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UNIVERSITY OF SOUTHAMPTON

Abstract

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

PHYSICS

Doctor of Philosophy F-Theory Model Building

by Andrew K Meadowcroft

In this thesis we considered non-Abelian monodromy groups in F-theory, based on

SU(5) GUTs, with models presented using the V4, A4, and D4 monodromy actions. The

role of these symmetries in generating the observed mixing patterns of neutrinos has

been considered in the cases of A4 and D4 monodromy. An older model based on E6

is also considered as a candidate model to explain the recent LHC diphoton excess. R-

parity violating processes in F-theory have also been considered, and it has been shown

that such effects should be considered generic in F-theory without an ad hoc R-parity.

The strengths of such coupling are discussed in the context of local F-theory Yukawa

computations.
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C.2.1 Parameter space regions for ÑY ≤ 0 . . . . . . . . . . . . . 236

C.2.2 Parameter space regions for ÑY > 0 . . . . . . . . . . . . . 237
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Chapter 1

Introduction

1.1 Overview

The two pinnacles of modern fundamental physics are the Standard Model (SM)

and General Relativity (GR), which between them provide stunningly accurate

predictions of the dynamics of the universe. With the detection of gravitational

waves [6], a major prediction of GR has finally been confirmed. Likewise, the

detection of a particle consistent with the Higgs boson [7,8] is the last predicted

fundamental particle of the SM.

So far, these two theories have not been compromised by evidence, standing

up to the scrutiny of experiment, notwithstanding the discovery of neutrino os-

cillations. One might then ask: why go beyond? What is left for theorists to try

to explain that is not already adequately understood within these frameworks?

As far as the SM is concerned, there is a degree of arbitrariness about it as a

model. For example, there are three generations of matter, with experiments indi-

cating that there should not be a fourth, which are identical but for their masses.

The SM makes no prediction for these masses, and the number of generations

itself is seemingly arbitrary. All in all, the SM has nineteen free parameters, all

of which are input by hand with no predictive mechanism provided. This is only

made worse by the detection of neutrino oscillations, which indicate that neu-

trinos have mass, indicating that a further seven free parameters are required,

bringing the total to twenty six.
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The discovery that neutrinos have mass also opens up another avenue of

thought regarding right-handed neutrinos. Specifically, neutrinos having mass

indicates that there must be right-handed neutrinos, which could form both Dirac

and Majorana mass terms. There is also the potentially connected issue that the

masses of the neutrinos, while not known absolutely, must be much smaller than

those of the other fermions we see. In particular, the top quark appears to be

about thirteen orders of magnitude1 heavier than the neutrino mass scale, which

seems unnatural and bizarre.

The SM also suffers from a “hierarchy” problem, wherein the Higgs mass has

quadratic divergences associated with loop-corrections. These divergences can be

renormalised, however the bare mass of the Higgs boson must then be the same

order as the cutoff in the loop momentum. If the scale of new physics is the Planck

scale, this leads to a bare mass that is fifteen orders of magnitude greater than

the physical mass! This is what is known as fine-tuning and is generally frowned

upon since it is tantamount to tweaking the parameters to be “just right”.

Setting this aside, there are some other more pressing issues to consider.

Firstly, cosmological observations indicate that the baryonic matter of the uni-

verse, which is described by the SM, only comprises ∼5% of the universe. The

vast majority of the energy of the universe is wrapped up in two sources: dark

matter (∼ 25%) and dark energy (∼ 70%). Dark matter, which only seems to

interact gravitationally, is indirectly observed by the behaviour of the rotations

of galaxies, which cannot be accounted for by visible matter. Dark energy on

the other hand seems to be some fundamental property of space itself, driving an

acceleration of the expansion of the universe.

In terms of how to address the points raised here, there are numerous candi-

dates. Supersymmetry, a proposed relation between fermions and bosons, could

offer a solution to the hierarchy problem, while also potentially featuring dark

matter candidates. Supersymmetry also appeals to theorists because it forms

natural partnerships with both Grand Unified Theories (GUTs) and string the-

ories.

1mtop ∼ 10, 000, 000, 000, 000×mν
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GUTs [9] provide a strong aesthetic appeal, since they take the unification

of the electroweak symmetry in the SM a step further, proposing that the entire

SM gauge group could merely be the shards of some higher, broken symmetry.

Such symmetries include SU(5) [9], SU(5)×U(1) [10], SO(10) [11], and E6 [12],

with each making different predictions. In the case of SU(5), the unification

can explain why the charges of the SM particles are quantised, such that the

proton and the electron have equal but opposite charges. GUT groups can also

be realised in string theories, which provide a description of quantum gravity.

One manifestation of string theory that has attracted much interest in recent

years is F-theory, which will be the central topic of this thesis.

F-theory [13] is a twelve dimensional formulation of Type IIB string theory,

featuring an elliptic fibration, which can lead to GUT groups being realised as

subgroups of a maximum parent symmetry of E8 [14]. A great deal of work

has gone into the development of F-theory model building [15–21]. Development

of global compactifications have been discussed in the literature [22–29], with

attention also being given to calculation of Yukawa couplings based on overlap

integrals at points of enhanced symmetry in the internal manifold [30–39]. There

have also been other works [40–46] that consider Mordell-Weil U(1)s in F-theory,

due to the elliptic fibration properties.

In lieu of global constructions, the so-called semi-local approach has offered

a promising way to realise the popular GUT groups in an F-theory set-up [1–3,

14,47–56]. This has allowed consideration of baryon and lepton number violation

[3, 26, 38, 56, 57], flavour/family symmetries [1–3, 50, 51, 58, 59], as well as the

aforementioned GUT constructions.

This thesis will focus on SU(5) GUTs in F-theory, with a particular interest

in how the discrete symmetries that may arise from the E8 point in the geometry

affect the particle physics of the theory. For the remainder of this first chapter,

an overview of some concepts pertaining to the Standard Model and to exten-

sions of it are presented. In chapter 2, a review of some concepts in semi-local

F-theory is presented, along with the work published in [1], which discusses Klein
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monodromy actions in F-theory, as well as a geometric form of R-parity. Chapter

3 presents a model from [2], which focuses on neutrino mixing effects arising from

an SU(5) × A4 type model in F-theory, where we find that it is possible to ex-

plain the large mixing and small masses of the neutrino sector. Chapter 5, based

on [3], discusses the framework of an SU(5)×D4 construction, which, using the ge-

ometric parity, can produce novel results for baryon and lepton number violating

processes. The model presented is free from proton decay, but exhibits neutron-

antineutron oscillations, which would be an interesting experimental signature of

the model. In chapter 6, we discuss an apparent excess in diphoton production,

indicating a ∼ 750GeV scalar or pseudoscalar, seen at the Large Hadron Collider

(LHC) experiments ATLAS and CMS. Presented in [4], it was shown that this

excess would be consistent with bulk exotics shown to arise in E6 embeddings of

SU(5) GUTs, originally developed in [52–54]. Chapter 7 presents an analysis of

R-parity violating couplings, based on [5]. Making use of techniques previously

used to calculate Yukawa couplings, the strength of R-parity violating couplings

are estimated, with regions of single R-parity violating couplings identified in

the parameter space. The findings are then summarised and discussed in the

concluding chapter.

1.2 The Standard Model

Of the four known fundamental forces of nature, three – the strong nuclear, weak

nuclear, and electromagnetic interactions – are encapsulated in the Standard

Model (SM) of particle physics. The model, centred on the gauge symmetry

SU(3)c × SU(2)L × U(1)Y , includes vector bosons to mediate each force, three

copies of each of the quarks and leptons, and a scalar field – the Higgs field – to

break the electroweak part of the model and give masses to the weak bosons.

The known fundamental particles are classified as either bosons or fermions,

depending on whether they have integer or half integer spin, depending on their

representation under the Lorentz group. The bosons are associated to the three

forces in the SM, with eight gluons associated to the strong force, three massive
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bosons for the weak force (W± & Z0), and the photon of electromagnetism. These

spin-1 particles arise naturally from enforcing local invariance of the symmetries

of the SM.

The fermions are then subdivided into quarks and leptons, depending on

whether or not they interact with the strong force. Each generation of quarks

then has an SU(2)L doublet made up of a left-handed, up-type quark and a left-

handed, down-type quark, and right-handed, up- and down-type quarks. The

lepton of each generation comprise an SU(2)L doublet with a neutrino and a

charged lepton, and a right-handed, charged lepton. Crucially, there are no right-

handed neutrinos in the vanilla version of the SM, since a right-handed neutrino

would be an absolute singlet of the SM. The only possible interaction would be

through Yukawa couplings with the Higgs field, however neutrinos were thought

to be massless particles until the measurement of neutrino oscillations, so the

right-handed particle must be added.

The remainder of this section comprises discussion of some fundamental con-

cepts associated with the SM, while the following sections within this chapter

will be dedicated to concept that extend the SM – Beyond the Standard Model

(BSM) physics – such as supersymmetry, unification, and string theory.

1.2.1 The Dirac Equation

The Dirac equation is a relativistic generalisation of the Schrödinger equation,

which unlike the Klein-Gordon equation can accommodate the half integer spin

of fermions such as the electron. Unlike the Schrödinger equation, the Dirac

equation is a first order differential equation in both time and spatial coordinates:

(iγµ∂µ −m)ΨD = 0 . (1.1)
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In the Dirac representation (or basis), the matrices γµ are related to the Pauli

matrices as:

γ0 =

 I 0

0 −I

 , γi =

 0 σi

−σi 0

 . (1.2)

In this notation, ΨD has a four component structure, which means there are

four solutions to the equation. These give rise to a description of particles and

antiparticles, each with two different spin states available.

An alternative basis for the Dirac equation is the so-called Weyl (or chiral)

basis, which differentiates the notations for left-handed and right-handed compo-

nents of the Dirac equation - i.e. separating the components based on their spin

properties. In such a basis, we write

ΨD =

 ξα

χ†α̇

 , (1.3)

where α, α̇ = 1, 2 and the ξα is left-handed spinor and χ†α̇ is right-handed. Hermi-

tian conjugation maps a left(right)-handed spinor to a right(left)-handed spinor.

In this basis, γµ is instead written as

γ0 =

 0 I

I 0

 , γi =

 0 σi

−σi 0

 . (1.4)

We may introduce two projection operators to project out left- or right-handed

components of the Dirac equation,

PL/R =
1

2
(1∓ γ5) (1.5)

γ5 = −iγ0γ1γ2γ3 =

 −I 0

0 I

 . (1.6)

It is trivial to see that applying PL to ΨD returns only the left-handed component

ξα and likewise for the right-handed component and PR.
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Writing Equation (1.1) in terms of left-handed and right-handed Weyl spinors,

LD = iξ†σµ∂µξ + iχ†σµ∂µχ−m(ξχ+ ξ†χ†), (1.7)

where contracted spinor indices are dropped by convention. We have introduced

(σµ)αα̇ = (I, σ)αα̇ and (σµ)α̇α = (I,−σ)α̇α. This new form of the Dirac equation

shows that mass terms introduce a mixing between the left-handed and right-

handed components, such that in the massless limit the equation decouples into

left and right-handed currents.

