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ABSTRACT
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Doctor of Philosophy

by Chetan Saran Mehra

Portfolio managers have access to large amounts of financial time series data, which

is rich in structure and information. Such structure, at varying time horizons and

frequencies, exhibits different characteristics, such as momentum and mean reversion to

mention two. The key challenge in building a smart portfolio is to first, identify and

model the relevant data regimes operating at different time frames and then convert

them into an investment model targeting each regime separately. Regimes in financial

time series can change over a period of time, i.e. they are heterogeneous. This has

implications for a model, as it may stop being profitable once the regime it is targeting

has stopped or evolved into another one over a period of time. Changing regimes or

those evolving into other regimes is one of the key reasons why we should have several

independent models targeting relevant regimes at a particular point in time.

In this thesis we present a smart portfolio management approach that advances existing

methods and one that beats the Sharpe ratio of other methods, including the efficient

frontier. Our smart portfolio is a two-tier framework. In the first tier we build four

quantitative investment models, with each model targeting a pattern at different time

horizon. We build two market neutral models using the pairs methodology and the

other two models use the momentum approach in the equity market. In the second tier

we build a set of meta models that allocate capital to tier one, using Kelly Criterion,

to build a meta portfolio of quantitative investment models. Our approach is smart

at several levels. Firstly, we target patterns that occur in financial data at different

time horizons and create high probability investment models. Hence we make better

use of data. Secondly, we calculate the optimal bet size using Kelly at each time step

to maximise returns. Finally we avoid making investments in loss making models and

hence make smarter allocation of capital.
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Chapter 1

Introduction

Financial markets are a large, rich and continuous source of data. This data plays a very

important role in our lives both directly and indirectly. In our current economic system,

we are dependent on financial markets and financial securities for numerous everyday

needs, such as insurance, mortgages, automobile loans, financial savings as well as old

age pensions. Hence, it is important that we take informed decisions, whether these

relate to the size of our loans or the management and investment of our life savings.

When it comes to life savings and old age pensions global financial markets have played

a very important role. Today, whether we can afford to send our children to university

or afford good care in our sunset years, depends not only on how much we save, but

crucially on how well we manage our savings. With an aging population that is living

longer, the ability to fund their pensions for longer periods means that governments, life

insurance companies and asset managers are facing a very real challenge (Banks et al.,

2002).

Most of the returns for asset managers are generated through investments made in global

financial markets (Timmermann et al., 1999). Asset managers are dependent on strong

positive performance from these markets. They suffer immensely when these markets

do not perform well or worse when markets are negative. In order to overcome this

problem, asset managers look for investment opportunities and investment methods that

are not entirely dependent on sustained positive performance of these global markets

by investing in illiquid investments that are not readily traded, such as real estate and

private equity. However, these types of illiquid investments usually have long lock-in

periods, making efficient reallocation of capital difficult.

Managing investments in liquid markets is relatively simple but it comes with its own

challenges. Since the mid 1980s to the year 2000, major world markets were in a strong

upward trend, popularly referred to as a bull market (Figure 1.1). That uptrend made

investing easy, as in all bull markets, nearly all stocks went up in price. Most fund

managers would only worry about relative underperformance to the market or the main

1



Chapter 1 Introduction 2

index such as FTSE 100 or S&P 500. When the internet bubble burst markets crashed

taking the world into a recession, hurting investments and pensions globally. Most UK

company pensions were in negative equity and at one stage the estimated shortfall was

close to £800 billion. Since the internet bubble burst in March 2000, global markets

have lurched from one crisis to another including the financial crisis of 2008 (Figure 1.1).

This continued state of flux ensured that global markets did not cross their previous

peak. Between 2000 to 2012 global markets struggled, not making new highs hurting

the pensions and life savings of many.
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Figure 1.1: Specimen of S&P 500 Index price (1984 to 2012). Here we see a
tremendeous positive trend in price from 1984 till the internet bubble burst in the
year 2000. Since then the market has struggled to follow its previous secular positive

trend hurting long term investors, and attaining new highs only in 2013.

With pension funds not generating enough profits owing to markets that have not per-

formed well, in the last ten to twelve years a niche area of the asset management industry

has started to flourish, namely hedge funds. A hedge fund is essentially an asset man-

ager that specialises in a rather arcane but sophisticated manner of managing money.

Hedge funds have flexible mandates that give them more room to be innovative in their

methods. Although the hedge fund industry is at least 60 years old, it was always small

as it offered some very specific benefits, such as returns that were independent or uncor-

related to the broad market. Observing the consistent performance of hedge funds, large

pension fund trustees have started to give them more capital to invest. News media such

as the Financial Times estimates their current size to be close to GBP 2 trillion.

Within hedge funds there is a subset of portfolio managers who manage their portfolios
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through quantitative investment models. These hedge fund managers may have invest-

ment methodologies that are similar in approach to other portfolio managers in the

hedge fund arena. However they are different in that their investment decision making

is driven by quantitative models. More specifically quantitative portfolio managers work

at the intersection of finance, mathematics and computing. They strive to find ways to

identify anomalies or statistically important and stable relationships in data, which can

be modelled and used to build a portfolio of securities.

Historically quantitative investment models for portfolio management were initially pur-

sued in the 1960s by the investment management arm of Wells Fargo bank which hired

academics to start tracking major stock indices such as S&P 500 based on the observation

that most portfolio managers underperformed the market. Wells Fargo sold its business

to Barclays Bank which renamed it Barclays Global Investors (BGI) which eventually

became the largest asset manager in the world. BGI got bought by BlackRock which

is now an even larger asset manager. However, most of the assets at BlackRock simply

track or replicate broad stock market indices.

Finance as a whole became rapidly quantitative in 1952 with the publication of Harry

Markowitz’s mean variance framework for portfolio construction (Markowitz, 1952), the

multi-factor portfolio model by Ross (1976) and in 1973 with the publication of the

Black and Scholes (1973) option pricing formula. With these breakthroughs the market

and its participants have continued to adapt and became more quantitative and today

are nearly totally driven by computers, especially in the case of exchange listed securities

(Mackenzie, 2008).

In recent years quantitative portfolio managers have been borrowing mathematical mod-

els from other domains, such as signal processing and machine learning with the expec-

tation to build better models for markets. In the last few years models for real time

high frequency data have been the main battleground for practitioners to build cutting

edge mathematical tools combined with low latency connectivity and powerful com-

puters. Some argue that this is a natural evolution while others think it is harming

markets. Whatever the case may be about these models there are three universally ap-

plicable components to portfolio construction be it in high frequency or low frequency

investment. The three components to managing a portfolios of securities are:

• High probability investment opportunity (signal),

• Correct investment size (investment capital allocation),

• Managing portfolio risk (investment capital allocation).

These three components are key to good portfolio management and they are presented

in order of importance. At the outset it is important to have an investment opportunity
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that has a high probability of success (much better than 50:50). Once this high proba-

bility investment opportunity is identified, one needs to determine how much capital to

invest. The amount of capital invested directly leads to how much risk is taken, since

the amount of capital invested determines the exposure to an investment and its related

variance. In our thesis we will focus on creating high probability investment opportuni-

ties thorough quantitative investment models and the correct investment size for these

investment opportunities.

1.1 Problem Statement

Quantitative portfolio managers deal with diverse and rich sources of data in their work.

The data can take the form of prices, earnings, debt, yields as well as ratios such as price

to earnings, book to price, debt to equity, etc. However, financial data is noisy and it is a

challenge to extract useful structure or information from such data. Useful information

or patterns or structure in data can exist in different time horizons and, large data sets

can create further patterns while interacting with each other. For example a pattern may

exist in a 10 period window but may appear at irregular intervals. Further, a pattern

may exist at a 200 period window, just like the 10 period window, while no discernible

pattern may exist in a 20, 30 or 40 period window. This means that one could have two

different processes in the data and it is possible to build a mathematical model for 10

and 200 period windows of data (Figure 1.2).
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Figure 1.2: Specimen of Software AG’s price. on very short horizons of approximately
20 to 30 days one can see mean reverting behaviour, we see some momentum on longer
horizons of 100 days and then mean reversion again on life of the data set of three

years.
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Broadly there are two main categorisations within which markets are found to operate

namely momentum and mean reversion. Momentum is the tendency of investments

to exhibit persistence in their relative performance (Moskowitz et al., 2011). That

is, investments that have performed relatively well in the past, continue to perform

relatively well in the future; and those that have performed relatively poorly, continue

to perform relatively poorly. A range bound or mean reverting market is the opposite of

momentum, i.e. the tendency of investments to exhibit no persistence in their relative

performance and generally appear not to move up or down for any extended period of

time. However, financial data is noisy and mean reversion occurs even in momentum

driven markets, i.e. both processes are present and evolving at the same time but

usually identified over different time horizons. The key challenge is that capturing mean

reversion and momentum successfully requires models that are dedicated to each of these

processes.

In practice, most fund managers focus either on long run momentum models or for

range bound markets, short run mean reversion models. Models for long run momentum

and short run mean reversion have very different risk-return profiles and because they

cater to a niche investor, it is simpler for an investor to categorise them as one or the

other. That said a single model is unlikely to perform well in all market conditions,

i.e. momentum and range bound markets owing to different regimes and their nature.

Given this challenge portfolio managers should have several quantitative investment

models that generate portfolios.

Combining quantitative investment models to form a portfolio has the benefit of using

the data in a comprehensive manner. By capturing specific patterns found in market

data at different time horizons, it is possible to benefit from information extraction from

the market in a thorough and complete way. Diversified portfolios generally tend to be

more stable and resilient by reaping benefits in volatile conditions as well as in changing

market conditions.

1.2 Research Question

As discussed above there are differing processes in financial data at different time hori-

zons and the best way to capture them is to have dedicated models targeting these

processes. For our research the key research question is can a portfolio of quantitative

investment models provide superior risk adjusted returns when compared to a portfolio

based on a single quantitative investment model. This key research question also de-

pends on our ability to identify and model momentum and mean reversion in financial

data.

Although there has been some research work on constructing portfolio of quantitative

investment models; there is limited published research on constructing a portfolio of
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quantitative investment models that are dedicated to patterns found in data at different

time horizons, as well patterns in data, that are generated from interactions within large

multivariate data sets. Given this we need a principled approach for studying the data

and building models that suit and work well with that data set.

1.3 Research Challenges

Quantitative portfolio managers are notoriously secretive about their methods and tools.

They keep their technology and intellectual property under wraps since their success

depends on their ability to have an advantage over their competitors and other investors

in general. Therefore there is limited academic literature published on this problem, as

well as very little discussion about methods and methodologies used by these portfolio

managers. However, some academics who either advised or operated a hedge fund such

as Jean-Philippe Bouchaud of Capital Fund Management and Edward Thorp of Newport

Partners who ran one of the most successful quantitative hedge funds in the world, have

published their research about methods and tools used in this arena (Thorp, 1967).

Another structural challenge is the inability to capture all strategies in the quantita-

tive hedge fund space, even those that are quite suitable for quantitative modelling.

Specifically exchanges have transparent pricing but sometimes certain instruments are

synthetically created by banks for example, options and warrants, their prices are not

easily available and the value is not determined in a transparent manner. In this con-

text strategies that use asset classes which have exchange traded instruments such as

equities, index futures, government bonds, foreign exchange (FX), (although FX trades

both off and on exchanges these days) are best suited to quantitative modelling as they

offer:

1. Prices that are available to the public from stock exchanges,

2. Clean and consistent historical data that is available to the public to build and

test models with and,

3. Open competitive stock exchanges in a well regulated environment.

Quantitative investment models for an asset class where prices are not transparent and

price history is not available, (e.g. where prices are negotiated over the telephone or are

generally off the exchange) are not suitable even though mathematically they would make

good candidates for quantitative strategies. Another key challenge is building statistical

models, considering financial data is noisy and heterogeneous. Given these challenges

we will build four quantitative investment models that will capture structure in the

data. We will then build a meta model that will allocate capital to these quantitative

investment models, that will give us a portfolio of quantitative investment models.
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1.4 Research Contributions

Given the limited body of academic literature with reference to this subject, we will

contribute to the body of research literature for portfolio construction when it comes to

combining quantitative investment models primarily through our proposed meta models.

Specifically, our key research contribution will be our meta models that present a novel

way of combining four quantitative investment models that focus on equities as an asset

class at different time horizons. We use stocks and index futures data to build two market

neutral models that are most suitable for range bound markets. Our third model is a

momentum model that is suitable for momentum driven markets and the fourth model

is a constant rebalanced portfolio models for stocks. To address these questions we use

both simulated as well as real financial time series data which is distributed by exchanges

daily.

Our initial findings and novel model were published in Mehra et al. (2014). This paper

presents our meta models, which demonstrated better risk adjusted performance for two

years of out-of-sample data when compared to existing methods. Furthermore our meta

model uses the Kelly criterion to build a portfolio of quantitative investment models.

We systematically test several versions of Kelly criterion using both synthetic and real

financial data.

1.5 Thesis Outline

The rest of the thesis is written in eight chapters. This section presents the structure of

the thesis and a brief outline of each chapter.

Chapter 2: Background & Related Work

This chapter is devoted to a literature review where we focus on the history of portfolio

construction, new developments that have influenced the field, as well as the challenges

we face in portfolio construction especially when we have noisy and non-stationary fi-

nancial data. We begin with a discussion on financial time series and the properties

found in many financial time series data. Subsequently, we discuss the foundations of

portfolio construction, key contributions to the field, benefits and shortcoming of the

primary models and how academics and practitioners have addressed these issues. We

also discuss influences from outside the field of finance and how several methods from

probability and information theory have influenced the field of finance and portfolio

construction as a whole.

We then follow this up with a discussion on quantitative investment models used by

practitioners and academics. Although there are various quantitative models such as
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those for option pricing, convertible arbitrage etc., we focus on models that are related

to our research, i.e. ones used to build portfolios. We will primarily look at market

neutral models, momentum models, etc. using financial time series data (price). We

also discuss other efforts to construct a portfolio of quantitative models by researchers

and practitioners.

Chapter 3: Statistical Analysis of Data to Identify Structure and Pat-

terns in Data

This chapter presents a number of statistical tests that we use to identify relevant pat-

terns in data for our models. We divide the statistical tests according to the type

of quantitative investment model, since each of our quantitative investment models is

targeting a particular pattern found in financial data at different time horizons.

Chapter 4: A Framework of Quantitative Investment Models

In this chapter we present the framework within which our models will operate. This

framework will have two key tiers of quantitative investment models, one tier interacting

with the market and the second tier, which is our main contribution the meta models

is used for allocating capital to quantitative investment models, resulting in the meta

portfolio. We will discuss how the models operate, i.e. how they interact with each

other and the market as well as what the inputs and outputs are at each stage. This

chapter lays out the broad map for our work. In the chapters that follow we develop

the quantitative models that will populate this framework.

Chapter 5: Constructing Quantitative Investment Models

In this chapter we present the four quantitative investment models that form the first tier

of the framework. We build these quantitative investment models to capture structure

in data at different time horizons namely mean reversion and momentum. We build two

market neutral pair models, one for global equity index futures and one for the European

equity market. We also build a momentum model for global equity index futures and

a long only equity model focused on the FTSE 100 constituents. We will discuss the

rationale, approach and structure of these models as well as show the process and steps

we took to build these models and present their respective algorithms. These models

are then used in Chapter 7 on synthetic data and in Chapter 8 on real financial data,

where we analyse their performance statistics. The output of these models is then used

by the meta models that will allocate investment capital to them and form the meta

portfolio.
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Chapter 6: Constructing Meta Models

In this chapter we present our meta models that form the second tier of the framework.

We have four benchmarks and five models. These five models show the evolution of

our meta models. We discuss them in detail and present the algorithms and how they

operate. The meta models use the output of the quantitative investment models built

in the previous chapter, forming the meta portfolio.

Chapter 7: Generating Synthetic Data for Models

In this chapter we generate some synthetic data so that we can test our quantitative

investment models and our meta models. The main objective of generating synthetic

data is to infuse features found in prices of real financial data and to see if our models in

both tiers of the framework will generate the returns and have the performance that we

expect them to have. Here we will assess the performance of the quantitative investment

models as well as the meta models on the basis of the Sharpe ratio, which is the standard

and most widely used metric.

Chapter 8: Performance and Analysis of Models Using Real Data

In this chapter we use real financial data to test our models. We begin by presenting

the data that we will use and discuss what precautions we take to ensure that the

data is clean and consistent. We then divide the data into in-sample and out-of-sample

periods. We use the in-sample period to calibrate our models and the out-of-sample to

validate them. As in Chapter 5, we begin with our quantitative investment models and

discuss the performance of the models both in the in-sample period and out-of-sample

period. We then move to our main contribution, the meta model, where we show the

performance of the in-sample, out-of-sample period and the full sample. We discuss the

performance in detail and highlight some of the key points which make our model better

and different.

Chapter 9: Conclusion & Future Work

We present a brief summary of our research, some thoughts and observation on our re-

search. We also discuss the strengths and weaknesses of our model and suggest potential

future areas of improvements to this research. We then discuss potential applications of

the models to other areas of work.



Chapter 1 Introduction 10

1.6 Summary

In this chapter we gave a brief background to our research to give context to the reader.

We also discussed our research question, challenges related to solving the problem and

the research contribution. Our main contribution is a portfolio construction approach

that accounts for risk while allocating capital in quantitative investment models. We

also systematically test Kelly based portfolios for investing.

We also present the outline of this thesis, describing what each chapter contains. This

chapter sets the broader background for our research, as well as the three questions that

we asked about how a good portfolio manager breaks down the challenge of portfolio

management namely investment opportunity with high probability of success, correct

investment size and risk control. The next chapter will present and discuss research

literature that is related to our research.



Chapter 2

Background & Related Work

In this chapter we begin by giving an overview of features found in financial time series

data to understand how it is different from assumptions of homogeneous data used in

standard financial and statistical models. We will highlight some of the stylised facts

found in financial time series as some of these features will help us construct models.

We then discuss the foundations of portfolio construction, different methods and their

shortcomings. We then present Kelly criterion a powerful method based on Information

Theory, which we will use to build our models. We subsequently discuss developments

in finance, investment models, portfolio management, and new methods that are slowly

but steadily changing portfolio management methods. Then we look at the evolution of

the asset management industry, which uses quantitative models extensively for portfolio

management and subsequently we discuss quantitative investment model that we will

use for modelling. Finally we take a brief look at Kalman Filter which will be used in

our models.

2.1 Features of Financial Time Series Data

Financial time series can take many forms. However, in our research we focus on price

time series. Prices are reported by stock exchanges, which is where stocks, bonds and

other assets are listed and traded. A stock exchange reports the official opening and

closing prices of listed stocks or bonds. This price is used used to value portfolios,

manage and assess risk and value companies.

Financial time series (FTS) in the form of price and their daily change do not exhibit

the statistically stable property of homogeneity, which is generally assumed by financial

models used in portfolio construction that are themselves based on standard statistical

models.

11
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Specifically standard parametric statistical models require their data to be homoge-

neous and assume them to be independent and identically distributed (i.i.d). However,

most financial data and especially change in stock prices do not have these properties

(Cont, 2001). This is a key challenge that we will face whilst building our models, since

simplistic models are likely to mis-estimate key statistics. Next we highlight some im-

portant characteristics typically found in financial returns data (definitions can be found

in Appendix A).

• Heterogeneity: Heterogeneity in data exists when the data is not uniform univer-

sally. Most FTS data exhibits clustered volatility and this characteristic has been

found empirically since Kendall (1953), Houthakker (1961) and Osborne (1962).

Clustered volatility, characterised by autoregressive conditional heteroscedasticity

(ARCH) (Engle, 1982) and generalised autoregressive conditional heteroscedastic-

ity (GARCH) (Bollerslev, 1986) models, take into account that the residuals are

not constant over time.

• Autocorrelation in returns: FTS exhibit autocorrelation in returns, where

autocorrelation is correlation in data to its own lagged values of time series data.

There have been studies that show varying amounts of autocorrelation in returns

data for equity indices, stocks, mutual funds, relative performance of stocks and

sectors (Lo and MacKinlay, 1988). Choice of frequency such as daily, weekly or

monthly can have an impact on the results of autocorrelation tests. Data can

show strong autocorrelation at very high frequency such as one minute data, no

autocorrelation at daily frequency then again positive autocorrelation at monthly

or weekly frequency (Lewellen, 2002).

• Gain/loss asymmetry: In FTS, it is observed that market indices and stock

prices show large negative moves but not equally large positive moves (Cont, 2001).

Typically markets trend upwards in small increments over a long period of time

but falls are generally quicker and decrements are large.

• Aggregational Gaussianity: As the time scale ∆t on which returns are cal-

culated increases, their distribution looks more like a normal distribution. This

means that the distribution of return is not the same on all time scales (Cont,

2001).

• Calendar effect: Calendar effects are cyclical anomalies in market returns based

on the time of the year. There are several of these effects in financial data such

as i) the January effect, where returns in the month of January were found to be

larger than other months (Wachtel, 1942; Haugen and Lakonishok, 1987) and ii)

the weekend effect, where returns over the weekend (Saturday and Sunday) were

found to be lower than other days (Cont, 2001; French, 1980; Cross, 1973).
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• Volume/volatility correlation: Trading volume is related to all measures of

volatility, i.e. as volatility increases, so does trading volume. This in particular

can be seen in a crisis, after company announcements of both positive and negative

nature as the markets processes and reacts to new information, buying and selling

stocks to reposition their portfolio (Cont, 2001).

• Intermittency: Returns display, at any time scale a high degree of variability.

This is quantified by the presence of irregular bursts in time series of a wide variety

of volatility (Cont, 2001)

• Leverage effect: The leverage effect refers to the observed tendency of an asset's

volatility to be negatively correlated with the asset's returns. Typically, rising

asset prices are accompanied by declining volatility, and vice versa. As asset

prices decline, companies become mechanically more leveraged since the relative

value of their debt rises relative to that of their equity. As a result, it is natural to

expect that their stock becomes riskier, hence more volatile (Ait-Sahalia, 2011).

• Absence of autocorrelation in returns: Cont (2001) points out that linear au-

tocorrelation of asset returns are often insignificant, except for very small intra-day

scale for which micro structure comes into play. This is different from observations

made by Lewellen (2002) as well as Lo and MacKinlay (1988), discussed above.

However, they made these observations at much lower frequency data. Analysing

financial data at different frequencies can give very different results.

Stylised facts mentioned above make interesting reading and highlight some challenges

as well as some opportunities. It is important to point out that observations of the data

can differ depending on a) asset class, b) time horizon, c) frequency, where an asset

class is a categorisation for an investable asset such as equity, bonds, FX or commodity.

Essentially, one can find different aspects of the data depending on how an analyst

decides to dissect the data as well as which frequency of data they use. To the best

of our knowledge there has never been a comprehensive study of FTS that has looked

at all the data in all asset classes on all time horizons. Given these observations FTS

poses some interesting challenges. When simplistic models are applied to this data, the

results are sub-optimal especially when put through an optimiser in a naive fashion. This

has clear implications for portfolio construction as it makes it harder to build robust

portfolios.

2.2 Portfolio Construction

In the previous section we discussed the features of financial time series data. In this

section, we consider models that use this data to build portfolios. Most cautious investors

are generally sceptical of investing in one security; instead they prefer to invest in a
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collection of securities. Such a collection of securities is referred to as a portfolio. Not

all investments are successful, some can lose money, hence it is always advisable to

have a portfolio of investments to reduce risk of loss. In a typical portfolio of stocks,

risk is measured through standard deviation of returns, a well established measure of

risk. The higher the standard deviation, the higher the risk. In this context, portfolio

construction can be seen as a process that helps strike a balance between risk and

return. Specifically, portfolio management deals with the analysis of an investment and

the theory of combining these investments into a portfolio.

The first recorded mention of portfolio allocation is from the fourth century where Rabbi

Issac Bar Aha proposed an equally weighted portfolio, he proposed “a third in land, a

third in merchandise and third in hand” (DeMiguel, 2009). Since then there have been

some advances in the portfolio construction. The first person in recent times to give

portfolio construction a well defined framework was Markowitz (1952). We will discuss

how this intuitive and powerful framework has dominated the literature of portfolio

construction.

2.2.1 Modern Portfolio Theory

The foundation of modern portfolio construction was laid by Markowitz (1952, 1959)

and Tobin (1958). In his seminal paper in 1952, Markowitz made some key observations.

He observed that returns alone were not important, but rather that a balance of return

and risk was important. Risk would be measured by the variance of the returns. He

also observed that when two risky assets are combined their standard deviations are

not additive, provided the returns from these two assets do not posses perfect positive

correlation. This meant that when a portfolio of risky assets is formed, the standard

deviation of the portfolio is less than the sum of the standard deviation of its constituents.

Markowitz’s framework of portfolio construction is also called the mean-variance frame-

work. To construct a portfolio the mean-variance framework has two key inputs in an

optimiser: i) expected returns, estimated using historic mean return of a stock to repre-

sent gain and ii) the covariance matrix of stocks again estimated from historic returns

to represent risk. The Markowitz approach builds an efficient frontier as shown in Fig-

ure 2.1. Here an efficient frontier is a set of portfolios considered optimal and offer the

highest expected return for a certain level of risk or the lowest risk for a given level of

expected return. The optimal portfolio is measured using the Sharpe ratio, which is the

annualised portfolio return minus the risk free rate divided by the annualised volatility

of the portfolio returns (Equation 2.1). Here annualisation is a way of standardising

the data, especially for small data sets so that comparisons are consistent. Specifically,

the Markowitz model generates an efficient frontier out of several investable portfolios;

these portfolios show a relationship between return and risk. The highest Sharpe Ratio

represents a portfolio with the best investment opportunity.
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Sharpe ratio =
Portfolio Return−Risk Free Rate

Portfolio V olatility
(2.1)
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Figure 2.1: The efficient frontier. A specimen of the efficient frontier of three assets
created in MATLAB.

Markowitz’s work led to further research on portfolio theory by several researchers such

as Sharpe (1964), Lintner (1965) and Black et al. (1972) who extended his work to build

the Capital Asset Pricing Model (CAPM). The CAPM states, variance of a stock’s price

can be partly explained by the index of which that stock is a member and partly by the

characteristics unique to that stock. For example variation in the price of Vodafone PLC

stock can be partly explained by the FTSE 100, the main index to which it belongs. We

present the CAPM Equation 2.2, which is essentially the ordinary least squares (OLS)

equation.

Rs = α+ βRm + ε. (2.2)

Here, Rs is the return of a stock, α is the intercept, β is the regression coefficient

that shows how much return of a stock is explained by the market index e.g. FTSE

100, denoted by Rm and ε is the residual. β is also called the Beta of stock, which

measures a stock’s sensitivity to the market index. High Beta means high sensitivity
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and vice versa. While analysing mutual funds Jensen (1968) showed that the Sharpe-

Lintner version of the relationship between expected return and market Beta implied

times-series regression exhibiting a linear relationship between the market and stocks

as well as mutual funds. Merton (1973) proposed Intertemporal Capital Asset Pricing

Model (ICAPM), which forecast changes in the distribution of future returns or income.

The next stage of evolution was the Arbitrage Pricing Theory (APT) proposed by Ross

(1976, 1980). The APT model explains the movement of a stock not explained by the

index, through factors specific to a stock or further adapting it through macro economic

factors such as oil, inflation and interest rates (Grinold and Kahn, 1999).

Markowitz’s mean variance framework was a static one, by static we mean that estimates

of returns and covariance were made from historic data and then kept unchanged. Dy-

namic versions of the model have been developed starting with Merton (1972), followed

up by Valian (2009), Cai et al. (2013), Frey (2012), Ghosh and Mahanti (2014) and

Al Halaseh and Bakar (2016). The dynamic or multi-period approach takes advantage

of recent information about future expected returns. Valian (2009) shows that multi-

period models perform better than single-period models in the long run. In industry

some of the most sophisticated quantitative portfolio managers also practise dynamic

rather than the old static approach to portfolio construction.

The mean variance framework is sensitive to data. Given the characteristics of FTS in

Section 2.1, high variance in the data leads to mis-estimation of the mean, variance and

covariance. Chopra and Ziemba (1993) show that using forecasts that do not accurately

reflect the expected return can severally degrade performance. According to Michaud

(1989) the optimising methods are sensitive to noise (variance) and end up maximising

errors in estimates. Michaud also noted that small changes in expected returns (mean)

changed the outcome of the portfolio dramatically. The Markowitz framework, although

simple, helped formalise the problem and we shall use it as a benchmark both in our

simulations as well as real financial data in Chapter 7, and Chapter 8 where we discuss

our empirical results.

The model proposed by Black and Litterman (1992) called the Black-Litterman model

(BL) was designed to overcome some of the shortcomings within the mean-variance

framework and to combine forecasts whilst building an optimal portfolio. The BL model

only differs from the Markowitz model with respect to expected returns; otherwise it is

quite similar to Markowitz’s mean-variance framework. The BL model starts with an

equilibrium portfolio, which is essentially the market index e.g. FTSE 100, and then

allows one to combine forecasts of expected returns and confidence (uncertainty) in the

forecast with the equilibrium portfolio. However, for our model, we do not yet have an

established equilibrium portfolio. Hence the BL methodology is not particularly useful

for our objective at the moment, so we shall not include this as benchmark in our analysis,

instead we will use the mean-variance model. The BL framework remains popular within
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the investment management industry where active investment management mandates

are assessed through benchmarks.

2.2.2 Portfolio by Sorts

Another way of building portfolios is through sorting (ranking) information. This

method proposed by Chriss and Almgren (2005) is based not on expected returns like

Markowitz (1952) but on ordering information of expected returns, that is to say rank-

ing of the expected returns from highest to the lowest. For example in Equation 2.3 we

rank expected returns. Here r is expected return of asset i ∈ (1, 2....n). More formally

a portfolio of sorts is defined as follows.

r1 ≥ r2 ≥ r3 . . . rn. (2.3)

Defining Sorts: “In the most general sense a portfolio sort is a set of inequality re-

lationships between expected returns of these assets. The simplest and most common

example is a single complete sort which orders all the assets of the portfolio by expected

returns from greatest to the lowest” (Chriss and Almgren, 2005).

Sorts can be used in many ways, such as a) decile based sorts, where the top decile is

the top 10 percent of a group, b) Index over/under-performers, where out-performers

and under-performers of an equity index are ranked, and c) Multiple sorts, where stocks

are ranked by more than one criterion.

Sorting can be done using different criteria than expected return (Asness, 1997) where

we see multiple sorts used to build portfolios. Sorts are particularly useful when there

are a large number of stocks to apply. The sort is used to select stocks and then uploaded

into a standard mean-variance optimiser. The method is analogous to Markowitz (1952)

approach as he uses information about both expected returns and covariance to build

an optimal portfolio. Portfolio by sorts is very much in the spirit of the mean-variance

framework. However we do not have a large number of models to use sorts in a reasonable

manner.

2.2.3 Risk Parity Portfolios

Risk Parity (RP) is an asset allocation approach pioneered by Bridgewater Capital which

is the world’s largest hedge fund manager. Asset allocation is a higher order or top

down approach to allocating capital and is related to allocating capital to an asset class.

Where the main asset classes are Equities, Bonds, Foreign Exchange and Commodities.

RP’s unique argument is to diversify a portfolio by risk, where risk is measured through

standard deviation or returns. The RP portfolio will have equal amounts of contribution
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to risk from each asset class. To diversify risk one generally needs to invest more capital

in low risk assets than in high risk assets. The problem of extra capital is solved through

leverage.

Empirical performance of RP when tested over a period of 80 years has shown to beat

the classic 60/40 portfolio of stocks/bonds as shown by Asness (2012) and Maillard

(2010). However, it has raised a fair number of questions about the approach as it flies

in the face of CAPM and Modern Portfolio Theory. The argument that variance is

the only factor that matters has also shown to be suspect in various empirical studies

done by Jensen et al. (1972) and Frazzini and Pedersen (2014), where they show that

high variance does not translate to high return. This not only contradicts RP but also

CAPM model as well. However, the most important shortcoming of RP for us is that it

cannot be implemented in its true form without the use of leverage. Owing to the use

of leverage in RP we will not use this method as a benchmark to compare our model.

2.2.4 Kelly Criterion

Although Markowitz and Sharpe’s work did not perform well in empirical applications

(Fama and French, 2004), their work remains a tour de force since it helped shape the

theoretical framework for the problem of portfolio construction. Meanwhile, unrelated to

portfolio construction, researchers were involved in mathematical betting systems. John

Kelly, a mathematician, wrote a ground breaking paper on betting (Kelly, 1956). In his

paper Kelly applied concepts from information theory to a game of chance (betting).

Kelly’s work centred on finding the optimal “bet size”, of one’s capital to bet on a

game of chance, that had positive expectation, such that the bettors maximised the

expectation of log of wealth. Kelly’s work on bet size is now known under several

different terms such as “Kelly fraction”, “Optimal f”, short of optimal fraction of capital.

“Kelly bet” and “Kelly Criterion”, the last term was coined by Edward Thorp. Kelly

showed mathematically that his method of betting was optimal. In fact, Kelly’s formula

is the best way to grow capital without going bankrupt (Sinclair, 2008).

We consider making a series of n investments at time interval ∆t, to grow our capital

G. The gain on the investment of size X0 is µ∆t + σ∆W , where E(∆W ) = 0 and

E(∆W 2) = ∆t. Now suppose we invest a fraction f of our capital at each time interval

and put 1−f in a risk-free asset with return r, G represents the growth of our investment.

Then our fractional return in round i is:

1 + (1− f)r∆t+ (µ∆t+ σ∆Wi)f. (2.4)
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And the log return is:

Gn(f) =
n∑
i=1

log(1 + (1− f)r∆t+ (µ∆t+ σ∆Wi)f). (2.5)

The expected log return is:

E(log(Gn(f))) = nE(log(1 + (1− f)r∆t+ (µ∆t+ σ∆Wi)f)) (2.6)

Expanding in ∆t we get:

E(log(Gn(f))) = nE((1− f)r + fµ)∆t+ σ∆Wi −
1

2
σ2f2∆W 2

i −O(∆t2) (2.7)

= [((1− f)r + fµ)− 1

2
σ2f2]n∆t+O(∆t2). (2.8)

By maximising the leading order term

f∗ =
µ− r
σ2

. (2.9)

As shown in Figure 2.2, the horizontal axis represents Kelly fraction and the vertical

axis represents growth rate of investments. As you can see in the figure, if f is too large,

investors will eventually lose all of their money, even if the long run expected return is

positive. If f is too small then it will take too long to make a sizeable gain, whilst at the

optimal Kelly fraction f one will make optimal bets.

