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Abstract Cell biology differs between traditional cell culture and 3-dimensional (3-D) systems,
and is modulated by the extracellular matrix. Experimentation in 3-D presents challenges, especially
with virulent pathogens. Mycobacterium tuberculosis (Mtb) kills more humans than any other
infection and is characterised by a spatially organised immune response and extracellular matrix
remodelling. We developed a 3-D system incorporating virulent mycobacteria, primary human
blood mononuclear cells and collagen-alginate matrix to dissect the host-pathogen interaction.
Infection in 3-D led to greater cellular survival and permitted longitudinal analysis over 21 days. Key
features of human tuberculosis develop, and extracellular matrix integrity favours the host over the
pathogen. We optimised multiparameter readouts to study emerging therapeutic interventions:
cytokine supplementation, host-directed therapy and immunoaugmentation. Each intervention
modulates the host-pathogen interaction, but has both beneficial and harmful effects. This
methodology has wide applicability to investigate infectious, inflammatory and neoplastic diseases
and develop novel drug regimes and vaccination approaches.

DOI: 10.7554/eLife.21283.001

DOI: 10.7554/eLife.21283.001

Introduction

An emerging paradigm in biology is that events in traditional 2-dimensional cell culture often differ
from those in 3-dimensional (3-D) culture (Benam et al., 2015; Pampaloni et al., 2007). Further-
more, the extracellular matrix regulates cell biology (Yamada and Cukierman, 2007; Schwartz and
Chen, 2013; Parker et al., 2014) and infection biology differs between 2-D and 3-D systems
(Cheng et al., 2011; Barrila et al., 2010). Human disease occurs in 3-D and in the context of extra-
cellular matrix. Consequently, conclusions drawn from 2-dimensional cell culture systems may not
fully reflect events in vivo (Yamada and Cukierman, 2007). This presents a challenge to progress
from standard culture systems, where cells are grown in 2-D on plastic, to more advanced systems
that more faithfully replicate events in man (Yamada and Cukierman, 2007). These technical
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difficulties are particularly marked in studying infectious diseases, where experiments must have
additional levels of containment to prevent the release of pathogens (Barrila et al., 2010).

Mycobacterium tuberculosis (Mtb) is a pathogen of global significance that continues to kill 1.5
million people per year (O’Garra et al., 2013; Horsburgh et al., 2015). Unfortunately, despite major
investment in research, recent clinical trials and vaccine studies to reduce the global burden of
tuberculosis (TB) have been unsuccessful (Tameris et al., 2013; Ndiaye et al., 2015; Warner and
Mizrahi, 2014), indicating that the model systems that informed these studies require further refine-
ment. In TB, the host-pathogen interaction is highly complex, with the immune response concur-
rently necessary for containment of infection but paradoxically also driving immunopathology that
leads to lung destruction and transmission (Russell, 2011; Elkington and Friedland, 2015). The
mouse is the principal model system to study TB, but inflammatory conditions in the mouse differ
from man (Seok et al., 2013), and lung pathology is different in murine Mtb infection (Young, 2009).
Mtb is an obligate human pathogen and has a very prolonged interaction with host cells, surviving
within professional phagocytes (Russell, 2011). Therefore, long term human culture experiments are
required to investigate pathogenesis. A specific advantage of 3-D cell culture incorporating extracel-
lular matrix is that cellular survival is greatly prolonged (Buchheit et al., 2012; Mueller-
Klieser, 1997). Furthermore, inflammatory signalling in TB granulomas is spatially organised
(Marakalala et al., 2016), with specific microenvironments (Mattila et al., 2013), and the extracellu-
lar matrix regulates cell survival in TB (Al Shammari et al., 2015), indicating that an optimal system
to study human disease will need to be 3-D with extracellular matrix.

We hypothesised that to fully understand the host-pathogen interaction in TB, a 3-D cell culture
system that incorporates primary human cells, extracellular matrix, fully virulent Mtb, and multipa-
rameter longitudinal readouts is required. Whilst human cellular models of human granuloma forma-
tion have been developed, none have all these characteristics (Puissegur et al., 2004; Lay et al.,
2007; Kapoor et al., 2013; Parasa et al., 2014). We addressed the technical challenges of perform-
ing these experiments at biosafety containment level three by adopting a bioengineering approach
(Workman et al., 2014). We developed a model system that permits interrogation of the host-path-
ogen interaction in 3-D in the context of extracellular matrix. We demonstrate that cardinal features
of human disease develop and that the host immune response is significantly different when cells are
adherent to collagen, favouring the host relative to the pathogen. We investigate emerging thera-
peutic approaches in the system, and demonstrate that each intervention has both beneficial and
likely harmful effects. The model permits the concurrent analysis of multiple outcomes and therefore
can be used to develop optimal approaches to address the TB pandemic, and can be applied to
diverse infectious, inflammatory and neoplastic
diseases.

Results

Key features of human
tuberculosis develop in the bio-
electrospray model

To address the challenges of studying infection
of primary human cells with a virulent pathogen
within a 3-D extracellular matrix, we optimised
the bio-electrospray parameters for stable
microsphere generation. PBMCs were isolated
from healthy donors, counted and then infected
with Mtb that had been cultured in Middlebrook
7H9 broth at a multiplicity of infection of 0.1.
After overnight infection, cells were detached,
resuspended, and pelleted by centrifugation,

Video 1. Generation of microspheres. During the bio-
electrospray process, a Phantom v7 high-speed
camera, capable of capturing 150000 fps in conjunction
with a long-distance microscope lens, was triggered

simultaneously with a fibre optic lighting system. and then re-suspended in alginate or alginate-
Relative video speed 0.15s.  DOI: 10.7554/eLife. collagen matrix before bioelectrospraying into
21283.002 microspheres using a Nisco Cell Encapsulator
DOI: 10.7554/eLife.21283.002 (Video 1, Figure 1—figure supplement 1 and
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2). Characterisation of different alginates indicated that ultrapure medium viscosity guluronate
(MVG)-dominant alginate had optimal biophysical properties for electrospraying and minimal immu-
nogenicity (Figure 1—figure supplement 3).

