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Abstract Cell biology differs between traditional cell culture and 3-dimensional (3-D) systems,

and is modulated by the extracellular matrix. Experimentation in 3-D presents challenges, especially

with virulent pathogens. Mycobacterium tuberculosis (Mtb) kills more humans than any other

infection and is characterised by a spatially organised immune response and extracellular matrix

remodelling. We developed a 3-D system incorporating virulent mycobacteria, primary human

blood mononuclear cells and collagen–alginate matrix to dissect the host-pathogen interaction.

Infection in 3-D led to greater cellular survival and permitted longitudinal analysis over 21 days. Key

features of human tuberculosis develop, and extracellular matrix integrity favours the host over the

pathogen. We optimised multiparameter readouts to study emerging therapeutic interventions:

cytokine supplementation, host-directed therapy and immunoaugmentation. Each intervention

modulates the host-pathogen interaction, but has both beneficial and harmful effects. This

methodology has wide applicability to investigate infectious, inflammatory and neoplastic diseases

and develop novel drug regimes and vaccination approaches.

DOI: 10.7554/eLife.21283.001

DOI: 10.7554/eLife.21283.001

Introduction
An emerging paradigm in biology is that events in traditional 2-dimensional cell culture often differ

from those in 3-dimensional (3-D) culture (Benam et al., 2015; Pampaloni et al., 2007). Further-

more, the extracellular matrix regulates cell biology (Yamada and Cukierman, 2007; Schwartz and

Chen, 2013; Parker et al., 2014) and infection biology differs between 2-D and 3-D systems

(Cheng et al., 2011; Barrila et al., 2010). Human disease occurs in 3-D and in the context of extra-

cellular matrix. Consequently, conclusions drawn from 2-dimensional cell culture systems may not

fully reflect events in vivo (Yamada and Cukierman, 2007). This presents a challenge to progress

from standard culture systems, where cells are grown in 2-D on plastic, to more advanced systems

that more faithfully replicate events in man (Yamada and Cukierman, 2007). These technical
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difficulties are particularly marked in studying infectious diseases, where experiments must have

additional levels of containment to prevent the release of pathogens (Barrila et al., 2010).

Mycobacterium tuberculosis (Mtb) is a pathogen of global significance that continues to kill 1.5

million people per year (O’Garra et al., 2013; Horsburgh et al., 2015). Unfortunately, despite major

investment in research, recent clinical trials and vaccine studies to reduce the global burden of

tuberculosis (TB) have been unsuccessful (Tameris et al., 2013; Ndiaye et al., 2015; Warner and

Mizrahi, 2014), indicating that the model systems that informed these studies require further refine-

ment. In TB, the host-pathogen interaction is highly complex, with the immune response concur-

rently necessary for containment of infection but paradoxically also driving immunopathology that

leads to lung destruction and transmission (Russell, 2011; Elkington and Friedland, 2015). The

mouse is the principal model system to study TB, but inflammatory conditions in the mouse differ

from man (Seok et al., 2013), and lung pathology is different in murine Mtb infection (Young, 2009).

Mtb is an obligate human pathogen and has a very prolonged interaction with host cells, surviving

within professional phagocytes (Russell, 2011). Therefore, long term human culture experiments are

required to investigate pathogenesis. A specific advantage of 3-D cell culture incorporating extracel-

lular matrix is that cellular survival is greatly prolonged (Buchheit et al., 2012; Mueller-

Klieser, 1997). Furthermore, inflammatory signalling in TB granulomas is spatially organised

(Marakalala et al., 2016), with specific microenvironments (Mattila et al., 2013), and the extracellu-

lar matrix regulates cell survival in TB (Al Shammari et al., 2015), indicating that an optimal system

to study human disease will need to be 3-D with extracellular matrix.

We hypothesised that to fully understand the host-pathogen interaction in TB, a 3-D cell culture

system that incorporates primary human cells, extracellular matrix, fully virulent Mtb, and multipa-

rameter longitudinal readouts is required. Whilst human cellular models of human granuloma forma-

tion have been developed, none have all these characteristics (Puissegur et al., 2004; Lay et al.,

2007; Kapoor et al., 2013; Parasa et al., 2014). We addressed the technical challenges of perform-

ing these experiments at biosafety containment level three by adopting a bioengineering approach

(Workman et al., 2014). We developed a model system that permits interrogation of the host-path-

ogen interaction in 3-D in the context of extracellular matrix. We demonstrate that cardinal features

of human disease develop and that the host immune response is significantly different when cells are

adherent to collagen, favouring the host relative to the pathogen. We investigate emerging thera-

peutic approaches in the system, and demonstrate that each intervention has both beneficial and

likely harmful effects. The model permits the concurrent analysis of multiple outcomes and therefore

can be used to develop optimal approaches to address the TB pandemic, and can be applied to

diverse infectious, inflammatory and neoplastic

diseases.

Results

Key features of human
tuberculosis develop in the bio-
electrospray model
To address the challenges of studying infection

of primary human cells with a virulent pathogen

within a 3-D extracellular matrix, we optimised

the bio-electrospray parameters for stable

microsphere generation. PBMCs were isolated

from healthy donors, counted and then infected

with Mtb that had been cultured in Middlebrook

7H9 broth at a multiplicity of infection of 0.1.

After overnight infection, cells were detached,

resuspended, and pelleted by centrifugation,

and then re-suspended in alginate or alginate-

collagen matrix before bioelectrospraying into

microspheres using a Nisco Cell Encapsulator

(Video 1, Figure 1—figure supplement 1 and

Video 1. Generation of microspheres. During the bio-

electrospray process, a Phantom v7 high-speed

camera, capable of capturing 150000 fps in conjunction

with a long-distance microscope lens, was triggered

simultaneously with a fibre optic lighting system.

