Accepted Manuscript

Do foot & ankle assessments assist the explanation of one year knee arthroplasty outcomes?

L.S. Gates, C.J. Bowen, M.T. Sanchez-Santos, A. Delmestri, N.K. Arden

PII: S1063-4584(16)30491-5

DOI: 10.1016/j.joca.2016.12.022

Reference: YJOCA 3925

To appear in: Osteoarthritis and Cartilage

Received Date: 9 August 2016

Revised Date: 15 December 2016

Accepted Date: 22 December 2016

Please cite this article as: Gates LS, Bowen CJ, Sanchez-Santos M, Delmestri A, Arden NK, Do foot & ankle assessments assist the explanation of one year knee arthroplasty outcomes?, *Osteoarthritis and Cartilage* (2017), doi: 10.1016/j.joca.2016.12.022.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 2 3	Do foot & ankle assessments assist the explanation of one year knee arthroplasty outcomes?
4 5	Authors: Gates L.S ^{1,2} , Bowen C.J ² , Sanchez-Santos MT ¹ , Delmestri A ¹ , Arden N.K ^{1, 3}
6	Authors Affiliations:
7	¹ Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, University of Oxford, Oxford,
8	UK
9	² Faculty of Health Sciences, University of Southampton, Southampton, UK
10	³ MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
11	
12	Abstract
13	Objective: Whilst a number of risk factors for poor patient reported outcomes (PROMs) following
14	knee arthroplasty (KA) have been identified, unexplained variability still remains. The role of pre-
15	operative foot and ankle status on such outcomes has not been investigated. The aim of this study
16	was therefore to determine the association of clinical foot and ankle assessments with patient
17	reported outcomes one year following KA. Design: One hundred and fifteen participants from the
18	Clinical Outcomes in Arthroplasty Study (COASt), underwent detailed foot and ankle assessments
19	at baseline, prior to KA (2012-2014) and were followed up for self-reported outcomes one year
20	after surgery. Results: Thirty nine percent of subjects reported foot pain at baseline. Mean pre-
21	operative Oxford Knee Score (OKS; 0 [worst] to 48 [best outcome]) was 21 and post-operative
22	OKS score was 38. In fully adjusted analysis pre-operative foot pain was significantly associated
23	with one year outcome (risk ratio (RR) 0.78 95% confidence interval (CI) 0.62, 0.98). No significant
24	association was observed between ankle dorsiflexion or foot posture and outcome. Conclusions:
25	Patients with pre-operative foot pain are more likely to have poorer clinically important outcomes
26	one year following KA than patients without foot pain. Static ankle dorsiflexion and foot posture
27	do not further explain post-operative KA outcomes. Consideration should also be given to address
28	pre-operative foot pain when attempting to achieve a good clinical outcome for KA.
29	∇

1 Introduction

2

Knee Arthroplasty (KA) is considered to be a successful and cost-effective intervention for
individuals with severe end stage Osteoarthritis (OA) (1). Growing emphasis is therefore now
placed upon Patient Reported Outcome Measures (PROMS) to measure the success of KA (2)
and it has become apparent that not all patients are satisfied with their surgery, with
dissatisfaction rates ranging from 7% to 32% (3-7).

8

A number of factors for poor patient reported outcomes following KA have been identified.
These include BMI (8, 9), anxiety, depression and social deprivation (10), rheumatoid arthritis
(RA) (10, 11), age (10, 12) and musculoskeletal comorbidities (13). Whilst these studies have
provided good insight into the explanation of KA outcome, less than 20% of the variability in
PROMs of KA has so far been explained (10), suggesting there are other factors still to be
identified to improve our ability to recognise patients at risk of poor KA outcomes.

15

16 Patients undergoing KA often have other troublesome hips and knees (13). It is acknowledged 17 by clinicians and researchers that there is a relationship between foot, ankle, knee and hip 18 kinematics. Clinical foot and ankle assessments is based on the theory to which, the degree of 19 movement at the foot, subtalar and ankle joint affect the lower limb alignment as movement is 20 transferred proximally. An excess of subtalar joint inversion/eversion is hypothesised to 21 increase external/internal rotation about the tibia, which in turn is said to disrupt the normal 22 mechanics of the tibiofemoral joint (14). These axial links between the subtalar and tibiofemoral 23 joint indicate that foot and ankle kinematics may play an influential role on the both the 24 transverse rotational and frontal measures about the knee. Such theories remain limited in their 25 evidence base, likely due to the difficulty in assessing dynamic anatomical forces and motion 26 within the intricate articulations around the foot and ankle joints. Despite the growing body of 27 evidence which has observed the effect of altering biomechanical factors, via the use of foot

