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Summary. In population size estimation, many capture–recapture-type data exhibit a prepon-
derance of ‘1’-counts. This excess of 1s can arise as subjects gain information from the initial
capture that provides a desire and ability to avoid subsequent captures. Existing population
size estimators that purport to deal with heterogeneity can be much too large in the presence of
1-inflation, which is a specific form of heterogeneity. To deal with the phenomena of excess 1s,
we propose the one-inflated positive Poisson model for use as the truncated count distribution
in Horvitz–Thompson estimation of the population size.
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1. Introduction

This paper is concerned with estimating the size of a population in a capture–recapture setting.
The number of unobserved members in a population, n0 (the unobserved ‘0’-counts), must be
estimated to obtain an estimate for the entire population: N =n0 +n, where n is the observed
sample size. Early efforts to estimate population size by using capture–recapture methods are
from John Graunt in the early 1600s in England (Hald, 2003) and Pierre Laplace in 1802 in
France (Cochran, 1978). A popular estimation strategy, from at least as early as McKendrick
(1926), is to use a zero-truncated distribution to explain the observed frequencies of captures,
to obtain the number of missing 0s implied by the counterpart untruncated distribution. Once
the parameters of the zero-truncated distribution have been estimated, a maximum likelihood
estimator (MLE) for N can be obtained through the Horvitz–Thompson-like estimator (Horvitz
and Thompson, 1952): N̂ = n{1 − f.0, θ̂/}, where f.0, θ̂/ is the estimated probability that a 0
occurs under the untruncated distribution, and where θ̂ has been estimated under the zero-
truncated distribution (Overton and Davis, 1969). N̂ is not a true Horvitz–Thompson estimator,
since the probability that a 0 occurs under the untruncated distribution is unknown and must
be estimated. The Horvitz–Thompson-like estimator has been widely applied, e.g. in van der
Heijden et al. (2003a,b), Böhning et al. (2004), Cruyff and van der Heijden (2008), Vilas and
Böhning (2008) and Niwitpong et al. (2013), to name a few.
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As in many problems involving count data, a Poisson process is a natural starting point, and
indeed the positive Poisson (PP) distribution is the benchmark distribution for the Horvitz–
Thompson method. Often the Poisson assumptions are too restrictive, however, and a more
flexible distribution is needed because of phenomena such as heterogeneity or contamination,
for example. Although several well-established alternative estimators are purportedly capable of
dealing with these phenomena, such as the Chao estimator for heterogeneity (Chao, 1987) and
the Zelterman estimator for contamination (Zelterman, 1988), they can be extremely positively
biased in the presence of a particular form of the phenomena: 1-inflation.

The one-inflated positive Poisson (OIPP) distribution is proposed to deal with 1-inflation for
zero-truncated data. The OIPP model is akin to the well-known zero-inflated Poisson model.
Mullahy (1986), and Johnson et al. (1992), discussed a modification to the Poisson distribution
which may handle extra 0s. An extra proportion ω is added to the probability of observing a
0, while appropriately decreasing the proportion of remaining counts by 1−ω. Lambert (1992)
used a zero-inflated Poisson model in the context of manufacturing equipment, which may
be in a perfect state producing zero defects, or in an imperfect state, which produces defects
according to a Poisson distribution. The zero-inflated Poisson model has since been used in
many applications, e.g. in recreation demand (Gurmu and Trivedi, 1996), in patent applications
(Crépon and Duguet, 1997) and in dental epidemiology (Böhning et al., 1999).

The main practical usefulness of the OIPP distribution is that it provides the only modelling
option for 1-inflation and provides a population size estimate that is much smaller than other
estimators, one of which is thought to provide a lower bound in the presence of heterogeneity
(Chao, 1987). The Horvitz–Thompson estimator via the OIPP distribution typically estimates
between a half and a quarter as many missing 0s as alternative estimators, in cases where 1-
inflation is plausible. The OIPP distribution is obtained through modifying the PP process,
by adding an extra proportion ω to the probability of observing a ‘1’, while decreasing the
proportion of remaining counts by 1 −ω. In justifying the one-inflated process, it is useful to
consider a justification for the zero-truncated process. The prevalence of zero-truncated count
distributions has been attributed to the tendency of the observational apparatus to become
active only when at least one event occurs (Johnson and Kotz, 1969). The OIPP distribution
goes one step further in allowing the activation of the observational apparatus to alter the PP
process for some proportion ω of the population, such that only 1-counts are generated. The
act of observation alters the process being observed, but only for a portion of the population.

Specifically, 1-inflation is justified in two ways.

(a) The subject discovers that the observational experience is more unpleasant than expected,
and decides to put forth avoidance effort towards being observed again.

(b) Additionally, the subject may learn how to avoid being observed subsequently, which we
term avoidance ability.

Both (a) and (b) are necessary for the subject to avoid subsequent detections; the subject must
have both a desire and an ability to avoid. At least one of (a) or (b) must be learned through
the observational experience for 1-inflation to arise but, depending on the situation, avoidance
effort or ability may already be present. As may be the case in law enforcement for example,
if the observational experience is known to be unequivocally unpleasant, or if membership in
the population is unequivocally undesirable, then the subject already has avoidance effort (a).
Alternatively, avoidance ability (b) is granted in voluntary treatment programmes where the
subject has complete choice regarding whether or not he or she is observed. In the following
section the case-studies are introduced, and 1-inflation is justified in the specific context of each,
as it arises because of (a) and/or (b).
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Avoidance effort and ability may be learned by a portion of the population because of the in-
formation that is revealed to the subject during the observational experience. If each subsequent
observational experience is similar to the first, then the subject gleans no additional information
from subsequent experiences, and perturbation will occur only around the initial experience,
giving rise to 1-inflation.

Avoidance effort that is learned on initial capture may be considered as a behavioural response.
In the model structure that was introduced by Otis et al. (1978), 1-inflation, as it arises due to
learned avoidance effort, is similar to models of class Mb, in which there is a behavioural response
to capture. Behavioural response models are common in ecological studies, where subjects may
become ‘trap happy’ (and desire to return to the trap), or ‘trap shy’ (for example, see McCrea
and Morgan (2014), page 37, and Borchers et al. (2002), page 119). 1-inflation due to learned
avoidance effort is a limiting form of ‘trap shyness’, since the probability of subsequent captures
becomes 0, following the initial capture, for some portion of the population.

2. Case-studies

In the field of biology, population size estimation methods have been used for estimating animal
abundance, and in epidemiology they have been used for estimating disease incidence. Horvitz–
Thompson estimators have been used in these fields, where the PP distribution is the benchmark.
Recently, population size estimation has extended to criminology, where apprehensions–re-
apprehensions are akin to captures–recaptures. Whether or not the same assumptions under the
PP distribution that are realistic for animals are also realistic for humans has been discussed by
van der Heijden (2003a). The key assumption is that prior apprehensions do not affect a change
in the individual Poisson parameter. Again, the OIPP distribution can model for a simple form
of heterogeneity by allowing the first apprehension to alter the behaviour of a proportion ω of
the population, such that further apprehensions do not occur. In these cases, the observational
apparatus is the encounter with law enforcement, for example.

In this section, data from various fields are described, and for each a justification for 1-inflation
is provided. In Section 7, several estimators that are popular in the literature are applied to each
case-study and compared with the Horvitz–Thompson estimator via the OIPP distribution.

The programs that were used to analyse the data and the data for the Dutch illegal immigrants
example can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2.1. Street prostitutes in Vancouver
The data are on counts of prostitution arrests over a 23-month period and are from Rossmo
and Routledge (1990). The data are f1 = 541, f2 = 169, f3 = 95, f4 = 37, f5 = 21 and f6 = 23,
where f1 denotes the frequency of prostitutes arrested only once, etc. The goal is to obtain an
estimate for the total number of prostitutes in Vancouver.