1.2.2 Abelian Gauge Symmetries

The Dirac equation, as discussed in the previous section, can be derived using

the Euler-Lagrange equation as applied to the Dirac Lagrangian density,

L = ΨD(iγµ∂µ −m)ΨD. (1.8)

Equation (1.8) is invariant under a global U(1) symmetry (a complex phase trans-

formation):

Ψ→ e−iαΨ , (1.9)

where α is a real number with no dependence on coordinates. However, this is

clearly not the most general complex phase transformation, since we could easily

extend the concept such that α→ α(x) - a local phase. The Dirac Lagrangian is

not invariant under such a local phase transformation without modification. In

order to keep invariance, we must introduce the covariant derivative Dµ, so that

we make the replacement:

∂µ → Dµ = ∂µ + ieAµ. (1.10)
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The field Aµ is a vector field that transforms as:

Aµ → Aµ −
1

e
∂µα. (1.11)

The introduction of this new field ensures the Lagrangian is invariant under

the local phase transformation, while also accommodating the gauge kinetic and

interacting terms containing the gauge field Aµ,

L = Ψ(iγµ∂µ −m)Ψ + eΨγµAµΨ− 1

4
FµνFµν , (1.12)

where the so-called field strength tensor, Fµν , is

Fµν = ∂µAν − ∂νAµ . (1.13)

If we take the new vector field Aµ to be a physical field, then we may interpret

this new field as the photon that mediates the electromagnetic force. Thus, by

enforcing a local symmetry, we have found a natural requirement for a so-called

gauge field. It is also interesting to note that under the transformation properties

of the gauge field, a mass term (∼ m2AµAµ) would be forbidden since it would

spoil the invariance of the Lagrangian.

1.2.3 Non-Abelian Gauge Symmetries

The group of local phase transformations considered in the previous section, iden-

tified with the electromagnetic force, is the Abelian group U(1). Let us consider

a case where we enforce a similar property set with non-Abelian transforma-

tions, corresponding to an SU(N) group. The Dirac Lagrangian for each of the

N components of the wavefunction Ψ = (ψ1, . . . , ψN )T , will be the same as the

Lagrangian of Equation (1.8). A general SU(N) transformation,

Ψ→ eiαaT
a
Ψ , (1.14)
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is parameterized by a phase and an N ×N matrix, T a, which are the generators

of the group, obeying the commutation relation

[
T a, T b

]
= ifabcT

c . (1.15)

Provided we consider α to be a local phase, the free Lagrangian is not immediately

invariant under this action. In order to preserve this symmetry, once again a

covariant derivative must be introduced,

∂µ → Dµ = ∂µ + igTaG
a
µ. (1.16)

Under the group action the vector field, Gaµ, must transform as

Gaµ → Gaµ −
1

g
∂µα

a − fabcαbGcµ . (1.17)

Note the extra factor dependent upon the structure constants of the SU(N) group,

which arises from the need to balance the transformation of the interaction term,

gΨγµT
aΨGµa . The full Lagrangian of a non-Abelian gauge theory, including the

gauge kinetic term is

L = Ψ(iγµ∂µ −m)Ψ− gΨγµT
aΨGµa −

1

4
GaµνG

µν
a , (1.18)

where the field strength tensor is similar to that of Equation (1.13), but with a

factor arising due to the non-Abelian nature of the symmetry:

Gaµν = ∂µG
a
ν − ∂νGaµ − gfabcGbµGcν . (1.19)

An interesting side effect of enforcing local invariance of this symmetry is that the

gauge kinetic term necessarily has these extra, non-Abelian terms. These terms

give new interaction properties to the field Gaµ, causing it to couple to itself.

Specifically there will be three-point and four-point interaction vertices. This

type of symmetry can be used to describe the strong and weak nuclear forces.
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1.2.4 Electroweak Symmetry Breaking

The Standard Model gauge group is invariant under SU(3)c × SU(2)L × U(1)Y .

However, the physical spectrum of particles does not correspond to such a sym-

metry, and the vector bosons of the weak force are massive. This is due to the

presence of a scalar field, called the Higgs field, which breaks the SU(2)L×U(1)Y

part of the symmetry group to U(1)EM , giving masses to three vector bosons.

Let us consider a spin-0 (scalar) field that couples to the electroweak part of

the Standard Model. Considering only the pure gauge electroweak terms , this

would have a Lagrangian with two gauge kinetic parts (one each for SU(2)L and

U(1)Y ), a potential for the new scalar field, and a scalar kinetic term:

L = −1

4
W a
µνW

µν
a −

1

4
FµνFµν + (DµΦ)†DµΦ− V (Φ), (1.20)

where the field strength tensor Fµν is defined as in Equation (1.13), and W a
µν

as in Equation (1.19) - with suggestive notational change to use W . In order

to comply with gauge invariance under both the Abelian U(1) and non-Abelian

SU(2) symmetries, the covariant derivative takes parts from both Equation (1.10)

and Equation (1.16):

Dµ = ∂µ + i
g′

2
Bµ + i

g

2
σaW

a
µ . (1.21)

The scalar potential is taken to be of the form

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2 , (1.22)

which will take different forms depending on the signs of µ2 and λ. Let us take

φ to be a general complex field,

Φ(x) =
1√
2

 φ1(x) + iφ2(x)

φ3(x) + iφ4(x)

 , (1.23)

then we can find the minimum of the scalar potential by taking its derivative and
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setting it equal to zero,

−µ2

λ
= φ2

1 + φ2
2 + φ2

3 + φ2
4. (1.24)

If µ2 < 0 and λ > 0 this potential will have a set of minima that are together

SU(2) invariant. This potential is often referred to as a “Mexican hat” potential

and, if one sits at the centre of such a potential, one would see the rotational

symmetry of it. If we select one of the vacua however, this symmetry will be

broken - as if one were to sit at a point in the brim of the hat rather than at

the point of rotational symmetry. A simple choice of vacuum alignment with

φ1 = φ2 = φ4 = 0 and φ2
3 = v2 = −µ

λ achieves this symmetry breaking. We can

expand about this vacuum using a local field h(x),

Φ(x) =
1√
2

 0

v + h(x)

 , (1.25)

which will give the scalar field h(x) a mass, due to the potential part of the

Lagrangian. However, this scalar field will also interact with the vector fields via

the covariant derivative. Consider the four massless fields Bµ and W a
µ and their

interaction with φ, which gives rise to a term

∣∣∣∣(ig′2 Bµ + i
g

2
σaW

a
µ )Φ

∣∣∣∣2 =
1

8

∣∣∣∣∣∣∣
 g′Bµ + gW 3

µ gW 1
µ − igW 2

µ

gW 1
µ + igW 2

µ g′Bµ − gW 3
µ


 0

v


∣∣∣∣∣∣∣
2

=
g2v2

8
(W 1

µW
1µ +W 2

µW
2µ) +

v2

8
(g′Bµ − gW 3

µ)(g′Bµ − gW 3µ). (1.26)

The first part of this term shows that there should be two vector fields with

identical masses. Making a redefinition
√

2W± = (W 1 ∓ iW 2) and knowing that

such a mass term is of the form 1
2M

2W+W−, these bosons have masses

MW =
gv

2
. (1.27)

The remaining part can be seen as the mixing of the two fields Bµ and W 3
µ in an

13



off-diagonal basis. However, examination of the mass mixing matrix reveals that

one eigenvalue is zero, so that we may define two new fields in the diagonal basis:

Aµ =
g′W 3

µ + gBµ√
g′2 + g2

(1.28)

Zµ =
gW 3

µ − g′Bµ√
g′2 + g2

(1.29)

The new field Aµ will be massless, corresponding to the photon, while the Zµ

field will be a neutral, massive boson mediating neutral current processes of the

weak force. The mass of this neutral vector boson will be different to the mass of

the W± bosons due to the mixing between Bµ and W 3
µ . Its mass will arise from

a term like 1
2M

2
ZZ

µZµ, which means the mass is

MZ =
v

2

√
g′2 + g2. (1.30)

The ratio of the masses MZ and MW or the ratio of g and g′ can be equivalently

related to some mixing angle θW to parameterise the inequality of the two masses

(couplings):

MW

MZ
= cos θW ,

g′

g
= tan θW . (1.31)

1.2.5 Yukawa Couplings

The Higgs field responsible for electroweak symmetry breaking is not confined to

coupling to the gauge fields of the electroweak sector. It also couples to fermionic

fields, which in the electroweak part of the Standard Model are comprised of left-

handed doublets of SU(2)L and right-handed SU(2)L singlets. A consequence of

this is that the usual explicit mass term for the fermionic fields, mψψ, would

violate SU(2)L gauge invariance and so is not allowed. The couplings between

the Higgs field and these fermionic fields are called Yukawa couplings, with the

full Yukawa part of the Standard Model Lagrangian comprised of three pieces,

LY = YuQ
†
LΦcuR + YdQ

†
LΦdR + YeL

†ΦeR + hermitian conjugate, (1.32)
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where the left-handed SU(2)L doublets QL and L refer to the quark doublet and

lepton doublet and Φc is a new field related to the original Higgs field,

QL =

 uL

dL

 , L =

 νL

eL

 , Φc = iσ2Φ∗ (1.33)

and the uR, dR, and eR fields are the right-handed up-type quark, down-type

quark, and charged lepton respectively. The Yu,d,e are 3 × 3 matrices, due to

the three generations described by the Standard Model, and as such there will in

general be mixing between generations.

With the choice of vacuum alignment in Equation (1.25), each of the terms

in the Yukawa sector generates a mass,

yiju (Q†LΦcuR)† =
yiju√

2
ujR

(
v + h(x) 0

) uiL

diL

 =
yiju v√

2
uiLu

j
R +

yiju√
2
huiLu

j
R

(1.34)

which is identified as mij
u = yiju v√

2
. There is also a coupling between the Higgs field

and the left- and right-handed quark fields, which can be measured in collider

experiments. However, since yiju =
√

2mij
u /v, for lighter generations this will be

a small coupling and hence hard to measure. On the other hand, due to its large

mass, the top quark couples strongly to the Higgs.

