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Abstract

Many recent studies have emphasized the important role of structural variation (SV) in determining
human genetic and phenotypic variation. In plants, studies aimed at elucidating the extent of SV are
still in their infancy. Evidence has indicated a high presence and an active role of SV in driving
plant genome evolution in different plant species.

With the aim of characterizing the size and the composition of the poplar pan-genome, we
performed a genome-wide analysis of structural variation in three intercrossable poplar species:
Populus nigra, Populus deltoides and Populus trichocarpa. We detected a total of 7,889 deletions
and 10,586 insertions relative to the P. trichocarpa reference genome, covering respectively 33.2
Mb and 62.9 Mb of genomic sequence, and 3,230 genes affected by copy number variation (CNV).
The majority of the detected variants are inter-specific in agreement with a recent origin following
separation of species.

Insertions and deletions (INDELSs) were preferentially located in low-gene density regions of the
poplar genome and were, for the majority, associated with the activity of transposable elements.
Genes affected by SV showed lower-than-average expression levels and higher levels of dN/dS,
suggesting that they are subject to relaxed selective pressure or correspond to pseudogenes.
Functional annotation of genes affected by INDELSs showed over-representation of categories
associated with transposable elements activity, while genes affected by genic CNVs showed
enrichment in categories related to resistance to stress and pathogens. This study provides a
genome-wide catalogue of SV and the first insight on functional and structural properties of the

poplar pan-genome.
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Introduction

Studies aimed at elucidating the genetic bases of complex phenotypes focused mostly on identifying
genetic association between a given phenotype and single nucleotide polymorphisms (SNPs).
However, many studies have demonstrated that a substantial proportion of the heritability of
complex traits cannot be explained by associations with SNPs (Vineis and Pearce 2010). Several
researchers addressed the problem of “missing heritability” (Eichler et al. 2010) and suggested
several causes, including rare variants (Manolio et al. 2009; Marroni et al. 2011) and structural
variation (SV) (Eichler et al. 2010). It is now accepted that in addition to SNPs, other types of
sequence variation play an important role in plant genome evolution (Bennetzen and Wang 2014;
Marroni et al. 2014). Structural variation, such as insertions and deletions (INDELS) and copy
number variation (CNV) has been shown to be frequent in plant species and to have an important
effect on phenotypic diversity and genome evolution (Zmienko et al. 2013; Marroni et al. 2014;
Saxena et al. 2014).
Transposable element (TEs) activity is a major source of genome instability and structural variation.
TE movement may directly mobilize gene sequences in the genome (Morgante et al. 2007) and may
impact gene expression via the introduction or the modification of alternative regulatory elements,
exons, and splice junctions (Ray and Batzer 2011) or via the modification of the local chromatin
environment. A well-known example of the latter case has been reported in sweet orange, where the
insertion of the Rider long terminal repeat (LTR) retrotransposon upstream of the Ruby gene
resulted in its cold-dependent expression and in the distinctive red colouration of the variety
Tarocco (Butelli et al. 2012). Moreover, TEs can mediate genome rearrangements through non-
homologous recombination (Eichler and Sankoff 2003).
When CNVs change the number of copies of a given gene, they can alter their levels of expression.
For example, gene amplification has been involved in stress resistance, resistance to herbicides or
tolerance to chemicals (Gaines et al. 2010; McHale et al. 2012; Maron et al. 2013).
The ubiquity of SV led some researchers to extend the pan-genome concept to plants (Morgante et
al. 2007). According to this view, the pan-genome of a given species can be separated in a “core”
genome, composed by sequences that are shared by all the species members and a “dispensable”
genome, containing sequences that are present only in a subset of the individuals of that species.
Sequences belonging to the dispensable genome, such as those involved in SV, may provide an
important contribution to phenotypic diversity within the species (Marroni et al. 2014; Zhang et al.
2015).
In spite of its phenotypic relevance and its potential effects on genome evolution, SV has not been
studied as carefully as other classes of sequence variants. The compact genome size (~500 Mb) and
3
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the availability of the reference genome of Populus trichocarpa (Tuskan et al. 2006) makes poplar a
suitable model genus to study the prevalence of structural variation and its possible contribution to
phenotypic variation. A better understanding of the population distribution of INDELs and CNVs
might increase the ability to identify potentially interesting markers for poplar genetic
improvement. Moreover, considering that different poplar species are crossable and progenies show
hybrid vigor (Einspahr and Benson 1964; Li et al. 1993), a map of interspecific SV may be of help
in elucidating the mechanisms at the basis of plant heterosis.

We set out to explore the extent of structural variation in the three poplar species P. nigra, P.
deltoides and P. trichocarpa at a genome-wide level by means of Illumina next-generation
sequencing. The advent of NGS technologies has revolutionized the way of detecting SV and
resequencing-based approaches have progressively replaced those based on microarrays (Alkan et
al. 2011). The identification of SV using NGS data is mainly pursued by using two different
approaches: a) paired-end mapping (PEM), which identifies SV by using the discordance from the
expected span size and/or orientation of mapped paired-end reads; and b) depth of coverage (DOC),
which detects SV by searching for a local increase or decrease in sequence depth (Alkan et al.
2011). We exploited the PEM signature to identify INDELS in the resequenced individuals with
respect to the P. trichocarpa reference genome and the DOC signature to detect genic CNVs
between all the resequenced samples. We studied how SV is distributed along the genome, its
relationship with the activity of transposable elements and its possible impact on gene expression.
Finally, we combined the information on all the detected variants to get a first estimate of the size

and the composition of the poplar pan-genome.

Results and Discussion

Studies on SV in plant species could have tremendous utility in identifying genomic regions
associated with complex traits, domestication and adaptation. To date, studies on interspecific
genetic variation of the genus Populus have focused on a limited number of markers, like AFLPs
and microsatellites, distributed along the genome (Cervera et al. 2001; Cervera et al. 2005a; Fossati
et al. 2005; Rohde et al. 2011). With the aim of characterizing the poplar pan-genome and
investigating its relationship with the origin of intra- and inter-specific diversity, we performed a
genome-wide analysis of structural variation between three poplar species: Populus nigra, Populus
deltoides and Populus trichocarpa. We obtained a sequencing depth ranging from approximately
26x to 45x in four P. nigra genotypes (BDG, 71077-308, BEN3 and Poli), two P. deltoides
accessions (L150-089 and L155-079) and in the P. trichocarpa genotype used to build the reference
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genome (Nisqually-1). These high-depth samples underwent deep structural variation analysis. The
fifteen low-depth P. nigra accessions were pooled and analyzed together with the aim of studying
the incidence of SV in a P. nigra discovery panel. Sequencing depth and library statistics for each
of the resequenced accession are reported in Supplementary Table 1 and Supplementary Table 2. In
the high-depth P. nigra and P. deltoides samples we covered about 82% of the P. trichocarpa
reference genome considering all the aligned reads and about 63% of the reference genome
considering only the reads that were uniquely aligned to the genome. These results showed the
presence of a high degree of genome similarity between the three poplar species included in the
study. As expected, in the P. trichocarpa Nisqually-1 sample we covered a higher fraction of the
genome corresponding to 97% when considering all the aligned reads and 92% when considering
only the reads uniquely aligned to the reference.