Relative video speed 0.15 s. DOI: 10.7554/eLife.

21283.002

DOI: 10.7554/eLife.21283.002
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2). Characterisation of different alginates indicated that ultrapure medium viscosity guluronate

(MVG)-dominant alginate had optimal biophysical properties for electrospraying and minimal immu-

nogenicity (Figure 1—figure supplement 3).

Immediately after generation, cells are evenly distributed within microspheres and by day seven

cellular aggregates start to form (Figure 1A and B). Quantitation demonstrated significantly more

aggregates in infected microspheres than unifected microspheres (Figure 1C). One day after infec-

tion, a quarter of monocytes had phagocytosed Mtb, analyzed by flow cytometric analysis of cells

infected with GFP-expressing Mtb (Figure 1D). After 14 days of incubation, large cellular aggregates

are observed (Figure 1E). Survival of Mtb-infected cells in 3-D collagen-alginate microspheres was

much greater than in 2-D culture, as analyzed by LDH release (Figure 1F) and cellular cytotoxicity

assays (Figure 1G). An advantage of the model is that cells can be released from the microsphere

by decapsulation by divalent cation chelation with EDTA and sodium citrate in HBSS for 10 min,

which causes dissolution of the spheres and releases cells for downstream assays. Decapsulation did

not significantly affect cell viability, with over 90% cell viability after decapsulation (Figure 1—figure

supplement 4). Monocytes mature into macrophages in infected microspheres, with greater expres-

sion of CD68 (Figure 1H). Within the aggregates, multinucleate giant cells typical of human TB

develop, stained for CD68 by immunohistochemistry (Figure 1I). These multinucleate giant cells are

similar to those that occur in human patients with pulmonary TB (Figure 1J). T cell differentiation

occurs within microspheres, with a progressive increase in the proportion of CD4+ T cells, while the

percentage of CD8+ T cells declines (Figure 1—figure supplement 5). T cell proliferation does not

differ between Mtb-infected and uninfected microspheres.

Next, we measured Mtb growth within microspheres longitudinally by infecting cells with lumines-

cent Mtb expressing the Lux operon, which is genetically modified to constantly luminesce

(Andreu et al., 2010). Mtb in microspheres without human cells grows relatively slowly, whereas in

the presence of PBMCs Mtb proliferates over 24 days, reaching the same luminescence as growth

in Middlebrook 7H9 broth (Figure 2A). Proteases implicated in TB pathogenesis are upregulated,

with MMP-1 gene expression increased within spheres 4 days post infection (Figure 2B) and MMP-9

accumulation in media surrounding the spheres peaking at day 7 (Figure 2C). This protease activity

has a functional effect, causing increased degradation of fluorescently labelled collagen within micro-

spheres (Figure 2D). Mtb infection also upregulated gene expression of IFN-g (Figure 2E) and drives

secretion of multiple pro-inflammatory cytokines, including IL-1b, IL-12, GM-CSF, IP-10 and MCP-1

analyzed by Luminex multiplex array (Figure 2F and Figure 2—figure supplement 1), demonstrat-

ing that similar cytokines upregulated in human disease are expressed within the microspheres.

Extracellular matrix integrity regulates the host-pathogen interaction
In patients with TB, the host-pathogen interaction occurs in the context of the collagen-rich lung

extracellular matrix (Elkington et al., 2011), but most laboratory studies occur in the absence of

matrix. The matrix regulates multiple facets of cell biology (Pampaloni et al., 2007), and so to deter-

mine whether incorporation of matrix into the bio-electrospray system was a critical component of

the model, we generated microspheres without collagen or with evenly distributed collagen

(Figure 3A). Incorporation of type I collagen significantly reduced cell death after Mtb infection,

while adherence to elastin increased cell death (Figure 3B). We therefore investigated the pheno-

type in microspheres containing type I collagen further. PBMCs in collagen-containing microspheres

had a significantly greater ability to control Mtb proliferation, with a lower Mtb proliferation from

day seven in the presence of collagen (Figure 3C), further demonstrating that matrix integrity regu-

lates the host-pathogen interaction.

To investigate mechanisms underlying the reduced growth in the presence of collagen, we devel-

oped a multiparameter readout. Apoptosis, which is considered a host protective mechanism, was

increased in collagen-containing spheres compared to spheres with no collagen (Figure 3D). In addi-

tion, the NADP-NADPH ratio was higher in collagen-containing spheres (Figure 3E), demonstrating

divergent cellular energy homeostasis. Secretion of multiple proinflammatory cytokines in micro-

spheres was increased in the presence of collagen, including IL-1b, TNF-a, IFN-g , IL-6, IL-8 and MCP-

1 (Figure 3F–K). Therefore, the host-pathogen interaction is markedly different in the presence of

collagen, with improved control of Mtb growth, greater cell survival and altered energy balance and

cytokine secretion.
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Figure 1. Primary human cells have greater survival in 3-D and aggregate, differentiate and fuse into multinucleate giant cells. (A) Phase contrast

microscopy with overlay of Hoeschst 33256 (blue) at Day seven demonstrates PBMCs forming aggregates within microspheres. Scale 300 mm. (B) Cell

aggregation in Mtb-infected PBMC-collagen-alginate microspheres at Day 7. Scale 50 mm. (C) Cell aggregation is greater in Mtb-infected microspheres

than uninfected microspheres. Cells aggregates were defined as eight or more cells viewed under 20x magnification. Data are representative of a

minimum of 10 fields of view per group. (D) Cells were infected with GFP+ Mtb and then released by decapsulation. At 24 hr after infection, 24.2%

