complements as degenerate forms of generalisation.



8

The main experimental setup involves a non-linear recurrent GRN which develops an embryonic phenotypic 98

pattern, G, into an adult phenotype, Pa, upon which selection can act [25]. An adult phenotype represents 99

the gene expression profile that results from the dynamics of the GRN. Those dynamics are determined 100

by the gene regulatory interactions of the network, B [38,39,47,53,54] (see SI: Developmental Model). 101

We evaluate the fitness of a given genetic structure based on how close the developed phenotype is to 102

the target phenotypic pattern, S. S characterises the direction of selection for each phenotypic trait, i.e., 103

element of gene expression profile, in the current environment. The dynamics of selective environments 104

are modelled by switching from one target phenotype to another every K generations. K is chosen to be 105

considerably smaller than the overall number of generations simulated. Below, we measure evolutionary 106

time in epochs, where each epoch denotes NT ×K generations and NT corresponds to the number of 107

target phenotypes. (Note that epoch here is a term we are borrowing from machine learning and does not 108

represent geological timescale.) 109

In the following experiments all phenotypic targets are chosen from the same class (as in [25,34]). This 110

class consists of 8 different modular patterns that correspond to different combinations of sub-patterns. 111

Each sub-pattern serves as a different function as pictorialised in Fig 1. This modular structure ensures 112

that the environments (and thus the phenotypes that are fittest in those environments) share common 113

regularities, i.e., they are all built from different combinations from the same set of modules. We can then 114

examine whether the system can actually ‘learn’ these systematicities from a limited set of examples and 115

thereby generalise from these to produce novel phenotypes within the same class. Our experiments are 116

carried out as follows. The population is evolved by exposure to a limited number of selective environments 117

(training). We then analyse conditions under which new phenotypes from the same family are produced 118

(test). As an exemplary problem we choose a training set comprised of three phenotypic patterns from 119

the class (see Fig 2 a). 120

One way to evaluate the generalisation ability of developmental organisations is to evolve a population 121

to new selective environments and evaluate the evolved predisposition of the development system to 122

produce suitable phenotypes for those environments (as per [34]). We do this at the end of experimental 123

section. We also use a more stringent test and examine the spontaneous production of such phenotypes 124

induced by development from random genetic variation. Specifically, we examine what phenotypes the 125

evolved developmental constraints and biases B are predisposed to create starting from random initial 126

gene expression levels, G. For this purpose, we perform a post-hoc analysis. First, we estimate the 127
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phenotypic distributions induced by the evolved developmental architecture under drift. Since mutation 128

on the direct effects on the embryonic phenotypes (G) in this model is much greater than mutation on 129

regulatory interactions (B) (see Methods), we estimate drift with a uniformly random distribution over 130

G (keeping B constant). Then we assess how successful the evolved system is at producing high-fitness 131

phenotypes, by seeing if the phenotypes produced by the evolved correlations, B, tend to be members of 132

the general class (see Methods). 133

Results and Discussion 134

Conditions that Facilitate Generalised Phenotypic Distributions 135

In this section, we focus on the conditions that promote the evolution of adaptive developmental biases 136

that facilitate generalised variational structures. To address this, we examine the distributions of potential 137

phenotypic variants induced by the evolved developmental structure in a series of different evolutionary 138

scenarios: 1) different time-scales of environmental switching, 2) environmental noise and 3) direct selection 139

pressure for simple developmental processes applied via a the cost of ontogenetic interactions favouring i) 140

weak and ii) sparse connectivity. 141

Rate of Environmental Switching (Learning Rates) 142

In this scenario, we assess the impact of the rate at which selective environments switch on the evolution of 143

generalised developmental organisations. This demonstrates prediction (b) from Table 1. The total number 144

of generations was kept fixed at 24×106, while the switching intervals, K, varied. In all reproductive events, 145

G is mutated by adding a uniformly distributed random value drawn in [−0.1, 0.1]. Additionally, in half 146

the reproduction events, all interaction coefficients are mutated slightly by adding a uniformly distributed 147

value drawn from [−0.1/(15N2), 0.1/(15N2)], where N corresponds to the number of phenotypic traits. 148

Prior work on facilitated variation has shown that the evolution of evolvability in varying selective 149

environments is dependent on the time-scale of environmental change [34–36]. This is analogous to the 150

sensitivity of generalisation to learning rate in learning systems. The longer a population is exposed to a 151

selective environment, the higher the expected adaptation accumulated to that environment would be. 152

Accordingly, the rate of change in a given environment (learning rate) can be controlled by the rate of 153

environmental change (sample rate). Slow and fast environmental changes thus correspond to fast and 154
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Fig 2. Conditions that facilitate generalised phenotypic distributions. Potential phenotypic
distributions induced by the evolved developmental process under 1) different time-scales of
environmental switching, 2) environmental noise (κ = 35× 10−4) and 3) direct selection pressure for weak
(λ = 38) and sparse connectivity (λ = 0.22). The organisms were exposed to three selective environments
(a) from the general class (i). Developmental memorisation of past phenotypic targets clearly depends on
the time-scale of environmental change. Noisy environments and parsimony pressures enhance the
generalisation ability of development predisposing the production of previously unseen targets from the
class. The size of the insect-like creatures describes relative frequencies and indicates the propensity of
development to express the respective phenotype (phenotypes with frequency less than 0.01 were ignored).
Note that the initial developmental structure represented all possible phenotypic patterns equally (here
212).



11

slow sample rates respectively. 155

We find that when the environments rapidly alternated from one to another (e.g., K ∼ 2), natural 156

selection canalised a single phenotypic pattern (Fig 2 b). This phenotype however did not correspond to 157

any of the previously selected ones (Fig 2 a). Rather, this corresponds to the combination of phenotypic 158

characters that occurs most in each of the seen target phenotypes. Hence, it does best on average over the 159

past selective environments. For example, over the three patterns selected in the past it is more common 160

that halteres are selected than a pair of back wings, or a pair of front wings is present more often than 161

not and so on. 162

When environments changed very slowly (e.g., K ∼ 4× 106), development canalised the first selective 163

environment experienced, prohibiting the acquisition of any useful information regarding other selective 164

environments (Fig 2 c). The situation was improved for a range of slightly faster environmental switching 165

times (e.g., K ∼ 2× 106), where natural selection also canalised the second target phenotype experienced, 166

but not all three (Fig 2 d). Canalisation can therefore be opposed to evolvability, resulting in very 167

inflexible models that failed to capture any or some of the relevant regularities in the past or current 168

environments, i.e., under-fitting. Such developmental organisations could provide some limited immediate 169

fitness benefits in the short-term, but are not good representatives of either the past, or the general class. 170