Prostitution arrests had very little effect in terms of deterrence, and hence on recaptures, and
a Poisson process is plausible. However, Rossmo and Routledge (1990) wrote that

‘prudent ones seem to learn from the experience, not to avoid street prostitution, but to avoid being
arrested.... This would lead to a relatively large number of single arrests.’

As in many law enforcement situations, it is likely that subjects desire to avoid detection and
avoidance effort (a) may already be present, but avoidance ability (b) is learned by a portion of
‘prudent ones’. It is reasonable that, if avoidance is not learned after the initial capture, it will
not be learned subsequently, and 1-inflation will occur.
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2.2. H5N1 flu outbreaks
In data similar to McKendrick’s (1926) cholera data, outbreaks of an infectious disease in
individual entities may follow a count distribution, yet observations on the number of infected
entities that do not produce outbreaks may be unreliable or impossible to obtain. In this case,
the capture–recapture approach may be used to obtain an estimate for the entire population of
infected entities.

The data are on reported H5N1 flu outbreaks at a subdistrict level in Thailand, from Vergne
et al. (2014). Districts with 0-outbreaks are reported; however, we suppose that the reported
0-counts do not represent the number of districts which were infected but did not produce an
outbreak. The data are f1 = 410, f2 = 161, f3 = 87, f4 = 46, f5 = 26, f6 = 21, f7 = 8, f8 = 4,
f9 = 6 and f10 = 10. 1-inflation may arise if an ω-portion of districts decide to take preventive
measures following the information that was learned from reporting the initial outbreak, and
justification (b), avoidance ability, is again appropriate. If preventive measures are available but
are not taken following the initial outbreak, and subsequent outbreaks provide no additional
information or incentive to prevent, 1-inflation will occur.

2.3. Rotterdam opiate users
Data on the number of applications for a methadone treatment programme made by opiate
users in Rotterdam are from Cruyff and van der Heijden (2008) and are f1 = 1206, f2 = 474,
f3 = 198, f4 = 95, f5 = 29, f6 = 19, f7 = 5, f8 = 2 and f10 = 1. If a participant is absent for 3
days, they are only readmitted following a new application; hence multiple applications by the
same individual are possible. Here, justification (a) is plausible. The applicant may discover that
the programme itself is more unpleasant than expected, so subsequent treatment attempts are
sought elsewhere or somehow otherwise. It may also be that applicants perceive more scrutiny
of their illegal activities than expected and decide not to return. Avoidance ability is granted
since it is a voluntary programme.

2.4. Dutch illegal immigrants
Data on apprehensions of illegal immigrants, who were unable to be effectively expelled, are from
van der Heijden et al. (2003a), and are f1 =1645, f2 =183, f3 =37, f4 =13, f5 =1 and f6 =1.
The homogeneity assumption of the Poisson process assumes that an apprehension does not
change the probability of reapprehension. 1-inflation entertains heterogeneity by allowing for a
proportion of immigrants to avoid reapprehension following the initial apprehension. Although
the illegal immigrants cannot be effectively expelled, the apprehension may nonetheless be
unpleasant, and the subject may learn to avoid detection, so both justifications (a) and (b) are
applicable.

2.5. Illegal ownership of firearms
The data are from van der Heijden et al. (2003b) and are f1 =2561, f2 =72 and f3 =5. van der
Heijden et al. (2003b) constructed the frequency of individuals captured from police records and
argued that contagion resulting from police behaviour cannot be large, since ‘many offenders
are apprehended as the result of their own behavior (such as displaying a gun in a public place)’.
1-inflation may arise due to reason (b): a portion of the population simply learn not to display
their gun in a public place, following the initial capture.

2.6. Drunk-driving
The data are again from van der Heijden et al. (2003b) and are f1 = 8877, f2 = 481, f3 = 52,
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f4 = 8 and f5 = 1. Contagion due to police behaviour is ruled out since the apprehensions
mostly occur because the police stop and check all passing drivers. Owing to the stigma that is
attached to drunk-driving, however, there may be a strong behavioural response following the
initial capture, so a portion of individuals exit the population of drunk-drivers, and 1-inflation
is justified by reason (b).

2.7. Snowshoe hares
Keith and Meslow (1968) presented data on the number of times that individual snowshoe
hares were captured–recaptured, from live trapping at six different study areas, during 1962–
1967. Keith and Meslow (1968) used the PP distribution to estimate the population size of
the hares via the Horvitz–Thompson estimator and used the χ2 goodness of fit to inform trap
responsiveness, where it is found that the data generally indicate trap response homogeneity.
Unlike the benchmark wild cottontail rabbits data set of Edwards and Eberhardt (1967), there is
no information on the frequencies at capture occasions; hence time dependence models cannot
be applied (Mt and Mth/, and these models are not used in this paper. Since we shall entertain the
notion of heterogeneity as it arises through 1-inflation, however, we shall compare our model
with several others which are capable of dealing with heterogeneity.

In the capture–recapture of animals, the observational apparatus is the trap, and the justifica-
tion for 1-inflation is quite intuitive. The inflation parameter ω is the proportion of hares whose
behaviour is modified by the trapping experience, such that the animal will never be captured
again. Both of the justifications for 1-inflation apply here:

(a) the trapping experience is learned to be unpleasant and the animal chooses to avoid sub-
sequent trappings, and/or

(b) the trapping experience teaches the animal how to avoid subsequent trappings.

If no information is learned by the second capture that has not already been learned at the initial
capture, then the behavioural response will arise as 1-inflation.

3. Accommodating excess 1s in the positive Poisson model

There are two ways to introduce 1-inflation into a zero-truncated Poisson distribution, depending
on whether the distribution is first truncated and then 1 inflated, or vice versa. The former will be
called the OIPP distribution, and the latter the positive one-inflated Poisson (POIP) distribution.
In this section, it will be shown that the MLEs from one of the distributions may be trivially
obtained from the other; however, in a later section it will be shown that each distribution gives
rise to a different Horvitz–Thompson estimator.

3.1. One-inflated Poisson distribution
Let fy.λ/ be the mass function for the Poisson distribution. Then, a one-inflated Poisson distri-
bution is

fy.λ/, y =0,
ω{1−f0.λ/}+ .1−ω/fy.λ/, y =1,

.1−ω/fy.λ/, y> 1,

}
.1/

where f0.λ/ is the probability that a 0 occurs under a Poisson distribution. In distribution (1),
the excess probability of a 1 is drawn from the positive counts only, i.e. the inflation process
may alter non-zero counts only. This data-generating process is in keeping with the idea that the
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Fig. 1. A Poisson process ( ) is the true underlying data-generating process; however, the observational
apparatus only becomes active once a positive count has been generated (hence the missing 0s); further, the
observational apparatus perturbs a proportion ω of the population, such that only 1-counts are generated,
which shifts probability mass from y > 1 to y D 1; probabilities from the OIPP distribution ( ) have been
normalized by 1� f Poisson

0 (λD2; ω D 1
4 )

activation of the observational apparatus alters the Poisson process, and that the observational
apparatus is activated only once a positive count has been generated. Unobserved members of
the population are not altered in expression (1). Zero-truncating expression (1) results in the
following OIPP distribution:

f OIPP
1 =ω + .1−ω/

λ

exp.λ/−1
,

f OIPP
y = .1−ω/

λy

{exp.λ/−1}y!
y =2, 3, : : : ,

.2/

where λ > 0 is the shape parameter for the OIPP distribution. Note that, in expression (2), it
is as if the Poisson process has first been truncated, and then 1 inflated; hence 0-counts are
left unaltered. Fig. 1 illustrates both of the features that differentiate the OIPP process from a
Poisson process: 0-truncation and 1-inflation.