1.2.6 Neutrinos

In the “vanilla” Standard Model, neutrinos are massless, since there are no right-

handed neutrinos, which would be absolute singlets of the Standard Model. How-

ever, neutrino oscillation measurements have revealed that at least two of the

three generations of neutrino must have a mass. The absolute value of this mass

is not known, with the lightest neutrino still possibly massless, but the total mass

of the neutrino sector is known to be very small – mν ∼ 10−6me. The ordering of

the neutrino mass hierarchy is also unknown, since the mass squared differences

are the measured quantity, meaning that while we may know the difference be-

tween the masses of each generation of neutrino, we do not know in which order
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they are arranged.

The mechanism of this mass generation is also unknown, since neutrinos can

be Majorana, allowing for two possible mass terms,

Lν = mDνLνR +MRνcRνR + hermitian conjugate, (1.35)

with mD and MR both matrices. It is important to appreciate that a term of the

form MLνLν
c
L must be zero in the standard model, since the presence of such a

term would interfere with electroweak processes – νL interacts with the W± and

Z0 bosons, while νR does not.

Though it is not known whether or not neutrinos are Majorana in nature,

the possibility leads to an explanation for their comparatively small masses via

the so-called seesaw mechanism. In this mechanism, the right-handed neutrino

is taken to have a large Majorana mass, while the Dirac mass is comparable to

the charged lepton sector. Inserting the Higgs vacuum choice, Equation (1.25),

to give a dimensionful Dirac mass, Equation (1.35) can be expressed by a mixing

matrix between Dirac masses and Majorana masses:

(
νL νcR

) 0 mD

mT
D M


 νcL

νR

+ h.c., (1.36)

which has two eigenvalues. In the limit where M � mD, these two eigenvalues

of mass are approximately M and m2
D/M , the latter of which would correspond

to the light effective mass of the neutrinos. For a good review of neutrino mass

generation see [60].

1.2.7 Anomalies

An important property that must be considered regarding the SM is that of

gauge anomalies, or rather their cancellation. While a current may be conserved

at tree-level, when one includes loops corrections due to quantum effects, it is

possible that that current may no longer be conserved - this is what we mean by
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Figure 1.1: Gauge anomalous diagrams arise at vertices of the type shown here,
where external vector fields are coupled by fermion loops. Here, each external leg
may be any gauge boson of the theory, while the internal propagators are due to
all fermionic fields to which those bosons couple. A consistent gauge symmetry
must have a total of zero anomalous contributions, which is true of the standard
model.

an anomaly.2

Because the electroweak sector of the SM couples differently for left-handed

and right-handed fields, it is possible that an anomaly could occur for the model.

In order to check this, one must consider the one-loop triangle diagrams for three

boson vertices of the type shown in Figure 1.1, with each external boson one of

the three SM gauge fields. There is also a gravitational anomaly associated with

two gravitons and a photon.

Each diagram has a contribution proportional to the trace of the generators

(ta) over the fermionic fields allowed in the triangle shown in Figure 1.1,

Aabc ∝ Tr(γ5ta{tb, tc}). (1.37)

Some triangle diagrams can immediately be eliminated, since they are left-right

symmetric, for example a three-gluon diagram or any diagram involving only a

single gluon. It transpires that if one considers all the possible diagrams, each

in turn can be shown to vanish. As such, the anomalies of the SM all cancel

2A famous example of this is the Adler-Bell-Jackiw anomaly [61,62], also known as the chiral
anomaly, which is a non-gauge anomaly. We shall not discuss this in this thesis.
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perfectly, which insures that the currents associated with the gauge fields are

conserved at the quantum level of the theory.3

There is, however, a caveat of this perfect cancellation, which is that it requires

that quarks and leptons necessarily come in complete families. Put another way,

this implies that the number of each type of fermionic field is the same in the

SM:

n(eL) = n(νL) = n(eR) = n(uL) = n(dL) = n(uR) = n(dR). (1.38)

This in itself is an interesting result for the SM, since it essentially requires some

relationship between the numbers of quarks and leptons in the theory in order to

remove anomalous effects.

1.3 Supersymmetry

The SM is invariant under the Poincaré symmetry group, a generalization of

Lorentz symmetry, which ensures compatibility with special relativity. This group

covers transformations of the form

xµ → Λµνx
ν + aµ, (1.39)

which leave the line element invariant (gµνx
µxν), with the transformation Λ leav-

ing the Minkowski metric invariant: ΛµσηµνΛντ = ηστ . The generators of this

group are those of the space-time translations, Pµ, and those of Lorentz boosts

and rotations, Mµν , which have the commutation relations

[Mµν ,Mτσ] = i(ηητMνσ + ηνσMµτ − ηντMµσ − ηµσMντ ), (1.40)

[Mµν , Pσ] = i(ηνσPµ − ηµσPν), (1.41)

[Pµ, Pν ] = 0. (1.42)

3Put another way this is a statement that unitarity is not violated by the quantum theory.
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One may also define the Pauli-Ljubanski vector,

Wµ =
1

2
εµνστP

νMστ , (1.43)

which commutes with both Pµ and Mµν . The Casimirs4 of the Poincaré can then

be identified as P 2 and W 2, which allows the classification of all physical states

in terms of the eigenvalues of these two operators.

The Coleman-Mandula theorem [63] posits that, in short, there are no exten-

sions to the Poincaré symmetry that are not trivial, internal symmetries. How-

ever, there is one known symmetry that can evade this no-go theorem: super-

symmetry. Supersymmetry (SUSY) adds a set of fermionic generators to those

of the Poincaré group, which are allowed by the Coleman-Mandula theorem since

the generators are fermionic.

These new generators alter the spin of particles, turning a fermionic state

into a bosonic state and visa versa, with the generators having half-integer spin.

These new generators are written in terms of a left-handed Weyl spinor, Qα=1,2,

and its hermitian conjugate, which add the extra relations

{Qα, Qβ} = {Qα̇, Qβ̇} = [Qα, Pµ] = 0,

{Qα, Qβ̇} = 2σµ
αβ̇
Pµ, (1.44)

[Qα,Mµν ] = i(σµν)βαQβ.

to the Poincaré algebra, to create a larger superalgebra.

There are some interesting and important properties immediately evident

from the commutation relations of the combined operators of SUSY. Firstly, the

new, spin-altering operators commute with the generators of any gauge symme-

tries, which implies that states that are acted upon by the new operators will

have the same gauge quantum numbers as the original state. Also, since these

new operators commute with P 2, the masses of states acted upon by the SUSY

operators will be unchanged. As such, the so-called superpartners of any state

4Casimirs are operators that commute with all the generators of a group
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in a supersymmetric theory should be identical to the original state barring the

change in spin. The consequences of this are profound, since, assuming SUSY is

unbroken, every particle would have a corresponding partner with spin differing

by 1
2 . Clearly, this is not seen in nature, however, if SUSY is broken and provided

it happens above the TeV scale, then SUSY may still have a role to play. The

details of SUSY breaking shall not be discussed in this thesis.

It is natural to consider a framework wherein the particles and the corre-

sponding superpartners are combined into supermultiplets. This framework can

be subcategorised into two subclasses of supermultiplet: the chiral supermultiplet

and the vector supermultiplet. Both cases are subject to the requirement that

the number of bosonic degrees of freedom is equal to the fermionic degrees of

freedom in a given supermultiplet.

The chiral supermultiplet5 contains a spin-1
2 Weyl fermion, which has two

degrees of freedom due to the possible chiralities. Consequently, there must be a

complex scalar field (two bosonic degrees of freedom) corresponding to the super-

partner of the Weyl fermion. Since the representations within this supermultiplet

transform differently under gauge interactions for left-handed and right-handed

components, this would contain the SM fermions and their superpartners, which

are known as sfermions.

The vector supermultiplet contains a spin-1 vector boson field, which is mass-

less and thus again has two degrees of freedom. A subtlety is that the superpart-

ner must be a spin-1
2 Weyl fermion and not spin-3

2 , in order to be renormalisable.

The fermions in this supermultiplet cannot correspond to those of the SM how-

ever, as they are found in the adjoint representation, which is its own conjugate

and so left- and right-handed fields do not transform differently. These new

particles are known as gauginos.

It is necessary to note that the degrees of freedom discussed here referred to

on-shell fields, which is only sufficient for the classical case. If one requires con-

sideration of off-shell properties, then the matter becomes less straight-forward,

since an off-shell fermionic field has four degrees of freedom, while a complex

5The chiral supermultiplet is sometimes referred to as the scalar or matter supermultiplet.
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φ ψ F

Spin 0 1
2 0

On-shell d.o.f. 2 2 0
Off-shell d.o.f. 2 4 2

(a) Chiral supermultiplet

Aµ λµ Dµ

Spin 1 1
2 1

On-shell d.o.f. 2 2 0
Off-shell d.o.f. 3 4 1

(b) Vector supermultiplet

Table 1.1: The chiral and vector supermultiplets are generalisations of the stan-
dard model fields to group together fields with the same quantum numbers but
with different spin. Each supermultiplet also includes an auxiliary field to account
for degrees of freedom when considering off-shell physics.

scalar field still has only two. As such, in the case of the chiral supermultiplet,

one must introduce an auxiliary scalar field, usually denoted F , that has two

degrees of freedom off-shell, but none on-shell. Similarly in the case of the vector

supermultiplet, the bosonic field has only three degrees of freedom off-shell, so a

bosonic auxiliary field must be added that has the remaining degree of freedom

in the off-shell case - which is usually labeled D. The supermultiplet contents are

summarised in Table 1.1. The auxiliary fields must feature in any supersymmet-

ric Lagrangian, however they will not have kinetic terms and are not physical

fields, but merely keeping track of the degrees of freedom correctly.

1.3.1 The Hierarchy problem

While not one of the original motivations of SUSY, it is often touted by advocates

of the theory that SUSY can solve the gauge hierarchy problem. This references

a perceived fine-tuning issue of the SM, wherein the Higgs mass term is quadrati-

cally divergent, so that the correction due to fermion loops (in particular the top

quark loop) is sensitive to the cutoff in the momentum loop integral,

∆µ2 ∼ λtopΛ2. (1.45)

While the correction is renormalisable, the bare mass of the Higgs boson must

be of the same order as the cutoff, which may be at a high scale. For example,

if λ ∼ 1016GeV (the GUT scale, which will be discussed in the next section),

then in order to have a Higgs mass at the 125GeV observed value, one would
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required cancellations down twenty eight orders of magnitude - a spectacular

case of fine-tuning!

In order to avoid this problem, one might set the cutoff to be at a lower scale,

which then anticipates some new physics arising at that cutoff. However, SUSY

offers a novel solution to the problem by means of symmetry arguments to protect

the Higgs mass from quadratic divergences.