monocytes had phagocytosed GFP-expressing Mtb by flow cytometric analysis. (E) Haematoxylin and eosin staining of paraffin-fixed microspheres

demonstrates cell aggregates in Mtb-infected microspheres at day 14. Scale 20 mm. (F) Host cell survival is significantly greater in 3-D microspheres

than 2-D cell culture as demonstrated by LDH assay. Clear box 2-D cell culture, filled box 3-D culture; an equal number of cells killed with digitonin (30

mg/ml) in the respective 3D and 2D culture was used as denominator. Mean ± SE values (n = 4). (G) Cytotoxicity measured by CytoTox Glo assay is

significantly lower in 3D culture than 2D culture. (H) CD68 expression is increased in macrophages in Mtb-infected microspheres analyzed by flow

cytometry. Black isotype control, blue uninfected cells, red Mtb-infected cells. (I) Multinucleate giant cells form within microspheres at day 14,

immunostained with CD68 (brown) and counterstained with Haematoxylin (blue). Scale 20 mm. (J) In patients with pulmonary TB, similar giant cells are

observed in pulmonary granulomas. A low power image of human pulmonary granuloma (G), with numerous multinucleate giant cells surrounding

caseous centre (box, magnified area). Scale bar: 1000 mm.

DOI: 10.7554/eLife.21283.003 DOI: 10.7554/eLife.21283.003
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The following figure supplements are available for figure 1:

Figure supplement 1. Equipment set-up within containment level three tuberculosis laboratory.

DOI: 10.7554/eLife.21283.004

Figure supplement 2. Microspheres placed in a 12 well tissue culture plate immediately after generation demonstrating non-magnified appearance.

DOI: 10.7554/eLife.21283.005

Figure supplement 3. Medium viscosity guluronate (MVG) alginate is the optimal alginate for immunological studies.

DOI: 10.7554/eLife.21283.006

Figure supplement 4. Viability of PBMCs remains over 90% after decapsulation.

DOI: 10.7554/eLife.21283.007

Figure 1 continued on next page
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Defining the role of individual cytokines
An emerging paradigm within the TB field is that an optimal immune response is necessary, and that

either a deficit or excess of specific mediators may be deleterious from the host’s perspective

(O’Garra et al., 2013). Therefore, we studied the effect of supplementing cytokines on both host

and pathogen in collagen-containing microspheres, investigating IFN-g and IFN-b. Complete

absence of IFN-g leads to disseminated Mtb infection in man and mouse (O’Garra et al., 2013),

while IFN-b is of emerging importance from unbiased analyses but has an undefined mechanism of

action (Cliff et al., 2015). Addition of exogenous IFN-b resulted in a minor but significant suppres-

sion of Mtb growth (Figure 4A), whereas in contrast addition of IFN-g consistently increased growth

(Figure 4B). We investigated mechanisms of this divergence. Both IFN-b and IFN-g reduced cellular

toxicity in Mtb-infected microspheres (Figure 4C and D). However, collagenase activity was

Figure 1 continued

Figure supplement 5. T cell composition of microspheres.

DOI: 10.7554/eLife.21283.008
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Figure 2. Mtb grows within microspheres containing PBMCs and upregulates MMP and cytokine expression. (A) Mtb proliferates slowly in

microspheres with no cells (green line), but progressively in microspheres containing PBMCs (red line), reaching similar luminescence to Middlebrook

7H9 broth culture at 24 days (black line). Blue line, uninfected microspheres. (B) Mtb infection upregulates MMP-1 gene expression and (C) MMP-9

secretion in microspheres. (D) MMP upregulation has a functional effect, causing collagen degradation. DQ Collagen breakdown is higher in Mtb-

infected microspheres (red line) than uninfected (blue line). Triangles, microspheres with no PBMCs. (E) Mtb infection increases cellular IFN-g mRNA

accumulation relative to uninfected cells at day four in microspheres (n = 4). (F) Secretion of cytokines by Mtb-infected microspheres (squares) is

significantly higher than in microspheres containing uninfected PBMCs (circles). ****p<0.0001 by t-test (B and E) and ANOVA (A, C, D, F).
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The following figure supplement is available for figure 2:

Figure supplement 1. Mtb infection upregulates secretion of multiple growth factors, cytokines and chemokines from microspheres measured by

Luminex array.

DOI: 10.7554/eLife.21283.010
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Figure 3. Incorporation of collagen into microspheres limits Mtb growth and increases host cell survival. (A) Microspheres were created without

collagen (i), or incorporating FITC-labelled collagen (ii) to demonstrate distribution. Immediately after bioelectrospraying, collagen is homogenous

throughout the microspheres. (B) Incorporation of Type I collagen into microspheres improves cell survival at 72 hr after Mtb infection, whereas elastin

did not, analyzed by CytoTox-Glo assay. (C) PBMCs control Mtb growth in microspheres containing collagen (squares) better than cells without

Figure 3 continued on next page
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divergently regulated, as IFN-b suppressed MMP-1 mRNA expression while IFN-g increased MMP-1

expression (Figure 4E), suggesting that IFN-b has a matrix-protective role. Mtb infection upregu-

lated IL-1b, TNF-a and MCP-1 secretion, but IFN augmentation did not significantly modulate this

(Figure 4F,G and H). Mtb infection increased IFN-g secretion, and this was further increased by IFN-

b (Figure 4I), demonstrating complex cross-talk between these two cytokines.