For expression (2) to be a proper mass function, ω <1. If 1-deflation is ruled out a priori then
the logistic link ω={1+exp.−ϑ/}−1 may be used so that ϑ may be estimated without constraint
while maintaining 0 < ω < 1. 1-deflation might be ruled out if the observational experience is
unequivocally unpleasant. In the snowshoe hares example, however, it is possible that receiving
the bait might induce an animal to return for recapture, thus giving rise to 1-deflation. Note
that using the logistic link causes the null hypothesis of no 1-inflation (ω = 0/ to be on the
boundary of the parameter space, and the likelihood ratio (LR) test statistic to follow a 0.5χ2-
(or χ2-) distribution (Chernoff, 1954). The score test statistic, however, follows a standard χ2-
distribution (Moran, 1971; Chant, 1974), regardless of how ω is reparameterized. This is because
the calculation of the score test statistic relies on only the sample data and the MLEs from the
PP distribution.
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To allow for 1-deflation as well as 1-inflation, the link ω=θ=.1+θ/ may be used. This link also
ensures that the null hypothesis of no 1-inflation does not lie on the boundary of the parameter
space; hence the associated LR test statistic follows a χ2-distribution. This link also ensures
that −λ{exp.λ/−λ−1}−1 <ω <1, where the left-hand side of the inequality is required for the
probability that a 1-count remains positive. In Section 6, Monte Carlo evidence confirms the
above conjectures on the null distributions of score and LR test statistics under the two different
reparameterizations of ω.

In the OIPP model, λ may vary through covariates. We use the convention λi = exp.Xiβ/,
where X is an n×p matrix consisting of p regressors, and β is a p×1 matrix of coefficients. This
link ensures that λi > 0, although unlike the Poisson model this link provides for no convenient
interpretation of β, since the mean of the OIPP distribution is E[y] =λ exp.λ/{exp.λ/− 1}−1.
Using ω =θ=.1+θ/ and λi = exp.Xiβ/, expression (2) becomes

f OIPP
1 = θ

1+θ
+ 1

1+θ

λi

exp.λi/−1
,

f OIPP
yi

= 1
1+θ

λ
yi

i

{exp.λi/−1}yi!
yi =2, 3, : : : :

When referring to an element of the X- or β-matrices, the following notation is used. Xir is the
rth (of p/ covariate for the ith (of n) observation, and βr is the rth (of p) parameter. Under
independent sampling from the above mass function, the log-likelihood is

l=
n∑

i=1

(
− ln.1+θ/+ I1ln

{
θ + λi

exp.λi/−1

}
+ .1− I1/[yi ln.λi/− ln{exp.λi/−1}]

)
,

where I1 is an indicator function taking the value 1 when yi = 1, and 0 otherwise. The first
derivatives of the log-likelihood are given by

@l

@βr
=

n∑
i=1

[
I1

1
θ exp.λi/−θ +λi

{
λiXir − exp.λi/λ

2
i Xir

exp.λi/−1

}

+ .1− I1/

{
yiXir − exp.λi/λiXir

exp.λi/−1

}]
r =1, : : : , p,

@l

@θ
=

n∑
i=1

[
− 1

1+θ
+ I1

{
exp.λi/−1

θ exp.λi/−θ +λi

}]
:

The second derivatives of the log-likelihood are provided in the Web appendix A, and R code for
maximum likelihood estimation of the OIPP model via numerical methods may be found in the
Web appendix C and at http://wileyonlinelibrary.com/journal/rss-datasets.

3.2. The positive one-inflated Poisson distribution
The OIPP distribution supposes that the additional probability that a 1 occurs is drawn only
from the positive counts, i.e. the inflation process changes a portion of the positive counts into
1-counts. An alternative but related data-generating process supposes that the inflation process
may also draw from the 0-counts. The mass function for such a distribution is

w + .1−w/fy.λ/, y =1,

.1−w/fy.λ/, y �=1,
.3/
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where fy.λ/ is again the mass function for the Poisson distribution. Zero-truncating expression
(3) results in the following POIP distribution:

f POIP
1 .λ, w/= exp.λ/w + .1−w/λ

exp.λ/− .1−w/
,

f POIP
y .λ, w/= .1−w/λy

{exp.λ/− .1−w/}y!
, y =2, 3, : : : :

In this mass function, it is as if the Poisson process is first inflated, thereby drawing probability
from all possible counts (including 0), and then truncated. The parameter λ has the same
interpretation in both the OIPP and the POIP distributions. The inflation parameters (ω from the
OIPP and w from the POIP) do not have the same interpretation. However, by reparameterizing,

w =1− .1−ω/ exp.λ/

1−ω + exp.λ/−1
,

the POIP distribution becomes identical to the OIPP distribution. Hence, MLEs for one distri-
bution can be easily obtained from the other.

4. Estimating the size of an unknown population via the one-inflated positive
Poisson model

The Horvitz–Thompson estimator, using the OIPP model, is N̂
OIPP = n={1 − f.0, λ̂/}, where

f.0, λ̂/ is the estimated probability that a 0 occurs under the Poisson distribution, and where λ̂
has been estimated under the OIPP distribution. The MLEs of the OIPP distribution (λ̂ and
ω̂/ enjoy the usual properties of consistency, asymptotic normality, asymptotic efficiency and
invariance, provided that the following regularity conditions hold (Greene (2012), page 515, for
example):

(a) the first three derivatives of the log-likelihood are continuous and finite;
(b) the expectations of the first two derivatives may be obtained;
(c) the third derivatives of the log-likelihood are bounded by an integrable function.

These conditions are almost always met, and the present case is no exception. Owing to the
property of invariance, N̂

OIPP
is also consistent, asymptotically normal and asymptotically

efficient. The consistency property is verified in the Monte Carlo experiments, since the bias
and root-mean-square error (RMSE) of N̂

OIPP
go to 0 as N increases.

4.1. Alternative Horvitz–Thompson estimators
A very important point arises in the difference between the two one-inflated data-generating
processes. In the OIPP distribution, where 1-inflation draws only from the positive counts, the
Horvitz–Thompson estimator for the population size is n={1−f0.λ̂/}. In the POIP distribution,
where 1-inflation draws from all counts including 0s, the Horvitz–Thompson estimator for the
population size is n={1 − .1 − ŵ/f0.λ̂/}. In both cases, f0 is the mass function for the Poisson
distribution, λ̂ is the estimated shape parameter from either the OIPP or POIP distribution
and ŵ is the estimated inflation parameter from the POIP distribution. Note that the Horvitz–
Thompson estimator under the OIPP distribution is always at least as large as the Horvitz–
Thompson estimator under the POIP distribution, since in the POIP process some 1-counts
are observed that would otherwise have been 0s if not for the activation of the observational
apparatus. Hence, using the POIP version can provide a lower bound for the population size
estimate in the presence of 1-inflation.
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There is no way to tell from the sample data which of the two Horvitz–Thompson estimators
is appropriate. In terms of estimation, choice of the OIPP or POIP distribution is arbitrary
since estimates for one distribution may be trivially obtained from the other; however, the ap-
propriate Horvitz–Thompson estimator critically depends on speculating on one of the two
data-generating processes. The choice can be important. For example, if f0.λ̂/= ŵ= 1

3 (which is
characteristic of some of the illustrative applications considered), then the population size esti-
mate will be 1

3 larger under the OIPP distribution. We shall focus on the OIPP distribution, since
the case-studies considered seem characteristic of processes that do not perturb the unobserved
counts.

4.2. An EM algorithm for estimating N̂
OIPP

As an alternative to estimating the parameters of the OIPP distribution numerically, an EM
algorithm is proposed in this section. Monte Carlo evidence (which is not reported) indicates
that maximum likelihood estimation via an EM algorithm results in slightly less bias and mean-
squared error than does maximum likelihood estimation via packaged numerical methods.

