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Abstract 

Many recent studies have emphasized the important role of structural variation (SV) in determining 

human genetic and phenotypic variation. In plants, studies aimed at elucidating the extent of SV are 

still in their infancy. Evidence has indicated a high presence and an active role of SV in driving 

plant genome evolution in different plant species.  

With the aim of characterizing the size and the composition of the poplar pan-genome, we 

performed a genome-wide analysis of structural variation in three intercrossable poplar species: 

Populus nigra, Populus deltoides and Populus trichocarpa. We detected a total of 7,889 deletions 

and 10,586 insertions relative to the P. trichocarpa reference genome, covering respectively 33.2 

Mb and 62.9 Mb of genomic sequence, and 3,230 genes affected by copy number variation (CNV). 

The majority of the detected variants are inter-specific in agreement with a recent origin following 

separation of species. 

Insertions and deletions (INDELs) were preferentially located in low-gene density regions of the 

poplar genome and were, for the majority, associated with the activity of transposable elements. 

Genes affected by SV showed lower-than-average expression levels and higher levels of dN/dS, 

suggesting that they are subject to relaxed selective pressure or correspond to pseudogenes. 

Functional annotation of genes affected by INDELs showed over-representation of categories 

associated with transposable elements activity, while genes affected by genic CNVs showed 

enrichment in categories related to resistance to stress and pathogens. This study provides a 

genome-wide catalogue of SV and the first insight on functional and structural properties of the 

poplar pan-genome. 
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Introduction 

 

Studies aimed at elucidating the genetic bases of complex phenotypes focused mostly on identifying 

genetic association between a given phenotype and single nucleotide polymorphisms (SNPs). 

However, many studies have demonstrated that a substantial proportion of the heritability of 

complex traits cannot be explained by associations with SNPs (Vineis and Pearce 2010). Several 

researchers addressed the problem of “missing heritability” (Eichler et al. 2010) and suggested 

several causes, including rare variants (Manolio et al. 2009; Marroni et al. 2011) and structural 

variation (SV) (Eichler et al. 2010). It is now accepted that in addition to SNPs, other types of 

sequence variation play an important role in plant genome evolution (Bennetzen and Wang 2014; 

Marroni et al. 2014). Structural variation, such as insertions and deletions (INDELs) and copy 

number variation (CNV) has been shown to be frequent in plant species and to have an important 

effect on phenotypic diversity and genome evolution (Zmieńko et al. 2013; Marroni et al. 2014; 

Saxena et al. 2014). 

Transposable element (TEs) activity is a major source of genome instability and structural variation. 

TE movement may directly mobilize gene sequences in the genome (Morgante et al. 2007) and may 

impact gene expression via the introduction or the modification of alternative regulatory elements, 

exons, and splice junctions (Ray and Batzer 2011) or via the modification of the local chromatin 

environment. A well-known example of the latter case has been reported in sweet orange, where the 

insertion of the Rider long terminal repeat (LTR) retrotransposon upstream of the Ruby gene 

resulted in its cold-dependent expression and in the distinctive red colouration of the variety 

Tarocco (Butelli et al. 2012). Moreover, TEs can mediate genome rearrangements through non-

homologous recombination (Eichler and Sankoff 2003). 

When CNVs change the number of copies of a given gene, they can alter their levels of expression. 

For example, gene amplification has been involved in  stress resistance, resistance to herbicides or 

tolerance to chemicals (Gaines et al. 2010; McHale et al. 2012; Maron et al. 2013).  

The ubiquity of SV led some researchers to extend the pan-genome concept to plants (Morgante et 

al. 2007). According to this view, the pan-genome of a given species can be separated in a “core” 

genome, composed by sequences that are shared by all the species members and a “dispensable” 

genome, containing sequences that are present only in a subset of the individuals of that species. 

Sequences belonging to the dispensable genome, such as those involved in SV, may provide an 

important contribution to phenotypic diversity within the species (Marroni et al. 2014; Zhang et al. 

2015). 

In spite of its phenotypic relevance and its potential effects on genome evolution, SV has not been 

studied as carefully as other classes of sequence variants. The compact genome size (~500 Mb) and 
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the availability of the reference genome of Populus trichocarpa (Tuskan et al. 2006) makes poplar a 

suitable model genus to study the prevalence of structural variation and its possible contribution to 

phenotypic variation. A better understanding of the population distribution of INDELs and CNVs 

might increase the ability to identify potentially interesting markers for poplar genetic 

improvement. Moreover, considering that different poplar species are crossable and progenies show 

hybrid vigor (Einspahr and Benson 1964; Li et al. 1993), a map of interspecific SV may be of help 

in elucidating the mechanisms at the basis of plant heterosis. 

We set out to explore the extent of structural variation in the three poplar species P. nigra, P. 

deltoides and P. trichocarpa at a genome-wide level by means of Illumina next-generation 

sequencing. The advent of NGS technologies has revolutionized the way of detecting SV and 

resequencing-based approaches have progressively replaced those based on microarrays (Alkan et 

al. 2011). The identification of SV using NGS data is mainly pursued by using two different 

approaches: a) paired-end mapping (PEM), which identifies SV by using the discordance from the 

expected span size and/or orientation of mapped paired-end reads; and b) depth of coverage (DOC), 

which detects SV by searching for a local increase or decrease in sequence depth (Alkan et al. 

2011). We exploited the PEM signature to identify INDELs in the resequenced individuals with 

respect to the P. trichocarpa reference genome and the DOC signature to detect genic CNVs 

between all the resequenced samples. We studied how SV is distributed along the genome, its 

relationship with the activity of transposable elements and its possible impact on gene expression. 

Finally, we combined the information on all the detected variants to get a first estimate of the size 

and the composition of the poplar pan-genome.  

 

Results and Discussion 

 

Studies on SV in plant species could have tremendous utility in identifying genomic regions 

associated with complex traits, domestication and adaptation. To date, studies on interspecific 

genetic variation of the genus Populus have focused on a limited number of markers, like AFLPs 

and microsatellites, distributed along the genome (Cervera et al. 2001; Cervera et al. 2005a; Fossati 

et al. 2005; Rohde et al. 2011). With the aim of characterizing the poplar pan-genome and 

investigating its relationship with the origin of intra- and inter-specific diversity, we performed a 

genome-wide analysis of structural variation between three poplar species: Populus nigra, Populus 

deltoides and Populus trichocarpa. We obtained a sequencing depth ranging from approximately 

26x to 45x in four P. nigra genotypes (BDG, 71077-308, BEN3 and Poli), two P. deltoides 

accessions (L150-089 and L155-079) and in the P. trichocarpa genotype used to build the reference 
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genome (Nisqually-1). These high-depth samples underwent deep structural variation analysis. The  

fifteen low-depth P. nigra accessions were pooled and analyzed together with the aim of studying  

the incidence of SV in a P. nigra discovery panel. Sequencing depth and library statistics for each  

of the resequenced accession are reported in Supplementary Table 1 and Supplementary Table 2. In  

the high-depth P. nigra and P. deltoides samples we covered about 82% of the P. trichocarpa  

reference genome considering all the aligned reads and about 63% of the reference genome  

considering only the reads that were uniquely aligned to the genome. These results showed the  

presence of a high degree of genome similarity between the three poplar species included in the  

study. As expected, in the P. trichocarpa Nisqually-1 sample we covered a higher fraction of the  

genome corresponding to 97% when considering all the aligned reads and 92% when considering  

only the reads uniquely aligned to the reference.   