Introducing scalar partners of the SM fermions, with the same masses and

gauge representations, gives new couplings to the Higgs field (φ),

L = −λfffφ− λs|S|2|φ|2, (1.46)

where λf,s are dimensionless couplings and f and S are fermioninc and scalar

fields respectively. If one calculates the contributions of these couplings to the

one loop correction of the Higgs mass squared, one finds that the contributions

are of opposite sign. In fact, provided λs = |λf |2, this cancellation would be

exact, removing the quadratic divergences at all order in perturbation theory.

Such a relation in couplings is required in SUSY.

While this seems to be a great improvement, it is worth considering that the

new leading order correction to the Higgs mass squared is proportional to the

mass of the scalar particle, and as such the mass of the superpartner cannot be

much higher than the TeV scale without creating a replica hierarchy problem.

1.3.2 The Minimal Supersymmetric Standard Model

Extending the SM to include supersymmetry essentially requires extending every

field to be a supermultiplet. For example, the left-handed quark doublet of the

SM, Q = (uL dL), must be extended to also include (ũL d̃L) in the new chiral

supermultiplet. This is essentially a straightforward notational extension, which

is succinctly summarised in Table 1.2. We use the notation of [64], where u (and

also d or e) refers to a supermultiplet containing the left-handed Weyl spinors ũ∗R

and u†R, rather than conjugation. This allows us to write the so-called Minimal

Supersymmetric Standard Model (MSSM) in a compact form.
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spin-0 spin-1
2 Gauge rep.

Q̂ (ũL d̃L) (uL dL) (3, 2)1/6

û ũ∗R u†R (3, 1)−2/3

d̂ d̃∗R d†R (3, 1)1/3

L̂ (ν̃L ẽL) (νL eL) (1, 2)−1/2

ê ẽ∗R e†R (1, 1)1

Ĥu (H+
u H

0
u) (H̃+

u H̃
0
u) (1, 2)1/2

Ĥd (H0
d H

−
d ) (H̃0

d H̃
−
d ) (1, 2)−1/2

(a) Chiral supermultiplets of the MSSM

spin-1
2 spin-1 Gauge rep.

G g̃ g (8, 1)0

W W̃± W̃ 0 W±W 0 (1, 3)0

B B̃0 B0 (1, 1)0

(b) Vector supermultiplets of the MSSM

Table 1.2: The chiral and vector supermultiplets required in the minimal super-
symmetric extension of the standard model.

In the MSSM, it is clearly necessary that the Higgs field be embedded in a

chiral supermultiplet, with a superpartner referred to as a higgsino. However, it

is also required that there be two Higgs fields rather than the minimal one of the

SM. The principle reasons for this are twofold. Firstly, if one wishes to write down

Yukawa couplings for the up and down quarks, then Higgs fields with hypercharge

of +1
2 and −1

2 are respectively required in order to write down a SM-invariant

coupling. Secondly, and in a somewhat related vein, the addition of supersymme-

try can spoil the anomaly cancellation of the SM. The SM anomaly cancellation

conditions Tr(T 2
3 Y ) = Tr(Y 3) = 0, where the trace is over the fermions of the

theory, would no longer be satisfied if a higgsino with hypercharges of +1
2 or −1

2

were added. However, adding a higgsino with each hypercharge value will restore

anomaly cancellation.

This extension of the SM to the MSSM literally doubles the number of parti-

cles in the theory. However, as of writing this thesis, no SUSY partners have been

observed. Most obviously perhaps, the new particles must have masses equal to

those of the SM particles they share supermultiplets with. This lack of observa-

tion implies that SUSY, if it exists, must be a broken symmetry like that of the

electroweak theory. While we will not discuss the details of SUSY breaking, this
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breaking should not be too far above the TeV scale in order to leave SUSY with

any hope of reducing the gauge hierarchy problem.

Setting problems of SUSY breaking to one side, one may write down the

superpotential for the MSSM,

W = ûYuQ̂Ĥu− d̂YdQ̂Ĥd− êYeL̂Ĥd +µĤdĤu +λL̂L̂ê+λ′Q̂L̂d̂+λ′′ûûd̂+βL̂Ĥu ,

(1.47)

where Yu,d,e are Yukawa matrices, and we denote here the fact that these are

superfields with X̂ for each field X – we shall suppress this notation in the

rest of this thesis. These terms are sufficient to have Yukawas for the quarks

and charged leptons, as well as a mass for the Higgs boson. However, there

are additional terms corresponding to baryon and lepton number violation. The

trilinear λ, λ′, and λ′′ couplings correspond to a large number of processes, with

the most constraining being proton decay. While no single trilinear coupling can

lead to proton decay at dangerous rates, combinations of couplings are generally

considered to be dangerous. As such, it is usual to introduce some form of R-

parity or R-symmetry to forbid these couplings. This amounts to applying a Z2

symmetry between SM and SUSY particles - + and − labels respectively - which

is sufficient to remove the dangerous terms from the superpotential6. This may

in some sense be considered an ad hoc assignment, though such mechanisms can

be motivated in string theory.

1.4 Unification and SU(5)

The SM gauge group, SU(3)c × SU(2)L × U(1)Y , features the unification of the

electromagnetic and weak nuclear forces. Considering this, a set of aesthetically

pleasing extensions of the SM can be found by extending this principle, with the

aspiration of a grand unification of the SM in some larger group. This notion

of beauty is lead further by considering the running of the SM coupling to high

6Other options for assignments exist that can remove the dangerous operators in a similar
manner. For example assigning Higgs supermultiplets + and quarks and leptons − will forbid
all these terms. One could also attempt a more exotic and interesting assignment, for example
using some ZN 6=2 discrete symmetry.
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energies, which appear to show a point of near-intersection at some high scale.

The first attempt at such a model was an SU(5) model, proposed by Georgi

and Glashow [9] , which constitutes the smallest group with the SM as a sub-

group.7 This SU(5) construction shall form the basis of the models presented

in the subsequent chapters. As such, presented here is an introduction to this

construction. The main competitor GUT groups are SO(10) and E6, however

these shall not be discussed in any detail here, though in short they offer more

complete unifications, in particular with embeddings for right-handed neutrinos

in unified representations.

1.4.1 Matter representations

The fundamental representation of any SU(N) group has dimension N . Consider-

ing the case of an SU(5) group with the SM embedded within it, the fundamental

representation is a 5-dimensional one, with two options for embedding SM fermion

representations,

5→ (3, 1)−1/3 ⊕ (1, 2)1/2, (1.48)

5→ (3, 1)2/3 ⊕ (1, 2)1/2. (1.49)

The second of these two embeddings is not a viable option, since the hypercharge

generator would not be traceless - a requirement of SU(N) generators. As such,

the first option should be taken, which implies the embedding of dcL and L into

a fundamental representation of the GUT group, with the former as a colour

triplet and the latter as an SU(2) doublet. The matter will be embedded in

the antifundamental representation however, in order to pair the representations

7Any group hoping to be a candidate unification group must have rank of at least 4 to be
able to contain the standard model gauge group.
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correctly with those of the SM matter,

5 =



dcred

dcgreen

dcblue

e

−νe


=

 dc

L

 . (1.50)

It is an interesting feature that the charge operator, Q, must be traceless by

requirement as an SU(5) operator. As such, the sum of its eigenvalues must

vanish. Considering the fundamental representation embedding above, the sum

of the charges adds up to zero in this way. This is the realisation of charge

quantisation for the down-type quark and electron in the SU(5) model.

This clearly does not include the entire SM fermionic sector, the rest of which

must be embedded into some higher dimensional representation. The next largest

SU(5) representations are the symmetric and antisymmetric representations,

5⊗ 5 = 10a ⊕ 15s, (1.51)

where 10a is antisymmetric and 15s is symmetric. If we take the fundamental

representation as above,

5 = (3, 1)−1/3 ⊕ (1, 2)1/2,

then we may construct the representations for an antisymmetric representation

of the GUT group,

5⊗ 5 = (3, 2)1/6 ⊕ (3, 1)−2/3 ⊕ (1, 1)1︸ ︷︷ ︸
10a

⊕ (3, 2)1/6 ⊕ (6, 1)−2/3 ⊕ (1, 3)1︸ ︷︷ ︸
15s

. (1.52)

The representations within the antisymmetric part of the tensor product are ex-

actly the required representations for the remaining SM fermions, QL = (uL, dL),
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ucL, and ecL. The full embedding is then

10 =
1√
2



0 ucr −ucg −ub −db

−ucr 0 ucb −ug −dg

ug −ucb 0 −ur −dg

ub ug ur 0 −ec

db dg dr ec 0


. (1.53)

Here, charge quantisation is ensured because the antisymmetric representation

embedding is formed by the tensor product of two fundamental representations.

Thus charge quantisation is unambiguously a feature of SU(5) GUTS. The full

fermionic content of the SU(5) model is a 10 and a 5 for each of the three gener-

ations of the standard model.

Anomaly cancellation in SU(5)

As we have briefly discussed, the SM is an anomaly-free theory, a property that

is also shared by SU(5). We shall briefly justify this statement. For any given

fermion representation (R) of SU(N), the anomaly of that representation is pro-

portional to a trace over the generators [65],

Tr({T aR, T bR}T cR) =
1

2
A(R)dabc, (1.54)

where A(R) is independent of the generator choice and dabc is related to the

commutation properties of the SU(N) group8. One is free to choose any three

generators to calculate A(R), so let us choose Q. Referring to the embedding in

Equation (1.50), the antifundamental representation the anomaly is

A(5) = Tr(Q3) = 3(
1

3
)3 + (−1)3 = −8

9
. (1.55)

8dabc is known as the third order antisymmetric invariant of SU(N)
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While Equation (1.53) gives an anomaly contribution

A(10) = 3(−2

3
)3 + 3(

2

3
)3 + 3(−1

3
)3 + (1)3 =

8

9
. (1.56)

Since the anomaly contributions combine additively, these two contributions can-

cel each other perfectly. Consequently, one can conclude that provided there are

equal numbers of (complete) antifundamental and antisymmetric representations,

n(5) = n(10), (1.57)

then the SU(5) model remains anomaly free.

