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1 Introduction

One important application of spatial autoregressive (SAR) models is to the analysis of

social networks, particularly for the case when an outcome variable is observed on a prede-

termined network; see, for instance Bramoullé, Djebbari and Fortin (2009), Lee, Liu and

Lin (2010), and de Paula (2016).1 Consider a fixed network of n individuals, represented

by a n × n weights matrix W . The matrix W could be a (0, 1) adjacency matrix, a row-

standardized adjacency matrix, or could more generally be specified in such a way that

the entry Wi,j reflects the influence of individual j on individual i. A popular specification

of a SAR model for the determination of an n × 1 outcome vector y, given the network

and an n× k matrix X of covariates, is

y = λWy +Xβ +WXδ + σε, (1.1)

where λ is a scalar autoregressive parameter, β and δ are k × 1 parameters, σ is a scale

parameter, and ε an n × 1 error term. In the peer effects literature, λ captures the

endogenous effect, and δ the exogenous effect; see Manski (1993). In addition to social

networks, model (1.1) has been applied to several other cross-sectional contexts. Also,

when W is block-diagonal, model (1.1) can be seen as a panel data model with cross-

sectional dependence - see for instance the recent paper by Robinson and Rossi (2015a),

and references therein.2

A fundamental, at least conceptually, specification for the matrix W in the social

network literature is given by the equal weights matrix Bn := (n− 1)−1 (ιnι
′
n− In), where

ιn denotes the n× 1 vector of ones. In that case, model (1.1) postulates that the outcome

variable for individual i is explained by the “leave-own-out” mean (n− 1)−1∑
j 6=i yj , the

regressors, and the leave-own-out means of the regressors; see, e.g., Moffitt (2001). The

weights matrix Bn may be appropriate when all individuals are equally affected by all

other individuals, or when no information on how individuals interact is available.

A more general assumption is that individuals interact in groups, with each group

member being equally affected by all the other members in that group, and with no links

across groups. This results in W having a block diagonal structure, with equal weights

matrices as blocks. More precisely, letting mi be the distinct group sizes, for i = 1, ..., p,

and ri the number of groups of size mi, for i = 1, ..., p, the (row-standardized) group

1For extensions of SAR models that allow for endogenous network formation, see, e.g., Hsieh and Lee

(2016).
2A special case of the model in Robinson and Rossi (2015a) is discussed in Section 3.6.1 below.
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interaction weights matrix is

W = diag(Iri ⊗Bmi , i = 1, .., p). (1.2)

Such matrices were used, for example, in Case (1992), Baltagi (2006), Kelejian, Prucha,

and Yuzefovich (2006), Lee (2007), and Davezies et al. (2009), and this is the structure

we shall consider in this paper.

We focus on inference on λ, which is often the key parameter in applications, and, for

simplicity (but without loss of generality), take δ = 0 in (1.1). We call a model

y = λWy +Xβ + σε (1.3)

with weights matrix (1.2) a Group Interaction model. If β = 0 in equation (1.3) we say

that the model is pure. Note that the number of groups is r :=
∑p

i=1 ri, and the sample

size is n =
∑p

i=1 rimi. We assume throughout that mi ≥ 2 for all i. If the group sizes are

all equal (i.e., p = 1) the Group Interaction model is said to be balanced, otherwise, when

p > 1, it is said to be unbalanced. In the balanced case W consists of r copies of Bm, so,

letting m be the common group size,

W = Ir ⊗Bm.

The class of Group Interaction models is discussed briefly in Hillier and Martellosio

(2016) (hereafter H&M), where some exact results are given for the pure balanced case.

The main results from that paper are summarized in the next section. Then, in Section 3

we provide a complete analysis of the properties of λ̂ML, and of exact inference procedures

based upon it, for the pure balanced model. Results for the balanced model are of interest

for their own sake, but also because this model is often used to illustrate theoretical results

in the literature (see Lee (2004), (2007), and Lee, Liu, and Lin (2010), for instance). How-

ever, the balanced model is certainly of limited practical importance, so in Section 4 we go

on to discuss the unbalanced model. For reasons to be explained, results for this model are

much more complex than those for the balanced model. Thus, although we do give some

general results, we often confine ourselves to the case of just two group sizes (p = 2) for sim-

plicity. Proofs of the results that are not established directly in the main text, derivations,

and some additional discussion associated with this article are provided online in supple-

mentary material, available at Cambridge Journals Online (journals.cambridge.org/ect).

The supplement also contains some additional graphics illustrating results mentioned in

the article.
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2 Preliminaries

For the present, let W be any n × n matrix with at least one negative, and at least

one positive, eigenvalue, and normalized to have largest eigenvalue unity. The parameter

space for λ is taken to be the largest interval containing the origin within which the matrix

Sλ := In − λW remains non-singular. Letting ωmin denote the smallest real eigenvalue of

W, the parameter space will thus be

Λ := (ω−1
min, 1).

We assume that the parameters are estimated by (quasi-) maximum likelihood (QML),

where the likelihood adopted is that which would apply if, in equation (1.3), ε ∼ N(0, In).

We define the QMLE of λ (assuming it exists), λ̂ML, by

λ̂ML := arg max
λ∈Λ

l(λ),

where l(λ) is the profile (quasi) log-likelihood for λ, after maximization with respect to

(β, σ2). This estimator is, in general, a zero of a high degree polynomial in λ, and thus

cannot be written in closed form. However, it is shown in H&M that, if W has only real

eigenvalues - which will be the case in the present paper - the profile likelihood l(λ) is

single-peaked on Λ. This means that, for each z ∈ Λ, the event that λ̂ML ≤ z is identical

to the event that the profile score at z, which we denote by s(z), is negative. Thus,

notwithstanding its unavailability in closed form, an exact expression for the distribution

function (cdf) of λ̂ML can be written down immediately:

Pr(λ̂ML ≤ z;λ) = Pr(s(z) ≤ 0), (2.1)

where, here and throughout, Pr(λ̂ML ≤ z;λ) denotes the cdf of λ̂ML at the point z ∈ Λ

when the true parameter value is λ ∈ Λ. This representation is the basis for all of the

results in this paper.

In addition to this single-peaked property, it is also easy to see that s(z) → −∞ as

z → 1 (from the left), and s(z) → +∞ as z → ω−1
min (from the right). Thus, Pr(λ̂ML ≤

z;λ) = Pr(s(z) ≤ 0) → 1 as z → 1, and Pr(s(z) ≤ 0) → 0 as z → ω−1
min. In other words,

the inequality Pr(s(z) ≤ 0) does indeed define a distribution function supported on Λ, as

one would expect. Note that this argument holds whatever the distribution of y, provided

only that the distribution of the random variable s(z) is supported on the entire interval

Λ.
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In the analytical results to follow we take the distribution of ε to be N(0, In) (that is,

the likelihood is correctly specified), but, as discussed in H&M, all results obtained under

this assumption continue to hold under scale mixtures of the N(0, In) distribution, the

family we denote by SMN(0, In). For symmetric pure SAR models, equation (2.1) provides

the following representation of the cdf of the MLE:3

Pr(λ̂ML ≤ z;λ) = Pr

(
N∑
i=1

dii(z, λ)χ2
ni ≤ 0

)
, (2.2)

where N denotes the number of distinct eigenvalues of W (which we take to be labelled in

increasing order of magnitude), ni denotes the algebraic multiplicity of the eigenvalue ωi

of W, the χ2
ni variates are independent, and the coefficient functions dii(z, λ) are given by

dii(z, λ) := 2

(
1− zωi
1− λωi

)2

(gi(z)− ḡ(z)) . (2.3)

In this expression, the

gi(z) :=
ωi

1− zωi
,

for i = 1, ..., N , are the distinct eigenvalues of Gz := WS−1
z , where Sz := In − zW, while

ḡ(z) := (1/n)
∑N

i=1 nigi(z) = (1/n)tr(Gz) is the average of the eigenvalues of Gz. Notice

particularly that the distribution defined by (2.2) depends only on λ, and not on the

nuisance parameter σ2. In what follows we use the notation that, for any matrix A of full

column rank, PA := A(A′A)−1A′, and MA := I − PA. Also, col(A) denotes the column

space of a matrix A. All matrices are assumed to be real.

3 The Balanced Model

In this section we first of all provide a complete analysis of the exact properties of λ̂ML,

and inference procedures based upon it, for the pure balanced model. Then, we consider

some generalizations of these results to balanced models with regressors: we show that,

for certain special choices of X, the results obtained for the pure model apply with only

minor modifications. We note that in the pure balanced Group Interaction model, because

the profile score is a quadratic in λ, λ̂ML is in fact available in closed form. However, its

distribution theory is most easily obtained by using equation (2.2), and this also leads

naturally to generalizations to the unbalanced model, when the estimator is typically not

available in closed form.
3If normality is not assumed equation (2.2) involves T quadratic forms in ni-dimensional vectors; see

H&M.

5



3.1 Distribution Function and Density

For the pure balanced model we have N = 2, n1 = r(m − 1), n2 = r, Λ = (−(m − 1), 1),

and the coefficients in equation (2.2) are given by

d11 = −2

(
z +m− 1

λ+m− 1

)2 1

(λ+m− 1) (1− λ)
< 0,

d22 = 2

(
1− z
1− λ

)2 (m− 1)

(λ+m− 1) (1− λ)
> 0.