Kelly’s method has some very useful properties. Firstly, Kelly’s method of betting max-

imises the log of wealth (Breiman, 1961) and asymptotically maximises the geometric

mean also known as the compounded rate of return of an investment that has a positive

expectation. Where compounded rate of return, is the return that is earned when an

investment return from a previous period stays in an investment and can begin to earn a

return itself. Secondly, since Kelly is about reinvesting or is a multi-period approach it

is important that an investor maximises the geometric mean. Thirdly, the expected time

to reach the target wealth is minimal when using Kelly. Fourthly, the Kelly strategy is

myopic, i.e. we only need to consider our current investment opportunities and wealth,

not subsequent situations. Fifthly investing at a fraction (3/4, 1/2 or 1/4) of the Kelly

allows investors to easily tune their desired level of risk at the expense of lower expected

returns (MacLean et al., 2011). Lastly, Kelly and fractional Kelly have been shown to

be optimal in Merton’s continuous time finance framework by Davis and Lleo (2012),

Merton (1993).
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of a Kelly computation for binary outcomes of 50 : 50, and loss is equal to 1 the
wager gain is 2 units. The highest point represents the optimal investment size 0.25,
corresponding to Kelly estimates. This will maximise the growth rate of invested capital

Source: (Wilmott, 2006).

Kelly’s method also has some drawbacks. Firstly, a good estimate of probability of

winning becomes crucial. Secondly, investment fractions get too large if probabilities

are favourable, which can make bets very large as a percent of capital. Thirdly, the time

necessary for long run effects to dominate other methods can be drawn out, and finally

Kelly assumes that capital is infinitely divisible (MacLean et al., 2011).

Breiman was first to consider multivariate portfolio of Kelly bets allowing for overlap-

ping sets of outcomes, called events, each with betting odds (Breiman, 1961). However

Breiman did not make any suggestions how these bets should be combined, especially

when the bets may exceed investable capital. To accommodate several Kelly bets frac-

tional Kelly can be used, where fractional Kelly is a smaller proportion of the estimated

Kelly bet such as 3/4, 1/2 or 1/4 of the actual Kelly fraction. MacLean et al. (2011)
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conducted a study of fractional Kelly and have shown it to be optimal in Merton’s con-

tinuous time framework. Rising and Wyner (2012) also presented fractional Kelly but

they called it Partial Kelly. They built a fractional Kelly portfolio through a shrinkage

estimator which universally shrinks Kelly estimates to manageable portfolio weights,

their model essentially achieves fractional Kelly weights that one would get if one nor-

malised Kelly estimates of several investment opportunities, giving portfolio weights.

Rising and Wyners also claim that the shrinkage has the added benefit of reducing esti-

mation error. Fractional Kelly is quite suitable in finance as often the Kelly bet size is

so large that it recommends using leverage in the continuous time setting.

Maslov presented a multivariate approach of Kelly bets but it was only for uncorrelated

assets (Maslov and Zhang, 1998). Laureti furthered Maslov’s work for correlated assets

but only in principle, using artificial data with small mean and small variance, showing

that the Kelly portfolio lies on the extremes of the efficient frontier if the data is log

normally distributed, i.e. its special case of the efficient frontier (Laureti et al., 2010).

Laureti et al. state that there is hardly any difference between their approach and MVO,

as they use the covariance matrix in their optimisation.

2.2.5 Universal Portfolios

The theory of Universal Portfolios (UP) was developed by Cover (1991); Cover and

Ordentlich (1996). A UP is one that invests a small fraction of initial capital in a stock

and the rest in a risk free deposit and rebalances the portfolio to the same weights

at every time step. This is very close to the Kelly principle except that the weights

are fixed. For example, if C is the capital available to invest and N is the number of

stocks to invest in then the resulting allocation is based on C/N . Then at the next step

one simulates all possible permutations and combinations to find the best portfolio in

hindsight at t − 1 and then use the optimal weighting from t − 1 for the next step to

give us the Best Constantly Rebalanced Portfolio (BCRP). Here the BCRP is the best

outcome in hindsight.

The UP is computationally very expensive as it will do a complete grid search for all

possible permutations and combinations, especially when it asymptotically achieves a

log optimal portfolio, the same as Kelly. However the UP has some interesting features.

For example it makes no distribution assumptions about the market, and works like a

sequential or online investment algorithm. Furthermore, it is supposed to asymptotically

outperform the growth rate of the best performing stock in the portfolio. Cover showed

this through some well chosen examples of two stocks (Cover, 1991). However, he quickly

realised that this was tougher with real data and introduced UP with side information

(see Cover and Ordentlich (1996)) where the side information can be a technical indicator

or correlation information, essentially bringing UP closer to our approach of having

dedicated models.
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Several versions of UP have been published in the last few years by Blum and Kalai

(1999), Gyorfi et al. (2008), Kozat and Singer (2011) to name a few, they seem to work

in theory. Most UP are rather limited case of two asset problems and asymptomatically

equal to Kelly so we don’t find UP useful.

2.3 Quantitative Investment Models

Quantitative models are simply ways of investing where the process is driven by an

algorithm. We distinguish between quantitative models and models that are quantitative

as well as systematic. By quantitative and systematic we mean that the initiation and

implementation of an investment decision is entirely controlled by an algorithm, i.e.

there is little to no human intervention. For our research we focus on two approaches

that are quantitative and systematic in nature, a) momentum driven trend following

and b) mean reversion driven market neutral. The reason we focus largely on these two

features is that they i) are ubiquitous in financial data, ii) capture the most prevalent

features of financial data and iii) address our goal of capturing patterns and structure

in data at different time scales.

2.3.1 Momentum

Major stock market indices, commodities as well as stocks exhibited momentum or

trends in their price data for at least two centuries. Momentum has been shown to

be statistically significant by an in-depth study performed by Lemperiere et al. (2014).

Momentum investing is also known as trend following, has a long and well established

history. The earliest known momentum investors are CTAs or Commodity Trading

Advisors, they initially focused on agricultural futures and cash crops. CTAs evolved

into Managed futures who were investors who invested in every market that was futures

based such as equity indices, bonds futures, metals etc. Equity market investors also

follow momentum investing and it can take two distinct forms owing to mandates given

to equity portfolio managers.

There are different forms of momentum investing. One popular form is momentum

analysis on cross-sectional data, such as components of FTSE 100. This means that

the momentum is relative out-performance of one stock over another, or a set of stocks

relative to rest of the constituents of an Index (Asness et al., 2013), (Hong and Stein,

1999) (Liu and Zhang, 2008). Our momentum work is different from cross-sectional

momentum we are interested in absolute momentum in FTS data, since we are interested

in identifying information in time series data (returns) at different time horizons.

Momentum investing works on the premise that securities that have performed poorly

will continue to do poorly and the ones that have performed well will continue to do
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well over the long run. In essence such models are looking for returns with the same

sign in financial returns data, that is to say they are looking for the development of a

trend. Trends have been attributed to behavioural biases such as investor overconfidence,

investors reacting or processing information slowly (De Bondt, 1985). Most importantly

the existence of these trends has been shown to be statistically significant by Lemperiere

et al. (2014) through an in-depth study looking at prices going as far back as 200

years. Several other researchers have also shown momentum to exist in several asset

classes including commodities, equities, FX and equity indices (Moskowitz et al., 2011).

However, some researchers have found that momentum investing may get some support

from survivorship bias, especially in uptrends. Nearly all major indices such as FTSE

100 rebalance their indices on a regular basis removing the worst performer and adding

the new stronger performer, hence creating a small bias towards uptrends (Henker and

Huynh, 2010).

Momentum focused portfolio managers use many technical tools to identify trends but

one of the most widely used method is the moving average and its many variants (Covel,

2007) (L’habitant, 2007). Some of the well known methods are a) simple moving average,

b) moving average convergence divergence, c) exponential moving average, d) triple

moving averages, e) adaptive moving averages, f) variable length moving averages, g)

fixed length moving averages, h) high low moving averages. We will use some of these

methods for our model as well in the next chapter.

To build a momentum model one needs to conduct some statistical tests that show

trends exist and the returns can have the same sign from one period to another. One

also needs to be able to extract a signal from noisy data. We show the tests that we

used in Chapter 3.

2.3.2 Equity Market Neutral

We now turn to the market neutral case. Market Neutral (MN) means having little to no

correlation with a broader market or the key index such as FTSE 100, which represents

the broader UK market. The goal of a market neutral portfolio manager (PM) is to

reduce or minimise market risk as much as possible while generating positive returns

independent of the broader market. Selling or buying of securities is not a single stock

decision, but related to other stocks in a well structured approach, such that some part

of risk is reduced or eliminated.

In financial markets to profit from a fall in price of stocks, a PM needs to be short that

stock. For example a PM can borrow Stock A from a bank, sell it in the stock exchange

at value of say $10 with the expectation that the price will decrease. When the price of

the stock decreases to say $9.50, the PM can buy the stock and return it to the bank

and earn a return of 5% minus some costs. Similarly a PM going long is the term used
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to buy stocks with the objective of earning a profit when the price rises. A PM needs to

be able to go both long and short to construct a MN portfolio. A MN model can take

many forms and this can depend on the detail that PM is willing to go to, as well as

the PM’s investment style. Some of the well known ways for a PM to be market neutral

are:

• Dollar Neutral: Dollar neutral stands for equal capital allocation. A PM who is

long and short on equal amounts of capital on the underlying asset such as stocks,

bonds or futures. Where long is equal to buying an asset and short is equal to

selling an asset. For example a PM with $10 million in long positions would have

to be matched with $10 million in short positions, with the PM expecting the long

positions to increase in value and the short positions to decrease in value, giving

the PM a profit. Dollar neutrality is extremely appealing because of its simplicity

and ease of management for a PM on a day-to-day basis.

• Beta Neutral: A commonly used risk-based definition of market neutrality relies

on Beta. A portfolio is said to be market neutral if it generates returns that are

uncorrelated with the returns of some market index such as FTSE100. Since Beta

is calculated by regressing stock returns to a market index, showing correlation,

a zero correlation with the market implies zero Beta. To create a Beta Neutral

portfolio we have to go back to MPT (see Section ??). According to MPT the

movement or volatility of a stock can be explained by the market risk (Market

Index) and company (Stock) specific risk component (see Figure 2.3). The market

risk component is driven by the market volatility. To construct a Beta Neutral

portfolio the weighted average of stock Betas on the long side and the weighted

average of the stock Betas on the short side must cancel each other out. For

example a PM may be long on a set of stocks that have a weighted Beta of 0.85

and short a set of stocks that have weighted Beta of−0.85 with the Betas effectively

cancelling each other out, inducing Beta neutrality. Depending on the variance of

the stocks in the portfolio the PM may have to rebalance the portfolio from time

to time. This usually depends on the mandate as well the the time horizon on

which the PM is operating.

• Sector Neutral: Even though Beta Neutral portfolios are theoretically market

neutral, sector specific movements can have an impact on the portfolio. For exam-

ple a major change in insurance regulation can orchestrate a big move up or down

in the sector compared to the rest of the portfolio. Sector neutrality can protect a

portfolio from sudden major move owing to unanticipated changes in law or regu-

lation which in most cases cannot be hedged. Sector neutrality would strengthen

a Beta neutral portfolio, especially with control for market capitalisation, where

market capitalisation stands for the market value of a company’s equity. Hence

a sector neutral PM would have the same amount of sector exposure on the long
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Figure 2.3: In this figure we show that their are two broad compenents to risk, the
first is broad market risk usually attributed to the major national index such as FTSE
100. The other is stock or company risk which is specific to each comapny. Source:

L’habitant (2007)

and short side of their portfolio. For example, a PM may be interested in a sector

that has 10 stocks. Then the PM can be long 5 stocks that have a weighted Beta

of 0.75 and short 4 stocks with weighted Beta of −0.75 and may exclude 1 stock.

This is achieved through slightly different capital allocation to the long and short

side to achieve Beta neutrality since Beta is calculated as a weighted average. This

is how a PM is Beta neutral and sector neutral.

• Factor Neutral: Factor Neutral portfolios are some of the more complex portfo-

lios to build and require extensive fundamental information on stocks. By factors

we mean micro factors such as earnings, price-to-book ratio, dividend yield, which

are company specific as well as macro factors such as oil price, interest rates and

inflation. BARRA, a long established commercial entity specialises in providing

analytics, identifies as many as 68 micro and macro factors for the US stock mar-

ket. Here we decompose the market variability further into factors i.e. we get

more detailed than just Beta neutrality shown in Figure 2.3 to Figure 2.4.

It is important for the PM to identify factors that impact returns. One way of

finding useful factors is to rank the stocks by a certain factor, such as book value,

which means the true value of a company if all its assets were sold today. Taking the

difference between the average return of the top quartile and the bottom quartile, if

the return is positive on say a monthly or weekly frequency then we have identified

a useful factor that can be used. Using this methodology we can then find other

factors and combine them and build a multi-factor model.

A PM requires a sophisticated and detailed model to find relevant and useful

common factors, identify precise source of risk in their portfolio, quantify them, so

the PM can neutralise risk factors while have some exposure to desirable factors.

Theoretically a PM can hedge all the factors (all 68 factors from BARRA) by being

long and short same factor exposure and essentially earn the risk free rate of return

after costs. The challenge for a PM is to identify the undesirable factor risk and

desirable factor risk. Once a PM has identified the desired factors exposure, then
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the PM can build a market neutral portfolio gaining exposure to desired factors

while hedging factors it may dislike. For example, most PMs deem it prudent to

invest in companies that are cheap or undervalued according some metric of their

choice, while minimise exposure to the oil price. A PM may decide to go long

on stocks that score high and are cheap on the basis of book value, earnings and

dividend yield, but have negative exposure to oil and short ones that score low

and are expensive and have positive exposure to oil and expect to make a positive

return, while still maintaining Beta neutrality (L’habitant, 2007).

Total Risk
(Variability)

Residual Specific Risk
(diversifiable)

Common Factor Risk
(Other betas)

Market Risk
(Market beta)

Micro Factor Risk
(P/B, P/E, size etc.)

Sector Risk
(biotech, energy etc.)

Macro Factor Risk
(oil, inflation etc.)

Figure 2.4: Factor Neutral models need to look at factor risk is much more detailed
manner to identfy every little driver of variability, as shown in this figure. Source:

L’habitant (2007)

• Pairs Trading: Pairs trading, as the name implies, involves two securities. They

can be two bonds, stocks, index futures or commodities. More specifically, pairs

trading involves two related securities with similar characteristics that move to-

gether and are likely to deviate temporarily from their long term path. Therefore,

when they deviate far enough from a historical or statistical perspective they gen-

erate an expectation that they will revert back to their historical levels. The

approach is based on mean reversion, which is essentially making a call on the

relationship between two stocks. The process of pairs trading can be simplified to

a few key steps:

– Identify pairs of stocks where prices should move in tandem;

– take a long and a short position in these related stocks when their prices

diverge sufficiently;

– hold the position until the prices have converged back to their normal rela-

tionship range, or until they hit a pre-set stop loss level.

There are many methods to perform pairs trading. One method is to take each

security as standalone and forecast them using a model. Another method is to
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carry out fundamental analysis of two securities, alternatively there is the approach

of creating a spread between the price time series of the securities. Here, the spread

is the log difference of the price time series of the relevant securities. The spread

represents the price of a security relative to another security.

Pairs trading in equities (stocks) is nearly always done in a sector neutral manner

to get relatively stable spreads, so they can be modelled well. Stocks especially of

large corporations have very standardised businesses and regulatory environment,

hence have similar factors exposure. For example, a PM may want to build a

portfolio of pairs in the UK. The first step is to take all the stocks and categorise

them into sectors. The next step is to select stocks that represent large, well

established companies such as those in the insurance sector. Finally one needs to

check if their business revenue streams come from similar sources e.g. is it life

insurance, car insurance or general insurance.

Most models use some kind of a distance measure with a threshold. For example,

this threshold can be two standard deviations away from the mean as estimated

using lagged observations or a certain percentile measure of the empirical distribu-

tion. A position is opened when the distance threshold is breached and closed when

another threshold is reached; either with gain i.e. mean reversion has occurred or

with a stop-loss when a position has not converged. There are other distance mea-

sures such as co-integration, stochastic spread approach with Ornstien-Uhlenbeck

model or through orthogonal regression as discussed by Elliott et al. (2005), Vidya-

murthy (2004) and Gatev et al. (2006). Gatev performed a study of stock pairs in

the US market including sector neutral pairs, using data from 1962 to 2002. He

used the the top performing pairs, which showed promising results and built pairs

portfolio showing good results. We will use the stochastic spread approach using

Ornstien-Uhlenbeck model. We will present tests that we conduct in Chapter 3.

• Statistical Arbitrage: Statistical arbitrage is an extension of pairs trading, with

factor exposure. In statistical arbitrage analysts and PMs consider baskets of

stocks, rather than pairs (however people use the term loosely for pairs as well). In

more detail, they divide securities into different groups based on several criteria and

look for systematic divergences between these groups. Their portfolio will typically

consist of a large number of long and short positions chosen simultaneously; for

instance, they may buy the 20 percent most undervalued (cheap) stocks and sell

short 20 percent most overvalued (expensive) according to some criteria such as

book value, with the aim of capturing the average mis-pricing between groups

corrects.

Statistical arbitrage can be seen as an extension of the pairs trading approach

to relative pricing. The underlying premise in relative pricing is that groups of

stocks having similar characteristics should be priced on average in the same way.

However, due to non-rational, historical or behavioural factors, some discrepancies
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may be temporarily observed. Rather than looking for a few pairs of securities that

diverge from their historical relationship, statistical arbitrageurs slice and dice the

whole universe of stocks according to sectors, valuations, factors or a combination

of these categories.

With regards to the market neutral approach for our research and model development

we have focused on pairs trading with dollar and sector neutrality, as we have access to

relevant data. We shall discuss the tests we did in Chapter 3 and performance of the

model on real data in Chapter 8.

2.3.3 Long Only

Long only portfolio management or buying and holding several securities to build a

portfolio has been the approach most equity portfolio managers have used to manage

money. Even today the largest investments, in terms of the amount of money invested

are in long only investments around the world. This stands to reason as it is easier to

buy securities for the long run and hold them. A lot of portfolios are index trackers,

that is to say they essentially track the major indices such as FTSE100, S&P 500 etc.

PMs take decisions to buy and sell stocks either by reading research reports, through

quantitative investment models or a mix of both, holding stocks for varying amounts

of time. PMs using quantitative models tend to use multi-factor models that utilise

accounting information such as price-to-sales ratio and book value, as well as pure time

series models to identify momentum in prices, where both approaches are trying to

identify stocks to buy. The objective is the same: to build a diversified portfolio, broadly

representing most major sectors such as pharmaceuticals, insurance, telecom, mining

banks etc. of a country’s economy.

We will use a time series based approach to buy stocks. Specifically we will build a

model that uses price time series, which is segmented by sectors, as stocks in the same

sectors exhibit similar behaviour not limited to variance. Just as a diversified portfolio

we will invest in all the major sectors represented by our model. We will show the tests

that we use for this model in Chapter 3.

2.4 Meta Model of Quantitative Investment Models

In the previous section we discussed model based approaches that capture different as-

pects of price data on different time scales, namely momentum drive investing, long

only and market neutral. As discussed in Chapter 1, our objective of building these

models is to combine them into a portfolio; a portfolio of such models has many ben-

efits. Firstly, we are able to capture more variance in the data, hence generate better
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returns. Secondly, since we capture more patterns in the data on different time scales,

we can diversify our investment risk across different time horizons. Using the data in

a encompassing manner gives a sense completeness to a portfolio manager’s mandate.

Combining these models is our key task and the next step we focus on.

In the hedge fund sector there are a number of strategies operating on different asset

classes and generating returns is not entirely dependent on positive returns from the

markets. Given the niche that we are looking at, there is limited literature specifically

focusing on this task. For our objective the most relevant academic research was done

by Burgess (1999) and there has been some empirical research also done by Amenc and

Martellini (2002). Burgess in his PhD thesis selects few optimal statistical arbitrage (SA)

models from several similar models, while Amenc and Martellini (2002) uses the longest

available database of hedge fund performance from Tremont/Credit Sussie. Burgess

selects the best models from a population of 270 statistical arbitrage models, while

Amenc and Martellini use nine hedge fund strategies to form a portfolio.

To build their portfolio Amenc and Martellini (2002) use the mean variance optimisation

framework, which we think is inappropriate given the data generated by hedge fund

strategies. The model devised by Burgess is very different. He uses a population based

model. The objective of this is to maximise the risk-adjusted return as measured by

the Sharpe ratio while controlling for correlation. The population models works in the

following manner:

• Generate candidate SA models.

• For each SA model generate a meta parameter in the form of Sharpe ratio.

• Identify SA models that have the highest Sharpe ratio to start with.

• At each time step add models that either increase return, reduce risk, or reduce

correlation in the meta portfolio

• Stay with previous meta portfolio if there is no value addition.

Specifically Burgess is building an optimal portfolio, while controlling for correlation and

optimising to maximise the Meta portfolio’s Sharpe ratio, without using MVO. However

he should get the same result as MVO asymptotically for correlated assets. In MVO

during optimisation, the covariance matrix captures the joint distribution of returns

instead of explicitly doing this Burgess controls it through correlation.

Burgess’s work is very encouraging and has similarities to our work as well as some

differences. All of Burgess’s models are quantitative just like ours and similar to our

approach he wants to combine them, as we show in Chapter 8. However, there are some

key differences. Burgess does not build models to capture data structure at different time
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horizons and only focusses on SA models, which can have strong positive correlation.

Specifically Burgess focuses on 270 optimised SA models and chooses the best from his

sample set. Since most SA models are built in a similar fashion and have very similar

risk return profile, a population based model would make sense. However, we build

models that are more diverse, and we categorise them into broader groupings such as

momentum and market neutral (Section 2.3), while Burgess has one approach, that of

SA.

Burgess’s approach would not be appropriate for models capturing structure and pat-

terns found at differing time horizons. Furthermore Burgess pays no attention to invest-

ment size, simply focusing on Sharpe ratio. As we discussed in Section 2.2.4 it is not

prudent to over bet even when you have positive expectations.

Balvers (2006), who had been working on momentum and mean reversion models previ-

ously, decided to build a model that combined the two components. Balvers et al build

on the research of Jegadeesh and Titman (2001) and Lee and Swaminathan (2000). A

key observation made by Jegadeesh and Titman (1993) that portfolios built using a mo-

mentum model eventually experienced mean reversion a few months later. They built a

single model, by decomposing the returns of momentum and mean reversion, using the

methodology of Fama and French (1988) and Summers (1986) and then combined them

into a single model.

Balvers et al used a very large data set of 18 international markets from 1977 to 1999, at

monthly frequency. They report better risk-adjusted returns than his previous models

that focused on momentum. Serban (2010) applied Balvers et al model to the FX

market and also reported higher risk-adjusted returns, when compared to either a mean

reversion or momentum model for the FX market.

Balvers et al work is similar to ours in spirit. That they want to capture the two most

prevalent patterns in financial data, mean reversion and momentum at differing time

horizons. However our approach is different, they have built one model that incorporates

both momentum and mean reversion to build a single portfolio, whereas we want to build

dedicated models for each pattern and then make a portfolio of models. We also want

to address interactions between related data which they don’t, nor do they address

the important point of investment size. Furthermore their data set is also focused on

equities but they have much longer history than ours but only on monthly frequency.

Even though our research diverges at a certain point from Balvers and Serban, the

results that they report are very encouraging for us and we aim to achieve better results

with our model as well.
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2.5 Kalman Filter

In the previous section we discussed a number of QIMs. All of them rely on tools from

statistics and control engineering to make them robust. One of the tools used in finance

is the Kalman Filter. Financial data is hard to model well, as the data is noisy and

non-stationary, as we discussed earlier in Section 2.1. To make modelling such data

manageable analysts have borrowed tools from different fields, such as statistics, control

engineering signal processing and Physics to name a few.

The Kalman Filter is a recursive predict-update algorithm devised by Kalman (1960),

(Kim, 2011). This algorithm comes from control engineering and is used extensively

in machine learning as well. The Kalman Filter has been used in finance for various

purposes, such as volatility models, to estimate option price, overcome outliers in data

as well as reduce estimation error owing to noisy data, smoothing of times series data for

stocks, estimating missing values on volatility surface extrapolated from option prices

etc. smoothing estimation of stock Beta calculations (Javaheri, 2005), (Wells, 1996).

There are variants to the Kalman Filter such as Unscented Kalman Filter and Extended

Kalman Filter used in finance and Javaheri discusses them in some detail with reference

to applications in finance.

We briefly recall the steps of the Kalman Filter for linear state-space models. We

introduce the following notations:

θt = Atθt−1 + wt wt ∼ N(0,Wt) . (2.10)

zt = Htθt + vt, vt ∼ N(0, Vt). (2.11)

zt ∈ Rm stands for the observation vector, θt ∈ Rp is a hidden random vector, Ht is the

observation matrix; and At is the system matrix, that predicts our position at the next

time step; and are of size respectively (m × p) and (p × p), to be specified, and Vi and

Wt are the observation and evolution covariance matrices of size (m × m) and (p × p)

respectively.

In the following sections, we assume that Vt = V and Wt = W , for any t. They are

estimated from available in sample data. The Kalman Filter recursively estimates the

internal state of the process θt given the sequence of noisy observations zt. We denote

by θt the estimate of the state at time t given observations up to and including time

T , and by Pt the associated error covariance matrix. This can be summed up by the

system of equations:

θ̂t|t−1 = Atθ̂t−1|t−1. (2.12)
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Pt|t−1 = AtPt−1|t−1A
′
t + Wk−1. (2.13)

yt = zt −Hθ̂t|t−1. (2.14)

St = HtPt|t−1H
′
t + Vt. (2.15)

Kt = Pt|t−1H
′
tS
−1
t . (2.16)

θ̂t|t = θ̂t|t−1 + Ktrt. (2.17)

Pt|t = (I−KtHt)Pt|t−1. (2.18)

Equation 2.12 gives the predicted state at step t and Equation 2.14 the innovation

residual, where the innovation is the difference between the observed value zt of a variable

at time t and the optimal forecast of that value θt based on information available prior

to time t. St in Equation 2.15 is the innovation covariance and compares the real error

against prediction. Kt in Equation 2.16 is the the Kalman gain which moderates the

prediction based on the accuracy of the last time step t−1 and Equation 2.18 represents

the new estimation of error for the next time step (Mahler, 2009). We will use the

Kalman Filter in our models and discuss its application in Chapter 5.

2.6 Summary

In this chapter we presented an overview of the previous research and literature that

has studied the characteristics of financial data and we saw the challenges this poses

for analysis and development of quantitative investment models. We then looked at

various methods of constructing portfolios, their benefits and shortcomings as well as

applicability for our research. We highlighted the power of the mean-variance framework

and its intuitive appeal, the evolution of MPT with CAPM and APT and their variations

such as the Black-Litterman model. Subsequently we discussed some newer models such

as portfolio from sorts, universal portfolio, and risk parity approach. We then discussed

Kelly’s model for betting and how it can be used to build a portfolio. We also show

several very desirable properties of Kelly’s approach.
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The quantitative investment model section presented the widely used and well estab-

lished models in the equity markets. We discussed their many variations and what they

achieve. We will use some of them to capture momentum and mean reversion in data.

We then discussed some previous work done on making portfolios out of quantitative

investment models particularly that of Burgess. We also discussed previous work done

on capturing momentum and mean reversion, especially by Balvers. We also presented

the Kalman Filter which we use in some of the models.

This chapter sets a sharper and clearer background for our research. Some on the models

presented in this chapter will used as benchmarks by us to evaluate our results later.

Some models from the quantitative investment model section will be implemented to

construct investment models that capture momentum and mean reversion with high

probability of success, which as discussed in Chapter 1 is one the important ingredients

of good portfolio management. In the next chapter we will present some of the steps

and tests that we use to test for momentum and mean reversion in our data.



Chapter 3

Statistical Tests to Identify

Structure and Patterns in Data

In the previous chapter we discussed existing work that is relevant to our research.

We also discussed several quantitative investment models, especially ones that we will

use for our research. To understand the nature of our data and to identify patterns

and structure in the data, we have to do some statistical tests, which give us a path

to building these models. In this chapter we will present statistical tests, which help

identify patterns or structure in data, as well as how we can use some of the results

from these tests to identify parameters for our models. Specifically, we will focus on

tests relevant to the momentum model, market neutral model, as done through dollar

and sector neutral structure and the long only model.

3.1 Statistical Tests and Analysis

In this section we discuss some of the tests that we performed to identify which indices

and stocks, and which relationships among these stocks and indices, should be pursued

to build an investment model. We are looking to conduct tests that will help us identify

structure in data and establish relationships that should exist as described in financial

and economic theory, as well as understand the general characteristics of our dataset.

Some of the tests are generic statistical tests and some are useful to identify certain

features that would help build a quantitative investment strategy. We will categorise

them as such for clarity. The histograms we present are made using the the Freedman

- Diaconis method to calculate bin size. We run our tests using MATLAB c© version

2013A.

34
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3.1.1 Empirical Distributions

We run some initial tests on the data to identify whether data is normally distributed

and to identify some other statistical features in the data such as checking moments of

the data namely mean, variance, skew and kurtosis. Normally distributed data does not

have third or fourth moments called skew and kurtosis; i.e. they are 0.
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Figure 3.1: In blue we can see the empirical distribution of NASDAQ 100 futures
contract at daily frequency, compared to the theoretical normal distribution curve in
red, showing the data is not normally distruibuted and exhibits skew and kurtosis.
Mean = −0.00007, variance = 0.01975, skew = 0.01440 and kurtosis = 9.01269. The
bin size is calculated using the Freedman - Diaconis rule. Thebin size is 0.002217 and

there are 126 bins.

Kolmogorov-Smirnov test for normality

The one sample Kolmogorov-Smirnov test compares the value of single data array z to

a standard normal distribution, i.e. a normal distribution with zero (0) mean and unit

(1) variance. The null hypothesis for the Kolmogorov-Smirnov is that z has a standard

normal distribution. The alternative hypothesis is that z does not have that distribution

and we reject the hypothesis if the test is significant at the 5% level. At each potential

value of z the Kolmogorov-Smirnov test compares the proportion of values less than z

with the expected number predicted by the standard normal distribution as shown in

Figure 3.2.

We now check the distribution of our data, and the four moments, namely mean, vari-

ance, skew and kurtosis. In Figure 3.1 we present a specimen from real financial data.

The distribution of the data shows that the data is not only heavy tailed, but it is also

quite noisy. We can see that from the variance in the data.

In Figure 3.3 we can see how price time series data can exhibit drift or momentum

as well as short-run mean reversion to moving mean depicted by a 10-period simple
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Figure 3.2: A specimen of Kolmogorov-Smirnov test for normality of data. This
specimen shows that the data shown by the blue curve is not normally distributed,
when compared with the red curve which is from normally distributed data. Hence the

data fails the normality test.

moving average. The Software AG stock shows a near 50% appreciation in price over

approximately 100 days. However it shows short-run mean reversion to moving mean as

measured by a 10-period simple moving average.
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Figure 3.3: Software AG price from 14/1/2005 to 6/10/2005 exhibiting trend in
the long run. Moving mean is calculated using a 10-period simple moving average,
accompanied with noise that is mean-reverting to the moving mean of the stock price.

Our objective is to identify structure in financial data so that we can parametrise and

build a QIM for that particular pattern or structure. To do this we need to organise our

data in a practical manner. This is particularly relevant for the market neutral model

that we intend to build using the pairs methodology, we outlined in Section 2.3.2 and

the long only model discussed in Section 2.3.3. For both these models we will have to

categorise the data so that it is relevant to the approach taken by the QIM.
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3.1.2 Tests for Market Neutral Model

For the market neutral model we use the pairs methodology with dollar and sector

neutrality (see Section 2.3.2). Since stocks in the same sector are highly correlated and

have similar variance, we expect to see mean reversion among pairs from the same sector,

that might have had some short-term dislocation, especially in the spread of the two

stocks. We now present statistical tests done for this model and subsequently discuss

how these steps help us build the market neutral model.

• Regression analysis We perform a regression analysis using ordinary least square

(OLS) using Equation 3.1, on the two price times series that comprise all the pairs,

and store the regression residuals εt as shown in Equation 3.1,

yt = βxt + εt. (3.1)

By regression residuals we mean the unexplained part of the regression. These

residuals are of interest to us as they show the nature of their relationship between

two time series. We ideally want the residuals to be strongly mean reverting,

crossing the mean very often. Pairs that have this behaviour are of most interest

to us. We also check the coefficient (β) and expect it to be less than one or else it

would signal an explosive process

We then conduct the Runs test on the residuals to check the degree of serial

correlation in the residuals, and expected mean reversion in the residue. Pairs of

stocks that have their regression residuals cross the mean many times are of most

interest to us, as they are likely to be the most stable and consistent mean-reverting

relationships.

This test is important for the pairs model as it helps us identify relationships we

should pursue further. This test is also useful for sector analysis as, according to

financial theory, stocks from the same sector usually have very similar variance.

In Figure 3.4 on the top half of the chart, we show two stocks rebased to 100

with some trend taking them on slightly different paths. In the bottom half we

show the difference between the two stocks, which is called the spread, such as

log(StockA)− log(StockB)

• Runs Test The Runs test is designed to detect serial correlation in univariate

time series (Bradley, 1968). We use this test on the residuals (error term) from

the regression we did above, where the residuals are the unexplained portion of

a regression. Through the Runs test we count sequence of positive and negative

values above and below a mean of the residuals, and we run the test on independent

windows (no overlap) of 60 and 120 days as well as the whole in-sample dataset.