1.4.2 Gauge representations

The SM gauge sector is comprised of bosons in the adjoint representations of their

respective gauge groups. In order to embed these representations into an SU(5)

GUT group, they should be set within the adjoint of this new gauge group, which

has a degree of 24. This can easily accommodate the SM gauge bosons, however,

when decomposing from SU(5) to SU(3)c×SU(2)L×U(1)Y , there appear to be

extra representations,

24→ (8, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0 ⊕ (3, 2)− 5
6
⊕ (3, 2) 5

6
(1.58)

the physics of which must be considered. Looking at the representations involved,

these new gauge bosons must violate baryon and lepton number, hence facilitating

proton decay - see Section 1.4.4. The generators of SU(5) can be categorised in

terms of the generators of the SM gauge group and extra generators. The SU(3)

and SU(2) generators are embedded on the block diagonal upper three-by-three
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and lower two-by-two,

L1,...,8 =
1

2



0 0

λ1,...,8 0 0

0 0

0 0 0 0 0

0 0 0 0 0


, L9,10,11 =

1

2


0

0 0

0 0

0 0

0 0 0

0 0 0
σ1,2,3


,

(1.59)

where λ1,...,8 are the generators of SU(3) and σ1,2,3 are those of SU(2). The

hypercharge generator is assigned to the diagonal matrix,

L12 =
1

2
√

15
diag(−2,−2,−2, 3, 3). (1.60)

In the SM, the electric charge operator is given as the linear combination of the

hypercharge generator and the T3 ,

Q = T3 + Y. (1.61)

However, the generators of SU(5) must satisfy the requirement that Tr(LiLj) =

δij/2. Consequently, Tr(Q2) = Tr(T 2
3 ) + Tr(Y 2) should equal one. If one takes

the hypercharge assignments of Equation (1.50), Q = 1
3diag(1, 1, 1,−3, 0) and

hence Tr(Q2) = 4
3 and the relation does not hold. This can be rectified if instead

the relation is

Q = T3 +

√
5

3
Y, (1.62)

introducing a new normalisation.

The remaining twelve generators are then all the combinations of the follow-
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ing9

L13,15,17... =
1

2


0

1 0

0 0

0 0

1 0 0

0 0 0
0


, L14,16,18... =

1

2


0

i 0

0 0

0 0

−i 0 0

0 0 0
0


.

(1.63)

The gauge field of the unified field theory is then a linear combination of the

form,

Aµ =
√

2

24∑
a=1

AaµLa =



G1
1 − 2B√

30
G1

2 G1
3 X

1
Y

1

G2
1 G2

2 − 2B√
30

G2
3 X

2
Y

2

G3
1 G3

2 G3
3 − 2B√

30
X

3
Y

3

X1 X2 X3
3B√

30
+ W3√

2
W1+iW2√

2

Y1 Y2 Y3
W1−iW2√

2
3B√

30
− W3√

2


.

(1.64)

By analogy with the W± bosons of the electroweak sector, the fields Xi and Yi

are defined

X1
µ =

A13
µ +iA14

µ√
2

, X2
µ =

A15
µ +iA16

µ√
2

, X3
µ =

A17
µ +iA18

µ√
2

,

Y 1
µ =

A19
µ +iA20

µ√
2

, Y 2
µ =

A21
µ +iA22

µ√
2

, Y 3
µ =

A23
µ +iA24

µ√
2

,
(1.65)

making explicit the symmetry properties of the new bosons. This has an anal-

ogy with the quark doublet representations of the antisymmetric representation.

These new bosons have charges under both SU(3) and SU(2), while also having

charges Q = 4/3 and Q = 1/3 for Xµ and Yµ respectively. The principal effect

of the addition of these bosons is the emergence of baryon and lepton number

violating processes, including proton decay.

9Six of the generators are the combinations of 1s reflected over the main diagonal, with the
remaining six being ±is about the main diagonal.
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1.4.3 Breaking SU(5)

It is almost a trivial statement that observed physics is not consistent with an

unbroken SU(5) GUT, which means the SU(5) symmetry, if it is manifest in

nature, must be broken analogously to the electroweak symmetry breaking in the

SM. As such, any breaking of the symmetries in a model of this type must be

a multi-step, multi-scale process. The first such stage must be the breaking of

SU(5) to SU(3)c × SU(2)L × U(1)Y at some high scale, which will give the Xµ

and Yµ bosons masses at that scale. The second is the usual Higgs mechanism,

which breaks the electroweak part of the SM to U(1)em.

In order to achieve a breaking of SU(5), one can introduce an adjoint repre-

sentation Higgs, constructed by taking the tensor product of a fundamental and

an anti-fundamental representation, 5⊗ 5 = 24⊕ 1. This Higgs field must get a

non-zero vacuum expectation value in the direction of the hypercharge generator,

which will keep the SM part of the GUT group intact, while giving a mass to the

Xµ and Yµ part of the spectrum. We denote such a field as a 5× 5 matrix,

φab =



H1
1 − 2√

30
HB H1

2 H1
3 H

1
X H

1
Y

H2
1 H2

2 − 2√
30
HB H2

3 H
2
X H

2
Y

H3
1 H3

2 H3
3 − 2√

30
HB H

3
X H

3
Y

H1
X H2

X H3
X

3√
30
HB + H0

√
2

H+

H1
Y H2

Y H3
Y H− 3√

30
HB − H0

√
2


,

(1.66)

where the fields, H, mirror the representations of the adjoint fields of Equation

(1.64). We also introduce a Higgs field that will correspond to the electroweak

Higgs, which must be in the fundamental representation,

Ha =



D1

D2

D3

h+

h0


. (1.67)

31



The Lagrangian of the Higgs sector is comprised of all possible invariants that

can be written with these two fields,

L =(DµH)†a(D
µH)a +

1

2
(Dµφ)ab (D

µφ)ba − V (φ,H), (1.68)

where the covariant derivatives are

(DµH)a =

(
∂µδ

a
b −

ig√
2

(Aµ)ab

)
Hb,

(Dµφ)ab =

(
∂µδ

a
c δ
d
b −

ig√
2

(Aµ)acδ
d
b +

ig√
2

(Aµ)dbδ
a
c

)
φcd (1.69)

=∂φab −
ig√

2
[Aµ, φ]ab .

The potential is comprised of a total of nine terms, arising from the φ-only, H-

only, and mixed terms,

V (φ,H) =− µ2

2
Tr(φ2) +

a

4
[Tr(φ2)]2 +

b

4
Tr(φ4) +

c

3
Tr(φ3)

− ν2

2
H†H +

λ

4
(H†H)2 (1.70)

+ α(H†H)Tr(φ2) + βH†φ2H + γH†φH.

This potential is usually simplified by imposing a Z2 symmetry10 on φ, eliminating

the c and γ terms. This will be sufficient to break both the GUT symmetry and

the electroweak sector when the appropriate vacuum expectations are selected

for φ and H, provided µ, ν > 0.

Let us consider only the GUT breaking portion of this process. This breaking

will be triggered by the imposition of a vacuum expectation in the HB and H0

fields,

〈HB〉 = −
√

30

2
v,

〈H0〉 = − εv√
2
,

(1.71)

where v is the scale of the GUT breaking and epsilon is a number parameterising

the relative size of the two vacuum expectations, which we shall set to zero for

10We impose that all terms must be invariant under φ→ −φ
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simplifications sake11. If one solves for the minimum of this potential, one finds

that the vacuum expectation is solved for

v2 =
4µ2

30a+ 7b
, (1.72)

provided that 30a+7b > 0 and, of course, µ2 > 0. The consequence of this break-

ing is that the Xµ and Yµ bosons must get masses to account for the Goldstone

bosons unleashed by the twelve degrees of freedom left over after accounting for

the unbroken SU(3)c × SU(2)L × U(1)Y subgroup after breaking SU(5). Using

Equation (1.69) and Equation (1.68), along with the vacuum alignment of the

adjoint Higgs,

〈φ〉 = v × diag(1, 1, 1,−3

2
,−3

2
), (1.73)

the masses can be shown to be proportional to the vacuum expectation of the

GUT breaking,

M2
X = M2

Y =
25

8
g2v2. (1.74)

This will naturally keep these extra bosons at a high scale, provided GUT break-

ing occurs well above the electroweak scale.

The second stage of the symmetry breaking will be triggered at the elec-

troweak scale, with a vacuum expectation being given to the fundamental Higgs,

〈Ha〉 =



0

0

0

0

vew


. (1.75)

This will trigger a mass for the SM Higgs boson in the usual way, however it will

leave the colour triplet of D1,2,3 massless. These colour triplets mediate proton

decay and so must gain a large mass in order to suppress this process. Such a

mass can only come from the mixed part of the potential - cross terms between

11It can be shown [9] that ε must necessarily be small - i.e. ε� 1.

33



Figure 1.2: Baryon and lepton number violating vertices arising from the gauge
sector or the SU(5) GUT model.

φab and Ha. Inserting the vacuum expectation of Equation (1.73), the cross term

part of the potential gives GUT scale masses to both the SU(2) and SU(3) part

of the fundamental Higgs,

V (φ,H) = v2

(
15

2
α+ β

)
D†D + v2

(
15

2
α+

9

4
β

)
h†h. (1.76)

While solving the problem of a light Di spectrum, this creates a new issue: the

SM Higgs will now have a GUT scale mass too. The only way to avoid this

problem is to insist upon a delicate cancellation of terms (fine-tuning) to force

the term to vanish. This is realised if

α = − 9

30
β. (1.77)

The fine-tuning of this doublet-triplet splitting is unappealing due to the require-

ment that the free parameters be related in a very specific manner, and as such

reduces the appeal of the classical SU(5) model.

1.4.4 SU(5) GUTs and proton decay

In the SU(5) model, the extra gauge bosons arising from the unified adjoint

representation cause baryon and lepton number violation, which together can

allow proton decay via dimension-6 operators. The interactions, arising from the
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Figure 1.3: Feynman diagrams of proton decay processes arising from the addi-
tional gauge bosons of the SU(5) model.

kinetic parts of the Lagrangian,

L = iψ
a
5γ

µ(Dµψ5)a + iψ
a
10bγ

µ(Dµψ10)ab, (1.78)

give rise to five new couplings, which are shown in Figure 1.2. In an unbroken

GUT scenario, with the Xµ and Yµ fields massless, these vertices would cause

proton decay to be rampant12. However, assuming the SU(5) group is broken to

the SM gauge group, the decay rate of the proton would be suppressed by the

scale of the GUT breaking. Provided this scale is high enough, the propagator

for the Xµ/Yµ is inversely proportional to the mass squared. The decay can be

either to a charged meson and an antineutrino (p→ π+ν), or to a neutral meson

and a positron (p→ π0e+), as shown in the graphs of Figure 1.3.

Considering the processes illustrated by Figure 1.3, the proton lifetime is

then τp ∼
M4
X

g4m5
p
. Experimentally, the proton lifetime is constrained to be τp >

5× 1033years [66], which means, the GUT scale must be ∼ 1015GeV.

12The neutron could also decay via similar processes
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1.4.5 Yukawa couplings

Because the fermionic matter content of the SM is embedded into two represen-

tations of the SU(5) GUT , the Yukawa couplings arise from two different SU(5)

invariants,

L = ψ
i
5Y5(ψ10)ij(H

∗)j +
1

4
εijklmψ

ij
10Y10ψ

kl
10H

m, (1.79)

where Y5,10 are 3×3 matrices corresponding to the three generation copies. Note

that due to the choice of representation for the matter fields, the fermions do not

couple to the adjoint representation Higgs field, φ, thus preventing them from

acquiring a mass at the GUT scale.