When the rate of environmental switching was intermediate (e.g., K ∼ 4×104), the organisms exhibited 171

developmental memory [25] . Although initially all possible phenotypic patterns (here 212) were equally 172

represented by development, the variational structure of development was adapted over evolutionary time 173

to fit the problem structure of that past, by canalising the production of previously seen targets (Figure 2 174

e, see also S2 Fig). This holds for a wide range of intermediate switching intervals (see S3 Fig). This 175

observations illustrates the ability of evolution to genetically acquire and utilise information regarding the 176

statistical structure of previously experienced environments. 177

The evolved developmental constraints also exhibited generalised behaviour by allowing the production 178

of three additional phenotypes that were not directly selected in the past, but share the same structural 179

regularities with the target phenotypes. These new phenotypic patterns correspond to novel combinations 180

of previously-seen phenotypic features. Yet, the propensity to express these extra phenotypes was still 181

limited. The evolved variational mechanism over-represented past targets, failing to properly generalise 182

to all potential, but yet-unseen selective environments from the same class as the past ones, i.e., over- 183

fitted (see below). We find no rate of environmental variation capable of causing evolution by natural 184
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selection to evolve a developmental organisation that produces the entire class. Consequently, the rate of 185

environmental change can facilitate the evolution of developmental memory, but does not always produce 186

good developmental generalisation. 187

Here we argue that the problem of natural selection failing to evolve generalised phenotypic distributions 188

in certain cases is formally analogous to the problem of learning systems failing to generalise due to 189

either under- or over-fitting. In learning, under-fitting is observed when a learning system is incapable 190

of capturing a set of exemplary observations. On the other hand, over-fitting is observed when a model 191

is over-trained to memorise a particular set of exemplary observations, at the expense of predictive 192

performance on previously unseen data from the class [51]. Over-fitting occurs when the model learns 193

to focus on idiosyncrasies or noise in the training set [52]. Similarly, canalisation to past selective 194

environments can be opposed to evolvability if canalised phenotypes from past environments are not fit 195

in future environments. Specifically, canalisation can be opposed to evolvability by either 1) (first type 196

of underfitting, from high learning rates) reducing the production of all phenotypic characters except 197

those that are fit in the selective environments that happen to come early (Fig 2 c), 2) (second type of 198

under-fitting, from low learning rates) reducing the production of all characters except those that are fit 199

on average over the past selective environments (Fig 2 b), or 3) (over-fitting) successfully producing a 200

sub-set of or all phenotypes that were fit in the past selective environments, but inhibiting the production 201

of new and potentially useful phenotypic variants for future selective environments (Fig 2 d, e). 202

Below, we investigate the conditions under which an evolutionary process can avoid canalising the past 203

and remain appropriately flexible to respond to novel selective environments in the future. To do so, we 204

test whether techniques used to avoid under-fitting and over-fitting that improve generalisation to unseen 205

test sets in learning models will likewise alleviate canalisation to past phenotypic targets and improve 206

fit to novel selective environments in evolutionary systems. For this purpose, we choose the time scale 207

of environmental change to be moderate (K = 20000). This constitutes our control experiment in the 208

absence of environmental noise and/or any selective pressure on the cost of connections. In the following 209

evolutionary scenarios, simulations were run for 150 epochs. This demonstrates prediction d,e, and f from 210

Table 1. 211
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Noisy Environments (Training with Noisy Data) 212

In this scenario, we investigate the evolution of generalised developmental organisations in noisy environ- 213

ments by adding Gaussian noise, nµ ∼ N(0, 1) to the respective target phenotype, S, at each generation. 214

The level of noise was scaled by parameter κ. In order to assess the potential of noisy selection to facilitate 215

phenotypic generalisation, we show results for the optimal amount of noise (here κ = 35× 10−4). Later, 216

we will show how performance varies with the amount of noise. 217

We find that the distribution of potential phenotypic variants induced by the evolved development in 218

noisy environments was still biased in generating past phenotypic patterns (Fig 2 f). However, it improved 219

fit to other selective environments in the class slightly compared with Fig 2 e. The evolved developmental 220

structure was characterised by more suitable variability, displaying higher propensity, compared to the 221

control, in producing those variants from the class that were not directly selected in the past. 222

Masking spurious details in the training set by adding noise to the training samples during the training 223

phase is a general method to combat the problem of over-fitting in learning systems. This technique is 224

known as ‘training with noise’ or ‘jittering’ [51] and is closely related to the use of intrinsic noise in deep 225

neural networks; a technique known as ‘dropout’ [55]. The intuition is that when noise is applied during 226

the training phase, it makes it difficult for the optimisation process to fit the data precisely, and thus it 227

inhibits capturing the idiosyncrasies of the training set. Training with noise is mathematically equivalent 228

to a particular way of controlling model complexity known as Tikhonov regularisation [51]. 229

Favouring Weak Connectivity (L2-regularisation) 230

In this scenario, the developmental structure was evolved under the direct selective pressure for weak 231

connectivity — favouring regulatory interactions of small magnitude, i.e., L2-regularisation (see Methods). 232

Weak connectivity is achieved by applying a direct pressure on the cost of connections that is proportion 233

to their magnitude. This imposes constraints on the evolution of the model parameters by penalising 234

extreme values. 235

Under these conditions natural selection discovered more general developmental structures. Specifically, 236

developmental generalisation was enhanced in a similar manner as in the presence of environmental noise, 237

favouring similar weakly generalised phenotypic distributions. The distribution of potential phenotypic 238

variants induced by development displayed higher propensity in producing useful phenotypic variants for 239

potential future selective environments (Fig 2 g). 240
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Favouring Sparse Connectivity (L1-regularisation) 241

In this scenario, the developmental structure was evolved under the direct selective pressure for sparse 242

connectivity — favouring fewer regulatory interactions, i.e., L1-regularisation. Sparse connectivity is 243

achieved by applying an equal direct pressure on the cost of connections. This imposes constraints on the 244

evolution of the parameters by decreasing all non-zero values equally, and thus favouring models using 245

fewer connections. 246

We find that under these conditions the evolution of generalised developmental organisations was 247

dramatically enhanced. The evolved phenotypic distribution (Fig 2 h) was a perfect representation 248

of the class (Fig 2 i). We see that the evolved developmental process under the pressure for sparsity 249

favoured the production of novel phenotypes that were not directly selected in the past. Those novel 250

phenotypes were not arbitrary, but characterised by the time-invariant intra-modular regularities common 251

to past selective environments. Although the developmental system was only exposed to three selective 252

environments, it was able to generalise and produce all of the phenotypes from the class by creating 253

novel combinations of previously-seen modules. More notably, we see that the evolved developmental 254

process also pre-disposed the production of that phenotypic pattern missing under the conditions for weak 255

connectivity and environmental noise due to strong developmental constraints. 256