INDELSs affect a large portion of poplar genome and are frequently related to LTR-
retrotransposons

P. nigra and P. deltoides belong to the same section of the genus Populus (Stettler et al. 1996;
Cervera et al. 2005b) and are phylogenetically more closely related to each other than they are to P.
trichocarpa (see Table 1 for a schematic representation of the known phylogenies). Thus, using the
P. trichocarpa v3.0 genome as reference, we expected to detect in P. nigra and P. deltoides
INDELSs that occurred after the divergence of the two species from P. trichocarpa. In particular,
INDELSs that occurred before the P. nigra/P. deltoides speciation (at time c in the phylogenetic tree
in Table 1) are expected to be shared by the two species, while more recent ones (times d and e) are
expected to be species-specific. In P. trichocarpa a different scenario is expected. In fact, the P.
trichocarpa reference genome is a combination of the two haplotypes of the highly heterozygous
individual Nisqually-1, which is the same individual we had included in the study. Thus, in P.
trichocarpa we expected to identify only variants that are heterozygous in Nisqually-1 and, thus, not
fixed in this species.

In total, we detected 7,889 deletions and 10,586 insertions relative to the P. trichocarpa reference
genome, covering respectively 33.2 Mb and 62.9 Mb of genomic sequence. Median length of
detected variants was 2,176 bp and 4,860 bp respectively. The number of detected variants and the
number of megabases involved in each studied sample is reported in Supplementary Table 4, while
the complete lists of insertions and deletions are reported in Supplementary Table 5 and 6,
respectively. Using a PCR-based assay, we experimentally validated a randomly selected set of 29
INDELSs: 14 out of 16 tested insertions (Supplementary Figure 3) and 13 out of 13 tested deletions
(Supplementary Figure 4) were confirmed by PCR (see section 5 of Supplementary Material for

details). The validation of almost 2,400 deletions of the sample Poli was also performed in silico
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using a P. nigra de novo draft assembly obtained with the short reads of Poli (see section 6 of
Supplementary Material for details). 98.4% of the tested deletions were confirmed by this analysis,
suggesting a high accuracy of the detection process. Due to major difficulties in the de novo
assembly process of genomic regions containing the insertions, we couldn’t replicate this analysis to
test the accuracy of the detection of insertions (see section 6 of Supplementary Material for details).
In plants, transposable elements are a major source of genetic variation (Kidwell and Lisch 1997).
As expected, a great proportion of the detected deletions (55.7%) were highly homologous to
known TEs and, as required by the applied detection pipeline, almost all the detected insertions
were related to the presence of transposable elements (Table 2). In particular, 61.8% of the
classified deletions and 83.8% of the classified insertions resulted to be homologous to class |
retroelements while the remaining were classified as class Il DNA TEs. LTR Gypsy elements were
the most represented among class | elements covering 39.9% and 49.8% of the classified deletions
and insertions, respectively. Among class Il elements, the most represented were hAT elements,
followed by Helitrons and CACTA elements. The percentage of deletions not classified as TEs was
lower in the dataset of variants shared by P. nigra and P. deltoides species with respect to species
specific ones (Supplementary Table 7). These observations are in accordance with the model
proposed in Table 1 and with the known molecular mechanisms that can generate SV of different
origin: Class | elements move strictly through a copy and paste mechanism and should always
generate insertions, Class Il elements usually move through a cut and paste mechanism and should
produce both insertions as well as deletions, the non-annotated deletion events are unrelated to
transposition activity and should represent real deletions as a consequence of defective repair events
following double strand breaks. The increased relative proportion of Class Il elements in
comparison to Class I observed in deletions and especially in those that are only identified in P.
nigra or P. deltoides samples is therefore a strict consequence of their different transposition
mechanism. As expected, LTR retrotransposons involved in deletions resulted to be younger than
those fixed in the studied poplar species (Supplementary Figure 5). However, difference in age
distributions was not as pronounced as that observed in cultivated plants such as maize (Brunner et
al. 2005), rice (Hurwitz et al. 2010) or grapevine (Michele Morgante, personal communication).
This difference could be explained by the presence in the studied poplar species of a lower rate of
recent activity of TEs, a higher level of incomplete lineage sorting or/and a higher level of gene
flow. We observed, in insertions shared by P. nigra and P. deltoides samples a significant increase
of annotated class | retroelements mainly due to a higher proportion of gypsy elements
(Supplementary Table 8) suggesting that the insertion events of gypsy elements are in general older
than copia ones. LTR retrotransposons vary in size from several hundred bases to over 10 kb

(Bennetzen 2000). Plotting the size distribution of the identified INDELSs (Supplementary Figure 6),
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we observed three signature peaks at 8.5-9.5 kb, 4-5 kb and at 1-2 kb that could be respectively
related to entire gyspsy LTR-retrotransposons, copia ones and to retroelements that underwent
subsequent rearrangements.

The majority of variants were detected only in one of the three analyzed species (Table 1),
suggesting that INDELSs are mainly species-specific and in agreement with a recent origin following
separation of species (times b, d or e in Table 1). As expected, the majority of P. trichocarpa
specific variants were not fixed in the species and represent heterozygous INDELSs of the sample
Nisqually-1. The small fraction of homozygous INDELSs detected in Nisqually-1 may represent false
positive variants, errors in the assignment of the genotype or inaccuracies in the reference genome
assembly. For deletions, the latter case was supported by the observation that an important fraction
of the homozygous deletions detected in Nisqually-1 contained a stretch of 100 or more “N” bases
in the corresponding region of the reference genome, denoting possible inaccuracies in the
scaffolding step of the assembly process.

On the contrary, a great proportion of both P. nigra and P. deltoides specific variants were fixed in
the species (Table 1). This was confirmed by the analysis performed in the low-depth P. nigra pool
in which we found that for both types of variants, the majority of INDELSs (78.2% of deletions and
61.7% of insertions) had a frequency higher than 0.9 suggesting that a great proportion of variants
are fixed in this species (Supplementary Figure 7).

INDELSs shared between P. nigra and P. deltoides species represent 11.6% and 13.9% of the total
dataset of deletions and insertions respectively (Table 1). A high proportion of variants shared
between this two species is consistent with the known phylogeny of the three studied species. In
particular, deletions shared by P. nigra and P. deltoides samples may represent real deletion events
that occurred before the P. nigra/P. deltoides speciation (time c) or P. trichocarpa specific insertion
events (occurred at time b). On the other hand, insertions shared by this two species may result from
insertion events that occurred before speciation (time c) or deletion events that occurred in P.
trichocarpa (time b).

