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Benjamini and Yekutieli (2005) introduced the concept of the false coverage-statement rate (FCR) to ac-
count for selection when the confidence intervals are constructed only for the selected parameters. Dose-
response analysis in dose-response microarray experiments is conducted only for genes having monotone
dose-response relationship, which is a selection problem. In this paper, we consider multiple confidence
intervals for the mean gene expression difference between the highest dose and the control in monotone
dose-response microarray experiments for selected parameters adjusted for the FCR. A simulation study is
conducted to study the performance of the method proposed. The method is applied to a real dose-response
microarray experiment with 16,998 genes for illustration.
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1 Introduction

Dose-response studies are of central importance in pharmaceutical development. For this purpose, a dose-
response experiment is conducted in which several doses are administered to separate groups of experi-
mental units. In most cases, a zero-dose control group, or placebo group, is included which serves as a
standard against which the dose groups are to be compared with. That is, a one-way layout setup is con-
sidered with observations: Yij = µi + εij , i = 1, . . . , k, j = 1, . . . , ni, where εij are iid normal with mean
0 and variance σ2. The control group is indexed as 1 and the remaining k− 1 treatment groups correspond
to the k − 1 increasing dose levels, with ni subjects randomly assigned to group i = 1, . . ., k. The statis-
tic S2 =

∑k
i=1

∑ni

j=1(Yij − Ȳi)2/ν is used as an estimator for σ2, and it is independent of the sample

means Ȳ = (Ȳ1, . . . , Ȳk), where νS2/σ2 ∼ χ2
ν and ν =

∑k
i=1 ni − k > 0. Often, the dose-response is

monotonic, that is, µ1 ≤ · · · ≤ µk, and it is assumed that a larger µi indicates a better average outcome.
The primary goal of a dose-response study is to assess whether there is indeed a dose-response effect, and
if a dose-response effect is found, then to quantify the lower bound for µk − µ1 or to identify the lowest
dose level producing a desirable effect over that of the control (Tamhane, Hochberg, and Dunnett, 1996),
which can be obtained by using confidence intervals (Hsu and Berger (1999) and Peng et al. (2008)) or
combining multiple comparisons and modeling (Bretz et al. (2005)).

Recently, dose-response studies are integrated with microarray experiments; see Hu et al. (2005), Lin
et al. (2007) and Lin et al. (2012). In a dose-response microarray experiment, the response is the gene
expression at a certain dose level and the aforementioned ANOVA model is considered for each gene. The
dose-response curve, similar to the classical dose-response studies, is assumed to be monotone, i.e., the
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gene activity increases or decreases as the dose level increases. The direction of the relationship is usually
unknown in advance. A gene is called differentially expressed (DE) if there is an increasing or decreasing
trend with respect to dose levels in the gene expression (Lin et al. (2007)). In the microarray dose-respnose
experiment used in Lin et al. (2007) and Lin et al. (2008), the human epidermal squamous carcinoma cell
line A431 was grown in Dulbecco’s modified agle’s medium, supplemented with L-glutamined (20 mM),
Gentamycin (5 mg/ml) and 10% fetal bovine serum. The microarray experiment had four experimental
conditions with three treatments and one placebo. Each condition had three samples hybridized to indi-
vidual chips. There were 12 arrays and 16,998 genes in the data set; see Lin et al. (2007) and Lin et al.
(2008) for details of preprocessing the data set. Below are the gene expression level figures for the first
two genes in the data set (the first three values are for the placebo group). The aim of this microarray dose-
response oncology experiment was designed to better understand the biological effects of growth factors
in human tumor (Lin et al. (2012)). The first step of the study was to find genes whose expression levels
are differentiated among the four dose levels.
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Figure 1 Scatter plots for the gene expression values of the first two genes in the data set

Microarray technology has become an important tool for simultaneously screening thousands of genes
for changes in their expression patterns. When simultaneously testing a very large number of hypotheses,
the chance for a false positive test result (type I error) increases sharply and an adjustment for multiplicity
is needed. In classical dose-response studies, the control of the familywise error rate (FWER), i.e. the
probability of at least one type I error, is appropriate. However, the purpose of a microarray experiment is
to find genes that are potential candidates for future investigations and the control of false discovery rate
(FDR) is often preferred. FDR introudced by Benjamini and Hochberg (1995) is the expected proportion
of erroneously rejected null hypotheses among the identified differentially expressed genes. Procedures
that control the FDR have been well studied; see Benjamini and Liu (1999) and Benjamini (2010) among
many others.