Eliminating irrelevant scalars in (2.2), we obtain

Pr(λ̂ML ≤ z;λ) = Pr
(

(m− 1)χ2
r ≤ c(z, λ)χ2

r(m−1)

)
,

where

c(z, λ) :=

(
(1− λ) (z +m− 1)

(1− z) (λ+m− 1)

)2

. (3.1)

Thus, as stated in H&M, in the pure balanced Group Interaction model with ε ∼
SMN(0, In), the cdf of λ̂ML is, for any z, λ ∈ Λ,

Pr(λ̂ML ≤ z;λ) = Pr(Fr,r(m−1) ≤ c(z, λ)), (3.2)

where Fν1,ν2 denotes a random variable distributed with F distribution with ν1 and ν2 de-

grees of freedom. As expected, the distribution does not depend on σ2. The corresponding

density function is

pdf λ̂ML
(z;λ) =

2mτ r(m−1)

B
(
r
2 ,

r(m−1)
2

) (1− z)r(m−1)−1 (z +m− 1)r−1(
τ2 (1− z)2 + (z +m− 1)2

) rm
2

, (3.3)

where τ := θ(λ)
√
m− 1, with

θ(λ) = θ :=
λ+m− 1

1− λ
> 0. (3.4)

The parameter θ is a 1-1 function of λ, and it is clear from equation (3.2) that the properties

of λ̂ML depend on λ only through θ. This key parameter can be interpreted as just another

way of locating the point λ in the interval Λ, i.e., as a different parameterization of the

model.

Note that c(z, λ) = (θ(z)/θ(λ))2 , and that c(z, λ) is monotonic increasing in z. In fact,

c(z, λ)→∞ as z → 1, while c(z, λ)→ 0 as z → −(m−1). Hence, as noted in the comments

following equation (2.1), equations (3.2) and (3.3) define a cdf and pdf supported on Λ.

In addition, Pr(λ̂ML ≤ z;λ) → 0 for all z ∈ Λ as λ → 1, because c(z, λ) → 0, and
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Pr(λ̂ML ≤ z;λ) → 1 for all z ∈ Λ as λ → −(m − 1), because c(z, λ) → ∞. That is,

the distribution of λ̂ML becomes degenerate, i.e., var(λ̂ML) → 0, as λ approaches either

endpoint of Λ.

Finally, observe that, since c(λ, λ) = 1, the probability that λ̂ML underestimates λ,

Pr(λ̂ML ≤ λ;λ), is given by Pr(Fr,r(m−1) ≤ 1), which does not depend on λ. The fact that

Pr(λ̂ML ≤ λ;λ) does not converge to 1 as λ → 1, as might have been anticipated, is a

consequence of the degeneracy of the distribution of λ̂ML just discussed.

Remark 3.1. Gaussian pure SAR models are members of the 2-parameter exponential

family, with parameters (λ, σ2), the sufficient statistics being the three quadratic forms

q1 := y′y, q2 := y′W ′Wy, q3 := y′(W + W ′)y, and canonical parameters η1 := −1/(2σ2),

η2 := −λ2/(2σ2), η3 := λ/(2σ2). Thus, pure SAR models are, in the notation of Barndorff-

Nielsen (1980), at worst, (3, 2)-curved exponential models. In the balanced Group Interac-

tion model with W = Ir⊗Bm, these three sufficient statistics are not minimal, and can be

written in terms of just two statistics,

s1 := y′(Ir ⊗Mιm)y, s2 := y′(Ir ⊗ Pιm)y.

Specifically, q1 = s1 + s2, q2 = s1/(m − 1)2 + s2, and q3 = 2(s2 − s1/(m − 1)). Collecting

coefficients, the canonical parameters become

η∗1 := − 1

2σ2

(
λ+m− 1

m− 1

)2

, η∗2 := −(1− λ)2

2σ2
.

The pure balanced model is thus a regular exponential model, and it is this that makes it

amenable to exact inference. We will see later that the unbalanced model cannot be reduced

in this way, and so is genuinely curved. It can easily be checked that the two sufficient

statistics s1 and s2 are independent in the balanced model, and

s1(λ+m− 1)2

σ2(m− 1)2
∼ χ2

r(m−1),
s2(1− λ)2

σ2
∼ χ2

r .

Note that the parameter θ is closely related to the canonical parameters in the exponential

family representation of the model, specifically, by θ2 = (m− 1)2η∗1/η
∗
2.

3.1.1 First Consequences

The function c(z, λ), defined on Λ×Λ, is strictly decreasing in λ and strictly increasing in

z. The first fact means that the distribution functions for different values of λ do not cross,

so λ1 < λ2 implies that the cdf for λ = λ1 lies entirely above that for λ = λ2. That is, in
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a pure balanced Group Interaction model with ε ∼ SMN(0, In), the cdf Pr(λ̂ML ≤ z;λ) is

decreasing in λ over Λ, for any z ∈ Λ, or, in other words, λ̂ML is stochastically increasing

in λ. Also, since the mean of λ̂ML is −(m − 1) plus the area above the cdf, it follows

immediately that the mean of λ̂ML is a monotonic increasing function of λ.

The second property of the function c(z, λ) implies that Pr(λ̂ML ≤ z;λ) = Pr(c(λ̂ML, λ) ≤
c(z, λ)) = Pr(Fr,r(m−1) ≤ c(z, λ)), or that c(λ̂ML, λ) ∼ Fr,r(m−1). Thus, the MLE of θ,

θ̂ML :=
λ̂ML +m− 1

1− λ̂ML

,

is distributed as θ
√

Fr,r(m−1), which we can state as follows.

Proposition 3.1. In the pure balanced Group Interaction model with ε ∼ SMN(0, In),

θ̂2
ML ∼ θ2Fr,r(m−1).

The result in Proposition 3.1 is strikingly simple, and in the following sections we

explore several of its consequences. It is worth pointing out that it provides a very efficient

method of simulating any properties of λ̂ML (or functions of λ̂ML) that are not available

exactly, or are too complicated, by simply drawing samples from an F distribution.

3.1.2 Asymptotics Under Mixed-Normality

In the case r →∞ with m fixed (fixed-domain asymptotics), the asymptotic distribution of

λ̂ML is covered by the results in Lee (2004): λ̂ML is consistent and asymptotically normal

as r → ∞ with large-r variance (based on the information matrix, assuming normality)

given by

vλ :=
(1− λ)2(λ+m− 1)2

2rm(m− 1)
. (3.5)

Note that, as λ goes to either extreme of Λ, this exhibits the same degeneracy as does

the exact variance - see Section 3.1. Lee’s paper does not fully study the asymptotic

properties of λ̂ML when r is fixed and m → ∞ (infill asymptotics). Using Proposition

3.1, both the large-r and the large-m asymptotics are easily deduced, under our present

mixed-normal assumptions, from the following two representations of the Fr,r(m−1) random

variable involved:

Fr,r(m−1) =
(m− 1)

(
1
r

∑r
i=1 χ

2
1

)
1
r

∑r
i=1 χ

2
m−1

=
χ2
r

1
m−1

∑m−1
i=1 χ2

r

,

where all χ2 variates are independent. From the first of these expressions, we see easily

that Fr,r(m−1)
p−→ 1 as r → ∞ with m fixed, which implies, by Proposition 3.1, that
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θ̂ML
p−→ θ, and hence that λ̂ML

p−→ λ, a simple example of Lee’s (2004) much more general

results. Application of the delta method also produces, from the first of these expressions,

the known asymptotic normality result under fixed-domain asymptotics. However, the

second expression shows that, as m → ∞ with r fixed, Fr,r(m−1)
d−→ χ2

r/r. Thus, in

fact λ̂ML converges to a random variable under this regime, so is inconsistent under infill

asymptotics. The limiting distribution function and density of λ̂ML as m → ∞ follow by

combining this result with Proposition 3.1, which immediately gives the following result

(also given in H&M).

Proposition 3.2. In a pure balanced Group Interaction model with ε ∼ SMN(0, In), the

limiting cdf of λ̂ML as m→∞ with r fixed is,

lim
m→∞

Pr(λ̂ML ≤ z;λ) = Pr

(
χ2
r ≤ r

(
1− λ
1− z

)2
)
, −∞ < z < 1,

for any λ, z ∈ Λ, and the associated limiting density is

lim
m→∞

pdf λ̂ML
(z;λ) =

r
r
2 (1− λ)r

2
r
2
−1Γ( r2)(1− z)r+1

e−
r
2( 1−λ

1−z )
2

. (3.6)

Figure 1 plots the exact density (3.3) and large-r approximation when r = m = 10,

for z ∈ (−1, 1), and λ = −0.5, 0, 0.5. Here and elsewhere we focus on the interval (−1, 1)

because it seems to be most relevant in applications. These plots and similar graphical

evidence suggest the tentative conclusion that the density of λ̂ML is, in general, well-

centered on the true value of λ. The large-r asymptotic approximation seems unsatisfactory

even for this sample size, which is essentially what motivates an exact analysis based on

the density (3.3).

In Figure 2 we also plot the exact density for m = 5, 50 and r = 10, together with the

large-m approximation (3.6), which of course does not depend on m. Note that when λ

is positive the density of λ̂ML is quite insensitive to m, and the large-m density gives an

excellent approximation when λ is positive (despite the MLE not converging in probability

to a constant as m→∞). This is due to the fact that in this model information about λ

grows very slowly with m. The approximation is less accurate when λ is negative.
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Figure 1: Density of λ̂ML for the pure balanced Group Interaction model with ε ∼
SMN(0, In), when r = m = 10.
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Figure 2: Density of λ̂ML for the pure balanced Group Interaction model with ε ∼
SMN(0, In), when r = 10.
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3.2 A Median Unbiased Estimator

A second consequence of Proposition 3.1, along with the fact that θ is a monotonic func-

tion of λ, is that the median of λ̂ML is defined, in an obvious notation, by the identity

med(θ̂ML) = θ
√

med(Fr,r(m−1)). Solving this equation yields:

Proposition 3.3. In the pure balanced Group Interaction model with ε ∼ SMN(0, In), the

median of λ̂ML is

med(λ̂ML) = 1− m

1 + θ
√

med(Fr,r(m−1))
. (3.7)

Thus, the median of λ̂ML is a simple function of the median of an F distribution. The

median bias of λ̂ML is then, for any λ ∈ Λ,

bmed(λ) := med(λ̂ML)− λ =
m

1 + θ
− m

1 + θ
√

med(Fr,r(m−1))
. (3.8)

Recalling that Fr,r(m−1)
d−→ χ2

r/r as m→∞, we immediately obtain the large-m median

bias (the large-r median bias is obviously zero),

lim
m→∞

bmed(λ) = (1− λ)

(
1−

√
r

med (χ2
r)

)
.