Moreover, the parsimonious network topologies we find here arise as a consequence of a direct pressure 257

on the cost of connections. The hypothesis that sparse network can arise through a cost minimisation 258

process is also supported by previous theoretical findings advocating the advantages of sparse gene 259

regulation networks [56]. Accordingly, natural selection favours the emergence of gene-regulatory networks 260

of minimal complexity. In [56], Leclerc argues that sparser GRNs exhibit higher dynamical robustness. 261

Thus, when the cost of complexity is considered, robustness also implies sparsity. In this study, however, 262

we demonstrated that sparsity gives rise to enhanced evolvability. This indicates that parsimony on the 263

connectivity of the GRNs is a desired property that may facilitate both robustness and evolvability. 264

Favouring weak and sparse connectivity belong in a general category of regularisation methods that 265

alleviate over-fitting by penalising unnecessary model complexity via the application of a parsimony 266

pressure that favours simple models with fewer assumptions on the data, i.e., imposing a form of Occam’s 267

razor on solutions (e.g., the Akaike [57] and [58] Bayesian information criteria, limiting the number of 268

features in decision trees [59], or limiting the tree depth in genetic programming [60]). The key observation 269

is that networks with too few connections will tend to under-fit the data (because they are unable to 270



15

represent the relevant interactions or correlations in the data); whereas networks with more connections 271

than necessary will tend to over-fit the idiosyncrasies of the training data, because they can memorize 272

those idiosyncrasies instead of being forced to learn the underlying general pattern. 273

How Generalisation Changes over Evolutionary Time 274

We next asked why costly interactions and noisy environments facilitate generalised developmental 275

organisations. To understand this, we monitor the match between the phenotypic distribution induced by 276

the evolved developmental process and the ones that describe the past selective environments (training set) 277

and all potential selective environments (test set) respectively over evolutionary time in each evolutionary 278

setting (see Methods). Following conventions in learning theory, we term the first measure ‘training error’ 279

and the second ‘test error’. This demonstrates predictions c, e and f from Table 1. 280

The dependence of the respective errors on evolutionary time are shown in Fig 3. For the control 281

scenario (panel A) we observe the following trend. Natural selection initially improved the fit of the 282

phenotypic distributions to both distributions of past and future selective environments. Then, while 283

the fit to past selective environments continued improving over evolutionary time, the fit to potential, 284

but yet-unseen, environments started to deteriorate (see also S2 Fig). The evolving organisms tended 285

to accurately memorise the idiosyncrasies of their past environments, at the cost of losing their ability 286

to retain appropriate flexibility for the future, i.e., over-fitting. The dashed-line in Fig 3 A indicates 287

when the problem of over-fitting begins,i.e., when the test error first increases. We see that canalisation 288

can be opposed to the evolution of generalised phenotypic distributions in the same way over-fitting is 289

opposed to generalisation. Then, we expect that preventing the canalisation of past targets can enhance 290

the generalisation performance of the evolved developmental structure. Indeed, Fig 3 B,C,D confirm this 291

hypothesis (predictions a-c from Table 1). 292

In the presence of environmental noise, the generalisation performance of the developmental structure 293

was improved by discovering a set of regulatory interactions that corresponds to the minimum of the 294

generalisation error curve of 0.34 (Fig 3 B). However, natural selection in noisy environments was only able 295

to postpone canalisation of past targets and was unable to avoid it in the long term (see SI). Consequently, 296

stochasticity improved evolvability by decreasing the speed at which over-fitting occurs, allowing for 297

the developmental system to spend more time at a state which was characterised by high generalisation 298

ability (see also S6 Fig). On the other hand, under the parsimony pressure for weak connectivity, the 299
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Fig 3. How generalisation changes over evolutionary time. The match between phenotypic
distributions generated by evolved GRN and the target phenotypes of selective environments the
developmental system has been exposed to (training error) and all selective environments (test error)
against evolutionary time for (A) moderate environmental switching, (B) noisy environments, (C)
favouring weak connectivity and (D) favouring sparse connectivity. The vertical dashed line denotes when
the ad-hoc technique of early stopping would be ideal, i.e. at the moment the problem of over-fitting
begins. Favouring weak connectivity and jittering exhibits similar effects as applying early stopping.

evolving developmental system maintained the same generalisation performance over evolutionary time. 300

The canalisation of the selected phenotypes was thus prevented by preventing further limitation of the 301

system’s phenotypic variability. Note that the outcome of these two methods (Fig 3 B and C) resembles 302

in many ways the outcome as if we stopped at the moment when the generalisation error was minimum, 303

i.e., early stopping; an ad-hoc solution to preventing over-fitting [51]. Accordingly, learning is stopped 304

before the problem of over-fitting begins (see also S6 Fig). Subject to parsimony pressure for sparse 305

connectivity, we observe that the generalisation error of the evolving developmental system reached 306

zero (Fig 3 D). Accordingly, natural selection successfully exploited the time-invariant regularities of 307

the environment properly representing the entire class (Fig 2 h). Additionally, S4 Fig shows that the 308

entropy of the phenotypic distribution reduces as expected over evolutionary time as the developmental 309

process increasingly canalises the training set phenotypes. In the case of perfect generalisation to the 310

class (sparse connectivity), this convergence reduces from 16 bits (the original phenotype space) to four 311

bits, corresponding to four degrees of freedom where each of the four modules vary independently. In the 312

other cases, overfitting is indicated by reducing to less than four bits. 313

Sensitivity Analysis to Parameters Affecting Phenotypic Generalisation 314

As seen so far, the generalisation ability of development can be enhanced under the direct selective pressure 315

for both sparse and weak connectivity and the presence of noise in the selective environment, when the 316
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Fig 4. Role of the strength of parsimony pressure and the level of environmental noise.
The match between phenotypic distributions and the selective environments the network has been
exposed to (training error) and all possible selective environments of the same class (generalisation error)
for (A) noisy environments against parameter κ and under the parsimony pressure weak (B) and sparse
(C) connectivity against parameter λ.

strength of parsimony pressure and the level of noise were properly tuned. Different values of λ and κ 317

denote different evolutionary contexts, where λ determines the relative burden placed on the fitness of the 318

developmental system due to reproduction and maintenance of its elements, or other physical constraints 319

and limitations, and κ determines the amount of extrinsic noise found in the selective environments (see 320