Immediately after generation, cells are evenly distributed within microspheres and by day seven
cellular aggregates start to form (Figure 1A and B). Quantitation demonstrated significantly more
aggregates in infected microspheres than unifected microspheres (Figure 1C). One day after infec-
tion, a quarter of monocytes had phagocytosed Mtb, analyzed by flow cytometric analysis of cells
infected with GFP-expressing Mtb (Figure 1D). After 14 days of incubation, large cellular aggregates
are observed (Figure 1E). Survival of Mtb-infected cells in 3-D collagen-alginate microspheres was
much greater than in 2-D culture, as analyzed by LDH release (Figure 1F) and cellular cytotoxicity
assays (Figure 1G). An advantage of the model is that cells can be released from the microsphere
by decapsulation by divalent cation chelation with EDTA and sodium citrate in HBSS for 10 min,
which causes dissolution of the spheres and releases cells for downstream assays. Decapsulation did
not significantly affect cell viability, with over 90% cell viability after decapsulation (Figure 1—figure
supplement 4). Monocytes mature into macrophages in infected microspheres, with greater expres-
sion of CD68 (Figure 1H). Within the aggregates, multinucleate giant cells typical of human TB
develop, stained for CD68 by immunohistochemistry (Figure 1I). These multinucleate giant cells are
similar to those that occur in human patients with pulmonary TB (Figure 1J). T cell differentiation
occurs within microspheres, with a progressive increase in the proportion of CD4+ T cells, while the
percentage of CD8+ T cells declines (Figure 1—figure supplement 5). T cell proliferation does not
differ between Mtb-infected and uninfected microspheres.

Next, we measured Mtb growth within microspheres longitudinally by infecting cells with lumines-
cent Mtb expressing the Lux operon, which is genetically modified to constantly luminesce
(Andreu et al., 2010). Mtb in microspheres without human cells grows relatively slowly, whereas in
the presence of PBMCs Mtb proliferates over 24 days, reaching the same luminescence as growth
in Middlebrook 7H9 broth (Figure 2A). Proteases implicated in TB pathogenesis are upregulated,
with MMP-1 gene expression increased within spheres 4 days post infection (Figure 2B) and MMP-9
accumulation in media surrounding the spheres peaking at day 7 (Figure 2C). This protease activity
has a functional effect, causing increased degradation of fluorescently labelled collagen within micro-
spheres (Figure 2D). Mtb infection also upregulated gene expression of IFN-y (Figure 2E) and drives
secretion of multiple pro-inflammatory cytokines, including IL-1B, IL-12, GM-CSF, IP-10 and MCP-1
analyzed by Luminex multiplex array (Figure 2F and Figure 2—figure supplement 1), demonstrat-
ing that similar cytokines upregulated in human disease are expressed within the microspheres.

Extracellular matrix integrity regulates the host-pathogen interaction

In patients with TB, the host-pathogen interaction occurs in the context of the collagen-rich lung
extracellular matrix (Elkington et al., 2011), but most laboratory studies occur in the absence of
matrix. The matrix regulates multiple facets of cell biology (Pampaloni et al., 2007), and so to deter-
mine whether incorporation of matrix into the bio-electrospray system was a critical component of
the model, we generated microspheres without collagen or with evenly distributed collagen
(Figure 3A). Incorporation of type | collagen significantly reduced cell death after Mtb infection,
while adherence to elastin increased cell death (Figure 3B). We therefore investigated the pheno-
type in microspheres containing type | collagen further. PBMCs in collagen-containing microspheres
had a significantly greater ability to control Mtb proliferation, with a lower Mtb proliferation from
day seven in the presence of collagen (Figure 3C), further demonstrating that matrix integrity regu-
lates the host-pathogen interaction.

To investigate mechanisms underlying the reduced growth in the presence of collagen, we devel-
oped a multiparameter readout. Apoptosis, which is considered a host protective mechanism, was
increased in collagen-containing spheres compared to spheres with no collagen (Figure 3D). In addi-
tion, the NADP-NADPH ratio was higher in collagen-containing spheres (Figure 3E), demonstrating
divergent cellular energy homeostasis. Secretion of multiple proinflammatory cytokines in micro-
spheres was increased in the presence of collagen, including IL-1B3, TNF-o,, IFN-y, IL-6, IL-8 and MCP-
1 (Figure 3F-K). Therefore, the host-pathogen interaction is markedly different in the presence of
collagen, with improved control of Mtb growth, greater cell survival and altered energy balance and
cytokine secretion.
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Figure 1. Primary human cells have greater survival in 3-D and aggregate, differentiate and fuse into multinucleate giant cells. (A) Phase contrast
microscopy with overlay of Hoeschst 33256 (blue) at Day seven demonstrates PBMCs forming aggregates within microspheres. Scale 300 um. (B) Cell
aggregation in Mtb-infected PBMC-collagen-alginate microspheres at Day 7. Scale 50 pm. (C) Cell aggregation is greater in Mtb-infected microspheres
than uninfected microspheres. Cells aggregates were defined as eight or more cells viewed under 20x magnification. Data are representative of a
minimum of 10 fields of view per group. (D) Cells were infected with GFP+ Mtb and then released by decapsulation. At 24 hr after infection, 24.2%
monocytes had phagocytosed GFP-expressing Mtb by flow cytometric analysis. (E) Haematoxylin and eosin staining of paraffin-fixed microspheres
demonstrates cell aggregates in Mtb-infected microspheres at day 14. Scale 20 um. (F) Host cell survival is significantly greater in 3-D microspheres
than 2-D cell culture as demonstrated by LDH assay. Clear box 2-D cell culture, filled box 3-D culture; an equal number of cells killed with digitonin (30
ug/ml) in the respective 3D and 2D culture was used as denominator. Mean + SE values (n = 4). (G) Cytotoxicity measured by CytoTox Glo assay is
significantly lower in 3D culture than 2D culture. (H) CD68 expression is increased in macrophages in Mtb-infected microspheres analyzed by flow
cytometry. Black isotype control, blue uninfected cells, red Mtb-infected cells. (I) Multinucleate giant cells form within microspheres at day 14,
immunostained with CDé8 (brown) and counterstained with Haematoxylin (blue). Scale 20 um. (J) In patients with pulmonary TB, similar giant cells are
observed in pulmonary granulomas. A low power image of human pulmonary granuloma (G), with numerous multinucleate giant cells surrounding
caseous centre (box, magnified area). Scale bar: 1000 um.