INDELs affect a large portion of poplar genome and are frequently related to LTR- 

retrotransposons  

P. nigra and P. deltoides belong to the same section of the genus Populus (Stettler et al. 1996;  

Cervera et al. 2005b) and are phylogenetically more closely related to each other than they are to P.  

trichocarpa (see Table 1 for a schematic representation of the known phylogenies). Thus, using the  

P. trichocarpa v3.0 genome as reference, we expected to detect in P. nigra and P. deltoides  

INDELs that occurred after the divergence of the two species from P. trichocarpa. In particular,  

INDELs that occurred before the P. nigra/P. deltoides speciation (at time c in the phylogenetic tree  

in Table 1) are expected to be shared by the two species, while more recent ones (times d and e) are  

expected to be species-specific. In P. trichocarpa a different scenario is expected. In fact, the P.  

trichocarpa reference genome is a combination of the two haplotypes of the highly heterozygous  

individual Nisqually-1, which is the same individual we had included in the study. Thus, in P.  

trichocarpa we expected to identify only variants that are heterozygous in Nisqually-1 and, thus, not  

fixed in this species.   

In total, we detected 7,889 deletions and 10,586 insertions relative to the P. trichocarpa reference  

genome, covering respectively 33.2 Mb and 62.9 Mb of genomic sequence. Median length of  

detected variants was 2,176 bp and 4,860 bp respectively. The number of detected variants and the  

number of megabases involved in each studied sample is reported in Supplementary Table 4, while  

the complete lists of insertions and deletions are reported in Supplementary Table 5 and 6,  

respectively. Using a PCR-based assay, we experimentally validated a randomly selected set of 29  

INDELs: 14 out of 16 tested insertions (Supplementary Figure 3) and 13 out of 13 tested deletions  

(Supplementary Figure 4) were confirmed by PCR (see section 5 of Supplementary Material for  

details). The validation of almost 2,400 deletions of the sample Poli was also performed in silico  
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using a P. nigra de novo draft assembly obtained with the short reads of Poli (see section 6 of 

Supplementary Material for details). 98.4% of the tested deletions were confirmed by this analysis, 

suggesting a high accuracy of the detection process. Due to major difficulties in the de novo 

assembly process of genomic regions containing the insertions, we couldn’t replicate this analysis to 

test the accuracy of the detection of insertions (see section 6 of Supplementary Material for details).  

In plants, transposable elements are a major source of genetic variation (Kidwell and Lisch 1997). 

As expected, a great proportion of the detected deletions (55.7%) were highly homologous to 

known TEs and, as required by the applied detection pipeline, almost all the detected insertions 

were related to the presence of transposable elements (Table 2). In particular, 61.8% of the 

classified deletions and 83.8% of the classified insertions resulted to be homologous to class I 

retroelements while the remaining were classified as class II DNA TEs. LTR Gypsy elements were 

the most represented among class I elements covering 39.9% and 49.8% of the classified deletions 

and insertions, respectively. Among class II elements, the most represented were hAT elements, 

followed by Helitrons and CACTA elements. The percentage of deletions not classified as TEs was 

lower in the dataset of variants shared by P. nigra and P. deltoides species with respect to species 

specific ones (Supplementary Table 7). These observations are in accordance with the model 

proposed in Table 1 and with the known molecular mechanisms that can generate SV of different 

origin: Class I elements move strictly through a copy and paste mechanism and should always 

generate insertions, Class II elements usually move through a cut and paste mechanism and should 

produce both insertions as well as deletions, the non-annotated deletion events are unrelated to 

transposition activity and should represent real deletions as a consequence of defective repair events 

following double strand breaks. The increased relative proportion of Class II elements in 

comparison to Class I observed in deletions and especially in those that are only identified in P. 

nigra or P. deltoides samples is therefore a strict consequence of their different transposition 

mechanism. As expected, LTR retrotransposons involved in deletions resulted to be younger than 

those fixed in the studied poplar species (Supplementary Figure 5). However, difference in age 

distributions was not as pronounced as that observed in cultivated plants such as  maize (Brunner et 

al. 2005), rice (Hurwitz et al. 2010) or grapevine (Michele Morgante, personal communication). 

This difference could be explained by the presence in the studied poplar species of a lower rate of 

recent activity of TEs, a higher level of incomplete lineage sorting or/and a higher level of gene 

flow. We observed, in insertions shared by P. nigra and P. deltoides samples a significant increase 

of annotated class I retroelements mainly due to a higher proportion of gypsy elements 

(Supplementary Table 8) suggesting that the insertion events of gypsy elements are in general older 

than copia ones. LTR retrotransposons vary in size from several hundred bases to over 10 kb 

(Bennetzen 2000). Plotting the size distribution of the identified INDELs (Supplementary Figure 6), 
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we observed three signature peaks at 8.5-9.5 kb, 4-5 kb and at 1-2 kb that could be respectively 

related to entire gyspsy LTR-retrotransposons, copia ones and to retroelements that underwent 

subsequent rearrangements. 

The majority of variants were detected only in one of the three analyzed species (Table 1), 

suggesting that INDELs are mainly species-specific and in agreement with a recent origin following 

separation of species (times b, d or e in Table 1). As expected, the majority of P. trichocarpa 

specific variants were not fixed in the species and represent heterozygous INDELs of the sample 

Nisqually-1. The small fraction of homozygous INDELs detected in Nisqually-1 may represent false 

positive variants, errors in the assignment of the genotype or inaccuracies in the reference genome 

assembly. For deletions, the latter case was supported by the observation that an important fraction 

of the homozygous deletions detected in Nisqually-1 contained a stretch of 100 or more “N” bases 

in the corresponding region of the reference genome, denoting possible inaccuracies in the 

scaffolding step of the assembly process. 

On the contrary, a great proportion of both P. nigra and P. deltoides specific variants were fixed in 

the species (Table 1). This was confirmed by the analysis performed in the low-depth P. nigra pool 

in which we found that for both types of variants, the majority of INDELs (78.2% of deletions and 

61.7% of insertions) had a frequency higher than 0.9 suggesting that a great proportion of variants 

are fixed in this species (Supplementary Figure 7). 

INDELs shared between P. nigra and P. deltoides species represent 11.6% and 13.9% of the total 

dataset of deletions and insertions respectively (Table 1). A high proportion of variants shared 

between this two species is consistent with the known phylogeny of the three studied species. In 

particular, deletions shared by P. nigra and P. deltoides samples may represent real deletion events 

that occurred before the P. nigra/P. deltoides speciation (time c) or P. trichocarpa specific insertion 

events (occurred at time b). On the other hand, insertions shared by this two species may result from 

insertion events that occurred before speciation (time c) or deletion events that occurred in P. 

trichocarpa (time b).  