Upon breaking of the electroweak symmetry of the SM, the quarks and

charged leptons will get masses through the usual coupling to the Higgs. However,

the masses of the down-type quarks and the charged leptons will be inextricably

intertwined due to their shared GUT representation,

L = dcY5Qh
∗ + LY5e

ch∗ + uc(Y10 + Y T
10)Qh. (1.80)

In fact, at the GUT scale, the masses of the charged leptons are exactly equal to

their generational counterpart down-type quarks,

md = me, ms = mµ, mb = mτ . (1.81)

This relationship is affected by the running of the Yukawa couplings with the

energy scale, however even with this taken into account the mass relations cannot

be compatible with experiment. Thus a minimal SU(5) has unrealistic mass

relations between quarks and leptons. A common extension often taken is to add

a Higgs field in the 45 representation of SU(5), which changes the relations to be

more realistic,

md = 3me, ms =
1

3
mµ, mb = mτ . (1.82)

36



1.4.6 Supersymmetric SU(5)

A key motivation of the SU(5) GUT was the apparent unification of SM couplings

at some high scale. However, if one runs the SM couplings up to this high scale,

the unification of couplings does not occur. This is a clear elephant-in-the-room

situation for the SU(5) theory. A possible solution to this shortcoming is the

introduction of SUSY to the SU(5) GUT model. In fact, it transpires that if one

does this, with all superpartners having TeV scale masses, then the couplings of

the SM now unify, albeit at the higher scale of ∼ 1016GeV. This fact alone is a

very persuasive argument for supersymmeterising SU(5).

The principal modification to the spectrum of the SUSY version of SU(5) is

that now we must have an Hu and an Hd representation - 5Hu and 5Hd respec-

tively. The superpotential terms equivalent to Equation (1.79) is then

W = 5MY510M5Hd + 10MY1010M5Hu . (1.83)

The drawback of adding SUSY to the model is the addition of extra operators

that can mediate proton decay. While the Xµ and Yµ mediated processes are

dimension-6 operators, the new operators will be dimension-4 and -5. Imposition

of an R-parity or R-symmetry can remove the dimension-4 operators, which would

otherwise be the most dangerous to proton stability. This imposition is often an

ad hoc process in many models, though F-theory may provide tools for motivating

such a mechanism.

The dimension-5 operators are a different matter, since they arise from the

colour triplet part of the Higgs multiplets. The processes are of the type shown in

Figure 1.4, which after integrating out the triplet Higgs will have a cross-section

inversely proportional to the mass of the triplets. It will also be suppressed by the

mass of the superpartners, so that the lifetime of the proton due to this process

is

τp ∼
M2
DMZ̃

m5
p

(
m2
W

mums

)2

. (1.84)

Since MD ∼ MX , the main constraint is the mass of the SUSY partner, which
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Figure 1.4: Proton decay to kaons, via colour triplet partners of the Higgs field
arising from supersymmetrising SU(5) GUTS.

must be sufficiently large to ensure proton decay is suppressed. This process is

highly constrained by experiment, with the distinguishing feature, compared to

dimension-6 processes, being the presence of kaons in the final state rather than

pions. In the SUSY SU(5), due to the raised GUT scale, this dimension-5 process

will totally dominate the dimension-6, which will be even more suppressed than

in the vanilla SU(5) GUT.

1.5 String Theory

The SM provides an accurate, quantum mechanical description of three of the

fundamental interactions known in nature. However, it makes no predictions

regarding gravity, which is still the domain of the classical theory of General

Relativity (GR). While GR is extremely successful at describing the large scale

phenomena of the universe, including the recent discovery of gravitational waves

[6], it falls down when in the regime in which quantum effects take hold. A popular

candidate to fill the metaphorical void of quantum gravity is string theory.

Historically speaking, string theory was originally devised as a candidate de-

scription of the strong nuclear force. As it transpires, QCD emerged as a success-

ful theory of this interaction, while string theory was plagued by tachyons and

seemingly unnatural spin-2 states. Hence, for a time, string theory was aban-

doned. However, it was later realised that the spin-2 state could be interpreted
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as a gravtion, which is the force carrier of gravity in the quantum mechanical

picture.

The basic premise of string theory is to replace point-like particles by ex-

tended, one-dimensional objects, which we call strings. Depending on the bound-

ary conditions specified for a given string, it may be either an open or closed

string. While a closed string simply has periodic (or anti-periodic) boundary

conditions, the open string can have either Neumann or Dirichlet boundary con-

ditions, corresponding to a free string or a string with ends fixed to higher-

dimensional objects. These higher-dimensional objects are referred to as Dp-

branes13, an important class of objects we shall discuss in this section.

The first significant string theory constructed was only able to describe bosons.

This bosonic string theory requires a 26-dimensional spacetime to be consistent.

Later attempts yielded so-called superstring theories, able to describe fermionic

matter as well. These were referred to as simply Type I, Type IIA, and Type IIB

superstring theories, while later still two extra string theories called Heterotic

strings were also developed - E8 × E8 and SO(32).

An interesting property of these string theories is that, under certain trans-

formations, the types of string are related by “dualities”. This indicates that

they are all in some sense part of a broader, encompassing theory. Though we

shall note delve into this topic beyond this remark, it is worth mentioning that

Type IIB string theory is dual to itself under S-duality, which leads to F-theory.

1.5.1 Gauge symmetries

To discuss some key concepts related to F-theory, let us consider Type IIB string

theory, since it is closely related to F-theory. Type IIB string theory has both

closed and open strings, with the former corresponding to the graviton and the

latter SM particles. If we set aside the closed strings and focus on the non-gravity

part of the theory, the open strings must be paired with Dp-branes if they are to

have Dirichlet boundary conditions.

In general, a string in an N -dimensional spacetime will have p Neumann

13More properly they are Dirichlet branes of dimension p.
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boundary conditions and N − p Dirichlet boundary conditions14, with the time

coordinate being taken to Neumann. The Lorentz symmetry group of full space-

time is SO(1, N − 1), while this may be decomposed based on the boundary

conditions,

SO(1, N − 1)→ SO(1, p)brane × SO(1, N − p− 1)spacetime. (1.85)

Considering a string with both ends attached to the same Dp-brane, upon per-

forming a mode expansion and quantising the operators, the spatial wavefunction

is found to depend only on the brane coordinate - not the dimensions in which the

string is free to propagate [67]. It can be shown [67] that the first excited state

of the mode expansion includes a spin-1 component, which can be associated to

a U(1) gauge field on the brane. There are also scalars under the Lorentz group

of the brane, which instead are vectors under the spacetime Lorentz group.

The presences of a gauge field on the brane proves to be a useful property.

Let us then also consider the case where N such branes share the same spacetime

positions. In such a case a string attached to this “stack” of branes can attach

each of its ends to any of the N branes – a total of N2 combinations. Clearly in

this case the U(1) associated to each individual brane becomes a part of a large

symmetry group – U(1)N →U(N) – giving rise to an adjoint representation field,

which is associated to a gauge field. This point is illustrated by Figure 1.5 in the

simple example of two branes stacking to form one brane with a U(2) gauge field,

with the four combinations of string attachments becoming one.

A second interesting case arises when a string has ends attached to two differ-

ent (separated) stacks. In this case, the representation must be a bi-fundamental

of the two gauge theories realised on those stacks. For example, a U(3) stack

intersecting a U(2) stack would allow a string with one end fixed to each stack

so that it is in the fundamental representation of each – a very useful property

since fermions in the SM have SU(3) and SU(2) representations.

14This is trivial since the string must have a boundary condition in every dimension. Thus is
must either have a Neumann or Dirichlet boundary condition for each dimension
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Figure 1.5: In the case where two branes are separated, a string may have ends
attached to the branes in four different combinations. However, when the two
branes stack these four attachments are not distinguishable and instead we have
extra gauge degrees of freedom - we take two U(1) branes and end up with one
U(2) brane.

1.5.2 SU(5) and brane intersections

Much of the work in this thesis is centred on SU(5) models in F-theory, which is

realised on a so-called GUT surface – a D7-brane with SU(5) gauge properties.

In Type IIB string theory, we could consider a stack of 5 D7-branes, giving a

U(5) gauge group, however let us consider the SU(5) subgroup of this, U(5) →

SU(5) × U(1). The representation supported on the GUT surface is the adjoint

of the group, which does not accommodate the representations in an SU(5) GUT

- the 5 and 10 representations.

In order to realise the required representations, let us consider the symmetry

enhancement if a further D7-brane, intersects the GUT surface. The symmetry

can be enhanced to SU(6), so that at the intersection point there is an adjoint

representation of that group – Figure 1.6 shows this enhancement of the gauge

group where brane stacks intersect one another. Decomposing this,

SU(6)→ SU(5)×U(1)

35→ (24, 0) + (1, 0) + (5, 6) + (5,−6),

(1.86)
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Figure 1.6: Pictorial representation of a brane housing an SU(5) GUT symmetry
with an intersecting brane enhancing the symmetry at the intersection point to
SU(5)×U(1).

one can see that the fundamental representation is realised at the intersection

point. Another possible enhancement that can be seen from group theory leads

to an embedding of the antisymmetric representation in the group SO(10),

SO(10)→ SU(5)×U(1)

45→ (24, 0) + (1, 0) + (10,−4) + (10, 4),

(1.87)

which means that an SU(5) embedding can be facilitated by branes.

In fact, one may extend this logic further to describe Yukawa couplings in

such a framework, since two branes intersecting on the GUT surface may further

enhance the symmetry at their point of intersection. Firstly, the down-type quark
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and charged lepton couplings would arise from a point of SO(12) in the geometry,

SO(12)→ SU(5)×U(1)a ×U(1)b

66→ (24, 0, 0) + (1, 0, 0)

+(10,−4, 0) + (10, 4, 0)

+(5,−2, 2) + (5, 2, 2) + (5,−, 2,−2) + (5, 2,−2).

(1.88)

The SU(5) Yukawa coupling is of the type 10 × 5 × 5, which can be picked out

with the representations (10, 4, 0), (5,−2, 2), and (5,−, 2,−2). There is of course

a subtlety in this, since we are actually dealing with a U(5) brane and must

account for the remaining U(1). In the case of the down-type/charged lepton

this is not an issue, since the 5 has −1 charge, while the 10 has charge 2 – hence

they cancel the charge.

The up-type Yukawa cannot be identified in a point of SO(12), so instead we

examine another enhancement, E6,

E6 → SU(5)×U(1)a ×U(1)b

78→ (24, 0, 0) + (1, 0, 0) + (1, 0, 0)

+(10,−4, 0) + (10, 4, 0) + (10, 1, 3) + (10,−1,−3)

+(5, 3,−3) + (5,−3, 3) + (1,−5,−3) + (1, 5, 3).