DOI: 10.7554/elife.21283.003  DOI: 10.7554/eLife.21283.003

DOI: 10.7554/eLife.21283.003

The following figure supplements are available for figure 1:

Figure supplement 1. Equipment set-up within containment level three tuberculosis laboratory.

DOI: 10.7554/elife.21283.004

Figure supplement 2. Microspheres placed in a 12 well tissue culture plate immediately after generation demonstrating non-magnified appearance.
DOI: 10.7554/eLife.21283.005

Figure supplement 3. Medium viscosity guluronate (MVG) alginate is the optimal alginate for immunological studies.

DOI: 10.7554/elife.21283.006

Figure supplement 4. Viability of PBMCs remains over 90% after decapsulation.

DOI: 10.7554/eLife.21283.007

Figure 1 continued on next page
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Figure 1 continued

Figure supplement 5. T cell composition of microspheres.
DOI: 10.7554/eLife.21283.008

Defining the role of individual cytokines

An emerging paradigm within the TB field is that an optimal immune response is necessary, and that
either a deficit or excess of specific mediators may be deleterious from the host's perspective
(O'Garra et al., 2013). Therefore, we studied the effect of supplementing cytokines on both host
and pathogen in collagen-containing microspheres, investigating IFN-y and IFN-B. Complete
absence of IFN-y leads to disseminated Mtb infection in man and mouse (O’Garra et al., 2013),
while IFN-B is of emerging importance from unbiased analyses but has an undefined mechanism of
action (Cliff et al., 2015). Addition of exogenous IFN-B resulted in a minor but significant suppres-
sion of Mtb growth (Figure 4A), whereas in contrast addition of IFN-y consistently increased growth
(Figure 4B). We investigated mechanisms of this divergence. Both IFN-B and IFN-y reduced cellular
toxicity in Mtb-infected microspheres (Figure 4C and D). However, collagenase activity was
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Figure 2. Mtb grows within microspheres containing PBMCs and upregulates MMP and cytokine expression. (A) Mtb proliferates slowly in
microspheres with no cells (green line), but progressively in microspheres containing PBMCs (red line), reaching similar luminescence to Middlebrook
7H9 broth culture at 24 days (black line). Blue line, uninfected microspheres. (B) Mtb infection upregulates MMP-1 gene expression and (C) MMP-9
secretion in microspheres. (D) MMP upregulation has a functional effect, causing collagen degradation. DQ Collagen breakdown is higher in Mtb-
infected microspheres (red line) than uninfected (blue line). Triangles, microspheres with no PBMCs. (E) Mtb infection increases cellular IFN-y mRNA
accumulation relative to uninfected cells at day four in microspheres (n = 4). (F) Secretion of cytokines by Mtb-infected microspheres (squares) is
significantly higher than in microspheres containing uninfected PBMCs (circles). ****p<0.0001 by t-test (B and E) and ANOVA (A, C, D, F).

DOI: 10.7554/¢life.21283.009  DOI: 10.7554/¢elife.21283.009

DOI: 10.7554/eLife.21283.009

The following figure supplement is available for figure 2:

Figure supplement 1. Mtb infection upregulates secretion of multiple growth factors, cytokines and chemokines from microspheres measured by
Luminex array.

DOI: 10.7554/elife.21283.010
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Figure 3. Incorporation of collagen into microspheres limits Mtb growth and increases host cell survival. (A) Microspheres were created without
collagen (i), or incorporating FITC-labelled collagen (ii) to demonstrate distribution. Immediately after bioelectrospraying, collagen is homogenous
throughout the microspheres. (B) Incorporation of Type | collagen into microspheres improves cell survival at 72 hr after Mtb infection, whereas elastin
did not, analyzed by CytoTox-Glo assay. (C) PBMCs control Mtb growth in microspheres containing collagen (squares) better than cells without
Figure 3 continued on next page
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collagen (circles). Open squares, uninfected PBMCs. (D) The level of apoptosis and NADP+/NADPH ratio (E) are higher in microspheres containing
collagen at day 7. Collagen incorporation caused increased secretion of IL-1B (F), TNF-a. (G), IFN-y (H), IL-6 (1), MCP-1 (J) and IL-8 (K) at day 7. Each
experiment was performed a minimum of 2 times and charts represent mean values + SEM of a representative experiment performed in triplicate.
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

DOI: 10.7554/elife.21283.011 DOI: 10.7554/elife.21283.011

DOI: 10.7554/eLife.21283.011

divergently regulated, as IFN-B suppressed MMP-1 mRNA expression while IFN-y increased MMP-1
expression (Figure 4E), suggesting that IFN-B has a matrix-protective role. Mtb infection upregu-
lated IL-1B, TNF-a. and MCP-1 secretion, but IFN augmentation did not significantly modulate this
(Figure 4F,G and H). Mtb infection increased IFN-y secretion, and this was further increased by IFN-
B (Figure 4I), demonstrating complex cross-talk between these two cytokines.