Benjamini and Yekutieli (2005) argued that two types of problems usually arise when considering in-
ference for multiple parameters: simultaneity refers to the need to provide inference that simultaneously
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applies to any subset of several parameters and selective inference refers to the need of providing valid
inferences for parameters that are selected after viewing the data. In many large scale problems such as
dose-response microarray experiments we are often not concerned about simultaneous coverage but do
care about the effect of selection on the average marginal properties over the selected genes, since only the
findings about the selected ones are of importance (Benjamini (2010)). Benjamini and Yekutieli (2005)
coined the false coverage-statement rate (FCR) as the appropriate criterion for capturing the error for con-
fidence intervals constructed for selected parameters and defined in a way that parallels the definition of the
FDR. Let R denote the number of confidence intervals constructed, and let V be the number of confidence
intervals that do not cover their respective parameters. Then FCR is the expected proportion of intervals
failing to cover the parameters among all genes that have been detected as differentially expressed. That is
FCR = E[V/max(R, 1)]. Tamhane (2005) gave an exact expression for FCR for some special cases.

Dose-response analyses are conducted only for those genes that are found to have either an increasing
or a decreasing dose-response relationship. Because the mean dose-response curve for each gene is a mul-
tivariate object, dose-response analyses in microarray experiments can be viewed as a selection-adjusted
simultaneity problem (Lin et al., 2012).

Lin et al. (2012) modified Benjamini and Yekutieli (2005)’s FCR-adjusted Benjamini-Hochberg (BH)
selected confidence intervals (cis) for

∑
ciµi∑
diµi

, where coefficients c = (c1, . . . , ck) and d = (d1, . . . , dk)

are contrasts. However, Lin et al. (2012)’s two-sided confidence interval for the ratio
∑
ciµi∑
diµi

does not take
the monotonicity of the doses into account even though the monotonicity was assumed. Gene expression
data are usually log-transformed by one of several data preprocessing steps. Therefore, a ratio statistic
is less attractive (Lin et al., 2012). Jung et al. (2011) considered FCR adjusted confidence intervals for
two sample microarray data and argued that confidence intervals are helpful to assess genes’ biological
relevance. However, ANOVA type dose-response microarray experiments are very common in pharma-
ceutical research and development. ICH guideline E9 “Statistical Principle for Clinical Trials” suggests
that estimates of treatment effects should be accompanied by confidence intervals, whenever possible (see
www.ich.org). Even though ICH guideline E9 was developed for classical dose-response studies, it is very
important to adjust the marginal level of multiple confidence intervals for selected genes in dose-response
microarray experiments as FDR control is widely used in microarray experiments. In this paper, we mod-
ify Benjamini and Yekutieli (2005)’s FCR-adjusted BH-selected confidence intervals for mean differences
such as µk−µ1 in ANOVA type dose-response microarray experiments. FCR-adjusted confidence intervals
for µk − µ1 are useful to assess the sizes of the improvement of a drug for selected genes.

This paper is organized as follows. In Section 2 we review the construction of the lower confidence
bound for µk − µ1 under the order restriction µ1 ≤ µ2 ≤ · · · ≤ µk. In Section 3 we review the selection
of DE genes. We propose a new procedure in Section 4. Simulation results are discussed in Section 5. We
apply the new procedure to the aforementioned real microarray data set in Section 6. A brief discussion is
given in Section 7.

2 The Lower Confidence Bound for µk − µ1 under Monotonicity

In this section we first review how to test whether there is a dose-response effect by testing H0 : µ1 =
µ2 = · · · = µk versus H1 : µ1 < µk under the monotonicity assumption µ1 ≤ · · · ≤ µk and then how to
construct a lower confidence bound for µk − µ1. The method in this section also works for constructing
a lower confidence bound for µ1 − µk under the antitonic assumption µ1 ≥ · · · ≥ µk. Although there
are many test statistics available for testing H0 versus H1, only a few can provide interval inference. We
review the multiple contrast test statistic to construct the lower confidence bound for µk − µ1 in Peng et
al. (2008). The method in this section can be applied for classical montone dose-response studies or for
a single prespecified gene in the monotone dose-response microarray experiment discussed in Sections 1
and 4.
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2.1 The Likelihood Ratio Test

Under the monotonicity assumption the likelihood ratio test rejects H0 in favor of H1 for large values of

S01 =

k∑
i=1

ni(µ
∗
i − µ̂)2/

{ k∑
i=1

ni(Ȳi − µ∗i )2/ν + S2
}
,

where µ̂ =
∑k
i=1 niȲi/

∑k
i=1 ni and µ∗i are the isotonic (maximum likelihood) estimates of µi under the

monotonicity assumption, which can be computed by the Pool-Adjacent-Violators Algorithm (PAVA) (see
Robertson, Wright and Dykstra, 1988). The null distribution of S01 under H0 is given by

P (S01 > s) =

k∑
j=2

P (j, k; w)P
{
Fj−1,N−j >

s(N − j)
ν(j − 1)

}
(1)

for any s > 0, where N =
∑k
i=1 ni,w = (n1, . . . , nk), and P (j, k; w) is the level probability under H0

that µ∗ takes j distinct values (see Section 2.4 of Robertson, Wright and Dykstra, 1988). The critical
value sk,ν,α of the statistic S01 can be found in Robertson, Wright and Dykstra (1988) or obtained by (4).