4.2.1. Unobserved complete likelihood (M-step)
Let zi denote a binary variable indicating whether the sample value 1 is arising from the ex-
trapopulation part or not. Clearly, zi is not observed. Then, we have the following complete,
unobserved likelihood function:

L= ∏
yi=0

exp.−λ/
∏

yi=1
[ω{1−f0.λ/}]zi{.1−ω/λ exp.−λ/}1−zi

∏
yi>1

{.1−ω/λyi exp.−λ/=y!}:

The log-likelihood may be written as

l= .Σ1 −N/λ+ .n−Σ1/ log.1−ω/+Σ1 log{1−f0.λ/}+Σ1 log.ω/

+
N∑

i=1
yi log.λ/−Σ1 log.λ/− log .yi!/,

where Σ1 is the unobservable number of extra-Poisson 1s, N is the unobservable full sample
size (including the missing 0s) and n is the observable sample size (which excludes the 0s). Note
that the log-likelihood is orthogonal with respect to the parameters λ and ω. Solving the score
equations leads to the maximum likelihood estimators

ω̂ =Σ1=n,

λ̂=

N∑
i=1

yi −Σ1

N −Σ1 +Σ1f0.λ/{1−f0.λ/}−1 :

4.2.2. E-step
f0.λ/ and Σ1 (the number of extrapopulation 1s due to the inflation process) are unobservable
and must be replaced by their expected values:

E[f0.λ/]=N0=N,

E[Σ1]=n1P.zi =1|yi =1;λ, ω/,

where n1 is the observed number of 1s in the sample. By Bayes’s theorem:



10 R. T. Godwin and D. Böhning

E[Σ1]=n1
P.yi =1|zi =1;λ, ω/P.zi =1|λ, ω/

P.yi =1|λ, ω/
= n1ω{1− exp.−λ/}

ω{1− exp.−λ/}+ .1−ω/λ exp .−λ/
:

These values have to be used in the M-step.

4.2.3. The EM algorithm
A possible way to obtain an estimate for N̂

OIPP
is by the following algorithm.

Step 1: choose an initial value for N̂
OIPP

and Σ̂1.
Step 2: estimate ω̂ by ω̂ = Σ̂1=n:

Step 3: estimate λ̂ by

λ̂=
(

N∑
i=1

yi − Σ̂1

)/
{N̂

OIPP
.1− ω̂/}:

Step 4: estimate Σ̂1 by

Σ̂1 = n1ω̂{1− exp.−λ̂/}
ω̂{1− exp.−λ̂/}+ .1− ω̂/λ̂ exp.−λ̂/

:

Step 5: repeat steps 2–4 until the estimate Σ̂1 converges (or any of the other estimates converge).
Step 6: estimate N̂

OIPP
by

N̂
OIPP = n

1− exp.−λ̂/
:

Step 7: repeat steps 2–6 until the estimate N̂
OIPP

converges.

R code for implementing this algorithm is provided in the Web appendix C and at http://wiley
onlinelibrary.com/journal/rss-datasets.

5. Comparing N̂OIPP with other estimators

The Horvitz–Thompson population size estimator via the OIPP distribution is compared with
several other estimators that are popular in the literature: the Horvitz–Thompson via PP dis-
tribution, the Horvitz–Thompson via finite Poisson mixture model, the Chao estimator (Chao,
1987) and the Zelterman estimator (Zelterman, 1988). In turn, each of these estimators will
be defined and discussed in terms of their percentage bias, %bias, and percentage RMSE,
%RMSE, under an OIPP data-generating process. For the Chao and Zelterman estimators, an-
alytic expressions for %bias are obtained. For the remaining estimators, closed form solutions
are difficult or impossible to obtain since the MLEs themselves do not admit a closed form
and must be solved numerically. Therefore, %bias and %RMSE are simulated for all estimators
(Table 1).

5.1. The one-inflated positive Poisson distribution as the data-generating process
The OIPP distribution is the assumed data-generating process behind the simulation results that
are presented in Table 1. The algorithm which generates OIPP variates is now outlined, serving
to elucidate the OIPP process.

Step 1: generate N counts according to the Poisson distribution.
Step 2: remove the 0-counts from the sample, giving a new sample of size n. The number of
0s removed, n0, is to be estimated, so that an estimate for N =n0 +n may be obtained.
Step 3: randomly alter ωn counts such that y=1. These altered counts represent members of
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Table 1. Percentage bias (and percentage RMSE in parentheses) of N̂OIPP, N̂PP, N̂Mix, N̂Chao and
N̂Zelt, the population size estimated under the Horvitz–Thompson estimator via the PP distribution, the
Horvitz–Thompson estimator via the OIPP distribution, the Horvitz–Thompson estimator via a two-component
Poisson mixture, the Chao estimator and the Zelterman estimator respectively when the OIPP is the
data-generating process†

N Results for λ=1 Results for λ=2

N̂OIPP N̂PP N̂Mix N̂Chao N̂Zelt N̂OIPP N̂PP N̂Mix N̂Chao N̂Zelt

ω =0.1
100 0.4 8.2 27.6 14.7 16.4 0.4 3.4 12.9 10.5 14.8

(15.4) (16.7) (102.4) (27.2) (30.9) (5.5) (6.4) (45.6) (15.0) (21.4)
200 0.1 7.0 23.4 12.4 13.8 0.2 3.1 14.2 9.7 13.5

(11.2) (12.2) (84.8) (19.4) (21.8) (4.0) (4.9) (47.3) (12.1) (17.1)
500 0.1 6.2 20.0 11.1 12.3 0.1 3.0 16.0 9.2 12.6

(7.6) (8.7) (65.8) (14.3) (16.0) (2.5) (3.9) (43.4) (10.2) (14.1)
1000 0.2 5.9 19.4 10.5 11.7 0.1 3.0 23.1 9.1 12.5

(5.6) (7.3) (59.7) (12.3) (13.7) (1.8) (3.4) (39.7) (9.6) (13.2)

ω =0.3
100 6.0 26.8 78.5 50.0 54.4 1.1 12.9 132.9 44.0 57.7

(23.5) (34.6) (186.5) (65.1) (71.4) (6.7) (15.1) (265.5) (49.7) (65.7)
200 3.5 24.5 86.5 45.1 49.1 0.4 12.2 200.6 41.8 54.7

(16.4) (28.4) (198.5) (51.5) (56.3) (4.5) (13.4) (337.3) (44.5) (58.5)
500 1.7 23.2 111.4 42.6 46.3 0.2 12.0 327.9 40.4 52.8

(10.5) (24.9) (238.9) (45.1) (49.1) (2.7) (12.5) (461.1) (41.5) (54.2)
1000 0.9 22.7 132.7 41.6 45.2 0.1 11.9 433.2 40.1 52.3

(7.2) (23.5) (270.5) (42.9) (46.6) (1.9) (12.1) (552.9) (40.6) (53.0)

ω =0.5
100 14.1 62.6 150.7 120.7 128.4 1.7 31.4 397.1 118.7 144.2

(40.9) (73.9) (270.6) (147.9) (157.9) (7.9) (34.1) (529.0) (133.1) (162.5)
200 7.0 57.4 165.1 109.1 116.0 0.6 29.8 537.7 111.6 135.6

(24.4) (62.6) (292.4) (119.8) (127.6) (5.1) (31.2) (635.2) (117.0) (142.4)
500 2.6 54.4 194.7 103.0 109.6 0.3 29.3 655.8 107.6 130.5

(13.7) (56.5) (335.2) (106.7) (113.6) (3.1) (29.8) (718.1) (109.5) (132.9)
1000 1.3 53.5 220.6 100.8 107.2 0.1 29.1 724.8 106.6 129.4

(8.6) (54.4) (366.8) (102.6) (109.1) (2.14) (29.34) (766.6) (107.6) (130.6)

†Results are averaged over 10000 replications.

the population who are instead observed only once, because of the activation of the obser-
vational apparatus.