Investigating host-directed therapy

Host-directed therapy is an emerging paradigm to improve outcome in TB infection (Hawn et al.,
2015). However, the host immune response to Mtb has both beneficial and harmful effects, and so
such therapy may inadvertently drive immunopathology whilst limiting mycobacterial proliferation
(Elkington and Friedland, 2015). Modulation of the cyclooxygenase pathway has been proposed as
a key target to limit Mtb growth (Mayer-Barber et al., 2014). Augmentation with exogenous PGE;
suppressed Mtb growth in a dose-dependent manner (Figure 5A), consistent with findings in the
mouse model of Mtb (Mayer-Barber et al., 2014). The reduced Mtb luminescence correlated with
colony counts when microspheres were lysed and plated on Middlebrook 7H11 agar at day 22
(Figure 5B). However, this improved control of bacterial growth was not without potential harmful
effects. Secretion of proinflammatory IL-6 and IL-8, a potent neutrophil chemoattractant, was
increased by PGE, (Figure 5C and D). Conversely, secretion of IFN-y was suppressed by high dose
PGE, (Figure 5E). In addition, PGE; increased cell toxicity (Figure 5F) and suppressed total cell via-
bility (Figure 5G). PGE, reduced caspase 3/7 activity, indicating suppression of apoptosis
(Figure 5H). Therefore, the multiparameter readout has potential to predict protective and harmful
effects of host-directed therapy.

Immunoaugmentation with Mtb-specific T cell lines

The T cell response is critical to host control of Mtb but also drives pathology (Kaufmann and
Dorhoi, 2013), and so a critical question is which facets of the adaptive immune response are pro-
tective versus those that are immunopathogenic (Jasenosky et al., 2015). We used the tractability
of the bio-electrospray model to study T cell augmentation by supplementing PBMCs with autolo-
gous antigen specific T cell lines that had been proliferated ex vivo (Figure 6—figure supplement
1). Four days after bio-electrospraying, multicellular aggregates began to form containing PBMCs,
Mtb and augmented T cells (Figure 6A). ESAT-6 or CFP-10 specific T cell lines, which respond to
antigens secreted via the pathogenicity RD1 locus, proliferated in the Mtb infected microspheres
but not uninfected spheres (Figure 6B), which was statistically significant from day seven on quanti-
tation (Figure 6C). Surprisingly, immunoaugmentation with either ESAT-6 or CFP-10 T cell lines led
to increased Mtb growth within microspheres compared to infected PBMCs alone (Figure 6D). Aug-
mentation with an autologous innate iNKT cell line has no effect on Mtb growth (Figure 6E), demon-
strating that this was not a generic response to T cell supplementation within the microspheres.
Immunoaugmentation with ESAT-6 and CFP-10 lines significantly increased secretion of multiple
cytokines, including TNF-a and IL-1f into the media around microspheres (Figure 6F and G and Fig-
ure 6—figure supplement 2). In contrast, augmentation did not significantly affect cell toxicity
within infected microspheres (Figure 6H).

Discussion

Novel approaches to the global TB pandemic are urgently required. Mtb is an obligate human path-
ogen characterised by a prolonged interaction with the host (Russell, 2011; Cambier et al., 2014),
a spatially organised immune response (Marakalala et al., 2016; Mattila et al., 2013; Egen et al.,
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Figure 4. IFN-B and IFN-y have divergent effects on bacterial growth within microspheres. (A) Exogenous IFN-B suppresses Mtb growth after 24 days
culture. Black line represents Mtb infected PBMCs. IFN-B supplementation at 0.02 nM (blue), 0.2 nM (green) and 2 nM (red) suppresses Mtb
luminescence. (B) IFN-y increases Mtb growth compared to infected PBMCs without additional cytokine. Exogenous IFN-y at 0.02 nM (blue), 0.2 nM
(green) and 2 nM (red) increases Mtb luminescence above Mtb-infected PBMCs without cytokine supplementation (black line). (C, D) Both IFN-B and
IFN-y reduce toxicity in Mtb-infected PBMCs, analyzed by CytoTox-Glo assay. (E) IFNs divergently regulate MMP-1, with IFN-B suppressing gene
expression in infected microspheres while IFN-y increases MMP-1 expression. (F-H). Mtb upregulates cytokine secretion but this is not modulated by
IFNs. IFN-B drives TNF-o. and MCP-1 as a single stimulus (E and G), but has no significant synergistic effect with Mtb. (I) Mtb upregulates IFN-y
secretion, and this is further increased by the addition of IFN-B. Mean + SEM of a representative experiment performed in triplicate is shown, and are
representative of a minimum of 2 experiments done in triplicate. *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001.