The detailed properties of the median bias are discussed further in Appendix A.1 of

the Supplement. The median bias of λ̂ML can be important in some circumstances, but

fortunately it can be eliminated completely by exploiting the fact that med(λ̂ML) is known

to be a monotonically increasing function of λ. In fact, recalling that θ̂ML
∼= θ
√

Fr,r(m−1),

we have that med(θ̂ML/
√

med(Fr,r(m−1))) = θ, i.e., the corrected estimator

θ̃ML := θ̂ML/
√

med(Fr,r(m−1))

is exactly median-unbiased for θ. Since θ is a monotonically increasing function of λ, we

can assert the following:

Proposition 3.4. In the pure balanced Group Interaction model with ε ∼ SMN(0, In), the

estimator

λ̂med :=
θ̃ML −m+ 1

1 + θ̃ML

(3.9)

is exactly median-unbiased for λ.

Andrews (1993) used a closely related argument for the AR(1) model to obtain a

median unbiased estimator, a more difficult case. Here we have the advantage that the

median function is known exactly, and is known to be strictly monotonic.
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3.3 Exact Confidence Interval for λ

Proposition 3.1 also allows the construction of exact confidence sets for λ. Denoting the

α-quantile of the F distribution with (v1, v2) degrees of freedom by Fv1,v2;α, we have4

Pr

(
θ̂ML√

Fr,r(m−1),1−α/2
< θ <

θ̂ML√
Fr,r(m−1),α/2

)
= 1− α.

Turning this into a confidence interval for λ, we obtain:

Proposition 3.5. In the pure balanced Group Interaction model with ε ∼ SMN(0, In), a

100 (1− α) % exact confidence interval for λ is(
−(m− 1) +

mθ̂ML

θ̂ML +
√

Fr,r(m−1),1−α/2
, 1−

m
√

Fr,r(m−1),α/2

θ̂ML +
√

Fr,r(m−1),α/2

)
. (3.10)

In Appendix A.2 of the Supplement we discuss the properties of these intervals, and

compare them with the commonly used large-r confidence intervals.

3.4 Exact Moments

We first discuss the moments of the MLE for θ, θ̂ML, and, since λ is likely to remain

the main parameter of interest, then go on to discuss the moments of λ̂ML itself. From

Proposition 3.1 it is easily seen that θ̂ML has moments (subject to existence) given by

E(θ̂sML) = τ sE
(
f
s
2

r,r(m−1)

)
, (3.11)

where fv1,v2 denotes the ratio χ2
v1/χ

2
v2 of two independent chi-square random variables.

Since the density of fr,r(m−1) is

pdffr,r(m−1)
(f) =

f
r
2
−1(1 + f)−

rm
2

B
(
r
2 ,

r(m−1)
2

) ,

the integral defining the moments E(θ̂sML) exists for s < r(m − 1), and is of a standard

form.5

Proposition 3.6. In the pure balanced Group Interaction model with ε ∼ SMN(0, In), the

s-th moment of θ̂ML exists only for s < r(m− 1), and in that case is given by

E(θ̂sML) = ks(r,m)τ s, s < r(m− 1),

4As usual, there are many choices for such an interval at a given confidence level. Here we give an

interval with equal tail areas, which is not necessarily the shortest, of course.
5The integral is of the type

∫∞
0
fα−1(1 + f)−(α+β) df = Γ(α)Γ(β)/Γ(α+ β), for α, β > 0.
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with

ks(r,m) = ks :=
Γ( r+s2 )Γ( r(m−1)−s

2 )

Γ( r2)Γ( r(m−1)
2 )

.

Thus, although θ̂ML itself is biased, the bias, because it is linear in θ, is easily removed,

and the variance of the corrected estimator easily computed. Turning to λ̂ML itself, since

the sample space for λ̂ML is bounded (and the density is bounded), it is clear that the

moments of all orders of λ̂ML exist. However, it is difficult to express the integral defining

the moments in terms of the density (3.3) in a useful closed form.

In Appendix A.3 of the Supplement we give some approximations to the moments de-

rived from Proposition 3.6, and show that these can be used to construct an approximately

unbiased estimator. There, we also compare i) the estimator λ̂ML itself, ii) the approxi-

mately bias-corrected estimator, iii) the median-unbiased estimator introduced above, and

iv) an indirect estimator also derived from Proposition 3.6, in terms of bias, median bias,

and mean-square-error. Bao (2013) has recently obtained expansions for the mean of

λ̂ML in the more general version of the model, equation (1.3) above, and used them to

approximately bias-correct the estimator.

To conclude this section, observe that the large-m asymptotic moments of λ̂ML can be

obtained easily from the asymptotic density, equation (3.6), and are given, for s < r, by

lim
m→∞

E(λ̂sML) =
s∑
j=0

(
s

j

)
hrj(λ− 1)j ,

where

hrj :=
(r

2

) j
2 Γ( r−j2 )

Γ( r2)
,

with hr0 := 1. Thus, the large-m distribution has mean

lim
m→∞

E(λ̂ML) = 1 + hr1(λ− 1),

and variance

lim
m→∞

var(λ̂ML) = (hr2 − h2
r1)(1− λ)2. (3.12)

The limiting bias for large m is thus limm→∞E(λ̂ML − λ) = (1 − λ)(1 − hr1), which is

negative for all r and λ, but diminishes rapidly as r increases. Of course, the large-r

asymptotic mean (λ) and variance (vλ) are known too. The limiting variances under the

two asymptotic regimes can be very different, and we show in the Supplement that neither

approximates the exact variance very well.
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3.5 Hypothesis Testing: Best Invariant Test

As we have seen, the pure balanced model is a two-parameter regular exponential model.

In the canonical parameterization of Remark 3.1 the two sufficient statistics are s1 :=

y′(Ir ⊗Mιm)y, and s2 := y′(Ir ⊗ Pιm)y, with the distribution properties stated in Remark

3.1. The problem of testing H0 : λ = 0 is invariant under the group of scale changes

s1 → as1, s2 → as2, a > 0, applied to the sufficient statistics, and under this group the

statistic s2/s1 is a (single) maximal invariant. The MLE λ̂ML is itself invariant, therefore

also maximal, since both are one-dimensional. The class of invariant tests in this model

therefore coincides with the class of tests based on λ̂ML.
6 Since we know the distribution

of λ̂ML (under the SMN(0, In) assumption), we can apply the Neyman Pearson Lemma to

the distribution of λ̂ML to obtain the uniformly most powerful invariant (UMPI) test of H0

against each one-sided alternative. The resulting test can be shown to coincide with the

Moran test (see King (1981), who gives an analogous result for the case r = 1).7 Recently,

Robinson and Rossi (2015b) have derived Edgeworth size-corrections for the OLS-based

test statistic for this hypothesis in a general pure model. In our special case the test is

exact.

The Neyman-Pearson Lemma applied to the density of λ̂ML given in (3.3) gives a best

critical region consisting of large values of the likelihood ratio

pdf λ̂ML
(z;λ)

pdf λ̂ML
(z; 0)

∝

(
1 + 1

m−1U(z)

1 + (m−1)
θ2

U(z)

) rm
2

,

where U(z) := ((z + m − 1)/((m − 1)(1 − z)))2. This ratio is increasing or decreasing in

U(z) as θ/(m − 1) ≷ 1, so the best invariant test rejects H0 against alternatives λ > 0

when U(λ̂ML) = (θ̂ML/(m − 1))2 is large, and rejects against alternatives λ < 0 when

U(λ̂ML) is small. The critical values for a two-sided test can be derived directly from the

Fr,r(m−1) distribution, since, under H0, U(λ̂ML) ∼ Fr,r(m−1). Noting that, in the canonical

representation of the model, (m− 1)s2/s1 is the MLE for the parameter (θ/ (m− 1))2, we

can therefore state:

Proposition 3.7. In the pure balanced Group Interaction model with ε ∼ SMN(0, In), the

UMPI test of H0 : λ = 0 against alternatives H+
1 : λ > 0 (H−1 : λ < 0) rejects H0 when

6The likelihood ratio test is also invariant, therefore also based on s1/s2, or λ̂ML, as can be shown

directly. The same applies to a test based on a Studentized version of λ̂ML, using, say, the estimated

asymptotic variance as r →∞.
7As usual, of course, there is no uniformly best test against two-sided alternatives.
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U(λ̂ML) = (m − 1)s2/s1 is large (small).8 The test is exact, and critical values can be

obtained from the fact that, under H0, U(λ̂ML) ∼ Fr,r(m−1).

When H0 is false the test statistic U(λ̂ML) has the distribution

U(λ̂ML) ∼
(

λ+m− 1

(m− 1)(1− λ)

)2

Fr,r(m−1),

so that, for any critical value tα,

Pr
(
U(λ̂ML) > tα

)
= Pr

(
Fr,r(m−1) > tα

(
(m− 1)(1− λ)

λ+m− 1

)2
)
, (3.13)

with a similar expression for the other tail. For the one-sided test against H+
1 : λ > 0,

therefore, it is clear that the power → 1 as λ→ 1, and the analogous conclusion holds as

λ→ −(m− 1) for a one-sided test against H−1 : λ < 0. Exact power curves for the test(s)

are easily obtained from equation (3.13).9

3.6 Balanced Models with Regressors

The exact results derived above for the pure model do not generalize easily to the case of

an arbitrary regressor matrix X. However, extensions are straightforward under certain

specific assumptions on X, and we give some examples of this next. These examples are

important in their own right, but also because they might suggest approximations for the

case of an arbitrary X. Before continuing, we note that some care is required in dealing

with the models with regressors, because there are choices for X that mean that the number

of sufficient statistics is less than the number of parameters, in which case inference (on

the full parameter) is impossible. See Arnold (1979), Lee (2007), and H&M for further

discussion of this issue. The problem arises in the present balanced model when col(X)

contains either of the two eigenspaces of W , which are col(Ir⊗ ιm) and col(Ir⊗Lm), where

Lm is a matrix whose columns are a basis for the orthogonal complement of the span of

ιm.
10 To rule this out we need the following assumption.