2.2 The Multiple Contrast Test Statistic T

When S01 > sk,ν,α, one rejects H0 and concludes that there is indeed a dose-response effect, that is, at
least one mean response µi (2 ≤ i ≤ k) is significantly larger than µ1. However, there is no corresponding
lower confidence bounds for µk − µ1 when k > 2. Peng et al. (2008) introduced the following multiple
contrast test statistic:

T = max
c∈C

k∑
i=1

niciȲi/S
( k∑
i=1

nic
2
i

)1/2

, (2)

where C =
{

c = (c1, . . . , ck) :
∑k
i=1 nici = 0, c1 ≤ · · · ≤ ck

}
. It can be proved that the statistic T 2 is

asymptotically equivalent to S01 and

T 2 =

k∑
i=1

ni(µ
∗
i − µ̂)2/S2. (3)

Let tk,ν,α be the critical value of T ,

Pµ

{ k∑
i=1

niciµi ≥
k∑
i=1

niciȲi − tk,ν,αS(

k∑
i=1

nic
2
i )

1/2, for all c ∈ C
}

= 1− α. (4)

The left-hand side of (4) can be rewritten as

Pµ

{
max
c∈C

k∑
i=1

nici(Ȳi − µi)/S(

k∑
i=1

nic
2
i )

1/2 ≤ tk,ν,α
}

= P0

{
max
c∈C

k∑
i=1

niciȲi/S(

k∑
i=1

nic
2
i )

1/2 ≤ tk,ν,α
}

= P0

{
T 2 ≤ t2k,ν,α

}
.
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The null distribution of T under H0 is given by

P (T ≥ t) =

k∑
j=2

P (j, k; w)P
{
Fj−1,ν ≥

t2

j − 1

}
(5)

for any t > 0. The critical value tk,ν,α is the solution when one equates (5) to α. In case of equal sample
sizes, one can obtain tk,ν,α by applying Table A.10 in Robertson et al. (1988) to (5); if further the variance
σ2 is known, then tk,ν,α is the square root of the corresponding critical value in Table A. 4 of Robertson et
al. (1988). For unequal sample sizes case, one can use the method in Miwa, Hayter, Liu (2000) to obtain
the critical values of T ; see also Genz and Bretz (2009).

2.3 The Lower Confidence Bound for µk − µ1

According to (4), the 100(1−α)% one-sided simultaneous confidence bounds for any contrast
∑k
i=1 niciµi

with c1 ≤ · · · ≤ ck, is given by

l
( k∑
i=1

niciµi

)
=

k∑
i=1

niciȲi − tk,ν,αS(

k∑
i=1

nic
2
i )

1/2.

However, we only focus on the lower confidence bound µk−µ1 because this quantity may be useful to the
experimenter in assessing the actual treatment effect difference between the largest dose and the control.
Let K =

{
c : c ∈ C, Σki=1niciµi ≤ µk − µ1, for all µ ∈ Ω

}
, where Ω = {µ : µ1 ≤ · · · ≤ µk}. The

largest lower confidence bound for µk − µ1 is given by

L(µk − µ1) = max
c∈K

l
( k∑
i=1

niciµi

)
. (6)

Peng et al. (2008) proved that the optimization solution to (6) is equivalent to the solution of the optimiza-
tion problem:

max{
k∑
i=1

niciµ
∗
i − tk,ν,αS(

k∑
i=1

nic
2
i )

1/2}

subject to c ∈ C and
∑k
i=j nici ≤ 1, j = 2, . . ., k.

The optimized solution co can be obtained iteratively in a few steps by using the algorithm in Peng et
al. (2008). In Section 4 below the largest lower confidence bound for µgk − µg1 for a selected gene g will
be denoted as L(µgk − µg1).

3 Selection of DE Genes in Monotone Dose-Response Microarray Experi-
ments

In this section we consider how to obtain DE genes in a monotone dose-response microarray experiments.
To identify genes that are differentially expressed between several treatment conditions, employing an
ANOVA type of model is one option. In this section, we follow the gene-specific linear model similar
to that in Lin et al. (2008). Let Ygij = µgi + εgij be the gth gene expression (g = 1, . . . ,m) on array
j = 1, . . . , ngi in treatment group i = 1, . . . , k, where µgi is the mean expression level for treatment i for
gene g and εgij ∼ N(0, σ2