DOI: 10.7554/elife.21283.012  DOI: 10.7554/elife.21283.012
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2008) and extensive extracellular matrix turnover (Elkington et al., 2011). Therefore, extended
studies of human cells adherent to extracellular matrix in 3-D are likely to be essential to fully under-
stand the host-pathogen interaction. We developed a model of human TB utilising bio-electrospray
technology that replicates key features of clinical disease and optimised a multiplex readout to
investigate both host and pathogen responses. We demonstrated that the extracellular matrix regu-
lates the host immune response, consistent with reports of the ECM regulating inflammation
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Figure 5. PGE, augmentation limits bacterial growth but increases pro-inflammatory cytokine secretion and cellular toxicity. (A) Addition of exogenous
PGE; suppresses Mtb growth in microspheres in a dose-dependent manner. Mtb-infected PBMCs (black line), 0.2 ug/ml PGE; (green line), 2 ug/ml
PGE; (red line), 20 ug/ml PGE; (blue line). (B) Colony counts of microspheres decapsulated at day 24 and then plated on Middlebrook 7H11 agar
correlate with luminescence. (C, D and E) PGE; increases secretion of IL-6 and IL-8, but significantly decreases IFN-y secretion, from Mtb-infected
microspheres. (F) Cellular toxicity is increased in PGE; treated microspheres at day 3, analyzed by LDH release, and (G) total cell viability was reduced
at day 7, analyzed by CytoTox-Glo assay. (H) PGE; reduces caspase 3/7 activity at day 7. *p<0.05, **p<0.01, ***p<0.001.
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(Sorokin, 2010), and found that collagen favours host control of Mtb. We then used the model to
investigate novel therapeutic approaches. The system permitted prolonged culture of primary
human cells, and we found that significant differences between experimental conditions often only
emerged after more than 7 days, which would not have been observed in 2D culture systems where
3-4 days is the standard experimental duration. Our findings are consistent with other infections,
where the cellular adaptions to their context determines outcome (Snijder et al., 2009). This cell cul-
ture platform is highly flexible for both matrix and cellular composition within spheres and therefore
has wide potential applicability within the biomedical field.

Our bioengineering approach differs significantly from traditional model systems to investigate
TB, which predominantly rely on culture of human cells in 2D culture systems without extracellular
matrix, infection of the zebrafish larvae with M. marinum or infection of mice with Mtb (Young, 2009;
Guirado and Schlesinger, 2013; Vogt and Nathan, 2011). The mouse model of TB has many
advantages and key findings in the mouse have been replicated in man, such as critical roles for CD4
+ T cells, TNF-a and IFN-y (Flynn and Chan, 2001), but pathology in the mouse differs from human
TB (Young, 2009) and humanised mice are required to generate caseating lesions (Calderon et al.,
2013; Heuts et al., 2013). Other advanced human cellular models of TB have been developed. For
example, Altare’s group has studied a prolonged model of PBMC culture with Mtb and demon-
strated cell aggregate formation (Puissegur et al., 2004; Lay et al., 2007), but this model lacks
extracellular matrix. A collagen matrix-containing model has been developed by Kapoor, showing
aggregation and TB dormancy (Kapoor et al., 2013), but lacks the high throughput potential of the
bioelectrospray system and rapid cellular recovery for multiparameter readouts. Generation of a
complete human granuloma structure will require stromal cells such as fibroblasts, which are present
in the periphery of TB granulomas (O’Kane et al., 2010). A key next step will be to compare
patients with latent TB with active TB, and those with and without HIV-co-infection, to determine
whether the model can differentiate protective immunity to Mtb directly ex vivo.
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Figure 6. Immunoaugmentation with Mtb-specific T cells increases Mtb growth. (A) Microspheres imaged after 4 days show early granuloma formation.
(i) PBMCs labelled with CellTrace CFSE (green), (ii) Mtb expressing mCherry (red), (iii) autologous ESAT-6 specific T cells labelled with CellTracker Blue,
(iv) Merged image shows granulomas containing Mtb, PBMCs and augmented T cells (yellow). (B) Cellular proliferation is increased in infected
microspheres with immunoaugmented autologous T cells, analysed by CFSE staining. Day 1, black line; Day 7, red line; (i) Uninfected, (i) Mtb-infected.
(C) Quantitative analysis of the proliferative capacity of ESAT-6 augumented PBMCs at Day one and Day 7. The bars show percentage of proliferating
CD4 cells after gating on CD3+CD4+ lymphocytes. Differences between Day 1 and 7 were assessed for three experiments by t-test. (D) Addition of
either ESAT-6 responsive T cells (red) or CFP-10 responsive T cells (blue) increases Mtb growth compared to infected PBMCs without supplemented T
cells (black). Open symbols, uninfected microspheres. (E) Supplementation with an iNKT autologous T cell line (blue triangle) did not significantly affect
Mtb growth compared to infected PBMCs alone (black square). (F, G) Secretion of TNF-a. and IL-1 is increased in immunoaugmented microspheres at
day 7. (H) Immunoaugmentation did not significantly modulate cell toxicity in infected microspheres at day three analysed by LDH release.
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The following figure supplements are available for figure 6:

Figure supplement 1. Confirmation of specificity of in vitro expanded T cells.

DOI: 10.7554/¢elife.21283.015

Figure supplement 2. Augmentation of PBMCs with ESAT-6/CFP-10 specific T cell lines in microspheres causes differential secretion of cytokines after
Mtb infection compared to PBMCs alone.

DOI: 10.7554/¢elife.21283.016
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Many of our findings are consistent with conclusions drawn from these systems. For example, a
significant role for IFN-B in the host immune response to TB is emerging from genomic studies,
though it remains controversial as to whether this is protective or harmful (Cliff et al., 2015). Our
data suggest a predominantly protective effect, and emerging data support this conclusion (Mor-
eira-Teixeira et al., 2016). Similarly, we confirmed that augmentation of PGE, improves host control
of mycobacterial proliferation, consistent with findings in the mouse (Mayer-Barber et al., 2014).
Finally, T cells responsive to specific Mtb antigens proliferated in infected microspheres and
secreted cytokines known to be important in the host immune response to Mtb (O‘Garra et al.,
2013).