Investigating host-directed therapy
Host-directed therapy is an emerging paradigm to improve outcome in TB infection (Hawn et al.,

2015). However, the host immune response to Mtb has both beneficial and harmful effects, and so

such therapy may inadvertently drive immunopathology whilst limiting mycobacterial proliferation

(Elkington and Friedland, 2015). Modulation of the cyclooxygenase pathway has been proposed as

a key target to limit Mtb growth (Mayer-Barber et al., 2014). Augmentation with exogenous PGE2
suppressed Mtb growth in a dose-dependent manner (Figure 5A), consistent with findings in the

mouse model of Mtb (Mayer-Barber et al., 2014). The reduced Mtb luminescence correlated with

colony counts when microspheres were lysed and plated on Middlebrook 7H11 agar at day 22

(Figure 5B). However, this improved control of bacterial growth was not without potential harmful

effects. Secretion of proinflammatory IL-6 and IL-8, a potent neutrophil chemoattractant, was

increased by PGE2 (Figure 5C and D). Conversely, secretion of IFN-g was suppressed by high dose

PGE2 (Figure 5E). In addition, PGE2 increased cell toxicity (Figure 5F) and suppressed total cell via-

bility (Figure 5G). PGE2 reduced caspase 3/7 activity, indicating suppression of apoptosis

(Figure 5H). Therefore, the multiparameter readout has potential to predict protective and harmful

effects of host-directed therapy.

Immunoaugmentation with Mtb-specific T cell lines
The T cell response is critical to host control of Mtb but also drives pathology (Kaufmann and

Dorhoi, 2013), and so a critical question is which facets of the adaptive immune response are pro-

tective versus those that are immunopathogenic (Jasenosky et al., 2015). We used the tractability

of the bio-electrospray model to study T cell augmentation by supplementing PBMCs with autolo-

gous antigen specific T cell lines that had been proliferated ex vivo (Figure 6—figure supplement

1). Four days after bio-electrospraying, multicellular aggregates began to form containing PBMCs,

Mtb and augmented T cells (Figure 6A). ESAT-6 or CFP-10 specific T cell lines, which respond to

antigens secreted via the pathogenicity RD1 locus, proliferated in the Mtb infected microspheres

but not uninfected spheres (Figure 6B), which was statistically significant from day seven on quanti-

tation (Figure 6C). Surprisingly, immunoaugmentation with either ESAT-6 or CFP-10 T cell lines led

to increased Mtb growth within microspheres compared to infected PBMCs alone (Figure 6D). Aug-

mentation with an autologous innate iNKT cell line has no effect on Mtb growth (Figure 6E), demon-

strating that this was not a generic response to T cell supplementation within the microspheres.

Immunoaugmentation with ESAT-6 and CFP-10 lines significantly increased secretion of multiple

cytokines, including TNF-a and IL-1b into the media around microspheres (Figure 6F and G and Fig-

ure 6—figure supplement 2). In contrast, augmentation did not significantly affect cell toxicity

within infected microspheres (Figure 6H).

Discussion
Novel approaches to the global TB pandemic are urgently required. Mtb is an obligate human path-

ogen characterised by a prolonged interaction with the host (Russell, 2011; Cambier et al., 2014),

a spatially organised immune response (Marakalala et al., 2016; Mattila et al., 2013; Egen et al.,

Figure 3 continued

collagen (circles). Open squares, uninfected PBMCs. (D) The level of apoptosis and NADP+/NADPH ratio (E) are higher in microspheres containing

collagen at day 7. Collagen incorporation caused increased secretion of IL-1b (F), TNF-a (G), IFN-g (H), IL-6 (I), MCP-1 (J) and IL-8 (K) at day 7. Each

experiment was performed a minimum of 2 times and charts represent mean values + SEM of a representative experiment performed in triplicate.

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

DOI: 10.7554/eLife.21283.011 DOI: 10.7554/eLife.21283.011

DOI: 10.7554/eLife.21283.011
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2008) and extensive extracellular matrix turnover (Elkington et al., 2011). Therefore, extended

studies of human cells adherent to extracellular matrix in 3-D are likely to be essential to fully under-

stand the host-pathogen interaction. We developed a model of human TB utilising bio-electrospray

technology that replicates key features of clinical disease and optimised a multiplex readout to

investigate both host and pathogen responses. We demonstrated that the extracellular matrix regu-

lates the host immune response, consistent with reports of the ECM regulating inflammation
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IFN-g reduce toxicity in Mtb-infected PBMCs, analyzed by CytoTox-Glo assay. (E) IFNs divergently regulate MMP-1, with IFN-b suppressing gene

expression in infected microspheres while IFN-g increases MMP-1 expression. (F–H). Mtb upregulates cytokine secretion but this is not modulated by

IFNs. IFN-b drives TNF-a and MCP-1 as a single stimulus (E and G), but has no significant synergistic effect with Mtb. (I) Mtb upregulates IFN-g

secretion, and this is further increased by the addition of IFN-b. Mean + SEM of a representative experiment performed in triplicate is shown, and are

representative of a minimum of 2 experiments done in triplicate. *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001.

DOI: 10.7554/eLife.21283.012 DOI: 10.7554/eLife.21283.012

DOI: 10.7554/eLife.21283.012

Tezera et al. eLife 2017;6:e21283. DOI: 10.7554/eLife.21283 8 of 19

Tools and resources Immunology Microbiology and Infectious Disease

10.7554/eLife.21283.012
http://doi.org/10.7554/eLife.21283.012
10.7554/eLife.21283.012
10.7554/eLife.21283


(Sorokin, 2010), and found that collagen favours host control of Mtb. We then used the model to

investigate novel therapeutic approaches. The system permitted prolonged culture of primary

human cells, and we found that significant differences between experimental conditions often only

emerged after more than 7 days, which would not have been observed in 2D culture systems where

3–4 days is the standard experimental duration. Our findings are consistent with other infections,

where the cellular adaptions to their context determines outcome (Snijder et al., 2009). This cell cul-

ture platform is highly flexible for both matrix and cellular composition within spheres and therefore

has wide potential applicability within the biomedical field.