We want the residuals to cross the mean as many times as possible (Figure 3.5),
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Figure 3.4: A specimen of two re-based stocks. Hannover Reinsurance (Germany)
and SCOR (France) from 01/02/2005 to 22/08/2005 are shown on the top plot. The
spread is the difference between the two prices shown in the bottom plot. Such a spread

is the ideal model for a pairs trading approach.

which would indicate that the relationship is mean-reverting, hence identifying a

suitable relationship to use in our model.
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Figure 3.5: Example of mean-reverting regression residue, which crosses the mean
consistently. Such behaviour is a positive sign for a mean-reverting relationship.

• The Variance Ratio Test (VRT) is a non-parametric test for randomness in time

series data and we use it to test to see whether a price time series is a random walk,

since in some studies it has been found to yield good results (Lo and MacKinlay,

1988). Specifically the VRT tests whether variance in shorter windows matches to

longer windows, with the null hypothesis being that the variance ratio is 1, since

variance should linearly scale from shorter time frame to longer time frame. VRT

values below 1 indicate mean-reverting behaviour and at 0.5 it represents perfectly
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random data. This is important as we will be modelling mean-reverting process

using the Ornstein-Uhlenbeck model.

In Equation 3.2 we outline the formula for the test,

VR(τ) =

∑
t

(∆τyt −∆τy)2

τ
∑
t

(∆yt −∆y)2
. (3.2)

Here τ is the length of the long-term variance, yt is the time series in levels, ∆yt

is the daily change in the time series (yt+1 − yt), ∆τyt is the long-term change in

the time series (yt−τ − yt), ∆τy is the mean value of the long-term change and ∆y

is the mean value of the short term change

To understand the variance of data we create a a Variance Ratio Profile (VRP).

The VRP is the result of putting together several VRT on different time horizons,

as seen in Figure 3.6. For example we create VRP over a period of 20 days starting

from 2 days to 20 with 20 days approximating one month. This helps us to identify

whether a data series on this time horizon is mean reverting or trending. We will

use this for one of our market neutral models.
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Figure 3.6: Specimen of a variance ratio profile made from variance ratio 20 periods.
A falling variance ratio profile shows that data is mean reverting in nature.

Having done the above mentioned statistical tests, we find spreads from paired data that

have potential to be part of the market neutral model. The spread that shows potential

is modelled using the Ornstien-Uhlenbeck (OU) model shown in Equation 3.3

dSt = λ (µ− St) dt+ σdwt. (3.3)
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Here St is the spread, t is time, µ is the mean of the spread, λ is the speed of mean

reversion, σ is volatility, wt is a stochastic term. How we build the model as well how

the model operates, we will discuss in Section 5.1. In discrete case we ca an ordinary

least square setting such as Equation 3.4,

y = α+ βx+ ε. (3.4)

Solving Equation 3.3 for time period δ we find that St+δ = e−λδSt + µ(1 − e−λδ) + ε.

Where E(t) = 0 and E(ε2) = σ
√

1−e−2λδ

2λ . Fitting a regression line to a time series Sti

measured at time interval δ with a fit St+i = aSt + b+ ε we find a = e−λδ or λ = − log a
δ .

λ becomes a distance measure, the further the current observations is from the average

(µ) the larger λ gets an the higher is the speed of mean reversion.

The null hypothesis is set in reference to the VRP, where the null hypothesis is that

there is no mean reversion. The null hypothesis is rejected when the VRP score is at

or below 0.5, showing mean reversion. We will use these tests in Chapter 5, where we

build quantitative investment models.

3.1.3 Tests for Momentum Model

In the momentum model we want to identify time series that show continued movement

either up or down for long periods. To build this model we first need to identify if the

data has returns that have the same sign i.e. trends. The initial step is to change the

frequency of the data from daily to monthly. We make this transformation to the data

for two reasons. Firstly to reduce the noise in the data to get reliable estimate, and

secondly, to identify long-run trends in the data.

• Autocorrelation function This function is the internal correlation of the ob-

servation in a time series usually expressed as a function of the time lag between

observations. This autocorrelation function generally gives better results when

noise in the data is low. It is normally best to use the autocorrelation function

on lower frequency data. Hence we do the test for autocorrelation on monthly fre-

quency data. In Figure 3.7, we show the autocorrelation plot for monthly returns

of NASDAQ 100 futures contract, which shows dependence only to one lag.

• Auto Regressive Integrated Moving Average Model (ARIMA) The ARIMA

model is a well known approach for modelling stationary as well as non-stationary

time series data introduced by Box and Jenkins in 1968 (Box and Jenkins, 2008)

and is based on the the acceptance that any stationary time series can be ap-

proximated by a combination of autoregressive (AR) and moving average (MA)

processes, so called ARMA processes i.e. of the form:
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Figure 3.7: Autocorrelation function plot of monthly returns of NASDAQ 100 futures
contract. The data in the in-sample period (2005 − 2009), shows autocorrelation in

returns data, significant only to one lag.

yt = µ+
∑
i=1..p

φiyt−i +
∑
j=1..q

θjεt−j + εt. (3.5)

Here in Equation 3.5 φiyt−i is the AR term, φi is the coefficient of the AR term,

θjεt−j is the MA term, θj is the coefficient of the MA term, µ is the mean and

εt is the residual term. A model with p>0, q = 0 is denoted as AR(p), and is

dependent only on its lagged values and is referred as a pure autoregressive model.

A model with q>0, p = 0 is denoted as MA(q) and is dependent on lagged values

of innovations, referred to as a pure moving average model. For non-stationary

time series, data needs to be differenced to make it stationary; the number of times

the data needs to be differenced to make it stationary is referred to as its order

of integration. Data that is differenced once to make it stationary is said to be

integrated to the order 1. In ARIMA, the I stands for the order of integration, an

ARIMA(p, 1, q) models is one that needs to be differenced once (see Equation 3.6),

yt = µ+
∑
i=1..p

φi∆yt−i +
∑
j=1..q

θjεt−j + εt. (3.6)

• Regression Analysis

To identify momentum or trend we perform regression analysis. We follow Moskowitz

et al. (2011) approach where they performed a study of momentum across asset

classes spanning a long horizon. They performed regression analysis to identify

momentum or trend using monthly price time series data.

We perform regression analysis to test for predictability of future returns based on

lagged returns. We regress returns rst for equity index s in month t on its returns

lagged h months. Where both returns are scaled by their ex-ante volatility σst−1,

as shown in Equation 3.7

rst /σ
s
t−1 = α+ βhr

s
t−h/σ

s
t−h−1 + εst . (3.7)
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We run regression up to 12 lags. We get positive coefficients and corresponding

positive t-statistic for up to 5 months as shown in Figure 3.8 and Figure 3.9.

According to Moskowitz et al. (2011) positive t-statistic shows significant return

continuation or trend. Negative signs indicate trend reversal. This analysis was

performed by Moskowitz et al. on a large scale study of time series momentum

across commodities, bonds, equities and foreign exchange. The size of our data

set is considerably smaller than the one used by Moskowitz et al. This is probably

why we observe two of the datapoints to be above the critical threshold at 0.05

significance level as indicated by the red line in Figure 3.9.

Another approach used by Moskowitz et al. to look at time series predictability is

to simply focus on the sign of the past returns as shown in Equation 3.8,

rst /σ
s
t−1 = α+ βhSign(rst−h) + εst . (3.8)

Just as in Equation 3.7 the returns are scaled by their ex-ante volatility making

the left side of the regression independent of volatility and the right side is too,

since sign is either −1 or +1. We can see a specimen of the same universe of 17

markets in Figure 3.10 and Figure 3.11. In terms of coefficients the results are

similar to the previous regression as can be seen in Figure 3.10. However for this

regression the t-statistics are below the critical threshold at 0.05 significance level

as seen in Figure 3.11.
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Figure 3.8: This figure shows the average Beta of 17 equity indices. Positive Beta
with positive t-statistic signals that there is predictability up to five-month lag.

The null hypothesis is set with reference to the regression analysis. The null

hypothesis is that there is no predictability in returns from lagged returns, while a

positive regression coefficient with corresponding t-statistics would reject the null

hypothesis. We will use these tests in Chapter 5, where we build quantitative

investment models.
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Figure 3.9: This figure shows the associated average t-statistic of the Beta for 17
equity indices. The red line represents the critical value threshold at 0.05 significance

level. We can see that two values marginally breach the threshold.
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Figure 3.10: This figure shows the average Beta for the sign regression of 17 equity
indices. Positive Beta with positive t-statistic signals that there is predictability up to

five-month lag.

3.1.4 Tests for Long Only Model

The long only model is designed to only buy stocks (Section 2.3). In many ways large well

established business are standardised as in the case of electricity or toothpaste; similarly

the stock price movement reflects this standardised behaviour. Hence stocks from the

same sector and of same market value should move together in terms of variance. For

the long only model, just as in the case of pairs approach for the market neutral model,

we have to create some grouping that resembles a sector in real financial markets. For

example for the FTSE 100 Index the insurance sector has companies such as Royal Sun

Alliance (RSA), Aviva (AV/), Standard Life (SL/), Prudential (PRU). As shown in

Figure 3.12, all these stocks reflect very similar volatilities.

For this model we create custom sector grouping; e.g. insurance group will consist of

equally weighted insurance stocks. We do this for each sector creating a custom sector
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Figure 3.11: This figure shows the associated average t-statistic of the Beta for the
sign regression for 17 equity indices. The red line represents the critical value threshold

at 0.05 significance level.

index, giving us the sector average. Subsequently, we regress each stock on its respective

sector index. We expect to see that each stock has a significant relationship with its

sector, which we found in most of the stocks. We then do the Kruskal-Wallis one-way

analysis of variance by ranks. This is a non-parametric test that compares variance

to see if it comes from the same distribution. We want to see if our data comes from

the same distribution. The test conducted by converting the data to ranks is shown in

Equation 3.9,

(
12

N(N + 1)

k∑
j=1

R2
j

nj

)
− 3(N + 1). (3.9)

Here N represents all the observations in the data set and R2 is the squared sum of

the ranks. The test statistic has χ2 distribution and degrees of freedom are the number

of data vectors minus 1. This also identifies the significance level we want for the test

(Hollander, 2014). The Kruskal-Wallis supports the economic theory of approximately

similar distributions and hence variance.

We then follow this up with an analysis of the volatility of each stock in their respective

sectors, (see Figure 3.12). As expected, we find that stocks in the same sector have very

similar volatilities even during a crisis, in line with financial theory. In Table 3.1 we can

see that 10-period volatility of the Insurance sector has strong correlation as expected.

This is important as we expect stocks from the sector to move in tandem, making our

model stable.
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Figure 3.12: Specimen of four companies in the insurance sector of FTSE 100 Index.
This figure shows Royal Sun Allicance, Aviva, Prudential and Standard Life and their
average in black. Volatility of stocks in the same sector is very similar and hence their
price movements are linked. Even during the financial crisis they tend to stay in close

proximity to their sector.

Table 3.1: 10-period volatility correlation of the Insurance sector.

RSA AV/ PRU SL/ Sector Avg.

RSA 1.00 0.72 0.76 0.80 0.84

AV/ 0.72 1.00 0.90 0.86 0.95

PRU 0.76 0.90 1.00 0.86 0.94

SL/ 0.80 0.86 0.86 1.00 0.93

Sector Avg. 0.84 0.95 0.94 0.93 1.00

Specimen of the insurance sector in the FTSE 100. We present the largest companies in
the sector. The correlation between the 10-period volatility measured between stocks
and the sector average through standard deviation is high, also depicted in Figure 3.12.

For the long only model, the null hypothesis is set in reference to the Kurskal-Wallis

test. Stocks from the same sector must have similar variance, coming from the same

distribution. The null hypothesis is that stocks do not have similar variance and if the

they pass the test the null hypothesis is rejected. We will use these tests in Chapter 5,

where we build quantitative investment models.
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3.1.5 Summary

In this chapter we presented several statistical tests, which were used to identify structure

in data, as well as to validate some expectations we have from financial data as presented

in the previous chapter. These tests help us get a better understanding of our data, as

well as validate the path we take to build some of our models, since some of the models

would not work if certain characteristics in the data did not exist. To give context to

our statistical tests we grouped them by the quantitative investment model they are

relevant to, as well set out relevant null hypothesis to reject. These tests not only help

find structure in data, but also help identify the parameters of the eventual model. For

example the Orenstein-Uhlenbeck model will be used for market neutral pairs QIMs,

while regression analysis will be applied to nearly all of the QIMs where we need to

establish relationships between stocks in the same sector, as well markets in the same

time zone.

These statistical models play an important role in helping us build investment models

that have a high probability of success, which we identified as one of the important

requirements of good portfolio management in Chapter 1. In the next chapter we in-

troduce the framework within which all our models will work. We will discuss how all

the models operate and interact with each other, as well the stock market within this

framework.



Chapter 4

A Framework of Quantitative

Investment Models

In the previous chapter we discussed some statistical tests and models that will play a

key role in building our QIMs. In this chapter we will begin by introducing the broad

framework within which our models will operate. We will then present how the models

interact within this framework and the market as well as other models. We will also

introduce the four quantitative investment models (QIMs) that we will use to capture

different features in FTS data.

4.1 Model Framework and Approach

As discussed in Chapter 1, the aim of our research to combine models that capture differ-

ent aspects of patterns and structure in data found at differing time horizons: long-run

models to capture momentum and short-run models to capture mean reversion. In this

chapter we present the broad framework within which our models operate throughout

the rest of the thesis. We will then present role of these models within this framework

and the market, as well as other models. Our framework can be viewed as a two-tier

system: Tier one is where the models are designed to focus on a particular aspect of

FTS, such as momentum. These models interact with the market and take trading deci-

sions. Tier two has the model that allocates capital to the models in Tier one, essentially

building a portfolio of quantitative models.

For our research we will implement four quantitative investment models and five meta

models, where the meta models allocate capital to the four quantitative investment

models. We choose these four models as they capture momentum and mean reversion

well in equities as an asset class, at different time horizons. Even though these models

operate on the same data or members of the same data set, we expect them to have
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low correlations. Each of these four quantitative models are designed to focus on their

investment approach, without interfering in the working of the other models.

4.1.1 Model Framework

In this section we present the framework within which our models operate. To this

end, Figure 4.1, presents the framework diagrammatically, which also shows the flow of

information within the framework.

Historical Price Database

QIM 2 QIM 3

Meta Model: capital allocator

Meta Portfolio

QIM 4

Δ Capital flow Δ Capital flow Δ Capital flow

QIM 1

Figure 4.1: Flow diagram for financial data, underlying investment models and meta
portfolio. This figure shows the broad framework within which our models will interact.

In more detail the framework consists of the following components:

• Historical price database: The database contains FTS of daily prices the open:

high, low and close (OHLC) of each and every trading day in the data set. It

supports the QIMs. This database also supports the analytics of all the models,

and the valuation of portfolios on a daily basis.

• The quantitative investment models: Quantitative models are simply invest-

ment methodologies, where the process is driven by an algorithm (Section 2.3).

Here, each QIM follows its own distinct methodology of investing its assigned cap-

ital without interfering with other QIMs. We distinguish between quantitative

models and models that are quantitative as well as systematic. As mentioned in
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Section 2.3, by systematic and quantitative we mean that the initiation and im-

plementation of an investment decision is entirely controlled by an algorithm, i.e.

there is no human intervention. For our research we introduce four quantitative

models. All these models operate using daily data from the database, using the

capital allocated to them from the meta model. We give a more detailed explana-

tion of the individual models in Section 4.1.2.

• Meta model: The meta model is a dynamic allocator of investment capital to

the four models. Although the data and analytics are updated daily, the meta

model is designed to make capital allocation decisions at the end of every month.

For example, if the meta model takes a decision to move investment budget from

QIM 1 to QIM 4 and QIM 1 happens to be fully invested, in such a scenario, QIM

1 will liquidate part of its portfolio to make cash available to be moved to QIM

4. The liquidation to make capital available is done universally across all holdings

so as not to change the distribution of the portfolio. This will be the standard

process for the inflows and outflows of all our quantitative investment models.

• Meta portfolio: The meta portfolio represents the value of holdings in portfolio

which is the outcome of capital allocations made to QIM 1, QIM 2, QIM 3, and

QIM 4. The performance of the meta portfolio is the weighted average of the

performance of the four models and any unallocated investment capital is invested

in risk free government bonds. Here, the weights refer to the percentage of capital

assigned to each of the four models.

4.1.2 Quantitative Investment Models and Interactions

We will now discuss the role of our QIMs and how they fit within the framework that

we presented in Figure 4.1. Specifically, the role of each QIM is to focus on a particular

pattern identified, on a certain time frame, in its distinct data set, where the pattern

has been identified. We explain this further with Figure 4.2. As we can see, the two

key inputs into a QIM are i) data and ii) investment capital. Both data and investment

capital are essential for the QIM to operate. The data is used by the computation engine

to identify investment opportunities in the market. Once these investment opportunities

have been identified the QIM needs capital so that it can interact with the market to

make investments. Once these investments have been made the QIM has begun the

process of building a portfolio. The portfolio is the ultimate objective of the QIM. The

portfolio of each QIM becomes part of the meta portfolio as shown in Figure 4.1.

In a live market setting, the QIM would work as follows: At the start of the day the QIM

connects to the price database and updates its data to the latest observations. Once the

latest data is obtained, the models checks for gaps and errors in the data. With data

now checked, the QIM updates the values of its portfolio which it has from the previous
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day. With the portfolio updated with the latest prices, the QIM runs its algorithm and

generates actions that it needs to take today depending on the capital it has available.

Now that the QIM is ready for the day, the QIM connects to its assigned account in the

server of the stock exchange. Having established its connection to the stock exchange

the QIM is now ready to send buy or sell order to the exchange.

Change in allocation of investment capital to each QIM is done on a monthly basis.

This is for several reasons. Firstly, higher frequency changes have a lot more noise so

the estimates are not good. Secondly, the QIMs need time to generate some returns

before one reassigns capital. Finally, from a practical perspective, in real life if people

reallocated capital to QIMs everyday, they would disrupt the portfolio too often for it

actually settle in and generate some returns.

QIM

Investment Capital Financial Data

Stock Market

{Computations}

Orders to Buy / Sell instruments

Meta Portfolio

Portfolio

Connect to stock exchange server

Figure 4.2: Interaction and workings of a quantitative investment model that, builds
a portfolio targeting a distinct pattern on a particular time horizon, which eventually

becomes part of the meta portfolio.

Within this framework we essentially have five models, four QIMs and one meta model

completing the framework. The QIMs are the following:

• Our first model is a long only model (see Section 5.1.3). This model focuses on

buying stocks that are lagging behind their peer group, where the peer group is

defined by sectors. In each sector grouping we buy the laggards. We implement

this model on FTSE 100 stocks.



Chapter 4 A Framework of Quantitative Investment Models 51

• Our second model is a market neutral model for stocks, using the pairs approach

(see Section 5.1.2). This model focuses on mean reversion between relationships

that have temporarily dislocated from their historical path. This model is imple-

mented by choosing the most suitable stock pairs from the universe of 250 of the

largest European stocks, denominated in Euros.

• Our third model is a momentum model (see Section 5.1.1). This model focuses on

identifying long-run trends in the market and takes positions by buying or selling

relevant assets to profit from these trends. This model focuses on global equity

indices that have active futures markets.

• Our fourth model is a market neutral model (MN) for global equity indices (see

Section 5.1.2). This model focuses on mean-reversion between relationships that

have temporarily dislocated from their historical path. We implement this model

at the index level. This model also focuses on global equity indices.

• Our meta model(s) will allocate capital to the four quantitative investment models.

The resultant outcome is a portfolio of these four models, which we shall refer to

as the meta portfolio. We discuss them in more detail in the next section.

As we fill in the framework presented in Figure 4.1 with our four QIMs our working

framework will look like Figure 4.3, taking us to the meta portfolio. In Chapter 5 we

will build these models and go into more detail about how they operate.

Historical Price Database

MN Stocks Momentum

Meta Model: capital allocator

Meta Portfolio

MN Indices

Δ Capital flow Δ Capital flow Δ Capital flow

Long Stocks

Figure 4.3: Flow diagram of the complete framework. This includes the four QIMs i)
Long stocks, ii) MN stocks, iii) Momentum, and iv) MN indices and the meta portfolio.
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4.2 Summary

In this chapter we introduced the framework within which we will build and operate our

models through the rest of the thesis. Towards the end of the thesis in Chapter 8 we will

be able to see why this two-tier approach works well, especially when we compare the

performance of the QIMs in the tier that interacts with the market and the meta models.

This two-tier framework helps break down the challenge of good portfolio management

as discussed in Chapter 1, namely investment opportunity with a high probability of

success (Tier 1) and correct investment size and risk control (Tier 2). In the following

chapters we will build these models and populate this framework.

In the next chapter we will present the QIMs that focus on particular patterns in the

data and interact with the market. In Chapter 6 we will present the meta models,

which constitute the second tier of the framework (see Figure 4.3), leading to the meta

portfolio.



Chapter 5

Constructing Quantitative

Investment Models

In the previous chapter we presented the framework within which all our models will

operate, (see Figure 4.3). The framework has two-tier. The first-tier handles the data,

analytics, and interacts with the market. The second tier has the meta model that

allocates capital to the first tier leading to the meta portfolio. The first tier has four

QIMs. In this chapter we will build these QIMs. These QIMs are targeting momentum

and mean-reversion found in price time series data.

In Section 5.1 we will start with a detailed description of our QIMs. We present the

reasoning behind the models and how we use the statistical tests and parametrise the

models. We follow up the QIMs with our meta models in Chapter 6. We have built six

meta models and they are compared with three benchmarks when we present the results

in the final chapter. The meta models are our key contribution.

5.1 Quantitative Investment Models

In this section we present the QIMs that interact with the market in more detail. We

show how they are structured and calibrated in order to capture structure in data. The

output of these models will become part of the meta portfolio. After presenting the

QIMs we present our meta models, which allocate investment capital to the QIMs.

5.1.1 Momentum Model for Global Equity Indices

Our first model is the momentum model. We shall use this model for the global equity

index futures market. Here a futures contract is an agreement between two parties to

buy or sell an asset at a certain time in the future for a certain price (Hull, 2011). The
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objective of the momentum model is to identify long-run directional move up and down,

i.e: a continuation of returns with the same sign for equity index futures market, and

to position the portfolio to gain from these trends. The model is built using a simple

moving average (see Section 2.3 for details) and Kalman Filter (Section 2.5). The moving

average is calculated on a fixed length rolling window.

To build this model we need to estimate the window size of the moving average. We

use regression analysis performed by Moskowitz et al. (2011) discussed in Section 3.1.3,

where the null hypothesis is also set in context to the regression analysis. Moskowitz

et al. use regression analysis to find predictability in returns, based on lagged returns.

The lag length for which we have positive coefficients with corresponding t-statistics

serves as the initial reference point to identify the lag length. Once we have this lag

length we search for the best window around this period in daily data, so that all equity

index futures are profitable and the momentum portfolio achieves a high Sharpe ratio.

All QIMs interact with the market at daily frequency using closing prices from the

market (see Section 4.1.1). To reduce the amount of noise and jumps in financial data

at daily frequency and make a estimate reliable we will use a Kalman Filter. The forecast

of the Kalman Filter will be used to construct the moving average.

Our Kalman Filter is a simple scalar model: i.e. there is just one variable, the stock

price. Our approach is that today’s closing price (at time t) is the the best estimate for

tomorrow’s price (at time t + 1), with some error. Hence our state model coefficient is

set to unity (1) and the variance is estimated using polynomial fit on the first 50 data

points. The order of the polynomial is derived from using half the degrees of freedom.

The variance is then set to 1/10 of its value. Hence the only parameter that is set is the

variance in the model Wt = W and the variance in the observation Vt = V . The Kalman

Filter stores the estimates of θt called θt|tand estimated variance as Pt|t (see Algorithm

1).

The model operates by using the simple moving average and price data. We step through

the model in Algorithm 2. After initialising the Kalman Filter and updating the moving

average, we check if the price of a futures is above the moving average. If that is the

case we check if whether we already have a position open or not. If not, we buy futures

(long) and open position and update the portfolio. If the price is below the moving

average and if we do not have a position open, we open a new position by selling (short)

and updating the portfolio.

Trades are done at the close of trading. We assume we can trade at the closing price and

all trades are adjusted for investment capital at close. The capital allocation to each

trade in the momentum model is equally divided. They are fixed as the inverse of the

number of markets i.e: if there are 20 markets to invest in, then the investment capital

is fixed at 1/20 or 5%. We allocate investment capital in equal amounts so that we

can compare our model to the equally weighted buy and hold (BAH) approach for the
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investment universe to show that pour model adds value. The model is always invested

in the market and has no stop loss. Once we have the performance results we convert

the performance data to monthly data to used for the meta models.

Algorithm 1 KALMAN FILTER Function: Input: price data, W = model variance,
V = observation variance. Output: θt|t.

function Kalman Filter(zt)
if t = 0 then

initialise θ0|0 ← z0
initialise P0|0 ← 1

end if

θ̂t|t−1 ← θ̂t−1|t−1,
Pt|t−1 ← Pt−1|t−1 +Wt,

yt ← zt − θ̂t|t−1,
St ← Pt|t−1 + Vt,

Kt ← Pt|t−1S
−1
t ,

θ̂t|t ← θ̂t|t−1 +Ktrt,
Pt|t ← (I −KtHt)Pt|t−1
store θt|t and Pt|t
return θt|t

end function

5.1.2 Market Neutral for Global Equity Indices and EU Stocks

The market neutral model will be used for the global equity index futures and EU

stocks. This model is structured in a 1 unit vs. 1 unit fashion. This is the dollar neutral

pairs model we discussed in Section 2.3. The objective of this model is to capture

mean reversion in “related time series or pairs” that have dislocated from the their

long-term mean. The pairs by design are set up as the difference between log of two

times series, e.g. two stocks such as log(StockA)− log(StockB), or two indices such as

log(IndexX)− log(IndexY ), leading to a third time series which we call the spread, as

shown in Figure 3.4.

To identify relevant stocks and futures to construct a spread, this model carries some

additional structure for both global equity index futures as well as EU stock pairs.

For global index futures we create geographic time zones to pair indices. The reason

we do this is that markets that operate in the same time zone also process news and

react together. Markets in time zones that come much later have more time to process

new information and have a slightly different reaction in their markets, again impacting

correlation among them. In the case of EU stock pairs, the structure is in the form

of sectors and sub-sectors. Stock pairs are made from stocks that come from the same

sector or sub-sector, making the model both dollar and sector neutral. We will discuss

this structure in more detail in Section 8.2.
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Algorithm 2 Momentum: Input x: Log of index futures, Output: Momentum model
portfolio.

# READ daily futures prices as x(n,t), where t is time stamp and n is the number of
futures markets and x ∈ R.
# rebalance() is a function that takes the current portfolio, computes the mean in-
vestment in the futures market and buys and sells so that capital is equally divided
among futures markets.
# w = moving average window size
# Πt = (Π(1,t), Π(2,t)...Π(n,t)), where Π(i,t) =〈C(i,t), P(i,t)〉
# C(i,t) is capital invested in futures contract i at time t.
# Pt = (P(1,t), P(2,t)...P(n,t)) position in portfolio.
# P(i,t) ∈ {Buy, Sell} position of futures i at time t
# KALMAN FILTER is the Kalman Filter Function as described in Algorithm 1.

for i = 1 to n do
C(i,0) ← investment/n
P(i,0) ← Buy

end for

for t = 1 to T do
Ct ← rebalance(Ct−1)
Pt ← Pt−1

for i = 1 to n do
x(i,t) ← get current price
y(i,t) ← KALMAN FILTER(x(i,t)) # Kalman filter prediction

z(i,t) ← moving average (y(i,t))
1
w

t∑
t−w

y(i,t)

if x(i,t) > z(i,t) then
if P(i,t) != Buy then

P(i,t) ← Buy
end if

else
if P(i,t) != Sell then

P(i,t) ← Sell
end if

end if
end for

end for
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Once the initial pairs have been identified we begin with a set of statistical tests that

we discussed in Section 3.1.2. The tests serve as an initial indicator as to whether

relationships are stable. The regression analysis shows that a relationship exists between

two time series; the residue from the regression shows us that the relationship can be

potentially mean-reverting. We want the residual crossing the mean as frequently in the

in-sample data set. The Runs test gives us an idea of how much time it takes for the

residual to revert, giving a sense of autocorrelation in the residual. We also check for

mean reversion in the spread using the VRT, which gives an indication on the window

size on which to focus of the final model. Most importantly we check for mean-reversion

in the spreads using VRP, which tells us about mean-reversion as per the null hypothesis

(see Section 3.1.2). We use the Ornstein-Uhlenbeck model to model the spread. The

final threshold is the success of a spread to be included in the portfolio.

Tests serve an important role in guiding us to identify key characteristics in the data, the

model and window size. Building and calibrating the model is an iterative process, since

we need to find the best window size where we get the highest profitability in our trades

as well as the portfolio. We begin with a standardized window size of 10 days and go

upto 50 days in increments of 5 days, where each increment is equal to 1 working week.

At each window size we need to identify the threshold for lambda calculated using the

Ornstein-Uhlenbeck model, which gives us the speed of mean reversion and the standard

deviation measure that gives us the best return.

The input in Algorithm 3 is the spread chosen for their profitability. For each time step

for each spread, we compute the mean, standard deviation and lambda. If lambda is

less than its threshold and standard deviation is greater than its threshold, check if a

position is already open. If not, then open a position by selling the spread and update

the portfolio. If lambda is greater than its threshold and standard deviation is greater

than its threshold, check if position is already open. If not then open a position by

buying the spread and update the portfolio. If the spread is equal to the mean and

position is open, then close position and update portfolio.

The model operates with three important thresholds, sequentially lambda, standard

deviation and mean. Trades are executed at the close of trading, and we assume we can

trade at the closing price and all trades are adjusted for investment capital at close. We

also assume that the trade size is small and there is no market impact. The investment

capital for each trade in this model is equally divided; fixed as the inverse of the number

of open pairs i.e. if there are 20 pairs to invest in, then the investment capital is fixed

at 1/20 or 5%.
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Algorithm 3 Market Neutral : Input S: Log spread of two paired time series, Output:
market neutral model portfolio.

# READ daily spread values as S(n,t), where t is time stamp and n is the number of
spreads and S(n,t) ∈ R.
# rebalance() is a function that takes the current portfolio, computes the mean in-
vestment in the futures and stock market and buys and sells so that capital is equally
divided among futures markets.
# release() is a function that takes the current portfolio and sells enough open position
across all holdings to release a proportion of 1

n+1 of the capital so that it can open a
new position.
# realise() is a function that closes open position i which is then rebalanced.
# Πt = (Π1,t, Π2,t...Πn,t), where Πt =〈C(i,t), P(i,t)〉
# C(i,t) is capital invested in futures contract i at time t.
# C(t) is capital value of the portfolio at t.
# Pt = (P(1,t), P(2,t)...P(n,t)) position in portfolio.
# P(i,t) ∈ {Buy, Sell,Not Own} position of futures i at time t
# OU is a function which uses the Ornstein-Uhlenbeck model, described in equation
Equation 3.3 to compute λ.
# mean is a function which calculates the mean of the data.
# std is a function which calculates the standard deviation of the data.
# w is the window size for calculations.
# λ = speed of mean reversion,
# γ = mean reversion threshold,
# µ = mean of the spread,
# φ = standard deviation threshold,
# σ = standard deviation of the log spread.

for t = 1 to T do
Ct ← rebalance(Ct−1)

for i = 1 to n do
Initialise OU
S(i,t) ← get current spread
λ(i,t) ← OU(S(i,t), S(i,t−1), S(i,t−2)...S(i,t−w)) # compute lambda
µ(i,t) ← mean(S(i,t), S(i,t−1), S(i,t−2)...S(i,t−w)) # compute mean
σ(i,t) ← std(S(i,t), S(i,t−1), S(i,t−2)...S(i,t−w)) # compute standard deviation.
if λ(i,t) < −γ & σ(i,t) > φ then

if P(i,t)! = Buy then
Ct ← release(Ct)
P(i,t) ← Buy

end if
else

if λ(i,t) > γ & σ(i,t) > φ then
if P(i,t)! = Sell then

Ct ← release(Ct)
P(i,t) ← Sell

end if
end if

end if
if S(i,t) = µ(i,t) then

P(i,t) = Not Own
Ct ← realise(Ct)

end if
end for

end for
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5.1.3 Long Only for Stocks

In the long only model we only “buy” stocks and maintain a constant exposure to the

market at all times. The objective of this model is to buy stocks that have lagged their

peer group in performance, as according to financial theory, stocks from the same sector

are supposed to move in tandem with their peer group. We use both open and close

prices for this model, capturing a little more structure in data at higher frequency. To

build this model we start by classifying stocks into their sectors. Once we have created

sector groups, we create a sector index, which is the average of stocks in that sector.

Once we have the data and sector index classified properly, we run the tests that we

discussed in Section 3.1.4. Regression analysis checks to see if the stocks are closely

related. Most importantly, the Kurskal-Walis test tells us that the returns came from

same distribution; this is also the null hypothesis and short run volatility should also be

correlated.

The long only model is a constant rebalancing model; i.e. we rebalance the portfolio

at every time step and maintain equal capital allocation to all positions in each sector.

Trades are done at the open and close of trading; we assume we can get the opening

and closing price and all trades are adjusted for investment capital at trading time. We

maintain constant exposure in the model, i.e. we are always invested; we do not have

any stop loss on this strategy. We pursue the following process:

At every time step, for each sector, we rank the stocks by their returns in descending

order. We then divide the number of stocks by two dividing the sector constituents into

two halves. The top half is better performing than the bottom half. We round the result

of the division down to the nearest whole number if the number is not divisible by two,

identifying the stocks to buy. At the next time step, we buy the stocks that are in the

bottom half of the rank. Then the model updates the portfolio, profit and loss and the

capital to assigned to all the trades at the next time step.