28	interventions, on knee OA related kinematics (15-19), there is little known about the role of the
29	foot and ankle on clinical knee outcomes such as pain and function, in particular following KA.
30	
31	A study of KA patients found worse post-surgical pain and function in individuals who reported
32	arthritis related symptoms in the ankles/feet/toes (13), these associations were however
33	mediated through depression. Recent findings from a large prospective cohort, enhanced with
34	patients with or at risk of knee OA, show that foot pain adversely affects knee OA related pain
35	and symptom severity as measured by WOMAC and objective measures of physical function
36	(20-meter walk test pace and repeated chair stand pace) (20). Due to the cross-sectional nature
37	of the study no inference could be made as to whether foot pain preceded knee OA or developed
38	subsequent to it.
39	
40	The aim of this study was therefore to determine if clinical foot and ankle assessments,
41	including pain are associated with patient reported outcomes one year following KA.
42	
43	Methods
44	
45	Study population
46	
47	A subset of participants (n=115) from a prospective cohort of patients listed for KA, known as
48	the Clinical Outcomes in Arthroplasty Study (COASt), underwent detailed foot and ankle
49	assessments. This subset is known as COASt-Foot. COASt is a prospective, dual-centre
50	longitudinal cohort study of patients who were listed for hip and knee arthroplasties across two
51	hospitals; Southampton University Hospital NHS Foundation Trust (UHS) and Nuffield
52	Orthopaedic Centre (NOC), part of the Oxford University Hospital NHS Trust (OUH). 1760
53	patients recruited for COASt for KA underwent baseline data collection. 1441 at UHS and 319 at
54	the NOC. Full ethical approval was gained (Oxford REC A ref: 10/H0604/91). All participants

55	provided written informed consent. One hundred and fifteen patients underwent detailed foot
56	and ankle assessments pre-operatively and were prospectively followed up one-year post-
57	operative to allow comparison of pre and 1 year post-operative knee outcomes.
58	
59	Baseline data collection for COAST-foot ran from 2012-2014 at both sites. All patient
60	characteristics and clinical measures including foot and ankle measures were made during the
61	COASt pre-operative visit, alongside all other measures taken with COASt at baseline. Follow-up
62	patient reported outcomes were collected one year post-operatively. All patients listed for KA at
63	both sites were approached to take part in COASt. Participants were included if above the age of
64	18, with no upper age limit. The broad inclusion criteria of COASt provided a high level of
65	generalizability. COASt-Foot is a sample of COASt KA participants, randomly selected over a
66	short period for a doctoral study. Participants with Charcots arthropathy or other severe
67	neurological disease, previous knee or ankle arthroplasty or fusion were excluded from COASt-
68	foot.

69

70 Covariates

71

Demographic and clinical data, including age (years) and gender, was collected when enrolling
on the COASt study. BMI (Kg/m²) was measured at baseline pre-operative assessment by the
COASt researcher, along with depression (Hospital Anxiety and Depression Score) (21), which
was assessed via patient completed questionnaire.

76

Pre-operative Oxford Knee Score (OKS) (22) was also collected at baseline visit. OKS is a
validated patient-administered questionnaire which consists of 12 questions relating to knee
pain and physical function limitations during the past 4 weeks. Each question is answered on a
five-point Likert scale, and an overall score is calculated by summarising the responses to each

of the 12 questions. This sum score ranges from 0 to 48, where 0 indicates the most severe
symptoms and 48 the least severe symptoms.

83

84 Main exposures

85

Disabling foot pain, foot posture and passive ankle dorsiflexion were examined. Objective 86 87 assessments were chosen based on the findings of an international consensus study (23) and 88 extensive literature review (24). Prior to this the absence of agreement for which assessment 89 measures should be used to assess the foot and ankle in clinical practice was a dilemma for 90 researchers and clinicians and whilst foot and ankle assessment measures were routinely used, 91 the evidence to support their use was weak. Many historically used measures are limited in that associations to clinical outcomes such as foot pain or function have yet to be reported and as 92 93 such the clinical relevance and minimally important clinical change values have not been established. 94

95

96 The consensus study informed the choice of ankle dorsiflexion range of motion and Foot 97 Posture Index (FPI), which unlike most, have undergone previous investigations for both 98 reliability and clinical validity (25-29) and were selected as two of the most highly 99 recommended measures among a battery of others (23). An additional measure of foot pain was 100 introduced to COASt-Foot due to the importance of pain within disease. A measurement of foot 101 pain that has often been used in epidemiology is the Manchester Foot Pain and Disability Index 102 (MFPDI). The MFPDI can be used for foot pain in different populations, with or without the 103 presence of musculoskeletal disease. It has been validated in both the rheumatology and general 104 population (30, 31).

106	One clinical examiner at each site (research physiotherapist and clinical research nurse)
107	conducted the ankle dorsiflexion measures, after receiving training from an experienced
108	Podiatrist (LG) and all FPI measures at both sites were conducted by LG.
109	
110	Disabling foot pain was established for either foot using the MFPDI (30) at baseline pre-
111	operative assessment. A practical definition of disabling foot pain (at least one of the 10 FPDI
112	function items experienced on most/every day(s)) has been proposed and shown to be sensitive
113	to age and gender differences within the older population (31, 32).
114	
115	Passive ankle dorsiflexion of the affected limb was also assessed at the pre-operative
116	assessment visit, using a goniometer placed on lateral aspect of calcaneus, one arm bisecting the
117	midpoint of lateral lower leg and other arm orientated at 90°, whilst the participant lay supine
118	with knee extended. The examiner applied pressure to passively dorsiflex the ankle, whilst
119	measuring the movement.
120	
121	The FPI provides a composite measure of overall foot posture (25). It consists of six criteria:
122	talar head palpation, curves above and below the malleoli, inversion/eversion of the calcaneus,
123	bulge at the region of the talonavicular joint, congruence of the medial longitudinal arch and
124	abduction/adduction of the forefoot on rearfoot. Total FPI score is the sum of 6 ordinal items
125	with individual scores of -2 to +2. High intra-rater reliability has previously been reported for
126	both of these measures (26-28).
127	
128	The FPI has undergone testing against the Rasch model to determine its internal construct

validity. Ordinal data that fits the Rasch model can be transformed to an interval measurement
level using logits as the units of measurement, these logit values has been previously
established (33) and prior to analysis the total FPI scores for left and right feet were
transformed to their equivalent logit values.