Our bioengineering approach differs significantly from traditional model systems to investigate

TB, which predominantly rely on culture of human cells in 2D culture systems without extracellular

matrix, infection of the zebrafish larvae with M. marinum or infection of mice with Mtb (Young, 2009;

Guirado and Schlesinger, 2013; Vogt and Nathan, 2011). The mouse model of TB has many

advantages and key findings in the mouse have been replicated in man, such as critical roles for CD4

+ T cells, TNF-a and IFN-g (Flynn and Chan, 2001), but pathology in the mouse differs from human

TB (Young, 2009) and humanised mice are required to generate caseating lesions (Calderon et al.,

2013; Heuts et al., 2013). Other advanced human cellular models of TB have been developed. For

example, Altare’s group has studied a prolonged model of PBMC culture with Mtb and demon-

strated cell aggregate formation (Puissegur et al., 2004; Lay et al., 2007), but this model lacks

extracellular matrix. A collagen matrix-containing model has been developed by Kapoor, showing

aggregation and TB dormancy (Kapoor et al., 2013), but lacks the high throughput potential of the

bioelectrospray system and rapid cellular recovery for multiparameter readouts. Generation of a

complete human granuloma structure will require stromal cells such as fibroblasts, which are present

in the periphery of TB granulomas (O’Kane et al., 2010). A key next step will be to compare

patients with latent TB with active TB, and those with and without HIV-co-infection, to determine

whether the model can differentiate protective immunity to Mtb directly ex vivo.
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PGE2 suppresses Mtb growth in microspheres in a dose-dependent manner. Mtb-infected PBMCs (black line), 0.2 mg/ml PGE2 (green line), 2 mg/ml

PGE2 (red line), 20 mg/ml PGE2 (blue line). (B) Colony counts of microspheres decapsulated at day 24 and then plated on Middlebrook 7H11 agar

correlate with luminescence. (C, D and E) PGE2 increases secretion of IL-6 and IL-8, but significantly decreases IFN-g secretion, from Mtb-infected

microspheres. (F) Cellular toxicity is increased in PGE2 treated microspheres at day 3, analyzed by LDH release, and (G) total cell viability was reduced

at day 7, analyzed by CytoTox-Glo assay. (H) PGE2 reduces caspase 3/7 activity at day 7. *p<0.05, **p<0.01, ***p<0.001.
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Figure 6. Immunoaugmentation with Mtb-specific T cells increases Mtb growth. (A) Microspheres imaged after 4 days show early granuloma formation.

(i) PBMCs labelled with CellTrace CFSE (green), (ii) Mtb expressing mCherry (red), (iii) autologous ESAT-6 specific T cells labelled with CellTracker Blue,

(iv) Merged image shows granulomas containing Mtb, PBMCs and augmented T cells (yellow). (B) Cellular proliferation is increased in infected

microspheres with immunoaugmented autologous T cells, analysed by CFSE staining. Day 1, black line; Day 7, red line; (i) Uninfected, (ii) Mtb-infected.

(C) Quantitative analysis of the proliferative capacity of ESAT-6 augumented PBMCs at Day one and Day 7. The bars show percentage of proliferating

CD4 cells after gating on CD3+CD4+ lymphocytes. Differences between Day 1 and 7 were assessed for three experiments by t-test. (D) Addition of

either ESAT-6 responsive T cells (red) or CFP-10 responsive T cells (blue) increases Mtb growth compared to infected PBMCs without supplemented T

cells (black). Open symbols, uninfected microspheres. (E) Supplementation with an iNKT autologous T cell line (blue triangle) did not significantly affect

Mtb growth compared to infected PBMCs alone (black square). (F, G) Secretion of TNF-a and IL-1b is increased in immunoaugmented microspheres at

day 7. (H) Immunoaugmentation did not significantly modulate cell toxicity in infected microspheres at day three analysed by LDH release.
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The following figure supplements are available for figure 6:

Figure supplement 1. Confirmation of specificity of in vitro expanded T cells.

DOI: 10.7554/eLife.21283.015

Figure supplement 2. Augmentation of PBMCs with ESAT-6/CFP-10 specific T cell lines in microspheres causes differential secretion of cytokines after

Mtb infection compared to PBMCs alone.

DOI: 10.7554/eLife.21283.016
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Many of our findings are consistent with conclusions drawn from these systems. For example, a

significant role for IFN-b in the host immune response to TB is emerging from genomic studies,

though it remains controversial as to whether this is protective or harmful (Cliff et al., 2015). Our

data suggest a predominantly protective effect, and emerging data support this conclusion (Mor-

eira-Teixeira et al., 2016). Similarly, we confirmed that augmentation of PGE2 improves host control

of mycobacterial proliferation, consistent with findings in the mouse (Mayer-Barber et al., 2014).

Finally, T cells responsive to specific Mtb antigens proliferated in infected microspheres and

secreted cytokines known to be important in the host immune response to Mtb (O’Garra et al.,

2013).