(1.89)

Here the up-type Yukawa is due to the (10, 4, 0), (10,−1,−3), and (5,−3, 3)

representations. However, when we consider the aforementioned U(5)→ SU(5)×

U(1) problem, the coupling clearly will not be allowed. This problem can be

avoided in F-theory, as we will discuss in the next chapter.
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Chapter 2

F-theory and the MSSM from

SU(5) with Klein Monodromy

F-Theory [13] is a 12 dimensional formulation of Type IIB string theory, with

the internal dimensions classified as a complex Calabi-Yau four-fold elliptically

fibred over a threefold base [68]. There is a well studied correspondence between

the singularities of elliptically fibred spaces and the gauge groups to which they

relate. This is an intriguing feature for theorists, since it facilitates popular

GUT groups [15, 18–20, 22, 55, 59, 69–71] such as SU(5), SO(10) or E6, with a

maximum symmetry enhancement of the exceptional group E8 [14]. As such,

in F-Theory one realises the GUT group on a D7-brane, which wraps a four-

complex-dimensional surface, SGUT. The intersections of other D7-branes with

this surface (and each other) dictates where matter is localised – so-called matter

curves. Where these matter curves intersect the symmetry is further enhanced

and Yukawa coupling can be realised. Using a local approach one can calculate

Yukawa couplings using overlap integrals over the relevant wavefunctions [30–39],

while a global approach, requiring knowledge of the full compactification of the

Calabi-Yau fourfold, is required to have a complete understanding of the physics

of a particular construction [22–29].

In this thesis, the so-called semi-local [14,47,49]approach will be used, which

allows decoupling of the full geometry while still preserving some mechanism for
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studying the properties of the GUT surface. In this approach, the GUT surface

is taken to fall from a theory with a point of E8 [14], which is the largest non-

Abelian symmetry allowed by this elliptic fibration. This E8 is broken by an

adjoint representation Higgs field to the relevant GUT group, for example, if we

consider an SU(5) GUT group, the adjoint of E8 decomposes in to an SU(5)

associated to the GUT group and a commutant group1, which is also SU(5),

E8 → SU(5)GUT × SU(5)⊥,

248→ (24, 1)⊕ (1, 24)⊕ (10, 5)⊕ (5, 10)⊕ (5, 10)⊕ (10, 5).

(2.1)

All matter representations and all Yukawa couplings are assumed to descend

from this symmetry point, so the matter representations must arise when the

D7-branes associated with the U(1)s of the perpendicular SU(5) intersect the

GUT surface, which corresponds to an enhancement of the symmetry at that in-

tersection point. This symmetry enhancement is associated with degeneration of

the elliptic fibre associated with F-theory. A powerful property of this picture is

that the topological properties of the internal space are converted to constraints

on the effective field theory model in a direct manner. Moreover, in these con-

structions it is possible to implement a flux mechanism that breaks the symmetry

and generates chirality in the spectrum.

2.1 Elliptic fibration in F-theory

The elliptic fibration of F-theory reduces the eight extra dimensions of the the-

ory, a complex Calabi-Yau four-fold, to a six dimensional base space and two

dimensions corresponding to the elliptic fibre. The latter is a torus at all points

in this base space, with modulus

τ = C0 + ie−φ. (2.2)

1The commutant of a group M in some parent group P , M ′ say, is the set of all elements in
the parent group that commute with the elements of M .
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Figure 2.1: A pictorial representation of a Calabi-Yau fourfold, which exhibits
elliptic fibration over a threefold base, B3. The fibration is manifest as a 2-Torus
at every point in the base, as shown. The modulus of the torus at each point is
related to the axio-dilaton profile, τ = C0 + i/gs. Where the fibre degenerates,
the presence of a D7-brane orthogonal to the base is indicated. Where those
D7-branes intersect, the fibre may degenerate further.

This torus corresponds to the properties of the axion (C0) and the dilaton (φ =

ln gs), both of which are scalars in the bosonic part of the theory [72]. The profile

of this axio-dilaton is affected by the presence of D7-branes, which means the

geometric dimensions of the torus fibre keep track of the behaviour of τ in the

base space.

In this thesis we will be assuming that there exists a GUT surface in the

internal manifold, which is associated to a holomorphic divisor residing inside

the threefold base, B3. If we designate with z the ‘normal’ direction to this GUT

surface, the GUT divisor is the zero limit of the holomorphic section z in B3, i.e.

at z → 0. The elliptic fibration on B3 is described by the Weierstrass equation,

y2 = x3 + f(z)x+ g(z), (2.3)

where x and y are complex coordinates on the GUT surface (SGUT) and z is a

complex coordinate, which as mentioned is normal to SGUT. The functions f and

g are eighth and twelfth degree polynomials in z respectively. The form of this
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equation and its discriminant,

∆ = 4f3 + 27g2, (2.4)

determine the type of singularities present in the geometry – where the discrim-

inant has a zero, the fibre degenerates. Due to the work of Kodaira [73, 74], we

have a full classification of the ADE gauge groups supported by the singularities

of a particular space. By performing a process known as Tate’s algorithm [75],

which entails enforcing vanishing of the discriminant to various orders in z, we

may recast the Weierstrass equation in the so called Tate form. If we begin by

expanding f and g as

f(z) =
∑
i

fiz
i , g(z) =

∑
j

gjz
j , (2.5)

and enforce that the z0 coefficient of ∆ vanishes,

∆ = 4(f0 + f1z + . . . f8z
8)3 + 27(g0 + g1z + . . . g12z

12)2,

∆ = (4f3
0 + 27g2

0) + (12f2
0 f1 + 54g0g1)z

+ (12(f0f
2
1 + f2

0 f2) + 27(g2
1 + g0g2))z2 +O(z3).

(2.6)

Clearly, the vanishing of the z0 coefficient is satisfied by f0 = − t2

3 and g0 = 2t3

27 .

This, along with the coordinate shift x→ x+ t
3 , changes the Weierstrass equation

to

y2 = x3 + tx2 + x(f1z + . . . ) + (g̃1z + g̃2z
2 . . . ), (2.7)

where g̃i = fit
3 + gi. It transpires that setting g̃1 = f1t

3 + g1 is sufficient to make

the z1 coefficient of ∆ vanish. This process can be continued order-wise, to give

full classification of the singularities, while the Weierstrass equation can then be

written in Tate form,

y2 + α1xy + α3y = x3 + α2x
2 + α4x+ α6 . (2.8)
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Type Group α1 α2 α3 α4 α6 ∆

I0 0 0 0 0 0 0 0
I0 - 0 0 1 1 1 1
I0 - 0 0 1 1 2 2
IS2n SU(2n) 0 1 n n 2n 2n
IS2n+1 SU(2n+ 1) 0 1 n n+1 2n+1 2n+1
I∗S1 SO(10) 1 1 2 3 5 7
IV ∗S E6 1 2 3 3 5 8
III∗S E7 1 2 3 3 5 9
IIS E8 1 2 3 4 5 10

Table 2.1: The vanishing orders of each of the coefficients of Equation (2.8)
in terms of the coordinate z for various various interesting gauge groups to be
realised in an elliptically fibred space. The gauge groups are supported by specific
types of singular fibre, as classified by Kodaira. See [76] [75].

The αn coefficients in this equation and their vanishing order determine the

singularity of the surface. For example, an SU(5) singularity would correspond

to [47,49,58]:

α1 = −b5, α2 = b4z, α3 = −b3z2, α4 = b2z
3, α6 = b0z

5 . (2.9)

Table 2.1 outlines the conditions required for some of the more interesting groups

to be realised in the geometry.

The Tate form of the Weierstrass equation will correspond to an SU(5) sin-

gularity if the conditions of Equation (2.9) are enforced. This gives a relatively

complicated polynomial in the coordinates of the space:

y2 = x3 + b0z
5 + b2xz

3 + b3yz
2 + b4x

2z + b5xy . (2.10)

However, using homogeneous complex coordinates, z → U , x→ V 2, and y → V 3,

the Weierstrass equation becomes

b0U
5 + b2V

2U3 + b3V
3U2 + b4V

4U + b5V
5 = 0. (2.11)

We may then locally select some affine parameter, s = U/V , so that the above

equation reduces to a fifth order polynomial in s, the roots of which are identified
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as the roots of SU(5)⊥, ti:

C5 = b5 + b4s+ b3s
2 + b2s

3 + b1s
4 + b0s

5 ∝
5∏
i=1

(s+ ti) , (2.12)

where the homologies of the coefficients in the above equation are given by:

[bk] = η − kc1 (2.13)

η = 6c1 − t (2.14)

where c1 and t are the first Chern classes of the Tangent and Normal bundles

respectively. This equation accounts for the antisymmetric representation of the

GUT group, while an equation to characterise the fundamental representation

should be a tenth order polynomial with roots ti + tj as stated above. By con-

sistency with Equation (2.12), this can be written in terms of the coefficients of

the equation for the antisymmetric representation. The defining equation is the

zeroth order part of that polynomial, which can be shown to be:

P5 = b23b4 − b2b3b5 + b0b
2
5 ∝

∏
i>j

(ti + tj). (2.15)

These two equations are sufficient to describe the matter content of an SU(5) GUT

model in F-theory, however the exact matter content is influenced by monodromy

actions on the roots, which we shall discuss in Section 2.2.

2.2 Monodromy

The perpendicular group left over after isolating the GUT group within the par-

ent E8 theory will cause various points of symmetry enhancement on the GUT

surface. For example, in the SU(5) case we shall consider, the model essentially

has four U(1)s intersecting the SU(5) GUT surface at various points,

E8 → SU(5)GUT × SU(5)⊥ → SU(5)GUT × U(1)4 . (2.16)
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The assumed E8 point of enhancement is broken by a Higgs field in the adjoint

of the group, which has a coordinate dependent vacuum expectation value. The

roots of the field, ti, are such that on the GUT surface, they are identified with the

roots of the fundamental representation of the perpendicular group – SU(5)⊥ [17].

At local points on the surface, these roots may vanish leading to an enhancement

of the symmetry – akin to a restoration towards the full E8, which would occur

if all roots vanished simultaneous on the GUT surface. However, the charges

associated to these enhancements must cancel out in the low energy theory, such

as for Yukawa couplings.

We shall focus on Yukawa couplings, which are formed in the usual way for

an SU(5) GUT theory, with the additional constraint that the 10s have charges ti

and the 5̄/5s have charge ti+tj . This extra property arises from the perpendicular

group charges, such that one can identify the weights of the perpendicular group

as :

Σ10 : ti = 0,

Σ5̄ : ti + tj = 0, i 6= j

Σ1 : ±(ti − tj) = 0, i 6= j.