A very small fraction of INDELs (3.4% of deletions and 0.6% of insertions) resulted to be shared 

between either P. nigra or P. deltoides samples and P. trichocarpa. This scenario can be the result 

of old deletion or insertion events occurred in the common ancestor (time a) that have been lost in 

P. nigra or P. deltoides at a later stage. Finally, 3.8% of deletions and 1.2% of insertions were 

detected in all the three species. These variants may arise from inaccuracies in the reference genome 

or, in the case of not fixed variants, may represent old deletion or insertion events (time a).  

In plants, the centromeric and pericentromeric chromosome regions are colonized by LTR-gypsy 

retroelements, which are the most abundant repetitive elements in the P. trichocarpa genome (Jiang 

et al. 2003; Wang et al. 2008). By plotting the distribution of the detected INDELs along the 
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nineteen poplar chromosomes, we noticed that deletions were evenly distributed through the 

genome, showing only a slight preference for highly repeated regions while insertions were 

preferentially located in centromeric regions (Figure 1). Significant enrichment of deletions in the 

centromeric regions was observed only in Chr14 and Chr16 (p<0.05 assuming a Poisson 

distribution for the null hypothesis). On the other hand, significant enrichment of insertions in the 

centromeric region was observed in chromosomes 1, 2, 3, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18 and 19 

(p<0.05 assuming a Poisson distribution for the null hypothesis).  

We investigated the relationship between the number of detected INDELs in a given region of the 

genome and its repetitiveness: 250 kb long genomic regions carrying six or more insertions showed 

a significantly higher repetitiveness compared to those not carrying insertions (Supplementary 

Figure 8, left panel). The same was true for regions carrying seven or more deletions 

(Supplementary Figure 8, right panel). This suggests that both deletions and insertions are 

preferentially located in highly repetitive regions. According to the P. trichocarpa v3.0 gene 

annotation, the deleted sequences contained a total of 2,928 annotated genes while 1,986 annotated 

genes were interrupted by a predicted insertion. Seventy-one percent of the genes affected by 

deletions and 78% of those affected by insertions were associated to at least one Gene Ontology 

term. We detected eight GO categories over-represented in deleted genes and eight GO categories 

over-represented in genes interrupted by insertions (Figure 2). Three of them (“transferase activity”, 

“nucleotide binding”, “kinase activity”) were over-represented in both types of variants. The gene 

content analysis of the deleted sequences confirmed that a great part of the deletions resulted from 

the activity of transposable elements and suggested that insertions have preferentially occurred in 

regions rich in transposable elements. In fact, the functional annotation showed a significant 

enrichment of genes with GO molecular functions (transferase activity, nucleotide binding and 

hydrolase activity) that can be related to TE proteins, like the Gag-Pol polyprotein (Feschotte et al. 

2002). 

Genic CNVs preferentially affect genes located near telomeres and related to defense traits 

To get a more comprehensive insight into the effects of structural variation on genes, we detected 

genic CNVs using the depth of coverage signature of NGS. We detected 3,230 genes showing copy 

number variation between at least two of the five high-depth samples (Supplementary Table 9). A 

total of 989 genic CNVs overlapped with deletions (647), insertions (212) or both kinds of INDELs 

(130). The distance between genic CNVs and INDELs was significantly shorter than that between 

all the annotated genes and INDELs, suggesting that genic CNVs tend to occur near transposable 

elements (Supplementary Figure 9). The number of genic CNVs detected in each pairwise 

comparison is reported in Supplementary Table 10. We observed that genic CNVs are often 
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organized in clusters (p=0.0003), and that windows containing clusters of genic CNVs have a  

higher gene density (see Supplementary Figure 10). Genic CNVs are not uniformly distributed  

along the poplar genome (Figure 1): the number of genic CNVs is significantly higher than  

expected within three Mb from chromosomes telomeres and significantly lower than expected at  

distances greater than 7 Mb from the telomere (Supplementary Figure 11). These findings are in  

agreement with previous reports on an over-representation of CNVs in the subtelomeric regions of  

the human genome (Nguyen et al. 2006; Riethman 2008). Similarly to what we previously observed  

for INDELs, the average number of genic CNVs detected by comparing two samples belonging to a  

different species (1,147) was greater than the average number of genic CNV detected by comparing  

samples of the same species (747). A total of 404 genic CNVs were P. nigra (230) or P. deltoides  

(174) intraspecific variations, 367 were specifically detected by comparing P. nigra with P.  

deltoides samples, 187 by comparing the P. nigra samples with the P. trichocarpa one and 213 by  

comparing P. deltoides and P. trichocarpa samples. Inter- and intra-specific genic CNVs are  

distributed along the whole genome (Supplementary Figure 12) but it is possible to observe some  

genomic locations enriched for some inter- or intra-species specific variants. For example the last 2  

Mb of Chr07 are enriched for P. nigra intraspecific genic CNVs, the region comprised between 46  

and 48 Mb of Chr01 is enriched for P. deltoides intraspecific ones while the region between 4 and 6  

Mb of Chr14 is enriched for genic CNVs detected by comparing P. nigra with P. deltoides samples.  

P-values calculated across the whole genome are reported in Supplementary Table 11.  

Among the 3,076 (95.2% of the total) genic CNVs having a blastx hit against the Viridiplantae  

section of the RefSeq protein database, 2,252 (~70%) were associated to at least one Gene Ontology  

term. We detected twelve GO categories significantly over-represented with respect to the whole set  

of P. trichocarpa genes (Figure 2). Three of them (“transferase activity”, “nucleotide binding” and  

“kinase activity”) were over-represented also in genes affected by both deletions and insertions, five  

(“signal transduction”, “receptor activity”, “signal transducer activity”, “carbohydrate binding”,  

“pollen-pistil interaction”) were over-represented also in genes affected by deletions and one  

(“hydrolase activity”) was over-represented also in genes affected by insertions. Transposable  

elements make up a high proportion of repetitive DNA, indicating a possible contribution of these  

elements to the formation of the genic CNVs localized in highly repetitive genomic regions. In fact,  

the functional annotation showed a significant enrichment in the dataset of genic CNVs associated  

with GO molecular functions (“transferase activity”, “nucleotide binding” and “hydrolase activity”)  

that can be related to TE proteins. LTR retroelements, representing the most active class of  

transposable elements in poplar, have been previously shown to be major contributors to genome  

size evolution in rice (Ma and Bennetzen 2004). Transposable elements may also be important in  

new gene formation and genome evolution. For example Helitron-related transposable elements  
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have been shown to carry pseudogenes in maize and to contribute to the expansion and evolution of  

the maize genome (Morgante et al. 2005; Yang and Bennetzen 2009). Genic CNVs enriched for the  

twelve GO categories are not uniformly distributed through the genome and the enrichment for  

genic CNVs of a given GO category is not necessarily due to local enrichment of genes belonging  

to the same GO category (Supplementary Figure 13). P-values calculated across the whole genome  

are reported in Supplementary Table 12. For example in the terminal part of Chr01 (approximately  

between 45 and 48 Mb) there is an enrichment for genic CNVs in genes belonging to the three GO  

categories “nucleotide binding”, “hydrolase activity” and “response to stress”, whereas the number  

of genes belonging to these categories was not significantly different from expectations; these three  

categories are all related to disease resistance and in fact the presence of NBS-LRR genes has been  

previously reported in this genomic location (Kohler et al. 2008).  