However, while some results were as expected, several findings in the 3-D system may not be

predicted from current disease paradigms. For example, IFN-g in high concentrations increases the

growth of TB, whereas murine experiments predict improved control. Consistent with our findings,

several previous studies have shown that IFN-g increases Mtb growth in primary human cells

(Vogt and Nathan, 2011; Douvas et al., 1985; Rook et al., 1986; Crowle and Elkins, 1990). The

evidence for a beneficial role of IFN-g in humans is principally supported by individuals where there

is a complete absence of signalling through the IL-12/IFN pathway (Karp et al., 2015), and this pro-

tective effect has clearly been shown in the mouse through both knock-out and vaccination studies

(Flynn and Chan, 2001; Aagaard et al., 2011). However, cohort studies have shown that a high

PPD response, or high IFN-g response to ESAT-6 or CFP-10, associates with the subsequent devel-

opment of TB (Comstock et al., 1974; Higuchi et al., 2008; del Corral et al., 2009), suggesting

that an excessive IFN-g response may be deleterious. We attempted to determine if there was a tip-

ping point of IFN-g concentration by adding IFN-g neutralising antibodies to the microsphere matrix,

and although we were able to demonstrate increased growth with IFN-g neutralisation, we found a

similar effect with isotype control antibodies, so it was impossible to determine if this was a specific

effect. Our longitudinal observations of Mtb growth in a non-destructive manner using luminescent

mycobacteria support the emerging concept that a balanced immune response is essential, and

either a deficit or excess of a specific mediator may favour the pathogen (O’Garra et al., 2013;

Gideon et al., 2015). Combining the model with CRISPR/Cas9 gene editing will permit further inter-

rogation of each cytokine component of the immune response.

PGE2 augmentation has been proposed as a novel host-directed therapy to improve outcome in

TB, and we demonstrate reduced Mtb growth. However, the multiparamter analysis in our human

system showed that PGE2 increases secretion of IL-8, which is likely to drive migration of neutrophils,

and PGE2 also reduced host cell viability. Neutrophil recruitment has been described to have a dele-

terious effect on host control of infection (Kimmey et al., 2015; Nouailles et al., 2014) and there-

fore there is potential that this may favour Mtb, driving increased pathology, lung destruction and

transmission. The peak PGE2 concentration that we studied is similar to that reported in human tis-

sue (Reikerås et al., 2009). We also found that immunoaugmentation with ESAT-6 or CFP-10

responsive T cell lines led to increased growth of Mtb. Pathogenic mycobacteria express the RD1

locus but the precise mechanism linking RD1 to pathology is not fully understood (Majlessi et al.,

2015). Our findings are consistent with the recent observations that T cell epitopes are hypercon-

served in pathogenic mycobacteria (Comas et al., 2010; Coscolla et al., 2015;

Lindestam Arlehamn et al., 2015), indicating an evolutionary advantage to the pathogen of specifi-

cally stimulating components of the host immune response to facilitate transmission (Orme et al.,

2015). However, an alternative explanation is that the in vitro expansion conditions generated a T

cell phenotype that was permissive to Mtb growth, skewing an initially protective phenotype to a

deleterious one, and so further confirmation across different T cell lines is required. Augmented

iNKT cells did not increase Mtb growth after ex vivo expansion. The key conclusion of these experi-

ments is that the immunoaugmentation model has potential to dissect protective versus pathological

host immune responses.

The recent negative outcomes from both vaccine trials (Tameris et al., 2013; Ndiaye et al.,

2015) and treatment-shortening regimes (Warner and Mizrahi, 2014) illustrate that observations in

current model systems may not reliably translate to human disease and highlight the need for more

nuanced approaches that reflect human TB infection. Our data suggest that simply driving an

increased immune response to Mtb will not improve control of mycobacterial growth. Augmenting

PGE2 release by modulating the leukotriene pathway may reduce mycobacterial proliferation but

may come at a cost of increased pathology. Vaccination using ESAT-6 as an antigen, which has
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entered human trials (Luabeya et al., 2015), may actually favour Mtb growth under certain circum-

stances, demonstrating the fine balance between the host immune response and control of patho-

gen growth. Critically, our data from the bioengineered model are consistent with clinical

phenomena observed in human TB. For example, an excessive immune response in patients is asso-

ciated with greater pulmonary pathology (Kaufmann and Dorhoi, 2013; Comstock et al., 1974;

Philips and Ernst, 2012; Nunes-Alves et al., 2014). Similarly, our immunoaugmentation studies con-

cur with the expression of ESAT-6 and CFP-10 by pathogenic mycobacteria, implying a critical role

in causing disease (Brites and Gagneux, 2015). The model can be used to investigate approaches

currently in development, such as vaccines based on targeting CD1-restricted T cells (Van Rhijn

et al., 2015) and emerging host-directed therapies (Hawn et al., 2013; Zumla et al., 2015), to

determine whether they confer greater protection without likely harmful effects.

The bio-electrospray cell culture model has broad potential, addressing the technical complexity

of performing 3-D primary cell culture within diverse extracellular matrices. The system can readily

be applied to study diverse infectious and inflammatory diseases, or cancer immunotherapy, and can

be developed for high-throughput applications by combining the microsphere system with microflui-

dics. Integration with CRISPR/Cas9 gene editing will permit genetic manipulation of both host and

pathogen (Chakraborty et al., 2014). The multiparameter readouts define the translational potential

of novel interventions over time with longitudinal data acquisition, identifying both beneficial and

deleterious effects. Therefore, this system developed to dissect the host-pathogen interaction in

human TB can be applied to identify novel therapeutic approaches to multiple human diseases.