A very small fraction of INDELSs (3.4% of deletions and 0.6% of insertions) resulted to be shared
between either P. nigra or P. deltoides samples and P. trichocarpa. This scenario can be the result
of old deletion or insertion events occurred in the common ancestor (time a) that have been lost in
P. nigra or P. deltoides at a later stage. Finally, 3.8% of deletions and 1.2% of insertions were
detected in all the three species. These variants may arise from inaccuracies in the reference genome
or, in the case of not fixed variants, may represent old deletion or insertion events (time a).

In plants, the centromeric and pericentromeric chromosome regions are colonized by LTR-gypsy
retroelements, which are the most abundant repetitive elements in the P. trichocarpa genome (Jiang

et al. 2003; Wang et al. 2008). By plotting the distribution of the detected INDELSs along the
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nineteen poplar chromosomes, we noticed that deletions were evenly distributed through the
genome, showing only a slight preference for highly repeated regions while insertions were
preferentially located in centromeric regions (Figure 1). Significant enrichment of deletions in the
centromeric regions was observed only in Chrl4 and Chr16 (p<0.05 assuming a Poisson
distribution for the null hypothesis). On the other hand, significant enrichment of insertions in the
centromeric region was observed in chromosomes 1, 2, 3, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18 and 19
(p<0.05 assuming a Poisson distribution for the null hypothesis).

We investigated the relationship between the number of detected INDELS in a given region of the
genome and its repetitiveness: 250 kb long genomic regions carrying six or more insertions showed
a significantly higher repetitiveness compared to those not carrying insertions (Supplementary
Figure 8, left panel). The same was true for regions carrying seven or more deletions
(Supplementary Figure 8, right panel). This suggests that both deletions and insertions are
preferentially located in highly repetitive regions. According to the P. trichocarpa v3.0 gene
annotation, the deleted sequences contained a total of 2,928 annotated genes while 1,986 annotated
genes were interrupted by a predicted insertion. Seventy-one percent of the genes affected by
deletions and 78% of those affected by insertions were associated to at least one Gene Ontology
term. We detected eight GO categories over-represented in deleted genes and eight GO categories
over-represented in genes interrupted by insertions (Figure 2). Three of them (“transferase activity”,
“nucleotide binding”, “kinase activity”’) were over-represented in both types of variants. The gene
content analysis of the deleted sequences confirmed that a great part of the deletions resulted from
the activity of transposable elements and suggested that insertions have preferentially occurred in
regions rich in transposable elements. In fact, the functional annotation showed a significant
enrichment of genes with GO molecular functions (transferase activity, nucleotide binding and
hydrolase activity) that can be related to TE proteins, like the Gag-Pol polyprotein (Feschotte et al.
2002).

Genic CNVs preferentially affect genes located near telomeres and related to defense traits
To get a more comprehensive insight into the effects of structural variation on genes, we detected
genic CNVs using the depth of coverage signature of NGS. We detected 3,230 genes showing copy
number variation between at least two of the five high-depth samples (Supplementary Table 9). A
total of 989 genic CNVs overlapped with deletions (647), insertions (212) or both kinds of INDELSs
(130). The distance between genic CNVs and INDELSs was significantly shorter than that between
all the annotated genes and INDELS, suggesting that genic CNVs tend to occur near transposable
elements (Supplementary Figure 9). The number of genic CNVs detected in each pairwise

comparison is reported in Supplementary Table 10. We observed that genic CNVs are often
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organized in clusters (p=0.0003), and that windows containing clusters of genic CNVs have a
higher gene density (see Supplementary Figure 10). Genic CNVs are not uniformly distributed
along the poplar genome (Figure 1): the number of genic CNVs is significantly higher than
expected within three Mb from chromosomes telomeres and significantly lower than expected at
distances greater than 7 Mb from the telomere (Supplementary Figure 11). These findings are in
agreement with previous reports on an over-representation of CNVs in the subtelomeric regions of
the human genome (Nguyen et al. 2006; Riethman 2008). Similarly to what we previously observed
for INDELSs, the average number of genic CNVs detected by comparing two samples belonging to a
different species (1,147) was greater than the average number of genic CNV detected by comparing
samples of the same species (747). A total of 404 genic CNVs were P. nigra (230) or P. deltoides
(174) intraspecific variations, 367 were specifically detected by comparing P. nigra with P.
deltoides samples, 187 by comparing the P. nigra samples with the P. trichocarpa one and 213 by
comparing P. deltoides and P. trichocarpa samples. Inter- and intra-specific genic CNVs are
distributed along the whole genome (Supplementary Figure 12) but it is possible to observe some
genomic locations enriched for some inter- or intra-species specific variants. For example the last 2
Mb of Chr07 are enriched for P. nigra intraspecific genic CNVs, the region comprised between 46
and 48 Mb of Chr01 is enriched for P. deltoides intraspecific ones while the region between 4 and 6
Mb of Chrl14 is enriched for genic CNVs detected by comparing P. nigra with P. deltoides samples.
P-values calculated across the whole genome are reported in Supplementary Table 11.

Among the 3,076 (95.2% of the total) genic CNVs having a blastx hit against the Viridiplantae
section of the RefSeq protein database, 2,252 (~70%) were associated to at least one Gene Ontology
term. We detected twelve GO categories significantly over-represented with respect to the whole set
of P. trichocarpa genes (Figure 2). Three of them (“transferase activity”, “nucleotide binding” and
“kinase activity”’) were over-represented also in genes affected by both deletions and insertions, five
(“signal transduction”, “receptor activity”, “signal transducer activity”, “carbohydrate binding”,
“pollen-pistil interaction”) were over-represented also in genes affected by deletions and one
(“hydrolase activity”’) was over-represented also in genes affected by insertions. Transposable
elements make up a high proportion of repetitive DNA, indicating a possible contribution of these
elements to the formation of the genic CNVs localized in highly repetitive genomic regions. In fact,
the functional annotation showed a significant enrichment in the dataset of genic CNVs associated
with GO molecular functions (“transferase activity”, “nucleotide binding” and “hydrolase activity”)
that can be related to TE proteins. LTR retroelements, representing the most active class of
transposable elements in poplar, have been previously shown to be major contributors to genome
size evolution in rice (Ma and Bennetzen 2004). Transposable elements may also be important in

new gene formation and genome evolution. For example Helitron-related transposable elements
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have been shown to carry pseudogenes in maize and to contribute to the expansion and evolution of
the maize genome (Morgante et al. 2005; Yang and Bennetzen 2009). Genic CNVs enriched for the
twelve GO categories are not uniformly distributed through the genome and the enrichment for
genic CNVs of a given GO category is not necessarily due to local enrichment of genes belonging
to the same GO category (Supplementary Figure 13). P-values calculated across the whole genome
are reported in Supplementary Table 12. For example in the terminal part of ChrO1 (approximately
between 45 and 48 Mb) there is an enrichment for genic CNVSs in genes belonging to the three GO
categories “nucleotide binding”, “hydrolase activity” and “response to stress”, whereas the number
of genes belonging to these categories was not significantly different from expectations; these three
categories are all related to disease resistance and in fact the presence of NBS-LRR genes has been
previously reported in this genomic location (Kohler et al. 2008).