g) independently. In the simulation studies in Section 5 we will allow dependence
among genes. For a single gene, it is a typical ANOVA with equal variances among treatments. Therefore,
the method in Section 1 can be applied for each gene, but we need to adjust for multiplicity.
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For each gene we use the likelihood ratio test (or the multiple contrast test statistic in Section 2) for
testing Hg0 : µg1 = µg2 = · · · = µgk against Hg1 : µg1 < µgk under the monotonicity assumption
µg1 ≤ · · · ≤ µgk to obtain the raw p-values pg, g = 1, . . . ,m. The case of decreasing profiles is treated
similarly. These raw p-values are then adjusted to control the FDR at a pre-specified level, say 5%. The
most commonly used FDR adjusting procedure is the BH procedure in Benjamini and Hochberg (1995).
For a given FDR level q, the BH procedure sorts the p-values of the m hypotheses, p(1) ≤ · · · ≤ p(m).
Then the ordered p-value p(g) is compared with the critical value q×g

m . LetK = max{g : p(g) ≤ q×g
m } and

reject the corresponding K hypotheses if such a K exists. Otherwise do not reject any null hypotheses.
The adjusted p values are p̃(g) = minh=g,...,m[min(mh p(h), 1)]. Benjamini and Yekutieli (2001) proved
that the BH procedure controls the FDR when the test statistics are positively dependent in the sense of
exhibiting positive regression dependency on the subset of statistics corresponding to true null hypotheses,
called PRDS in their paper (Benjamini and Yekutieli (2005) gave the PRDS definition again on page 77).
Sarkar (2002) extended Benjamini and Yekutieli (2001)’s work to a generalized stepwise procedure. Dis-
tributions satisfying PRDS include multivariate normal distributions that arise in many-to-one comparisons
of means with one-sided alternatives and known variances in clinical trials, among others, see Benjamini
and Yekutieli (2001) and Sarkar (2002). Yekutieli (2008) developed a modification of the BH procedure to
control FDR for testing non-positive dependent test statistics. Benjamini and Yekutieli (2001) proposed
the BY procedure to allow test statistics to have an arbitrary dependence structure but it is more conser-
vative than the BH procedure. Its adjusted p values are p̃(g) = minh=g,...,m[min(

mΣm
l=1

1
l

h p(h), 1)]. Note
that the rejection of the null hypothesis Hg0 : µg1 = µg2 = · · · = µgk does not indicate the magnitude
by which gene expression increases or decreases (Lin et al. (2012)). The confidence lower bounds for
µgk − µg1 and µg1 − µgk among the selected DE genes may be useful for a researcher to select genes
whose expressions are significantly larger than a threshold.

4 FCR-Adjusted BH Selected CIs Procedure for Monotone Dose-Response
Microarray Experiments

In monotone dose-response microarray experiments, the dose-reponse (gene activity) increases or de-
creases as the dose level increases. For each gene g these two monotone trends cannot hold simultaneously.
However, the direction of the dose-response effects is unknown in advance. Therefore, the parameters that
we are interested are selected from the union of {µgk −µg1, g = 1, . . . ,m}∪ {µg1−µgk, g = 1, . . . ,m}.
We modify the procedure of constructing FCR-adjusted BH-selected confidence intervals in Benjamini and
Yekutieli (2005) by introducing the following four steps:

1. Use the likelihood ratio test (or the multiple contrast test statistic in Section 2) forHg0 : µg1 = µg2 =
· · · = µgk versus Hg1 : µg1 ≤ · · · ≤ µgk and Hg0 versus H ′g1 : µg1 ≥ · · · ≥ µgk with at least
one strict inequality for each gene to have m raw p-values and sort them as p(1) ≤ · · · ≤ p(m) and
p′(1) ≤ · · · ≤ p′(m) for each trend. The test statistics are denoted as T= {Tg, 1 ≤ g ≤ m} and T′=
{T ′g, 1 ≤ g ≤ m}.

2. Calculate RCI = R +R′, where R = max{g : p(g) ≤ g×q/2
m }, R′ = max{g : p′(g) ≤

g×q/2
m }, and q

is the required FDR level.

3. Select the RCI parameters, for which p(g) ≤ Rq/2
m ( or p′(g) ≤

R′q/2
m ) , corresponding to the rejected

hypotheses.

4. Construct a 1− RCIq/2
m confidence lower bound L(µgk − µg1) for µgk − µg1 ( or L(µg1 − µgk) for

µg1 − µgk ) for the selected gene g based on the method in Peng et al. (2008) for each of the RCI
selected DE genes.
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If one knows the direction of the monotone dose-response effects in advance such as the simulaton
studies in Section 5, one should use the original FCR-adjusted BH selected cis in Benjamini and Yetutieli
(2005) instead of the modified one above. According to Theorem 1 in Benjamini and Yekutieli (2005) if the
genes are independent from each other, that is, the test statistics T and T′ amongm genes are independent,
then the above procedure ensures that FCR ≤ q. In order to prove that the above procedure for selective
CIs is concordant, we have the following theorem (suggested by one of the referees) first. For simplicity,
we only state for the increasing trend case.