Evaluation of Fitness). 321

In the following, we analyse the impact of the strength of parsimony pressure and the level of 322

environmental noise on the evolution of generalised developmental organisations. Simulations were run for 323

various values of parameters λ and κ. Then, the training and generalisation error were evaluated and 324

recorded (Fig 4). This demonstrates prediction (g) from Table 1. 325

We find that in the extremes, low and high levels of parsimony pressures, or noise, gave rise to situations 326

of over-fitting and under-fitting respectively (Fig 4). Very small values of λ, or κ, were insufficient at 327

finding good regulatory interactions to facilitate high evolvability to yet-unseen environments, resulting in 328

the canalisation of past targets, i.e., over-fitting. On the other hand, very large values of λ over-constrained 329

the search process hindering the acquisition of any useful information regarding environment’s causal 330

structure, i.e., under-fitting. Specifically, with a small amount of L1-regularisation, the generalisation 331

error is dropped to zero. This outcome holds for a wide spectrum of the regularisation parameter 332

ln(λ) ∈ [0.15, 0.35]. However, when λ is very high (here λ = 0.4), the selective pressure on the cost 333

of connection was too large; this resulted in the training and the generalisation errors corresponds to 334

the original ‘no model’ situation (Fig 4 C). Similarly, with a small amount of L2-regularisation, the 335
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generalisation error quickly drops. In the range [10, 38] the process became less sensitive to changes in λ, 336

resulting in one optimum at λ = 38 (Fig 4 B). Similar results were also obtained for jittering (Fig 4 A). 337

But the generalisation performance of the developmental process changes ‘smoothly’ with κ, resulting in 338

one optimum at κ = 35× 10−4 (Fig 4 A). Inductive biases need to be appropriate for a given problem, 339

but in many cases a moderate bias favouring simple models is sufficient for non-trivial generalisation. 340

Generalised Developmental Biases Improve the Rate of Adaptation 341

Lastly we examine whether generalised phenotypic distributions can actually facilitate evolvability. For 342

this purpose, we consider the rate of adaptation to each of all potential selective environments as the 343

number of generations needed for the evolving entities to reach the respective target phenotype. 344

To evaluate the propensity of the organisms to reach a target phenotype as a systemic property of its 345

developmental architecture, the regulatory interactions were kept fixed, while the direct effects on the 346

embryonic phenotype were free to evolve for 2500 generations, which was empirically found to be sufficient 347

for the organisms to find a phenotypic target in each selective environment (when that was allowed by the 348

developmental structure). In each run, the initial gene expression levels were uniformly chosen at random. 349

The results here were averaged over 1000 independent runs, for each selective environment and for each 350

of the four different evolutionary scenarios (as described in the previous sections). Then, counts of the 351

average number of generations to reach the target phenotype of the corresponding selective environment 352

were taken. This was evaluated by measuring the first time the developmental system achieved maximum 353

fitness possible. If the target was not reached, the maximum number of generations 2500 was assigned. 354

We find that organisms with developmental organisations evolved in noisy environments or the 355

parsimony pressure on the cost of connections adapted faster than the ones in the control scenario (Fig 356

5). The outliers in the evolutionary settings of moderate environmental switching, noisy environments 357

and favouring weak connectivity, indicate the inability of the developmental system to express the target 358

phenotypic pattern for that selective environment due to the strong developmental constraints that evolved 359

in those conditions. This corresponds to the missing phenotype from the class we saw above in the evolved 360

phenotypic distributions induced by development (Fig 2 e, f, g). In all these three cases development 361

allowed for the production of the same set of phenotypic patterns. Yet, developmental structures evolved 362

in the presence of environmental noise or under the pressure for weak connectivity exhibited higher 363

adaptability due to their higher propensity to produce other phenotypes of the structural family. In 364
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Fig 5. Generalised developmental organisations improve the rate of adaptation to novel
selective environments. Boxplot of the generations taken for the evolved developmental systems to
reach the target phenotype for all potential selective environments under different evolutionary conditions.
The developmental architecture is kept fixed and only the direct effects on the embryonic phenotype are
free to evolve. Organisms that facilitate generalised phenotypic distributions, such as the ones evolved in
noisy environments or under the direct pressure on the cost connections, adapt faster to novel selective
environments exhibiting enhanced evolvability. The outliers indicate the inability of the corresponding
evolved developmental structures to reach that selective target due to strong developmental constraints.

particular, we see that for the developmental process evolved under the pressure for sparsity, the rate of 365

adaptation of the organisms was significantly improved. The variability structure evolved under sparsity 366

to perfectly represent the functional dependencies between phenotypic traits. Thus, it provided a selective 367

advantage guiding phenotypic variation in more promising directions. 368

Conclusions 369

The above experiments demonstrated the transfer of predictions from learning models into evolution, by 370

specifically showing that: a) the evolution of generalised phenotypic distributions is dependent on the 371

time-scale of environmental switching, in the same way that generalisation in online learning algorithms 372

is learning-rate dependent, b) the presence of environmental noise can be beneficial for the evolution 373

of generalised phenotypic distributions in the same way training with corrupted data can improve the 374

generalisation performance of learning systems with the same limitations, c) direct selection pressure for 375

weak connectivity can enhance the evolution of generalised phenotypic distributions in the same way 376

L2-regularisation can improve the generalisation performance in learning systems, d) noisy environments 377
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result in similar behaviour as favouring weak connectivity, as Jittering can have similar effects to L2- 378

regularisation in learning systems, e) direct selection pressure for sparse connectivity can enhance the 379

evolution of generalised phenotypic distributions in the same way that L1-regularisation can improve the 380

generalisation performance in learning systems, f) favouring weak connectivity (i.e., L2-regularisation) 381

results in similar behaviour to as early stopping and g) the evolution of generalised phenotypic distributions 382

is dependent on the strength of selection pressure on the cost of connections and the level of environmental 383

noise, in the same way generalisation is dependent on the level of inductive biases. 384

Learning is generally contextual ; it gradually builds upon what concepts are already known. Here 385

these concepts correspond to the repeated modular sub-patterns persisting over all observations in the 386

training set which become encoded in the modular components of the evolved network. The inter-module 387

connections determine which combinations of (sub-)attractors in each module are compatible and which 388

are not. Therefore, the evolved network representation can be seen as dictating a higher-order conceptual 389