16% of genic CNVs encode for disease resistance proteins, such as the Nucleotide Binding Site-
Leucine Rich Repeat (NB-LRR) gene family. In maize, evidences that disease resistance genes
exhibit copy number variation for different haplotypes have already been reported (Smith et al.
2004). In addition, the overrepresentation of disease resistance genes in regions of structural
variation between different species has already been reported for rice (Hurwitz et al. 2010).
Evidences of the high variability of disease resistance genes have been also reported for
Arabidopsis thaliana (Clark et al. 2007). In A. thaliana, tandem duplications and losses have been
found to play the dominant role in affecting copy number of disease resistance genes (Cannon et al.
2004). Tandem duplication processes are considered to be a major cause for the generation of
clusters of duplicated genes and for the expansion of some gene families. For example, the extant
distribution and diversity in Arabidopsis genome of the NBS-LRR sequences has been generated by
extensive duplication and ectopic rearrangements that involved segmental duplications (Meyers et
al. 2003). Unequal recombination occurring when interspersed repetitive elements promote non-
homologue crossing-over is thought to be the primary mechanism driving the expansion of gene
clusters (Leister 2004). After the duplication, each paralogous gene may retain the same function as
the ancestral copy or may lose the original function and/or obtain a new function. Genes that confer
a selective advantage are thus maintained by natural selection. Therefore, the genes that we have
found to be over-represented in the genic CNVs may reflect recent gene acquisition or gene loss
events occurred in one of the two poplar species and are candidate markers of interspecific

divergence.

INDELs and CNVs disrupt gene structure and affect gene function in lowly expressed and
rapidly diverging genes
A total of 28.6% of the deletions contained one or more annotated genes while 20.4% of the
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insertion sites were predicted to overlap an annotated gene. The number of genes affected by
deletions (2,928) and insertions (1,986) was significantly lower than expected by chance (4,240 and
2,716 respectively, confidence intervals: 4168-4335 and 2634-2828). Moreover, 16.6% (1,310) of
the deletions and 10.4% (1,101) of the insertions were located at less than 500 bp from an annotated
gene, against expectations of 1,437 (confidence interval 1,377-1,501) and 1,923 (confidence
interval 1,848-2,001) respectively, based on simulations of randomly distributed deletion and
insertion points in the genome. Approximately 43% of the genes affected by deletions were
completely deleted, while the remaining genes were only partially deleted. In total, 0.09 Mb of 5°
UTR regions, 0.19 Mb of 3> UTR regions, 1.76 Mb of coding regions and 2.37 Mb of intronic
regions resulted to be deleted in at least one sample. The majority of the insertions affecting a gene
were observed in intronic regions (807), followed by those observed in coding regions (575), in 3’
UTR regions (218) and in 5> UTR regions (75); the remaining sites were not univocally detected in
a specific genic region. The extent of each genic portion affected by deletions was shorter than
expected by chance, while for those affected by insertions this was observed only in CDS and
introns (Supplementary Table 13).

Our results showed that INDELS tend to occur outside of genic sequences, probably due to the
effect of purifying selection. When SV affect genes, they are more likely to affect genes that are not
expressed or that show low levels of expression (Figure 3, left panel). In fact, if compared with the
whole dataset of P. trichocarpa annotated genes, both genic CNVs and INDELSs resulted to affect a
higher proportion of genes for which no expression has been detected by analyzing the P.
trichocarpa RNAseq data obtained from four different tissues. In the complete dataset the
percentage of non-expressed genes was 6.5%, while this value significantly increased in genes
interrupted by insertions (9.2%, chi-square test p-value 1.2E-06), in deleted genes (8.8%, chi-square
test p-value 4.5E-07) and in genic CNVs (12.0%, chi-square test p-value 2.5E-37) (Figure 3, left
panel). We repeated the same analysis separately for genes affected by INDELSs detected in
homozygous state in at least one of the studied samples and for those detected only in heterozygous
state. This analysis showed that the significant increase of non-expressed genes is driven by the
2,270 and 1,346 genes affected by homozygous deletions and insertions respectively
(Supplementary Figure 14). This marked difference between homozygous and heterozygous
structural variants could indicate the presence of a fraction of variants with potential deleterious
effects on expression that are only found in heterozygous condition and could contribute to the
genetic segregational load of the poplar species considered. We compared expression levels of all
expressed genes with those of genes affected by insertions, deletions or CNVs. We found that
expression levels of genes affected by structural variation are significantly lower if compared with

the expression levels of all the expressed genes (Figure 3, central panel). Analyzing the four tissues
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(developing xylem, leaf, callus from root and cambium) separately we observed the same pattern.
Genes affected by SV showed significantly reduced levels of expression in the four studied tissues
with the exception of callus, in which the reduction was not significant in genes affected by
deletions (Supplementary Figure 15).

To determine whether genes affected by structural variation were generally associated with fast
evolving proteins, we examined the rates of non-synonymous to synonymous changes per gene
(dN/dS). Using a randomization test, we found that genes affected by all the three types of studied
structural variation had a significantly higher dN/dS ratio compared with non-affected genes (Figure
3, right panel). In line with what was recently reported for Arabidopsis thaliana (Bush et al. 2014),
these results suggest the existence of either positive selection or relaxed negative selection in the
genes affected by structural variation. Part of the genes affected by structural variation may
represent pseudogenes or wrong predictions in the genome annotation process. The increased dN/dS
values in genes affected by both deletions and insertions are mainly due to the significant higher
dN/dS values of genes in which the INDEL specifically disrupt a CDS (Supplementary Figure 16).
On the other hand, dN/dS values of genes in which deletions affected only the intronic regions or in

which insertions occurred in 3’ UTRs are significantly lower (Supplementary Figure 16).

Identification of INDELs and genic CNVs allows reconstructing the poplar pan-genome

This study demonstrated that structural variation contributes to a substantial amount of the overall
genetic variation in poplar. The detected deletions and insertions cover approximately 20% of the
poplar reference genome. We found that a great proportion of this variability was driven by two
main mechanisms: the activity of transposable elements (especially class | LTR retroelements) and
non-homologous recombination driven by repeated gene clusters. A predominant contribution of
transposable elements to the genome structural variation was already reported for maize (Morgante
et al. 2007).