Assumption A. Neither col(Ir ⊗ ιm) nor col(Ir ⊗ Lm) is in col(X).

8The last equality here follows from the fact that, in the canonical representation of the model, (m −
1)s2/s1 is the MLE for the parameter (θ/ (m− 1))2.

9An alternative approach would be to apply the Neyman-Pearson Lemma to the distribution of the

statistic s2/s1 directly. It is straightforward but tedious to show that this yields exactly the same test as

λ̂ML itself.
10If, for instance, col(X) contains col(Ir ⊗ ιm), the term in the profile log-likelihood that involve λ is

−n log(λ+m− 1) + log(|Sλ|), so the profile score does not depend on the data.
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Note that Ir ⊗ ιm is the group fixed effect matrix. Hence, Assumption A requires, in par-

ticular, that the model does not contain group fixed effects. In model (1.3) with regressors

and an arbitrary W , the random part of the log-likelihood is, under Gaussian assumptions,

(Sλy −Xβ)′ (Sλy −Xβ) = (y − λWy)′(y − λWy) + β′X ′Xβ − 2β′X ′(y − λWy).

In general this cannot be written in terms of fewer than 2k + 3 sufficient statistics, but in

certain special cases reduction is possible. In the balanced Group Interaction model the

first component can, as we have seen, be written in terms of s1, s2. The last term is in

general a combination of both X ′y and X ′Wy, but it can be reduced to a single k-vector

if W ′X = XA for some k× k matrix A (including A = 0), that is, if col(X) is an invariant

subspace of W ′. In this case the statistic X ′y is sufficient. The case A = 0 requires that the

column space of X is orthogonal to the column space of W, which, assuming X is of full

column rank k, can only be so if rank(W ) ≤ n − k. This possibility therefore does not

arise for the models studied in this paper, in which W has full rank. But, for the balanced

model, the column space of X can indeed be an invariant subspace of W ′.

The simplest example of this is the case of a constant mean, i.e., k = 1 and X = ιn =

ιr⊗ιm. This model was considered in H&M. More generally, we may have X = (Ir ⊗ ιm)R,

for some r × k matrix R (k < r), in which case

W ′X = (Ir ⊗Bm) (Ir ⊗ ιm)R = (Ir ⊗Bmιm)R = (Ir ⊗ ιm)R = X.

These cases entail that col(X) is spanned by eigenvectors of W associated to the unit

eigenvalue. Alternatively, col(X) may be spanned by eigenvectors associated to the eigen-

value −1/(m − 1), or more generally, some combination of the two. If so we will have

X = (X1, X2), say, with X1 of dimension n × k1 (k1 < r) and X2 of dimension n × k2

(k2 < r(m− 1)), and with col(X1) ⊆ col(Ir ⊗ ιm) and col(X2) ⊆ col(Ir ⊗ Lm).11

In this circumstance the term (y − λWy)′MX(y − λWy) that appears in the profile

likelihood, and yields all of the results discussed earlier for the pure model, can instead be

written as a linear combination of the two statistics

s̃1 := ỹ′1MX̃1
ỹ1, s̃2 := ỹ′2MX̃2

ỹ2,

with the same coefficients as earlier. Here, ỹ := H ′y and X̃ := H ′X, where H := (Ir ⊗
Lm, Ir ⊗ lm), with lm := ιm/

√
m, is an orthogonal matrix of eigenvectors of W. Thus,

11The inequalities k1 < r and k2 < r(m− 1) must be strict for Assumption A to be satisfied.
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X̃1 = (Ir ⊗ Lm)′X1 is r(m− 1)× k1, and X̃2 = (Ir ⊗ lm)′X2 is r × k2. It is easily checked

that
s̃1(λ+m− 1)2

σ2(m− 1)2
∼ χ2

r(m−1)−k2 ,
s̃2(1− λ)2

σ2
∼ χ2

r−k1 .

It follows that the only changes needed to all of the above results, for models of this struc-

ture, are to the respective degrees of freedom of the F-variate involved in the expressions

for the cdf. More precisely, we have established the following result, which generalizes

formulae (3.2) and (3.3) to the case when k1 and k2 may be nonzero.12

Proposition 3.8. Suppose Assumption A holds and col(X) ⊂ col(Ir⊗ ιm)∪ col(Ir⊗Lm).

In the balanced Group Interaction model with ε ∼ SMN(0, In), the cdf of λ̂ML is

Pr(λ̂ML ≤ z;λ) = Pr

(
Fv1,v2 ≤

v2

v1

c(z, λ)

m− 1

)
,

for any λ, z ∈ Λ, where v1 := r − k1, with k1 := dim(col(X) ∩ col(Ir ⊗ ιm)) < r, and

v2 := r(m− 1)− k2, with k2 := k − k1 < r(m− 1). The corresponding density is

pdf λ̂ML
(z;λ) =

2mτv2

B
(
v1
2 ,

v2
2

) (1− z)v2−1 (z +m− 1)v1−1(
τ2 (1− z)2 + (z +m− 1)2

)n−k
2

. (3.14)

It is certainly true that the conditions needed in Proposition 3.8 are restrictive, but

they are met in some simple cases of practical interest, in addition to the constant mean

case X = ιn. We briefly describe two of these in the next two subsections.

Remark 3.2. In the same setting as in Proposition 3.8 (col(X) ⊂ col(Ir ⊗ ιm) ∪ col(Ir ⊗
Lm), but Assumption A holds), the Cliff-Ord test for H0 : λ = 0 is UMPI against a one

sided alternative in a mixed-Gaussian Group Interaction model. Here invariance is with

respect to the group of transformations y → κy + Xδ in the sample space, for any κ > 0,

any δ ∈ Rk; see King (1981).13

12Note that if v1 = 1 the limit of the density (3.14) as z ↓ −(m − 1)−1 is not zero. This can be seen

as a consequence of the case v1 = 1 being “close” to the degenerate case v1 = 0, which causes l(λ) to be

unbounded from above in a neighborhood of −(m− 1)−1. We further note that Proposition 3.8 could also

be derived directly from results in H&M.
13If Assumption A does not hold, the Cliff-Ord statistic is degenerate, in the sense that it does not

depend on the data, as the profile score is. As a consequence, the final paragraph of King (1981) needs to

be interpreted with great care.
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3.6.1 Individual Fixed Effects

The model is

yi = λBmyi + µ+ σεi, i = 1, .., r, (3.15)

where yi ∈ Rm is the subvector of y corresponding to i-th group, µ ∈ Rm is a vector of

individual fixed effects, so the groups have a common mean (Im−λBm)−1µ, and a common

autoregressive parameter λ. This is model (1.3) with W = Ir ⊗ Bm, X = ιr ⊗ Im, and

β = µ. Proposition 3.8 applies with k1 = 1 and k2 = m− 1, and gives

Pr(λ̂ML ≤ z;λ) = Pr
(
Fr−1,(r−1)(m−1) ≤ c(z, λ)

)
. (3.16)

That is, as one might have expected, this case is analogous to a pure model having r − 1

rather than r copies of a complete graph on m vertices. The asymptotics are thus the same

as in Section 3.1.2: λ̂ML is consistent and asymptotically normal as r →∞, and converges

in distribution to a random variable as m→∞ with r fixed.

Remark 3.9. The model (3.15) is a special case of the spatial panel model studied in the

recent paper by Robinson and Rossi (2015a), the difference being that in their paper Bm

in (3.15) is replaced by a general weights matrix W, common to the blocks, our µ is their c,

and our (r,m) are their (T, n) (see also Lee and Yu (2010)). Under Robinson and Rossi’s

assumptions, λ̂ML is consistent and asymptotically normal as (their) n goes to infinity,

and they are able to obtain an Edgeworth expansion for the distribution of λ̂ML. These

results do not conflict with those just discussed, because, crucially, the matrix Bm does

not satisfy Assumption 3 (iv) in Robinson and Rossi (2015a).

3.6.2 Group-Specific Regressions

Consider now a balanced Group Interaction model with group specific β coefficients:

yi = λBmyi +Xiβi + σεi, i = 1, .., r, (3.17)

where the matrices Xi are m × ki, with ki ≤ m, for all i. In this case X =
⊕r

i=1Xi (
⊕

denoting matrix direct sum), k =
∑r

i=1ki, and β′ = (β′1, .., β
′
r) in equation (1.3). For each

group one can check that the ki+ 3 statistics s1i = y′iMιmyi, s2i = y′iPιmyi, X
′
iyi, and ι′myi

are sufficient for the ki+2 parameters. The sums s1 =
∑r

i=1 s1i and s2 =
∑r

i=1 s2i, together

with the X ′iyi, i = 1, .., r, are therefore sufficient in the full model. If col(Xi) contains ιm the

statistic ι′myi is already accounted for in X ′iyi, so under this condition the model is regular

for a single group. However, the condition ιm ∈ col(Xi) cannot be permitted for every i, for
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this would mean that col(Ir⊗ ιm) were a subspace of col(X), violating Assumption A. The

alternative that also produces a regular model is that for those i for which ιm /∈ col(Xi),

col(Xi) ⊂ col(Lm). In this case the term involving ι′myi does not appear, and X ′iyi is

sufficient, again giving a regular model for that group. Note that col(Xi) ⊂ col(Lm)

would hold, for instance, if the elements of Xi were deviations of the raw data from their

respective within-group sample means. Assuming, therefore, that col(Xi) ⊂ col(Lm) for

ρ ∈ (0, r) groups, and that, for the remaining r− ρ groups, ιm ∈ col(Xi), the conditions of

Proposition 3.8 are satisfied with k1 = r − ρ and k2 = k − r + ρ, yielding the cdf

Pr(λ̂ML ≤ z;λ) = Pr

(
Fρ,n−ρ−k ≤

n− ρ− k
ρ(m− 1)

c(z, λ)

)
. (3.18)

The asymptotics are then easily established. As m→∞ (keeping r and ρ fixed), λ̂ML

converges in distribution to a random variable (because Fρ,n−ρ−k
d−→ χ2

ρ/ρ). If r → ∞
(keeping m and ρ fixed), the representation (3.18) implies that Pr(λ̂ML ≤ z;λ) → 1, for

any λ, z ∈ Λ, that is, λ̂ML
p−→ − (m− 1). Next, writing n−ρ−k = ρ(m−1)+(r−ρ)m−k

shows that if ρ→∞ (keeping r − ρ and m fixed)

Pr(λ̂ML ≤ z;λ) = I (1 ≤ c(z, λ)) = I

(
z ≥ θ −m+ 1

1 + θ

)
, (3.19)

where I(·) is the indicator function, taking value 1 when its argument is true and 0 other-

wise, and hence λ̂ML
p−→ λ. One can also study intermediate cases. For instance, if both r

and r−ρ diverge while (n−ρ−k)/(ρ(m−1)) remains bounded, a straightforward extension

of the argument leading to equation (3.19) shows that λ̂ML converges in probability to an

(in general) incorrect point in Λ.