This algorithm was repeated 10000 times for each of several parameter configurations and
sample sizes. In each repetition the various estimates are obtained, and average %bias and
average %RMSE for the various estimators are shown in Table 1. The average percentage bias
of N̂OIPP (for example) is calculated as .100=N/Σ10000

j=1 .N̂OIPP
j − N/=10000, and the average

percentage RMSE of N̂OIPP is calculated as .100=N/{Σ10000
j=1 .N̂OIPP

j −N/2=10000}1=2, where j

indexes the Monte Carlo replication.
Not surprisingly, when the OIPP distribution is the data-generating process, N̂OIPP itself has

very little bias. The largest %bias for N̂OIPP is 14.1% and occurs when λ=1 and ω =0:5, but in
all cases %bias disappears quickly as N increases, reflecting the consistency of the MLE.

5.2. Horvitz–Thompson estimator via positive Poisson (N̂
PP

) model
This is the benchmark Horvitz–Thompson estimator and is defined as N̂

PP =n={1 −f.0, λ̂/},
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Table 2. Percentage of boundary problems in N̂
Mix

(Horvitz–Thompson
estimator under a two-component Poisson model) occurring in the Monte
Carlo experiments (Table 1)

N Results (%) for Results (%) for Results (%) for
ω =0.1 ω =0.3 ω =0.5

λ=1 λ=2 λ=1 λ=2 λ=1 λ=2

100 1.0 0.2 3.2 6.6 6.7 28.0
200 0.6 0.2 3.6 10.4 7.9 41.1
500 0.3 0.1 5.2 20.4 10.8 53.2

1000 0.2 0 7.0 30.9 11.4 60.9

where λ̂ has been estimated via the PP model. From Table 1 it can be seen that N̂
PP

can be
quite biased in the presence of 1-inflation, and that the bias does not disappear as N grows.
Under parameter configurations that are compatible with the case-studies, %bias for N̂PP can
be 20–50%.

5.3. Horvitz–Thompson via Poisson mixture (N̂
Mix

) model
To deal with unobserved heterogeneity, a Poisson mixture model may be used (Böhning et al.
(2005), for example). The model consists of k components, with the weights of the components
represented by qj, and the Poisson parameters by λj, for j = 1, : : : , k. Typically, k is iteratively
increased until two components are estimated to be nearly identical, and then k is selected via
an information criterion. For the purposes of the case-studies, information criteria are not used,
and instead k is allowed to be as large as possible. For the purposes of the simulation experiments,
however, k = 2. In simulation experiments (which are not reported here) %bias and %RMSE
increased as k increased, so %bias for N̂

Mix
in Table 1 are lower bounds. Direct maximization of

finite Poisson mixture models is difficult or impossible, and the EM algorithm is the method of
choice. To estimate N̂

Mix
we use the EM algorithm that was outlined in Böhning et al. (2005).

Of all the population size estimators considered, the two-component finite Poisson mixture
model fares the worst in terms of %bias and %RMSE. Additionally, in many cases the two-
component Poisson mixture model fails to converge; the weight of one of the components
approaches 1 whereas the component itself approaches the boundary of zero (i.e. qj → 1 and
λj → 0), and so N̂Mix →∞. In the simulation experiments, the EM algorithm is halted once
N̂Mix > 10N, so the large %bias of N̂Mix in Table 1 is due in part to the failure of the mixture
model to converge. For certain values of λ and ω the occurrence of this boundary problem
increases with N, suggesting that N̂Mix is an inconsistent estimator. The percentage occurrence
of the boundary problem in N̂Mix from the Monte Carlo experiments of Table 1 is presented in
Table 2. Even if the boundary cases are disregarded, N̂Mix is the most biased of all the population
size estimators, with 100% bias not uncommon.

5.4. Chao estimator (N̂
Chao

)
The Chao estimator assumes but does not estimate a Poisson mixture and is supposed to give a
lower bound estimate in the case of unobserved heterogeneity. The Chao estimator is not robust
to 1-inflation, however, since 1-inflation cannot be expressed as a mixture of Poisson distribu-
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(a) (b)

Fig. 2. %bias of (a) N̂Chao and (b) N̂Zelt, for various values of ω and λ

tions. The Chao estimator is N̂
Chao =n+f 2

1 =.2f2/, where n is the observable sample size, and f1
and f2 are the observed counts of 1s and 2s respectively. In the presence of 1-inflation, the percent-
age bias of the Chao estimator is %bias.N̂

Chao
/=100[exp.λ/{λ2.1−ω/=A}2 −exp.−λ/], where

A= exp.−λ/λ2.1−ω/={exp.−λ/λ.1−ω/+1− exp.−λ/}: The percentage bias of the Chao es-
timator is positive for ω > 0, is invariant to the sample size (thus N̂

Chao
is inconsistent in the

presence of 1-inflation) and is quite severe when considering values of ω and λ that are charac-
teristic of the case-studies. For example, when ω =0:3 and λ=1, %bias for N̂

Chao
is 41%. Note

that the 41% bias implies that the Chao estimator has estimated the number of missing 0s to
be more than twice the actual number. The intuitive reason for the bias of N̂Chao (and N̂Zelt

which is considered next) is its reliance on the frequency of 1-counts, which is troublesome in
the presence of 1-inflation. A plot of %bias for N̂

Chao
is shown in Fig. 2(a). The simulation

results of Table 1 show that %bias is more severe in finite samples than the analytic expression
would indicate.

5.5. Zelterman estimator (N̂
Zelt

)
Although 1-inflation can be considered as a form of contamination (since, for an ω-portion of
the population, the initial capture causes the probability of subsequent captures to be 0), the
Zelterman estimator, which is supposed to be robust to contaminations, is also quite biased
(and is inconsistent). The Zelterman estimator is N̂

Zelt = n={1 − exp.−2f2=f1/}, and, under
1-inflation, %bias.N̂

Zelt
/ = 100{1 − exp.−λ/}=[1 − exp{−A exp.−λ/}], where A is defined as

before. In all instances considered, %bias for N̂
Zelt

is slightly greater than %bias for N̂
Chao

. A
plot of %bias for N̂

Zelt
is shown in Fig. 2(b).

5.6. Summary of simulation results
In general, for all estimators, %bias is worse the larger the ω. The percentage bias, for all
estimators and parameter configurations, is always positive. The %bias and %RMSE for the
alternative estimators can be quite severe, with %bias for the estimators of N ranging from
20% to 400%. These percentages understate the failure of the alternative estimators, since the
%bias of the unobserved frequency actually being estimated (n0/ is much higher. With only one
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Table 3. Percentage bias (and percentage RMSE in parentheses) of N̂OIPP, N̂PP, N̂Mix, N̂Chao and N̂Zelt,
when a two-component Poisson distribution is the data-generating process†

N Results (%) for q1 =0.25,λ1 =0.5 and λ2 =2 Results (%) for q1 =0.5,λ1 =0.5 and λ2 =2

N̂OIPP N̂PP N̂Mix N̂Chao N̂Zelt N̂OIPP N̂PP N̂Mix N̂Chao N̂Zelt

100 −12:5 −10:5 1.4 −6:4 −3:9 −24:2 −20:0 2.1 −11:5 −7:6
(13.8) (12.0) (13.9) (11.8) (14.1) (25.2) (21.3) (23.0) (17.3) (18.4)

200 −12:6 −10:7 0.7 −7:1 −5:0 −24:6 −20:3 1.7 −12:3 −8:8
(13.3) (11.5) (11.3) (9.7) (10.3) (25.1) (21.0) (22.3) (15.1) (14.4)

500 −12:7 −10:9 0.4 −7:5 −5:8 −24:9 −20:6 2.8 −13:0 −9:8
(12.9) (11.2) (9.2) (8.6) (8.0) (25.1) (20.7) (23.8) (14.1) (12.0)

1000 −12:7 −10:9 0.3 −7:7 −6:0 −25:0 −20:6 3.9 −13:2 −10:0
(12.8) (11.1) (8.5) (8.2) (7.1) (25.1) (20.8) (24.1) (13.7) (11.2)

†Results are averaged over 10000 replications.

exception in the Monte Carlo experiments, the ranking of the various estimators from most
biased to least biased is N̂

Mix
, N̂

Zelt
, N̂

Chao
, N̂

PP
, N̂

OIPP
.