(combinatorial) space based on previous experience. This enables the evolved developmental system to 390

explore permitted combinations of features constrained by past selection. Novel phenotypes can thus 391

arise through new combinations of previously selected phenotypic features explicitly embedded in the 392

developmental architecture of the system [25]. Indeed, under the selective pressure for sparse connectivity, 393

we observe that the phenotypic patterns generated by the evolved developmental process consisted of 394

combinations of features from past selected phenotypic patterns. Thus, we see that the ‘developmental 395

memories’ are stored and recalled in combinatorial fashion allowing generalisation. 396

We see that noisy environments and the parsimony pressure on the cost of connections led to more 397

evolvable genotypes by internalising more general models of the environment into their developmental 398

organisation. The evolved developmental systems did not solely capture and represent the specific 399

idiosyncrasies of past selective environments, but internalised the regularities that remained time-invariant 400

in all environments of the given class. This enabled natural selection to ‘anticipate’ novel situations by 401

accumulating information about and exploiting the tendencies in that class of environments defined by 402

the regularities. Peculiarities of past targets were generally represented by weak correlations between 403

phenotypic characters as these structural regularities were not typically present in all of the previously-seen 404

selective environments. Parsimony pressures and noise then provided the necessary selective pressure to 405

neglect or de-emphasise such spurious correlations and maintain only the strong ones which tended to 406

correspond to the underlying problem structure (in this case, the intra-module correlations only, allowing 407
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all combinations of fit modules). Enhancing evolvability by means of inductive biases is not for granted 408

in evolutionary systems any more than such methods have guarantees in learning systems. The quality 409

of the method depends on information about past targets and the strength of the parsimony pressure. 410

Inductive biases can however constrain phenotypic evolution into more promising directions and exploit 411

systematicities in the environment when opportunities arise. 412

In this study we demonstrated that canalisation can be opposed to evolvability in biological systems 413

the same way under- or over-fitting can be opposed to generalisation in learning systems. We showed that 414

conditions that are known to alleviate over-fitting in learning are directly analogous to the conditions that 415

enhance the evolution of evolvability under natural selection. Specifically, we described how well-known 416

techniques, such as learning with noise and penalising model complexity, that improve the generalisation 417

ability of learning models can help us understand how noisy selective environments and the direct 418

selection pressure on the reproduction cost of the gene regulatory interactions can enhance context-specific 419

evolvability in gene regulation networks. This opens-up a well-established theoretical framework, enabling 420

it to be exploited in evolutionary theory. This equivalence demystifies the basic idea of the evolution of 421

evolvability by equating it with generalisation in learning systems. This framework predicts the conditions 422

that will enhance generalised phenotypic distributions and evolvability in natural systems. 423

Methods 424

Evolution of GRNs 425

We model the evolution of a population of GRNs under strong selection and weak mutation where each 426

new mutation is either fixed or lost before the next arises. This emphasises that the effects we demonstrate 427

do not require lineage-level selection [61–63] — i.e., they do not require multiple genetic lineages to coexist 428

long enough for their mutational distributions to be visible to selection. Accordingly a simple hill-climbing 429

model of evolution is sufficient [25,36]. 430

The population is represented by a single genotype [G,B] (the direct effects and the regulatory 431

interactions respectively) corresponding to the average genotype of the population. Similarly, mutations 432

in G and B indicate slight variations in population means. Consider that G′ and B′ denote the respective 433

mutants. Then the adult mutant phenotype, P ′a, is the result of the developmental process, which is 434

characterised by the interaction B′, given the direct effects G′. Subsequently, the fitness of Pa and P ′a are 435



22

calculated for the current selective environment, S. If fS(P ′a) > fS(Pa), the mutation is beneficial and 436

therefore adopted, i.e., Gt+1 = G′ and Bt+1 = B′. On the other hand, when a mutation is deleterious, G 437

and B remain unchanged. 438

The variation on the direct effects, G, occurs by applying a simple point mutation operator. At 439

each evolutionary time step, t, an amount of µ1 mutation, drawn from [−0.1, 0.1] is added to a single 440

gene i. Note that we enforce all gi ∈ [−1, 1] and hence the direct effects are hard bounded, i.e., 441

gi = min{max{gi + µ1,−1}, 1}. For a developmental architecture to have a meaningful effect on the 442

phenotypic variation, the developmental constraints should evolve considerably slower than the phenotypic 443

variation they control. We model this by setting the rate of change of B to lower values as that for G. 444

More specifically, at each evolutionary time step, t, mutation occurs on the matrix with probability 1/15. 445

The magnitude µ2 is drawn from [−0.1/(15N2), 0.1/(15N2)] for each element bij independently, where N 446

corresponds to the number of phenotypic traits. 447

Evaluation of Fitness 448

Following the framework used in [64], we define the fitness of the developmental system as a benefit minus 449

cost function. 450

The benefit of a given genetic structure, b, is evaluated based on how close the developed adult 451

phenotype is to the target phenotype of a given selective environment. The target phenotype characterises 452

a favourable direction for each phenotypic trait and is described by a binary vector, S = 〈s1, . . . , sN 〉, 453

where si ∈ {−1, 1},∀i. For a certain selective environment, S, the selective benefit of an adult phenotype, 454

Pa, is given by (modified from [25]): 455

b = w(Pa, S) =
1

2

(
1 +

Pa · S
N

)
, (1)

where the term Pa ·S indicates the inner product between the two respective vectors. The adult phenotype 456

is normalised in [−1, 1] by Pa ← Pa/(τ1/τ2), i.e., b ∈ [0, 1]. 457

The cost term, c, is related to the values of the regulatory coefficients, bij ∈ B [65]. The cost represents 458

how fitness is reduced as a result of the system’s effort to maintain and reproduce its elements, e.g., in E. 459

coli it corresponds to the cost of regulatory protein production. The cost of connection has biological 460

significance [27, 64–67], such as being related to the number of different transcription factors or the 461
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strength of the regulatory influence. We consider two cost functions proportional to i) the sum of the 462

absolute magnitudes of the interactions, c = ‖B‖1 =
∑N2

i=1 |bij|/N2, and ii) the sum of the squares of the 463

magnitudes of the interactions, c = ‖B‖22 =
∑N2

i=1 b
2
ij/N

2, which put a direct selection pressure on the 464

weights of connections, favouring sparse (L1-regularisation) and weak connectivity (L2-regularisation) 465

respectively [68]. 466

Then, the overall fitness of Pa for a certain selective environment S is given by: 467

fS(Pa) = b− λc, (2)

where parameter λ indicates the relative importance between b and c. Note that the selective advantage 468

of structure B is solely determined by its immediate fitness benefits on the current selective environment. 469