Specifically, we buy the worst performer with the expectation that they will catch up

with the other, better performing stocks. For example in the current period we invest

(buy) the data series that have gone up the least. For example, if we have 5 data points

in a group, namely A, B, C, D and E, and after ranking, E is ranked 1st, C is ranked

2nd, B is ranked 3rd, D is ranked 4th and A is ranked 5th. So for the next period we

would invest (buy) D and A as they are the weakest performers.

Now that we have the returns of all the QIMs, we take their returns at monthly frequency

to be used in the meta models, as we change our capital allocation in the meta model on

a monthly basis. The reason we do this is because it is impractical to change allocation

at a faster rate not only in real life, but also because data at higher frequency has higher

degree of noise, making estimation harder even for simple statistics such as mean and

variance.
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Algorithm 4 Long Only : Input E : Stock returns, Output: Long Only portfolio.

# READ stock returns prices as E(n,t), where t is time stamp and n is the number or
stocks and E(n,t) ∈ R.
# rebalance() is a function that takes the current portfolio, computes the mean in-
vestment in the futures market and buys and sells so that capital is equally divided
among futures markets.
# Πt = (Π1,t, Π2,t...Πn,t), where Πt =〈C(i,t), P(i,t)〉
# C(i,t) is capital invested in futures contract i at time t.
# C(t) is capital value of the portfolio at t.
# Pt = (P(1,t), P(2,t)...P(n,t)) position in portfolio.
# P(i,t) ∈ {Own,Not Own} position of futures i at time t
# Let S be set of sectors.
# Let s is a sector ⊂ S.
# Let E be set of equities in sector S.
# Let e be single equity.
# Let L be set of laggard stocks in a sector.
# laggard() is a function that returns b|E|/2c, the worst performing stocks at current
time.

for i = 1 to n do
C(i,0) ← investment/n

end for
for t = 1 to T do
C(t) ← rebalance(C(t−1))
for s ∈ S do

L(s,t) ← laggard(E(s,t))
for e ∈ Es do

if P(e,t) = Own and e /∈ L(s,t) then
Sell(e)

end if
end for
for e ∈ Ls do

if P(e,t) = Not Own then
Buy(e)

end if
end for

end for
end for
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5.2 Summary

In this chapter we presented the QIMs that will capture patterns in data at different

time horizons. We presented four QIMs,

• Momentum model,

• Market neutral model for i) equity index pairs and ii) stock pairs and

• Long only model.

The momentum and the market neutral models used closing prices but the long only

model used both opening and closing prices to capture more structure in data. These

models are not new; many variations of these models have existed. However, they serve

our purpose as they operate on different time horizons, capturing patterns at different

time horizons. These models help us address the challenge of investment opportunities

that have high probability of success as discussed in Chapter 1 as essential for good

portfolio management. In the next chapter we present the meta models which contain

our main contributions and address the challenge of correct investment size and risk

control, the other two important components of good portfolio management. These

QIMs will get their investment capital from these meta models, giving us a portfolio of

QIMs and leading to the meta portfolio.



Chapter 6

Constructing Meta Models

In the previous chapter we presented the QIMs that will manage investments in the

markets. In this chapter we build a set of capital allocation models which allocate

investment capital to our four QIMs. As discussed in Chapter 4 we call this the meta

model, which gives us the meta portfolio. In doing so we aim to construct portfolios

such that they have the highest risk adjusted return, as measured by the Sharpe ratio.

All the models work within the framework presented in Chapter 4, Figure 4.3.

In Section 6.2 we will start with a detailed description of our meta models. We present

the reasoning behind the models how we use statistical tests to parametrise the models.

We have built five meta models and they are compared with four benchmarks in the

final chapter. The meta models are our key contribution.

6.1 Functions

In this chapter we will present several meta models. These meta models will have

representation in pseudo code. We will create some functions which will be called into

the algorithms. We present these functions below.

6.1.1 Fractional Kelly Function

This function (Algorithm 5) calculates the Kelly value for input data, which in our case

is the data from the QIMs, using the formula presented in Section 2.2.4, Equation 2.9.

Where the calculation is negative we replace the negative value with a zero. This is

because we are only interested in models where there is a positive expectation. When

the expectation for a certain model is negative we simply do not invest in that model

and allocate capital to profitable models for that time step. We then calculate Fractional

62
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Kelly. We do this by normalising the positive Kelly estimates. This gives us Fractional

Kelly weights.

Algorithm 5 KELLY Function: Input X = QIM Returns data and r as risk-free rate,
Output = K, Fractional Kelly weights.

# READ QIM returns as X(n,t), where t is time stamp and n is the number of QIM
models.
# r is the risk-free rate.
# mean() is a function which calculates the mean of the data.
# var() is a function which calculates the variance of the data.
# K = (K(1)...K(n)) are fractional Kelly weights.

X =


x11 x12 . . . xtn
x21 x22 . . . xtn
. . . .

xT1 xT2 . . . xTn


sum ← 0
for t = 1 to T do

for i = 1 to n do
µ(i) ← mean(x(i,1:t))
σ2(i) ← var(x(i,1:t))

K(i) ←
µ(i)−r
σ2
(i)

. (Equation 2.9)

sum ← = sum +K(i)

end for
end for
for i = 1 to n do

K(i) ←
K(i)

sum
end for
return K

6.1.2 Median Kelly Function

The median Kelly function shown in Algorithm 6 calculates the Kelly value for input

data, which in our case is the data from the QIMs. The median Kelly function operates

exactly like the Fractional Kelly function except that the Kelly calculations are done

using the median of the data signified by x̃ to estimate Kelly instead of the mean

as previously shown in Equation 2.9, all other parameters being the same. We then

estimate the allocation percentage as we do for Fractional Kelly (Section 6.2.1.3) using

Equation 6.1.

f∗ =
x̃− r
σ2

. (6.1)
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Algorithm 6 MEDIAN KELLY Function: InputX = QIM Returns data and r risk-free
rate, Output = MK, Median Kelly weights.

# READ QIM returns as X(n,t), where t is time stamp and n is the number of QIM
models.
# r is the risk-free rate.
# mean() is a function which calculates the mean of the data.
# var() is a function which calculates the variance of the data.
# MK = (MK(1)...MK(n)) are median Kelly weights.

X =


x11 x12 . . . xtn
x21 x22 . . . xtn
. . . .

xT1 xT2 . . . xTn


sum ← 0
for t = 1 to T do

for i = 1 to n do
x̃ ← median(x(i,1:t))
σ2(i) ← var(x(i,1:t))

MK(i) ← x̃−r
σ2 . (Equation 6.1)

sum ← = sum +MK(i)

end for
end for
for i = 1 to n do

MK(i) ←
MK(i)

sum
end for
return MK

6.1.3 Performance Curve Function

The performance curve function as shown on Algorithm 7 represents the performance

of every QIM based on an initial investment of 100 units using this formula

PC(t−1,m) ∗ (1 + (QIM(t,m)). (6.2)

Specifically 6.2 represents the compounded growth of the initial investment of 100. Here

QIM represents the return on the model and PC the price. We will use the performance

curve function in four models. Kelly with Kalman Filter, Median Kelly with Kalman

Filter, Kelly with Moving Average and Median Kelly with Moving Average.

6.1.4 Kalman Filter Function

This function uses the data from the QIMs (Algorithm 8). The function attempts to

forecast whether the QIM return in the next period is positive or negative. The input
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Algorithm 7 PERFORMANCE CURVE Function: Input = QIM Returns, Output =
price, Performance curve of QIM.

# READ QIM returns as X(n,t), where t is time stamp and n is the number of QIM
models.
# price(i,t) is the value of the model indexed to 100

X =


x11 x12 . . . xtn
x21 x22 . . . xtn
. . . .

xT1 xT2 . . . xTn


price(1:n,0) ← 100
for t = 1 to T do

for i = 1 to n do
price(i,t) ← price(i,t−1) × (1 + x(i,t)) . Equation 6.2

end for
end for
return price

to this model is the monthly performance of the QIMs. The function checks whether

the forecast for (i+ 1) is positive or negative when compared to the previous time step.

When the Kalman Filter forecast is negative, the signal is converted to 0 and when the

forecast is positive the signal is 1. The reason we change the forecast to binary data is

to adjust the Kelly in the upcoming meta models. To use the Kalman Filter we need the

QIM data. We convert the QIM data into its multiplicative form as shown in Algorithm

7.

6.2 Meta Models

We now present our main contribution, the meta models that will be used to allocate

investment capital to our QIMs. In this section we present several models using the Kelly

Criterion. We will present Median Kelly, Kelly with Kalman Filter, Median Kelly with

Kalman Filter, Kelly with Moving Average and Median Kelly with Moving Average.

Our benchmark will be Equally Weighted, MVO, Fractional Kelly and Optimal Kelly.

The key challenge with Kelly portfolios is maximising the Sharpe ratio. With a range

of models we endeavour to address this challenge. None of our models use any leverage,

hence all models have the same amount of initial capital. All Kelly models are fractional

in nature i.e. even if Kelly estimates suggest that one should use leverage, the estimates

are trimmed to be fractional.
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Algorithm 8 BINARY KALMAN FILTER Function: Input = zt, Performance curve
of QIM, W is model variance, V = observation variance Output = 0 or 1, Signal for
QIM.

Binary Kalman Filter forecast for t+1 converted to binary signal
if t = 0 then

initialise θ0|0 ← z0
initialise P0|0 ← 1

end if

for t = 1 to T do
θ̂t|t−1 ← θ̂t−1|t−1,
Pt|t−1 ← Pt−1|t−1 + W,

yt ← zt − θ̂t|t−1,
St ← Pt|t−1 + V,

Kt ← Pt|t−1S
−1
t ,

θ̂t|t ← θ̂t|t−1 +Ktrt,
Pt|t ← (I −KtHt)Pt|t−1
store θt|t and Pt|t
return θt|t

if θt|t ≤ θt−1 then
return 0

else return 1
end if

end for

6.2.1 Meta Model Benchmarks

We present a few meta models but to compare them we chose four benchmarks, a)

Equally Weighted, b) Mean Variance framework, c) Fractional Kelly and d) Optimal

Kelly. Equally weighted is chosen as it is a model free approach without assumptions.

The Mean Variance framework is chosen, as it is not only the most well known and

popular approach, it is also the toughest approach to beat. The Optimal and Fractional

Kelly approaches use Kelly for portfolio construction, which can be used to compare our

meta models.

6.2.1.1 Equally Weighted

Our first benchmark is the Equally Weighted (EW) method. This is chosen as it is a

model free approach which comes without assumptions. Although it seems easy, in some

instances it can be hard to beat in terms of returns. The EW method is straightforward

in terms of computation. We outline the approach in Algorithm 9. At each time step

the QIMs are given equal weight. Once we have the returns from the previous period

calculated, we can calculate the new investment capital available and then make the
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adjustments to equally distribute it. For example if we have four QIMs then we will

have a 25% allocation to each of the QIMs at all times.

Algorithm 9 Equally Weighted : Input = QIM returns, Output = Portfolio returns.

# READ QIM returns as X(n,t), where t is time stamp and n is the number of QIM
models.
# P(t) is the value of the of the portfolio at t.
# Π(t) = (Π(1,t), Π(2,t)...Π(n,t)).
# withdraw capital() is a function which withdraws capital from a QIM is it has
more capital than the average allocation to all QIMs.
# allocate capital() is a function which allocates capital to a QIM is it has less capital
than the average allocation to all QIMs.

Π =


Π11 Π12 . . . Πtn

Π21 Π22 . . . Πtn

. . . . .
ΠT1 ΠT2 . . . ΠTn



for t = 1 to T do
average ← P(t−1)

n
for i = 1 to n do

if Π(i,t) > average then
withdraw capital(Π(i,t) − average)

else if Π(i,t) < average then
allocate capital(average − Π(i,t))

end if
end for
P(t) ←

∑n
i=1 Π(i,t)

end for

6.2.1.2 Mean Variance Optimisation

Our second benchmark will be the mean-variance framework (MVO) framework intro-

duced by Harry Markowitz in 1952 and 1959. MVO remains a tour de force in the

field of portfolio construction. Even though its has had it fair share of criticisms, it

still remains hard to beat. Markowitz’s original MVO model was static. However in

Section 2.2.1 we discussed that dynamic models have given better results. Hence we

will use the dynamic approach, where we update our estimates as new data becomes

available at the next time step.

In Algorithm 10, QIM returns are the input into the model from which we estimate

average returns and covariance matrix at each time step. The objective here is to identify

the optimal weights identified by the highest Sharpe ratio. We take the allocation weights

from the optimal portfolio. The optimal weights are then used for the portfolio in the

next time step (t + 1) giving us the portfolio return. Then the model updates the
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portfolio, profit and loss and the capital assigned to all the trades at the next time step.

The portfolio’s annualised returns and risk are then calculated for final assessment and

comparison.

Algorithm 10 Mean Variance: Input = QIM returns, Output = Portfolio returns.

# READ QIM returns as X(n,t) where t is time stamp and n is the number of QIM
models.
# P(t) is the value of the of the portfolio at t.
# w(t) are the weights to allocate capital to the QIMs.
# c(t) investment capital.
# Π(t) is portfolio at current time, , where Π(t) =〈c(t),x(t)〉.
# optimiser() is an optimiser that uses quadratic programming to find the optimal
portfolio.
# mean() is a function that calculates the mean.
# covar() is function that calculates the covariance.
# reallocate() is a function that changes the proportion of capital invested in different
QIMs according there weights, 〈Πt,w(t)〉.

X =


x11 x12 . . . xtn
x21 x22 . . . xtn
. . . .

xT1 xT2 . . . xTn


w(0) ← 0
P(0) ← 0

for t = 1 to T do
for i = 1 to n do
x(1...t,i) ← get prices
m(i) ← mean(x(1...t,i))
Σ(t,i) ← covar(x(1...t,i),x(1...t,i))
w(t,i) ← optimiser(m(i),Σ(t,i))
c(t,i) ← reallocate(Π(t−1),w(t,i))
P(t) ← P(t) + x(t,i) × c(t,i)

end for
end for

6.2.1.3 Fractional Kelly

The Fractional Kelly (FK) is a method for building a portfolio of simultaneous invest-

ment opportunities for which Kelly fractions have been calculated. However in the case

of finance, Kelly has been known to give large estimates, recommending the use of lever-

age (MacLean et al., 2011). Hence the Kelly fractions have been scaled down uniformly

so that the weights do not exceed unity, as we do not use leverage in our meta models,

even though Kelly suggests that we do so. An analysis of Fractional Kelly was presented

by MacLean et al. (2011), and Rising and Wyner (2012). In this model we estimate



Chapter 6 Constructing Meta Models 69

Kelly for the underlying QIMs and use the Kelly fraction as the weights for capital

allocation which leads to the meta portfolio.

To construct a Fractional Kelly portfolio (see Algorithm 11), we use the Fractional Kelly

Function (see Algorithm 5). At each time step we calculate the Fractional Kelly weights.

Once we have the Fractional Kelly weights, we can then use these weights to allocate

capital for the next time step (t+ 1), which gives us the weighted return and hence the

portfolio return. Fractional Kelly will serve as our third benchmark.

Algorithm 11 Fractional Kelly : Input = QIM returns, Output = Portfolio returns.

# READ QIM returns as X(n,t), where t is time stamp and n is the number of QIM
models.
# P(t) is the value of the of the portfolio at t.
# Π(t) is portfolio at current time, where Π(t) =〈c(t),x(t)〉.
# w(t) are the weights to allocate capital to the QIMs.
# c(t) investment capital.
# KELLY () is function described in Algorithm 5 that calculate fractional Kelly
weights for all the QIMs at t.
# reallocate() is a function that changes the proportion of capital invested in different
QIMs according there weights, 〈Π(t),w(t)〉.

X =


x11 x12 . . . xtn
x21 x22 . . . xtn
. . . .

xT1 xT2 . . . xTn


w(0) ← 0
P(0) ← 0

for t = 1 to T do
w(t) ← KELLY (x(t))
c(t) ← reallocate(Π(t−1),w(t))
P(t) ←

∑n
i=1 x(t)c(t)

end for

6.2.1.4 Optimal Kelly

In the case of Optimal Kelly (OK) set out in Algorithm 12, we maximise the log of wealth,

using the quasi-newton approach with Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-

gorithm. Since the objective of Kelly is to maximise the logarithm of wealth, we extract

optimal weights that maximise log of wealth using Equation 6.3,

max
~w

T∑
t=1

log

( n∑
i=1

1 + (wi(t)ri(t))

)
. (6.3)
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Here ri represents the returns of our QIMs and wi represents the weights that will

maximise the log of wealth. We use these weights to compute the return of the portfolio

at the next time step (t+ 1). Optimal Kelly will serve as our fourth benchmark.

Algorithm 12 Optimal Kelly : Input = QIM returns, Output = Portfolio returns.

# READ QIM returns as X(n,t), where t is time stamp and n is the number of QIM
models.
# P(t) is the value of the of the portfolio at t.
# w(t) are the weights to allocate capital to the QIMs.
# c(t) investment capital.
# Π(t) is portfolio at current time, where Π(t) =〈c(t)〉
# reallocate() is a function that changes the proportion of capital invested in different
QIMs according there weights, 〈Π(t),w(t)〉.
# optimiser the optimiser uses the quasi-newton approach with the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm.

X =


x11 x12 . . . xtn
x21 x22 . . . xtn
. . . .

xT1 xT2 . . . xTn


w(0) ← 0
P(0) ← 0

for t = 1 to T do
w(t) ← optimiser(x(t))
c(t) ← reallocate(Π(t−1),w(t))
P(t) ←

∑n
i=1 x(t)c(t)

end for

6.2.2 New Meta Models

We will now present the meta models that we have developed. We have five models and

we will present them in detail and explain why we choose a certain approach and how

it is going to help us achieve our goals of generating better risk adjusted returns.

6.2.2.1 Median Kelly using Median of Returns

In Median Kelly (MK) we use the median of the data. The median of a distribution,

just as in the case of the mean, is another way of assessing the central tendency of a

distribution. However when data is not normally distributed the mean of the distribution

may not necessarily be the best estimate of the central tendency. Previous research done

by us on understanding forecast earnings had shown that median can be a better estimate

in terms of giving better performance. Kelly, on the other hand is a distribution free

approach and it is myopic in nature (see 2.2.4). Our objective here is to see if the median

can give is a better Sharpe ratio and hopefully capture the central tendency better.
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The model operates exactly like the Fractional Kelly model (see Section 6.2.1.3) except

that the Kelly calculations are done using the median of the data signified by x̃ (Equa-

tion 6.4) to estimate Kelly instead of the mean as previously shown in Equation 2.9,

all other parameters being the same. We then estimate the allocation percentage as we

did for Fractional Kelly, but using the Median Kelly Function as shown in Algorithm 6.

The return of the portfolio is then calculated by calculating the weighted return of the

QIMs (see Algorithm 13),

f∗ =
x̃− r
σ2

. (6.4)

Algorithm 13 Median Kelly : Input = QIM returns, Output = Portfolio returns.

# READ QIM returns as X(n,t), where t is time stamp and n is the number of QIM
models.
# P(t) is the value of the of the portfolio at t.
# w(t) are the weights to allocate capital to the QIMs.
# c(t) investment capital.
# Π(t) is portfolio at current time, where Π(t) =〈c(t),x(t)〉.
# MEDIAN KELLY () is function described in Algorithm 6, it calculates Median
Kelly weights for all the QIMs at t.
# reallocate() is a function that changes the proportion of capital invested in different
QIMs according to their weights, 〈Π(t),w(t)〉.

X =


x11 x12 . . . xtn
x21 x22 . . . xtn
. . . .

xT1 xT2 . . . xTn


w(0) ← 0
P(0) ← 0

for t = 1 to T do
w(t) ← MEDIAN KELLY (x(t))
c(t) ← reallocate(Π(t−1),w(t))
P(t) ←

∑n
i=1 x(t)c(t)

end for

6.2.2.2 Kelly with Kalman Filter

One of the key challenges we face is changing data regime. A change in data regime can

render a QIM loss-making, if the pattern or structure that it is targeting pauses for some

time, potentially to restart again. A prudent portfolio manager or asset allocator will

want to avoid a loss-making situation and will also prefer a situation where the capital

is allocated efficiently whilst avoiding losses. Avoiding loss-making investments could

improve both returns and Sharpe ratio. By avoiding loss making investments in a certain

QIM and focusing on investments with potentially positive return, we are making use of
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the myopic property of Kelly; i.e. we only need to focus on the current best opportunity

(see Section 2.2.4).

To overcome this challenge we make use of a Kalman Filter (see Section 2.5). We use

the Kalman Filter to assess whether at t+1 our models are expected to return a positive

or negative return. Specifically, we are not interested in the accuracy of return itself

but in the sign of the return. We want our Kalman Filter to help us avoid periods of

negative forecast returns but invest as usual using Fractional Kelly when the forecast is

for a positive return (see Section 6.2.1.3).

To build this model we use three previously built functions, namely Fractional Kelly

function, the Kalman Filter function and the performance curve function, presented

in Algorithms 5, 8 and 7. To estimate the Kalman Filter for this model, we take the

returns of each of the QIMs and generate a performance curve with base of 100, using

Algorithm 7. Just as in the momentum model, our Kalman Filter is a simple scalar

model i.e. there is just one variable: the performance curve of the QIM. Our approach

is that the current observation value (at time t) is the best estimate of the future value

(at time t + 1), with some error. Hence our state model coefficient is set to unity (1)

and the variance is estimated by fitting a polynomial to the first 12 observation (one

calendar year) in-sample period. The variance is then set to 1/10 of its value.

Once we have the Kalman Filter set up, we operate our model as shown in Algorithm 14

called Kelly with Kalman Filter (KKF). At each time step the Kalman Filter function

forecasts which QIM will have a positive or negative return. QIMs with a positive

forecast are assigned 1 and with a negative negatives 0. Calculate from Fractional Kelly

weights using Fractional Kelly function. Remove any QIM with a negative forecast.

Renormalising the Kelly weights recalculates the optimal Fractional Kelly weights, given

the number of QIMs to invest in. The return of the portfolio is then determined by

calculating the weighted return of the QIMs.

6.2.2.3 Median Kelly with Kalman Filter

The Median Kelly model with Kalman Filter (MK KF) is set up in the same way as

the one presented above using Kelly (see Section 6.2.2.2), with the key difference being

that Kelly estimates are calculated using the median of the distribution through the

Median Kelly Function rather than the mean. Hence for this model we use the Median

Kelly function seen earlier (Section 6.1.2). This model operates exactly the same way as

represented in Algorithm 14. The steps are detailed in Algorithm 15. The Key difference

between Algorithm 15 and 14 is that we use the Median Kelly Function (Algorithm 6)

instead of the Fractional Kelly Function (Algorithm 5).
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Algorithm 14 Kelly with Kalman Filter : Input = QIM returns, Output = Portfolio
returns.

# READ QIM returns as X(n,t), where t is time stamp and n is the number of QIM
models.
# P(t) is the value of the of the portfolio at t.
# w(t) are the weights to allocate capital to the QIMs.
# c(t) investment capital.
# Π(t) is portfolio at current time, where Π(t) =〈c(t),x(t)〉
# reallocate() is a function that changes the proportion of capital invested in different
QIMs according to their weights, 〈Π(t),w(t)〉.
# PERFORMANCE CURV E() is the function described in Algorithm 7. It con-
verts QIM returns to price.
# KELLY () is a function described in Algorithm 5 it calculates fractional Kelly
weights.
# BINARY KALMAN FILTER() is a function described in Algorithm 8. It gives
a binary output based on the forecast from our Kalman Filter.

X =


x11 x12 . . . xtn
x21 x22 . . . xtn
. . . .

xT1 xT2 . . . xTn


for t = 1 to T do
Kelly(t) = KELLY (x(t))
sum ← 0
for i = 1 to n do
price(t,i) ← PERFORMANCE CURV E(X(t,i))
if BINARY KALMAN FILTER(price(t,i))! = 1 then

Kelly(t,i) = 0
end if
sum += Kelly(t,i)
for i = 1 to n do

Kelly(t,i) =
Kelly(t,i)
sum

end for
end for
w(t) ← Kelly(t)
c(t) ← reallocate(Π(t−1),w(t))
P(t) ←

∑n
i=1 x(t,i)c(t,i)

end for
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Algorithm 15 Median Kelly with Kalman Filter : Input = QIM returns, Output =
Portfolio returns.

# READ QIM returns as X(n,t), where t is time stamp and n is the number of QIM
models.
# P(t) is the value of the of the portfolio at t.
# w(t) are the weights to allocate capital to the QIMs.
# c(t) investment capital.
# Π(t) is portfolio at current time, where Π(t) =〈c(t),x(t)〉.
# reallocate() is a function that changes the proportion of capital invested in different
QIMs according to their weights, 〈Π(t),w(t)〉.
# PERFORMANCE CURV E() is a function described in Algorithm 7, it converts
QIM returns to price.
# MEDIAN KELLY () is a function described in Algorithm 6. It calculates median
Kelly weights.
# BINARY KALMAN FILTER() is a function described in Algorithm 8. It gives
us a binary output based on the forecast from our Kalman Filter.

X =


x11 x12 . . . xtn
x21 x22 . . . xtn
. . . .

xT1 xT2 . . . xTn


for t = 1 to T do
Kelly(t) = MEDIAN KELLY (x(t))
sum ← 0
for i = 1 to n do
price(t,i) ← PERFORMANCE CURV E(X(t,i))
if BINARY KALMAN FILTER(price(t,i))! = 1 then

Kelly(t,i) = 0
end if
sum += Kelly(t,i)
for i = 1 to n do

Kelly(t,i) =
Kelly(t,i)
sum

end for
end for
w(t) ← Kelly(t)
c(t) ← reallocate(Π(t−1),w(t))
P(t) ←

∑n
i=1 x(t,i)c(t,i)

end for
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6.2.2.4 Fractional Kelly with Simple Moving Average

The moving average has been very robust in many complex situations; it has been most

extensively used to track targets and to smooth data serving as a low pass filter. The

moving average is also very adaptable with no distributional assumptions and different

ways to calculate it, hence giving room for customization as and when the need arises.

In this model, as in the case of the two previous models (see Section 6.2.2.2 and 6.2.2.3)

we are aiming to avoid investing in QIMs that are potentially loss-making and in the

process making optimal allocation of capital. In this process we aim to improve our

returns and our Sharpe ratio. Once again, we are making use of the myopic property of

Kelly; i.e. we only need to focus on the current best opportunity (see 2.2.4).

In this model we use Fractional Kelly function and the performance curve function,

shown in Algorithms 5 and 7. We elaborate the steps set out in Algorithm 16 called

Fractional Kelly with Moving Average (K MA). We initialise and create the performance

curve of each QIM that we have and calculate Fractional Kelly for each QIM. We then

create a simple moving average using the performance curve for each QIM. For each

model we check if the performance curve is equal or higher than the moving average. If

so we want to allocate capital to that QIM and the signal is 1. If it is below the moving

average then the signal is 0 indicating that we don’t want to invest in that QIM as it is

likely to be loss-making. Specifically a QIM that is above the moving average indicates

continued positive performance and vice versa

For QIMs whose signal is 0, the Kelly weight is also set to 0. Subsequently, we renor-

malise the weights giving us the optimal Fractional Kelly weights for QIMs with positive

expected return. The renormalised weights are now used to allocated capital for the next

period (t+ 1) and calculate portfolio returns.

6.2.2.5 Median Kelly with Simple Moving Average

The Median Kelly with Moving Average algorithm is very similar to the Kelly with

Moving Average algorithm presented above (Section 6.2.2.4), with the key difference

being that in this model we use median of the data to estimate Kelly through the

Median Kelly Function 6.1.2 (line 4). Besides that, this algorithm works exactly the

same as Algorithm 16 discussed above. This algorithm is called Median Kelly with

Simple Moving Average (MK MA) and is elaborated in Algorithm 17.
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Algorithm 16 Kelly with Simple Moving Average: Input = QIM returns, Output =
Portfolio returns.

# READ QIM returns as X(n,t), where t is time stamp and n is the number of QIM
models.
# P(t) is the value of the of the portfolio at t.
# w(t) are the weights to allocate capital to the QIMs.
# c(t) investment capital.
# Π(t) is portfolio at current time. where Π(t) =〈c(t),x(t)〉
# reallocate() is a function that changes the proportion of capital invested in different
QIMs according to their weights, 〈Π(t),w(t)〉.
# moving average() is a function that calculates the moving average for the QIMs
using the performance curve of the QIMs.
# PERFORMANCE CURV E() is a function described in Algorithm 7. It converts
QIM returns to price.
# KELLY () is a function described in Algorithm 5. It calculates median Kelly
weights.

X =


x11 x12 . . . xtn
x21 x22 . . . xtn
. . . .

xT1 xT2 . . . xTn


for t = 1 to T do
Kelly(t) = KELLY (x(t))
sum ← 0
for i = 1 to n do

x(t,i) ← get current price of QIM.
p(t,i) ← PERFORMANCE CURV E(X(t,i))
y(t,i) ← moving average((p(1...t,i)))

if p(t,i) ≥ y(t,i) then
Kelly(t,i) = 1

else
Kelly(t,i) = 0

end if
sum += Kelly(t,i)
for i = 1 to n do

Kelly(t,i) =
Kelly(t,i)
sum

end for
end for
w(t) ← Kelly(t)
c(t) ← reallocate(Π(t−1),w(t))
P(t) ←

∑n
i=1 x(t,i)c(t,i)

end for
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Algorithm 17 Median Kelly with Simple Moving Average: Input = QIM returns,
Output = Portfolio returns.

# READ QIM returns as X(n,t), where t is time stamp and n is the number of QIM

models.

# P(t) is the value of the of the portfolio at t.

# w(t) are the weights to allocate capital to the QIMs.

# c(t) investment capital.

# Πt is portfolio at current time, where Π(t) =〈c(t),x(t)〉
# PERFORMANCE CURV E() is a function described in Algorithm 7. It converts

QIM returns to price.

# reallocate() is a function that changes the proportion of capital invested in different

QIMs according to their weights, 〈Π(t),w(t)〉.
# moving average() is a function that calculate the moving average for the QIMs

using the performance curve of the QIMs.

# MEDIAN KELLY () is a function described in Algorithm 6 that calculates median

Kelly weights.

X =


x11 x12 . . . xtn

x21 x22 . . . xtn

. . . .

xT1 xT2 . . . xTn



for t = 1 to T do

Kelly(t) = MEDIAN KELLY (xt)

sum ← 0

for i = 1 to n do

x(t,i) ← get current price of QIM.

p(t,i) ← PERFORMANCE CURV E(Xt)

y(t,i) ← moving average((p(1...t,i)))

if p(t,i) ≥ y(t,i) then

Kelly(t,i) = 1

else

Kelly(t,i) = 0

end if

sum += Kelly(t,i)

for i = 1 to n do

Kelly(t,i) =
Kelly(t,i)
sum

end for

end for

w(t) ← Kelly(t)

c(t) ← reallocate(Π(t−1),w(t))

P(t) ←
∑n

i=1 x(t,i)c(t,i)

end for
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6.3 Summary

In this chapter we presented the five meta models based on Kelly and four benchmarks

that allocate capital to the QIMs:

• Equally weighted,

• Mean Variance Optimisation,

• Fractional Kelly model,

• Optimal Kelly model,

• Median Kelly,

• Fractional Kelly with Kalman Filter,

• Median Kelly with Kalman Filter,

• Fractional Kelly with Simple Moving Average, and

• Median Kelly with Simple Moving Average.

We chose Kelly because it gives us the optimal investment size for an investment with

positive expectation. At the same time, we were cognizant of some very real challenges

that an asset allocator faces when dealing with heterogeneous data; hence risk controls

are important. We show how we build several models with the objective of not only

getting better Sharpe ratio but also to address a very real problem faced in finance;

that of heterogeneous data that can change any time and render a QIM loss making.

We presented five models to show the evolution in our thinking to get to the best

performing model, which we will see in Chapter 7 and Chapter 8 when we test them

with synthetic and real financial data. The meta models presented in this chapter

address two important requirements, correct investment size and risk control which, as

we discussed in Chapter 1 are important components of good portfolio management. In

the next chapter we will generate some synthetic data to test our models and see if we

are on the correct path.



Chapter 7

Generating Synthetic Data for

Models

In the previous two chapters, we presented a set of quantitative models that would in-

teract with the markets (Chapter 5) and another set of models that do capital allocation

to these models (Chapter 6), leading to our meta portfolio. Both set of models are key

components of our two-tier framework. In this Chapter we will generate some synthetic

data to see if these models that we have proposed in the last two chapters actually work.

More importantly we also want to check if the two-tier framework that we have created

actually gives us the benefits that we imagine it should.

We begin this chapter by generating some synthetic data that resembles prices of stocks,

by using a GARCH model. We will ensure that the data has key features found in

financial price data. For our synthetic data to resemble financial data we will ensure

that our data has correlation, trends and jumps, all characteristics found in real stock

prices. We will then run statistical tests on this data to identify these features and

patterns in the synthetic data (see Chapter 3).

7.1 Synthetic Data to build Quantitative Investment Mod-

els

The purpose of this synthetic data is to check whether conceptually we are on the right

track. Specifically we want to see whether our QIMs will capture momentum and mean

reversion as we expect them to (see Section 2.3). Furthermore we also want to see if the

meta models will perform as we expect; i.e. will we get better risk adjusted returns as

we expect them to.

To achieve our objective we will generate data that actually resemble financials returns

and induce certain characteristics which would make it fairly straightforward for our

79
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QIMs to capture these patterns. For example, trend in the data will help the momentum

model and higher variance and correlation would help the MN Pairs and long only

models. To achieve this use a Generalised Autoregressive Conditional Heterosekdasticity

(GARCH) model, and then we will induce trends into the data. We first present the

GARCH model.

A GARCH model has three components shown in equation Equation 7.1,

σ2n = γVl +

q∑
i=1

αu2n−i +

p∑
i=1

βσ2n−i. (7.1)

Specifically the the three components are, i) Vl represents long-term variance, ii) u2

represents squared error terms over a specified window length and iii) α is lagged variance

again over a specified window length. Their respective coefficients γ, α and β represent

their weight. GARCH(p, q) model is specified as such, p is the number of lags for the

conditional variance and q is the number of lags for the squared error term. The most

widely used GARCH models are GARCH(1,1) models, here the value of p and q is 1;

we will also use these models. A typical GARCH model is shown in Equation 7.1 and

a specimen output in Figure 7.2, we can also see a real world specimen of GARCH

Figure 7.3 for the NASDAQ 100 Index.