Materials and methods

Ethical approval
For analysis of blood from healthy donors and healthy TB exposed individuals, this work was

approved by the National Research Ethics Service committee South Central - Southampton A, study

title ‘An investigation into the immune response to tuberculosis infection and development of novel

diagnostic markers’, reference 13/SC/0043. All donors gave written informed consent. For histologi-

cal analysis, samples used in this study were sourced from the Southampton Research Biorepository,

University Hospital Southampton NHS Foundation Trust and University of Southampton, Mailpoint

218, Tremona Road, Southampton, SO16 6YD. Lung biopsy tissue was taken as part of routine clini-

cal care and tissue blocks excess to diagnostic testing were analyzed in this study. The project was

approved by the Institutional Review Board (Reference 12/NW/0794 SRB04_14). The ethics commit-

tee approved the analysis of this tissue without individual informed consent since it was surplus

archived tissue taken as part of routine care.

PBMC cell isolation from human blood
PBMCs were isolated from single donor leukocyte cones (National Health Service Blood and Transfu-

sion, Southampton, UK) or fresh blood from volunteers by density gradient centrifugation over

Ficoll-Paque (GE Healthcare Life Sciences). These healthy donors were all recruited from a region of

very low TB incidence. For immunoaugmentation experiments requiring Mycobacterium tuberculo-

sis-responsive T cells, cells from donors with a documented tuberculosis exposure were studied. All

experiments were performed with primary human cells; no immortalised cell lines were used in the

study.

M. tuberculosis culture
M. tuberculosis H37Rv (Mtb) was cultured in Middlebrook 7 H9 medium (supplemented with 10%

ADC, 0.2% glycerol and 0.02% Tween 80) (BD Biosciences, Oxford) and bioluminescent M. tubercu-

losis H37Rv (Andreu et al., 2010), GFP or mCherry expressing M. tuberculosis H37Rv (Carroll et al.,

2010) were cultured with kanamycin 25 mg/ml and hygromycin 50 mg/ml, respectively. Biolumines-

cent Mtb H37Rv was used for all experiments apart from confocal imaging. Cultures at 1 � 108 CFU/

ml Mtb (OD = 0.6) was used for all experiments at multiplicity of infection (M.O.I) of 0.1. For colony

counting, Mtb was released from microspheres by EDTA/sodium citrate dissolution, cells and extra-

cellular bacteria were pelleted by centrifugation at 3000 g, lysed with 1% saponin and then plated

on Middlebrook 7H11 agar. Colonies were counted at three weeks.
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Cell encapsulation
Microspheres were generated with an electrostatic generator (Nisco, Zurich, Switzerland) as

described previously (Workman et al., 2014). To visualise microsphere formation, a Phantom v7

high-speed camera, capable of capturing 150000 fps in conjunction with a long-distance microscope

lens, was triggered simultaneously with a fibre optic lighting system to capture the jetting process.

For cellular encapsulation, PBMCs were infected with Mtb overnight in a T75 flask. Cells were then

detached, washed and pelleted by centrifugation at 320 g and mixed with 1.5% sterile alginate (Pro-

nova UP MVG alginate, Nova Matrix, Norway) or alginate with human collagen, fibronectin (both

from Advanced BioMatrix) or human elastin (Sigma Aldrich, Gillingham, UK) at a final concentration

of 5 � 106 cells/ml. The standard matrix used in experiments was alginate-human collagen unless

stated otherwise. All reagents were confirmed endotoxin free.

The cell-alginate suspension was drawn up into a sterile syringe and injected into the bead gener-

ator at 10 mL/hour via a Harvard syringe driver through a 0.7 mm external diameter nozzle. Micro-

spheres of 600 mm diameter formed in an ionotropic gelling bath of 100 mM CaCl2 in HBSS placed

below the electrostatic ring that accelerated the microspheres from the needle head. After washing

twice with HBSS with Ca/Mg, microspheres were transferred in RPMI 1640 medium containing 10%

of human AB serum and incubated at 37˚C, 21% O2 and 5% CO2. No media changes were per-

formed, and the supernatant was harvested at defined time points for analysis. Mtb growth within

microspheres was monitored longitudinally by luminescence (GloMax 20/20 Luminometer,

Promega).

Immunofluorescence and confocal imaging
In specific imaging experiments, PBMCs were pre- labelled with CellTracker Blue, CellTrace CFSE or

Hoechst 33342 (ThermoFisher Scientific, UK) according to the manufacturer recommendation. Micro-

spheres were fixed in 4% paraformaldehyde and washed in HBSS with Ca/Mg. Confocal images

were acquired on a Leica TCS SP5 Confocal microscope and processed using Image J 1.5 0d (NIH,

USA).

Histological staining and immunohistochemistry
On day 7 and 14 of incubation, microspheres were fixed with 4% paraformaldehyde overnight and

paraffin-embedded using the Shandon Cytoblock system (ThermoFisher Scientific, UK). Blocks were

sectioned and stained by haematoxylin and eosin. For CD68 immunohistochemistry (Dako, Clone

PG-M1), 0.5 mm sections were stained. Analysis of human lung tissue taken as part of routine clinical

care was approved by the Institutional Review Board (Reference 12/NW/0794 SRB04_14). Sections

were dewaxed, blocked (Envision FLEX), stained with Anti-Human CD68 (Dako, Clone PG-M1),

detected with HRP and counterstained with Haematoxylin.

Flow cytometric analysis
Cells were extracted by dissolving the microspheres in 55 mM Sodium Citrate and 10 mM EDTA in

PBS for 10 min at 37˚C. Cells were then suspended in PBS. Surface and intracellular staining was

done in a three-colour analysis with combinations of fluorescein isothiocyanate (FITC), phycoerythrin

(PE) and allophycocyanin (APC). Antibodies used included anti-CD3, anti-CD4, anti-CD8, anti-CD14

and anti-CD68 (ImmunoTools, Germany). For T–cell proliferation, PBMCs were stained with Cell-

Trace CFSE Cell Proliferation Kit for flow cytometry (ThermoFisher Scientific, UK) before infection

with Mtb. Fluorescence was then analyzed by flow cytometry (BD Accuri C6 flow cytometer).