Chi-squared Error 470

The χ2 measure is used to quantify the lack of fit of the evolved phenotypic distribution P̂t(si) against 471

the distribution of the previously experienced target phenotypes Pt(si) and/or the one of all potential 472

target phenotypes of the same family P (si). Consider two discrete distribution profiles, the observed 473

frequencies O(si) and the expected frequencies E(si), si ∈ S, ∀i = 1, . . . , k. Then, the chi square error 474

between distribution O and E is given by: 475

χ2(O,E) =
∑
i

(O(si)− E(si))
2

E(si)
(3)

S corresponds to the training set and the test set when the training and the generalisation error are 476

respectively estimated. Each si ∈ S indicates a phenotypic pattern and P (si) denotes the probability of 477

this phenotype pattern to arise. 478

The samples, over which the distribution profiles are estimated, are uniformly drawn at random 479

(see Estimating the Empirical Distributions). This guarantees that the sample is not biased and the 480

observations under consideration are independent. Although the phenotypic profiles here are continuous 481

variables, they are classified into binned categories (discrete phenotypic patterns). These categories are 482

mutually exclusive and the sum of all individual counts in the empirical distribution is equal to the total 483

number of observations. This indicates that no observation is considered twice, and also that the categories 484

include all observations in the sample. Lastly, the sample size is large enough to ensure large expected 485
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frequencies, given the small number of expected categories. 486

Estimating the Empirical Distributions 487

For the estimation of the empirical (sample) probability distribution of the phenotypic variants over the 488

genotypic space, we follow the Classify and Count (CC) approach [69]. Accordingly, 5000 embryonic 489

phenotypes, P (0) = G, are uniformly generated at random in the hypercube [−1, 1]N . Next, each of these 490

phenotypes is developed into an adult phenotype and the produced phenotypes are categorised by their 491

closeness to target patterns to take counts. Note that the development of each embryonic pattern in 492

the sample is unaffected by development of other embryonic patterns in the sample. Also, the empirical 493

distributions are estimated over all possible combinations of phenotypic traits, and thus each developed 494

phenotype in the sample falls into exactly one of those categories. Finally, low discrepancy quasi-random 495

sequences (Sobol sequences; [70]) with Matousek’s linear random scramble [71] were used to reduce the 496

stochastic effects of the sampling process, by generating more homogeneous fillings over the genotypic 497

space. 498
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Supporting Information Legends 499

S1 Appendix. Supporting Figures 500

S1 Fig. The underlying correlational structure of the class and the training set. (Top)
Hinton diagram of the variance-covariance matrix and phenotypic distribution of all potential future
phenotypic targets. The true underlying structure of the given problem set which is comprised of all 8
possible phenotypic targets is described by the block diagonal interaction matrix. Accordingly, the traits
within each module that encode for each functional part of the organism (e.g., front wings) are strongly
correlated with each other (positively or negatively depending on the combination of signs in the
particular phenotypic pattern used), and no correlations between one module and another (e.g., the
production of halteres is functionally independent from the production of front wings). (Bottom) Hinton
diagram of the variance-covariance matrix and phenotypic distribution of past phenotypic targets. The
structure of the training set which is comprised of 3 phenotypic targets is described by an interaction
matrix with non-zero off-diagonal elements. Those elements correspond to spurious correlations that
describe functional phenotypic dependencies between modules that are present in the past selected
phenotypic targets (e.g., the production of front wings is positively correlated with the production of
antennas). Such developmental structures will appropriately represent the 3 past selected targets, but fail
to generate all 8 phenotypes from the class. The colour and the size of the squares in Hinton’s
representation indicate the sign and the magnitude of the respective correlations.
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S2 Fig. The evolution of phenotypic distribution for moderate environmental switching.
Pictorial representation of the phenotypic distributions induced by the evolving developmental process
over evolutionary time for moderate environmental switching. Green circles indicate past selected targets,
while red circles indicate previously-unseen phenotypes from the same phenotype family as the past ones.
Phenotypes outside of the class are represented by distorted mosaic images. The size of the insect-like
creatures indicates the propensity of development to express the respective phenotype. At the beginning
(epoch 0), development equally predisposes the production of all possible phenotypic patterns (here 212),
i.e., no developmental biases. The evolving developmental structure initially starts canalising only
phenotypes from the class. After epoch 25 however it further canalises the production of past selected
phenotypes, by reducing the propensity of producing those phenotypes from the class that were not
selected in the past, i.e., over-fitting.
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S3 Fig. Fast and Slow Environmental Switching Fail to Evolve Developmental Memory.
The match between phenotypic distributions and the selective environments the network has been
exposed to (training error) and all selective environments (generalisation error) against different
environmental switching intervals (K). The insets illustrate the Hinton diagram of the evolved interaction
matrix for each regime (indicated by different background colour) and the respective phenotypic
distribution induced by the evolved developmental process.

S4 Fig. Entropy of the phenotypic distribution reduces over evolutionary time. Shannon
entropy [72] of the phenotypic distribution induced by the evolving developmental process for moderate
environmental switching and sparse connectivity. Overfitting is indicated by reducing to less than four
bits. For the case of sparse connectivity entropy converges to four bits indicating that each of the four
modules vary independently. The sample size was 5× 105.
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S2 Appendix. Developmental Model 501

Following previous work [25], we describe the development of the embryonic phenotype to an adult 502

phenotype by a continuous, non-linear and recurrent (i.e., it allows for feed-back connections) model of 503

gene-regulatory networks [38,39]. 504

At each developmental time step, t, the phenotype of an individual organism is characterised by a 505

collection of phenotypic traits, Pt = 〈pt,1, . . . , pt,N 〉, where pt,i ∈ R,∀i. The genotype is comprised of two 506

parts: the direct effects on the embryonic phenotypic traits, Gt = 〈gt,1, . . . , gt,N 〉, where gt,i ∈ {−1, 1},∀i 507

and the regulatory interactions between the genes, bij , that determine the dynamical developmental 508

process [41,64,73]. The regulatory interactions are represented by the matrix B. 509

The dynamics of the expression level for each gene depend on 1) the gene expression levels of the 510

genes that is connected to and 2) the its pattern of connections, i.e., how strongly the respective gene is 511

connected to its neighbouring genes. In the first time step, the embryonic phenotype is solely characterised 512

by the direct effects of G (P0 = G). Thereafter, at every developmental step the phenotypic traits are 513

developed under the following set of difference equations [25,74]: 514

pt+1,i = pt,i + τ1σ(
∑
j

bijpt,j)− τ2pt,i, (4)

where τ1 = 1 and τ2 = 0.2 indicate the maximal expression rate and the constant rate of degradation of 515

the given gene product respectively. The second term in the right-hand side of equation (4) corresponds 516

to the interaction term, the activity of which is limited by a non-linear, monotonic and bounded (sigmoid) 517

activation function, σ(x) = tanh(αx), where α = 0.5. Then, over a fixed number of developmental time 518

steps, T (here T = 10), the embryonic phenotype is transformed into an adult phenotype, Pa = PT , upon 519

which selection can act. Both G and B are initialised at zero. 520

S3 Appendix. Varying Selective Environments 521

In this work, a set of related phenotypic targets is considered from the same family (as in [25, 34]). 522