Theorem 4.1 Assume that the monotonicity assumption µg1 ≤ · · · ≤ µgk holds for g = 1, . . . ,m. If
gene g is selected by either the Bonferroni procedure or the FCR-adjusted BH selected procedure given in
Definition 1 on page 73 of Benjamini and Yetutieli (2005) for monotone dose-response microarray experi-
ments above, then the lower bound L(µgk − µg1) > 0.

Proof. Note that we have the assumption of increasing trends in the theorem, we use the original
FCR-adjusted BH selected cis in Benjamini and Yetutieli (2005) instead of the modified one above. If a
gene is selected by either procedure in the theorem, then its corresponding p-value is less than or equal
to the significance level q

m or RCIq
m . Following Theorem 2.1 in Peng et al. (2008), the lower bound

L(µgk − µg1) > 0.

Proposition 4.2 Both the above procedure for selective CIs and the one-sided confidence intervals in
Section 2 are concordant.

Proof. We prove that {Tg : θg /∈ CIg(α)} is concordant in Definition 5 of Benjamini and Yekutieli
(2005), where θg = µgk − µg1 and CIg(α) = (Lα(µgk − µg1),+∞), where Lα(µgk − µg1) is the
lower bound in Theorem 4.1 with confidence level 100(1 − α)%. The cases for {T ′g : µg1 − µgk /∈
(Lα(µg1 − µgk),+∞)} and {T(g) : k ≤ Rmin(T(g))} can be done similarly. For α ≤ α′, {Tg : θg /∈
CIg(α)} = {Tg : θg ≤ Lα(µgk − µg1)}. Note that Lα(µgk − µg1) ≤ Lα

′
(µgk − µg1). Therefore,

{Tg : θg /∈ CIg(α)} ⊆ {Tg : θg /∈ CIg(α′)}.
Based on Theorem 3 in Benjamini and Yekutieli (2005) and Proposition 4.2, we have the following

result.

Theorem 4.3 If the components of T and T′ are PRDS, the FCR-adjusted selective CIs above enjoy
FCR ≤ q.

Note that Steps 1 and 2 are modified from the FDR controlling testing procedure of BH. We can prove
that it controls the FDR by using the method in Section 6 in Benjamini and Yekutieli (2005) (suggested by
the referee).

Theorem 4.4 If the components of T and T′ are PRDS, then the FDR in Steps 1 and 2 of the above
procedure is controlled at level q.

Proof. As all g ∈ S(T), the selection procedure, have pg ≤ R×q/2
m , where pg is the corresponding

p-value. Applying the FCR in Step 4 implies that all one-sided intervals constructed are (L
RCIq/2

m (µgk −
µg1),+∞). Accodring to Theorem 4.1, these L

RCIq/2

m (µgk − µg1) > 0. Similarly for all g′ ∈ S(T′) have

p′g′ ≤
R′×q/2
m associated with constructed one-sided intervals (L

RCIq/2

m (µg′1 − µg′k),+∞). Therefore,

VCI is the number of g ∈ S(T) for which µgk − µg1 = 0 /∈ (L
RCIq/2

m (µgk − µg1),+∞) plus the number

of g′ ∈ S(T′) for which µg′1 − µg′k = 0 /∈ (L
RCIq/2

m (µg′1 − µg′k),+∞). That means the number of
true null hypotheses rejected by the modified BH procedure equals VCI . Therefore, FDR = FCR ≤ q by
Theorem 4.3.

In dose-response microarray experiments researchers are interested in testing whether genes are differ-
ently expressed and then doing interval inference for selected genes. The dependence of the test statistics
T and T′ among genes in Theorems 4.3 and 4.4 above is unknown in such applications. It is difficult to
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check whether or not the test statistics T and T′ satisfy the PRDS condition. However, it is not unrea-
sonable to assume that test statistics T and T′ among genes satisfy the PRDS condition. In Section 5, the
simulation studies show that the proposed procedure controls FCR even for test statistics T among genes
do not satisfy the PRDS condition.

The adjusted marginal confidence level for selected parameter increases when the proportion of number
of parameters/genes selected RCI over the number of considered parameters m decreases in Step 4. Both
Step 1 and Step 4 take into account of the monotonicity of the dose-response microarray experiments.

Note that one can use the Bonferroni procedure as a selection rule, when the adjustment of the confi-
dence level ensures control of the FCR-the confidence level is 1− Rq

m , where R is the number of selected
parameters. However, it is well known that the Bonferroni procedure is very conservative. If the Bon-
ferroni procedure for selection of parameters and the 1 − Rq

m confidence lower bounds for the R selected
parameters are constructed, the lower bounds are smaller than those given FCR-adjusted BH selected CIs
(see Sections 5 and 6).

For general dependency among the components of T and T′, we can have the FCR-adjusted BY-selected
confidence intervals if we replace q by q

∑2m
j=1 1/j in Step 2 and change q to q/(

∑2m
j=1 1/j) in Step 4. But

it is more conservative than the procedure for constructing FCR-adjsuted BH-selected CIs.