We shall see below that in the unbalanced case there is no need to rule out the presence

of group specific fixed effects. This will enable us to obtain a general exact representation

of the cdf of λ̂ML in the case of group specific regressions.

3.7 Conclusion on the Balanced Model

The balanced Group Interaction model, the key property of which is that the spatial design

matrix W has just two distinct eigenvalues, is obviously a “toy” model, of the same status,

perhaps, as the simple Gaussian regression model, and the AR(1) model in the time-series

literature. Indeed, within the class of models in which W is the adjacency matrix of a

graph, it is the only model with just two distinct eigenvalues. Its practical relevance is

obviously limited, but, as with the other examples mentioned, one hopes that study of its
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properties will be informative more generally. It goes without saying that one can only

hope to obtain exact results under very restrictive assumptions, and we make no apology

for beginning the study of exact inference in this class of models with its simplest member.

However, in the interests of pragmatism, we now move on to the much more realistic, and

therefore more complicated, unbalanced case.

4 The Unbalanced Model

The unbalanced Group Interaction model - with groups of different sizes - presents a much

greater challenge, even for the pure model. In this section we present an exact result for

the distribution of λ̂ML, and some approximations to it. But, so far, we are unable to

extend the detailed inference results obtained above for the balanced model to this more

difficult case. The key difficulty is that some of the coefficients dii(z, λ) in the expression

for the cdf in equation (2.2) change sign as z varies in Λ. This means that there are points

in Λ at which the cdf is non-analytic, and that the distribution has a different functional

form in different sub-intervals of Λ. This makes analytical work with the exact distribution

extremely difficult, if not impossible. Nevertheless, it is possible to make some progress

by other means.

On the other hand, the presence of groups of different sizes has a favorable consequence:

contrary to the balanced case, inference about λ remains possible if (all) group specific

fixed effects are included in the regression. We shall see that this immediately implies a

simple representation of the cdf of λ̂ML that holds for general regressors, provided only

that all β parameters are group specific, and that group specific fixed effects are included.

In Sections 4.1-4.4 we restrict ourselves to the pure case, and often, for simplicity, we

focus on the case of two group sizes (i.e., p = 2). As is clear in equation (1.3), the interest-

parameter λ is still assumed constant across groups. The case of group specific regressions

is discussed briefly in Section 4.7.

4.1 Exact Representation

In the unbalanced Group Interaction model each different group size introduces an extra

distinct eigenvalue of W. If there are ri groups of distinct sizes mi, i = 1, ..., p, with m1

the smallest group size, the eigenvalues of W are: 1, with multiplicity r =
∑p

i=1ri, and,
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for each i = 1, .., p, −1/(mi − 1) with multiplicity ni = ri(mi − 1).14 The parameter space

is therefore Λ = (−(m1 − 1), 1). The total sample size is n =
∑p

i=1rimi, and the number

of distinct eigenvalues of W is N = p + 1. Since, for any Group Interaction model, W is

symmetric, the cdf of λ̂ML is, under mixed-Gaussian assumptions on ε, given by (2.2).

We will need the following property of the coefficient functions gi(z)− ḡ(z) in equation

(2.3), proved in H&M for any W having only real eigenvalues: for any z ∈ Λ, the coefficients

gi(z)− ḡ(z), i = 1, .., N, are in increasing order (i.e., j > i implies gj(z) > gi(z)). For any

z ∈ Λ, g1(z)− ḡ(z) < 0, gN (z)− ḡ(z) > 0, and, for any i = 2, ..., N −1, gi(z)− ḡ(z) changes

sign exactly once on Λ.

We can divide the left-hand term in the inequality in (2.2) by the (positive) coefficient

in the final term in the sum, giving the equivalent exact representation of the cdf,

Pr(λ̂ML ≤ z;λ) = Pr

(
N∑
i=1

ci(z, λ) (gi(z)− ḡ(z))χ2
ni ≤ 0

)
, (4.1)

where, for the Group Interaction model considered here,

ci(z, λ) :=

(
(1− λ)(z +mi − 1)

(1− z)(λ+mi − 1)

)2

, i = 1, .., p,

and cN (z, λ) := 1, all reducing to c(z, λ) in equation (3.1) when the model is balanced.

Since, for any z ∈ Λ, some of the gi(z)− ḡ(z) are positive and some are negative, it follows

that
∑N

i=1 ci(z, λ)(gi(z) − ḡ(z))χ2
ni reduces to the difference between two positive linear

combinations of independent χ2 variates.

Remark 4.1. Notice that, for all z ∈ Λ, ci(z, λ) → 0 as λ → 1, for each i = 1, .., p,

while cN (z, λ) = 1. Since gN (z) − ḡ(z) > 0 for all z ∈ Λ, Pr(λ̂ML ≤ z;λ) → 0 as λ → 1.

Likewise, as λ → −(m1 − 1), all coefficients in (4.1), other than the first, remain finite,

while c1(z, λ)→∞ for all z ∈ Λ. Since g1(z)− ḡ(z) < 0 for all z, Pr(λ̂ML ≤ z;λ)→ 1 as

λ→ −(m1− 1). Thus, as in the balanced case, the distribution of λ̂ML becomes degenerate

as λ approaches the endpoints of Λ.

The eigenvalues of Gz are gi(z) = −1/(z+mi−1), i = 1, .., p, and gp+1(z) = 1/(1− z),
so that

ḡ(z) =
z

n(1− z)

p∑
i=1

rimi

z +mi − 1
,

14The corresponding eigenspaces are col(
⊕p

i=1 (Iri ⊗ ιmi)) associated to the eigenvalue 1 and col(Iri ⊗
Lmi) associated to −1/(mi−1), i = 1, ..., p. It is easily verified that when p = 1 the eigenstructure reduces

to the one given in Section 3.
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and

gi(z)− ḡ(z) = − 1

n(1− z)

p∑
j=1

(
rjmj

(
1− z

z +mi − 1
+

z

z +mj − 1

))
, (4.2)

for i = 1, .., p, while

gp+1(z)− ḡ(z) =
1

n(1− z)

p∑
i=1

rimi(mi − 1)

z +mi − 1
.

Note that ḡ(z) has the sign of z, and ḡ(0) = 0. As noted earlier, g1(z) − ḡ(z) < 0 for all

z ∈ Λ, gp+1(z)−ḡ(z) > 0 for all z ∈ Λ, and the remaining terms all change sign exactly once

as z traverses Λ. Thus, the number of positive and negative terms in the representation

(4.1) varies with z. If the model is balanced (p = 1) the exact representation given here

reduces to the result for the balanced case discussed earlier.

For any p ≥ 2, let zi denote the unique point in Λ at which gi(z)− ḡ(z) = 0, for each

i = 2, ..., p. The distribution of λ̂ML is non-analytic at the points zi, and has a different

functional form in each interval between successive points. The number of positive and

negative terms in (4.1) remains the same within an interval, but the numbers of each differ

in the different intervals.

Example 1 (Two Group Sizes). In the case p = 2 we have, after simplification,15

g1(z)− ḡ(z) = −n(m2 − 1) + z(n− r2m2 (m2 −m1))

n(1− z)(z +m1 − 1)(z +m2 − 1)
,

g2(z)− ḡ(z) = −n(m1 − 1) + z(n+ r1m1 (m2 −m1))

n(1− z)(z +m1 − 1)(z +m2 − 1)
,

g3(z)− ḡ(z) =
r1m1(m1 − 1)(z +m2 − 1) + r2m2(m2 − 1)(z +m1 − 1)

n(1− z)(z +m1 − 1)(z +m2 − 1)
.

The first is always negative, the last always positive, for z ∈ Λ, while the second changes

sign at

z2 = − n(m1 − 1)

n+ r1m1 (m2 −m1)
< 0, (4.3)

being negative for z > z2, positive for z < z2.

After briefly discussing the asymptotic properties of λ̂ML that follow from the exact

representation, we next discuss (again briefly) the distribution properties of linear combi-

nations of independent χ2 variates with positive coefficients, a subject upon which there

is a large literature.