Our objective is to generate a data set for our QIMs so that we can construct portfolios.

For this purpose we need to create data sets that have correlations found in stocks that

belong to the same sector. Hence we need a multivariate version of the model presented

in Equation 7.1 for our simulation. To this end we will use the Constant Conditional

Correlation Multivariate (CCC-MVGARCH). This model was proposed by Bollerslev

(1990). It has one extra feature, it imposes correlation on the data set.

A multivariate GARCH model can be defined as rt = µt + at and at = H
1
2
t zt. Here rt

= n x 1 vector of returns at time t, at = n x 1 of mean corrected returns of n assets

at time t, i.e. E[at] = 0, Cov[at] = [Ht]. µt = n x 1 vector of expected value of the

conditional rt. Ht = n x n matrix of conditional variance of at at time t, H
1
2
t = n x

n matrix at time t such that Ht is the conditional variance matrix of at. H
1
2
t can be

obtained by Cholesky factorisation of Ht and zt = n x 1 of i.i.d errors such that E[zt]

= 0 and E[ztz
′
t] = I .

A CCC-MVGARCH model is built using conditional variance as well as correlations.

The conditional covariance matrix Ht is made as such:

Ht = DtRtDt (7.2)
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Where Dt = diag(h
1
2
1t, . . . ,h

1
2
nt) is the conditional standard deviation and Rt is the

conditional correlation matrix, hence becomes R and Equation 7.2 becomes:

Ht = DtRDt (7.3)

The correlation matrix R = [ρij ] is positive definite with [ρii] = 1, i = 1, . . . , n. The

off-diagonals elements of the conditional covariance matrix Ht, are given by:

[Ht]ij = ρij
√
hithjt i 6= j (7.4)

The process ait is modelled as univariate GARCH. Hence the conditional variance can

be written in a vector form:

ht = c +

q∑
j=1

Aja
2
t−j +

p∑
j=1

Bjht−j , (7.5)

Where c is n x 1 vector, Aj and Bj are diagonal n x n matrices, and a2
t−j = at−j �

at−j is the element-wise product. Ht is ensured positive definite when the elements of c

and Aj and Bj are positive and R is positive definite.

Parameters for Simulation

For our synthetic data we have the following parameters, as shown in the univariate case

(see Equation 7.1 to Equation 7.5) α = 0.70 representing volatility from the previous

period, β = 0.20 representing variance from the previous time step and the intercept

γ = 0.20 representing constant minimum volatility, this set in D. We choose these

parameters as they gave us enough variance for the MN pairs model to generate enough

trades. The correlation is 0.75 set in R to give correlated data to resemble sector pairs.

Both p and q are set to 1 as we have GARCH(1, 1) model.

We generate 100 data sets; each data set has 12 correlated time series from the CCC-

GARCH model. We choose to go with 12 time series as we will have enough data to

make pairs for the MN pairs models as well as sector groupings for the long only model.

Each of the 12 time series will have 1000 observations. This is approximately four years

in time since each year has approximately 252 working days. Variance for each of the 12

time series is [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1] and the mean is set at

0.1 so that the prices don’t go negative. The variance increases linearly as it needs to

be different enough for the models to differentiate between data points, but still group

them as similar, as in the case of sectors.
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Our synthetic data now has GARCH characteristics correlation of 0.75 and now our

next step is induce trends in the data. We do so by skewing the mean. We add 0.35 to

each of the first 200 data points and then −0.25 to the next 200, alternating to the end

of the data set. This shift in mean ensures that will have trends in the data instead of

just Brownian motion. Here we chose 200-day window so that we can get a trend going

long enough to make our QIM profitable. A specimen of synthetic prices can be seen in

Figure 7.1.
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Figure 7.1: Prices generated from using synthetic GARCH data and skewed mean
giving the data trends after 200 data points. This figure shows the batch of 12 price

time series number 25 to 36.
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Figure 7.2: Synthetic GARCH data, showing volatility clustering, high volatility
periods followed by high volatility and low volatility periods by low volatility. This
figure depicts the GARCH effect, used for modelling. This data series is the time series

numbered 6 in the first block of GARCH data.

Once the data has been generated we convert them into stock prices by giving them a

base price of 100. These artificial time series are now ready to be used for statistical

testing and building our four quantitative investment models.

Parameters of the QIMs

Now that we have the synthetic data ready we are ready to structure the data to be

used by the QIMs as set out in Chapter 5. The QIMs will be set up just as in the case of
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Figure 7.3: NASDAQ 100 index daily price change from year 2000 to the middle of
2013, showing volatility clustering, high volatility periods followed by high volatility

and low volatility periods by low volatility depicting the GARCH effect.

real financial data, i.e. we will create sector groups and pairs as required by the relevant

QIM.

Momentum Model Parameters

The momentum model has one key parameter the window of the moving average, which

we set at 100 observations approximately five months, and half the length of the 200

period skew we impose on the data. We chose a 100 period window after trying different

window sizes. The 100 period window gave us strong positive returns and a high Sharpe

ratio. As we will see in the next chapter with real financial data also we use a 100 period

window.

MN Pairs Model Parameters

The MN pairs model, as we know, operates on paired data. Hence for this model we

need to make pairings from the data we have from the simulation. Our pairing need

to have similar variance so as to mimic the behaviour of stocks from the same sector.

Since in each batch we have 12 time series we will make 11 pairs as such. Let n the be

first time series and n+ 11 the last time series of the the set of 12. We make pairs from

the closest times series i.e. the subsequent time series, (n→ n+ 1), (n+ 1→ n+ 2) . . .

(n + 10 → n + 11). Given that the variance increases linearly the adjacent time series

will have similar behaviour. This model operates on a 10 period window. The speed of
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Figure 7.4: In blue we can see the distribution of the synthetic GARCH data, com-
pared to the theoretical normal distribution curve in red, showing that the data is not
normally distributed and exhibits skew and kurtosis. It fails the Jarque-Bera test at
5% significance level with the test statistic = 1176.58408. Mean = 0.181699, variance
= 2.242049, skew = −0.198431 and kurtosis = 9.393573. Bin size is calculated using
Freedman - Diaconis rule and has 59 bins, bin size is 0.452203. This data is the first

time series of the first run of GARCH simulation.

mean reversion as measured by λ in the OU model is Γ set at 0.1, and standard deviation

threshold δ is set at 2. This gives us the maximum number of profitable trades.

Long Only Model

The long only model operates on the basis of sector groupings. Since in each batch we

have 12 time series we will create three sector groups each containing four time series

each. Let n the be first time series and n+11 the last time series of the the set of 12. We

make groups from the closest times series i.e. the closest four time series, (n→ n+ 3),

(n+ 4→ n+ 8) . . . (n+ 9→ n+ 12).

7.2 Performance of Models

The output of the QIMs is used by the meta models to form the meta portfolio, which

is a portfolio of QIMs. The meta models are our main contribution in this thesis. The

objective of our meta models is to maximise our Sharpe ratio. We will now present the

performance of these models i.e. the three QIMs and nine meta models, including their

four benchmarks.

We begin with the results of the QIMs are followed by the results of the meta models. In

the case of QIMs we find that on average the models are profitable as shown in Figure 7.6



Chapter 7 Generating Synthetic Data for Models 85

and Table 7.1, where we can see the returns, volatility and Sharpe ratios. Out of 100

runs the momentum and market-neutral pairs models generate positve returns on each

run, whereas the long only model has 10 losing runs. The momentum model is the best

performer, with the highest returns, as expected since it has the the best opportunity to

thrive with 12 time series in each simulation run. Both momentum and long only have

the highest volatility, as they both make investments that are not offset on the other

side like the MN pairs model.

The MN pairs model has the lowest volatility, as expected, since every investment buys

and sells a stock at each trade, neutralising much of the volatility. The low volatility of

the MN pairs model helps achieve the highest Sharpe ratio as well and this is natural for

an approach such as MN Pairs (see Figure 7.7). In Figure 7.5 we can see the distribution

of the Sharpe ratio for all the the QIMs after 100 runs. They are reasonably well behaved;

the long-only model is the only model that generates some some negative returns hence

negative Sharpe ratio. Overall, the results are strong and at the same time not a surprise

since we engineered the data to have characteristics that would aid the QIMs.

Table 7.1: Performance of the quantitative investment models

Momentum Long Only MN Pairs

Average Ann. return 145.59% 32.17% 33.31%
Average Ann. volatility 27.79% 37.78% 3.71%

Average Sharpe ratio 5.33 0.90 9.14

This table represents the average annualised return, Sharpe ratio and volatility of the
QIMs over 100 simulation runs.

We now move to the meta models, which allocate capital to the QIMs and construct

a meta portfolio. Among the meta models we have five models made by us and four

benchmarks. We can see the Sharpe ratios of the models in Figure 7.8 and Table 7.3.

Among the benchmarks, we expected MVO to have the best Sharpe ratio, but Fractional

Kelly is the best performer and Optimal Kelly is the worst performer. From the five

models that we have built, Median Kelly is the worst performer with the lowest Sharpe

ratio of the five models. However the rest of the models beat the best benchmark model’s

Sharpe ratio by some margin.

Furthermore, when we analyse the Sharpe ratios on each of the runs we find that Median

Kelly with Moving Average, Kelly with Moving Average and Kelly with Kalman Filter

beat the benchmarks with high probability, as shown in Table 7.2. This is very promising

not only for our model, but also for the framework.

We assess the returns generated by our meta models in Figure 7.9 and Table 7.4. Among

the benchmarks, the Optimal Kelly model has the best returns, beating all the other

benchmarks. Equally Weighted model performs better than MVO and Fractional Kelly;

this is owing to the strong performance shown by the QIMs. Furthermore MVO is the



Chapter 7 Generating Synthetic Data for Models 86
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(a) Momentum model’s distribution of Sharpe ratio. Number of bins = 11, bin size = 0.5561, mean = 5.3310,
variance = 1.2410, skew = −0.4060, kurtosis = 0.6565.
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(b) Long Only model’s distribution of Sharpe ratio.Number of bins = 8, bin size = 0.3944, mean = 0.8991, variance
= 0.4767, skew = 0.5120, kurtosis = −0.1081.
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(c) MN Pairs model’s distribution of Sharpe ratio. Number of bins = 8, bin size = 0.7218, mean = 9.1451, variance
= 1.5654, skew = −0.1379, kurtosis = −0.2738.

Figure 7.5: Distribution of Sharpe ratios of the QIMs after 100 runs. The plots are
made using Freedman-Diaconis method.
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Figure 7.6: Annualised return with standard error of long only, momentum and MN
pairs model using synthetic GARCH data with trend and correlation incorporated in
the data. The average annualised return and standard error is calculated from 100

simulation runs.
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Figure 7.7: Sharpe ratio with standard error bars for the long only, momentum and
MN Pairs model using synthetic GARCH data with trend and correlation incorpo-
rated in the data. The average Sharpe ratio and standard error is calculated from 100

simulation runs.

Table 7.2: Sharpe Ratio out-performance

MK MA K MA MK MK K KF M K

MVO 89 93 84 91 37
F K 94 97 89 95 23
O K 99 99 96 97 92

Average 94 96 90 94 51

This table shows the number of times our meta models beats the key benchmarks
in terms of Sharpe ratio with synthetic data, the Kelly models with moving average

perform well.
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worst performer. This is not surprising as it will always pick the portfolio with minimum

variance. Fractional Kelly is in the middle of the pack. Among the five models that we

have built, Median Kelly with Moving Average is the best performer, but it is still beaten

by Optimal Kelly by a huge margin. This is primarily because the Optimal Kelly model

tends to pick just a single best performer nearly always instead of building a portfolio.

The performance of the rest of the models is pretty similar, except for the theme that

Median Kelly models including the ones with Moving Average and Kalman Filter all

perform better than the Kelly models. We did not expect this difference between median

and mean Kelly performance.

EW MVO F K O K M K K KF MK KF K MA MK MA
0

1

2

3

4

5

6

7

8

Meta Models

A
ve

ra
ge

 S
ha

rp
e 

R
at

io
 w

ith
 S

ta
nd

ar
d 

E
rr

or

Average Sharpe Ratio of Meta Models with Standard Error Bar

Figure 7.8: Sharpe ratio with standard error of four benchmarks Equally Weighted,
Mean Variance, Fractional Kelly and Optimal Kelly, and five models we developed,
Median Kelly, Kelly with Kalman Filter, Median Kelly with Kalman Filter, Kelly
with Moving Average and Median Kelly with Moving Average using synthetic data
with trend and correlation of 0.75 incorporated in the data. The average return and
standard error is calculated from 100 runs of QIMs. Kelly with Moving Average and

Median Kelly with Moving Average both beat our benchmarks, by a good margin.

Table 7.3: Sharpe Ratio

EW MVO F K OK MK K KF MK KF K MA MK MA

Sharpe ratio 3.46 4.67 4.73 2.84 4.52 5.69 5.68 5.77 5.79

The table represents the average Sharpe ratio of the Meta models where the input is
from QIM models that were using GARCH data set.

Table 7.4: Annualised returns

EW MVO F K OK MK K KF MK KF K MA MK MA

Returns 57.65 49.94 52.12 91.24 54.59 52.98 55.09 53.63 56.32

The table represents the average annualised returns of the meta models where the input
is from QIM models that were using GARCH data set.
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Figure 7.9: Annualised returns with standard error of four benchmarks Equally
Weighted, Mean Variance, Fractional Kelly and Optimal Kelly, and five models we
developed Median Kelly, Kelly with Kalman Filter, Median Kelly with Kalman Filter,
Kelly with Moving Average and Median Kelly with Moving Average using synthetic
data with trend and correlation of 0.75 incorporated in the data. The average return
and standard error is calculated from 100 runs of QIMs. Optimal Kelly is the winner
by large margin followed by Equally Weighted and Median Kelly with Moving Average.

7.3 Summary

In this chapter we generated some synthetic data with strong momentum and mean

reversion features using a GARCH model that generated correlated data. We induced

strong momentum in the data. The data was then used by our QIMs that are designed

to build a portfolio capturing patterns that exist on differing time horizons, targeting

momentum and mean reversion. The output of the QIMs is used by the meta models to

construct a meta portfolio; this is done through capital allocation by the meta models.

This was our first test to see each of the components of good portfolio management,

namely signal, capital allocation and risk, being addressed together as discussed in

Chapter 1.

This chapter has shown that it is possible to achieve a higher Sharpe ratio by constructing

a meta portfolio of QIMs capturing different patterns in data at differing time horizons.

We also saw in this chapter that there is merit to the two-tier framework that we

introduced in Chapter 4. We now need to see if this is only possible with synthetic data

or will this framework hold firm and give similar results with real financial data. In the

next chapter well use real financial data to see if our models perform the way we have

seen in the simulation.



Chapter 8

Performance Analysis of Models

Using Real Data

In the previous chapter we presented our QIMs and meta models, using synthetic data

generated using a GARCH model. Using synthetic data we found that Optimal Kelly

gave us the best annualised returns and Median Kelly with Moving Average gave us

the best Sharpe ratio. In this chapter we will test our meta models on real financial

time series data to see how our models perform in this environment and whether we

get similar comparative performance. First we shall present the data that we are going

to use in Section 8.1. Then we discuss the steps we take to clean the data, ensuring

our data points are consistent across all markets both for in-sample and out-of-sample

results. In Section 8.2 we present the parameters of the the four QIM and how we use

the data in these models.

Once the data is ready in Section 8.3 we present the in-sample performance of the QIMs,

followed by the out-of-sample performance in Section 8.4. In Section 8.5 we present the

in-sample and out-of-sample results of the meta models our main contribution. We

follow this up with analysis of the results.

8.1 Markets

For our experiments we use real financial data from global stock exchanges. The source

of our data is Bloomberg, which aggregates all financial data from global financial ex-

changes. The data starts from 2005 and ends in 2012, where data from 2005 to 2009 is

treated as the in-sample data and 2010 to 2012 as the out-of-sample data. The in-sample

data is used to build and parameterise the model, and the out-of-sample data is used

for validation of the models. For equity indices we use global equity indices with active

futures market (see Table 8.1). For individual stocks we have used the 250 biggest stocks

90
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in Europe, that are denominated in Euros, and we have added 100 of the largest stocks

by capitalisation in UK, which are all FTSE 100 constituents. We present their names

in the Appendix N.1.

Table 8.1: List of markets

Index Country

EuroSTOXX Europe
DAX Germany

CAC40 France
MIB Italy

IBEX Spain
AEX Netherlands

FTSE 100 UK
SMI Switzerland

BEL 20 Belgium
BIST 30 Turkey
S&P 500 USA

NASDAQ 100 USA
S&P TSX 60 Canada

Bovespa Brazil
Nikkei 225 Japan
Hang Seng Hong Kong

S&P ASX 200 Australia

List of global markets that are the source of real stock price and equity index data, For
equity index futures we use all of the above markets, for stocks we use UK, Germany,

France, Italy, Spain, Netherlands and the broader European index Euro STOXX.

8.1.1 Data Cleaning

Financial data is large and can have errors and misprints. Since our strategies are heavily

dependent on good quality data, it is imperative that our data is clean and aligned for

our experiments. This is because statistical models are very sensitive to errors in data,

and generally fail if they are not aligned properly.

• Errors and misprints: In large data sets some data can get corrupted owing to

change in company name and the old data sets sometimes are not fully integrated

into new ones. Sometimes there can be misprints in data. These errors need to be

removed or corrected.

• Gaps and alignment: Where there are missing data points owing to an error

or owing to a holiday, we use the previous data point. We also make sure that

all the data points are consistent for all instruments. For example, if there exists

a holiday in Germany and the market is closed, we shall carry over the previous

day’s value for the German market so that it stays in tandem with the rest of the
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markets at the next trading day. Data that cannot be corrected is excluded from

our model.

• Jumps in data: Where there are misprints we run a small script to identify

large percentage changes. Where changes are larger than four times the standard

deviation of the data series, we investigate whether this data jump is genuine or a

misprint. If there is a misprint we find the correct data point from the exchange

website and correct them.

• Consistency in data and survivorship bias: Data selection is always difficult

and one needs to be careful what data to use as survivorship bias can creep in.

Survivorship bias is most prevalent when one uses all the constituents of an index.

If this index is rebalanced, with some companies leaving and others replacing them,

then the index members change, bringing in survivorship bias. For example the

FTSE 100 members today are not the same as one or two years ago.

Large well-established, multi-billion pound companies, that are major employers

and substantial contributors to the national GDP, such as Prudential, HSBC,

Barclays have high representation (weighting) in an index such as FTSE 100.

Typically, such companies do not get impacted in an index reshuffle. The key

reason for this is that these companies already have high representation (weighting)

in an index such as FTSE 100. Indices such as FTSE 100 remove the smaller under-

performing companies, not well established multi-billion pound multinationals. To

minimise survivorship bias, for our research we only focus on companies that are

well-established and have large market capitalisation i.e. several billion pounds

and are present in both in-sample and out-of-sample data sets. In a data set that

is constantly changing, survivorship bias can be minimised, as we did, but not

totally eliminated.

8.2 Model Parameters for the Four Quantitative Invest-

ment Models

We now the present the results of the four quantitative investment models from Sec-

tion 5.1 using the data that we presented at the start of the chapter. As we men-

tioned there is an in-sample data set (2005 − 2009) as well as an out-of-sample data

set (2010− 2012). The in-sample data set is used to identify parameters and refine the

model, where the objective is to maximise the returns and Sharpe ratio.
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8.2.1 Parameters of the Momentum Model for Equity Indices

To build the model we use regression analysis shown in Section 3.1.3. We found that

there is predictability in returns up to the 5 lag or 5 months with corresponding t-

statistic. In view of conserving data in the in-sample period, to begin with we use the 5

month (approximately 107-110 working days) data points as our reference point for our

moving average window size. We now search for the window size around this 5 month

window size where all 17 equity index markets are profitable and the portfolio as whole

has the highest Sharpe ratio. We found that the 100 days window gave good returns for

all equity indices as well as a high Sharpe ratio for the momentum model portfolio.

8.2.2 Parameters of the Market Neutral Model for Global Equity In-

dices

This model is applied to the global equity index futures market just as in the case of

the momentum model and described in Section 5.1. The global equity index futures are

divided into geographic regional blocks, primarily since co-movement is time dependent;

markets that are not open in a different time zone cannot react to news or events, as

well as from a practical perspective so as to ensure that actual trades can be executed,

with minimal market impact and liquidity risk. For example, a pairing between markets

of Hong Kong and Germany is not feasible, since there is little overlap when they are

open, due to the seven hour time gap. Furthermore, an event or news release that may

have occurred early in the morning for Hong Kong may not be regarded as important

by the time Germany opens, missing out on the move in the German market. We now

present the three regional groups that we created.

• For Asia we have Japan, Hong Kong and Australian markets,

• For Europe we have UK, Germany, France Netherlands, Italy, Spain, Norway and

the broader European market,

• Finally for the Americas we have USA, Canada and Brazilian markets.

The model is explained in Section 5.1. Within this framework we are optimising for two

key factors: a) maximise success rate as measured by the number of profitable trades

and b) maximise average gain as measured by size of average profit. To identify the

appropriate window size, we test our model on several window sizes ranging from 10

days to 60 days in increments of 5 days. Empirically, we found the 10 day window is

combined with lambda (measure of speed of mean reversion) threshold set at 0.1 and

standard deviation (measure of dislocation in data) threshold set at 1.5, combined give

the best result on average. Furthermore, just as in the case of Gatev et al. we pick
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the best performers. Gatev et al. pick the top 20 pairs, we pick the top 20% of the

performers. Given that we have a total of 34 pairs we choose six of the best performers

from them. Just as the case of Gatev et. al all trades have equal capital allocation in

the portfolio, e.g. if we have ten trades then each trade has 1/10 allocation.

8.2.3 Parameters of the Market Neutral Model for Stocks

The market neutral model for EU stocks uses the same methodology as the one used

for equity index pairs discussed earlier in Section 8.2.2, albeit with a little more struc-

ture. Specifically our Market Neutral model is dollar neutral, i.e. with an equal amount

of capital on the short and long side of the pair, and sector neutral (Section 2.3.2).

We consider a set of 250 of the largest stocks by market capitalisation in the Euro-

pean Union, that are denominated in Euros, and group them into the relevant sectors

and sub-sectors (Appendix O). This approach works as most companies operate un-

der very similar macro-economic and regulatory environments and hence their markets

are closely linked in some cases with cross holding (see Figure 8.1). For example, in

the telecommunication sector we put all the telecommunication companies from France,

Germany, Spain, Netherlands, Italy etc. in the same sector and create all possible pairs

such as log(France Telecom) - log(Deutsche Telekom) (see Appendix Q and Appendix

P). Failing such a categorisation stocks are removed from the test data set. We go

through the same methodology as we did for index pair selection and model the spread

using the Ornstein-Uhlenbeck model and use the same framework to build this model

(Equation 3.3).

In our in-sample tests we find that the optimal window size is 20 days, combined with

lambda (speed of mean reversion) threshold, set at 0.1 and standard deviation (measure

of dislocation in data) threshold set at 1.5 give the best result on average. We identify

this through empirical testing on several window sizes from 10 to 50 days. We further

analysed the performance of the pairs by sector and found that the insurance and utilities

sectors perform best. So just as in the case of Gatev et al. we pick the best performing

sectors, since our model is sector neutral.

We found that pairs of stocks from that same country (e.g. EDF and GDF Suez in

France) have the shortest holding period and smaller returns, as a consequence mean-

reversion is faster for intra-country pairs as compared to inter-country pairs. We give

equal capital allocation to each trade in the portfolio, just as in the index pairs model.
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DAX EuroStoxx CAC40 

DAX Stocks EuroStoxx Stocks CAC40 Stocks 

Figure 8.1: Stocks and indices impact each other through their interactions and
working. Movements can be correlated, among indices and strongly correlated between
sectors. Quantitative models can identify these relationships and turn them into in-

vestment opportunities as well as risk management tools.

8.2.4 Parameters of the Long Only Model

In the long only model we “buy” stocks and maintain a constant exposure to the market

at all times. For this strategy we use both open and close prices, giving us the ability to

capture more structure in data at different time horizons. The data is from FTSE 100,

taking the top 100 companies by market capitalisation (equity value) and liquidity in the

UK. This model is structured in a way that it buys stocks that have lagged their peers

from the previous time step (see Section 5.1.3). To build this strategy we divide all the

stocks into their respective sectors or sub-sectors such as banks, insurance, oil, beverages

etc. We have a total of ten such sectors namely utilities, retail, banks, insurance, mining,

oil and drilling, beverage, pharmaceuticals, REIT and consumer discretionary. Each

sector is now a group in which the model will pick the best stock to buy (Appendix B).

8.3 In-sample Results of the Four Quantitative Investment

Models

In this section we present the in-sample and out-of-sample performance of the four

models, to check consistency in the performance of our models. The out-of-sample results

are more important than the in-sample results. In Table 8.2 we see the performance of

our individual models in the in-sample period and in Table 8.3 the correlation among

the models.

The most significant thing to notice between these models is that correlation between

them is low except for the two Market Neutral models that are operating at very similar

time horizons and capturing similar interactions in the log spread (see Table 8.3). Both

these models also have the lowest volatility of the four models. Most significantly the

momentum models and the MN index model have a similar investment universe and
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Table 8.2: In-sample performance of four underlying quantitative investment models

In-Sample MN Index Pairs MN Stock Pairs Long Only Momentum

Ann. Return 23.36% 14.68% 33.94% 44.62%
Ann. Volatility 7.10% 6.25% 17.01% 11.06%

Sharpe ratio 2.87 1.87 1.82 3.76
Prob. Gain 0.81 0.78 0.74 0.84
Prob. Loss 0.19 0.22 0.26 0.12
Avg. Gain 2.33% 1.69% 4.53% 3.84%
Avg. Loss -0.66% -0.74% -3.44% -0.98%

Gain/Loss ratio 3.56 2.28 1.31 3.91
Corr. with BAH - 0.43 -0.26 0.86 -0.35

Key performance statistics of the four QIMs in the in-sample period. Corr. with BAH
shows the correlation of the four models with the average return of all the investable
assets in their investment remit. Long only model is expected to strongly correlated to
its investable universe since it only buys stock. The other three models show negative
correlation, showing that the models are actually exhibiting true benefit for investors

as it generates returns independent of direction of the investable market.

Table 8.3: Correlation matrix of in-sample performance

In-Sample MN Index pairs MN Stock Pairs Long Only Momentum

MN Index pairs 1.00 0.60 - 0.24 0.19
MN Stock Pairs 0.60 1.00 - 0.30 0.20

Long Only - 0.24 - 0.30 1.00 - 0.19
Momentum 0.19 0.20 - 0.19 1.00

Except for the market neutral models that have positive correlation on the higher
side, all other models correlations are at the lower end of the spectrum. Low positive
correlation is a good sign among models, and orthogonal and negative correlations are
a strong plus sign for diversification of a portfolio. Most significantly the momentum
models and the MN Index model have similar investment universe and exhibit very low

correlation while capturing positive returns.

exhibit very low correlation while capturing positive returns. Furthermore, momentum

and long only models have the highest returns, primarily because both these models are

unhedged, and hence capture more of the variance than the market neutral models.

In terms of correlation with their investable universe, the market neutral models and

the momentum model have negative correlation. As expected the long only model shows

strong positive correlation since it only buys stocks and hence is fully exposed to the

moves of the market. The momentum model shows some degree of negative correlation

to its investment universe. At a time when the global markets see-sawed trending both

up (positive returns) and down (negative returns) the momentum model managed to

capture the momentum and be profitable with negative correlation to the market. The

returns of the investment universe is the average return of all the securities, since we

give equal weighting to all our trades in a model, this makes the correlation analysis
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relevant and interesting. The market neutral models have the lowest volatility since

their investment approach has a degree of hedging, while the momentum and long only

models have the highest volatility. In Figure 8.2 we can see that neither of the QIMs

returns have Gaussian distribution even at monthly frequency. In the caption of the

figures can see the first four moments and Jarque-Bera test statistics.

8.4 Out-of-sample Results of the Four Quantitative Invest-

ment Models

We now look at the out-of-sample results in Table 8.4 which are very similar to the

in-sample results and the correlations shown in Table 8.5.

Table 8.4: Out-of-sample performance of the four quantitative investment models

Out-of-Sample MN Index pairs MN Stock Pairs Long Only Momentum

Ann. Return 17.6% 9.9% 24.5% 46.9%
Ann. Volatility 7.72% 3.52% 14.73% 9.36%

Sharpe ratio 2.21 2.67 1.63 4.95
Prob. Gain 0.72 0.78 0.69 0.92
Prob. Loss 0.28 0.22 0.31 0.08
Avg. gain 2.33% 1.21% 4.13% 3.84%
Avg. loss -1.18% -0.67% -3.34% -3.16%

Gain/Loss ratio 1.99 1.80 1.23 1.21
Corr. with BAH 0.03 - 0.05 0.92 - 0.54

Key performance statistics of the four QIMs in the out-of-sample period. Corr. with
BAH shows the correlation of the four models with the average return of all the in-
vestable assets in the their investment remit. Long only model just as in the in-sample
period is strongly correlated to its investable universe. The Market Neutral models are
almost perfectly orthogonal while the Momentum model shows negative correlation.

In Table 8.5 we can see that the correlation between the models is towards the lower

end of the spectrum except for the market neutral models, which have slightly higher

correlation but still less than the in-sample period. The momentum and the long only

models have negative correlation, slightly on the higher side, which is a positive. This is

good sign for our model based approach of investing on different time horizons, validating

our two tier approach. The momentum model is still the best performer with a better

Sharpe ratio than the in-sample period. However both the market neutral models show

considerable drop in performance, except that the market neutral model for stock pairs

now has a better Sharpe ratio. The momentum model still has the highest Sharpe ratio

just as in the in-sample period (Table 8.4).
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Volatility of all the models has remained similar to the in-sample period, except for the

market neutral model for stock pairs, which show volatility drops by half. In terms of

correlation with their investment universe, the market neutral models have little to no

correlation. The long only model still has strong positive correlation and the momentum

model still has negative correlation to their respective investment universes. Our ability

to extract positive returns from markets with low to negative correlation is a big positive

for us as it shows that our QIMs add value.

In Figure 8.3 we present the distributions of all the QIMs at monthly frequency with their

corresponding first four moments and the Jarque-Bera test statistics. In Figure 8.5 we

can see the capital growth of the four models in the out-of-sample period. In Figure 8.4

we can see the rolling correlation among the four models and how it evolves on monthly

data. From the four charts we can see that as the window size increases the correlations

are fairly stable. This stability in correlation shows that the QIMs are consistent in

capturing patterns as they are designed to, even though returns in the out-of-sample

period are lower than the in-sample period. In Appendix H we can see the performance

of the QIMs when compared to the buy and hold strategy for their investment universe

equally weighted. We can see that our QIMs outperform them.

From the QIMs that we have built, we can see from that it is possible to construct

profitable models. More importantly it is possible to construct profitable models within

the same asset class that capture different aspects of the data, at different window sizes

and generate returns that have low correlation. Some of the correlations are low enough

to make the models practically independent investments. This negates the efficient mar-

kets hypothesis which says that financial markets are efficient and process all information

perfectly. However from the perspective of the Market Neutral models we can say that

the markets are weakly efficient. One could also make an argument that from the per-

spective of market neutral models, they follow the law of one price, which roughly states

that goods that are similar should have the similar value.

Table 8.5: Correlation matrix of Out-of-sample Performance

Out-of-Sample MN Index Pairs MN Stock Pairs Long Only Momentum

MN Index pairs 1.00 0.35 0.09 0.14
MN Stock Pairs 0.35 1.00 - 0.08 0.24

Long Only 0.09 - 0.08 1.00 - 0.55
Momentum 0.14 0.24 - 0.55 1.00

The market neutral models still have positive correlation albeit lower than the in-sample
period. The momentum and long only models have stronger negative correlation in
this period, which a good sign as they both generate positive returns. All other models
have low correlation with each other, which is a positive sign for the meta model. Most
significantly the momentum models and the MN Index model have similar investment
universe and they still exhibit very low correlation again just as in the in-sample period.
Models having negative correlation is a positive sign as they are all making healthy

returns that are independent of other models.
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Figure 8.5: Performance of the four quantitative investment models in the out-of-
sample period. The momentum model is the best performer.

8.5 Meta Model Portfolios of QIMs: Results

In the previous sections we presented the results of our four QIMs. In this section

we present and analyse the performance of our main contribution, the meta models. To

compare our meta model we use four other methods as benchmarks: a) Equally weighted

(model-free), b) Mean variance optimisation framework, c) Fractional Kelly and d) Op-

timal Kelly. We use these methods as our benchmarks since they are appropriate for

our approach, since we only have four underlying models, Portfolio by sorts is not really

suitable neither is the risk parity approach, as we have already discussed in Chapter 2.

We first present the in-sample performance followed by the out-of-sample performance

and finally the full sample results, so we can see how our models perform. We have the

distribution of all the models in Appendix K and the Kelly estimates output for all our

models in Appendix L.

We evaluate the models by comparing their Sharpe ratios or risk adjusted returns, since

it is a universally accepted standard for portfolio performance which incorporates both

return as well as risk. For the risk-free rate we use average of the three month German

government bond’s yield. This became negligible in late 2010 so we have maintained it

a minimum of 0.50%.
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8.5.1 In-sample Results of the Meta Models

The in-sample results (2005-2009) are shown in Table 8.6 and make interesting reading.