16% of genic CNVs encode for disease resistance proteins, such as the Nucleotide Binding Site- 

Leucine Rich Repeat (NB-LRR) gene family. In maize, evidences that disease resistance genes  

exhibit copy number variation for different haplotypes have already been reported (Smith et al.  

2004). In addition, the overrepresentation of disease resistance genes in regions of structural  

variation between different species has already been reported for rice (Hurwitz et al. 2010).  

Evidences of the high variability of disease resistance genes have been also reported for  

Arabidopsis thaliana (Clark et al. 2007). In A. thaliana, tandem duplications and losses have been  

found to play the dominant role in affecting copy number of disease resistance genes (Cannon et al.  

2004). Tandem duplication processes are considered to be a major cause for the generation of  

clusters of duplicated genes and for the expansion of some gene families. For example, the extant  

distribution and diversity in Arabidopsis genome of the NBS-LRR sequences has been generated by  

extensive duplication and ectopic rearrangements that involved segmental duplications (Meyers et  

al. 2003). Unequal recombination occurring when interspersed repetitive elements promote non- 

homologue crossing-over is thought to be the primary mechanism driving the expansion of gene  

clusters (Leister 2004). After the duplication, each paralogous gene may retain the same function as  

the ancestral copy or may lose the original function and/or obtain a new function. Genes that confer  

a selective advantage are thus maintained by natural selection. Therefore, the genes that we have  

found to be over-represented in the genic CNVs may reflect recent gene acquisition or gene loss  

events occurred in one of the two poplar species and are candidate markers of interspecific  

divergence.  

INDELs and CNVs disrupt gene structure and affect gene function in lowly expressed and  

rapidly diverging genes  

A total of 28.6% of the deletions contained one or more annotated genes while 20.4% of the  
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insertion sites were predicted to overlap an annotated gene. The number of genes affected by 

deletions (2,928) and insertions (1,986) was significantly lower than expected by chance (4,240 and 

2,716 respectively, confidence intervals: 4168-4335 and 2634-2828). Moreover, 16.6% (1,310) of 

the deletions and 10.4% (1,101) of the insertions were located at less than 500 bp from an annotated 

gene, against expectations of 1,437 (confidence interval 1,377-1,501) and 1,923 (confidence 

interval 1,848-2,001) respectively, based on simulations of randomly distributed deletion and 

insertion points in the genome. Approximately 43% of the genes affected by deletions were 

completely deleted, while the remaining genes were only partially deleted. In total, 0.09 Mb of 5’ 

UTR regions, 0.19 Mb of 3’ UTR regions, 1.76 Mb of coding regions and 2.37 Mb of intronic 

regions resulted to be deleted in at least one sample. The majority of the insertions affecting a gene 

were observed in intronic regions (807), followed by those observed in coding regions (575), in 3’ 

UTR regions (218) and in 5’ UTR regions (75); the remaining sites were not univocally detected in 

a specific genic region. The extent of each genic portion affected by deletions was shorter than 

expected by chance, while for those affected by insertions this was observed only in CDS and 

introns (Supplementary Table 13).  

Our results showed that INDELs tend to occur outside of genic sequences, probably due to the 

effect of purifying selection. When SV affect genes, they are more likely to affect genes that are not 

expressed or that show low levels of expression (Figure 3, left panel). In fact, if compared with the 

whole dataset of P. trichocarpa annotated genes, both genic CNVs and INDELs resulted to affect a 

higher proportion of genes for which no expression has been detected by analyzing the P. 

trichocarpa RNAseq data obtained from four different tissues. In the complete dataset the 

percentage of non-expressed genes was 6.5%, while this value significantly increased in genes 

interrupted by insertions (9.2%, chi-square test p-value 1.2E-06), in deleted genes (8.8%, chi-square 

test p-value 4.5E-07) and in genic CNVs (12.0%, chi-square test p-value 2.5E-37) (Figure 3, left 

panel). We repeated the same analysis separately for genes affected by INDELs detected in 

homozygous state in at least one of the studied samples and for those detected only in heterozygous 

state. This analysis showed that the significant increase of non-expressed genes is driven by the 

2,270 and 1,346 genes affected by homozygous deletions and insertions respectively 

(Supplementary Figure 14). This marked difference between homozygous and heterozygous 

structural variants could indicate the presence of a fraction of variants with potential deleterious 

effects on expression that are only found in heterozygous condition and could contribute to the 

genetic segregational load of the poplar species considered. We compared expression levels of all 

expressed genes with those of genes affected by insertions, deletions or CNVs. We found that 

expression levels of genes affected by structural variation are significantly lower if compared with 

the expression levels of all the expressed genes (Figure 3, central panel). Analyzing the four tissues 
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(developing xylem, leaf, callus from root and cambium) separately we observed the same pattern. 

Genes affected by SV showed significantly reduced levels of expression in the four studied tissues 

with the exception of callus, in which the reduction was not significant in genes affected by 

deletions (Supplementary Figure 15).  

To determine whether genes affected by structural variation were generally associated with fast 

evolving proteins, we examined the rates of non-synonymous to synonymous changes per gene 

(dN/dS). Using a randomization test, we found that genes affected by all the three types of studied 

structural variation had a significantly higher dN/dS ratio compared with non-affected genes (Figure 

3, right panel). In line with what was recently reported for Arabidopsis thaliana (Bush et al. 2014), 

these results suggest the existence of either positive selection or relaxed negative selection in the 

genes affected by structural variation. Part of the genes affected by structural variation may 

represent pseudogenes or wrong predictions in the genome annotation process. The increased dN/dS 

values in genes affected by both deletions and insertions are mainly due to the significant higher 

dN/dS values of genes in which the INDEL specifically disrupt a CDS (Supplementary Figure 16). 

On the other hand, dN/dS values of genes in which deletions affected only the intronic regions or in 

which insertions occurred in 3’ UTRs are significantly lower (Supplementary Figure 16).  

Identification of INDELs and genic CNVs allows reconstructing the poplar pan-genome  

This study demonstrated that structural variation contributes to a substantial amount of the overall 

genetic variation in poplar. The detected deletions and insertions cover approximately 20% of the 

poplar reference genome. We found that a great proportion of this variability was driven by two 

main mechanisms: the activity of transposable elements (especially class I LTR retroelements) and 

non-homologous recombination driven by repeated gene clusters. A predominant contribution of 

transposable elements to the genome structural variation was already reported for maize (Morgante 

et al. 2007). 

By summing the 434 Mb included in the P. trichocarpa reference genome and the 63 Mb of 

sequence detected as insertions, we estimate a poplar pan-genome size of approximately 497 Mb. 