However, while some results were as expected, several findings in the 3-D system may not be
predicted from current disease paradigms. For example, IFN-y in high concentrations increases the
growth of TB, whereas murine experiments predict improved control. Consistent with our findings,
several previous studies have shown that IFN-y increases Mtb growth in primary human cells
(Vogt and Nathan, 2011; Douvas et al., 1985; Rook et al., 1986; Crowle and Elkins, 1990). The
evidence for a beneficial role of IFN-y in humans is principally supported by individuals where there
is a complete absence of signalling through the IL-12/IFN pathway (Karp et al., 2015), and this pro-
tective effect has clearly been shown in the mouse through both knock-out and vaccination studies
(Flynn and Chan, 2001; Aagaard et al., 2011). However, cohort studies have shown that a high
PPD response, or high IFN-y response to ESAT-6 or CFP-10, associates with the subsequent devel-
opment of TB (Comstock et al., 1974; Higuchi et al., 2008; del Corral et al., 2009), suggesting
that an excessive IFN-y response may be deleterious. We attempted to determine if there was a tip-
ping point of IFN-y concentration by adding IFN-y neutralising antibodies to the microsphere matrix,
and although we were able to demonstrate increased growth with IFN-y neutralisation, we found a
similar effect with isotype control antibodies, so it was impossible to determine if this was a specific
effect. Our longitudinal observations of Mtb growth in a non-destructive manner using luminescent
mycobacteria support the emerging concept that a balanced immune response is essential, and
either a deficit or excess of a specific mediator may favour the pathogen (O’Garra et al., 2013;
Gideon et al., 2015). Combining the model with CRISPR/Cas9 gene editing will permit further inter-
rogation of each cytokine component of the immune response.

PGE, augmentation has been proposed as a novel host-directed therapy to improve outcome in
TB, and we demonstrate reduced Mtb growth. However, the multiparamter analysis in our human
system showed that PGE; increases secretion of IL-8, which is likely to drive migration of neutrophils,
and PGE; also reduced host cell viability. Neutrophil recruitment has been described to have a dele-
terious effect on host control of infection (Kimmey et al., 2015; Nouailles et al., 2014) and there-
fore there is potential that this may favour Mtb, driving increased pathology, lung destruction and
transmission. The peak PGE, concentration that we studied is similar to that reported in human tis-
sue (Reikeras et al., 2009). We also found that immunoaugmentation with ESAT-6 or CFP-10
responsive T cell lines led to increased growth of Mtb. Pathogenic mycobacteria express the RD1
locus but the precise mechanism linking RD1 to pathology is not fully understood (Majlessi et al.,
2015). Our findings are consistent with the recent observations that T cell epitopes are hypercon-
served in pathogenic mycobacteria (Comas et al, 2010; Coscolla et al., 2015
Lindestam Arlehamn et al., 2015), indicating an evolutionary advantage to the pathogen of specifi-
cally stimulating components of the host immune response to facilitate transmission (Orme et al.,
2015). However, an alternative explanation is that the in vitro expansion conditions generated a T
cell phenotype that was permissive to Mtb growth, skewing an initially protective phenotype to a
deleterious one, and so further confirmation across different T cell lines is required. Augmented
iNKT cells did not increase Mtb growth after ex vivo expansion. The key conclusion of these experi-
ments is that the immunoaugmentation model has potential to dissect protective versus pathological
host immune responses.

The recent negative outcomes from both vaccine trials (Tameris et al., 2013; Ndiaye et al.,
2015) and treatment-shortening regimes (Warner and Mizrahi, 2014) illustrate that observations in
current model systems may not reliably translate to human disease and highlight the need for more
nuanced approaches that reflect human TB infection. Our data suggest that simply driving an
increased immune response to Mtb will not improve control of mycobacterial growth. Augmenting
PGE; release by modulating the leukotriene pathway may reduce mycobacterial proliferation but
may come at a cost of increased pathology. Vaccination using ESAT-6 as an antigen, which has
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entered human trials (Luabeya et al., 2015), may actually favour Mtb growth under certain circum-
stances, demonstrating the fine balance between the host immune response and control of patho-
gen growth. Critically, our data from the bioengineered model are consistent with clinical
phenomena observed in human TB. For example, an excessive immune response in patients is asso-
ciated with greater pulmonary pathology (Kaufmann and Dorhoi, 2013; Comstock et al., 1974,
Philips and Ernst, 2012; Nunes-Alves et al., 2014). Similarly, our immunoaugmentation studies con-
cur with the expression of ESAT-6 and CFP-10 by pathogenic mycobacteria, implying a critical role
in causing disease (Brites and Gagneux, 2015). The model can be used to investigate approaches
currently in development, such as vaccines based on targeting CD1-restricted T cells (Van Rhijn
et al., 2015) and emerging host-directed therapies (Hawn et al., 2013, Zumla et al., 2015), to
determine whether they confer greater protection without likely harmful effects.

The bio-electrospray cell culture model has broad potential, addressing the technical complexity
of performing 3-D primary cell culture within diverse extracellular matrices. The system can readily
be applied to study diverse infectious and inflammatory diseases, or cancer immunotherapy, and can
be developed for high-throughput applications by combining the microsphere system with microflui-
dics. Integration with CRISPR/Cas? gene editing will permit genetic manipulation of both host and
pathogen (Chakraborty et al., 2014). The multiparameter readouts define the translational potential
of novel interventions over time with longitudinal data acquisition, identifying both beneficial and
deleterious effects. Therefore, this system developed to dissect the host-pathogen interaction in
human TB can be applied to identify novel therapeutic approaches to multiple human diseases.