In some ways we have some observations that we would have expected, given the model

while in some cases we have observations which are a good surprise. We now present

some of the key performance measures below:

In Figure 8.6 we can see the annualised returns of all the meta models, Optimal Kelly is

the best performing model, followed by Kelly with Kalman Filter and Kelly with Moving

Average model. The rest of the Kelly models lag by a percentage point or more. Optimal

Kelly being the best performer is not a surprise as it focuses on maximising return. The

MVO model has the lowest returns and that is expected as this model maximises Sharpe

ratio by minimising variance. Hence it eventually ends up with a portfolio that is at the

lower end for returns.
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Figure 8.6: Annualised returns for all meta models during the in-sample period of
2005-09. Optimal Kelly is clearly the best performer of all, while MVO has the lowest

returns.

In Figure 8.7 we can see the volatility of the meta models. Optimal Kelly has the highest

volatility of all the models and this also impacts its Sharpe ratio. The MVO model is

expected to have the lowest volatility because it captures the joint distribution. The

Kelly meta models have a range of volatilities: Median Kelly with Moving Average and

Kelly with Moving Average have volatilities that are on the lower end while Median

Kelly with Kalman Filter and Kelly with Kalman Filter have higher volatility.
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Figure 8.7: Volatility of all the meta models during the in-sample period 2005-09.
Optimal Kelly has the highest volatility, MVO which is supposed to capture the joint
distribution of returns and minimise variance is marginally beaten by Median Kelly

and Median Kelly with Moving Average.

4.97 5.06 4.97

3.55

5.34

4.30 4.35

5.38 5.73

0

1

2

3

4

5

6

7

EW MVO F K O K M K K KF MK KF K MA MK MA

Sh
ar

p
e 

R
at

io

Meta Models

Sharpe Ratio

Figure 8.8: Sharpe ratio of all meta models during the in-sample period 2005-09. Kelly
with Moving Average and Median Kelly with Moving Average are the best performers,

beating all benchmarks.
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In Figure 8.8 we can see our key measure of success for a model, the Sharpe ratio.

Median Kelly with Moving Average and Kelly with Moving Average have the highest

Sharpe ratio, beating the benchmarks just as they did with simulated data. The Median

Kelly model also does well and beats all the benchmarks. Kelly models with Kalman

Filters record the lowest Sharpe ratios. This was not expected. Optimal Kelly records

the lowest Sharpe ratio. In Table 8.6 we can see that the Median Kelly with Moving

Average, Kelly with Moving Average, Fractional Kelly and Median Kelly with Kalman

Filter have the highest probability of success. However Median Kelly has the highest

gain-to-loss ratio of all the models.

Th results in the in-sample period are encouraging and validate some of the results we

got from our simulated data, particularly in the case of Median Kelly with Moving Av-

erage and Kelly with Moving Average which have the highest Sharpe ratio (Figure 7.8).

However, we should view these results with some scepticism as these are in-sample re-

sults.

8.5.2 Out-of-sample Results of the Meta Models

In this section we present the out-of-sample (2010-2012) results of our meta models. In

Table 8.7 we show the key performance statistics. In Figure 8.9 we can see the returns of

all the meta models. Just as in the case of in-sample annualised returns, Optimal Kelly

is still the best performer by some margin. However, both Median Kelly with Moving

Average and Kelly with Moving Average are the next best performers, beating all the

other Kelly models except Optimal Kelly. They are also better than Kelly with Kalman

Filter, which was the second best performer in the in-sample period.

The volatility of the meta models also makes for interesting reading. MVO, as expected

has the lowest volatility; however, except for Optimal Kelly rest of the Kelly models

are not very far from MVO. This is very encouraging especially in the case of Median

Kelly with Moving average and Kelly with Moving Average as both the models are

out-performing MVO in returns by a considerable margin. The Sharpe ratio is our

key metric for performance. Both Median Kelly with Moving Average and Kelly with

Moving Average beat all the benchmarks by a considerable margin. This is consistent

with the in-sample results as well as the synthetic data, but as it is by a higher margin,

which is a big positive for the model. In Table 8.7 we can see that the Median Kelly with

Moving Average and Kelly with Moving Average also have the highest probability of

success. Kelly with Moving average has the highest gain-to-loss ratio of all the models.
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Figure 8.9: Out-of-sample annualised returns for all meta models. As in the simu-
lations and in-sample period, Optimal Kelly has the best returns, followed closely by
Kelly with Moving Average and Median Kelly with Moving Average, both of which

beat the rest of the models by a considerable margin.

Figure 8.10: Out-of-sample annualised volatility. As expected, MVO has the lowest
volatility, very closely followed by Median Kelly and Median Kelly with Kalman filter.
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Figure 8.11: Out-of-sample Sharpe ratio. Kelly with Moving Average and Median
Kelly with Moving Average have the the highest Sharpe ratio, in line with simulations
as well as the in-sample tests, showing that Kelly with Moving Average and Median

Kelly with Moving Average are better at generating risk adjusted returns.

8.5.3 Full Sample Results of the Meta Models

In the previous two sections we saw performance of the meta models both in the in-

sample as well as the out-of-sample periods. However that performance is a snapshot

in time and can give a skewed view. We will look at the key performance numbers as

they evolve through time at monthly frequency. We will calculate the key performance

measures from the in-sample period and we increase the window size till the end of the

out-of-sample period, keeping the starting point static. This will show if the models

perform better on a continuous and consistent basis.

We can see in Figure 8.12 that the meta model with the highest returns is Optimal

Kelly, followed by Median Kelly with Moving Average and Kelly with Moving Average.

The dashed black lines represent the benchmarks. This is very good for Median Kelly

with Moving Average and Kelly with Moving Average models as they also have the best

Sharpe ratio, as can be seen in Figure 8.13. Both these models beat the benchmarks

and the rest of the models throughout.

In terms of volatility as we can see in Figure 8.14 that Optimal Kelly has the highest

volatility. The lowest volatility is recorded by Median Kelly with Moving Average,

Median Kelly and MVO. We expected MVO to have the lowest volatility as that is its

strong point. However, we are pleased to note that both Median Kelly with Moving
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Average and Median Kelly models do better than the MVO models nearly all the time

except on four occasions. Since the QIMs only have week positive correlation, MVO

is unable to capitalise on its strength. In Appendix F we have the key charts and

performance statistics as a snapshot of the full data set for further reference.
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Figure 8.12: In this figure we can see the annualised returns of the meta models in-
cluding the benchmarks (in black dashed lines) and how they evolve over time. Optimal
Kelly is the best performer followed by Kelly with Moving Average and Median Kelly
with Moving Average, all of them beating the benchmarks by a considerable margin.

8.5.4 Discussion: Analysis of Our Meta Models

In this section we highlight some of the key insights into our work, the pros and cons of

some of the methods, as well as some important observations made during our research.

MVO has been a very resilient method for constructing portfolios. Its main strength has

been minimising the joint distribution of correlated random variables that have a high

degree of noise. However when the data lacks strong positive correlation, the benefit

of using MVO diminishes markedly, as there is little benefit or improvement to the

Sharpe ratio as we see with our QIMs correlation matrix (Table 8.5). Hence, our best

performing meta models (Median Kelly with Moving Average and Kelly with Moving

Average) do better in terms of Sharpe ratio. Nevertheless, correlation exists in financial

data whether it is stock indices, bonds, stocks or commodities, making it very hard to

beat the variance minimisation properties that help MVO achieve a high Sharpe ratio.

We are able to extract some advantage by using the median rather than the mean to

calculate Kelly. This results in an improvement in terms of volatility and returns, as

well as the Sharpe ratio for the Kelly models. The median can be more resilient than the
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Figure 8.13: In this figure we show the annualised Sharpe ratio of the meta models
including the benchmarks (in black dashed lines) and how they evolve over time. Median
Kelly with Moving Average, Kelly with Moving Average and Median Kelly are the best

peformers, outperforming the benchmarks by some margin consistently.

2%

4%

6%

8%

10%

12%

14%

Jan-07 Jan-08 Jan-09 Jan-10 Jan-11 Jan-12

R
o

lli
n

g 
A

n
n

u
al

is
ed

 V
o

la
ti

lit
y

Time

Rolling Annualised Volatility

EW

MVO

FK

M K

O K

K KF

MK KF

MA K

MA MK

Figure 8.14: In this figure we show the annualised volatility of the meta models
including the benchmarks (in black dashed lines) and how they evolve over time. Median
Kelly with Moving Average, Median Kelly and MVO have the lowest volatility. Optimal

Kelly consistently has the highest volatility.
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mean and we can see this in the comparison between Sharpe ratio of Fractional Kelly vs.

Median Kelly models; Kelly with Kalman Filter vs. Median Kelly with Kalman Filter;

and Kelly with Moving Average vs. Median Kelly with Moving Average.

One of the key properties of Kelly is that it is myopic; i.e. to maximise log of wealth the

investor only needs to know the current best investment opportunity. We wanted to use

this property which was particularly applicable to our two-tier framework. A sudden

change in trend or volatility could cause any of our QIMs to start making a loss. If

we can avoid the loss-making QIM we would actually allocate capital in a smarter and

efficient manner. We started with a Kalman Filter but during periods of introspection

and discussion we realised that it wasn’t the best choice owing to the assumption of

Gaussian distribution. We then decided to use something simpler and more robust.

Using a moving average filter really helps us manage capital allocations and improve

performance.

Making use of the myopic property also helps us overcome one shortcoming of Kelly.

Although Kelly has been shown to maximise wealth in the long run as it calculates the

optimal bet size, in the short run it can underperform. We can see from the performance

statistics that Median Kelly with Moving Average and Kelly with Moving Average both

achieve higher Sharpe ratios owing to higher returns and not owing to lower volatility.

Although the volatility is low for Median Kelly with Moving Average and Kelly with

Moving Average it is not always lower by a large amount when compared to MVO. It is

worth noting that the MVO method usually achieves a higher Sharp ratio by minimising

volatility as it captures the joint distribution of the portfolio.

The meta model that maximises gains best is Optimal Kelly. The key problem with

Optimal Kelly is that it achieves its goal of maximising wealth but it allocates all its

capital to one model, i.e. the one that is going to maximise its return at that moment.

The model with the highest return dominates all other models, except on two occasions

in the in-sample period. We can see that Optimal Kelly allocates all its investment

capital to the momentum model as its performance is identical in terms of returns,

volatility and Sharpe ratio in the out-of-sample period (see Table 8.7 and Table 8.4).

We present the weights for Optimal Kelly upto five decimal places in Appendix M.

Laureti et al. (2010) 1 conducted a comprehensive analysis of Optimal Kelly and MVO

generated portfolios to show that the Optimal Kelly portfolio as a subset of MVO lies

on the efficient frontier which is built using the MVO approach. We tested this claim

with the data from our QIMs and we can confirm this is the case. In Figure 8.15 we plot

the returns generated by the Optimal Kelly and the most profitable portfolio generated

by the MVO model. We can see that indeed the Optimal Kelly returns are nearly

identical. Just as in the case of Optimal Kelly, the highest return portfolio from MVO

1Conversation with Professor Doyne Farmer at IEEE Conference for Computational Intelligence for
Financial Engineering and Economics 2014 regarding Kelly lead to discussion about research done by
(Laureti et al., 2010) he agreed with claim made by Laureti et al.



Chapter 8 Performance Analysis of Models Using Real Data 113

allocates all its capital to one model that maximises returns. Furthermore we compare

the annualised volatility of these returns in Figure 8.16, since they must match as well

and once again we see that the volatility is the same. The slight difference in returns

comes from difference in weight in the in-sample period that we pointed out above.
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Figure 8.15: In this figure, we show the annualised return of Optimal Kelly compared
to the annualised return of MVO when MVO picks the portfolio that maximises returns,
instead of the Sharpe ratio. We show annualised returns from the in-sample period to
the out-of-sample period with the green and dashed black lines. The out-of-sample
period’s annualised returns are shown by the red line and the dashed black line. We
can see that the annualised returns of Optimal Kelly are identical to MVO max out-

of-sample.

8.5.4.1 Strengths of Our Meta Model

From a computational perspective Kelly with Moving Average is much more efficient

than the MVO approach. Since Kelly is myopic, the moving average only needs to know

its previous position to extrapolate the future position. Both are light on memory as

well as computation which is in stark contrast to MVO which needs a computationally

intensive optimiser. Both Kelly and moving average make no distributional assumptions

about the data, so are unburdened by assumptions; hence these models are going to be

robust in the face of changing data. Kelly with Moving Average is straightforward

in detail and easily generalisable. It can be applied to other domains where resource

allocation is important, such as infrastructure construction, manufacturing etc. Our

approach highlights that we can improve performance if the problem to be solved is

specified in detail. This highlights that by combining higher order models with lower

order models, one can get better results.
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Figure 8.16: In this figure we show the annualised volatility of Optimal Kelly com-
pared to the annualised volatility of MVO portfolio when MVO identifies the portfolio
that maximises returns instead of the Sharpe ratio. We show the annualised volatility
from the in-sample period to the out-of-sample period with the green and dashed black
lines. The out-of-sample period’s volatility is shown by the red line and the dashed
black line. We see that the annualised volatility of Optimal Kelly is identical to MVO

Max out-of-sample.

One of the key points that we have learnt over the years is that MVO builds an efficient

frontier out of optimal portfolios which allows an investor to choose a portfolio that

fits their risk-return profile or better yet their utility function. The Median Kelly with

Moving Average and Kelly with Moving Average models have breached that efficient

frontier, as can be seen in Figure 8.13 and the results from the synthetic data in Ta-

ble 7.2. Both these models consistently beat that optimal portfolio as measured by the

Sharpe ratio, which is part of the efficient frontier. This is a significant result since we

have thought of optimal portfolios as efficient portfolios. The best portfolios all exist

somewhere on the efficient frontier, except in our two-tier framework.

The Moving Average filter that we apply to avoid investing in loss-making models also

helps against models that might have errors or are misspecified, i.e. if they become

loss-making then the filter will stop you from investing in that model.

8.5.4.2 Shortcomings of Our Approach

We believe one of the shortcoming of our approach was that we did not have more

QIMs, to capture more patterns and dimensions in the data. Part of the problem was

that we didn’t have access to much more expensive fundamental (accounting) data for

stocks, which would have potentially given us another model with low correlation to



Chapter 8 Performance Analysis of Models Using Real Data 115

other models. We would have also benefited from longer history for all our data sets

which would have allowed us to build longer-term mean-reversion models for the equity

market, the kind that generally occurs over a period of three to four years and are

dependent on the economic cycle.

8.6 Summary

In this chapter we presented the performance results for our four QIMs as well as our

meta models, using real FTS data. We found the models were profitable in both the

in-sample and out-of-sample period, although there was a drop in performance of some

QIMs. We then presented the performance of our meta models and their benchmarks.

In the in-sample period and the out-of-sample period, Kelly with Moving Average and

Median Kelly with Moving Average beat the benchmarks. This is in line with the tests

done with synthetic data in the previous chapter. We then checked the performance of

the meta models on a continuous basis, and there too we find that Kelly with Moving

Average and Median Kelly with Moving Average beat the benchmarks. We also checked

if Optimal Kelly was a special case of MVO as shown by Laureti et al. (2010). We found

that indeed was the case.

One of the key points to note is our two-tiered approach, where the first tier focuses on

certain patterns in data at a specific time horizon, with a dedicated QIM and second

tier, which is the meta model that allocates capital, forms a meta portfolio. All the meta

models have better Sharpe ratio than our four QIMs. This is a significant enhancement

in performance and strong validation of our two-tier framework. We believe this is an

important point that we are able to achieve better results through this approach. We

also believe that by adding more models to the data at different time horizons we can

achieve better results and use the data even better at different time horizons.

We believe both Kelly with Moving Average and Median Kelly with Moving Average

beating the benchmarks can be generalised to other problems especially in cases where

the data is heterogeneous as Kelly makes no distributional assumptions. As discussed

in Chapter 1 we built a set of models that give us investment opportunities with high

probability of success, calculate optimal investment size and control for risk. All of these

are important for prudent portfolio management.



Chapter 9

Conclusion & Future Work

In this thesis we presented a smart portfolio management framework that targeted pat-

terns found in financial data at different time horizons, while making smart and optimal

bets using QIMs. To capture structure and pattern in data at different time horizons

we built four QIMs focusing on the equity markets, two market neutral models using

pairs methodology, and two models targeting momentum, using both stocks and index

futures. The QIMs gave us high probability investment opportunities in the markets.

The framework then constructed a meta portfolio by making optimal investments using

Kelly Criterion. We chose Kelly Criterion as it has been shown to compute optimal

investment size.

We developed several models of which we presented five key ones that show the evolution

of our work. Median Kelly model gave us good Sharpe ratio measures. However regimes

in financial time series can change over a period of time. This has implications for

a model, as it may stop being profitable once the regime it is targeting has stopped

or evolved into another one over a period of time. This is a real and tricky challenge

any smart investor or portfolio manager would ideally like to avoid. To overcome this

challenge we devised a Kelly model using moving average as filter to avoid investing in a

loss-making QIM. We tested the models with synthetic data using a GARCH model and

real financial data. The Kelly models with moving average had consistent performance,

beating the efficient frontier consistently.

Throughout our research we were driven by the thought that if we broke down the

challenge into its important parts and specified the challenge correctly we could find

a solution to the challenge. We are pleased we managed to do that with our two-tier

framework. We believe the framework, as well as the models, open up a path to using

financial data in an encompassing manner and hence managing a portfolio in a smarter

manner. Our meta models especially Median Kelly with Moving Average and Kelly

with Moving Average are generalisable and can be applied to similar challenges in other

domains for resource allocation, such as infrastructure construction and manufacturing.

116
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9.1 What are the Implications?

We hope our research opens up this line of inquiry further and more researchers explore

this path and use bigger and comprehensive data sets to test the meta model. The

implication for asset managers are significant. They should heed some of the advise here

and start to look at their investment remit and add models that capture patterns in

data that can be turned into portfolios for investors. By not doing so, they are at the

very least being inefficient and potentially managing portfolios in a sub-optimal manner.

Our model is suited for risk-averse investors who want to make smart investments yet

protect themselves from losing money in the long run. The kind of investor it suits is

the average man who has a modest pension portfolio and is risk averse The downside

is that the average person would need some technical skill to use this model. A lack of

appreciation for structure or patterns in data at different time horizons clearly shows

that they are missing some opportunities. On the other hand, if once they have a lower

level model ready they will be able to improve the Sharpe ratio of their portfolios by

using our meta models.

Our meta model will certainly help reduce risk but it has its limitations. Not everybody

can use the model at the same time as investing is a zero sum game; i.e. for each buyer

there is a seller. Depending on how the price moves there is always a winner and a loser,

so not every one can use this approach at the same time. Our model is also limited by

the amount of capital it can take; for example the model would struggle to manage very

large amounts of capital, such as above £5 billion even for a truly global portfolio. Large

pension funds manage well above £100 billion. They would only be able to manage a

fraction of their portfolio in this manner. Nevertheless using our approach some portion

of the portfolio would be a smart portfolio.

9.2 Future Work

One of the key shortcomings for us was the lack of a comprehensive data set. By com-

prehensive we mean with a longer history, accounting data, observations at different

frequencies, such as hourly, minute and tick data. A longer history would have helped

us capture mean-reversion on much lower frequency such as five to seven years, as busi-

ness and interest rate cycles impact certain sectors and markets, significantly offering

investment opportunities. Furthermore accounting data would help us capture a dif-

ferent aspect of financial data through multi-factor models used by large institutions.

Incorporating transaction costs combined with liquidity and execution risk would bring

the model closer to real markets. Availability of higher frequency data would have most

certainly helped us capture more patterns such as hourly and minute-by-minute momen-

tum, as well as mean-reversion. We would also like to add further models that capture
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a different aspect of the data. For example, where possible we should develop models

to target implied volatility using options, convertible bonds and warrants. Furthermore

we would like pursue methods that look at the whole capital structure of companies i.e.

using both equity and debt to capture yield differences.

A natural extension of our approach, which has only used the equity market so far, would

be to expand our markets and include foreign exchange and bonds, both corporate and

government. This expansion into different asset classes will broaden our use of the risk

profile of the framework, as well as give us more data from different markets, making

our approach comprehensive.



Appendix A

Definitions

In this section we define terms that will be used throughout the report. We aim to

cover relevant definitions in statistics and finance. For statistics we cite the Cambridge

Dictionary of Statistics 2006

• Autoregressive Conditionally Heteroscedastic (ARCH): ARCH is a class

of models that are used to model data that has heteroscedasticity(if variance of

the errors is not constant this would be known as heteroscedasticity). ARCH

models are also used in scenarios that have volatility clustering, the tendency of

large changes in asset prices (of either sign) to follow large changes and small

changes (of either sign) to follow small changes. In other words, the current level

of volatility tends to be positively correlated with its level during the immediately

preceding periods. (Brook pg 386-7)

• Autocorrelation: The internal correlation of the observations in a time series,

usually expressed as a function of the time lag between observations. Also used

for the correlations between points that are different distances apart in a set of

spatial data (spatial autocorrelation). The autocorrelation at lag k, γ (k), is defined

mathematically as

γ (k) =
E (Xt − µ) (Xt+k − µ)

E (Xt − µ)2
. (A.1)

Where Xt1 = 0,±1,±2 . . . represents the values of the series µ, is the mean of the

series, E denotes expected value.

• Beta: Beta is that part of a stock movement which is driven by the market index,

of which the stock is part of. Beta is also a regression coefficient in times series

regression

• Brownian motion: A stochastic process, Xt, with state space the real numbers,

satisfying

119
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X0 = 0. (A.2)

for any s1 ≤ t1 ≤ s2 ≤ t2 . . . sn ≤ tn the random variables Xt1 −Xs1 . . . Xtn −Xsn

are independent.

For any s < t, the random variable Xt −Xs has a normal distribution with mean

0 and variance (t− s)σ2.

• Call option: A Call option gives the holder the right to buy the underlying asset

by a certain date for a certain price (Hull 1996)

• Correlation: A general term for interdependence between pairs of variables. It is

measured through the correlation coefficient which is an index that quantifies the

linear relationship between a pair of variables. In a bivariate normal distribution,

for example, the parameter, ρ. An estimator of ρ obtained from n sample values

of the two variables of interest, (x1, y1), (x2, y2) . . . (xn, yn), is Pearson’s product

moment correlation coefficient, r, given by:

r =

∑n
i=1 (xi − x) (yi − y)√∑n

i=1 (xi − x)2
∑n

i=1 (yi − y)2
. (A.3)

• Covariance: The expected value of the product of the deviations of two random

variables, x and y from their respective means µx and µy, i.e.

cov(x, y) = E((x− µx)(y − µy)). (A.4)

• First order difference: Is simply the value that is derived from difference of two

real number g ∈ R usually ordered gt − gt−1.

• Futures: A futures contract is an agreement between two parties to buy or sell

an asset at a certain time in the futures for a certain price. (Hull 1998)

• Heterogeneous: A term used in statistics to indicate the inequality of some

quantity of interest (usually a variance) in a number of different groups.

• Intercept: The parameter in an equation derived from a regression analysis cor-

responding to the expected value of the response variable when all the explanatory

variables are zero.

• Long: To be long is the practice of buying an asset in the expectation that it will

go up in value.

• Mean: A measure of location or central value for a continuous variable. For a

sample of observations, x1, x2, . . . xn, the measure is calculated as
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x =

∑n
i=1 xi
n

. (A.5)

• Momentum: Momentum or trend is the continued movement of price either up

or down.

A price trend model of a price series z is defined by: (Taylor 1980)

log (xt)− log (zt−1) = xt = µt + et. (A.6)

E (et) = 0, E (et − et+i) = 0, (i 6= 0) cov (µs, et) = 0(alls, t). (A.7)

• Mean reversion: A measure of µ is said to be invariant for (Xt) if and only if

∫
µ (dx)Ptf (x) =

∫
µ (dx) f (x) . (A.8)

for any bounded function f. µ is said to be invariant for (Xt) if and only if µPt = µ.

Equivalently the law of (Xt+u)u≥0 is independent of t if we start at date 0 with

the measure µ.

In econometric terms testing for mean reversion is performed through a test for

stationarity by performing the Augmented Dicky-Fuller (ADF) test. The ADF

consists of estimating the regression ρt on ρt−1, if this coefficient is below 1, it

means the price is mean reverting; if it is close to 1, the process is a random walk.

Xt+1 = ρXt + εt. (A.9)

• Stochastic process: A series of random variables, Xt, where t assumes values in

a certain range T . In most cases xt is an observation at time t and T is a time

range. If T = {0, 1, 2 . . .} the process is a discrete time stochastic process and if

T is a subset of the nonnegative real numbers it is a continuous time stochastic

process.

• Standard deviation: The most commonly used measure of the spread of a set

of observations. Equal to the square root of the variance.

• Stationarity: A term applied to time series or spatial data to describe their

equilibrium behaviour. For such a series represented by the random variables,

Xt1 , Xt2 , . . . , Xtn , the key aspect of the term is the invariance of their joint distri-

bution to a common translation in time. So the requirement of strict stationarity

is that the joint distribution of Xt1 , Xt2 , . . . , Xtn should be identical to that of

Xt1+h , Xt2+h , . . . , Xtn+h for all integers n and all allowable h, −∞ < h <∞.

• Systematic risk: Risk that is inherent in the market and cannot be diversified.
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• Short: To be short in finance is a term used when someone wants to profit from

falling prices and does not own the security. They borrow the security from a

broker or custodian in the market and then sell it. At a later date they buy back

the security from the market and return it to the borrower. Lenders generally

charge a small fee for lending the security.

• Stylized fact:A fact of the real world simplified and made more abstract to be

usable in an economic model. Each school of economics has its favourite stylized

facts, e.g. that there are steady long-term capital output ratios and Kuznets view

that the average propensity to consume is relatively constant over long periods.

• Sharpe Ratio: Developed Nobel Laureate Williams. The Sharpe Ratio is calcu-

lated by substracting the risk free rate from returns and divided by the standard

deviation of returns. The ratio measures the relationship of reward to risk in an

investment strategy.

• Unsystematic risk: Stock specific risk that can be diversified through portfolio

construction.

• Utility: The satisfaction derived from an activity, particularly consumption. The

total amount of such satisfaction is total utility; the satisfaction from the last unit

is marginal utility. Bentham in his suggested calculus of pleasure and pain was

influential in introducing this notion into economics but the marginalists were the

first economists to make it the central concept of economic theory. The measure-

ment of utility has provoked long debates between cardinal utility (utility measured

in units) and ordinal utility (utility revealed through preferences). Without this

concept, much of neoclassical economic theory would not be possible. Earlier eco-

nomic writers, especially those of the classical school, used ’utility’ in the objective

sense of the inherent worth of something.(Majumdar, T. (1961) The Measurement

of Utility, London: Macmillan.)

• Utility function: This is generally expressed in the form U = f(x1, x2, x3, x4, x5, . . .).

It shows a consumer’s utility as a function of the quantities of goods and services

1, 2, 3, 4, 5, . . . he or she consumes.

• Variance: In a population, the second moment about the mean. An unbiased

estimator of the population value is provided by s2 given by

s2 =
1

n− 1

n∑
i=1

(xi − x)2 . (A.10)

where x1, x2, . . . . . . xn are the n sample observations and x in the sample mean.

• Volatility: Volatility is estimated as the standard deviation of the logarithm of

the ratio of stock prices divided by the square root of the length of the time period

in years. (Hull 1998)
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• Warrants: Warrants are call options that often come into existence as a result of

a bond issue. (Hull 1998)
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Appendix C

Rolling Correlation amongst

QIMs

Here we graphically show the rolling correlation of QIMs.
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Figure C.1: Momentum QIM’s continous correlation to the rest of the QIMs.
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Figure C.2: Long Only QIM’s continous correlation to the rest of the QIMs.
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Figure C.3: MN Stock pairs QIM’s continous correlation to the rest of the QIMs.
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In-sample meta model

Performance
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Figure D.1: Annualised returns for all meta models during the in-sample period of
2005-09. Optimal Kelly is clearly the bets of all, EW is the only benchmark that has

high returns.
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Figure D.2: Volatility of all the meta models during the in-sample period 2005-09.
The Kelly models except Optimal Kelly exhibit lower volatility, even though its MVO
which is supposed to capture the joint distirbution. The key reason for this is that the
correlation between the QIM is low since they are working on different time horizons

and capturing different aspect of data.
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Figure D.3: Sharpe ratio of all the meta models during the in-sample period 2005-
09. Kelly with Kalman Filter Moving Average and Median Kelly with Kalman Filter
Moving Average arethe best performers the only models with a Sharpe ratio above 5,

beating all benchmarks by some margin.
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Out-of-sample meta model

Performance
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Figure E.1: Out-of-sample Annulaised returns for all the meta models. Just as we saw
in the simulations and the In-sample period that Optimal Kelly has the best returns
followed closely by Kelly with Kalman Filter Moving Average and Median Kelly with
Kalman Filter Moving Average, both of which beat the rest opf the models by more

that a full percentage point.
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Figure E.2: Out-of-sample Annualised Volatility. As expected MVO has the lowest
volatility very closely followed by Kelly with Kalman Filter Moving Average and Median

Kelly with Kalman Filter Moving Average.
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Figure E.3: Out-of-sample Sharpe Ratio. Kelly with Kalman Filter Moving Average
and Median Kelly with Kalman Filter Moving Average have the the highest Sharpe
ratio, in line with Simulations as well as the in-sample tests, showing that Kelly with
Kalman Filter Moving Average and Median Kelly with Kalman Filter Moving Average

are better at generating risk adjusted returns.
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Appendix F

Meta model full sample
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Figure F.1: In this chart we show full sample Sharpe Ratio. Kelly with Moving
Average and Median Kelly with Moving Average have the the highest Sharpe ratio, in
line with simulations as well as the in-sample tests, showing that Kelly with Moving
Average and Median Kelly with Moving Average are better at generating risk adjustred

returns.

135



Appendix F Meta model full sample 136

30.43% 30.96% 31.80%

47.48%

31.68%

34.13% 32.69% 37.69% 37.10%

0%

10%

20%

30%

40%

50%

60%

EW MVO F K O K M K K KF MK KF K MA MK MA

A
n

n
u

al
is

ed
 R

et
u

rn
s

Meta Models

Annualised Returns

Figure F.2: In this chart we show full sample annualised returns. Optimal Kelly has
the highed returns followed by Kelly with Moving Average and Median Kelly with Mov-
ing Average. MVO records the second lowest returns just ahead of equally weighted.
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Figure F.3: In this chart we show full sample annualised volatiltiy. As expected MVO
has the lowest volatility, followed by Median Kelly and Median Kelly with Moving

Average. Optimal Kelly has the highest volatility
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Appendix G

Out-of-sample QIM Performance
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Figure G.1: Performance of the four quantitative investment models in the out-of-
sample period. The Momentum model is the best performer.
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Appendix H

Performance of QIM vs BAH of

Investment Universe

Performance of the four QIMs when compared to buy and hold equally weighted return.
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Figure H.1: Momentum model vs. BAH all Equity Indices
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Figure H.2: Long Only model vs. BAH all UK FTSE 100 stocks

60

70

80

90

100

110

120

130

140

Date Jun-10 Dec-10 Jun-11 Dec-11 Jun-12 Dec-12

Co
m

pu
nd

ed
 G

ro
w

th

Time

MN Stock Pairs Models vs. BAH European Top 250 Stocks

MN Stock Pairs Model

BAH All EU Stocks

Figure H.3: MN Stock model vs. BAH all 250 European stocks
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Appendix I

In-sample Distributions of QIMs

The bin size is calculated using Freedman - Diaconis method.
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Figure I.1: In sample distribution of the Market Neutral Stock Pairs Model, number
of bins = 15, bin size = 0.00840, mean = 0.01148, variance = 0.00032, skew = 1.51546,

kurtosis = 6.43802, Jarque-Bera statistics is 103.34507.
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Figure I.2: In sample distribution of the Market Neutral Index Pairs Model, number
of bins = 12, bin size = 0.02387, mean = 0.02808, variance = 0.00234, skew = 2.36665,

kurtosis = 10.71947, Jarque-Bera statistics is 198.15330.
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Figure I.3: In sample distribution of the Long Only Model, number of bins = 10,
bin size = 0.02945, mean = 0.02464, variance = 0.00241, skew = 0.36463, kurtosis =

1.74318, Jarque-Bera statistics is 6.68507.
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Figure I.4: In sample distribution of the Momentum Model, number of bins = 11,
bin size = 0.01482, mean = 0.03122, variance = 0.00101, skew = 1.11545, kurtosis =

1.89122, Jarque-Bera statistics is 18.45137.



Appendix J

Out-of-sample Distributions of

QIMs

The bin size is calculated using Freedman - Diaconis method.
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Figure J.1: Out of sample distribution of the Momentum model, number of bins =
8, bin size = 0.01569 mean = 0.03254, variance = 0.00072, skew = −0.75216, kurtosis

= 1.36680, Jarque-Bera statistic = 4.96139.
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Figure J.2: Out of sample distribution of the MN Index Pairs model, number of bins
= 7, bin size = 0.02524 mean = 0.00899, variance = 0.00141, skew = −0.74491, kurtosis

= 1.40246, Jarque-Bera statistic = 4.99247.
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Figure J.3: Out of sample distribution of the MN Stock Pairs model, number of bins
= 7, bin size = 0.00696 mean = 0.00899, variance = 0.00010, skew = −0.15275, kurtosis

= −0.49803, Jarque-Bera statistic = 0.66866.
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Figure J.4: Out of sample distribution of the Long Only model, number of bins = 6,
bin size = 0.02824 mean = 0.01844, variance = 0.00180, skew = −0.18980, kurtosis =

−0.46208, Jarque-Bera statistic = 0.69080.



Appendix K

Distributions of Meta Models

The distributions are calculated on the full data set. The bin size is calculated using

Freedman - Diaconis method.
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Figure K.1: Equally Weighted model distribution, number of bins = 12, bin size =
0.00823 mean = 0.02222, variance = 0.00033, skew = 1.01193, kurtosis = 4.67829.
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Figure K.2: MVO model distribution, number of bins = 13, mean = 0.02281, variance
= 0.00025, skew = 1.22134, kurtosis = 5.63224.
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Figure K.3: Fractional Kelly model distributions, mean = 0.02317 = variance =
0.00030, skew = kurtosis = 8.03192
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Figure K.4: Optimal Kelly model distribution, number of bins = 15, bin size =
0.01267, mean = 0.03198, variance = 0.00105, skew = 0.32971, kurtosis = 4.13955.
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Figure K.5: Median Kelly model distributions, number of bins = 10, bin size =
0.00825, variance = 0.00024, skew = 1.06068, kurtosis = 4.73307.