5.7. Finite Poisson mixture model as the data-generating process
To challenge the OIPP model, %bias and %RMSE of the estimators are again simulated, but
where the data-generating process is a two-component Poisson mixture model. Results are
displayed in Table 3. Whereas N̂

OIPP
is the most biased of all the estimators when the finite

mixture model is the data-generating process, the situation is not nearly as severe as when the
OIPP is the data-generating process.

6. Diagnostic tests

Several tools to aid in the specification of the OIPP model are discussed. In Section 6.1, a score
test for no 1-inflation is developed. In Section 6.2, the score test is compared with an LR test via
Monte Carlo experiments. In Section 6.3 a ratio plot from Böhning et al. (2013) is discussed. In
Section 6.4, the χ2 goodness-of-fit test is discussed but is cautioned against.

6.1. A score test for no 1-inflation in a positive Poisson model
In the case of covariates, the score test statistic is

S =

{
n∑

i=1
.I1[{exp.λ̂i/−1}=λ̂i]−1/

}2

.υ̂−λ̂/′.1\λ̂/− ..υ̂− ϕ̂/\υ̂/′X[X′diag{ϕ̂◦ .υ̂− λ̂/\υ̂2}X]−1X′..υ̂− ϕ̂/\υ̂/
,

where λ̂ = exp.Xβ̂/, β̂ has been estimated by maximum likelihood, υ̂ = exp.λ̂/ − 1 and ϕ̂ =
exp.λ̂/◦ λ̂, where ‘◦’ and ‘\’ denote Hadamard multiplication and division respectively. Under
the null hypothesis, S ∼χ2

.1/.
In the case of no covariates, the score statistic becomes much simpler to calculate. Beyond

knowing the MLE λ̂ estimated under the null hypothesis of no inflation, the only additional
information that is required to calculate the score test statistic is n1, the number of 1s observed
to be in the sample. The score test statistic in the case of no covariates is given by
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S = [n1{exp.λ̂/−1}=λ̂−n]2λ̂ exp.λ̂/{exp.λ̂/− λ̂−1}
n[exp.λ̂/{exp.λ̂/− λ̂−1}2 −{exp.λ̂/− λ̂−1}2]

:

Under the null hypothesis, S ∼χ2
.1/. A detailed derivation of the score statistic may be found

in the Web Appendix B. R code for calculating the above statistic may be found in the Web
appendix C and at http://wileyonlinelibrary.com/journal/rss-datasets.

6.2. Comparing the score and likelihood ratio tests
The following section examines the appropriateness of the χ2-distribution as an approximation
to the sampling distribution of the above derived test statistic S in finite samples, for the test of
H0: PP model versus HA: OIPP model. The empirical probability of a type I error and empirical
‘power’ are simulated. The Prob(type I error) of a test is also the size of the test provided that
the null hypothesis H0 is simple, or the test is pivotal, neither of which is true in the present case.
The test is likely to be asymptotically pivotal, however, as many such tests in similar contexts
are (Horowitz and Savin (2000), page 378). Provided that the test is asymptotically pivotal, the
critical value that is used to determine the Prob(type I error) of the test may be based on an
approximation using first-order asymptotic theory. In view of the Monte Carlo results, it will
be argued that the χ2-distribution provides a suitable approximation, so the test indeed appears
to be asymptotically pivotal.

The Monte Carlo simulations use parameter values of λ=0:5, 1, 2, 4 from the PP distribution
(for the empirical Prob(type I error) investigations), and λ=0:5, 1, 2, 4 and ω =0:1, 0:2, : : : , 0:9
from the OIPP distribution (for the empirical power investigations). In all experiments, the
sample sizes considered were n = 25, 50, 100, 250, 500, 5000. Each experiment consists of
10000 iterations. PP variates were generated by using the VGAM (Yee, 2011) package, whereas
1-inflation was generated by using VGAM and randomly distributed uniform numbers. Covari-
ates were also considered. The inclusion of covariates allows λi to take many different values
in a given sample and has been shown to affect the empirical Prob(type I error) and empirical
power (Horowitz (1994), page 404). Previous Monte Carlo studies have shown that the partic-
ular characteristics of any covariates in the model can affect the empirical Prob(type I error)
and power of statistical tests. For example, King and Giles (1984) found that differing degrees
of auto-correlation among the covariate matrix of a linear regression model can cause substan-
tial changes in the empirical Prob(type I error) and power of t-tests used after pre-testing for
auto-correlation. Covariates are incorporated through three different designs for the X-matrix,
which are discussed in the Web appendix D.

The score test is compared with the LR test. The LR test statistic is determined by ξ =
2{lA{λ̃, θ̃/ − lA.λ̂, 0/}, where lA.λ, θ/ is the likelihood function for an OIPP model (with A
denoting the model under the alternative hypothesis), λ̃ and θ̃ are the MLEs under the OIPP
model and λ̂ is the MLE under the PP model. Asymptotically, the score test and the LR test
are the same (Rao, 1948), and therefore the LR test statistic should also be asymptotically χ2

.1/.
The inclusion of this test in the Monte Carlo experiments allows the performance of the score
test to be directly compared with a competitor.

6.2.1. Empirical probability of type I error
Fig. 3 presents the empirical Prob(type I error) of both the score and the LR test, for various
sample sizes and values of λ, in the case of no covariates. Results for the case of covariates
may be found in the Web appendix D. The score test seems to dominate the LR test, in terms of
Prob(type I error). The various parameter configurations for n and λ give rise to 24 experiments.
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Fig. 3. Empirical Prob(type I error) of tests for no 1-inflation by using the score ( ), LR (�) and LR with
logistic link (�), in the case of no covariates

At 0.01-significance, the score test is closer to nominal significance than the LR test for 18 of the
24 parameter configurations. At 0.05- and 0.10-significance the score test is closer to nominal
significance for 16 of 24 and 15 of 24 of the parameter configurations respectively. The mean
absolute percentage of the deviation between the empirical Prob(type I error) relative to the
nominal significance is 7.7%, across all of the reported empirical Prob(type I error) for the score
test. The same mean absolute percentage deviation is 13.7% for the LR test. For example, the
dotted vertical lines in Fig. 3 represent a 50% deviation from the nominal significance level (the
full vertical lines). With the inclusion of covariates in the data-generating process, the dominance
of the score test over the LR test remains unchanged. Across all experiments, the mean odds
that the score test will dominate over the LR test are 3.5:1. No clear pattern among parameter
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values or sample sizes can be discerned, in predicting which test will perform better. There is no
apparent advantage in the LR test, in terms of probability of type I error distortions.

The suitability of the χ2
.1/-distribution as an approximation to the sampling distribution of

the score test is now discussed. If the results for λ= 0:5 are excluded, the remaining simulated
empirical Prob(type I error)s are very close to nominal. In the case of no covariates, the maximum
absolute deviation of the empirical Prob(type I error) from nominal is 0.002 at significance 0.01,
0.017 at significance 0.05 and 0.018 at significance 0.1.

Fig. 3 also displays the empirical Prob(type I error) for when the logistic link is used, as
opposed to the link ω = θ=.1 + θ/ that is advocated in this paper. When using the logistic link,
the null hypothesis is now on the boundary of the parameter space, and the LR test should follow
a 0.5χ2

.1/-distribution, whereas the score test still follows a χ2
.1/-distribution. This is verified in

the Monte Carlo experiments. In Fig. 3, the empirical type I errors of the score test are identical
under the χ2

.1/-distribution regardless of link, whereas empirical type I errors for the LR test
under a logistic link are obtained from the 0.5χ2

.1/-distribution.
When covariates are introduced, the maximum deviation increases approximately three times

at significance levels 0.01 and 0.1, and increases approximately two times at significance level
0.05, almost regardless of covariate design. At a sample size of 100, the maximum deviation is
0.005 at significance 0.01, across all covariate designs. At significance 0.05 this maximum devia-
tion becomes 0.011, and at significance 0.1 this maximum deviation becomes 0.017. Referring to
the simulation results in Horowitz (1994), deviations of the magnitude that was discussed above
are unlikely to be considered a problem. It is concluded that the empirical Prob(type I error)
results indicate that the sampling distribution of the score test statistic is suitably approximated
by the χ2

.1/-distribution, for sample sizes 100 or larger.