Materials and methods

Ethical approval

For analysis of blood from healthy donors and healthy TB exposed individuals, this work was
approved by the National Research Ethics Service committee South Central - Southampton A, study
title ‘An investigation into the immune response to tuberculosis infection and development of novel
diagnostic markers’, reference 13/SC/0043. All donors gave written informed consent. For histologi-
cal analysis, samples used in this study were sourced from the Southampton Research Biorepository,
University Hospital Southampton NHS Foundation Trust and University of Southampton, Mailpoint
218, Tremona Road, Southampton, SO16 6YD. Lung biopsy tissue was taken as part of routine clini-
cal care and tissue blocks excess to diagnostic testing were analyzed in this study. The project was
approved by the Institutional Review Board (Reference 12/NW/0794 SRBO4_14). The ethics commit-
tee approved the analysis of this tissue without individual informed consent since it was surplus
archived tissue taken as part of routine care.

PBMC cell isolation from human blood

PBMCs were isolated from single donor leukocyte cones (National Health Service Blood and Transfu-
sion, Southampton, UK) or fresh blood from volunteers by density gradient centrifugation over
Ficoll-Paque (GE Healthcare Life Sciences). These healthy donors were all recruited from a region of
very low TB incidence. For immunoaugmentation experiments requiring Mycobacterium tuberculo-
sis-responsive T cells, cells from donors with a documented tuberculosis exposure were studied. All
experiments were performed with primary human cells; no immortalised cell lines were used in the
study.

M. tuberculosis culture

M. tuberculosis H37Rv (Mtb) was cultured in Middlebrook 7 H9 medium (supplemented with 10%
ADC, 0.2% glycerol and 0.02% Tween 80) (BD Biosciences, Oxford) and bioluminescent M. tubercu-
losis H37Rv (Andreu et al., 2010), GFP or mCherry expressing M. tuberculosis H37Rv (Carroll et al.,
2010) were cultured with kanamycin 25 ug/ml and hygromycin 50 pug/ml, respectively. Biolumines-
cent Mtb H37Rv was used for all experiments apart from confocal imaging. Cultures at 1 x 10® CFU/
ml Mtb (OD = 0.6) was used for all experiments at multiplicity of infection (M.O.l) of 0.1. For colony
counting, Mtb was released from microspheres by EDTA/sodium citrate dissolution, cells and extra-
cellular bacteria were pelleted by centrifugation at 3000 g, lysed with 1% saponin and then plated
on Middlebrook 7H11 agar. Colonies were counted at three weeks.
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Cell encapsulation

Microspheres were generated with an electrostatic generator (Nisco, Zurich, Switzerland) as
described previously (Workman et al., 2014). To visualise microsphere formation, a Phantom v7
high-speed camera, capable of capturing 150000 fps in conjunction with a long-distance microscope
lens, was triggered simultaneously with a fibre optic lighting system to capture the jetting process.
For cellular encapsulation, PBMCs were infected with Mtb overnight in a T75 flask. Cells were then
detached, washed and pelleted by centrifugation at 320 g and mixed with 1.5% sterile alginate (Pro-
nova UP MVG alginate, Nova Matrix, Norway) or alginate with human collagen, fibronectin (both
from Advanced BioMatrix) or human elastin (Sigma Aldrich, Gillingham, UK) at a final concentration
of 5 x 10° cells/ml. The standard matrix used in experiments was alginate-human collagen unless
stated otherwise. All reagents were confirmed endotoxin free.

The cell-alginate suspension was drawn up into a sterile syringe and injected into the bead gener-
ator at 10 mL/hour via a Harvard syringe driver through a 0.7 mm external diameter nozzle. Micro-
spheres of 600 um diameter formed in an ionotropic gelling bath of 100 mM CaCl, in HBSS placed
below the electrostatic ring that accelerated the microspheres from the needle head. After washing
twice with HBSS with Ca/Mg, microspheres were transferred in RPMI 1640 medium containing 10%
of human AB serum and incubated at 37°C, 21% O, and 5% CO,. No media changes were per-
formed, and the supernatant was harvested at defined time points for analysis. Mtb growth within
microspheres was monitored longitudinally by luminescence (GloMax 20/20 Luminometer,
Promega).

Immunofluorescence and confocal imaging

In specific imaging experiments, PBMCs were pre- labelled with CellTracker Blue, CellTrace CFSE or
Hoechst 33342 (ThermoFisher Scientific, UK) according to the manufacturer recommendation. Micro-
spheres were fixed in 4% paraformaldehyde and washed in HBSS with Ca/Mg. Confocal images
were acquired on a Leica TCS SP5 Confocal microscope and processed using Image J 1.5 0d (NIH,
USA).

Histological staining and immunohistochemistry

On day 7 and 14 of incubation, microspheres were fixed with 4% paraformaldehyde overnight and
paraffin-embedded using the Shandon Cytoblock system (ThermoFisher Scientific, UK). Blocks were
sectioned and stained by haematoxylin and eosin. For CD68 immunohistochemistry (Dako, Clone
PG-M1), 0.5 um sections were stained. Analysis of human lung tissue taken as part of routine clinical
care was approved by the Institutional Review Board (Reference 12/NW/0794 SRB04_14). Sections
were dewaxed, blocked (Envision FLEX), stained with Anti-Human CDé8 (Dako, Clone PG-M1),
detected with HRP and counterstained with Haematoxylin.

Flow cytometric analysis

Cells were extracted by dissolving the microspheres in 55 mM Sodium Citrate and 10 mM EDTA in
PBS for 10 min at 37°C. Cells were then suspended in PBS. Surface and intracellular staining was
done in a three-colour analysis with combinations of fluorescein isothiocyanate (FITC), phycoerythrin
(PE) and allophycocyanin (APC). Antibodies used included anti-CD3, anti-CD4, anti-CD8, anti-CD14
and anti-CDé68 (ImmunoTools, Germany). For T—cell proliferation, PBMCs were stained with Cell-
Trace CFSE Cell Proliferation Kit for flow cytometry (ThermoFisher Scientific, UK) before infection
with Mtb. Fluorescence was then analyzed by flow cytometry (BD Accuri Cé flow cytometer).