Appendix K Distributions of Meta Models 151

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

5

10

15

20

25

30

Returns

F
re
q
u
e
n
c
y

Figure K.6: Kelly with Kalman Filter model distributions, number of bins =16, bin
size = 0.00885, variance = 0.00045, kurtosis = 8.15766.
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Figure K.7: Median Kelly with Kalman Filter model distributions, number of bins =
14, bin size = 0.00801, mean = 0.02399, variance = 0.00037, skew = 1.22792, kurtosis

= 5.25810.
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Figure K.8: Kelly with Moving Average model distributions, number of bins = 14,
bin size - 0.00805, mean = 0.02706, variance = 0.00029 kurtosis = 8.34484.
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Figure K.9: Median Kelly with Moving Average model distributions, number of bins
= 12, bin size = 0.00814, mean = 0.02664, variance = 0.00025, skew = 1.21625, kurtosis

= 6.32661.



Appendix L

Kelly Weights for all Models

Here we present a graphical representation of weights assigned by all meta models for

both the in-sample and out-of-sample period.
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Figure L.1: Mean Variance framework weights.
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Figure L.2: Fractional Kelly weights.
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Figure L.3: Optimal Kelly weights.
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Figure L.4: Median Kelly weights.
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Figure L.5: Kelly with Kalman Filter weights.
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Figure L.6: Median Kelly with Kalman Filter weights.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Jan-06 Jan-08 Jan-10 Jan-12

W
ei
gh
ts

Time

MN Index pairs

MN Stock Pairs

Equity Long

Momentum

Figure L.7: Kelly with Moving Average weights.
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Figure L.8: Median Kelly with Moving Average weights.
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Weights Maximising Gain in
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Table M.1: Optimal Kelly weights

Date MN Index Pairs MN Stock Pairs Long Only Momentum

Mar-05 0.99992 0.00003 0.00000 0.00005
Apr-05 0.00006 0.99993 0.00000 0.00001
May-05 0.00001 0.99997 0.00001 0.00001
Jun-05 0.00000 0.22242 0.77758 0.00000
Jul-05 0.00000 0.00000 0.99999 0.00000

Aug-05 0.00000 0.00000 0.99999 0.00000
Sep-05 0.00000 0.00000 1.00000 0.00000
Oct-05 0.00000 0.00000 0.99999 0.00000
Nov-05 0.00000 0.00000 0.99999 0.00000
Dec-05 0.00000 0.00000 1.00000 0.00000
Jan-06 0.00000 0.00000 1.00000 0.00000
Feb-06 0.00000 0.00000 1.00000 0.00000
Mar-06 0.00000 0.00000 1.00000 0.00000
Apr-06 0.00000 0.00000 1.00000 0.00000
May-06 0.00000 0.00000 1.00000 0.00000
Jun-06 0.00000 0.00000 1.00000 0.00000
Jul-06 0.00000 0.00000 1.00000 0.00000

Aug-06 0.00000 0.00000 1.00000 0.00000
Sep-06 0.00000 0.00000 1.00000 0.00000
Oct-06 0.00000 0.00000 1.00000 0.00000
Nov-06 0.00000 0.00000 1.00000 0.00000
Dec-06 0.00000 0.00000 1.00000 0.00000
Jan-07 0.00000 0.00000 0.99999 0.00001
Feb-07 0.00000 0.00000 0.99999 0.00001
Mar-07 0.00000 0.00000 0.99999 0.00001
Apr-07 0.00000 0.00000 0.99999 0.00001
May-07 0.00000 0.00000 0.99999 0.00001
Jun-07 0.00000 0.00000 0.99999 0.00001
Jul-07 0.00000 0.00000 0.99999 0.00001
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Table M.2: Optimal Kelly weights

Aug-07 0.00000 0.00000 0.99996 0.00004
Sep-07 0.00000 0.00000 0.99994 0.00006
Oct-07 0.00000 0.00000 0.17260 0.82740
Nov-07 0.00000 0.00000 0.00001 0.99999
Dec-07 0.00000 0.00000 0.00001 0.99999
Jan-08 0.00000 0.00000 0.00000 1.00000
Feb-08 0.00000 0.00000 0.00000 1.00000
Mar-08 0.00000 0.00000 0.00000 1.00000
Apr-08 0.00000 0.00000 0.00000 1.00000
May-08 0.00000 0.00000 0.00000 1.00000
Jun-08 0.00000 0.00000 0.00000 1.00000
Jul-08 0.00000 0.00000 0.00000 1.00000

Aug-08 0.00000 0.00000 0.00000 1.00000
Sep-08 0.00000 0.00000 0.00000 1.00000
Oct-08 0.00000 0.00000 0.00000 1.00000
Nov-08 0.00000 0.00000 0.00000 1.00000
Dec-08 0.00000 0.00000 0.00000 0.99999
Jan-09 0.00001 0.00000 0.00000 0.99999
Feb-09 0.00000 0.00000 0.00000 1.00000
Mar-09 0.00001 0.00000 0.00000 0.99999
Apr-09 0.00001 0.00000 0.00000 0.99999
May-09 0.00001 0.00000 0.00000 0.99999
Jun-09 0.00000 0.00000 0.00000 1.00000
Jul-09 0.00000 0.00000 0.00000 1.00000

Aug-09 0.00000 0.00000 0.00000 1.00000
Sep-09 0.00000 0.00000 0.00000 0.99999
Oct-09 0.00000 0.00000 0.00000 1.00000
Nov-09 0.00000 0.00000 0.00000 0.99999
Dec-09 0.00000 0.00000 0.00000 1.00000
Jan-10 0.00000 0.00000 0.00000 1.00000
Feb-10 0.00000 0.00000 0.00000 1.00000
Mar-10 0.00000 0.00000 0.00000 1.00000
Apr-10 0.00000 0.00000 0.00000 1.00000
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Table M.3: Optimal Kelly weights

May-10 0.00000 0.00000 0.00000 1.00000
Jun-10 0.00000 0.00000 0.00000 1.00000
Jul-10 0.00000 0.00000 0.00000 1.00000

Aug-10 0.00000 0.00000 0.00000 1.00000
Sep-10 0.00000 0.00000 0.00000 1.00000
Oct-10 0.00000 0.00000 0.00000 1.00000
Nov-10 0.00000 0.00000 0.00000 1.00000
Dec-10 0.00000 0.00000 0.00000 1.00000
Jan-11 0.00000 0.00000 0.00000 1.00000
Feb-11 0.00000 0.00000 0.00000 1.00000
Mar-11 0.00000 0.00000 0.00000 1.00000
Apr-11 0.00000 0.00000 0.00000 1.00000
May-11 0.00000 0.00000 0.00000 1.00000
Jun-11 0.00000 0.00000 0.00000 1.00000
Jul-11 0.00000 0.00000 0.00000 1.00000

Aug-11 0.00000 0.00000 0.00000 1.00000
Sep-11 0.00000 0.00000 0.00000 1.00000
Oct-11 0.00000 0.00000 0.00000 1.00000
Nov-11 0.00000 0.00000 0.00000 1.00000
Dec-11 0.00000 0.00000 0.00000 1.00000
Jan-12 0.00000 0.00000 0.00000 1.00000
Feb-12 0.00000 0.00000 0.00000 1.00000
Mar-12 0.00000 0.00000 0.00000 1.00000
Apr-12 0.00000 0.00000 0.00000 1.00000
May-12 0.00000 0.00000 0.00000 1.00000
Jun-12 0.00000 0.00000 0.00000 1.00000
Jul-12 0.00000 0.00000 0.00000 1.00000

Aug-12 0.00000 0.00000 0.00000 1.00000
Sep-12 0.00000 0.00000 0.00000 1.00000
Oct-12 0.00000 0.00000 0.00000 1.00000
Nov-12 0.00000 0.00000 0.00000 1.00000
Dec-12 0.00000 0.00000 0.00000 1.00000
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Table M.4: MVO weights maximising gain

Date MN Index Pairs MN Stock Pairs Long Only Momentum

Apr-05 0.00000 1.00000 0.00000 0.00000
May-05 0.00000 1.00000 0.00000 0.00000
Jun-05 0.00000 0.00000 1.00000 0.00000
Jul-05 0.00000 0.00000 1.00000 0.00000

Aug-05 0.00000 0.00000 1.00000 0.00000
Sep-05 0.00000 0.00000 1.00000 0.00000
Oct-05 0.00000 0.00000 1.00000 0.00000
Nov-05 0.00000 0.00000 1.00000 0.00000
Dec-05 0.00000 0.00000 1.00000 0.00000
Jan-06 0.00000 0.00000 1.00000 0.00000
Feb-06 0.00000 0.00000 1.00000 0.00000
Mar-06 0.00000 0.00000 1.00000 0.00000
Apr-06 0.00000 0.00000 1.00000 0.00000
May-06 0.00000 0.00000 1.00000 0.00000
Jun-06 0.00000 0.00000 1.00000 0.00000
Jul-06 0.00000 0.00000 1.00000 0.00000

Aug-06 0.00000 0.00000 1.00000 0.00000
Sep-06 0.00000 0.00000 1.00000 0.00000
Oct-06 0.00000 0.00000 1.00000 0.00000
Nov-06 0.00000 0.00000 1.00000 0.00000
Dec-06 0.00000 0.00000 1.00000 0.00000
Jan-07 0.00000 0.00000 1.00000 0.00000
Feb-07 0.00000 0.00000 1.00000 0.00000
Mar-07 0.00000 0.00000 1.00000 0.00000
Apr-07 0.00000 0.00000 1.00000 0.00000
May-07 0.00000 0.00000 1.00000 0.00000
Jun-07 0.00000 0.00000 1.00000 0.00000
Jul-07 0.00000 0.00000 1.00000 0.00000

Aug-07 0.00000 0.00000 1.00000 0.00000
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Table M.5: MVO weights maximising gain

Sep-07 0.00000 0.00000 1.00000 0.00000
Oct-07 0.00000 0.00000 0.00000 1.00000
Nov-07 0.00000 0.00000 0.00000 1.00000
Dec-07 0.00000 0.00000 0.00000 1.00000
Jan-08 0.00000 0.00000 0.00000 1.00000
Feb-08 0.00000 0.00000 0.00000 1.00000
Mar-08 0.00000 0.00000 0.00000 1.00000
Apr-08 0.00000 0.00000 0.00000 1.00000
May-08 0.00000 0.00000 0.00000 1.00000
Jun-08 0.00000 0.00000 0.00000 1.00000
Jul-08 0.00000 0.00000 0.00000 1.00000

Aug-08 0.00000 0.00000 0.00000 1.00000
Sep-08 0.00000 0.00000 0.00000 1.00000
Oct-08 0.00000 0.00000 0.00000 1.00000
Nov-08 0.00000 0.00000 0.00000 1.00000
Dec-08 0.00000 0.00000 0.00000 1.00000
Jan-09 0.00000 0.00000 0.00000 1.00000
Feb-09 0.00000 0.00000 0.00000 1.00000
Mar-09 0.00000 0.00000 0.00000 1.00000
Apr-09 0.00000 0.00000 0.00000 1.00000
May-09 0.00000 0.00000 0.00000 1.00000
Jun-09 0.00000 0.00000 0.00000 1.00000
Jul-09 0.00000 0.00000 0.00000 1.00000

Aug-09 0.00000 0.00000 0.00000 1.00000
Sep-09 0.00000 0.00000 0.00000 1.00000
Oct-09 0.00000 0.00000 0.00000 1.00000
Nov-09 0.00000 0.00000 0.00000 1.00000
Dec-09 0.00000 0.00000 0.00000 1.00000
Jan-10 0.00000 0.00000 0.00000 1.00000
Feb-10 0.00000 0.00000 0.00000 1.00000
Mar-10 0.00000 0.00000 0.00000 1.00000
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Table M.6: MVO weights maximising gain

Apr-10 0.00000 0.00000 0.00000 1.00000
May-10 0.00000 0.00000 0.00000 1.00000
Jun-10 0.00000 0.00000 0.00000 1.00000
Jul-10 0.00000 0.00000 0.00000 1.00000

Aug-10 0.00000 0.00000 0.00000 1.00000
Sep-10 0.00000 0.00000 0.00000 1.00000
Oct-10 0.00000 0.00000 0.00000 1.00000
Nov-10 0.00000 0.00000 0.00000 1.00000
Dec-10 0.00000 0.00000 0.00000 1.00000
Jan-11 0.00000 0.00000 0.00000 1.00000
Feb-11 0.00000 0.00000 0.00000 1.00000
Mar-11 0.00000 0.00000 0.00000 1.00000
Apr-11 0.00000 0.00000 0.00000 1.00000
May-11 0.00000 0.00000 0.00000 1.00000
Jun-11 0.00000 0.00000 0.00000 1.00000
Jul-11 0.00000 0.00000 0.00000 1.00000

Aug-11 0.00000 0.00000 0.00000 1.00000
Sep-11 0.00000 0.00000 0.00000 1.00000
Oct-11 0.00000 0.00000 0.00000 1.00000
Nov-11 0.00000 0.00000 0.00000 1.00000
Dec-11 0.00000 0.00000 0.00000 1.00000
Jan-12 0.00000 0.00000 0.00000 1.00000
Feb-12 0.00000 0.00000 0.00000 1.00000
Mar-12 0.00000 0.00000 0.00000 1.00000
Apr-12 0.00000 0.00000 0.00000 1.00000
May-12 0.00000 0.00000 0.00000 1.00000
Jun-12 0.00000 0.00000 0.00000 1.00000
Jul-12 0.00000 0.00000 0.00000 1.00000

Aug-12 0.00000 0.00000 0.00000 1.00000
Sep-12 0.00000 0.00000 0.00000 1.00000
Oct-12 0.00000 0.00000 0.00000 1.00000
Nov-12 0.00000 0.00000 0.00000 1.00000
Dec-12 0.00000 0.00000 0.00000 1.00000
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FTSE 100 Stocks

List of stocks that make up the FTSE 100.

165



Appendix N FTSE 100 Stocks 166

Table N.1: FTSE 100 stocks

Number Ticker Number Ticker Number Ticker

1 AAL LN Equity 34 FRES LN Equity 67 RDSA LN Equity
2 ABF LN Equity 35 GFS LN Equity 68 RDSB LN Equity
3 ADM LN Equity 36 GKN LN Equity 69 REL LN Equity
4 ADN LN Equity 37 GLEN LN Equity 70 REX LN Equity
5 AGK LN Equity 38 GSK LN Equity 71 RIO LN Equity
6 AMEC LN Equity 39 HL/ LN Equity 72 RR/ LN Equity
7 ANTO LN Equity 40 HMSO LN Equity 73 RRS LN Equity
8 ARM LN Equity 41 HSBA LN Equity 74 RSA LN Equity
9 AV/ LN Equity 42 IAG LN Equity 75 RSL LN Equity

10 AZN LN Equity 43 IHG LN Equity 76 SAB LN Equity
11 BA/ LN Equity 44 IMI LN Equity 77 SBRY LN Equity
12 BAB LN Equity 45 IMT LN Equity 78 SDR LN Equity
13 BARC LN Equity 46 ITRK LN Equity 79 SGE LN Equity
14 BATS LN Equity 47 ITV LN Equity 80 SHP LN Equity
15 BG/ LN Equity 48 JMAT LN Equity 81 SL/ LN Equity
16 BLND LN Equity 49 KGF LN Equity 82 SMIN LN Equity
17 BLT LN Equity 50 LAND LN Equity 83 SN/ LN Equity
18 BNZL LN Equity 51 LGEN LN Equity 84 SRP LN Equity
19 BP/ LN Equity 52 LLOY LN Equity 85 SSE LN Equity
20 BRBY LN Equity 53 LSE LN Equity 86 STAN LN Equity
21 BSY LN Equity 54 MGGT LN Equity 87 SVT LN Equity
22 BT/A LN Equity 55 MKS LN Equity 88 TATE LN Equity
23 CCL LN Equity 56 MRO LN Equity 89 TLW LN Equity
24 CNA LN Equity 57 MRW LN Equity 90 TSCO LN Equity
25 CPG LN Equity 58 NG/ LN Equity 91 TT/ LN Equity
26 CPI LN Equity 59 NXT LN Equity 92 ULVR LN Equity
27 CRDA LN Equity 60 OML LN Equity 93 UU/ LN Equity
28 CRH LN Equity 61 PFC LN Equity 94 VED LN Equity
29 DGE LN Equity 62 POLY LN Equity 95 VOD LN Equity
30 ENRC LN Equity 63 PRU LN Equity 96 WEIR LN Equity
31 EVR LN Equity 64 PSON LN Equity 97 WG/ LN Equity
32 EXPN LN Equity 65 RB/ LN Equity 98 WMH LN Equity
33 EZJ LN Equity 66 RBS LN Equity 99 WOS LN Equity

100 WPP LN Equity
101 WTB LN Equity



Appendix O

European Stocks

Here we present all 250 stocks used in our MN Stocks model:

Table O.1: Largest European stocks

Number Ticker Number Ticker

1 A2A IM Equity 26 MT NA Equity
2 ABG SM Equity 27 ASML NA Equity
3 ABE SM Equity 28 ATL IM Equity
4 ANA SM Equity 29 ATO FP Equity
5 AC FP Equity 30 AGL IM Equity
6 ACE IM Equity 31 CS FP Equity
7 ACX SM Equity 32 CRG IM Equity
8 ACKB BB Equity 33 BMPS IM Equity
9 ACS SM Equity 34 PMI IM Equity

10 ADS GR Equity 35 BPI PL Equity
11 ADP FP Equity 36 BCP PL Equity
12 AGN NA Equity 37 BES PL Equity
13 AGS SM Equity 38 BP IM Equity
14 AH NA Equity 39 POP SM Equity
15 AF FP Equity 40 SAB SM Equity
16 AI FP Equity 41 SAN SM Equity
17 AKZA NA Equity 42 BVA SM Equity
18 ALB SM Equity 43 BTO SM Equity
19 ALU FP Equity 44 BKIR ID Equity
20 ALV GR Equity 45 BKT SM Equity
21 ALBK ID Equity 46 BAS GR Equity
22 ALPHA GA Equity 47 BAYN GR Equity
23 ALO FP Equity 48 BMW GR Equity
24 ANDR AV Equity 49 BBVA SM Equity
25 ABI BB Equity 50 BEI GR Equity
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Table O.2: Largest European stocks

Number Ticker Number Ticker

51 BEKB BB Equity 76 CBK GR Equity
52 BELG BB Equity 77 CON GR Equity
53 BB FP Equity 78 ACA FP Equity
54 BIM FP Equity 79 CVAL IM Equity
55 BNP FP Equity 80 CRH ID Equity
56 BME SM Equity 81 CRI SM Equity
57 GBB FP Equity 82 DAI GR Equity
58 EN FP Equity 83 BN FP Equity
59 BRI PL Equity 84 DSY FP Equity
60 BVI FP Equity 85 DELB BB Equity
61 BZU IM Equity 86 DBK GR Equity
62 CPR IM Equity 87 DB1 GR Equity
63 CAP FP Equity 88 LHA GR Equity
64 CA FP Equity 89 DPW GR Equity
65 CO FP Equity 90 DPB GR Equity
66 GCO SM Equity 91 DTE GR Equity
67 CLS1 GR Equity 92 DEXB BB Equity
68 CEP SM Equity 93 DSM NA Equity
69 CDI FP Equity 94 EOAN GR Equity
70 CMA FP Equity 95 EAD FP Equity
71 CPR PL Equity 96 EVA SM Equity
72 NAT BB Equity 97 EDF FP Equity
73 CNP FP Equity 98 EEN FP Equity
74 EEEK GA Equity 99 EDN IM Equity
75 COLR BB Equity 100 EDP PL Equity
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Table O.3: Largest European stocks

Number Ticker Number Ticker

101 EDPR PL Equity 126 FTE FP Equity
102 EUROB GA Equity 127 FRA GR Equity
103 FGR FP Equity 128 FME GR Equity
104 ELN ID Equity 129 FRE GR Equity
105 ELI1V FH Equity 130 GALP PL Equity
106 ENG SM Equity 131 GAM SM Equity
107 ELE SM Equity 132 GAS SM Equity
108 ENEL IM Equity 133 GSZ FP Equity
109 ENI IM Equity 134 G1A GR Equity
110 ERA FP Equity 135 GTO FP Equity
111 ERG IM Equity 136 G IM Equity
112 EBS AV Equity 137 GA FP Equity
113 EI FP Equity 138 GRF SM Equity
114 ELE FP Equity 139 GBLB BB Equity
115 RF FP Equity 140 HHFA GR Equity
116 ETL FP Equity 141 HNR1 GR Equity
117 EVN AV Equity 142 HEI GR Equity
118 EXO IM Equity 143 HEIO NA Equity
119 FCC SM Equity 144 HEIA NA Equity
120 FER SM Equity 145 ELPE GA Equity
121 F IM Equity 146 HTO GA Equity
122 FIE GR Equity 147 HER IM Equity
123 FNC IM Equity 148 RMS FP Equity
124 FORB BB Equity 149 HOT GR Equity
125 FUM1V FH Equity 150 IBR SM Equity
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Table O.4: Largest European stocks

Number Ticker Number Ticker

151 IBE SM Equity 176 LUX IM Equity
152 IBLA SM Equity 177 MC FP Equity
153 ILD FP Equity 178 MMT FP Equity
154 NK FP Equity 179 MAN GR Equity
155 IEA AV Equity 180 MAP SM Equity
156 ITX SM Equity 181 MIG GA Equity
157 IDR SM Equity 182 MS IM Equity
158 IFX GR Equity 183 MB IM Equity
159 ISP IM Equity 184 MED IM Equity
160 IPN FP Equity 185 MRK GR Equity
161 IT IM Equity 186 MEO GR Equity
162 DEC FP Equity 187 MEO1V FH Equity
163 JMT PL Equity 188 ML FP Equity
164 SDF GR Equity 189 MOBB BB Equity
165 KBC BB Equity 190 MUV2 GR Equity
166 KYG ID Equity 191 KN FP Equity
167 KNEBV FH Equity 192 ETE GA Equity
168 KPN NA Equity 193 NEO FP Equity
169 OR FP Equity 194 NES1V FH Equity
170 LG FP Equity 195 NOK1V FH Equity
171 MMB FP Equity 196 NRE1V FH Equity
172 LXS GR Equity 197 VER AV Equity
173 LR FP Equity 198 POST AV Equity
174 LIN GR Equity 199 OMV AV Equity
175 LTO IM Equity 200 OPAP GA Equity



Appendix O European Stocks 171

Table O.5: Largest European stocks

Number Ticker Number Ticker

201 OUT1V FH Equity 226 RWE GR Equity
202 PAJ FP Equity 227 RYA ID Equity
203 PLT IM Equity 228 SYV SM Equity
204 RI FP Equity 229 SAF FP Equity
205 UG FP Equity 230 SGO FP Equity
206 PHIA NA Equity 231 SPM IM Equity
207 TPEIR GA Equity 232 SZG GR Equity
208 POH1S FH Equity 233 SAMAS FH Equity
209 PTC PL Equity 234 SAN FP Equity
210 PP FP Equity 235 SAA1V FH Equity
211 PSG SM Equity 236 SAP GR Equity
212 PRY IM Equity 237 SRS IM Equity
213 PPC GA Equity 238 SBMO NA Equity
214 PUB FP Equity 239 SU FP Equity
215 PUM GR Equity 240 SCR FP Equity
216 RIBH AV Equity 241 SK FP Equity
217 RAND NA Equity 242 SIE GR Equity
218 RTRKS FH Equity 243 SKYD GR Equity
219 REE SM Equity 244 S92 GR Equity
220 REN NA Equity 245 SRG IM Equity
221 REIN LX Equity 246 GLE FP Equity
222 RNO FP Equity 247 ARR FP Equity
223 REP SM Equity 248 SW FP Equity
224 RXL FP Equity 249 SOF BB Equity
225 RHK GR Equity 250 SOW GR Equity
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Appendix Q

List of EU all Stock Pairs

This list all the sector pairs before they get short listed.
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Table Q.1: EU stock pairs

EAD FP Equity FNC IM Equity

EAD FP Equity SAF FP Equity
EAD FP Equity HO FP Equity
FNC IM Equity SAF FP Equity
FNC IM Equity HO FP Equity
SAF FP Equity HO FP Equity

BMW GR Equity DAI GR Equity
BMW GR Equity F IM Equity
BMW GR Equity UG FP Equity
BMW GR Equity RNO FP Equity
BMW GR Equity VOW GR Equity

DAI GR Equity F IM Equity
DAI GR Equity UG FP Equity
DAI GR Equity RNO FP Equity
DAI GR Equity VOW GR Equity

F IM Equity UG FP Equity
F IM Equity RNO FP Equity
F IM Equity VOW GR Equity

UG FP Equity RNO FP Equity
UG FP Equity VOW GR Equity

RNO FP Equity VOW GR Equity
CON GR Equity ML FP Equity
GAM SM Equity S92 GR Equity
GAM SM Equity SWV GR Equity

S92 GR Equity SWV GR Equity
HEIO NA Equity HEIA NA Equity
HEIO NA Equity RI FP Equity
HEIO NA Equity CPR IM Equity
HEIA NA Equity RI FP Equity
HEIA NA Equity CPR IM Equity
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Table Q.2: EU stock pairs

RI FP Equity CPR IM Equity

AKZA NA Equity BAS GR Equity
AKZA NA Equity LXS GR Equity
AKZA NA Equity WCH GR Equity
AKZA NA Equity DSM NA Equity

BAS GR Equity LXS GR Equity
BAS GR Equity WCH GR Equity
BAS GR Equity DSM NA Equity
LXS GR Equity WCH GR Equity
LXS GR Equity DSM NA Equity

WCH GR Equity DSM NA Equity
LIN GR Equity AI FP Equity
LIN GR Equity BAYN GR Equity
LIN GR Equity SDF GR Equity

AI FP Equity BAYN GR Equity
AI FP Equity SDF GR Equity

BAYN GR Equity SDF GR Equity
ABG SM Equity ACS SM Equity
ABG SM Equity EN FP Equity
ABG SM Equity FGR FP Equity
ABG SM Equity FCC SM Equity
ABG SM Equity HOT GR Equity
ABG SM Equity SYV SM Equity
ABG SM Equity STR AV Equity
ABG SM Equity DG FP Equity
ACS SM Equity EN FP Equity
ACS SM Equity FGR FP Equity
ACS SM Equity FCC SM Equity
ACS SM Equity HOT GR Equity
ACS SM Equity SYV SM Equity
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Table Q.3: EU stock pairs

ACS SM Equity STR AV Equity

ACS SM Equity DG FP Equity
EN FP Equity FGR FP Equity
EN FP Equity FCC SM Equity
EN FP Equity HOT GR Equity
EN FP Equity SYV SM Equity
EN FP Equity STR AV Equity
EN FP Equity DG FP Equity

FGR FP Equity FCC SM Equity
FGR FP Equity HOT GR Equity
FGR FP Equity SYV SM Equity
FGR FP Equity STR AV Equity
FGR FP Equity DG FP Equity
FCC SM Equity HOT GR Equity
FCC SM Equity SYV SM Equity
FCC SM Equity STR AV Equity
FCC SM Equity DG FP Equity
HOT GR Equity SYV SM Equity
HOT GR Equity STR AV Equity
HOT GR Equity DG FP Equity
SYV SM Equity STR AV Equity
SYV SM Equity DG FP Equity
STR AV Equity DG FP Equity
BZU IM Equity HEI GR Equity
BZU IM Equity IT IM Equity
BZU IM Equity LG FP Equity
HEI GR Equity IT IM Equity
HEI GR Equity LG FP Equity

IT IM Equity LG FP Equity
SGO FP Equity TRE SM Equity
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Table Q.4: EU stock pairs

SGO FP Equity ANA SM Equity

TRE SM Equity ANA SM Equity
LR FP Equity PRY IM Equity
LR FP Equity SU FP Equity

PRY IM Equity SU FP Equity
ALB SM Equity CRI SM Equity
ALB SM Equity RF FP Equity
ALB SM Equity EXO IM Equity
CRI SM Equity RF FP Equity
CRI SM Equity EXO IM Equity

BME SM Equity DB1 GR Equity
FTE FP Equity KPN NA Equity
FTE FP Equity TIT IM Equity
FTE FP Equity TEF SM Equity
FTE FP Equity TKA AV Equity

KPN NA Equity TIT IM Equity
KPN NA Equity TEF SM Equity
KPN NA Equity TKA AV Equity

TIT IM Equity TEF SM Equity
TIT IM Equity TKA AV Equity

TEF SM Equity TKA AV Equity
CA FP Equity CLS1 GR Equity
AH NA Equity CO FP Equity

CRG IM Equity BMPS IM Equity
CRG IM Equity PMI IM Equity
CRG IM Equity BP IM Equity
CRG IM Equity POP SM Equity
CRG IM Equity SAB SM Equity
CRG IM Equity SAN SM Equity
CRG IM Equity BKT SM Equity
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Table Q.5: EU stock pairs

CRG IM Equity BBVA SM Equity

CRG IM Equity BNP FP Equity
CRG IM Equity CBK GR Equity
CRG IM Equity ACA FP Equity
CRG IM Equity DBK GR Equity
CRG IM Equity EBS AV Equity
CRG IM Equity ISP IM Equity
CRG IM Equity MB IM Equity
CRG IM Equity KN FP Equity
CRG IM Equity GLE FP Equity
CRG IM Equity UBI IM Equity
CRG IM Equity UCG IM Equity
CRG IM Equity BTO SM Equity
CRG IM Equity DPB GR Equity

BMPS IM Equity PMI IM Equity
BMPS IM Equity BP IM Equity
BMPS IM Equity POP SM Equity
BMPS IM Equity SAB SM Equity
BMPS IM Equity SAN SM Equity
BMPS IM Equity BKT SM Equity
BMPS IM Equity BBVA SM Equity
BMPS IM Equity BNP FP Equity
BMPS IM Equity CBK GR Equity
BMPS IM Equity ACA FP Equity
BMPS IM Equity DBK GR Equity
BMPS IM Equity EUROB GA Equity
BMPS IM Equity EBS AV Equity
BMPS IM Equity ISP IM Equity
BMPS IM Equity MB IM Equity
BMPS IM Equity KN FP Equity
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Table Q.6: EU stock pairs

BMPS IM Equity GLE FP Equity

BMPS IM Equity UBI IM Equity
BMPS IM Equity UCG IM Equity
BMPS IM Equity BTO SM Equity
BMPS IM Equity DPB GR Equity

PMI IM Equity BP IM Equity
PMI IM Equity POP SM Equity
PMI IM Equity SAB SM Equity
PMI IM Equity SAN SM Equity
PMI IM Equity BKT SM Equity
PMI IM Equity BBVA SM Equity
PMI IM Equity BNP FP Equity
PMI IM Equity CBK GR Equity
PMI IM Equity ACA FP Equity
PMI IM Equity DBK GR Equity
PMI IM Equity EUROB GA Equity
PMI IM Equity EBS AV Equity
PMI IM Equity ISP IM Equity
PMI IM Equity MB IM Equity
PMI IM Equity KN FP Equity
PMI IM Equity GLE FP Equity
PMI IM Equity UBI IM Equity
PMI IM Equity UCG IM Equity
PMI IM Equity BTO SM Equity
PMI IM Equity DPB GR Equity

BP IM Equity POP SM Equity
BP IM Equity SAB SM Equity
BP IM Equity SAN SM Equity
BP IM Equity BKT SM Equity
BP IM Equity BBVA SM Equity
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Table Q.7: EU stock pairs

BP IM Equity BNP FP Equity

BP IM Equity CBK GR Equity
BP IM Equity ACA FP Equity
BP IM Equity DBK GR Equity
BP IM Equity EUROB GA Equity
BP IM Equity EBS AV Equity
BP IM Equity ISP IM Equity
BP IM Equity MB IM Equity
BP IM Equity KN FP Equity
BP IM Equity GLE FP Equity
BP IM Equity UBI IM Equity
BP IM Equity UCG IM Equity
BP IM Equity BTO SM Equity
BP IM Equity DPB GR Equity

POP SM Equity SAB SM Equity
POP SM Equity SAN SM Equity
POP SM Equity BKT SM Equity
POP SM Equity BBVA SM Equity
POP SM Equity BNP FP Equity
POP SM Equity CBK GR Equity

BP IM Equity POP SM Equity
BP IM Equity SAB SM Equity
BP IM Equity SAN SM Equity
BP IM Equity BKT SM Equity
BP IM Equity BBVA SM Equity
BP IM Equity BNP FP Equity
BP IM Equity CBK GR Equity
BP IM Equity ACA FP Equity
BP IM Equity DBK GR Equity
BP IM Equity EUROB GA Equity
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Table Q.8: EU stock pairs

BP IM Equity EBS AV Equity

BP IM Equity ISP IM Equity
BP IM Equity MB IM Equity
BP IM Equity KN FP Equity
BP IM Equity GLE FP Equity
BP IM Equity UBI IM Equity
BP IM Equity UCG IM Equity
BP IM Equity BTO SM Equity
BP IM Equity DPB GR Equity

POP SM Equity SAB SM Equity
POP SM Equity SAN SM Equity
POP SM Equity BKT SM Equity
POP SM Equity BBVA SM Equity
POP SM Equity BNP FP Equity
POP SM Equity CBK GR Equity

BBVA SM Equity UBI IM Equity
BBVA SM Equity UCG IM Equity
BBVA SM Equity BTO SM Equity
BBVA SM Equity DPB GR Equity

BNP FP Equity CBK GR Equity
BNP FP Equity ACA FP Equity
BNP FP Equity DBK GR Equity
BNP FP Equity EUROB GA Equity
BNP FP Equity EBS AV Equity
BNP FP Equity ISP IM Equity
BNP FP Equity MB IM Equity
BNP FP Equity KN FP Equity
BNP FP Equity GLE FP Equity
BNP FP Equity UBI IM Equity
BNP FP Equity UCG IM Equity
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Table Q.9: EU stock pairs