6.2.2. Empirical power
Monte Carlo experiments on empirical power serve to compare the score and LR tests further,
and to assess further the suitability of the χ2

.1/-distribution as an approximation to the finite sam-
ple distribution of S. Fig. 4 displays results for n= 250, λ=0:5, 1, 2, 4 and ω =0:1, 0:2, : : : , 0:9,
in the case of no covariates. Results for various sample sizes may be found in the Web appendix
D.

In the case of no covariates, the score test clearly dominates the LR test in terms of empirical
power. At n= 25, of the 36 experiments that did not result in the empirical powers of the two
tests being equal, the score test had higher empirical power 86% of the time. This percentage
rises steadily until the score test dominates 100% of the time at n=250.

The story is different when covariates are introduced. At n = 25 and n = 50, the LR test
completely dominates the score test. When n = 100, the score test has higher empirical power
than the LR test 44–47% of the time (depending on covariate design). The score test begins to
overtake the LR test at n = 250, performing better 79–83% of the time. At n = 500, the score
test completely dominates. The Web appendix D reports the power results for only one of the
designs, as there is little difference in results between designs.

From the empirical Prob(type I error) results in Section 6.2.1, it can be seen that the LR test
more frequently rejects the null hypothesis of no 1-inflation when the null hypothesis is true,
compared with the score test. This has the effect of shifting the empirical power curve for the
LR test upwards. Since the empirical power of the LR test is likely to appear more favourable
than the score test at the expense of the small Prob(type I error) distortions of both tests, a more
fair comparison between the two tests is accomplished by considering size-adjusted empirical
power. When adjusted empirical power is considered, the dominance of the score test becomes
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Fig. 4. Empirical power of the score (�) and LR (�) tests of no 1-inflation in the PP model, for various
values of λ (�, λ D 0.5; �, λ D 1; 4, λ D 2; ♦, λ D 4) and ω, for the case of no covariates, for n D 250, and
with nominal significance αD0.05: each point represents the proportion of times that the null hypothesis was
rejected, out of 10000 replications

more pronounced. In the case of no covariates, under the sample sizes that were considered, the
score test dominates nearly 100% of the time.

The results change as covariates are introduced. The LR test once again outperforms the
score test in small samples, with the score test overtaking the LR test as n increases. The main
difference for the adjusted power results is that the score test begins to dominate at n = 100
instead of n=250. Results for size-adjusted power are not reported.

To summarize the Monte Carlo results:

(a) the χ2
.1/-distribution is a suitable approximation for the finite sample distributions of the

score and LR test statistics, for n�100, and
(b) the score test generally dominates the LR test for n�100.

This section concludes by addressing an unsettling feature of Fig. 4. The power of both tests
initially rises with ω but then appears to drop as ω reaches 0.7 or 0.8. For ω = 1 in the OIPP
model, λ→0 in the PP model and S.β, 0/→0. This property is undesirable but is expected, and
is indeed observed for van den Broek’s (1995) score test for 0-inflation in a Poisson distribution.
A more detailed explanation, along with additional Monte Carlo results, is contained in the
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Web appendix E. The power drop tendency, however, is unlikely to be of practical concern for
two reasons. First, it is a finite sample problem which becomes less pronounced as n grows.
Second, the phenomenon arises when the sample consists mainly of 1s and such a sample is
unlikely to contain enough variation to be of interest.

6.3. Ratio plot
Besides the score test, another tool which may assist in the specification of the OIPP distribution
is the log-ratio plot that was proposed by Böhning et al. (2013). The log-ratio plot takes advantage
of the fact that .y +1/fy+1=fy =λ, where fy is the mass function for the PP distribution. Hence,
the empirical log-ratio will plot as a straight line if the PP distribution is the correct underlying
data-generating process. In the case of 1-inflation, .y +1/fy+1=fy < λ for y = 1, and the first
point on the log-ratio plot should be lower than the others.

6.4. Goodness-of-fit tests
Goodness-of-fit tests may also aid in the specification of competing count data models. The
Kolmogorov–Smirnov test (Kolmogorov, 1933; Smirnov, 1939) and the Cramér–von Mises
test (Cramér, 1928; von Mises, 1928) are two potential non-parametric options. For discrete
data, the asymptotic distribution of these test statistics is not χ2 (Conover, 1972; Gleser, 1985;
Choulakian et al., 1994). These tests are not considered in this paper.

Pearson’s χ2 goodness-of-fit test is typically employed for count data models. The test statis-
tic follows a mixed χ2-distribution, where the exact form of the mixture may depend on the
parameter values of the model (Chernoff and Lehmann, 1954). Ignoring the mixture compo-
nent in the case of the Poisson model has been shown to induce very little error (Lancaster,
1969); however, in the case of the negative binomial model ignoring the mixture component will
‘seriously inflate the Type I error’ (Pahl (1969), page 145). Given these findings, it may be unwise

Table 4. χ2 goodness-of-fit test statistic averaged over 10000 replications, for
the OIPP distribution, PP distribution and finite Poisson mixture model (k D 2),
under an OIPP data-generating process

N Results for λ=1 Results for λ=2

OIPP PP Mixture OIPP PP Mixture

ω =0.1
100 2.6 6.4 2.0 8.4 21.2 3.9
200 3.8 10.9 2.3 8.5 16.9 4.6
500 5.2 13.9 3.0 10.3 25.7 5.7

1000 7.5 15.2 4.9 7.5 6.4 21.2

ω =0.3
100 2.3 12.8 2.4 9.5 111.2 4.0
200 3.3 17.0 3.3 7.7 59.7 4.6
500 4.7 31.2 5.2 10.6 153.8 6.6

1000 7.7 61.9 8.6 8.3 124.6 6.5

ω =0.5
100 1.9 30.6 3.8 11.9 1878.3 4.2
200 3.0 58.3 6.3 7.0 400.7 4.9
500 4.1 167.0 13.4 11.0 1595.3 6.7

1000 6.7 249.3 24.0 8.3 840.7 6.5
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to consider p-values from the χ2-distribution in Pearson’s test in the context of the OIPP model.
Additionally, it may be dangerous to rely on the goodness of fit of the observed counts, when
interest lies in estimating the unobserved 0-count. This is pertinent with regard to the Poisson
mixture model. From the simulation experiments of Table 1, where the data were generated ac-
cording to the OIPP distribution, the finite Poisson mixture model fits the data extremely well,
despite providing an extremely biased estimate of N, and despite suffering from a boundary
problem. Along with the simulation experiments in Table 1, the χ2 goodness-of-fit test statistic
was recorded for each parametric model. The results were averaged over the 10000 replications
and are presented in Table 4, showing that the finite mixture model most often fits the data better
than the OIPP distribution, even when the OIPP distribution is the data-generating process.

7. Results

In this section, the data are analysed by using the various population size estimators. Table 5
reports some estimation results. N̂OIPP is always smaller than the alternative estimators, and
in most cases it is much smaller. Similarly to the simulation experiments, the values of the
estimators maintain the inequality N̂Mix > N̂Zelt > N̂Chao > N̂PP > N̂OIPP, without exception.
Compared with N̂OIPP, N̂PP is 13–188% larger, N̂Chao is 43–214% larger, N̂Zelt is 49–214%
larger and N̂Mix is 96–552% larger. Given the estimated 1-inflation under the OIPP distribution,
these percentages are in keeping with the simulation experiments.