MMP-1 and IFN-g gene expression
Microspheres were decapsulated using 55 mM of sodium citrate solution and cells were lysed imme-

diately using TRIzol Reagent (Life Technologies, Paisley, UK). 1 mg RNA was reverse transcribed

using High Capacity cDNA Reverse Transcription kit (Life Technologies Ltd, Paisley, UK). Taqman

Universal master mix and primers specific for GAPDH, b-Actin, MMP1, and IFN-g gene were used for

qPCR following manufacturer’s instruction (Applied Biosystems, USA) and comparative threshold

(CT) method was employed to analyse all qPCR data.
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Luminex analysis
Samples were sterilized by filtration through a 0.22 mM Durapore membrane (Millipore)

(Elkington et al., 2006). Concentrations of cytokines (Life Technologies, UK) and MMPs (R and D

Systems, UK) were determined using a Bioplex 200 platform (Bio-Rad, UK) according to the manu-

facturer’s protocol.

DQ collagen degradation assay
For analysis of extracellular matrix degradation, microspheres were generated from a solution of 3%

Alginate (Pronova UP MVG alginate, Nova Matrix, Norway), 1 mg/ml of human collagen type I

(Advanced BioMatrix, San Diego, California) and 100 mg/ml of DQ collagen (Invitrogen, Paisley, UK).

Microspheres were then placed in macrophage serum free medium (Life Technologies) and incu-

bated at 37˚C. Fluorescence was read on a GloMax Discover (Promega) at an absorption maxima of

495 nm and fluorescence emission maxima of 515 nm.

Cell viability assay
Microspheres were incubated in 96-well plates at 37˚C. Cell viability was analyzed using the Cell-

Titer-Glo 3D Cell Viability Assay (Promega) according to the manufacturer’s instructions, analyzing

viable cells based on ATP quantitation. Luminescence was analyzed by the GloMax Discover plate

reader (Promega).

Cell toxicity assays
CytoTox-Glo Cytotoxicity Assay (Promega) measured cellular necrosis in microspheres. The kit meas-

ures dead-cell protease activity released from cells without membrane integrity using a luminogenic

peptide substrate, the AAF-Glo Substrate. Luminescence was analyzed by GloMax Discover (Prom-

ega). Total cell death was caused by digitonin on equal cell numbers to provide the denominator. As

a second measurement of toxicity, lactate dehydrogenase (LDH) release, was analyzed by a colori-

metric activity assay (Roche, Burgess Hill, United Kingdom). Comparison of 2D cell culture and 3D

cell culture viability was performed by plating equal numbers of cells in wells of a 96 well plate, and

then measuring toxicity by LDH and CytoTox-Glo. Total toxicity was normalised to digitonin treated

wells plated in parallel.

Cell apoptosis
Microspheres were incubated in 96-well plates. Caspase-3/7 protease activities were measured as

indicators of apoptosis using Apo-ONE Homogeneous Caspase-3/7 Assay (Promega) or Caspase-

Glo 3/7 Assay Systems (Promega) according to the manufacturer’s instructions.

NADP/NADPH ratio
The biolumiesent NADP/NADPH kit (Promega) was used according to the manufacturer’s

instructions.

Cytokine and PG supplementation
Microspheres were incubated in RPMI 1640 with 10% AB serum with IFN-b, IFN-g (eBioscience) or

PGE2 (R and D Systems) at 37˚C.

Immunoaugmentation with autologous T cells
To generate expanded specific T cell lines, ESAT-6 or CFP-10 specific cells were derived from

PBMCs from Mtb-exposed individuals (Wölfl and Greenberg, 2014). Monocytes were isolated from

PBMCs using magnetic cell separation (Miltenyi Biotec, UK) and partially differentiated into mono-

cyte derived dendritic cells (moDCs) for 3 days using complete media supplemented with GM-CSF

(20 ng/ml) and IL-4 (25 ng/ml). moDCs were then loaded with peptide antigen pools derived from

ESAT-6 or CFP-10 proteins in the presence of IFN-g and LPS. moDCs were then exposed to CD14- T

cell fractions in a 1:2 ratio for 7 days, after which IL-2 (400IU/ml, Proleukin, Chiron), IL-15 (2 ng/ml)

and IL-7 (2 ng/ml, Immunotools) were added. T-cell specificity was confirmed by IFN-g secretion

upon exposure of T-cells to autologous moDCs loaded with CFP-10 or ESAT-6. Human iNK T cells

were derived from PBMCs according to the method previously described (Mansour et al., 2015).
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Briefly, iNK T cell lines were generated by incubating PBMCs with 200 ng/ml KRN7000 (AXXORA)

for 7 days before the addition of IL-2, IL-7 and IL-15. After two weeks culture, iNK T cell expansion

was confirmed via CD3, Va24 and CD1d-K7 tetramer staining. Cells were acquired using FACSAria

(Becton Dickinson, UK). ESAT-6, CFP-10 specific T cell lines or iNK T cells were counted and then

PBMCs were supplemented with 20% additional immunoaugmented cells immediately prior to Mtb

infection. After overnight incubation, the combined cells were bioelectrosprayed by our standard

protocol.

Statistical analysis
All experiments were performed a minimum of 2 occasions from separate donors as biological repli-

cates and on each occasion with a minimum of 3 technical replicates. Data presented are from a rep-

resentative donor and include the mean and SEM. Analysis was performed in Graphpad Prism v6.0.

Students t-test was used to compare pairs and ANOVA for groups of 3 or more.
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