This guarantees that the environment changes in a systematic manner (i.e., shares common regularities 523

invariant over time) — something which is ubiquitous in natural environments. 524

Since we are interested in modelling phenotypic variability, traits that are under constant selection are 525

omitted from our model. We choose a simple family of modularly-varying targets. Modularity is widespread 526

in the natural world and provides a simple way to test for generalised developmental oragnisations that 527
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are biological relevant [27, 29, 29, 41, 64, 75–77]. For simplicity, to model selection that varies in a modular 528

manner, we assume an extreme form of modularity, namely separable modules [78]. Accordingly, selection 529

on any trait is strongly interdependent with selection on other traits in the same module, but independent 530

of selection on traits in other modules. Specifically, when a change in the environment occurs, if the 531

direction of selection on a given trait changes, the direction of selection on all other traits in the same 532

module also changes (this defines the modules). Selection thus favours two complementary states for 533

each module that confer high fitness in different environments. Since the selection on each module is 534

independent of selection on other modules, this means that there are 2k possible high-fitness phenotypes, 535

where k corresponds to the number of modules. 536

Here we assume a class of phenotypes consisted of equal sized modules (4 modules of 4 phenotypic traits 537

each). The particular patterns chosen are irrelevant. So we pick one phenotype of 16 traits arbitrarily, 538

here (−+−+−−+ +−+ +−−−−−), and divide it into 4 equal modules (i.e., (−+−+), (−−++), 539

(−+ +−) and (−−−−)). Accordingly, for the phenotypic patterns that belong in the class, each module 540

(block) can have 2 states: A or B; denoting a particular phenotypic sub-pattern or sub-goal (e.g., here the 541

sub-goal for the first module can be either (−+−+) (A) or (+−+−) (B)). The class is thus comprised 542

of 16 different modular patterns; all possible combinations of the sub-patterns (blocks) (see S5 Fig). 543

The time-invariant regularities here are the correlations between traits within any one module. The 544

actual underlying structure of the given problem can thus be described by the block diagonal interaction 545

matrix (see S1 Fig). The colour and the size of the squares in Hinton’s representation indicate the sign and 546

the magnitude of each correlation respectively. This clearly shows that selection on the traits within each 547

module are strongly correlated with each other (positively or negatively depending on the combination of 548

signs in the particular phenotypic pattern used), and no correlations between one module and another. 549

Complementary patterns here are also stable states of the evolved dynamical system as a result of 550

Equation 4. The map described in Equation 4 is an odd function (i.e., symmetric with respect to the 551

origin) since f(−x) = −f(x). Accordingly, if R is a stable state of the system, i.e., R = f(R), then −R is 552

also stable since −R = −f(R) = f(−R). In order to focus on the more interesting (non-trivial) attractors 553

that may arise, we limit the phenotypic space so as to ignore complementary targets (i.e., thus removing 8 554

of the patterns). Specifically, without loss of generality, we consider the phenotypic targets in which the 555

sub-pattern in the last slot (trait positions:13− 16) corresponds to state A: {−,−,−,−}, i.e., we focus on 556

the top-half of the class as arranged in the lower part of Fig 1. Accordingly, each member of the other 557
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S5 Fig. Modularly-varying environment. Target phenotypes varying from one another in a
modular fashion. Each target phenotype consists of 4 modules of 4 phenotypic traits (i.e., 16 phenotypic
traits in total). Each module can take two (complementary) states: A or B; denoting particular
sub-patterns favoured by selection in different selective environments. The complete set of phenotypes is
thus comprised of 24 = 16 phenotypes, differing from one another in a modular fashion. The signs of
phenotypic traits correspond to the direction favoured by selection in a given environment. Eight of the
16 possible phenotypes are designated as the target class (the other eight are merely the complement of a
pattern already in the target class). For the main experiments, three patterns from the target class are
used as ‘training’ patterns, i.e., selected for.

half of the class is the bit-wise complement of a member in the top half. 558

In this work, we want to examine the ability of the developmental system to ‘learn’ from past selective 559

environments and generalise to new environments by producing novel phenotypes within the same class. 560

Accordingly, to assay generalisation and the conditions that promote it, the population is evolved by 561
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exposure to a limited number of selective environments (< 8, i.e., a strict sub-set of the class). Otherwise, 562

generalisation would not be relevant, since the population would have been exposed to all possible selective 563

environments (i.e., all phenotypes in the class are presented). For this paper, we use the following example 564

from this problem domain as a training set: 565

S1 = {−,+,−,+}, {−,−,+,+}, {−,+,+,−}, {−,−,−,−}.

S2 = {−,+,−,+}, {+,+,−,−}, {+,−,−,+}, {−,−,−,−}.

S3 = {+,−,+,−}, {+,+,−,−}, {−,+,+,−}, {−,−,−,−}.

(5)

In S5 Appendix, we explore sensitivity to this particular choice by examining generalisation from 566

training on all possible proper subsets of the class. 567

S4 Appendix. The Structure of Developmental Organisation 568

Here we show how costly interactions and noisy environments facilitate the emergence of more general 569

and parsimonious developmental models. For this purpose, we monitor the evolution of regulatory interac- 570

tions over evolutionary time in each evolutionary setting. The regulatory coefficients here correspond to 571

the free parameters of the developmental model that determine the functional organisation of development. 572

We first analyse the evolution of regulatory coefficients in the control scenario, i.e., moderate rate of 573

environmental change. Figure S6 Fig A shows that the ontogenetic interactions evolved under natural 574

selection to reflect the correlations in the previously-experienced selective environments. As seen, the 575

Hinton diagram of the evolved regulatory matrix appropriately matched the variance-covariance matrix of 576

the past phenotypic targets (S6 Fig). The colour and the size of the squares in Hinton’s representation 577

indicate the sign and the magnitude of the respective correlations. 578

Yet natural selection did not directly select either for correlations, or for matching the exploration 579

distribution to the fitness distribution of the phenotypic variants (i.e., training error minimisation). 580

Natural selection selected for immediate fitness differences depending on how well adapted the organism 581

was to its current selective environment; i.e., how close the produced adult phenotype was to the respective 582

target phenotype. The evaluation of the developmental process performed here against the training and 583

the test set was a post hoc analysis, and hence not part of the actual evolutionary dynamics. 584