15The common denominators of the coefficients here could obviously be dropped, but to economize on

notation we do not do so.
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4.2 Asymptotics in the Unbalanced Group Interaction Model

The representation of the cdf of λ̂ML in equation (4.1) provides a useful starting point for

deriving asymptotic properties of λ̂ML under the mixed Gaussian assumption. Different

asymptotic regimes are possible, depending on how the mi’s and the ri’s are assumed to

behave as the total sample size grows. To understand the issues we rewrite equation (4.1)

in the form

Pr(λ̂ML ≤ z;λ) = Pr

(
χ2
r +

p∑
i=1

ψi(z, λ)χ2
ni ≤ 0

)
. (4.4)

where

ψi(z, λ) := ci(z, λ)
gi(z)− ḡ(z)

gp+1(z)− ḡ(z)
, (4.5)

for i = 1, ..., p. Assuming p, the number of different group sizes, is fixed, one can consider

two types of asymptotic regime. The first, infill asymptotics, holds the ri fixed (hence also

r), and assumes one or more of the mi produce the increased sample size. The second,

fixed-domain asymptotics, holds the mi fixed and assumes an increase in one or more of

the ri. This second case satisfies the assumptions in Lee (2004). Hence, it is already known

that, under regularity conditions, λ̂ML is consistent and asymptotically normal, which is

also easily deduced from the representation (4.4) by a characteristic function argument. In

the first case Lee’s (2004) results leave the properties of λ̂ML open. In fact, the situation

is very much as in the balanced case: it is clear from (4.4) that, under infill asymptotics

in the unbalanced case, convergence will be to a random variable, because the term χ2
r

in (4.4) will be unaffected. Precise details for this situation depend on exactly what is

assumed about the behaviour of the mi, but λ̂ML is clearly again inconsistent under infill

asymptotics.

4.3 Exact distribution of a Positive Linear Combinations of χ2 Variates

As we have just seen, we need to deal with pairs of statistics of the form

Qs :=

s∑
i=1

aiχ
2
ni ,

with all the ai positive. In our case these coefficients are functions of z.

Define the n× n diagonal matrix (n =
∑s

i=1ni)

A = An1,...,ns(a1, ..., as) := diag (aiIni , i = 1, .., s) .

It is well known that the cumulants of Qs of all orders exist and are given by

κl := 2l−1(l − 1)!tr(Al) = 2l−1(j − 1)!πl, (4.6)
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where πl :=
∑s

i=1 nia
l
i = tr(Al). These properties are quite simple, but, despite that, exact

distribution theory for Qs is not straightforward, and there is a very large literature dealing

with the subject. We briefly introduce some of this next. Let φ be a positive number such

that φai ≥ 1 for all i. An expression for the exact density is

pdfQs(q) =
|φA|−

1
2

2
n
2 Γ(n2 )

exp

(
−1

2
φq

)
q
n
2
−1

1F1

(
1

2
,
n

2
;
1

2
qφ
(
In − (φA)−1

))
(4.7)

(see James (1964), and Ruben (1962)). The hypergeometric function here is a confluent

hypergeometric function with matrix argument (Muirhead (1982), Chapter 7), and this

special function makes the distribution difficult. For φ such that φai > 1 for all i, the

distribution of φQs can be expressed as a mixture of central χ2 distributions with weights

pj(φA) :=

(
1
2

)
j

j!
|φA|−

1
2Cj(In − (φA)−1), (4.8)

where (a)j := a(a + 1)...(a + j − 1) is the Pochhammer symbol, and Cj(·) denotes the

top-order zonal polynomial of degree j in the indicated matrix. It is easy to confirm that

the pj(φA) are non-negative and sum to unity. The choice of φ > 0 is arbitrary subject to

φai > 1 for all i. The weights pj(φA) are relatively complicated polynomials in the ai, and

are difficult to interpret.16 See Ruben (1962) and Johnson, Kotz, and Balakrishnan (1994)

for further details of these and related expansions. There is some incentive, therefore, to

seek approximations to the distribution, and we discuss some of these briefly below.

In the case s = 2, however, the result is reasonably simple. Without loss of generality

we consider the distribution of a statistic of the form a1χ
2
v1 + a2χ

2
v2 , with 0 < a1 < a2.

Proposition 4.1. Let Q := a1χ
2
v1 + a2χ

2
v2 , with 0 < a1 < a2. The density of Q is given by

pdfQ(q) =
φ
v
2ψ

v2
2 exp

(
−φq

2

)
q
v
2
−1

2
v
2 Γ(v2 )

1F1

(
v2

2
,
v

2
;
1

2
φq (1− ψ)

)
, (4.9)

where φ = 1/a1, v := v1 + v2, and ψ := a1/a2 < 1.

The distribution function follows at once. Note that the confluent hypergeometric func-

tion in (4.9) has scalar argument, and is a built-in function in most modern mathematical

packages. Equation (4.9) can be rewritten as

pdfQ(q) = φψ
v2
2

∞∑
k=0

(
v2
2

)
k

(1− ψ)k

k!
gv+2k(φq),

16Recall that the non-central χ2 distribution also has this form, but with a Poisson mixing distribution

with mean equal to the non-centrality parameter. This is obviously simpler than the present case.
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where gξ(·) denotes the density function of a χ2
ξ random variable. That is, the distribution

is a mixture of χ2 densities. This can be useful for some calculations, and for interpretation,

but is perhaps less so for computation purposes.

4.3.1 Approximations for Positive Definite Forms

Because the exact distribution of a positive definite quadratic form is quite complicated,

there is a clear incentive to approximate. And, because such forms are ubiquitous through-

out statistics, there is a very large literature on the subject. The simplest approximation,

usually attributed to Fisher, is to treat Qs as a multiple of a χ2 variate, Qs = αχ2
v, choos-

ing α and v so that the first two cumulants of the two distributions agree. This entails the

choices α = π2/π1 and v = π2
1/π2, where, as above, πl =

∑s
i=1 nia

l
i.

A more sophisticated approximation due to Hall (1983) and Buckley and Eagleson

(1988), is to use three parameters, with Qs = αχ2
v + β, and choosing (α, β, v) so that

the first three cumulants agree. This entails the choices α = π3/π2, β = π1 − π2
2/π3, and

v = π3
2/π

2
3. Buckley and Eagleson (1988) show that this representation can be formally

justified by an argument based on Edgeworth expansions of the two distributions involved,

and give explicit bounds on the error involved in approximating the distribution function

in this way. Hall (1983) calls this a “penultimate” approximation to the distribution of Qs,

which of course, when suitably standardised, converges to a standard normal variate. For

our purposes, the simpler two-cumulant approximation is more useful, and seems to work

quite well. A number of other, typically more complicated, approximations are extant -

for a comprehensive discussion, see Johnson, Kotz, and Balakrishnan (1994).

Finally, one can use saddlepoint methods for inverting the characteristic function

(Daniels (1987), Lugannani and Rice (1980)). We make use of this method in H&M

in the very general context of equation (1.3), and find that it works extremely well.17 We

do not discuss this further in the present paper.

4.4 Exact Distribution of λ̂ML

From the exact results for a pair of independent positive linear combinations like those

given above, one can easily obtain an exact formula for the probability Pr(Q1t ≤ Q2t),

with Qit based on matrix Ait, by simple transformation and integration. Thus, in each

17Peter Phillips, in a talk entitled “Some Magic with Saddlepoints”, (Southampton, June 2014) derived

the saddlepoint approximation for the OLS estimator of λ in the balanced model. This is also extremely

accurate.
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interval between points where one of the coefficients in (4.1) vanishes we have a different

representation of the distribution - in fact a generalization of the result for the balanced

model. The details are given in H&M. However, this result is not particularly informative

about the properties of the estimator. Instead, we seek accurate approximations to the

exact results that are more easily interpreted, and more informative. Before considering

that further, in the next section we give the exact results for the case of just two group

sizes (i.e., p = 2), which are reasonably tractable.

4.4.1 Two Group Sizes (continued)

When there are p = 2 different group sizes the coefficients of the three χ2 variates in the

sum in (4.1) have the following signs:

χ2
r1(m1−1) χ2

r2(m2−1) χ2
r

z < z2 − + +

z > z2 − − +

Using the coefficients in (4.5), we have, for z < z2, where ψ2(z, λ) > 0,

Pr(λ̂ML ≤ z;λ) = Pr
(
ψ2(z, λ)χ2

n2
+ χ2

r ≤ (−ψ1(z, λ))χ2
n1

)
, (4.10)

while for z > z2, where ψ2(z, λ) < 0,

Pr(λ̂ML ≤ z;λ) = Pr
(
χ2
r ≤ −ψ1(z, λ)χ2

n1
+ ψ2(z, λ)χ2

n2

)
. (4.11)

Each of these involves a linear combination of two χ2 random variables with positive

coefficients, and a third, independent χ2 variate. Expressions for the distribution functions

in the two intervals can be obtained by applying the results in the previous subsection,

but it is difficult to use those expressions to obtain information about the properties of

λ̂ML, in particular, its density. Here we pursue an alternative conditioning argument that

is more successful.

Remark 4.2. Noting that ψ2(z2, λ) = 0, and, as is easily verified, −ψ1(z2, λ) = r/n1, we

have, on setting z = z2 in either of equations (4.10) or (4.11),

Pr(λ̂ML ≤ z2;λ) = Pr(Fr,n1 < c1(z2, λ)).

For values of r1, r2 that are not too small this function (of λ) is near 1 for λ < z2, and near

zero for λ > z2, falling sharply from 1 to 0 in the neighborhood of z2. That is, for values
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λ < z2 λ̂ML is almost certainly below z2, and for values λ > z2 it is almost certainly above

z2. If z2 < −1, and λ ∈ (−1, 1), this implies that the distribution of λ̂ML will be almost

entirely confined to the interval z > z2. For λ = z2, Pr(λ̂ML ≤ z2; z2) = Pr(Fr,n1 < 1),

which is near .5 as long as r/n1 is near 1. Other evidence about the median will be discussed

shortly.

Let qv denote a χ2
v random variable. All such variables in the expressions to follow are

independent. For z < z2, we can condition on the variables qr and qn2 on the left in the

expression for Pr(λ̂ML ≤ z;λ), giving the conditional result

Pr(λ̂ML ≤ z|qr, qn2 , λ) = 1− Gn1

(
qr + ψ2(z, λ)qn2

−ψ1(z, λ)

)
, − (m1 − 1) < z < z2,

where Gv denotes the cdf of the χ2
v random variable. For z > z2, we can condition instead

on (qn1 , qn2), giving

Pr(λ̂ML ≤ z|qn1 , qn2 , λ) = Gr (−(ψ1(z, λ)qn1 + ψ2(z, λ)qn2)), z2 < z < 1,

Expressions for the unconditional cdf’s can be obtained from these by averaging, but we

shall focus instead on the unconditional density in each interval. The reason that this

is straightforward is that expressions for the conditional density are easily obtained from

these conditional cdf’s, and these can then be converted into the (components of the)

unconditional density.