1	2	2
T	Э	3

134 Outcome

135 136 The main outcome variable was patient acceptable symptom state (PASS) for one-year Oxford 137 Knee Score (OKS) (≥30 points). OKS PASS for one-year OKS was assessed by mail questionnaire 138 one year post-operatively. The COASt-Foot study aimed to use thresholds that represent 139 whether a patient has or has not achieved a clinically meaningful outcome. Even if the patient 140 reports a bad outcome or no improvement in terms of pain and function, as measured by OKS, 141 they may still be satisfied with surgery (4, 10). Therefore, satisfaction was considered within 142 OKS outcome by using the one-year PASS score. Judge et al (10) previously identified the PASS 143 score cut off of 30 points in the OKS to define a 'satisfactory symptom state' and differentiate 144 between patients with extremely high versus high overall levels of satisfaction with surgery. 145 146 Statistical analysis 147 148 All analysis was completed in Stata version 13.0 (Stata Corp, College Station, Texas, USA). Prior 149 to analysis, data distributions were checked for inconsistencies, outliers, and missing 150 information. 151 152 Baseline characteristics between those who provided follow up data and those who did not and 153 between those with acceptable and non-acceptable PASS scores were compared using Student's 154 t-test and Pearson chi squared tests (table 1 and 2). Due to the increased risk of a type I error 155 (falsely rejecting the null hypothesis) when making multiple statistical tests, Bonferroni 156 corrections were used to adjust probability levels. Complete case analysis was undertaken to 157 ensure homogeneity between foot and ankle assessment groups. 158

159	The association between foot pain, ankle dorsiflexion and FPI with KA outcome was assessed
160	using generalized linear models with a log link (Poisson family) to obtain estimates of relative
161	risk (RR) and 95 percent confidence intervals (95% CIs) by using robust standard errors (34).
162	Interaction between foot pain and depression was tested using likelihood ratio test and
163	multicollinearity was assessed by tolerance and variance inflation factor (VIF). The following
164	covariates were used in the adjusted models for foot pain: Pre-operative OKS, age, sex, BMI and
165	depression. Models for ankle dorsiflexion and FPI were adjusted for pre-operative OKS, age, sex
166	and BMI.
167	
168	We used a directed acyclic graph (DAG) to select covariates needed for an unbiased parametric
169	estimate of the exposures (35). This gave us 2 alternative foot pain models, where two of the
170	covariates could be excluded (BMI and depression). These models resulted in no changes in the
171	estimated risk ratios (data not shown).
172	
173	Results
174	
175	248 patients who underwent KA were recruited to the COASt-Foot study. Of these patients 115
176	(mean age 65.7 ± 10.1 years) completed both pre and one year post-operative OKS and
177	underwent foot and ankle screening and these patients form the cohort used for the analysis of
178	clinically important outcomes (figure 1). No interaction was observed between foot pain and
179	depression and no indication of multicollinearity was found.
180	
181	Figure 1.
182	
183	Baseline demographic details of this cohort are described in Table 1. A small number of
184	participants (14.8%) had incomplete follow up OKS scores or were missing complete scores.
185	There were small differences between patients that did and did not respond to the one-year

186	questionnaire, where those who responded were older, had a lower BMI and were less likely to
187	suffer from anxiety/depression and foot pain. A higher percentage of non-responders were
188	female. There were no significant differences in pre-operative patient characteristics between
189	participants with follow up (responders) and those without (non-responders), apart from pre-
190	operative OKS (mean difference 6.0 95% CI 2.8, 9.2 P=0.0007); non-responders had a lower
191	(worse) mean pre-operative OKS score (15.7 \pm 6.4) than responders (21.7 \pm 6.6).
192	
193	39% of subjects (from n=115) reported foot pain at baseline, with 34% reported disabling foot
194	pain (from n=115). Mean pre-operative OKS score (0-48) was 21 and post-operative OKS score
195	was 38. The distribution of OKS at one year was negatively skewed to the left, suggesting the
196	majority of patients achieve improvement in pain and function. However, for difference in
197	scores, whereas most patients showed an improvement in their OKS, a small number (4%) get
198	worse or remain unchanged.
199	
200	Table 1.
201	
202	Table 2.
203	
204	Foot pain
205	
206	Adjusted model indicated that subjects with pre-operative foot pain were less likely to achieve
207	an acceptable outcome (RR 0.78 95% CI 0.62, 0.98 p=0.03) (table 3).
208	
209	Ankle dorsiflexion
210	
211	Adjusted regression analysis showed ankle dorsiflexion was not associated to post-operative
212	PASS score (RR 1.00 95% CI 0.99, 1.02) (table 3).

- 11	ACCEPTED MANUSCRIPT
213	
214	Foot Posture
215	
216	Adjusted regression analysis showed that a more pronated static foot posture was not
217	associated to outcome (RR 0.98 95% CI 0.95, 1.02) (table 3).
218	
219	Table 3.
220	
221	Discussion
222	
223	Using a subset of participants from a prospective cohort receiving primary KA in Southampton
224	and Oxford, UK, the COASt-Foot study has found that pre-operative foot pain is associated with
225	one-year post-operative patient reported outcome following KA; participants with foot pain had
226	greater risk of having a poorer outcome, as defined by OKS PASS. Objective pre-operative
227	assessments including foot posture and ankle dorsiflexion did not provide further explanation
228	for one-year outcome.
229	
230	OA related ankle/foot/toe pain, identified from a pain mannequin has shown worse post-
231	operative outcomes in a population of individuals awaiting KA (n=494) (13). Individuals who
232	reported problematic or painful ankles/feet/toes with OA had worse post-surgery WOMAC pain
233	(1.24 95% CI 0.48, 2.00) and physical function scores (3.14 95% CI 0.69, 5.59). The problematic
234	or painful joints reported were those also affected by arthritis and associations were mediated
235	through depression.
236	
237	It is important to consider the potential drivers behind foot pain to inform pre-operative

factors of knee OA a lengthened pre-operative longitudinal study would be required to firstestablish if knee OA precedes foot pain.