Theorem 4.5 The FCR-adjusted BY-selective CIs is bounded by q
∑2m
j=1 1/j.

Proof: Since the critical value tk,ν,α ≥ tk,ν,α′ for α ≤ α′, the marginal CIs in Section 2 are monotone.
Then using Theorem 4 in Benjamini and Yekutieli (2005) by replacing m with 2m we complete the proof.

Note that since the marginal CIs considered in the paper are monotone, the result above is also true
for any selection procedure including the Bonferroni procedure for any dependency structure of the test
statistics.

5 Simulation Studies

In this section, we conduct simulation studies to assess the performance of the proposed procedure. We
consider a dose-response microarray experiment with m = 200 genes and 4 dose levels. The sample size
is n = 10 for each dose level. Many assumptions on the dependence structure among genes have been
made in microarray studies. However, few if any of these assumptions have been verified. It is widely
believed that genes are more likely to be dependent within a group, and that each group is independent of
the others. In the simulation studies, we consider 20 independent groups and each group has 10 genes. We
consider two types of dependence structure among 10 genes, Σ1,ρ and Σ2,ρ, where

Σ1,ρ,i,j =

{
1 when i = j,
ρ when i 6= j,

Σ2,ρ,i,j =

 1 when i = j,
ρ when i < j ≤ 5,
−ρ when i ≤ 5, j > 5,

and 0 < ρ < 1. Many papers use Σ1,ρ in their simulation studies (Benjamini et al. (2006) among many
others). The dependence structure of Σ2,ρ (Storey et al. (2004)), does not satisfy the positive regression
dependence condition of Benjamini and Yekutieli (2001). Theorem 3 in Benjamini and Yekutieli (2005)
cannot be applied here.

We generate 20 groups of genes with 10 genes in each group. The effects of the m = 200 genes at each
dose level are generated from a multivariate normal distribution with mean vector µi = (µ1i, . . . , µmi)

T , i =
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1, . . . , 4 and covariance matrix Σ, where

Σ =


σ2

1Σρ 0 · · · 0
0 σ2

2Σρ · · · 0
...

...
. . .

...
0 0 · · · σ2

20Σρ


m×m

,

Σρ = Σ1,ρ or Σ2,ρ and σ2
r = r, r = 1, . . . , 20. For simplicity we only consider the increasing trend

µg1 ≤ µg2 ≤ µg3 ≤ µg4, g = 1, 2, . . . , 200 in the simulations. In this case, the parameters are se-
lected from {µgk − µg1, g = 1, . . . , 200}. We use the original FCR-adjusted BH-selected cis in Ben-
jamini and Yekutieli (2005) and the Bonferroni selection rule with FDR=0.05 instead of 0.05

2 as we as-
sume that the dose-response for each gene follows the increase trend in the simulation. We consider
τ = 0.1 or 0.2 as the proportion of nonzero values in the mean vector µi. The first (1 − τ) × m com-
ponents in µi are zero. For g = m(1 − τ) + 1, . . . ,m, configuration (10, 20, 30, 40) in Tables 1 and 3
below means that µg1 = 10, µg2 = 20, µg3 = 30, µg4 = 40. Similarly for other configurations consid-
ered in the simulation. The dose-response functions are of two types, linear ( (10, 20, 30, 40) ) and step
((10, 10, 10, 40), (10, 10, 40, 40), and (10, 40, 40, 40)). For each configuration, we used 1000 replications.
Table 1 (Table 3) gives the simulated FCRs based on BH and Bonferroni selection methods when the gene
expression levels are from the multivariate normal distribution with covariance associated with Σ1,ρ (Σ2,ρ).
Both tables show that the FCR clearly falls below 5% for the two types of dependence structure. The FCR
increases as τ increases. The FCR for BH selection decreases roughly as ρ increases for covariance asso-
ciated with Σ1,ρ but it is not the case for covariance associated with Σ2,ρ. The simulated FCR in Tables
1 and 3 indicates that among all DE genes only a very small portion of confidence lower bounds does not
cover the parameter µg4 − µg1.

We also simulate the mean value and the standard deviation of the obtained lower bounds across the
1000 replications for each configuration in Table 1. The results (standard deviations are in the parentheses)
are reported in Table 2. It can be seen that both the mean value and the standard deviation of the lower
bounds by the Bonferroni procedure are much smaller than those by the BH procedure for the scenarios
considered. It seems that the correlation among genes in a group does not affect the mean values of the
lower bounds for both procedures, but the proportion of DE genes does affect the mean values of the
lower bounds for both procedures. For the configuration in Table 2, the averages of the lower bounds
increase when the proportion of DE genes increases from 10% to 20%. However, it seems that the larger
the correlation among genes in a group, the larger the standard deviation of the lower bounds for both
procedures. It is interesting that the standard deviations of the lower bounds for the BH procedure decrease
but the standard deviations of the lower bounds for the Bonferroni procedure increase when the proportion
of DE genes increases from 10% to 20%.