According to our results, 80.7% (401 Mb) of the poplar pan-genome is shared by all the seven 

studied accessions and constitutes the “core” genome (Figure 4). The remaining portion of the pan-

genome (19.3%, 96 Mb) is present in more than one, but not all of the seven poplar accessions, and 

represents the “dispensable” genome. We estimate the contribution of each of the three studied 

species to the dispensable genome: for the most part the dispensable genome is made up by INDELs 

detected only in P. nigra accessions (9.4% of the pan-genome); while P. deltoides and P. 

trichocarpa specific INDELs originate a smaller fraction of the dispensable genome (4.8% and 

4.0% of the pan-genome, respectively). This difference is probably attributable to the higher 
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number of studied P. nigra samples. The fraction of dispensable genome made up by INDELs 

shared by different species is very small (1.1% of the pan-genome), indicating that the majority of 

the poplar dispensable genome is made up by species specific variation. Estimated poplar core and 

dispensable genome fractions are very similar to those reported for soybean, that were obtained by 

analyzing seven assembled Glycine soja genomes (core: 80.1%, dispensable: 19.9%) (Li et al. 

2014). On the other hand, a significantly higher fraction of dispensable genome has been reported in 

maize where a comparison across four randomly chosen genomic regions between two inbred lines 

showed that only 50% of the sequences were shared by the two genotypes (Morgante et al. 2007). 

Gypsy and Copia LTR-retrotransposon insertions in the P. trichocarpa genome are older than those 

observed in maize, with a much larger fraction of elements that are older than 5 million years 

(Cossu et al. 2011). This difference in recent transposition activity could partly account for the 

observed differences between the two species. 

We observed that the dispensable fraction of the poplar pan genome is mainly composed by 

repeated sequences such as those typical of transposable elements. However, we found that 2,270 

genes (5.5% of the annotated ones) were deleted in homozygous state in at least one accession and 

thus belong to the dispensable fraction of the genome. In addition, 2,453 genes (5.9% of the 

annotated ones) have been detected as genic CNV and thus are present with a variable copy number 

in the studied samples. The detection of INDELs in P. nigra low-depth pool showed that a great 

proportion of variants are fixed in the species (Supplementary Figure 7). However, using results 

obtained for the four high-depth P. nigra accessions we observed that each individual contributed to 

the total number of INDELs with private variants (Supplementary Figure 17). This observation 

suggests that increasing the number of studied individuals would allow the identification of 

additional portions of the dispensable genome of the genus Populus. Moreover, in this study we 

have used the genome of P. trichocarpa as reference to detect INDELs and thus we did not sample 

the portion of the dispensable genome made up by structural variation specific to the P. nigra or P. 

deltoides genomes that does not correspond to TE insertions.  

Studies focused on the detection and characterization of structural variation at a genome-wide scale 

in plants, and in particular in tree species, are still in their infancy. In the last years few studies have 

been carried out in different plant species such as maize (Lai et al. 2010; Chia et al. 2012), rice (Xu 

et al. 2012), Arabidopsis (Lu et al. 2012), sorghum (Zheng et al. 2011), soybean (Lam et al. 2010; 

Li et al. 2014) and melon (Sanseverino et al. 2015). In this study we performed a genome-wide 

comparative analysis of three closely related Populus species, we provided a first detailed catalogue 

of structural variants across the whole genome and we proposed a functional and structural 

characterization of poplar pan-genome. Future functional studies of the detected variants could help 

understanding the mechanisms of speciation in poplar as well as the role of artificial and natural 
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selection in these genomes. Understanding the role of inter- and intraspecific structural variants in  

poplar phenotype may have important implications for breeding, particularly, inter-specific hybrids.  

  

Materials and Methods  

Study sample  

Two naturally occurring Populus deltoides, one Populus trichocarpa and nineteen Populus nigra  

individual trees were analyzed in the study (the complete list is reported in Supplementary Table 1  

and Supplementary Table 2). Plant material for DNA sequencing of P. deltoides samples was  

obtained from the Unité Amélioration Génétique et Physiologie Forestières - I.N.R.A. (Orléans,  

France). Illumina DNA sequences of the  P. nigra genotypes were obtained as previously described  

(Faivre-Rampant et al. 2016). Illumina DNA sequences of the P. trichocarpa sample Nisqually-1  

and P. trichocarpa RNAseq data from four different tissues (developing xylem, leaf, callus from  

root and cambium) were retrieved from the NCBI Sequence Read Archive (run accessions are  

reported in Supplementary Table 1 and Supplementary Table 3 respectively).  

DNA extraction, library preparation and sequencing  

Leaf tissues from greenhouse or field-grown plants were ground in liquid nitrogen and high- 

molecular-weight genomic DNA was extracted from nuclei as previously described (Zhang et al.  

1995). The protocol was improved with the addition of PVP40 both in the wash (5%) and the lysis  

(2%) buffers. To prepare 2x100 bp paired-end libraries, 5 µg of nuclear DNA were randomly  

fragmented by Fragmentase treatment (NEBNext™ dsDNA Fragmentase™, New England Biolabs)  

at 37°C for 1 hour. Libraries were prepared using Illumina reagents, according to manufacturer's  

specifications (Illumina, San Diego, CA). End repair of fragmented DNA was performed using T4  

DNA polymerase and Klenow polymerase with T4 polynucleotide kinase. Subsequently, an “A”  

base was added at the 3' end using a 3'–5' exonuclease-deficient Klenow fragment. The paired-end  

adaptor with a single T base overhang at the 3′ end was ligated to the above products. The PE  

adaptor ligated products were separated on a 2% agarose and the 400-600 bp size fraction was  

excised from the gel. Fragments were enriched by 16-cycle PCR reaction using PE primers 1.1 and  

2.1 (Illumina, San Diego, CA). Whole-genome re-sequencing was performed at the Institute of  

Applied Genomics (IGA, Udine, Italy) facilities using either a GAII analyzer or Hiseq 2000  

platforms from Illumina (Inc. San Diego, CA, USA). Images from the instruments were processed  

using the manufacturer’s pipeline software to generate FASTQ sequence files.   

Sequencing data analysis  

Adaptor sequences and low quality 3' ends were removed from both DNA and RNA short reads  
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using respectively cutadapt (Martin 2011) and ERNE-FILTER (http://erne.sourceforge.net) with 

default parameters. To assess the quality of sequencing data, Jellyfish (Marçais and Kingsford 

2011) was used to obtain the kmer spectra plots with a k value of 16. After trimming, pairs with 

both reads longer than 50 bp were aligned to the v3.0 of the Populus trichocarpa reference genome 

(Tuskan et al. 2006), retrieved from the JGI Comparative Plant Genomics Portal 

(www.phytozome.net/poplar.php). Alignment was performed using the short read aligner BWA (Li 

and Durbin 2009) with default parameters. After alignment, duplicated sequences were removed 

using the samtools rmdup utility (Li et al. 2009). The mean sequencing depth for each individual 

was calculated dividing the total number of uniquely aligned bases by the number of covered 

positions. Seven samples (four P. nigra, two P. deltoides and one P. trichocarpa individuals) were 

sequenced at higher depth and underwent extensive investigation; they will be referred to as “high-

depth” in the subsequent sections of the paper. The remaining 15 P. nigra samples were sequenced 

at a variable lower depth and were analyzed together as a pool; they will be referred to as “low-

depth” in the subsequent sections of the paper. To obtain a pool in which each sample was equally 

represented, we reduced the depth of the more covered samples to an approximate sequencing depth 

of 5X (which is the sequencing depth of the less covered samples). The number of reads selected for 

each sample and used to create the pool is reported in Supplementary Table 2. 