241

Whilst there is evidence of investigation into the role of foot structure on knee pain and injuries
(36, 37), evidence is often limited to cross sectional design and investigation into the association
of foot pain and knee pain appears to have been overlooked. Whilst foot pain may be due to
direct symptoms and local foot conditions, the high prevalence of foot pain in the COAST-Foot
population suggests the association is clinically important. Potential biological mechanisms that
may explain the findings are the role of central sensitisation, generalised joint OA and/or
mechanical associations.

249

250 It is now well established that some patients with painful OA present with pain sensitization 251 (38). The risk of persistent pain after KA has been related to the degree of central sensitisation 252 before surgery. Following finding of a systematic literature review Baert et al (39) suggest that 253 pre-surgical signs of altered central pain modulation, such as joint pain at rest or widespread 254 pain sensitization, may plausibly be associated with more post-surgical pain. In a previous 255 longitudinal study, after adjusting for pre-operative pain, participants with a high pre-operative 256 pain at rest and a low pain threshold (features which may reflect a central sensitisation 257 mechanism) showed less favourable outcome in terms of pain relief 18 months after TKR (40). 258 If foot pain is a consequence of sensitisation then it may be the sensitisation phenomenon in its 259 entirety that is actually associated to poor outcome and foot pain is merely a part of this.

260

Multiple joint involvement or polyarticular OA is common (41) and clustering of frequently affected joints has been observed to support this (42). Associations have been found for hand and knee OA (43) and foot, hand and knee OA, with an elevated risk of foot OA in coexisting bilateral disease of other joints (44). Foot pain in the COASt-Foot population may be linked to a degree of foot OA, however the prevalence of foot OA in these patients is unknown. The COASt-

266 Foot findings that foot pain is associated to knee OA symptoms and outcomes would support 267 this theory in the presence of symptomatic foot OA. Evidence suggests discordance between 268 radiographic OA and clinical symptoms, with less than 50% of patients with radiographic OA 269 reporting symptoms (45). This would indicate that either participants with foot pain in the 270 COASt-Foot study represent only half of patients with foot OA or that this theory may not 271 support the association of foot pain to knee OA related symptoms and outcomes in COASt-Foot. 272 Although the presence of foot OA is likely in the COASt-Foot population, particularly those with 273 foot pain, it is difficult to confirm the role of polyarticular OA in these findings without 274 radiographic evidence.

275

Another consideration for the findings in COASt-Foot is the potential of mechanical associations.
In knee OA changes in loading patterns have been identified throughout the lower extremity as
it acts as a linked kinetic unit with adaptations seen in distal body segments (46). Medial knee
OA has also been associated with changes in gait patterns attributed to movement-induced
nociception (47). Studies have shown relationships between foot, ankle, knee and hip
kinematics and it has been suggested that an association between knee OA and foot status is
relative to disease led biomechanical changes (14-16).

283

Findings from COASt-Foot showed no association between foot posture or ankle dorsiflexion with post-operative knee pain and function. These findings suggest that although foot pain is related to knee pain and function, objective clinical foot and ankle status is not and therefore static mechanical influences may not be a key driver in the relationship between foot pain and knee OA symptoms in KA outcomes. However, the relationship between dynamic influences in COASt-Foot is unknown and may potentially play a role in the main findings.

290

The study made use of carefully chosen valid, reliable and responsive instruments for assessing
multiple exposures and outcomes. Surgery was completed at two sites, within a standard NHS

293 setting by multiple surgeons; findings were therefore generalizable and representative of the 294 general UK orthopaedic practice. Selection bias was minimised as the outcome was unknown 295 during collection of exposure data and recall bias was limited as all questions were based on 296 current status, requiring no long term retrospective consideration. Reporting bias was unlikely 297 as participants were not recruited based on foot pathology therefore there was less reason to 298 over or under report foot symptoms. Another strength of this study was the use of one year 299 post-operative OKS as the outcome, adjusting for baseline score. This is an unbiased method of 300 analysis and it is known to be the most precise (48). 301

302 Limitations

303

304 Follow up bias may play a role in this study as participants who were followed up had better 305 pre-operative knee pain and function scores than those who did not, hence the true effects of 306 this may be over-estimated in this study. However, the loss to follow up rate was relatively low 307 and this was the only variable to show a difference. Whilst the reasons for non-compliance to 308 follow up in these participants is unknown we are able to account for baseline characteristics. 309 Studies often show a difference in more than one characteristic between responders and non-310 responders and previous evidence has acknowledged the same effect of pre-operative OKS (10, 311 11, 49).