6 Revisit the dose-response microarray data set

In this section, we construct the FCR-adjusted BH selected lower confidence intervals for µg4 − µg1 (or
µg1−µg4 ) of DE genes. The DE genes are found by the likelihood ratio test forHg0 : µg1 = µg2 = µg3 =
µg4 versus Hg1 : µg1 ≤ · · · ≤ µg4 and Hg0 versus H ′g1 : µg1 ≥ µg2 ≥ µg3 ≥ µg4 with at least one strict
inequality for the 16998 genes in the data set mentioned in Section 1 at FDR 0.05

2 for each of the monotone
directions with BH-FDR adjustment. We have 1197 DE genes with Hg1 : µg1 ≤ · · · ≤ µg4 and 1549 DE
genes with H ′g1 : µg1 ≥ · · · ≥ µg4. We select those 1197 + 1549 = 2746 DE genes. The FCR-adjusted
1−RCI×0.025/m = 1−2746×0.025/16998 = 99.60% lower confidence bounds for the selected mean
differences µg4 − µg1 (or µg1 − µg4) are constructed by the method in Peng et al. (2008). This is because
the parameters are selected from the union of parameters: {µg4 − µg1, g = 1, . . . ,m} ∪ {µg1 − µg4, g =
1, . . . ,m} as we do not know the direction of dose-response effects in advance. It is the same reason for the
Bonferroni procedure at level 1− 0.025

16998 and the unadjusted procedure at level 1− 0.025 for each direction.
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Table 1 Simulated FCR of FCR-adjusted 95% Confidence Lower Bounds for BH and Bonferroni Level
0.05 Selection for Covariance with Σ1,ρ.

Configuration τ Selection Method ρ

0.0 0.2 0.5 0.9
(10, 20, 30, 40) 0.1 BH 0.00151 0.00117 0.00118 0.00038

Bon 0.00009 0.00005 0.00000 0.00000
0.2 BH 0.00354 0.00325 0.00240 0.00185

Bon 0.00010 0.00005 0.00002 0.00000
(10, 10, 10, 40) 0.1 BH 0.00303 0.00241 0.00221 0.00123

Bon 0.00019 0.00024 0.00010 0.0000
0.2 BH 0.00634 0.00598 0.00451 0.00417

Bon 0.00019 0.00024 0.00012 0.00000
(10, 10, 40, 40) 0.1 BH 0.00432 0.00353 0.00260 0.00157

Bon 0.00024 0.00024 0.00010 0.00010
0.2 BH 0.00882 0.00776 0.00679 0.00542

Bon 0.00020 0.00019 0.00017 0.00007
(10, 40, 40, 40) 0.1 BH 0.00281 0.00219 0.00184 0.00174

Bon 0.00014 0.00010 0.00000 0.00010
0.2 BH 0.00655 0.00572 0.00509 0.00460

Bon 0.00015 0.00010 0.00007 0.00022

The following lower confidence bounds for the selected mean differences µg4 − µg1 of selected DE
genes for the increasing trend are the snapshot of confidence lower bounds based on different adjustments
for the 1197 chosen genes. Only 172 Bonferroni-adjusted confidence lower bounds are positive for the
1197 chosen genes by the BH procedure. Below are the three types of confidence lower bounds for the first
10 genes chosen by the Bonferroni selection method.

• The first 10 Bonferroni-adjusted confidence lower bounds for µg4 − µg1 of selected DE genes by the
Bonferroni procedure are 1.43670859 0.06452051 4.03226602 0.01434778 2.21203461 1.38753585
0.28916412 0.07269671 0.22573569 0.25780339

• The corresponding 10 FCR-adjusted confidence lower bounds of the selected DE genes by the Bon-
ferroni procedure are 2.0856934 0.4874672 5.1134994 0.9831878 2.9122748 3.7325525 0.7729919
0.4861990 1.8055545 0.6062588

• The corresponding 10 unadjusted confidence lower bounds of the selected DE genes by the Bonferroni
procedure are

2.1793371 0.5484954 5.2695134 1.1244278 3.0169314 4.0727143 0.8428411 0.5536372 2.0335108
0.6586269

We also present the three types of confidence lower bounds above in Figure 2. We can see that the un-
adjusted marginal 97.5% lower confidence bounds for µg4 − µg1 are larger than the FCR-adjusted lower
bounds and the FCR-adjusted lower bounds are larger than the Bonferroni-adjusted lower bounds at the
confidence level of 1− 0.025/16998 = 99.99985% as expected. This can also be observed from Figure 3
below.