RNAseq data was aligned using TopHat2 (Kim et al. 2013) by requiring a minimum segment length 

of 25 bp (i.e. the minimum length of the independently mapped segments generated by splitting a 

read) and allowing not more than one mismatch per mapped segment. Alignments of RNAseq reads 

were analyzed with the tool htseq-count included in the package HTSeq v0.6.1 (Anders et al. 2014) 

to count the number of sequenced fragments aligned in each of the 41,335 genes included in the P. 

trichocarpa v3 annotation gff file.  

Structural variants analysis 

Two different classes of structural variants were investigated: 1) insertions/deletions (INDELs) 

related with the activity of transposable elements and 2) genic copy number variants (genic CNVs). 

The detection of INDELs was performed at individual level in high-depth individuals, while the 15 

low-depth samples were pooled and analyzed together in order to increase the understanding of the 

contribution of structural variation to P. nigra genetic diversity. INDELs were classified in species-

specific variants (i.e. variants detected only in samples of the same species) and variants shared by 

species (i.e. variants detected in samples belonging to different poplar species). The study sample 

included a different number of P. nigra and P. deltoides samples (four P. nigra and two P. 

deltoides); to obtain a more realistic estimation of the contribution of each of the two species to 

poplar structural variation, this classification was performed by using all the possible combinations 
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of only two P. nigra accessions and averaging the results. The detection of copy number variations 

affecting genes was performed by pairwise comparisons between five high-depth samples: two P. 

nigra (Poli and 71077-308), the two P. deltoides (L150-089 and L155-079) and the P. trichocarpa 

sample (Nisqually-1). The remaining two high-depth P. nigra samples (BDG and BEN3) were not 

employed for this analysis due to their altered kmer profiles (Supplementary Figure 1) denoting 

possible bias in library complexity that could lead to loss of power in the depth of coverage-based 

analysis.  

Detection of deletions 

To evaluate the performance of different available methods in the detection of deletions and to 

choose the best performing ones on our data, a simulation experiment was conducted by simulating 

1000 deletions and insertions in the P. trichocarpa reference genome (see sections 1-3 of 

Supplementary Materials for details). According to simulation results, the detection of deletions 

with respect to the P. trichocarpa reference genome was performed by combining the results of the 

two SV detection methods DELLY (Rausch et al. 2012) and GASV (Sindi et al. 2009). 

DELLY was run with default parameters and the results were filtered by selecting only the deletions 

having a length included in the range 1-25 kb and by discarding those supported by less than five 

paired-ends or by reads with a median mapping quality lower than 20. GASV was run with default 

parameters and the results were filtered by selecting only the deletions having a length included in 

the range 1-25 kb and being supported by at least five paired-ends. Since GASV reports two 

intervals in which the left and the right breakpoints of the predicted deletions are supposed to be 

included, the central points of the intervals were used to approximate the two breakpoints of each 

deletion. Predictions obtained by the two tools for each sample were merged using a confidence 

interval of 250 bp around the breakpoints: deletions with overlapping confidence intervals at both 

sides were combined into a single event. Simulation results showed that DELLY is more accurate 

than GASV in the estimation of the breakpoints. Thus, the breakpoints estimated by DELLY were 

assigned to deletions detected by both tools. Deletions detected in the seven high-depth individuals 

and in the low-depth pool were merged using a confidence interval of 500 bp around the 

breakpoints. The integrated list of deletions was analyzed with a custom python script (see section 2 

of Supplementary Materials for details) to calculate the proportion of reads supporting the deletions 

in each sample and thus assign the genotype (non-carrier, heterozygous carrier, homozygous 

carrier), based on the individual allele frequency of the variant. The genotype was assigned only to 

samples having a minimum sequencing depth of 5 in correspondence to the deletion breakpoints. 

The individual allele frequency (i.e. the proportion of reads carrying the variant) was employed to 

refine deletion calls in all individuals and to assign the genotype: individuals in which the  
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alternative allele had a frequency lower than 0.2 were classified as non-carriers; individuals 

carrying variants with a frequency included in the range 0.2-0.8 were considered heterozygous 

carriers and those carrying variants with a frequency higher than 0.8 were considered homozygous 

carriers. 

Annotation of deletions 

The sequences of the deletions were extracted from the P. trichocarpa v3.0 reference genome and 

annotated to identify their homology with known plant transposable elements. The annotation 

process consisted of three consecutive approaches: 

1) First, the coordinates of the deletions were interpolated with the P. trichocarpa v3.0 repeats 

annotation file (Ptrichocarpa_210_v3.0.repeatmasked_assembly_v3.0.gff3) retrieved from the 

poplar section of the Joint Genome Institute website 

(http://phytozome.jgi.doe.gov/pz/portal.html#!bulk?org=Org_Ptrichocarpa) to identify deletions 

overlapping with already annotated transposons. 

2) Deletions not annotated by the previous step were analyzed with the tool TEannot included in the 

REPET package v2.2 (Flutre et al. 2011), which annotates transposable elements (TEs) in genomic 

sequences using a library of known TE sequences. TEannot was run with default parameters and 

using RepBase18.09 (Jurka et al. 2005) as reference database.  

3) Finally, the remaining deletions were aligned against a database of transposable elements with 

blastn (Altschul et al. 1990) using an E-value threshold of 10
-20

. The database consisted of the plant 

section of RepBase18.09 database (Jurka et al. 2005), a list of P. trichocarpa LTR retrotransposons 

retrieved from http://www.agr.unipi.it/ricerca/plant-genetics-and-genomics-lab/sequence-repository 

and a set of poplar repeats de novo detected and classified by analyzing the P. trichocarpa reference 

genome with RepeatModeler (http://www.repeatmasker.org/RepeatModeler.html), using default 

parameters. Deletions showing homology with a TE included in the database in at least 80% of their 

length or at both extremities (400 bp at the two ends) were classified accordingly. 

Insertion dates of a set of complete P. trichocarpa LTR retrotransposons retrieved from 

http://www.agr.unipi.it/ricerca/plant-genetics-and-genomics-lab/sequence-repository were 

estimated based on the amount of divergence between the 5’ and 3’ LTRs as previously described 

(SanMiguel et al. 1998). LTR sequences of each retrotransposon were recovered from the reference 

sequence and aligned with the stretcher command of the EMBOSS suite (Rice et al. 2000; Olson 

2002). The evolutionary distance (K) between the two LTRs was calculated for each pairwise 

comparison with the distmat tool of EMBOSS, with the nucmethod option set to 2, in order to 

compute the distance measure with the Kimura’s Two-Parameter method (Kimura 1980). Finally, 

the time of insertion (T) was estimated for each retrotransposon with the substitution rate (k) of 4.72 
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2×10
−9

 (Cossu et al. 2011), via the following equation: T=K/2*k. Dated LTR retrotransposons were 

divided in two subsets: the first containing elements corresponding to detected deletions (SV-LTR) 

and the second containing those unrelated to deletions (noSV-LTR) and a difference between the 

two distributions of insertion dates was tested using the non-parametric two-sample 

Kolmogorov-Smirnov test. 