312

Based on findings of previous studies-a limited number of which actually report variances
between responders and non-responders- this difference in pre-operative OKS was not
expected (10, 11, 50). Non-responders had, on average, lower (worse) mean pre-operative OKS
score than responders, suggesting that a group of patients with worse severity of post-operative
symptoms were not accounted for and there was therefore a higher chance of type II error.
Whilst it does not invalidate the longitudinal findings it may have underestimated the effects of

foot pain and ankle dorsiflexion on outcome. The effects of confounding were limited by
adjustments for a large number of confounders; however, this cannot be fully excluded.

Reliability of clinical measures was not established within this cohort due to the ethical
considerations for patients, who had strict time restrictions applied to pre-operative COASt
appointments due to lengthy demanding physical assessments and questionnaires. Reliability
for the clinical foot and ankle assessments has however been determined in previous studies
(25-28).

327

Clinical assessment of the ankle may be somewhat subjective, particularly when performed 328 passively, as the range of motion depends on the force applied by the tester. However, in this 329 330 instance it was believed that this would be a superior method to remove the potential for bias 331 that may be introduced from the discrepancies in lower extremity strength and active joint 332 stiffness often seen in patients with severe knee OA. A number of participants had difficulty 333 maintaining a position of non-weight knee flexion during measurements due to discomfort, 334 therefore ankle dorsfliexion with knee extension was used for this analysis to ensure data 335 included was collected systematically. This also reduces the potential for examiner bias which 336 may be introduced when also attempting to ensure the knee remains in a given degree of 337 flexion. The choice of land marking for goniometric measurement may be limited by the fact it 338 is not directly over the anatomical axis of the talocrural joint, however the use of the lateral 339 malleoli was chosen to ensure consistency in identifying anatomical locations for goniometiric 340 positioning, to ensure standardisation of the range of motion measurement. A further limitation 341 is pre-operative foot pain was not measured specific to one side in all participants, therefore 342 laterality of foot pain according to knee symptoms could not be addressed. Unfortunately, due 343 to an absence of foot and ankle x-rays, we were unable to ascertain the role of polyarticular OA 344 in these findings. This would be a valuable consideration for future work to investigate the role 345 of the foot and ankle in knee outcomes.

346	
347	Conclusion
348	
349	In conclusion the results of the COASt-Foot study suggest that pre-operative foot pain is
350	associated with poor clinically important knee outcomes one year following KA. Static ankle
351	dorsiflexion and foot posture did not explain post-operative KA outcomes. Findings suggest that
352	at present the intention to treat knee OA with KA is made irrespective of foot pain. If the
353	objective of treating with KA is to achieve a good a clinical outcome –based on pain reduction,
354	function and satisfaction improvement- then consideration should be given to reducing pre-
355	operative foot pain.
356	
357	Author contributions
358	
359	LSG, CJB and NKA involved in conception and design of the study. LSG was involved in the
360	acquisition and management of data. LSG, CJB, MTSS, AD and NKA were involved in
361	management, statistical analysis and interpretation of the data. LSG drafted the manuscript. All
362	authors reviewed the manuscript with critical revision of the article for important intellectual
363	content and approved the final manuscript. LSG, CJB and NKA took the responsibility for the
364	integrity of the work as a whole, from inception to finished article.
365	
366	
367	Potential conflicts of interests:
368	
369	N Arden has received consultancy from Merck, Smith & Nephew, Flexion, Freshfields,
370	Bioberica and Regeneron. All other authors declare that they have no conflict of
371	interest.
372	

373 Informed consent: Informed consent was obtained from all individual participants included in the study. 374 375 376 Funding: 377 378 The recruitment of the Clinical Outcomes in Arthroplasty Study (COASt) was funded by a 379 program grant for applied research from the National Institute of Health and Research (NIHR; 380 10064) and COASt-Foot was further supported by Southampton Rheumatology Trust (Grant no 381 SRT/GEN/2012/1). LSG is the recipient of an Arthritis Research UK Allied Health Professional 382 Training Research Fellowship (Award no: 19875). 383 384 Acknowledgments: 385 386 The Clinical Outcomes in Arthroplasty Study was made possible by the contribution of many 387 people, including the original investigators and the diligent team who recruited the participants 388 and who continue working on follow up. We would like to express our gratitude to the number 389 of Southampton and Oxford based residents who participated in the study. For the recruitment 390 and study coordination we would especially like to thank Senior Research Nurse Carole Ball from Southampton University Hospital Trust. 391 392 393 References 394 395 1. Jordan KM, Arden NK, Doherty M, Bannwarth B, Bijlsma JWJ, Dieppe P, et al. EULAR 396 Recommendations 2003: an evidence based approach to the management of knee 397 osteoarthritis: Report of a Task Force of the Standing Committee for International Clinical 398 Studies Including Therapeutic Trials (ESCISIT). Annals Of The Rheumatic Diseases. 2003; 399 62(12):1145-1155