The expressions for the cdf here have a common form from which the density follows

easily. The following result can be applied in both cases.18

Proposition 4.2. Let a1(z) and a2(z) be strictly positive functions of z on some interval

Λ0. Let q1 ∼ χ2
α, q2 ∼ χ2

β be independent, and let w be a random variable with conditional

cdf, given (q1, q2), given by

Pr(w ≤ z|q1, q2) = Gγ(a1q1 + a2q2)

for z ∈ Λ0. The conditional density of w, given (q1, q2), is given by

pdfw(z|q1, q2) =
exp

(
−1

2 (a1q1 + a2q2)
)

2
γ
2 Γ(γ2 )

(a1q1 + a2q2)
γ
2
−1 (ȧ1q1 + ȧ2q2) , (4.12)

where the dot denotes the derivative with respect to z.

18The proof is omitted: the result is a simple application of Leibnitz’s Theorem on the derivative of an

integral (when the limits depend on the variable).
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Then, denoting the unconditional density of w at w = z when the parameters are (α, β, γ)

by pdfw(z;α, β, γ), we have (omitting the argument of the ai(·) for simplicity):

Proposition 4.3. In the setting of Proposition 4.2, when a1 > a2,

pdfw(z;α, β, γ) =
Γ(α+β+γ

2 )a
α+γ
2

2

Γ(α+β+2
2 )Γ(γ2 )a

α
2
1 (1 + a2)

α+β+γ
2

×
[
αȧ1

2a1
2F1

(
α+ β + γ

2
,
α+ 2

2
,
α+ β + 2

2
;
a2(a−1

2 − a
−1
1 )

1 + a2

)
+
βȧ2

2a2
2F1

(
α+ β + γ

2
,
α

2
,
α+ β + 2

2
;
a2(a−1

2 − a
−1
1 )

1 + a2

)]
.

The Gaussian hypergeometric functions converge because

0 <
a2(a−1

2 − a
−1
1 )

1 + a2
< 1.

When a1 < a2, the same expression applies with (a1, a2) and (α, β) exchanged. In the

special case γ = 2 we obtain the very simple result

pdfw(z;α, β, 2) =
α ȧ1

1+a1
+ β ȧ2

1+a2

2(1 + a1)
α
2 (1 + a2)

β
2

. (4.13)

For the case γ = 2s+ 2 the formula simplifies to a linear combination of two finite polyno-

mials. This result relies on the following lemma, where, recall, An1,n2(a1, a2) denotes the

matrix diag (aiIni , i = 1, 2), and Cj(A) denotes the top-order zonal polynomial of degree j

of a matrix A.

Lemma 4.4. We have(
1

2

)
j

Cj(An1,n2(a1, a2)) =

j∑
k=0

(
j

k

)(n1

2

)
k

(n2

2

)
j−k

ak1a
j−k
2 .

Using this result we obtain the simpler form

pdfw(z;α, β, 2s+ 2) =
(1

2)s

2s!(1 + a1)
α
2 (1 + a2)

β
2

×
[
αȧ1

1 + a1
Cs (Aα+2,β (ϕ1, ϕ2)) +

βȧ2

1 + a2
Cs (Aα,β+2 (ϕ1, ϕ2))

]
, (4.14)

where ϕi := ai/(1 + ai), i = 1, 2. The proof of Proposition 4.3 and its special cases (4.13)

and (4.14) is given in Appendix 4 of the Supplement.

Applying Proposition 4.2 to the unbalanced model, we require two applications of the

result, one for each component of the cdf. The coefficients and degrees of freedom for each

part are given in the following table:
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Interval α a1 ϕ1 β a2 ϕ2 γ

−(m1 − 1) < z < z2 r − 1
ψ1(z,λ)

1
1−ψ1(z,λ) n2 −ψ2(z,λ)

ψ1(z,λ)
ψ2(z,λ)

ψ2(z,λ)−ψ1(z,λ) n1

z2 < z < 1 n1 −ψ1(z, λ) − ψ1(z,λ)
1−ψ1(z,λ) n2 −ψ2(z, λ) − ψ2(z,λ)

1−ψ2(z,λ) r

In Figure 3 we display the exact density for the case when r1 = r2 = 1 (so r = 2) and one

of the two groups has fixed size 2, varying the size of the other group, and hence varying

n. The density is plotted for three different values of λ. When the model is balanced

(r = m = 2, so that n = 4) the density is analytic on Λ = (−1, 1). On the other hand,

when the model is unbalanced there is a clearly visible point of non-analyticity at z2. Using

expression (4.3), this point is −.4545 for n = 10, and it approaches −1/3 from the left as

n→∞.

−1 −0.5 0 0.5 1
0

0.5

1

1.5

λ = 0

−1 −0.5 0 0.5 1
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n = 4
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n → ∞

Figure 3: Density of λ̂ML for the Gaussian pure Group Interaction model with two groups,

one of which has size m1 = 2.

The plots show clearly that the density has a single component only when the model is

balanced. As the difference between m1 and m2 increases, the difference between the two

components becomes more apparent, and the density becomes less smooth at the point

z2. Incidentally, in this model, the density is continuous at the point of non-analyticity.

In other models the density may be unbounded at such a point. One could interpret this

phenomenon as a consequence of imposing the same parameter λ on the two different

groups.

Additional figures for values of m1 > 2 are given in the Supplement. All of these figures

show that the properties of λ̂ML are, in this model with just two groups, almost invariant

to the sample size, a property related to, but not implied by the asymptotic properties

for a fixed number of groups mentioned earlier. However, even though the estimator is
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not consistent under some asymptotic regimes, there is certainly no evidence here that

suggests not using maximum likelihood in this model.

4.5 Probability of Underestimation: the Median

We next consider the special case of equation (4.1) with z = λ, so that the object of interest

becomes Pr(λ̂ML ≤ λ;λ), the probability of underestimating λ. This seems to be the only

available method for examining the median bias of λ̂ML in this unbalanced model. When

z = λ, we have ci(λ, λ) = 1 for all i and all λ, so that

Pr(λ̂ML ≤ λ;λ) = Pr

(
N∑
i=1

(gi(λ)− ḡ(λ))χ2
ni ≤ 0

)
. (4.15)

If λ ≥ zp, which includes all values λ ≥ 0, all of the coefficients in this expression are

negative, except the last. Thus, for λ ≥ zp we have

Pr(λ̂ML ≤ λ;λ) = Pr

(
χ2
r ≤

p∑
i=1

ψi(λ)χ2
ni

)
, (4.16)

where

ψi(λ) := ψi(λ, λ) = − gi(λ)− ḡ(λ)

gp+1(λ)− ḡ(λ)
, i = 1, .., p.

An exact formula can be derived from equation (4.16) by using the results discussed

above, but the result is too complex to be useful. A simpler, more helpful approach, is to

use the Fisher approximation for the linear combination on the right, i.e., to assume

p∑
i=1

ψi(λ)χ2
ni
∼= αχ2

v,

where α = π2/π1, and v(λ) := π2
1/π2, and ∼= denotes equality in distribution. In this case

things simplify greatly, because π1 = r, so α = π2/r, v(λ) = r2/π2, which produces the

approximation, for λ ≥ zp,

Pr(λ̂ML ≤ λ;λ) ' Pr
(
χ2
r ≤ αχ2

v(λ)

)
= Pr

(
Fr,v(λ) ≤

αv(λ)

r

)
= Pr

(
Fr,v(λ) ≤ 1

)
,

an analogue of the result given earlier for the balanced model. But, as we have noted

earlier, Pr(Fr,v ≤ 1) > .5 if v > r, and vice versa. That is, up to the accuracy of this

approximation, med(λ̂ML) < λ if v(λ) > r, and med(λ̂ML) > λ if v(λ) < r. There is

therefore a negative median-bias when λ is in the set {λ : λ > zp, v(λ) > r}, and a positive

median-bias when λ ∈ {λ : λ > zp, v(λ) < r}.
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For the interval −(m1 − 1) < λ < z2, the opposite situation occurs: all coefficients in

the linear combination are positive, except the first. Thus an analogous expression, and an

analogous approximation, can be deduced for λ in this region. For values of λ between z2

and zp the expression for Pr(λ̂ML ≤ λ;λ) will involve the difference between two positive

linear combinations of χ2 variates. Each can separately be approximated as above, and

an approximation for the probability easily obtained. For each interval the approximation

takes the form, in obvious notation,

Pr(λ̂ML ≤ λ;λ) ' Pr (FvL,vR ≤ 1) ,

so the only things needed are the pairs (vL, vR) appropriate to each interval. The reason

for this is as follows: when the approximation is used for both sides of an inequality we

have, symbolically,

Pr(αLχ
2
vL
≤ αRχ2

vR
) = Pr

(
FvL,vR ≤

vRαR
vLαL

)
= Pr

(
FvL,vR ≤ −

π1R

π1L

)
= Pr (FvL,vR ≤ 1) ,

since it is always the case that π1R+π1L = 0. This is an analogue of the corresponding result

for the balanced model given earlier. For example, in the case p = 4 we have four intervals

to accommodate, and the following results for the approximation to Pr(λ̂ML ≤ λ;λ) are

typical of the general case:

−(m1 − 1) < λ < z2 : Pr (FvA,n1 ≤ 1) , vA := (n1ψ1)2

(r+
∑4
i=2 niψ

2
i )

z2 < λ < z3 : Pr (FvBR,vBL ≤ 1) , vBR := (n1ψ1+n2ψ2)2

n1ψ2
1+n2ψ2

2
, vBL := (n1ψ1+n2ψ2)2

(n3ψ2
3+n4ψ2

4+r)

z3 < λ < z4 : Pr (FvCR,vCL ≤ 1) , vCR := (n4ψ4+r)2∑3
i=1 niψ

2
i

, vCL := (n4ψ4+r)2

n4ψ2
4+r

z4 < λ < 1 : Pr (Fr,vD ≤ 1) , vD := r2∑4
i=1 niψ

2
i

.