By summing the 434 Mb included in the P. trichocarpa reference genome and the 63 Mb of
sequence detected as insertions, we estimate a poplar pan-genome size of approximately 497 Mb.
According to our results, 80.7% (401 Mb) of the poplar pan-genome is shared by all the seven
studied accessions and constitutes the “core” genome (Figure 4). The remaining portion of the pan-
genome (19.3%, 96 Mb) is present in more than one, but not all of the seven poplar accessions, and
represents the “dispensable” genome. We estimate the contribution of each of the three studied
species to the dispensable genome: for the most part the dispensable genome is made up by INDELs
detected only in P. nigra accessions (9.4% of the pan-genome); while P. deltoides and P.
trichocarpa specific INDELS originate a smaller fraction of the dispensable genome (4.8% and
4.0% of the pan-genome, respectively). This difference is probably attributable to the higher
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number of studied P. nigra samples. The fraction of dispensable genome made up by INDELS
shared by different species is very small (1.1% of the pan-genome), indicating that the majority of
the poplar dispensable genome is made up by species specific variation. Estimated poplar core and
dispensable genome fractions are very similar to those reported for soybean, that were obtained by
analyzing seven assembled Glycine soja genomes (core: 80.1%, dispensable: 19.9%) (Li et al.
2014). On the other hand, a significantly higher fraction of dispensable genome has been reported in
maize where a comparison across four randomly chosen genomic regions between two inbred lines
showed that only 50% of the sequences were shared by the two genotypes (Morgante et al. 2007).
Gypsy and Copia LTR-retrotransposon insertions in the P. trichocarpa genome are older than those
observed in maize, with a much larger fraction of elements that are older than 5 million years
(Cossu et al. 2011). This difference in recent transposition activity could partly account for the
observed differences between the two species.

We observed that the dispensable fraction of the poplar pan genome is mainly composed by
repeated sequences such as those typical of transposable elements. However, we found that 2,270
genes (5.5% of the annotated ones) were deleted in homozygous state in at least one accession and
thus belong to the dispensable fraction of the genome. In addition, 2,453 genes (5.9% of the
annotated ones) have been detected as genic CNV and thus are present with a variable copy number
in the studied samples. The detection of INDELS in P. nigra low-depth pool showed that a great
proportion of variants are fixed in the species (Supplementary Figure 7). However, using results
obtained for the four high-depth P. nigra accessions we observed that each individual contributed to
the total number of INDELSs with private variants (Supplementary Figure 17). This observation
suggests that increasing the number of studied individuals would allow the identification of
additional portions of the dispensable genome of the genus Populus. Moreover, in this study we
have used the genome of P. trichocarpa as reference to detect INDELSs and thus we did not sample
the portion of the dispensable genome made up by structural variation specific to the P. nigra or P.
deltoides genomes that does not correspond to TE insertions.

Studies focused on the detection and characterization of structural variation at a genome-wide scale
in plants, and in particular in tree species, are still in their infancy. In the last years few studies have
been carried out in different plant species such as maize (Lai et al. 2010; Chia et al. 2012), rice (Xu
et al. 2012), Arabidopsis (Lu et al. 2012), sorghum (Zheng et al. 2011), soybean (Lam et al. 2010;
Li et al. 2014) and melon (Sanseverino et al. 2015). In this study we performed a genome-wide
comparative analysis of three closely related Populus species, we provided a first detailed catalogue
of structural variants across the whole genome and we proposed a functional and structural
characterization of poplar pan-genome. Future functional studies of the detected variants could help

understanding the mechanisms of speciation in poplar as well as the role of artificial and natural
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selection in these genomes. Understanding the role of inter- and intraspecific structural variants in

poplar phenotype may have important implications for breeding, particularly, inter-specific hybrids.

Materials and Methods

Study sample

Two naturally occurring Populus deltoides, one Populus trichocarpa and nineteen Populus nigra
individual trees were analyzed in the study (the complete list is reported in Supplementary Table 1
and Supplementary Table 2). Plant material for DNA sequencing of P. deltoides samples was
obtained from the Unité Amélioration Génétique et Physiologie Forestieres - I.N.R.A. (Orléans,
France). Illumina DNA sequences of the P. nigra genotypes were obtained as previously described
(Faivre-Rampant et al. 2016). Illumina DNA sequences of the P. trichocarpa sample Nisqually-1
and P. trichocarpa RNAseq data from four different tissues (developing xylem, leaf, callus from
root and cambium) were retrieved from the NCBI Sequence Read Archive (run accessions are
reported in Supplementary Table 1 and Supplementary Table 3 respectively).

DNA extraction, library preparation and sequencing

Leaf tissues from greenhouse or field-grown plants were ground in liquid nitrogen and high-
molecular-weight genomic DNA was extracted from nuclei as previously described (Zhang et al.
1995). The protocol was improved with the addition of PVVP40 both in the wash (5%) and the lysis
(2%) buffers. To prepare 2x100 bp paired-end libraries, 5 pug of nuclear DNA were randomly
fragmented by Fragmentase treatment (NEBNext™ dsDNA Fragmentase™, New England Biolabs)
at 37°C for 1 hour. Libraries were prepared using Illumina reagents, according to manufacturer's
specifications (Illumina, San Diego, CA). End repair of fragmented DNA was performed using T4
DNA polymerase and Klenow polymerase with T4 polynucleotide kinase. Subsequently, an “A”
base was added at the 3' end using a 3'-5' exonuclease-deficient Klenow fragment. The paired-end
adaptor with a single T base overhang at the 3’ end was ligated to the above products. The PE
adaptor ligated products were separated on a 2% agarose and the 400-600 bp size fraction was
excised from the gel. Fragments were enriched by 16-cycle PCR reaction using PE primers 1.1 and
2.1 (Illumina, San Diego, CA). Whole-genome re-sequencing was performed at the Institute of
Applied Genomics (IGA, Udine, Italy) facilities using either a GAIl analyzer or Hiseq 2000
platforms from lllumina (Inc. San Diego, CA, USA). Images from the instruments were processed

using the manufacturer’s pipeline software to generate FASTQ sequence files.

Sequencing data analysis

Adaptor sequences and low quality 3' ends were removed from both DNA and RNA short reads
14
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using respectively cutadapt (Martin 2011) and ERNE-FILTER (http://erne.sourceforge.net) with
default parameters. To assess the quality of sequencing data, Jellyfish (Marcais and Kingsford
2011) was used to obtain the kmer spectra plots with a k value of 16. After trimming, pairs with
both reads longer than 50 bp were aligned to the v3.0 of the Populus trichocarpa reference genome
(Tuskan et al. 2006), retrieved from the JGI Comparative Plant Genomics Portal
(www.phytozome.net/poplar.php). Alignment was performed using the short read aligner BWA (Li
and Durbin 2009) with default parameters. After alignment, duplicated sequences were removed
using the samtools rmdup utility (Li et al. 2009). The mean sequencing depth for each individual
was calculated dividing the total number of uniquely aligned bases by the number of covered
positions. Seven samples (four P. nigra, two P. deltoides and one P. trichocarpa individuals) were
sequenced at higher depth and underwent extensive investigation; they will be referred to as “high-
depth” in the subsequent sections of the paper. The remaining 15 P. nigra samples were sequenced
at a variable lower depth and were analyzed together as a pool; they will be referred to as “low-
depth” in the subsequent sections of the paper. To obtain a pool in which each sample was equally
represented, we reduced the depth of the more covered samples to an approximate sequencing depth
of 5X (which is the sequencing depth of the less covered samples). The number of reads selected for
each sample and used to create the pool is reported in Supplementary Table 2.