2. Williams DP, Blakey CM, Hadfield SG, Murray DW, Price AJ, Field RE. Long-term trends in

401		the Oxford knee score following total knee replacement. Bone & Joint Journal. 2013;95-
402		B(1):45-51
403	3.	Noble P, Conditt M, Cook K, Mathis K. The John Insall Award: Patient expectations affect
404		satisfaction with total knee arthroplasty. Clinical Orthopaedics & Related Reseach.
405		2006;452:35-43
406	4.	Baker P, Van Der Meulen J, Lewsy J, Gregg P. The role of pain and function in determining
407		patient satisfaction after total knee replacement. The Journal of Bone & Joint Surgery.
408		2007;89(7):893-900
409	5.	Nilsdotter AK, Toksvig-Larsen S, Roos EM. Knee arthroplasty: are patients' expectations
410		fulfilled? Acta Orthopaedica. 2009;80(1):55-61
411	6.	Bourne R, Chesworth B, Davis A, Mahomed N, Charron KJ. Patient Satisfaction after Total
412		Knee Arthroplasty: Who is Satisfied and Who is Not? Clinical Orthopaedics and Related
413		Research. 2010;468(1):57-63
414	7.	Scott C, Howie C, Macdonald D, Biant L. Predicting dissatisfaction following total knee
415		replacement: a prospective study of 1217 patients. Journal of Bone and Joint Surgery.
416		2010;92-B:1253-1258
417	8.	Zeni JA, Snyder-Mackler L. Early Postoperative Measures Predict 1- and 2-Year Outcomes
418		After Unilateral Total Knee Arthroplasty: Importance of Contralateral Limb Strength.
419		Physical Therapy. 2010;90(1):43-54
420	9.	Baker P, Muthumayandi K, Gerrand C, Kleim B, Bettinson K, Deehan D. Influence of Body
421		Mass Index (BMI) on Functional Improvements at 3 Years Following Total Knee
422		Replacement: A Retrospective Cohort Study. PLoS ONE. 2013;8(3):e59079
423	10.	Judge A, Arden N, Cooper C, Javaid K, Carr A, Field R et al. Predictors of outcomes of total
424		knee replacement surgery. Rheumatology. 2012;51:1804-1813

425	11. Hawker GA, Badley EM, Borkhoff CM, Croxford R, Davis AM, Dunn S et al. Which Patients
426	Are Most Likely to Benefit From Total Joint Arthroplasty? Arthritis & Rheumatism.
427	2013;65(5):1243-1252
428	12. Nilsdotter A-K, Petersson IF, Roos EM, Lohmander LS. Predictors of patient relevant
429	outcome after total hip replacement for osteoarthritis: a prospective study. Annals of The
430	Rheumatic Diseases. 2003;62(10):923-930
431	13. Perruccio AV, Power JD, Evans HMK, Mahomed SR, Gandhi R, Mahomed NN et al. Multiple
432	joint involvement in total knee replacement for osteoarthritis - effects on patient-reported
433	outcomes. Arthritis Care & Research. 2012;64(6):838-846
434	14. Tiberio D. The effect of excessive subtalar joint pronation on patellofemoral mechanics: a
435	theoretical model. The Journal Of Orthopaedic And Sports Physical Therapy.
436	1987;9(4):160-165
437	15. Levinger P, Menz HB, Morrow AD, Feller JA, Bartlett JR, Bergman NR. Foot kinematics in
438	people with medial compartment knee osteoarthritis. Rheumatology. 2012;51:2191–8
439	16. Bennell KL, Bowles KA, Payne C, Cicuttini F, Williamson E, Forbes A et al. Lateral wedge
440	insoles for medial knee osteoarthritis: 12 month randomised controlled trial. British
441	Medical Journal. 2011;342:d2912
442	17. Butler R, Marchesi S, Royer T, Davis I. The effect of a subject-specific amount of lateral
443	wedge on knee mechanics in patients with medial knee osteoarthritis. Journal of
444	Orthopaedic Research. 2007;25(9):1121-7
445	18. Butler RJ, Barrios JA, Royer T, Davis IS. Effect of laterally wedged foot orthoses on rearfoot
446	and hip mechanics in patients with medial knee osteoarthritis. Prosthetics And Orthotics
447	International. 2009;33(2):107-116
448	19. Hinman RS, Bennell KL. Advances in insoles and shoes for knee osteoarthritis. Current
449	Opinion in Rheumatology. 2009;21(2):164-170 10.1097/BOR.0b013e32832496c2
450	20. Paterson KL, Hinman RS, Hunter DJ, Wrigley TV, Bennell KL. Impact of Concurrent Foot
451	Pain on Health and Functional Status in People with Knee Osteoarthritis: Data From the
452	Osteoarthritis Initiative. American College of Rheumatology. 2015;67(7):989–995

- 453 21. Zigmond AS, Snaith RP. The Hospital Anxiety and Depression Scale. Acta Psychiatr Scand.
 454 1983;67(6):361-70.
- 455 22. Dawson J, Fitzpatrick R, Murray D, Carr A. Questionnaire on the perceptions of patients
- 456 about total knee replacement. Journal of Bone & Joint Surgery, British Volume. 1998;80-
- 457 B(1):63-9
- 458 23. Gates LS, Bowen C, Arden NK. Clinical Measures of Musculoskeletal Foot and Ankle
- 459 Assessment: An International Consensus Statement. International Journal of Health
 460 Sciences and Research. 2015; 5(2):91-105
- 461 24. Gates L, Arden NK, McCulloch LA, Bowen CJ. An evaluation of musculoskeletal foot and
- 462 ankle assessment measures Working Papers in the Health Sciences. 2015;1(11): 1-17
- 463 25. Redmond AC, Crosbie J, Ouvrier RA. Development and validation of a novel rating system
- 464 for scoring standing foot posture: the Foot Posture Index. Clinical Biomechanics (Bristol,
 465 Avon). 2006;21(1):89-98
- 466 26. Cornwall MW, Mcpoil TG, Lebec M, Vicenzino B, Wilson J. Reliability of the modified Foot
- 467 Posture Index. Journal Of The American Podiatric Medical Association. 2008;98(1):7-13
- 468 27. Bennell KL, Talbot R, Wajswelner H, Wassana T, Kelly D. Intra-rater and inter-rater
- 469 reliability of a weight-bearing lunge measure of ankle dorsiflexion. Australian
- 470 Physiotherapy. 1998;44(3):175-180
- 471 28. Krause DA, Cloud BA, Forster LA, Schrank JA, Hollman JH. Measurement of Ankle
- 472 Dorsiflexion: A Comparison of Active and Passive Techniques in Multiple Positions. Journal
 473 Of Sport Rehabilitation. 2011;20(3):333-344
- 474 29. Menz HB, Tiedemann A, Kwan MM-S, Latt MD, Sherrington C, Lord SR. Reliability of clinical
- 475 tests of foot and ankle characteristics in older people. Journal Of The American Podiatric
- 476 Medical Association. 2003;93(5):380-387
- 477 30. Garrow AP, Papageorgiou AC, Silman AJ, Thomas E, Jayson MI, Macfarlane GJ. Development
- 478 and validation of a questionnaire to assess disabling foot pain. Pain. 2000;85(1-2):107-13