In the same fashion as the nervous system [79], evolution does not try to analyse anything. It just 585

tries to generate appropriate behaviour. The observed (correlation) learning behaviour of evolution can 586
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S6 Fig. Evolution of regulatory coefficients in noisy environments and under parsimony
pressure. The evolution of regulatory coefficients over evolutionary time and the Hinton diagram of the
evolved regulatory coefficients (after epoch 150) for (A) moderate environmental switching, (B) noisy
environments, (C) favouring weak connectivity and (D) favouring sparse connectivity. The vertical dashed
line denotes when the ad-hoc technique of early stopping is used, i.e., the moment the problem of
over-fitting begins. Favouring sparsity ignores the weak spurious correlations of the finite sampling noise
and maintains the time-invariant ones.

be seen as a by-product of developmental systems’ effort to produce high-fitness phenotypic variants in 587

varied selective environments — optimise the actual functionality of the system. The system does not 588

explicitly aim at inferring the target function, namely, the ideal G-P map that gives rise to proper system 589

functionality in long-term (over certain genetic and environmental conditions). Nevertheless, we see that 590

under certain conditions the system may discover a hypothesis (i.e., set of regulatory coefficients) closer 591

to the target function, by producing phenotypic variants that are fitter in short term. 592

Figure S6 Fig B shows that under the presence of environmental noise, the regulatory interactions 593

evolved towards smaller in magnitude weights. In particular, we observe that the rate of evolutionary 594

change was decreased with evolutionary time giving rise to a plateau in the test error in Fig 3 B. The set 595

of evolved regulatory coefficients here corresponds to the one we get if we stopped evolution the moment 596

over-fitting begins, i.e., at the vertical dashed line in Fig 3 A. From Hinton diagram we can see that the 597

relative importance between strong and weak correlations remained the same as in the case of the control 598

run, i.e., only the magnitudes changed. Therefore, noise had a beneficial role on the evolution of genetic 599

structures by making it difficult for natural selection to find configurations that over-fit past phenotypic 600
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targets. 601

We observe similar results for the evolution of regulatory interactions under the pressure for weak 602

connectivity (Figure S6 Fig C). In contrast to environmental stochasticity, however, favouring weak 603

connectivity imposes strict constraints on the evolution of regulatory coefficients that prohibit them 604

from growing bigger, i.e., providing a hard bound determined by the strength of parsimony pressure (see 605

below). Accordingly, the regulatory coefficients initially increased until they reached a level that the 606

further increase in the reproduction and maintenance cost of interactions was greater than the benefit of 607

the developmental structure. Moreover, when properly tuned favouring weak connectivity exhibits the 608

same behaviour as stopping early. Favouring weak connectivity (L2-regularisation) can be understood as 609

imposing inductive biases (i.e., additional constraints) in the evolution of regulatory interactions, punishing 610

interactions (parameters) with extreme (high) magnitudes by applying a penalty proportional to their 611

current magnitudes (as in weight-decay). 612

Lastly, Figure S6 Fig D illustrates how favouring sparse connectivity can exhibit a form of feature 613

selection emphasising the relative importance of the strong correlations against the weak correlations. 614

Specifically, we see that only the strongest (time-invariant) correlations persisted, while the weak (spurious) 615

correlations, which arose as a result of the sampling process, were eliminated over evolutionary time. 616

The strong correlations here (i.e., the block diagonal of the interaction matrix) correspond to the actual 617

underlying modular structure of the environmental variation that remain invariant over time. Consequently, 618

if the strength of parsimony pressure is large enough to ignore the spurious correlations, the evolved 619

associations are (almost) identical to the variance-covariance matrix that describes the phenotypes family 620

(see Figure S6 Fig). Favouring sparse connectivity (L1-regularisation) can be understood as punishing 621

interactions by equally applying a fixed penalty to all of the weights of the network. The amount of 622

reduction is controlled by the hyper-parameter λ (see below); the higher its value, the higher the penalty 623

applied, and hence the higher the level of sparsity. When properly tuned, favouring sparse connectivity 624

leads to many zero weights, and thus the complexity of the model is reduced by removing degrees of 625

freedom. 626

S5 Appendix. Favouring Sparse Connectivity in Different Training Sets 627

Experiments were also carried out for every possible training set as a strict sub-set of the test set. 628

Firstly, all possible combinations,
∑

0≤k≤N
(
N
k

)
= 2N , were explicitly enumerated, where N indicates the 629
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S7 Fig. Favouring sparse connectivity enhances phenotypic generalisation. (A) Phenotypic
generalisation with and without the parsimony pressure for sparsity (L1-regularisation) against all
possible evolutionary scenarios (training sets), i.e., all possible combinations of distinct past selective
environments drawn from the class. (B) Means and error bars of the generalisation performance of the
evolved networks with and without the parsimony pressure for sparsity against different numbers of
previously experienced selective environments. The cost of connection significantly enhanced evolvability
in the majority of the cases. The interaction matrices here were determined using Hebb’s rule.

number of patterns in the test set. Then, the respective developmental systems were determined following 630

Hebb’s rule with and without the selective pressure on the cost of connections (for optimal λ values). 631

Hebbian learning was used here for computational tractability (65536 possible combinations), since it has 632

been shown before that the interaction matrix evolves under natural selection in a Hebbian manner [25]. 633

According to Hebb’s rule, the pair-wise interactions are increased (or decreased) if the phenotypic traits 634

are aligned (or not). The Hebbian matrix can be computed by computing the outer-product over the 635

training inputs, i.e., the auto-correlation matrix. For the sake of comparison, the respective coefficient 636

matrices were also tuned to be of the same average magnitude level as in the experiments above. These 637

simulations allow us to draw some more general conclusions. 638

Overall, we find that the cost of connection significantly enhanced evolvability in the majority of the 639

cases (Figure S7 Fig). As the number of observations is increased we observe an increase on average 640

in evolvability, reaching zero generalisation error when k = N , even without incorporating the cost of 641

connection. Interestingly, this was also true for some cases of 4, 8 and 12 patterns. We therefore see 642

that different training sets entailed different information about the class, some of which were better 643

representatives than others. For training sets consisted of more than half of the patterns in the class, 644

we also observe that (optimally tuned) parsimony pressure for sparsity certainly resulted in perfect 645
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generalisation. On the other hand, in situations like the ones of 1 or 2 patterns the parsimony pressure 646

had no effect on the generalisation performance of the network, and in some situations between 3 to 8 647

patterns it had little effect. 648
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