MMP-1 and IFN-y gene expression

Microspheres were decapsulated using 55 mM of sodium citrate solution and cells were lysed imme-
diately using TRIzol Reagent (Life Technologies, Paisley, UK). 1 ug RNA was reverse transcribed
using High Capacity cDNA Reverse Transcription kit (Life Technologies Ltd, Paisley, UK). Tagman
Universal master mix and primers specific for GAPDH, -Actin, MMP1, and IFN-y gene were used for
gPCR following manufacturer’s instruction (Applied Biosystems, USA) and comparative threshold
(CT) method was employed to analyse all gPCR data.
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Luminex analysis

Samples were sterilized by filtration through a 0.22 uM Durapore membrane (Millipore)
(Elkington et al., 2006). Concentrations of cytokines (Life Technologies, UK) and MMPs (R and D
Systems, UK) were determined using a Bioplex 200 platform (Bio-Rad, UK) according to the manu-
facturer’s protocol.

DQ collagen degradation assay

For analysis of extracellular matrix degradation, microspheres were generated from a solution of 3%
Alginate (Pronova UP MVG alginate, Nova Matrix, Norway), 1 mg/ml of human collagen type |
(Advanced BioMatrix, San Diego, California) and 100 pg/ml of DQ collagen (Invitrogen, Paisley, UK).
Microspheres were then placed in macrophage serum free medium (Life Technologies) and incu-
bated at 37°C. Fluorescence was read on a GloMax Discover (Promega) at an absorption maxima of
495 nm and fluorescence emission maxima of 515 nm.

Cell viability assay

Microspheres were incubated in 96-well plates at 37°C. Cell viability was analyzed using the Cell-
Titer-Glo 3D Cell Viability Assay (Promega) according to the manufacturer’s instructions, analyzing
viable cells based on ATP quantitation. Luminescence was analyzed by the GloMax Discover plate
reader (Promega).

Cell toxicity assays

CytoTox-Glo Cytotoxicity Assay (Promega) measured cellular necrosis in microspheres. The kit meas-
ures dead-cell protease activity released from cells without membrane integrity using a luminogenic
peptide substrate, the AAF-Glo Substrate. Luminescence was analyzed by GloMax Discover (Prom-
ega). Total cell death was caused by digitonin on equal cell numbers to provide the denominator. As
a second measurement of toxicity, lactate dehydrogenase (LDH) release, was analyzed by a colori-
metric activity assay (Roche, Burgess Hill, United Kingdom). Comparison of 2D cell culture and 3D
cell culture viability was performed by plating equal numbers of cells in wells of a 96 well plate, and
then measuring toxicity by LDH and CytoTox-Glo. Total toxicity was normalised to digitonin treated
wells plated in parallel.

Cell apoptosis

Microspheres were incubated in 96-well plates. Caspase-3/7 protease activities were measured as
indicators of apoptosis using Apo-ONE Homogeneous Caspase-3/7 Assay (Promega) or Caspase-
Glo 3/7 Assay Systems (Promega) according to the manufacturer’s instructions.

NADP/NADPH ratio

The biolumiesent NADP/NADPH kit (Promega) was used according to the manufacturer's
instructions.

Cytokine and PG supplementation
Microspheres were incubated in RPMI 1640 with 10% AB serum with IFN-B, IFN-y (eBioscience) or
PGE; (R and D Systems) at 37°C.

Immunoaugmentation with autologous T cells

To generate expanded specific T cell lines, ESAT-6 or CFP-10 specific cells were derived from
PBMCs from Mtb-exposed individuals (W6lfl and Greenberg, 2014). Monocytes were isolated from
PBMCs using magnetic cell separation (Miltenyi Biotec, UK) and partially differentiated into mono-
cyte derived dendritic cells (moDCs) for 3 days using complete media supplemented with GM-CSF
(20 ng/ml) and IL-4 (25 ng/ml). moDCs were then loaded with peptide antigen pools derived from
ESAT-6 or CFP-10 proteins in the presence of IFN-y and LPS. moDCs were then exposed to CD14™ T
cell fractions in a 1:2 ratio for 7 days, after which IL-2 (4001U/ml, Proleukin, Chiron), IL-15 (2 ng/ml)
and IL-7 (2 ng/ml, Immunotools) were added. T-cell specificity was confirmed by IFN-y secretion
upon exposure of T-cells to autologous moDCs loaded with CFP-10 or ESAT-6. Human iNK T cells
were derived from PBMCs according to the method previously described (Mansour et al., 2015).

Tezera et al. eLife 2017;6:€21283. DOI: 10.7554/eLife.21283 14 of 19


10.7554/eLife.21283

LI FE Immunology | Microbiology and Infectious Disease

Briefly, iNK T cell lines were generated by incubating PBMCs with 200 ng/ml KRN7000 (AXXORA)
for 7 days before the addition of IL-2, IL-7 and IL-15. After two weeks culture, iINK T cell expansion
was confirmed via CD3, Va24 and CD1d-K7 tetramer staining. Cells were acquired using FACSAria
(Becton Dickinson, UK). ESAT-6, CFP-10 specific T cell lines or iNK T cells were counted and then
PBMCs were supplemented with 20% additional immunoaugmented cells immediately prior to Mtb
infection. After overnight incubation, the combined cells were bioelectrosprayed by our standard
protocol.

Statistical analysis

All experiments were performed a minimum of 2 occasions from separate donors as biological repli-
cates and on each occasion with a minimum of 3 technical replicates. Data presented are from a rep-
resentative donor and include the mean and SEM. Analysis was performed in Graphpad Prism v6.0.
Students t-test was used to compare pairs and ANOVA for groups of 3 or more.
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