Figure 3 shows the heights of the confidence lower bounds for µg4 − µg1 for the first 150 DE genes by
the Bonferroni procedure for the increasing trend in the data set in terms of their heights. The unadjusted
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Table 2 Simulated Averages and Standard Deviations of FCR-adjusted 95% Confidence Lower Bounds
for BH and Bonferroni Level 0.05 Selection for Covariance with Σ1,ρ.

Configuration τ Selection Method ρ

0.0 0.2 0.5 0.9
(10, 20, 30, 40) 0.1 BH 22.55 (1.16) 22.58 (1.35) 22.65 (1.67) 22.76 (2.43)

Bon 2.15 (0.05) 2.15 (0.08) 2.14 (0.11) 2.14 (0.15)
0.2 BH 23.42 (0.79) 23.43 (0.94) 23.45 (1.21) 23.54 (1.79)

Bon 4.35 (0.07) 4.34 (0.11) 4.34 (0.15) 4.34 (0.20)
(10, 10, 10, 40) 0.1 BH 23.84 (1.18) 23.88 (1.34) 23.97 (1.64) 24.10 (2.42)

Bon 2.32 (0.04) 2.32 (0.07) 2.32 (0.09) (2.32 (0.12)
0.2 BH 24.60 (0.81) 24.61 (0.93) 24.64 (1.19) 24.73 (1.78)

Bon 4.68 (0.06) 4.68 (0.09) 4.68 (0.13) 4.67 (0.17)
(10, 10, 40, 40) 0.1 BH 24.53 (1.21) 24.58 (1.34) 24.68 (1.60) 24.82 (2.41)

Bon 2.42 (0.03) 2.42 (0.05) 2.42 (0.08) 2.42 (0.10)
0.2 BH 25.23 (0.81) 25.25 (0.94) 25.28 (1.18) 25.38 (1.79)

Bon 4.86 (0.05) 4.86 (0.08) 4.86 (0.11) 4.86 (0.15)
(10, 40, 40, 40) 0.1 BH 23.84 (1.20) 23.88 (1.36) 23.96 (1.65) 24.08 (2.42)

Bon 2.32 (0.04) 2.32 (0.06) 2.32 (0.09) 2.32 (0.12)
0.2 BH 24.61 (0.82) 24.63 ( 0.95) 24.66 (1.20) 24.75 (1.80)

Bon 4.68 (0.05) 4.68 (0.09) 4.68 (0.12) 4.68 (0.17)

confidence lower bounds (yellow longdashed line) are always the highest while the Bonferroni bounds
(black solid line) are the lowest and the FCR-adjusted bounds (blue dotted line) in between.

7 Discussion

Since the groundbreaking paper of Hochberg and Benjamini (1995), the control of FDR is well studied
when thousands or even millions genes are tested simultaneously. The statistical selective inference has
been addressed in Benjamini and Yekutieli (2005) and is a hot topic now (see Benjamini, Heller, and
Yekutieli (2009), Yekutieli (2012) and Benjamini and Bogomolov (2014) among others). Benjamini and
Yekutieli suggested that it is important to account for selection when the selected intervals are reported or
emphasized. We have applied Benjamini and Yekutieli (2005)’s procedure for constructing FCR-adjusted
BH selected confidence intervals and the confidence lower bound for µk − µ1 in Peng et al. (2008) to en-
sure FCR control and to take into account of the monotonicity of the dose-response studies in microarray
experiments. The proposed interval estimation method provides more useful information than point esti-
mates or test statistics about the selected genes’ biological relevance and so is beneficial to understanding
dose-response microarray experiments.
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Table 3 Simulated FCR of FCR-Adjusted BH and Bonferroni 95% CIs for BH and Bonferroni Level
0.05 Selection for Covariance with Σ2,ρ.

Configuration τ Selection Method ρ

0.0 0.2 0.5 0.9
(10, 20, 30, 40) 0.1 BH 0.00153 0.00177 0.001578 0.00163

Bon 0.00009 0.00015 0.00015 0.00015
0.2 BH 0.00353 0.00341 0.00358 0.00350

Bon 0.00010 0.00015 0.00012 0.00010
(10, 10, 10, 40) 0.1 BH 0.00304 0.00294 0.00265 0.00286

Bon 0.00019 0.00024 0.00020 0.00019
0.2 BH 0.00635 0.00611 0.00609 0.00579

Bon 0.00019 0.00025 0.00020 0.00022
(10, 10, 40, 40) 0.1 BH 0.00432 0.00417 0.00405 0.00427

Bon 0.00025 0.00019 0.00019 0.00020
0.2 BH 0.00882 0.00868 0.00844 0.00826

Bon 0.00020 0.00022 0.00019 0.00019
(10, 40, 40, 40) 0.1 BH 0.00282 0.00296 0.00281 0.00276

Bon 0.00014 0.00015 0.00015 0.00020
0.2 BH 0.00655 0.00640 0.00629 0.00614

Bon 0.00015 0.00017 0.00015 0.00015
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