Evidence on the accuracy of the approximation is given in the following table, where

we compare exact results (obtained by simulating (4.15)) with those obtained by the

approximation, for the case p = 4, and three different combinations of the group sizes

(design 1: m1 = 5,m2 = 10,m3 = 15,m4 = 20; design 2: m1 = 10,m2 = 20,m3 =

30,m4 = 40; design 3: m1 = 5,m2 = 50,m3 = 100,m4 = 150).
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λ = −.9 λ = 0 λ = .9

Design Exact Approx. Exact Approx. Exact Approx.

1 .561 .561 .580 .579 .582 .583

2 .581 .580 .587 .587 .588 .589

3 .553 .553 .585 .585 .592 .592

Note that for all cases considered in the table, Pr(λ̂ML ≤ λ;λ) > .5, i.e., the median

bias is negative. Based on our calculations using the approximation developed in this

section, this seems a general result for whenever λ ∈ (zp, 1) (similarly, the median bias

seems to be always positive for λ ∈ (−(m1 − 1), z2)).

4.5.1 Probability of Underestimation: Two Group Sizes

In the case of two distinct group sizes (p = 2) the two intervals −(m1 − 1) < λ < z2, and

z2 < λ < 1 make up all of Λ, and each of the above expressions involves a positive linear

combination of just two χ2 variates. We can therefore use the result in Proposition 4.1

to obtain expressions for the required probability in each of these intervals. For the first

(upper) interval, φ = 1/ψ1(λ), and φA = diag(In1 , (ψ2(λ)/ψ1(λ)) In2), and we obtain

Pr(λ̂ML ≤ λ;λ) =

(
ψ2(λ)

ψ1(λ)

)−n2
2
∞∑
j=0

(n2
2 )j

j!

(
1− ψ1(λ)

ψ2(λ)

)j
× Pr

(
Beta

(
j +

n1 + n2

2
,
r

2

)
≤ 1

1 + ψ1(λ)

)
. (4.17)

For the lower interval, φ = 1/ψ̃2(λ) and φA = diag(In2 , (ψ̃3(λ)/ψ̃2(λ))Ir), so that

Pr(λ̂ML ≤ λ;λ) = 1−

(
ψ̃3(λ)

ψ̃2(λ)

)− r
2 ∞∑
j=0

( r2)j

j!

(
1− ψ̃2(λ)

ψ̃3(λ)

)j

× Pr

(
Beta

(
j +

n2 + r

2
,
n1

2

)
≤ 1

1 + ψ̃2(λ)

)
. (4.18)

These formulae can be used to plot the probability Pr(λ̂ML ≤ λ;λ) as a function of λ.

Figure 10 in the Supplement plots (a truncated version of) the formulae (4.17) and (4.18)

in the case of two group sizes, for λ ∈ (−1, 1), and for a variety of values of r1, r2,m1,m2.

The results were compared to simulation results, and also to the Fisher approximation

discussed above. All three methods give virtually identical results. As r1 and r2 increase

the probability of underestimation converges to .5, but the probability of underestimation

can be very sensitive to λ, even for values of λ in (−1, 1).
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4.6 Approximating the Distribution

The approach used above to approximate Pr(λ̂ML ≤ λ;λ) can be applied to the expressions

for the cdf itself, in each interval of its domain. Considering just the case p = 2, we simply

need to replace ψ1 and ψ2 by ψ1(z, λ) and ψ2(z, λ) in the definitions of π1, π2, although,

in the case of the distribution function the results are not quite so simple as those given

above for Pr(λ̂ML ≤ λ;λ). The relevant expressions for the cdf are, in the case p = 2,

Pr(λ̂ML ≤ z;λ) ' Pr
(
Fv1(z,λ),n1

≤ u1(z, λ)
)
,

for λ < z2, and

Pr(λ̂ML ≤ z;λ) ' Pr
(
Fr,v2(z,λ) ≤ u2(z, λ)

)
,

for λ > z2, where

u1(z, λ) := − n1ψ1(z, λ)

n2ψ2(z, λ) + r
, v1(z, λ) :=

(n2ψ2(z, λ) + r)2

n2ψ2
2(z, λ) + r

,

and

u2(z, λ) :=
n1ψ1(z, λ) + n2ψ2(z, λ)

n1ψ1(z, λ) + n2ψ2(z, λ)
, v2(z, λ) :=

(n1ψ1(z, λ) + n2ψ2(z, λ))2

n1ψ2
1(z, λ) + n2ψ2

2(z, λ)
.

Analytic differentiation to obtain the density is messy, but easily accomplished by a sym-

bolic mathematical package, and again can be extended to cases with p > 2 without

difficulty.

4.7 Group-Specific Regressions

We now consider generalizations to the pure unbalanced Group Interaction model with

regressors. Compared to the balanced case, unbalancedness has the favorable consequence

that group fixed effects do not render inference on the full parameter impossible.19

Similarly to Section 3.6.2, we focus on the case in which all β coefficients are group

specific. We show that in this case the cdf of λ̂ML admits a very simple representation

when group fixed effects are present, regardless of the values of the regressors. Within

each group the model is a balanced Group Interaction model, or, stacking groups of same

size,

yi = λ(Iri ⊗Bmi)yi +

ri⊕
j=1

Xijβij + εi, i = 1, .., p,

19The fixed effects matrix
⊕p

i=1 (Iri ⊗ ιmi) span an eigenspace of W both in the balanced (p = 1) and

in the unbalanced case (p > 1). However, when p > 1, the presence of fixed effects, does not imply the

same degeneracy that occurs when p = 1. This is a consequence of the fact that W has more than two

eigenspaces when p > 1.
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where yi is rimi × 1, Xij is an mi × kij matrix containing a column of ones (with

kij ≤ mi), and βi is
∑ri

j=1 kij × 1 (that is, for each of the p distinct group sizes, the

model is a balanced model with group specific regressors). This corresponds to an un-

balanced Group Interaction model with X =
⊕p

i=1

⊕ri
j=1Xij , k =

∑p
i=1

∑ri
j=1 kij , and

β′ = (β′11, .., β
′
1r1
, ..., β′p1, .., β

′
prp). By Lemma B.3 in the Supplement, if the model contains

group fixed effects, then col(X) is spanned by k eigenvectors of W = diag(Iri ⊗ Bmi , i =

1, .., p). Then, provided only that col(X) does not contain all eigenvectors of W associated

with eigenvalues other than ω (to avoid degeneracy of the score), by the same argument

as in Section 3.6.2 we obtain Pr(λ̂ML ≤ z;λ) = Pr(
∑p

i=1 dii(z, λ)χ2
ni−ni(X) ≤ 0), where the

χ2
ni−ni(X) variates are independent, ni(X) := dim(col(X)∩ col(Ir ⊗Lmi)), and we use the

convention that χ2
0 = 0. Using the definition (2.3) of the coefficients dii(z, λ), we have

Pr(λ̂ML ≤ z;λ) = Pr

(
p∑
i=1

(gi(z)− ḡ(z))

(
z +mi − 1

λ+mi − 1

)2

χ2
ni−ni(X) ≤ 0

)
, (4.19)

where the coefficients gi(z)− ḡ(z) are given in equation (4.2). Representation (4.19) reveals

an unexpected property of λ̂ML. Specifically, recalling from Section 4.1 that gi(z)−ḡ(z) < 0

for any i = 1, ..., p and for any z ∈ (zp, 1), where zp is the point at which the coefficient

gp(z) − ḡ(z) changes sign, representation (4.19) implies that Pr(λ̂ML ≤ z;λ) = 1 for any

z > zp. That is, for this model the support of the distribution of λ̂ML is not the entire Λ,

but its subset (−(m1 − 1), zp). That is, the probability that λ̂ML is in (zp, 1) is 0 even if

the true value of λ is in (zp, 1).

Similarly to what was done in Section 3.6.2, one can study the distribution of λ̂ML

under different asymptotic regimes, but we omit these calculations for the sake of brevity.

5 Concluding Remarks

In Hillier and Martellosio (2016) we presented a general result, equation (2.1) above, giving

an exact representation for the distribution function of the quasi-maximum likelihood es-

timator for the autoregressive parameter λ in the spatial autoregressive model (1.3), valid

for any distribution of ε. Some examples of the application of the result to particular cases

were given in H&M, but the earlier paper concentrated mainly on its more general conse-

quences. In the present paper we have explored the application of the result to a particular

class of models - those based on spatial weights matrices that embody group-interaction.

These models are important in various areas of application to the study of networks, and

to panels with a spatial autoregressive component. Starting from equation (2.1) we have
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been able to present a very complete set of results for likelihood-based inference in the

pure balanced Group Interaction model under mixed-Gaussian assumptions. We have also

been able to generalize these simple results to some special cases of models involving re-

gressors, for example, models with a common mean across all observations, and models

with group-specific regressors satisfying certain assumptions.

The pure balanced model is possibly the simplest example of equation (1.3) one can

imagine, and the ability to carry out the above program is due to the fact that this model is

a regular exponential family. We have then discussed the much more realistic unbalanced

model, a model that is considerably more difficult. Again, that is no doubt because the

unbalanced model is not a regular exponential family, but a curved exponential family in

which the dimension of the sufficient statistic is larger than that of the parameter space.

Exact results in this model are available in closed form, but are very complex. Thus, in

addition to reporting the exact results, we have given some approximations that appear

to work well, and which generalize nicely the simpler result for the balanced model. There

is more work to be done on the unbalanced model however.

Finally, it should be remarked that there are alternatives to the QMLE estimator

considered in this paper that have been proposed in the literature, but it seems unlikely

that the methods used here would be available for such alternatives. For example, GMM

estimators have been proposed for this model (see, e.g., Lee and Liu (2010) and refer-

ences therein), and this proposal could be extended to the class of generalized empirical

likelihood/GMM estimators introduced in the influential paper by Smith (1997).
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