- 479 31. Roddy E, Muller S, Thomas E. Defining disabling foot pain in older adults: further
- 480 examination of the Manchester Foot Pain and Disability Index. Rheumatology.

481 2009;48:992–996

- 482 32. Menz HB, Tiedemann A, Kwan MM, Plumb K, Lord SR. Foot pain in community-dwelling
- 483 older people: an evaluation of the Manchester Foot Pain and Disability Index.
- 484 Rheumatology. 2009;45:863–867
- 485 33. Keenan A, Redmond AC, Horton M, Conaghan PG, Tennant A. The Foot Posture Index:
- 486 Rasch analysis of a novel, foot-specific outcome measure. Archives of Physical Medicine &
- 487 Rehabilitation. 2007;88(1):88-93
- 488 34. Zou G. A Modified Poisson Regression Approach to Prospective Studies with Binary Data.
- 489 American Journal of Epidemiology. 2004;159(7):702-6
- 490 35. Shrier I, Platt RW. Reducing bias through directed acyclic graphs. BMC Medical Research
 491 Methodology. 2008;8(1):70
- 492 36. Barton CJ, Menz HB, Crossley KM. The immediate effects of foot orthoses on functional
- 493 performance in individuals with patellofemoral pain syndrome. British Journal Of Sports
 494 Medicine. 2011;45(3):193-197
- 495 37. Levinger P, Menz H, Fotoohabadi M, Feller J, Bartlett J, Bergman N. Foot posture in people
- 496 with medial compartment knee osteoarthritis. Journal of Foot and Ankle Research.
- 497 2010;3(1):29
- 498 38. Lluch E, Torres R, Nijs J, Van Oosterwijck J. Evidence for central sensitization in patients
 499 with osteoarthritis pain: a systematic literature review. European Journal of Pain.
- 500 2014;18:1367-75.
- 50139. Baert IA, Luch E, Mulder, Niis J, Noten S, Meeus M. Does pre-surgical central modulation of
- pain influence outcome after total knee replacement? A systematic review. Osteoarthritis
 and Cartillage. 2016;24(2):213-23.
- 504 40. Lundblad H, Kreicbergs A, Jansson KÅ. Prediction of persistent pain after total knee
- 505 replacement for osteoarthritis. The Journal of Bone & Joint Surgery. 2008;90(2):166-171

506	41. Carroll GJ, Breidahl WH, Jazayeri J. Confirmation of two major polyarticular osteoarthritis
507	(POA) phenotypes – differentiation on the basis of joint topography. Osteoarthritis and
508	Cartilage. 2009;17(7):891–895
509	42. Cooper C, Egger P, Coggan D, Hart DJ, Masud T, Cicuttini F et al. Generalised osteoarthritis
510	in women: pattern of joint involvement and approaches to definition for epidemiological
511	studies. Journal of Rheumatology. 1996;23:1938–1942
512	43. Englund M, Paradowski PT, Lohmander LS. Association of Radiographic Hand
513	Osteoarthritis With Radiographic Knee Osteoarthritis After Meniscectomy. Arthritis and
514	Rheumatism. 2004;50(2):469–475
515	44. Wilder FV, Barrett JP, Farina EJ. The association of radiographic foot osteoarthritis and
516	radiographic osteoarthritis at other sites. Osteoarthritis and Cartilage. 2005;13:211-215
517	45. Hannan MT, Felson DT, Pincus T. Analysis of the discordance between radiographic
518	changes and knee pain in osteoarthritis of the knee. Journal of Rheumatology.
519	2000;27(6):1513-7
520	46. Lidtke RH, Muehleman C, Kwasny M, Block JA. Foot center of pressure and medial knee
521	osteoarthritis. Journal of American Podiatric Medical Association. 2010;100:178–84
522	47. Rosland T, Gregersen LS, Eskehave TN, Kersting UG, Arendt-Nielsen L. Pain sensitization
523	and degenerative changes are associated with aberrant plantar loading in patients with
524	painful knee osteoarthritis. Scandinavian Journal of Rheumatology. 2015;44(1)
525	48. Vickers AJ, Altman DG. Analysing controlled trials with baseline and follow up
526	measurements. BMJ. 2001;323(7321):1123–1124
527	49. Fortin PR, Clarke AE, Joseph L, Liang MH, Tanzer M, Ferland D et al. Outcomes of total hip
528	and knee replacement: preoperative functional status predicts outcomes at six months
529	after surgery. Arthritis Rheum. 1999;42:1722-8
530	50. Kiran A, Bottomley N, Biant LC, Javaid K, Carr AJ, Cooper C et al. Variations In Good Patient
531	Reported Outcomes After Total Knee Arthroplasty. The Journal of Arthroplasty.
532	2015;30:1364–1371