Detection of transposable elements insertions 

Insertions of transposable elements were detected exploiting the information carried by read pairs 

spanning the insertion site, i.e. pairs in which one read (referred to as “anchor” read) originates 

from the flanking regions of the inserted element and its mate (referred to as “mobile” read) 

originates from either the 5’ or the 3’ of the inserted element. “Anchor” reads are expected to be 

aligned to the reference genome and to create two clusters aligned in opposite orientation pointing 

toward the insertion site, while “mobile” reads are expected to be either not aligned or aligned in 

multiple positions of the genome (Supplementary Figure 2). The alignment of “mobile” reads 

against a database of transposable elements was used to classify the mobile elements causing each 

insertion. The database contained a set of known plant TEs, a set of poplar specific repeat sequences 

and the sequences of the deletions detected in the present study that are likely related to TE activity 

(see section 4 of Supplementary Materials for details). The analytical pipeline used to detect new 

transposable elements insertion sites is described in Supplementary Material. The above mentioned 

pipeline was used to detect new insertions with respect to the P. trichocarpa reference genome in 

the high-depth individuals and in the low-depth pool. Results obtained from the different samples 

were merged using a confidence interval of 250 bp around the breakpoints. The integrated list of 

insertions was analyzed with a custom python script to calculate the proportion of reads supporting 

the insertions in each sample and thus assign the genotype (non-carrier, heterozygous carrier, 

homozygous carrier), using the same approach described for deletions (see section 3 of 

Supplementary Material for details). TE insertions were considered to affect a gene when the entire 

interval in which the insertion was predicted overlapped an annotated gene. 

Detection of genic CNVs 

The detection of genic regions showing copy number variation was performed by exploiting the 

depth of coverage signature (DOC), including in the analysis only reads that were uniquely aligned 

to the reference genome. The tool htseq-count (Anders et al. 2014) was used to count the number of 

fragments aligned on each of the 41,335 P. trichocarpa annotated genes in the high-depth samples. 

Read counts were used as input data for the R package DESeq (v1.8.3), which is widely used for the 

detection of differential gene expression (Anders and Huber 2010). DESeq was employed to detect 
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differentially covered genes between all the possible combinations of the seven high-depth samples.  

Data was normalized using the functions estimateSizeFactors and sizeFactors included in  

the DESeq package (Anders and Huber 2010). After dispersion estimation for each gene, a binomial  

test was used to identify differentially covered genes, following correction for multiple testing with  

the Benjamini-Hochberg procedure (Anders and Huber 2010). A corrected p-value < 0.05 was  

considered significant.   

Gene Ontology annotation and enrichment analysis  

The P. trichocarpa v3.0 gene annotation (Tuskan et al. 2006) was used to study genes affected by  

insertions, deletions or CNVs. To obtain the Gene Ontology annotation, gene sequences were used  

as query for a blastx analysis against the Viridiplantae (taxid: 33090) non redundant protein (nr)  

database. BLASTx results were imported into BLAST2GO version V.2.5.0 (Conesa et al. 2005) for  

the Gene Ontology (GO) assignment. The Annex tool implemented in BLAST2GO was used to  

improve the annotation by deriving terms due to verified links from ‘Molecular Function’ terms to  

‘Biological Process’ and ‘Cellular Component’ ones. Annotation results were summarized through  

the mapping to the Plant GO-Slim, a reduced version of the Gene Ontology containing a selected  

number of nodes relevant for plants. Over- representation, compared to the rest of the genome, of  

GO terms in the subsets of genes included in the deletions, interrupted by insertions or showing  

differential coverage was tested using a Fisher’s Exact Test implemented in the Gossip package  

(Blüthgen et al. 2005) integrated in Blast2GO. To reduce the number of false positives, a false  

discovery rate correction for multiple testing (Benjamini and Hochberg 2007) was applied and only  

differences with a corrected p-value <0.05 were selected.  

Sequence evolution analysis  
The number of non-synonymous substitutions per non-synonymous site (dN), the number of  

synonymous substitutions per synonymous site (dS) and their ratios were calculated for a list of  

30,055 genes orthologous between P. trichocarpa and P. euphratica. Orthologous genes were  

selected by a BLASTn (Altschul et al. 1990) analysis of the P. trichocarpa CDSs against the P.  

euphratica reference genome (GeneBank assembly accession: GCA_000495115.1). Only the  

portions of P. trichocarpa CDSs aligning for at least 150 consecutive bases to the P. euphratica  

genome were selected. Polymorphic positions between the two species were detected with a custom  

R function and the dN/dS ratio was calculated with the kaks function included in the R library  

‘seqinr’. This function makes an unbiased estimate of the ratio of nonsynonymous to synonymous  

nucleotide substitution for a set of aligned sequences (Li 1993). To assess the statistical significance  

of the difference in the dN/dS ratios observed between genes affected by structural variation and  

those not affected a randomization test was used. In brief, we contrasted the dN/dS ratios in genes  
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affected by deletions, insertions or genic CNVs to the distribution of means of the same feature in s 

= 10,000 randomly generated subsets of an equal number of genes drawn from the complete gene 

set. Let q be the number of times the mean value of the set of genes affected by structural variation 

was lower than the mean value of the randomly generated subset and r = s-q, the P-value has been 

calculated as: (r + 1)/(s + 1). 

Gene expression analysis 

P. trichocarpa RNAseq data from four different tissues (developing xylem, leaf, callus from root 

and cambium) was used to distinguish between experimentally verified and not experimentally 

verified genes. To this aim, expression levels were calculated from RNAseq data of each tissue as 

the absolute fragment values corrected by sequence length (FPKM values: the number of reads pairs 

per kilobase of transcript per million mapped reads) and genes were considered to be verified if in 

at least one of the four tissues the FPKM value was higher than zero. To assess the statistical 

significance of the difference in the expression levels observed between genes affected by structural 

variation and those not affected a randomization test was used. We contrasted the expression levels 

(calculated as the mean FPKM obtained in the four tissues) in genes affected by structural variation 

to the distribution of means of the expression levels calculated in s = 10,000 randomly generated 

subsets of an equal number of genes drawn from the complete gene set. Let q be the number of 

times the mean value of the set of genes affected by structural variation exceeded the mean value of 

the randomly generated subset and r = s-q, the P-value has been calculated as: (r + 1)/(s + 1). 

Characterization of SV 

Different statistical tests have been applied to study how INDELs and genic CNVs are distributed 

within the poplar genome. 

 To test for preferential localization of INDELs outside of i) genes, ii) individual genic 

portions (CDSs, 5’-UTRs, 3’-UTRs and introns) or iii) at a distance greater than 500 bp 

from genes, a randomization test was used. One hundred simulated datasets of deletions and 

insertions were obtained by transferring the detected variants to new randomly assigned 

genomic location and the number of affected genes was computed. Confidence intervals of 

the number of affected genes were based on empirical distribution. 

 Preferential localization of INDELs in the centromeric regions of poplar chromosomes was 

tested against the null hypothesis that INDELs follow a Poisson distribution with mean 

equal to the mean number of INDELs per 250 kb windows. The resulting p-values were 

corrected for multiple testing (Benjamini and Hochberg 1995). 