BNP FP Equity BTO SM Equity

BNP FP Equity DPB GR Equity
CBK GR Equity ACA FP Equity
CBK GR Equity DBK GR Equity
CBK GR Equity EUROB GA Equity
CBK GR Equity EBS AV Equity
CBK GR Equity ISP IM Equity
CBK GR Equity MB IM Equity
CBK GR Equity KN FP Equity
CBK GR Equity GLE FP Equity
CBK GR Equity UBI IM Equity
CBK GR Equity UCG IM Equity
CBK GR Equity BTO SM Equity
CBK GR Equity DPB GR Equity
ACA FP Equity DBK GR Equity
ACA FP Equity EUROB GA Equity
ACA FP Equity EBS AV Equity
ACA FP Equity ISP IM Equity
ACA FP Equity KBC BB Equity
ACA FP Equity MB IM Equity
ACA FP Equity KN FP Equity
ACA FP Equity GLE FP Equity
ACA FP Equity UBI IM Equity
ACA FP Equity UCG IM Equity
ACA FP Equity BTO SM Equity
ACA FP Equity DPB GR Equity
DBK GR Equity EUROB GA Equity
DBK GR Equity EBS AV Equity
DBK GR Equity ISP IM Equity
DBK GR Equity MB IM Equity
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Table Q.10: EU stock pairs

DBK GR Equity KN FP Equity

DBK GR Equity GLE FP Equity
DBK GR Equity UBI IM Equity
DBK GR Equity UCG IM Equity
DBK GR Equity BTO SM Equity
DBK GR Equity DPB GR Equity

EUROB GA Equity EBS AV Equity
EUROB GA Equity ISP IM Equity
EUROB GA Equity MB IM Equity
EUROB GA Equity KN FP Equity
EUROB GA Equity GLE FP Equity
EUROB GA Equity UBI IM Equity
EUROB GA Equity UCG IM Equity
EUROB GA Equity BTO SM Equity
EUROB GA Equity DPB GR Equity

EBS AV Equity ISP IM Equity
EBS AV Equity MB IM Equity
EBS AV Equity KN FP Equity
EBS AV Equity GLE FP Equity
EBS AV Equity UBI IM Equity
EBS AV Equity UCG IM Equity
EBS AV Equity BTO SM Equity
EBS AV Equity DPB GR Equity
ISP IM Equity MB IM Equity
ISP IM Equity KN FP Equity
ISP IM Equity GLE FP Equity
ISP IM Equity UBI IM Equity
ISP IM Equity UCG IM Equity
ISP IM Equity BTO SM Equity
ISP IM Equity DPB GR Equity
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Table Q.11: EU stock pairs

MB IM Equity KN FP Equity

MB IM Equity GLE FP Equity
MB IM Equity UBI IM Equity
MB IM Equity UCG IM Equity
MB IM Equity BTO SM Equity
MB IM Equity DPB GR Equity
KN FP Equity GLE FP Equity
KN FP Equity UBI IM Equity
KN FP Equity UCG IM Equity
KN FP Equity BTO SM Equity
KN FP Equity DPB GR Equity

GLE FP Equity UBI IM Equity
GLE FP Equity UCG IM Equity
GLE FP Equity BTO SM Equity
GLE FP Equity DPB GR Equity
UBI IM Equity UCG IM Equity
UBI IM Equity BTO SM Equity
UBI IM Equity DPB GR Equity

UCG IM Equity BTO SM Equity
UCG IM Equity DPB GR Equity
BTO SM Equity DPB GR Equity

BN FP Equity EVA SM Equity
BN FP Equity PLT IM Equity

EVA SM Equity PLT IM Equity
IBE SM Equity VER AV Equity
IBE SM Equity REE SM Equity
IBE SM Equity TRN IM Equity
IBE SM Equity ELE SM Equity
IBE SM Equity ENEL IM Equity
IBE SM Equity EDF FP Equity
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Table Q.12: EU stock pairs

IBE SM Equity EOAN GR Equity

IBE SM Equity EVN AV Equity
VER AV Equity REE SM Equity
VER AV Equity TRN IM Equity
VER AV Equity ELE SM Equity
VER AV Equity ENEL IM Equity
VER AV Equity EDF FP Equity
VER AV Equity EOAN GR Equity
VER AV Equity EVN AV Equity
REE SM Equity TRN IM Equity
REE SM Equity ELE SM Equity
REE SM Equity ENEL IM Equity
REE SM Equity EDF FP Equity
REE SM Equity EOAN GR Equity
REE SM Equity EVN AV Equity
TRN IM Equity ELE SM Equity
TRN IM Equity ENEL IM Equity
TRN IM Equity EDF FP Equity
TRN IM Equity EOAN GR Equity
TRN IM Equity EVN AV Equity
ELE SM Equity ENEL IM Equity
ELE SM Equity EDF FP Equity
ELE SM Equity EOAN GR Equity
ELE SM Equity EVN AV Equity

ENEL IM Equity EDF FP Equity
ENEL IM Equity EOAN GR Equity
ENEL IM Equity EVN AV Equity

EDF FP Equity EOAN GR Equity
EDF FP Equity EVN AV Equity

EOAN GR Equity EVN AV Equity
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Table Q.13: EU stock pairs

ENG SM Equity SRG IM Equity

ENG SM Equity GAS SM Equity
SRG IM Equity GAS SM Equity
A2A IM Equity ACE IM Equity
A2A IM Equity GSZ FP Equity
A2A IM Equity HER IM Equity
A2A IM Equity RWE GR Equity
A2A IM Equity VIE FP Equity
ACE IM Equity GSZ FP Equity
ACE IM Equity HER IM Equity
ACE IM Equity RWE GR Equity
ACE IM Equity VIE FP Equity
GSZ FP Equity HER IM Equity
GSZ FP Equity RWE GR Equity
GSZ FP Equity VIE FP Equity
HER IM Equity RWE GR Equity
HER IM Equity VIE FP Equity

RWE GR Equity VIE FP Equity
EDN IM Equity EEN FP Equity
EDN IM Equity IBR SM Equity
EDN IM Equity AGS SM Equity
EEN FP Equity IBR SM Equity
EEN FP Equity AGS SM Equity
IBR SM Equity AGS SM Equity
FIE GR Equity ITX SM Equity
FIE GR Equity MEO GR Equity
FIE GR Equity PP FP Equity
ITX SM Equity MEO GR Equity
ITX SM Equity PP FP Equity

MEO GR Equity PP FP Equity
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Table Q.14: EU stock pairs

G1A GR Equity VK FP Equity

G1A GR Equity ZOT SM Equity
G1A GR Equity ANDR AV Equity
G1A GR Equity SIE GR Equity
G1A GR Equity MAN GR Equity
G1A GR Equity ALO FP Equity

VK FP Equity ZOT SM Equity
VK FP Equity ANDR AV Equity
VK FP Equity SIE GR Equity
VK FP Equity MAN GR Equity
VK FP Equity ALO FP Equity

ZOT SM Equity ANDR AV Equity
ZOT SM Equity SIE GR Equity
ZOT SM Equity MAN GR Equity
ZOT SM Equity ALO FP Equity

ANDR AV Equity SIE GR Equity
ANDR AV Equity MAN GR Equity
ANDR AV Equity ALO FP Equity

SIE GR Equity MAN GR Equity
SIE GR Equity ALO FP Equity

MAN GR Equity ALO FP Equity
BIM FP Equity EI FP Equity
BIM FP Equity FME GR Equity
BIM FP Equity FRE GR Equity
BIM FP Equity RHK GR Equity

EI FP Equity FME GR Equity
EI FP Equity FRE GR Equity
EI FP Equity RHK GR Equity

FME GR Equity FRE GR Equity
FME GR Equity RHK GR Equity
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Table Q.15: EU stock pairs

FRE GR Equity RHK GR Equity

BB FP Equity SK FP Equity
TKA GR Equity ACX SM Equity
TKA GR Equity MT NA Equity
TKA GR Equity SZG GR Equity
TKA GR Equity VOE AV Equity
TKA GR Equity TEN IM Equity
TKA GR Equity ERA FP Equity
ACX SM Equity MT NA Equity
ACX SM Equity SZG GR Equity
ACX SM Equity VOE AV Equity
ACX SM Equity TEN IM Equity
ACX SM Equity ERA FP Equity
MT NA Equity SZG GR Equity
MT NA Equity VOE AV Equity
MT NA Equity TEN IM Equity
MT NA Equity ERA FP Equity

SZG GR Equity VOE AV Equity
SZG GR Equity TEN IM Equity
SZG GR Equity ERA FP Equity
VOE AV Equity TEN IM Equity
VOE AV Equity ERA FP Equity
TEN IM Equity ERA FP Equity
ARR FP Equity ABE SM Equity
ARR FP Equity ATL IM Equity
ARR FP Equity FER SM Equity
ABE SM Equity ATL IM Equity
ABE SM Equity FER SM Equity
ATL IM Equity FER SM Equity

DPW GR Equity TNT NA Equity
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Table Q.16: EU stock pairs

DPW GR Equity POST AV Equity

TNT NA Equity POST AV Equity
HHFA GR Equity VPK NA Equity

ADP FP Equity FRA GR Equity
PHIA NA Equity UBI FP Equity
AGN NA Equity CNP FP Equity
AGN NA Equity MED IM Equity
CNP FP Equity MED IM Equity
ALV GR Equity CS FP Equity
ALV GR Equity GCO SM Equity
ALV GR Equity G IM Equity
ALV GR Equity MAP SM Equity

CS FP Equity GCO SM Equity
CS FP Equity G IM Equity
CS FP Equity MAP SM Equity

GCO SM Equity G IM Equity
GCO SM Equity MAP SM Equity

G IM Equity MAP SM Equity
MUV2 GR Equity SCR FP Equity
MUV2 GR Equity HNR1 GR Equity
MUV2 GR Equity VIG AV Equity
MUV2 GR Equity ELE FP Equity

SCR FP Equity HNR1 GR Equity
SCR FP Equity VIG AV Equity
SCR FP Equity ELE FP Equity

HNR1 GR Equity VIG AV Equity
HNR1 GR Equity ELE FP Equity

VIG AV Equity ELE FP Equity
CEP SM Equity ENI IM Equity
CEP SM Equity OMV AV Equity
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Table Q.17: EU stock pairs

CEP SM Equity REP SM Equity

CEP SM Equity FP FP Equity
ENI IM Equity OMV AV Equity
ENI IM Equity REP SM Equity
ENI IM Equity FP FP Equity

OMV AV Equity REP SM Equity
OMV AV Equity FP FP Equity
REP SM Equity FP FP Equity
ERG IM Equity SRS IM Equity
ETL FP Equity SKYD GR Equity
DEC FP Equity PUB FP Equity

MMB FP Equity PAJ FP Equity
MMB FP Equity REN NA Equity
MMB FP Equity WKL NA Equity

PAJ FP Equity REN NA Equity
PAJ FP Equity WKL NA Equity

REN NA Equity WKL NA Equity
MMT FP Equity MS IM Equity
MMT FP Equity TL5 SM Equity
MMT FP Equity TFI FP Equity

MS IM Equity TL5 SM Equity
MS IM Equity TFI FP Equity

TL5 SM Equity TFI FP Equity
GBB FP Equity GA FP Equity
GBB FP Equity SPM IM Equity
GBB FP Equity SBMO NA Equity
GBB FP Equity TEC FP Equity

GA FP Equity SPM IM Equity
GA FP Equity SBMO NA Equity
GA FP Equity TEC FP Equity
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Table Q.18: EU stock pairs

SPM IM Equity SBMO NA Equity

SPM IM Equity TEC FP Equity
SBMO NA Equity TEC FP Equity

ADS GR Equity CDI FP Equity
ADS GR Equity RMS FP Equity
ADS GR Equity LUX IM Equity
ADS GR Equity MC FP Equity
CDI FP Equity RMS FP Equity
CDI FP Equity LUX IM Equity
CDI FP Equity MC FP Equity

RMS FP Equity LUX IM Equity
RMS FP Equity MC FP Equity
LUX IM Equity MC FP Equity
BEI GR Equity OR FP Equity
IPN FP Equity MRK GR Equity
IPN FP Equity SAN FP Equity

MRK GR Equity SAN FP Equity
ATO FP Equity CAP FP Equity
DSY FP Equity SAP GR Equity
ILD FP Equity SOW GR Equity
ILD FP Equity UTDI GR Equity

SOW GR Equity UTDI GR Equity
AF FP Equity LHA GR Equity
AF FP Equity IBLA SM Equity

LHA GR Equity IBLA SM Equity
AGL IM Equity SW FP Equity
FNC IM Equity EAD FP Equity
SAF FP Equity EAD FP Equity
HO FP Equity EAD FP Equity

SAF FP Equity FNC IM Equity
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Table Q.19: EU stock pairs

HO FP Equity FNC IM Equity

HO FP Equity SAF FP Equity
DAI GR Equity BMW GR Equity

F IM Equity BMW GR Equity
UG FP Equity BMW GR Equity

RNO FP Equity BMW GR Equity
VOW GR Equity BMW GR Equity

F IM Equity DAI GR Equity
UG FP Equity DAI GR Equity

RNO FP Equity DAI GR Equity
VOW GR Equity DAI GR Equity

UG FP Equity F IM Equity
RNO FP Equity F IM Equity

VOW GR Equity F IM Equity
RNO FP Equity UG FP Equity

VOW GR Equity UG FP Equity
VOW GR Equity RNO FP Equity

ML FP Equity CON GR Equity
S92 GR Equity GAM SM Equity

SWV GR Equity GAM SM Equity
SWV GR Equity S92 GR Equity
HEIA NA Equity HEIO NA Equity

RI FP Equity HEIO NA Equity
CPR IM Equity HEIO NA Equity

RI FP Equity HEIA NA Equity
CPR IM Equity HEIA NA Equity
CPR IM Equity RI FP Equity
BAS GR Equity AKZA NA Equity
LXS GR Equity AKZA NA Equity

WCH GR Equity AKZA NA Equity
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Table Q.20: EU stock pairs

DSM NA Equity AKZA NA Equity

LXS GR Equity BAS GR Equity
WCH GR Equity BAS GR Equity
DSM NA Equity BAS GR Equity
WCH GR Equity LXS GR Equity
DSM NA Equity LXS GR Equity
DSM NA Equity WCH GR Equity

AI FP Equity LIN GR Equity
BAYN GR Equity LIN GR Equity

SDF GR Equity LIN GR Equity
BAYN GR Equity AI FP Equity

SDF GR Equity AI FP Equity
SDF GR Equity BAYN GR Equity
ACS SM Equity ABG SM Equity

EN FP Equity ABG SM Equity
FGR FP Equity ABG SM Equity
FCC SM Equity ABG SM Equity
HOT GR Equity ABG SM Equity
SYV SM Equity ABG SM Equity
STR AV Equity ABG SM Equity
DG FP Equity ABG SM Equity
EN FP Equity ACS SM Equity

FGR FP Equity ACS SM Equity
FCC SM Equity ACS SM Equity
HOT GR Equity ACS SM Equity
SYV SM Equity ACS SM Equity
STR AV Equity ACS SM Equity
DG FP Equity ACS SM Equity

FGR FP Equity EN FP Equity
FCC SM Equity EN FP Equity



Appendix Q List of EU all Stock Pairs 222

Table Q.21: EU stock pairs

HOT GR Equity EN FP Equity

SYV SM Equity EN FP Equity
STR AV Equity EN FP Equity
DG FP Equity EN FP Equity

FCC SM Equity FGR FP Equity
HOT GR Equity FGR FP Equity
SYV SM Equity FGR FP Equity
STR AV Equity FGR FP Equity
DG FP Equity FGR FP Equity

HOT GR Equity FCC SM Equity
SYV SM Equity FCC SM Equity
STR AV Equity FCC SM Equity
DG FP Equity FCC SM Equity

SYV SM Equity HOT GR Equity
STR AV Equity HOT GR Equity
DG FP Equity HOT GR Equity

STR AV Equity SYV SM Equity
DG FP Equity SYV SM Equity
DG FP Equity STR AV Equity

HEI GR Equity BZU IM Equity
IT IM Equity BZU IM Equity

LG FP Equity BZU IM Equity
IT IM Equity HEI GR Equity

LG FP Equity HEI GR Equity
LG FP Equity IT IM Equity

TRE SM Equity SGO FP Equity
ANA SM Equity SGO FP Equity
ANA SM Equity TRE SM Equity
PRY IM Equity LR FP Equity

SU FP Equity LR FP Equity
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Table Q.22: EU stock pairs

SU FP Equity PRY IM Equity

CRI SM Equity ALB SM Equity
RF FP Equity ALB SM Equity

EXO IM Equity ALB SM Equity
RF FP Equity CRI SM Equity

EXO IM Equity CRI SM Equity
EXO IM Equity RF FP Equity
DB1 GR Equity BME SM Equity
KPN NA Equity FTE FP Equity

TIT IM Equity FTE FP Equity
TEF SM Equity FTE FP Equity
TKA AV Equity FTE FP Equity

TIT IM Equity KPN NA Equity
TEF SM Equity KPN NA Equity
TKA AV Equity KPN NA Equity
TEF SM Equity TIT IM Equity
TKA AV Equity TIT IM Equity
TKA AV Equity TEF SM Equity

CLS1 GR Equity CA FP Equity
CO FP Equity AH NA Equity

BMPS IM Equity CRG IM Equity
PMI IM Equity CRG IM Equity

BP IM Equity CRG IM Equity
POP SM Equity CRG IM Equity
SAB SM Equity CRG IM Equity
SAN SM Equity CRG IM Equity
BKT SM Equity CRG IM Equity

BBVA SM Equity CRG IM Equity
BNP FP Equity CRG IM Equity
CBK GR Equity CRG IM Equity



Appendix Q List of EU all Stock Pairs 224

Table Q.23: EU stock pairs

ACA FP Equity CRG IM Equity

DBK GR Equity CRG IM Equity
EUROB GA Equity CRG IM Equity

EBS AV Equity CRG IM Equity
ISP IM Equity CRG IM Equity
MB IM Equity CRG IM Equity
KN FP Equity CRG IM Equity

GLE FP Equity CRG IM Equity
UBI IM Equity CRG IM Equity

UCG IM Equity CRG IM Equity
BTO SM Equity CRG IM Equity
DPB GR Equity CRG IM Equity
PMI IM Equity BMPS IM Equity

BP IM Equity BMPS IM Equity
POP SM Equity BMPS IM Equity
SAB SM Equity BMPS IM Equity
SAN SM Equity BMPS IM Equity
BKT SM Equity BMPS IM Equity

BBVA SM Equity BMPS IM Equity
BNP FP Equity BMPS IM Equity
CBK GR Equity BMPS IM Equity
ACA FP Equity BMPS IM Equity
DBK GR Equity BMPS IM Equity

EUROB GA Equity BMPS IM Equity
EBS AV Equity BMPS IM Equity
ISP IM Equity BMPS IM Equity
MB IM Equity BMPS IM Equity
KN FP Equity BMPS IM Equity

GLE FP Equity BMPS IM Equity
UBI IM Equity BMPS IM Equity
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Table Q.24: EU stock pairs

UCG IM Equity BMPS IM Equity

BTO SM Equity BMPS IM Equity
DPB GR Equity BMPS IM Equity

BP IM Equity PMI IM Equity
POP SM Equity PMI IM Equity
SAB SM Equity PMI IM Equity
SAN SM Equity PMI IM Equity
BKT SM Equity PMI IM Equity

BBVA SM Equity PMI IM Equity
BNP FP Equity PMI IM Equity
CBK GR Equity PMI IM Equity
ACA FP Equity PMI IM Equity
DBK GR Equity PMI IM Equity

EUROB GA Equity PMI IM Equity
EBS AV Equity PMI IM Equity
ISP IM Equity PMI IM Equity
MB IM Equity PMI IM Equity
KN FP Equity PMI IM Equity

GLE FP Equity PMI IM Equity
UBI IM Equity PMI IM Equity

UCG IM Equity PMI IM Equity
BTO SM Equity PMI IM Equity
DPB GR Equity PMI IM Equity
POP SM Equity BP IM Equity
SAB SM Equity BP IM Equity
SAN SM Equity BP IM Equity
BKT SM Equity BP IM Equity

BBVA SM Equity BP IM Equity
BNP FP Equity BP IM Equity
CBK GR Equity BP IM Equity
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Table Q.25: EU stock pairs

ACA FP Equity BP IM Equity

DBK GR Equity BP IM Equity
EUROB GA Equity BP IM Equity

EBS AV Equity BP IM Equity
ISP IM Equity BP IM Equity
MB IM Equity BP IM Equity
KN FP Equity BP IM Equity

GLE FP Equity BP IM Equity
UBI IM Equity BP IM Equity

UCG IM Equity BP IM Equity
BTO SM Equity BP IM Equity
DPB GR Equity BP IM Equity
SAB SM Equity POP SM Equity
SAN SM Equity POP SM Equity
BKT SM Equity POP SM Equity

BBVA SM Equity POP SM Equity
BNP FP Equity POP SM Equity
CBK GR Equity POP SM Equity
ACA FP Equity POP SM Equity
DBK GR Equity POP SM Equity

EUROB GA Equity POP SM Equity
EBS AV Equity POP SM Equity
ISP IM Equity POP SM Equity
MB IM Equity POP SM Equity
KN FP Equity POP SM Equity

GLE FP Equity POP SM Equity
UBI IM Equity POP SM Equity

UCG IM Equity POP SM Equity
BTO SM Equity POP SM Equity
DPB GR Equity POP SM Equity
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Table Q.26: EU stock pairs

SAN SM Equity SAB SM Equity

BKT SM Equity SAB SM Equity
BBVA SM Equity SAB SM Equity

BNP FP Equity SAB SM Equity
CBK GR Equity SAB SM Equity
ACA FP Equity SAB SM Equity
DBK GR Equity SAB SM Equity

EUROB GA Equity SAB SM Equity
EBS AV Equity SAB SM Equity
ISP IM Equity SAB SM Equity
MB IM Equity SAB SM Equity
KN FP Equity SAB SM Equity

GLE FP Equity SAB SM Equity
UBI IM Equity SAB SM Equity

UCG IM Equity SAB SM Equity
BTO SM Equity SAB SM Equity
DPB GR Equity SAB SM Equity
BKT SM Equity SAN SM Equity

BBVA SM Equity SAN SM Equity
BNP FP Equity SAN SM Equity
CBK GR Equity SAN SM Equity
ACA FP Equity SAN SM Equity
DBK GR Equity SAN SM Equity

EUROB GA Equity SAN SM Equity
EBS AV Equity SAN SM Equity
ISP IM Equity SAN SM Equity
MB IM Equity SAN SM Equity
KN FP Equity SAN SM Equity

GLE FP Equity SAN SM Equity
UBI IM Equity SAN SM Equity



Appendix Q List of EU all Stock Pairs 228

Table Q.27: EU stock pairs

UCG IM Equity SAN SM Equity

BTO SM Equity SAN SM Equity
DPB GR Equity SAN SM Equity
BTO SM Equity DBK GR Equity
DPB GR Equity DBK GR Equity
EBS AV Equity EUROB GA Equity
ISP IM Equity EUROB GA Equity

KBC BB Equity EUROB GA Equity
MB IM Equity EUROB GA Equity
KN FP Equity EUROB GA Equity

GLE FP Equity EUROB GA Equity
UBI IM Equity EUROB GA Equity

UCG IM Equity EUROB GA Equity
BTO SM Equity EUROB GA Equity
DPB GR Equity EUROB GA Equity

ISP IM Equity EBS AV Equity
MB IM Equity EBS AV Equity
KN FP Equity EBS AV Equity

GLE FP Equity EBS AV Equity
UBI IM Equity EBS AV Equity

UCG IM Equity EBS AV Equity
BTO SM Equity EBS AV Equity
DPB GR Equity EBS AV Equity

MB IM Equity ISP IM Equity
KN FP Equity ISP IM Equity

GLE FP Equity ISP IM Equity
UBI IM Equity ISP IM Equity

UCG IM Equity ISP IM Equity
BTO SM Equity ISP IM Equity
DPB GR Equity ISP IM Equity
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Table Q.28: EU stock pairs

KN FP Equity MB IM Equity

GLE FP Equity MB IM Equity
UBI IM Equity MB IM Equity

UCG IM Equity MB IM Equity
BTO SM Equity MB IM Equity
DPB GR Equity MB IM Equity
GLE FP Equity KN FP Equity
UBI IM Equity KN FP Equity

UCG IM Equity KN FP Equity
BTO SM Equity KN FP Equity
DPB GR Equity KN FP Equity

UBI IM Equity GLE FP Equity
UCG IM Equity GLE FP Equity
BTO SM Equity GLE FP Equity
DPB GR Equity GLE FP Equity
UCG IM Equity UBI IM Equity
BTO SM Equity UBI IM Equity
DPB GR Equity UBI IM Equity
BTO SM Equity UCG IM Equity
DPB GR Equity UCG IM Equity
DPB GR Equity BTO SM Equity
EVA SM Equity BN FP Equity
PLT IM Equity BN FP Equity
PLT IM Equity EVA SM Equity

VER AV Equity IBE SM Equity
REE SM Equity IBE SM Equity
TRN IM Equity IBE SM Equity
ELE SM Equity IBE SM Equity

ENEL IM Equity IBE SM Equity
EDF FP Equity IBE SM Equity
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Table Q.29: EU stock pairs

EOAN GR Equity IBE SM Equity

EVN AV Equity IBE SM Equity
REE SM Equity VER AV Equity
TRN IM Equity VER AV Equity
ELE SM Equity VER AV Equity

ENEL IM Equity VER AV Equity
EDF FP Equity VER AV Equity

EOAN GR Equity VER AV Equity
EVN AV Equity VER AV Equity
TRN IM Equity REE SM Equity
ELE SM Equity REE SM Equity

ENEL IM Equity REE SM Equity
EDF FP Equity REE SM Equity

EOAN GR Equity REE SM Equity
EVN AV Equity REE SM Equity
ELE SM Equity TRN IM Equity

ENEL IM Equity TRN IM Equity
EDF FP Equity TRN IM Equity

EOAN GR Equity TRN IM Equity
EVN AV Equity TRN IM Equity

ENEL IM Equity ELE SM Equity
EDF FP Equity ELE SM Equity

EOAN GR Equity ELE SM Equity
EVN AV Equity ELE SM Equity
EDF FP Equity ENEL IM Equity

EOAN GR Equity ENEL IM Equity
EVN AV Equity ENEL IM Equity

EOAN GR Equity EDF FP Equity
EVN AV Equity EDF FP Equity
EVN AV Equity EOAN GR Equity
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Table Q.30: EU stock pairs

SRG IM Equity ENG SM Equity

GAS SM Equity ENG SM Equity
GAS SM Equity SRG IM Equity
ACE IM Equity A2A IM Equity
GSZ FP Equity A2A IM Equity
HER IM Equity A2A IM Equity

RWE GR Equity A2A IM Equity
VIE FP Equity A2A IM Equity
GSZ FP Equity ACE IM Equity
HER IM Equity ACE IM Equity

RWE GR Equity ACE IM Equity
VIE FP Equity ACE IM Equity

HER IM Equity GSZ FP Equity
RWE GR Equity GSZ FP Equity

VIE FP Equity GSZ FP Equity
RWE GR Equity HER IM Equity

VIE FP Equity HER IM Equity
VIE FP Equity RWE GR Equity

EEN FP Equity EDN IM Equity
IBR SM Equity EDN IM Equity
AGS SM Equity EDN IM Equity
IBR SM Equity EEN FP Equity
AGS SM Equity EEN FP Equity
AGS SM Equity IBR SM Equity
ITX SM Equity FIE GR Equity

MEO GR Equity FIE GR Equity
PP FP Equity FIE GR Equity

MEO GR Equity ITX SM Equity
PP FP Equity ITX SM Equity
PP FP Equity MEO GR Equity
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Table Q.31: EU stock pairs

VK FP Equity G1A GR Equity

ZOT SM Equity G1A GR Equity
ANDR AV Equity G1A GR Equity

SIE GR Equity G1A GR Equity
MAN GR Equity G1A GR Equity
ALO FP Equity G1A GR Equity
ZOT SM Equity VK FP Equity

ANDR AV Equity VK FP Equity
SIE GR Equity VK FP Equity

MAN GR Equity VK FP Equity
ALO FP Equity VK FP Equity

ANDR AV Equity ZOT SM Equity
SIE GR Equity ZOT SM Equity

MAN GR Equity ZOT SM Equity
ALO FP Equity ZOT SM Equity
SIE GR Equity ANDR AV Equity

MAN GR Equity ANDR AV Equity
ALO FP Equity ANDR AV Equity

MAN GR Equity SIE GR Equity
ALO FP Equity SIE GR Equity
ALO FP Equity MAN GR Equity

EI FP Equity BIM FP Equity
FME GR Equity BIM FP Equity
FRE GR Equity BIM FP Equity
RHK GR Equity BIM FP Equity
FME GR Equity EI FP Equity
FRE GR Equity EI FP Equity
RHK GR Equity EI FP Equity
FRE GR Equity FME GR Equity
RHK GR Equity FME GR Equity
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Table Q.32: EU stock pairs

RHK GR Equity FRE GR Equity

SK FP Equity BB FP Equity
ACX SM Equity TKA GR Equity
MT NA Equity TKA GR Equity

SZG GR Equity TKA GR Equity
VOE AV Equity TKA GR Equity
TEN IM Equity TKA GR Equity
ERA FP Equity TKA GR Equity
MT NA Equity ACX SM Equity

SZG GR Equity ACX SM Equity
VOE AV Equity ACX SM Equity
TEN IM Equity ACX SM Equity
ERA FP Equity ACX SM Equity
SZG GR Equity MT NA Equity
VOE AV Equity MT NA Equity
TEN IM Equity MT NA Equity
ERA FP Equity MT NA Equity
VOE AV Equity SZG GR Equity
TEN IM Equity SZG GR Equity
ERA FP Equity SZG GR Equity
TEN IM Equity VOE AV Equity
ERA FP Equity VOE AV Equity
ERA FP Equity TEN IM Equity
ABE SM Equity ARR FP Equity
ATL IM Equity ARR FP Equity
FER SM Equity ARR FP Equity
ATL IM Equity ABE SM Equity
FER SM Equity ABE SM Equity
FER SM Equity ATL IM Equity
TNT NA Equity DPW GR Equity
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Table Q.33: EU stock pairs

POST AV Equity DPW GR Equity

POST AV Equity TNT NA Equity
VPK NA Equity HHFA GR Equity
FRA GR Equity ADP FP Equity
UBI FP Equity PHIA NA Equity

CNP FP Equity AGN NA Equity
MED IM Equity AGN NA Equity
MED IM Equity CNP FP Equity

CS FP Equity ALV GR Equity
GCO SM Equity ALV GR Equity

G IM Equity ALV GR Equity
MAP SM Equity ALV GR Equity
GCO SM Equity CS FP Equity

G IM Equity CS FP Equity
MAP SM Equity CS FP Equity

G IM Equity GCO SM Equity
MAP SM Equity GCO SM Equity
MAP SM Equity G IM Equity
SCR FP Equity MUV2 GR Equity

HNR1 GR Equity MUV2 GR Equity
VIG AV Equity MUV2 GR Equity
ELE FP Equity MUV2 GR Equity

HNR1 GR Equity SCR FP Equity
VIG AV Equity SCR FP Equity
ELE FP Equity SCR FP Equity
VIG AV Equity HNR1 GR Equity
ELE FP Equity HNR1 GR Equity
ELE FP Equity VIG AV Equity
ENI IM Equity CEP SM Equity

OMV AV Equity CEP SM Equity
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Table Q.34: EU stock pairs

REP SM Equity CEP SM Equity

FP FP Equity CEP SM Equity
OMV AV Equity ENI IM Equity
REP SM Equity ENI IM Equity

FP FP Equity ENI IM Equity
REP SM Equity OMV AV Equity

FP FP Equity OMV AV Equity
FP FP Equity REP SM Equity

SRS IM Equity ERG IM Equity
SKYD GR Equity ETL FP Equity

PUB FP Equity DEC FP Equity
PAJ FP Equity MMB FP Equity

REN NA Equity MMB FP Equity
WKL NA Equity MMB FP Equity
REN NA Equity PAJ FP Equity
WKL NA Equity PAJ FP Equity
WKL NA Equity REN NA Equity

MS IM Equity MMT FP Equity
TL5 SM Equity MMT FP Equity
TFI FP Equity MMT FP Equity
TL5 SM Equity MS IM Equity
TFI FP Equity MS IM Equity
TFI FP Equity TL5 SM Equity
GA FP Equity GBB FP Equity

SPM IM Equity GBB FP Equity
SBMO NA Equity GBB FP Equity

TEC FP Equity GBB FP Equity
SPM IM Equity GA FP Equity

SBMO NA Equity GA FP Equity
TEC FP Equity GA FP Equity
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Table Q.35: EU stock pairs

SBMO NA Equity SPM IM Equity

TEC FP Equity SPM IM Equity
TEC FP Equity SBMO NA Equity
CDI FP Equity ADS GR Equity

RMS FP Equity ADS GR Equity
LUX IM Equity ADS GR Equity
MC FP Equity ADS GR Equity

RMS FP Equity CDI FP Equity
LUX IM Equity CDI FP Equity
MC FP Equity CDI FP Equity

LUX IM Equity RMS FP Equity
MC FP Equity RMS FP Equity
MC FP Equity LUX IM Equity
OR FP Equity BEI GR Equity

MRK GR Equity IPN FP Equity
SAN FP Equity IPN FP Equity
SAN FP Equity MRK GR Equity
CAP FP Equity ATO FP Equity
IDR SM Equity CAP FP Equity
SAP GR Equity DSY FP Equity

SOW GR Equity ILD FP Equity
UTDI GR Equity ILD FP Equity
UTDI GR Equity SOW GR Equity
LHA GR Equity AF FP Equity
IBLA SM Equity AF FP Equity
IBLA SM Equity LHA GR Equity

SW FP Equity AGL IM Equity
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