RNAseq data was aligned using TopHat2 (Kim et al. 2013) by requiring a minimum segment length
of 25 bp (i.e. the minimum length of the independently mapped segments generated by splitting a
read) and allowing not more than one mismatch per mapped segment. Alignments of RNAseq reads
were analyzed with the tool htseg-count included in the package HTSeq v0.6.1 (Anders et al. 2014)
to count the number of sequenced fragments aligned in each of the 41,335 genes included in the P.
trichocarpa v3 annotation gff file.

Structural variants analysis

Two different classes of structural variants were investigated: 1) insertions/deletions (INDELS)
related with the activity of transposable elements and 2) genic copy number variants (genic CNVSs).
The detection of INDELs was performed at individual level in high-depth individuals, while the 15
low-depth samples were pooled and analyzed together in order to increase the understanding of the
contribution of structural variation to P. nigra genetic diversity. INDELSs were classified in species-
specific variants (i.e. variants detected only in samples of the same species) and variants shared by
species (i.e. variants detected in samples belonging to different poplar species). The study sample
included a different number of P. nigra and P. deltoides samples (four P. nigra and two P.
deltoides); to obtain a more realistic estimation of the contribution of each of the two species to

poplar structural variation, this classification was performed by using all the possible combinations
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of only two P. nigra accessions and averaging the results. The detection of copy number variations
affecting genes was performed by pairwise comparisons between five high-depth samples: two P.
nigra (Poli and 71077-308), the two P. deltoides (L150-089 and L155-079) and the P. trichocarpa
sample (Nisqually-1). The remaining two high-depth P. nigra samples (BDG and BEN3) were not
employed for this analysis due to their altered kmer profiles (Supplementary Figure 1) denoting
possible bias in library complexity that could lead to loss of power in the depth of coverage-based
analysis.

Detection of deletions

To evaluate the performance of different available methods in the detection of deletions and to
choose the best performing ones on our data, a simulation experiment was conducted by simulating
1000 deletions and insertions in the P. trichocarpa reference genome (see sections 1-3 of
Supplementary Materials for details). According to simulation results, the detection of deletions
with respect to the P. trichocarpa reference genome was performed by combining the results of the
two SV detection methods DELLY (Rausch et al. 2012) and GASV (Sindi et al. 2009).
DELLY was run with default parameters and the results were filtered by selecting only the deletions
having a length included in the range 1-25 kb and by discarding those supported by less than five
paired-ends or by reads with a median mapping quality lower than 20. GASV was run with default
parameters and the results were filtered by selecting only the deletions having a length included in
the range 1-25 kb and being supported by at least five paired-ends. Since GASV reports two
intervals in which the left and the right breakpoints of the predicted deletions are supposed to be
included, the central points of the intervals were used to approximate the two breakpoints of each
deletion. Predictions obtained by the two tools for each sample were merged using a confidence
interval of 250 bp around the breakpoints: deletions with overlapping confidence intervals at both
sides were combined into a single event. Simulation results showed that DELLY is more accurate
than GASV in the estimation of the breakpoints. Thus, the breakpoints estimated by DELLY were
assigned to deletions detected by both tools. Deletions detected in the seven high-depth individuals
and in the low-depth pool were merged using a confidence interval of 500 bp around the
breakpoints. The integrated list of deletions was analyzed with a custom python script (see section 2
of Supplementary Materials for details) to calculate the proportion of reads supporting the deletions
in each sample and thus assign the genotype (non-carrier, heterozygous carrier, homozygous
carrier), based on the individual allele frequency of the variant. The genotype was assigned only to
samples having a minimum sequencing depth of 5 in correspondence to the deletion breakpoints.
The individual allele frequency (i.e. the proportion of reads carrying the variant) was employed to
refine deletion calls in all individuals and to assign the genotype: individuals in which the
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alternative allele had a frequency lower than 0.2 were classified as non-carriers; individuals
carrying variants with a frequency included in the range 0.2-0.8 were considered heterozygous
carriers and those carrying variants with a frequency higher than 0.8 were considered homozygous

carriers.

Annotation of deletions

The sequences of the deletions were extracted from the P. trichocarpa v3.0 reference genome and
annotated to identify their homology with known plant transposable elements. The annotation
process consisted of three consecutive approaches:
1) First, the coordinates of the deletions were interpolated with the P. trichocarpa v3.0 repeats
annotation file (Ptrichocarpa_210_v3.0.repeatmasked_assembly v3.0.gff3) retrieved from the
poplar section of the Joint Genome Institute website
(http://phytozome.jgi.doe.gov/pz/portal.html#!bulk?org=0rg_Ptrichocarpa) to identify deletions
overlapping with already annotated transposons.
2) Deletions not annotated by the previous step were analyzed with the tool TEannot included in the
REPET package v2.2 (Flutre et al. 2011), which annotates transposable elements (TES) in genomic
sequences using a library of known TE sequences. TEannot was run with default parameters and
using RepBase18.09 (Jurka et al. 2005) as reference database.
3) Finally, the remaining deletions were aligned against a database of transposable elements with
blastn (Altschul et al. 1990) using an E-value threshold of 10%°. The database consisted of the plant
section of RepBase18.09 database (Jurka et al. 2005), a list of P. trichocarpa LTR retrotransposons
retrieved from http://www.agr.unipi.it/ricerca/plant-genetics-and-genomics-lab/sequence-repository
and a set of poplar repeats de novo detected and classified by analyzing the P. trichocarpa reference
genome with RepeatModeler (http://www.repeatmasker.org/RepeatModeler.html), using default
parameters. Deletions showing homology with a TE included in the database in at least 80% of their
length or at both extremities (400 bp at the two ends) were classified accordingly.
Insertion dates of a set of complete P. trichocarpa LTR retrotransposons retrieved from
http://www.agr.unipi.it/ricerca/plant-genetics-and-genomics-lab/sequence-repository were
estimated based on the amount of divergence between the 5’ and 3” LTRS as previously described
(SanMiguel et al. 1998). LTR sequences of each retrotransposon were recovered from the reference
sequence and aligned with the stretcher command of the EMBOSS suite (Rice et al. 2000; Olson
2002). The evolutionary distance (K) between the two LTRs was calculated for each pairwise
comparison with the distmat tool of EMBOSS, with the nucmethod option set to 2, in order to
compute the distance measure with the Kimura’s Two-Parameter method (Kimura 1980). Finally,
the time of insertion (T) was estimated for each retrotransposon with the substitution rate (k) of 4.72
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2x107° (Cossu et al. 2011), via the following equation: T=K/2*k. Dated LTR retrotransposons were
divided in two subsets: the first containing elements corresponding to detected deletions (SV-LTR)
and the second containing those unrelated to deletions (noSV-LTR) and a difference between the
two distributions of insertion dates was tested using the non-parametric two-sample

Kolmogorov-Smirnov test.