533

the share the second second Table I. Baseline clinical descriptive and statistical comparisons of pre-operative variables between those with and without complete data and those with and without 1 year follow up

Characterisitcs	Baseline	Without complete data	P-value	With one year follow up	Without one year follow up	P-value	
	(n=135)	(n=42)		(n=115)	(n=20)	20)	
Age, mean (S.D), years	65.7 (10.1)	68.3 (9.0)	0.1336	65.8 (10.1)	65.1 (10.1)	0.7773	
BMI, mean (S.D), Kg/m2	31.5 (5.3)	33.7 (5.9)	0.0482	31.4 (4.8)	32.4 (7.6)	0.5562	
Sex, n (%) female	72 (53.3%)	19 (45.2%)	0.230	58 (50.4%)	14 (70.0%)	0.083	
Disabling Foot Pain n (%) present	46 (34.1%)	12 (32.4%)	0.852	38 (33.0%)	8 (40.0%)	0.545	
Ankle Dorsiflexion, mean (S.D), degrees of motion	10.4 (8.3)	9.1 (6.0)	0.3330	10.5 (8.4)	10.0 (8.4)	0.7838	
Foot posture, mean (S.D), higher score/pronated	1.7 (2.4)	3.1 (2.6)	0.0123	1.7 (2.4)	1.9 (2.7)	0.8033	
Pre-operative OKS, mean (S.D), 0-48 with lower score worse	20.8 (6.9)	21.7 (10.0)	0.6312	21.7 (6.6)	15.7 (6.4)	0.0007*	
Depression (%) present	26 (19.3%)	5 (21.7%)	0.782	20 (17.4%)	6 (30.0%)	0.187	

Student's t-tests were used for continuous variables and X² tests for categorical variables.

Fisher's exact test is used where expected counts were <5

 α set with Bonferonni adjustment for multiple testing at a P<0.0062

Table II. Baseline clinical descriptive and statistical comparisons of pre-operative variables between those with acceptable and non-acceptable 1 year PASS score

Characteristics	Baseline inclusions	Acceptable PASS score	Unacceptable PASS Score	P-value	
	(n=115)	(n=94)	(n=21)		
Age, mean (S.D), years	65.8 (10.1)	66.1 (9.08)	64.5 (14.1)	0.6314	
BMI, mean (S.D), Kg/m2	31.4 (4.8)	31.1 (4.8)	32.5 (4.8)	0.2569	
Sex, n (%) female	58 (50.4%)	48 (51.1%)	10 (47.6%)	0.775	
Disabling Foot Pain n (%) present	38 (33.0%)	26 (27.7%)	12 (57.1%)	0.009	
Ankle Dorsiflexion, mean (S.D), degrees of motion	10.5 (8.4)	10.9 (7.9)	8.8 (10.3)	0.3784	
Foot posture, mean (S.D), higher score/pronated	1.7 (2.4)	1.6 (2.4)	2.2 (2.3)	0.3079	
Pre-operative OKS, mean (S.D), 0-48 with lower score worse	21.7 (6.6)	22.4 (6.6)	18.8 (5.9)	0.0192	
Depression (%) present	20 (17.4%)	15 (16.0%)	5 (23.8%)	0.391	

Student's t-tests were used for continuous variables and X² tests for categorical variables.

Fisher's exact test is used where expected counts were <5 📈

 α set with Bonferroni adjustment for multiple testing at a P<0.0062

Table III. Foot pain, ankle dorsiflexion and foot posture as factors for achieving an acceptableclinical post-operative knee outcome (PASS)

N=115	RR	95% Cls	P-value
Disabling Foot pain (present) $^{\diamond}$	0.78	0.62, 0.98	0.033*
Ankle dorsiflexion (higher degrees) [¥]	1.00	0.99, 1.02	0.454
Foot Posture (more pronated) [¥]	0.98	0.95, 1.02	0.393

 $^{\diamond}$ Models are adjusted for pre-operative OKS, age, sex, BMI and depression.

^{*}Models are adjusted for pre-operative OKS, age, sex and BMI

OKS, Oxford Knee Score; BMI, Body Mass Index

*Denotes statistical significance with α set at P=<0.05

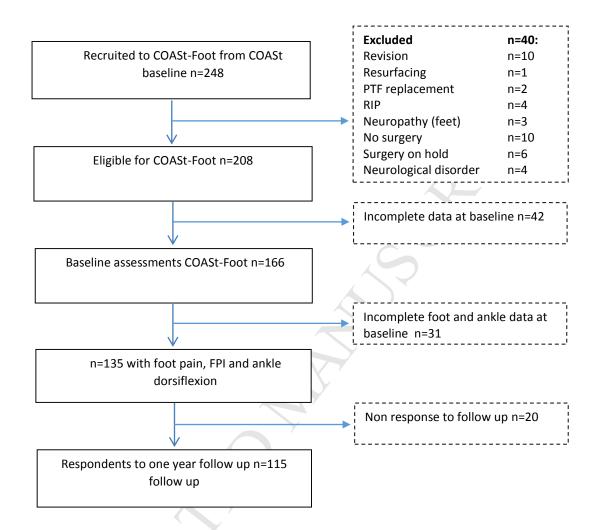


Figure I. Exclusion process for COAST-Foot cohort