In most cases, there is a discrepancy between the homogeneity-only model N̂PP and the
alternative models for heterogeneity, N̂Mix, N̂Chao and N̂Zelt. There is also a discrepancy between
N̂OIPP and N̂PP. Together, these two discrepancies suggest that 1-inflation is not the only source
of heterogeneity. The exceptions are the illegal firearms and drunk-driving data, where it is
plausible that 1-inflation is the only source of heterogeneity.

1-inflation is estimated between 0.34 and 0.69 across the various case-studies. In the prostitutes
data, for example, the interpretation is that 44% of prostitutes are ‘prudent’ in the sense that
they gain an avoidance ability on initial capture, such that they are not recaptured. In all cases
the p-value on the score test statistic is less than 0.01. Despite these results, the OIPP model is
not overzealous in its finding of 1-inflation. There are plenty of examples where 1-inflation is
not found, such as in the benchmark India cholera epidemic data (McKendrick, 1926).

In addition to the score test supporting the presence of 1-inflation, in general the log-ratio plots
do as well. Fig. 5 displays the log-ratio plot for the H5N1 flu data, where the first point appears
lower than the rest, indicating that there are too many 1s for a PP process to be appropriate. In
this example, whereas the difference between N̂PP and N̂OIPP is approximately 100, the OIPP

Table 5. Population size estimates, estimated 1-inflation ω̂, the smallest estimated component from the
Poisson mixture model, min(λ̂j ), and the number of mixture components, k, for the various data sets

Data set N̂OIPP N̂PP N̂Mix N̂Chao N̂Zelt ω̂ min(λ̂j) k

Prostitutes in Vancouver 1017 1240 2273 1752 1907 0.44 0.34 2
H5N1 flu outbreaks 829 935 1627 1301 1432 0.42 0.39 3
Rotterdam opiate users 2501 2937 11203 3563 3727 0.34 0.00 3
Dutch illegal immigrants 3455 7080 13374 9274 9425 0.63 0.13 2
Illegal firearms 15334 44201 — 48184 48248 0.68 — 2
Drunk-driving 30479 78710 138313 91333 91710 0.69 0.06 2
Snowshoe hares 143 162 476 211 232 0.34 0.08 3
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Fig. 5. Ratio plot (on a log-scale) for the H5N1 flu data of Vergne et al. (2014) (�) with approximate 95%
confidence limits (�, �)

model estimates less than a third the number of infected subdistricts with zero outbreaks as
does the PP distribution.

In general, N̂
Mix

increases with each additional component. For example, in the Rotterdam
opiate users data, the two-component mixture estimates a population size of 3903, whereas the
addition of a third component changes this estimate to 11203. 1-inflation is probably appropri-
ating one of the components, which is estimated to be very close to the boundary of zero (since
there are not many 2-counts), which in turn is implying too many missing 0s.

For the Dutch illegal immigrants data, van der Heijden et al. (2003b) fitted the PP model by
using covariates on nationality, gender and age. In the PP and OIPP model, f.0, θ̂/=Σn

i=1{1−
exp.λi/}−1, where λi varies through the inclusion of covariates. Using covariates, the estimate
for N nearly doubles; N̂

OIPP
is 6272 and N̂

PP
is 12690, and the estimated 1-inflation decreases

from 0.63 to 0.53, with a score test statistic of 39.6 (p-value 0.00). In this case, the covariate
information does not account for the excess of 1s, and modelling the observed heterogeneity
increases N̂

OIPP
and N̂

PP
in a fashion that maintains their relative sizes.

In the illegal firearms and drunk-driving data, N̂
OIPP

gives an estimate that is approximately
a third that of the other estimates. The extremely large estimate for N̂

Mix
is due to the failure

of the mixture model to converge. For the illegal firearms data, one of the mixture components
continually approached 0 whereas the estimate for N continually increased, and the EM al-
gorithm had to be halted. Note that the mixture model fares worst for the data that have the
highest estimated 1-inflation.

For the snowshoe hares data we also compare our results with the bias-corrected Chao estima-
tor (Chao, 1989), N̂

BCChao =n+f1.f1 −1/={2.f2 +1/}=207, and the Good–Turing estimator
(Good, 1953), N̂

G−T =n=.1 −f1=S/= 174, where S = 0f0 + 1f1 + : : :. Once again, N̂
OIPP

pro-
vides by far the smallest estimate. For six different data sets from Keith and Meslow (1968),
1-inflation is estimated to be between 0.22 and 0.35, with p-values from the score tests of 0.30,
0.10, 0.01, 0.02, 0.00 and 0.20. Contrary to Keith and Meslow’s finding of homogeneous be-
haviour in the hares, these results suggest some heterogeneity in trap response; a portion of
animals ω respond to the trapping experience by avoiding the trap whereas the behaviour of the
remaining 1−ω is unaffected, for example.

8. Concluding remarks

The OIPP model was proposed to deal with 1-inflation in a zero-truncated Poisson distribu-
tion and is used as the truncated count distribution in Horvitz–Thompson estimation of the
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population size. The OIPP model allows for a heterogeneous population, where a proportion
of the population ω responds to the initial capture by effectively avoiding recapture. In general,
avoidance of detection depends on

(a) an avoidance effort put forth by the subject and
(b) an avoidance ability of the subject.

That is, the subject must both desire and be able to avoid detection. The observational experience
reveals information to the subject that may endow avoidance effort and/or ability, for some
portion of the population. An avoidance effort occurs when the experience is learned to be less
pleasant than expected (e.g. Rotterdam opiate users and snowshoe hares). Avoidance ability is
learned straightforwardly by some portion of the population and is plausible in cases involving
law enforcement (e.g. Vancouver prostitutes and illegal firearms). Since it is likely that no new
information is revealed after the first capture, recapture avoidance manifests as 1-inflation.

A score test for 1-inflation was also derived, and through simulation experiments it was
shown that the score test has better properties than the LR test, and that the score test statistic’s
distribution is reasonably approximated by χ2

.1/, for n > 100. The score test statistic is easy to
compute, having the advantage that the data need only to be fitted under the simpler PP model.
A ratio plot is also recommended as a diagnostic tool for 1-inflation, but goodness-of-fit tests
are cautioned against.

Simulations reveal that, when the OIPP distribution is the data-generating process, alterna-
tive estimators that are popular in the population size estimation literature can be extremely
positively biased. 50–100% bias for estimators of N is not uncommon, and these percentages
are much higher when considering n0. Because of their reliance on the observed frequency of
1-counts, the Chao and Zelterman estimators are quite biased (10–100%). Perhaps surpris-
ingly, the finite Poisson mixture model is either very biased or fails to converge, but it always
fits the observed data very well and often fits better than does the OIPP model (which is the
data-generating process). Despite these alternative models purporting to deal with unobserved
heterogeneity, the Horvitz–Thompson estimator via the homogeneity-only PP model always
has less bias than these alternative estimators. The Horvitz–Thompson estimator via the OIPP
distribution is shown to have very small bias given an OIPP data-generating process.

The OIPP model is used in seven case-studies, where it provides much smaller population
size estimates than the alternative estimators, and where 1-inflation is estimated to be between
0.34 and 0.69. For all the case-studies, the basis for 1-inflation is argued for in the context of the
initial observational experience creating an avoidance effort and/or an avoidance ability towards
recapture.

The main practical importance of N̂
OIPP

is to provide an asymptotically unbiased population
size estimator in the case of 1-inflation, and a lower bound estimator if other forms of hetero-
geneity exist (van der Heijden et al., 2003a; Böhning et al., 2005). When the OIPP model is
not sufficiently comprehensive covariates may be included to reduce the underestimation bias
of N̂

OIPP
, and in future work the OIPP model could be extended to handle unobserved hetero-

geneity in the same ways that the PP model has been extended. However, if 1-inflation is not
explicitly modelled as a specific form of heterogeneity, then existing population size estimation
may be much too large.
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