Detection of transposable elements insertions

Insertions of transposable elements were detected exploiting the information carried by read pairs
spanning the insertion site, i.e. pairs in which one read (referred to as “anchor” read) originates
from the flanking regions of the inserted element and its mate (referred to as “mobile” read)
originates from either the 5 or the 3’ of the inserted element. “Anchor” reads are expected to be
aligned to the reference genome and to create two clusters aligned in opposite orientation pointing
toward the insertion site, while “mobile” reads are expected to be either not aligned or aligned in
multiple positions of the genome (Supplementary Figure 2). The alignment of “mobile” reads
against a database of transposable elements was used to classify the mobile elements causing each
insertion. The database contained a set of known plant TEs, a set of poplar specific repeat sequences
and the sequences of the deletions detected in the present study that are likely related to TE activity
(see section 4 of Supplementary Materials for details). The analytical pipeline used to detect new
transposable elements insertion sites is described in Supplementary Material. The above mentioned
pipeline was used to detect new insertions with respect to the P. trichocarpa reference genome in
the high-depth individuals and in the low-depth pool. Results obtained from the different samples
were merged using a confidence interval of 250 bp around the breakpoints. The integrated list of
insertions was analyzed with a custom python script to calculate the proportion of reads supporting
the insertions in each sample and thus assign the genotype (non-carrier, heterozygous carrier,
homozygous carrier), using the same approach described for deletions (see section 3 of
Supplementary Material for details). TE insertions were considered to affect a gene when the entire

interval in which the insertion was predicted overlapped an annotated gene.

Detection of genic CNVs

The detection of genic regions showing copy number variation was performed by exploiting the
depth of coverage signature (DOC), including in the analysis only reads that were uniquely aligned
to the reference genome. The tool htseg-count (Anders et al. 2014) was used to count the number of
fragments aligned on each of the 41,335 P. trichocarpa annotated genes in the high-depth samples.
Read counts were used as input data for the R package DESeq (v1.8.3), which is widely used for the
detection of differential gene expression (Anders and Huber 2010). DESeq was employed to detect
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differentially covered genes between all the possible combinations of the seven high-depth samples.
Data was normalized using the functions estimateSizeFactors and sizeFactors included in

the DESeq package (Anders and Huber 2010). After dispersion estimation for each gene, a binomial
test was used to identify differentially covered genes, following correction for multiple testing with

the Benjamini-Hochberg procedure (Anders and Huber 2010). A corrected p-value < 0.05 was

considered significant.

Gene Ontology annotation and enrichment analysis
The P. trichocarpa v3.0 gene annotation (Tuskan et al. 2006) was used to study genes affected by

insertions, deletions or CNVs. To obtain the Gene Ontology annotation, gene sequences were used
as query for a blastx analysis against the Viridiplantae (taxid: 33090) non redundant protein (nr)
database. BLASTX results were imported into BLAST2GO version V.2.5.0 (Conesa et al. 2005) for
the Gene Ontology (GO) assignment. The Annex tool implemented in BLAST2GO was used to
improve the annotation by deriving terms due to verified links from ‘Molecular Function’ terms to
‘Biological Process’ and ‘Cellular Component’ ones. Annotation results were summarized through
the mapping to the Plant GO-Slim, a reduced version of the Gene Ontology containing a selected
number of nodes relevant for plants. Over- representation, compared to the rest of the genome, of
GO terms in the subsets of genes included in the deletions, interrupted by insertions or showing
differential coverage was tested using a Fisher’s Exact Test implemented in the Gossip package
(Bliithgen et al. 2005) integrated in Blast2GO. To reduce the number of false positives, a false
discovery rate correction for multiple testing (Benjamini and Hochberg 2007) was applied and only

differences with a corrected p-value <0.05 were selected.

Sequence evolution analysis
The number of non-synonymous substitutions per non-synonymous site (dN), the number of

synonymous substitutions per synonymous site (dS) and their ratios were calculated for a list of
30,055 genes orthologous between P. trichocarpa and P. euphratica. Orthologous genes were
selected by a BLASTn (Altschul et al. 1990) analysis of the P. trichocarpa CDSs against the P.
euphratica reference genome (GeneBank assembly accession: GCA_000495115.1). Only the
portions of P. trichocarpa CDSs aligning for at least 150 consecutive bases to the P. euphratica
genome were selected. Polymorphic positions between the two species were detected with a custom
R function and the dN/dS ratio was calculated with the kaks function included in the R library
‘seqinr’. This function makes an unbiased estimate of the ratio of nonsynonymous to synonymous
nucleotide substitution for a set of aligned sequences (Li 1993). To assess the statistical significance
of the difference in the dN/dS ratios observed between genes affected by structural variation and

those not affected a randomization test was used. In brief, we contrasted the dN/dS ratios in genes
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affected by deletions, insertions or genic CNVs to the distribution of means of the same feature in s
= 10,000 randomly generated subsets of an equal number of genes drawn from the complete gene
set. Let q be the number of times the mean value of the set of genes affected by structural variation
was lower than the mean value of the randomly generated subset and r = s-q, the P-value has been

calculated as: (r + 1)/(s + 1).

Gene expression analysis
P. trichocarpa RNAseq data from four different tissues (developing xylem, leaf, callus from root

and cambium) was used to distinguish between experimentally verified and not experimentally
verified genes. To this aim, expression levels were calculated from RNAseq data of each tissue as
the absolute fragment values corrected by sequence length (FPKM values: the number of reads pairs
per kilobase of transcript per million mapped reads) and genes were considered to be verified if in
at least one of the four tissues the FPKM value was higher than zero. To assess the statistical
significance of the difference in the expression levels observed between genes affected by structural
variation and those not affected a randomization test was used. We contrasted the expression levels
(calculated as the mean FPKM obtained in the four tissues) in genes affected by structural variation
to the distribution of means of the expression levels calculated in s = 10,000 randomly generated
subsets of an equal number of genes drawn from the complete gene set. Let q be the number of
times the mean value of the set of genes affected by structural variation exceeded the mean value of
the randomly generated subset and r = s-q, the P-value has been calculated as: (r + 1)/(s + 1).

Characterization of SV
Different statistical tests have been applied to study how INDELSs and genic CNVs are distributed
within the poplar genome.

e To test for preferential localization of INDELS outside of i) genes, ii) individual genic
portions (CDSs, 5’-UTRs, 3°-UTRs and introns) or iii) at a distance greater than 500 bp
from genes, a randomization test was used. One hundred simulated datasets of deletions and
insertions were obtained by transferring the detected variants to new randomly assigned
genomic location and the number of affected genes was computed. Confidence intervals of
the number of affected genes were based on empirical distribution.

e Preferential localization of INDELS in the centromeric regions of poplar chromosomes was
tested against the null hypothesis that INDELSs follow a Poisson distribution with mean
equal to the mean number of INDELS per 250 kb windows. The resulting p-values were
corrected for multiple testing (Benjamini and Hochberg 1995).

e The relationship between the number of INDELS and repetitiveness was assessed by

comparing the distribution of 20-mers in 250 kb windows not carrying INDELSs with that in
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windows carrying one or more INDELS for insertions and deletions separately. Significance
was tested using Wilcoxon-Mann-Whitney test and p-value was corrected for multiple
testing (Benjamini and Hochberg 1995).