 The relationship between the number of INDELs and repetitiveness was assessed by 

comparing the distribution of 20-mers in 250 kb windows not carrying INDELs with that in 
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windows carrying one or more INDELs for insertions and deletions separately. Significance 

was tested using Wilcoxon-Mann-Whitney test and p-value was corrected for multiple 

testing (Benjamini and Hochberg 1995). 

 To test whether the distance between genic CNVs and INDELs was shorter than that 

between all genes and INDELs, Wilcoxon-Mann-Whitney test was used.  

 Significance of the clustering of genic CNVs was assessed by comparing the number of 

clustered genic CNVs (clusters were defined as groups of 2 or more genic CNVs in a single 

window) observed in our data with the number of clustered genic CNVs obtained by 

simulating 10,000 times a random distribution of genic CNVs across the genome. 

 Wilcoxon-Mann-Whitney test was used to test the hypothesis that windows with genic 

CNVs clusters have a higher number of genes compared to windows showing no genic 

CNVs.  

 To test for a preferential localization of genic CNVs along the poplar chromosomes we used 

a chi-square test: expectation was based on the null hypothesis that genic CNVs have the 

same distribution of genes and was computed as the total number of genic CNVs multiplied 

by the proportion of genes falling in the same distance bin. Distance was measured in bins 

of 1 Mb. Distances greater than 10 Mb were pooled. 

 Local enrichment of genic CNVs in inter- or intra-specific comparisons was computed in 2 

Mb windows assuming as null hypothesis a Poisson distribution in which the number of 

genic CNVs per window is equal to the average number of genic CNVs per window in the 

chromosome (to allow for heterogeneity between chromosomes). 

 Local enrichment of genic CNVs belonging to each GO category over-represented in genic 

CNVs was tested in 250 kb windows assuming a Poisson distribution in which the null 

expectation is the genome-wide average number of genic CNVs per window for each 

category. The obtained p-value was corrected for multiple testing (Benjamini and Hochberg 

1995). The same approach was used to test for enrichment of all genes belonging to the 

over-represented GO categories. 
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Figure 1. Genomic distribution of INDELs and genic CNVs. The number of deletions (dark blue  

track, y axes range = 0-20), insertions (blue track, y axes range = 0-40), genic CNVs (yellow track,  

y axes range = 0-15), annotated genes (red track, y axes range = 0-80) and the repetitiveness of the  

genome (green track, y axes range = 0-10) are represented in windows of 250 kb along the nineteen  

Populus trichocarpa chromosomes (outer gray bars). Predicted centromeric regions are highlighted  

in red.    

  

  

 
Figure 2. Frequencies of the Gene Ontology terms for which an over-representation has been 

observed when comparing the subsets of genes included in deletions (DEL), genes interrupted by 

insertions (INS) and genic CNVs (gCNV) in the studied samples with respect to the complete 

dataset of P. trichocarpa annotated genes (ALL). * p-value <0.05, ** p-value<0.01.  
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Figure 3. Genetic features associated with P. trichocarpa transcriptome (ALL), genes disrupted by 

deletions (DEL), genes disrupted by insertions (INS) and genes affected by genic CNVs (gCNV). 

Left panel: Percentage of non-expressed genes. The percentage of non-expressed genes was 

significantly higher in genes affected by any SV (deletion, insertion or genic CNV) than the whole 

transcriptome. Central panel: Expression levels in the whole transcriptome and in genes affected 

by SV. Right panel: Rates of nonsynonymous to synonymous changes in whole transcriptome and 

genes affected by SV. dN/dS values in genes affected by SV were significantly higher compared to 

whole transcriptome. *: p-value < 0.05. 

 

 

  

Figure 4. Composition of poplar pan-genome constructed using the structural variants detected in  

the seven high-depth accessions.   
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Table 1. Summary statistics of INDELs detected in the high-depth poplar accessions.  

  

Phylogeny INDEL Species 
% INDELs 
(% fixed) 

SV event 

 

7,889 
DEL 

(33.2 Mb) 

Pn 39.6 (29.2) DEL in d 

Pd 31.6 (23.5) DEL in e 

Pt 10.0 (0.7) DEL in b (not fixed), assembly error (fixed) 

Pn/Pd 11.6 (9.8) DEL in c, INS in b (fixed) 

Pn/Pt, Pd/Pt 3.4 (0.2) DEL in a lost in d or e 

Pn/Pd/Pt 3.8 (0.4) Assembly errors, DEL in a (not fixed) 

10,586 
INS   

(62.9 Mb) 

Pn 47.4 (28.6) INS in d 

Pd 31.2 (18.9) INS in e 

Pt 5.6 (0.3) INS in b (not fixed),  assembly error (fixed) 

Pn/Pd 13.9 (5.1) INS in c, DEL in b (fixed) 

Pn/Pt, Pd/Pt 0.6 (0.1) INS in a lost in d or e 

Pn/Pd/Pt 1.2 (0.5) Assembly errors, INS in a (not fixed) 

 

The table reports a schematic representation of the phylogeny of the three studied poplar species 

and a classification of the detected deletions (DEL) and insertions (INS) on the bases of the species 

in which variants have been detected: Pn, Pd, Pt = P. nigra, P. deltoides and P. trichocarpa specific 

INDELs, respectively; Pn/Pd, Pn/Pt, Pd/Pt = INDELs detected in the pairs P. nigra-P. deltoides, P. 

nigra-P. trichocarpa and P. deltoides-P. trichocarpa, respectively; Pn/Pd/Pt = INDELs detected in 

all the three studied species. For each category, the table reports the percentage of detected variants 

(% INDELs) belonging to that category, the percentage of variants detected in homozygous state in 

all individuals (%fixed) and the structural variation event (SV event) responsible for the 

correspondent INDEL in agreement with the known phylogeny and under the assumptions of all 

mutations having occurred only once and of absence of false positives and false negatives. 
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Table 2. Classification of INDELs on the basis of their homology with Class I (retrotransposons) or  

Class II (DNA transposons) transposable elements. 

  # DEL
a
 % DEL

b
 # INS

c
 %INS

d
 

Class I 

LTR Gypsy 1,752 39.9% 5,175 49.8% 

LTR Copia 854 19.4% 2,862 27.5% 

LINE L1 64 1.5% 365 3.5% 

LTR 38 0.9% 308 3.0% 

SINE 6 0.1% 2 0.0% 

Total  2,714 61.8%         8,712  83.8% 

Class II 

TIR hAT 525 12.0% 449 4.3% 

Helitron 380 8.7% 255 2.5% 

TIR CACTA 343 7.8% 481 4.6% 

TIR PIF/Harbinger 39 0.9% 93 0.9% 

TIR Mutator 26 0.6% 0 0.0% 

Class II unknown 365 8.3% 410 3.9% 

Total  1,678 38.2%         1,688  16.2% 

Unclassified 3,497 44.3% 186 1.8% 

 
a
Number of classified deletions. 

b
Percentage of classified deletions. 

c
Number of classified 

insertions. 
d
Percentage of classified insertions. 
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