To test whether the distance between genic CNVs and INDELSs was shorter than that
between all genes and INDELSs, Wilcoxon-Mann-Whitney test was used.

Significance of the clustering of genic CNVs was assessed by comparing the number of
clustered genic CNVs (clusters were defined as groups of 2 or more genic CNVs in a single
window) observed in our data with the number of clustered genic CNVs obtained by
simulating 10,000 times a random distribution of genic CNVs across the genome.
Wilcoxon-Mann-Whitney test was used to test the hypothesis that windows with genic
CNVs clusters have a higher number of genes compared to windows showing no genic
CNVs.

To test for a preferential localization of genic CNVs along the poplar chromosomes we used
a chi-square test: expectation was based on the null hypothesis that genic CNVs have the
same distribution of genes and was computed as the total number of genic CNVs multiplied
by the proportion of genes falling in the same distance bin. Distance was measured in bins
of 1 Mb. Distances greater than 10 Mb were pooled.

Local enrichment of genic CNVs in inter- or intra-specific comparisons was computed in 2
Mb windows assuming as null hypothesis a Poisson distribution in which the number of
genic CNVs per window is equal to the average number of genic CNVs per window in the
chromosome (to allow for heterogeneity between chromosomes).

Local enrichment of genic CNVs belonging to each GO category over-represented in genic
CNVs was tested in 250 kb windows assuming a Poisson distribution in which the null
expectation is the genome-wide average number of genic CNVs per window for each
category. The obtained p-value was corrected for multiple testing (Benjamini and Hochberg
1995). The same approach was used to test for enrichment of all genes belonging to the

over-represented GO categories.
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Figure 1. Genomic distribution of INDELSs and genic CNVs. The number of deletions (dark blue
track, y axes range = 0-20), insertions (blue track, y axes range = 0-40), genic CNVs (yellow track,
y axes range = 0-15), annotated genes (red track, y axes range = 0-80) and the repetitiveness of the
genome (green track, y axes range = 0-10) are represented in windows of 250 kb along the nineteen
Populus trichocarpa chromosomes (outer gray bars). Predicted centromeric regions are highlighted

in red.
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Figure 2. Frequencies of the Gene Ontology terms for which an over-representation has been
observed when comparing the subsets of genes included in deletions (DEL), genes interrupted by
insertions (INS) and genic CNVs (gCNV) in the studied samples with respect to the complete

dataset of P. trichocarpa annotated genes (ALL). * p-value <0.05, ** p-value<0.01.
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Figure 3. Genetic features associated with P. trichocarpa transcriptome (ALL), genes disrupted Dl:;y
deletions (DEL), genes disrupted by insertions (INS) and genes affected by genic CNVs (gCNV).
Left panel: Percentage of non-expressed genes. The percentage of hon-expressed genes was
significantly higher in genes affected by any SV (deletion, insertion or genic CNV) than the whole
transcriptome. Central panel: Expression levels in the whole transcriptome and in genes affected
by SV. Right panel: Rates of nonsynonymous to synonymous changes in whole transcriptome and
genes affected by SV. dN/dS values in genes affected by SV were significantly higher compared to

whole transcriptome. *: p-value < 0.05.
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Figure 4. Composition of poplar pan-genome constructed using the structural variants detected in

the seven high-depth accessions.
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Table 1. Summary statistics of INDELSs detected in the high-depth poplar accessions.

0,
Phylogeny INDEL Species f:,/:)’}l:?(gla)s SV event
Pn 39.6 (29.2) DELind

g = Pd 31.6 (23.5) DELine
5 x
g g K 7I58E8L9 Pt 10.0 (0.7) DEL in b (not fixed), assembly error (fixed)
Q — RS . . .
% g % (33.2 Mb) Pn/Pd 11.6 (9.8) DEL inc, INS in b (fixed)
= 5 S Pn/Pt, Pd/Pt 3.4(0.2) DELinalostindore

Pn/Pd/Pt 3.8(0.4) Assembly errors, DEL in a (not fixed)

Pn 47.4 (28.6) INSind
Pd 31.2(18.9) INSine
10,586 Pt 5.6 (0.3) INSin b (not fixed), assembly error (fixed)

INS
(629 Mb)  P/Pd 13.9 (5.1) INSin ¢, DEL in b (fixed)

Pn/Pt, Pd/Pt 0.6 (0.1) INSinalostindore
Pn/Pd/Pt 1.2 (0.5) Assembly errors, INS in a (not fixed)

The table reports a schematic representation of the phylogeny of the three studied poplar species
and a classification of the detected deletions (DEL) and insertions (INS) on the bases of the species
in which variants have been detected: Pn, Pd, Pt = P. nigra, P. deltoides and P. trichocarpa specific
INDELSs, respectively; Pn/Pd, Pn/Pt, Pd/Pt = INDELSs detected in the pairs P. nigra-P. deltoides, P.
nigra-P. trichocarpa and P. deltoides-P. trichocarpa, respectively; Pn/Pd/Pt = INDELSs detected in
all the three studied species. For each category, the table reports the percentage of detected variants
(% INDELSs) belonging to that category, the percentage of variants detected in homozygous state in
all individuals (%fixed) and the structural variation event (SV event) responsible for the
correspondent INDEL in agreement with the known phylogeny and under the assumptions of all
mutations having occurred only once and of absence of false positives and false negatives.
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Table 2. Classification of INDELS on the basis of their homology with Class | (retrotransposons) or

Class Il (DNA transposons) transposable elements.

# DEL® % DEL" # INS° %INS®

LTR Gypsy 1,752 39.9% 5,175 49.8%

LTR Copia 854 19.4% 2,862 27.5%

Class | LINE L1 64 1.5% 365 3.5%
LTR 38 0.9% 308 3.0%

SINE 6 0.1% 2 0.0%

Total 2,714 61.8% 8,712 83.8%

TIR hAT 525 12.0% 449 4.3%

Helitron 380 8.7% 255 2.5%

TIR CACTA 343 7.8% 481 4.6%

Class Il TIR PIF/Harbinger 39 0.9% 93 0.9%
TIR Mutator 26 0.6% 0 0.0%

Class Il unknown 365 8.3% 410 3.9%

Total 1,678 38.2% 1,688 16.2%

Unclassified 3,497 44.3% 186 1.8%

*Number of classified deletions. "Percentage of classified deletions. “Number of classified
insertions. “Percentage of classified insertions.
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