With this in mind, the top quark and the bottom/tau Yukawa couplings are of

the form:

top type Yukawas: 10ti · 10tj · 5−tk−tl

with: k 6= l

bottom/tau type Yukawas: 10ti · 5̄tj+tk · 5̄tl+tm

with: j 6= k and l 6= m

In order for the top quark to have a tree-level, renormalisable coupling, the

diagonal term in the matrix (10ti ·10ti ·5−tj−tk with j 6= k) must have no residual

charge under the perpendicular U(1)s. Clearly there is no way to achieve this as
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j 6= k for the 5 carrying the Higgs. As a consequence we seem to be unable to

write down any terms to give a renormalisable top, which is a phenomenologically

undesirable feature.

However, in general not all the roots are independent and there will be some

monodromy action(s) relating two or more roots. An enlightening yet simple

example (following the presentation in [72]) is the minimal monodromy action,

which is Z2. Suppose that two of the roots of the spectral cover found in Equation

(2.12) cannot be factorised within the same field as the original coefficients of the

equation2, i.e.

C5 = b5+b4s+b3s
2+b2s

3+b1s
4+b0s

5 = (a1+a2s+a3s
2)(a4+a5s)(a6+a7s)(a8+a9s) .

(2.17)

The quadratic part of this equation has two roots,

r1 =
−a2 +

√
a2

2 − 4a1a3

2a3
, r2 =

−a2 −
√
a2

2 − 4a1a3

2a3
, (2.18)

which are identical, up to the sign in front of the discriminant. Let w = a2
2−4a1a3,

then it we may also write, without loss of generality, w = eiθ|w|, which is invariant

under θ → θ + 2π. However, since we deal with
√
w = eiθ/2

√
|w|, the roots r1,2

are not invariant, but instead interchange r1 ↔ r2, implying that the D7-branes

associated to those roots are interchangeable under this action. In terms of the

top quark coupling, the consequence is that the charge of the 5 carrying the up-

type Higgs may have charge (−tj − tk)→ −2tj , where the two roots are directly

identified.The top quark Yukawa coupling then becomes:

10ti · 10ti · 5−ti−tj → 10ti · 10ti · 5−2ti , (2.19)

which is trivially invariant under the perpendicular U(1)s allowing a renormalis-

able top Yukawa.

This example is the simplest and minimal monodromy choice available, how-

2Note that due to tracelessness of SU(5), b1 = 0
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ever there are a large number of monodromy options. Since we do not have any

knowledge of the global geometry, we must select any monodromy groups for our

model by hand. In the case of an SU(5) theory, the monodromy group can range

from the simple Z2 case already discussed to the Weyl group of the five weights,

S5. The latter is one of the many non-Abelian monodromy groups, which until

the work of [50] had been largely ignored in favour of Abelian alternatives.

When one implements an SU(5) GUT group, the monodromy group could be

any subgroup of S5. In terms of the spectral cover equation, depending on the

geometry of the manifold, C5 will decompose into several factors

C5 =
∏
j

Cj , (2.20)

where the Cj factors will be non-factorisable.

In this section we shall follow the work published in [1], and consider the case

of a Klein Group monodromy V4 = Z2 ×Z2 [14,49,55,56,77]. Interestingly, with

this particular spectral cover, there are two ways to implement the monodromy

action, depending on whether V4 is a transitive or non-transitive subgroup of S4.

A significant part of the present chapter will be devoted to the viability of the

corresponding two kinds of effective models.

For each of the Klein group monodromies, the implied the splitting of the

spectral cover is C5 → C4 × C1 and C5 → C2 × C ′2 × C1, for the transitive

and non-transitive cases respectively. Assuming the splitting C5 → C4 × C1, the

permutation takes place between the four roots, say t1,2,3,4, and the corresponding

Weyl group is S4. Notwithstanding, under specific geometries to be discussed in

the subsequent sections, the monodromy may be described by the Klein group

V4 ∈ S4. The second case, implying the spectral cover factorisation C4 → C2×C ′2,

has two non-trivial identifications acting on the pairs (t1, t2) and (t3, t4). It

transpires that the two scenarios give rise to different properties at the spectral

cover level, which are the communicated down to any model one might construct.

We will analyse the basic features of these two spectral cover factorisations in the

remainder of this chapter.
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Cycles S4 cycles Trans. A4 Trans. V4

4 (1234), (1243), (1324), (1342), (1423), (1432) No No
3 (123), (124), (132), (134), (142), (143), (234), (243) Yes No

2+2 (12)(34), (13)(24), (14)(23) Yes Yes
2 (12), (13), (14), (23), (24), (34) No No
1 e Yes Yes

Table 2.2: A summary of the permutation cycles of S4, categorised by cycle size
and whether or not those cycles are contained within the transitive subgroups A4

and V4. This also shows that V4 is necessarily a transitive subgroup of A4, since
it contains all the 2 + 2-cycles of A4 and the identity only.

2.2.1 S4 Subgroups and Monodromy Actions

The group of all permutations of four elements, S4, has a total of 24 elements.3

These include 2,3,4 and 2+2-cycles, all of which are listed in Table 2.2. These

cycles form a total of 30 subgroups of S4, shown in Figure 2.2. Of these there are

those subgroups that are transitive subgroups of S4: the whole group, A4, D4,

Z4 and the Klein group.

We focus now on compactification geometries consistent with the Klein group

monodromy V4 = Z2 × Z2. We observe that there are three non-transitive V4

subgroups within S4 and only one transitive subgroup. This transitive Klein

group is the subgroup of the A4 subgroup. Considering Table 2.2, one can see

that A4 is the group of all even permutations of four elements and the transitive

V4 is that group excluding 3-cycles. The significance of this is that in the case

of Galois theory, to be discussed in Section 2.3, the transitive subgroups A4 and

V4 are necessarily irreducible quartic polynomials, while the non-transitive V4

subgroups of S4 should be reducible.

In terms of group elements, the Klein group that is transitive in S4 has the

elements:

{(1), (12)(34), (13)(24), (14)(23)} (2.21)

which are the 2+2-cycles shown in Table 2.2 along with the identity. On the other

hand, the non-transitive Klein groups within S4 are isomorphic to the subgroup

3The order of an SN group is given by N !
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Figure 2.2: Pictorial summary of the subgroups of S4, the group of all permuta-
tions of four elements - representative of the symmetries of a cube.

containing the elements:

V4 = {(1), (12), (34), (12)(34)} (2.22)

The distinction here is that the group elements are not all within one cycle, since

we have two 2-cycles and one 2+2-cycle. These types of subgroup must lead

to a factorisation of the quartic polynomial, as we shall discuss in Section 2.3.

Referring to Figure 2.2, these Klein groups are the nodes disconnected from the

web, while the central V4 is the transitive group.

2.2.2 Spectral cover factorisation

In this section we will discuss the two possible factorisations of the spectral surface

compatible with a Klein Group monodromy, in accordance with the previous

analysis. In particular, we shall be examining the implications of a monodromy

action that is a subgroup of S4 - the most general monodromy action relating

four weights. In particular we shall be interested in a chain of subgroups, which
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we shall treat as a problem in Galois theory:

S4 → A4 → V4 (2.23)

The C4 spectral cover

This set of monodromy actions require the spectral cover of Equation (2.12) to

split into a linear part and a quartic part:

C5 → C4 × C1

C5 → (a5s
4 + a4s

3 + a3s
2 + a2s+ a1)(a6 + a7s).

(2.24)

The b1 = 0 condition must be enforced for SU(5) tracelessness. This can be

solved by consistency with Equation (2.24),

b1 = a5a6 + a4a7 = 0 . (2.25)

Let us introduce a new section a0, enabling one to write a general solution of the

form:

a4 = ±a0a6

a5 = ∓a0a7.

Upon making this substitution, the defining equations for the matter curves are:

C5 : = a1a6 (2.26)

C10 : = (a2
2a7 + a2a3a6 ∓ a0a1a

2
6)(a3a

2
6 + (a2a6 + a1a7)a7) (2.27)

which is the most general, pertaining to an S4 monodromy action on the roots.

By consistency between Equation (2.24) and Equation (2.12), we can calculate
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that the homologies of the coefficients are:

[ai] = η − (i− 6)c1 − χ, i = 1, 2, 3, 4, 5, (2.28)

[a6] = χ, [a7] = c1 + χ, (2.29)

[a0] = η − 2(c1 + χ). (2.30)

The C2 × C ′2 × C1 case

If the V4 actions are not derived as transitive subgroups of S4, then the Klein

group is isomorphic to:

V4 : {(1), (12), (12)(34), (34)}. (2.31)

This is not contained in A4, but is admissible from the spectral cover in the form

of a monodromy C5 → C2 × C ′2 × C1.

Then, the 10 ∈ SU(5) GUT ( ∈ SU(5)⊥) spectral cover reads

C5 : (a1 + a2s+ a3s
2)(a4 + a5s+ a6s

2)(a7 + a8s) (2.32)

We may now match the coefficients of this polynomial in each order in s to the

ones of the spectral cover with the bk coefficients:

b0 = a368

b1 = a367 + a358 + a268

b2 = a357 + a267 + a348 + a258 + a168 (2.33)

b3 = a347 + a257 + a167 + a248 + a158

b4 = a247 + a157 + a148

b5 = a147

following the notation aijk = aiajak in [49]. In order to find the homology classes

of the new coefficients ai, we match the coefficients of the above polynomial in

each order in s to the ones of Equation (2.12) such that we get relations of the
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form bk = bk(ai).

Comparing to the homologies of the unsplit spectral cover, a solution for

the above can be found for the homologies of ai. Notice, though, that we have

6 well defined homology classes for bj with only 8 ai coefficients, therefore the

homologies of ai are defined up to two homology classes:

[an=1,2,3] = χ1 + (n− 3)c1,

[an=4,5,6] = χ2 + (n− 6)c1, (2.34)

[an=7,8] = η + (n− 8)c1 − χ1 − χ2.

We have to enforce the SU(5) tracelessness condition, b1 = 0. An Ansatz for

the solution was put forward in [49],

a2 = −c(a6a7 + a5a8)

a3 = ca6a8, (2.35)

which introduces a new section, c, whose homology class is completely defined by

[c] = −η + 2χ1. (2.36)

With this ansatz for the solution of the splitting of spectral cover, P10 reads

P10 = a1a4a7, (2.37)

while the P5 splits into

P5 =a5(a6a7 + a5a8)(a6a
2
7 + a8(a5a7 + a4a8))(a1 − a5a7c), (2.38)

(a2
1 − a1(a5a7 + 2a4a8)c+ a4(a6a

2
7 + a8(a5a7 + a4a8))c2). (2.39)

An extended analysis of this interesting case will be presented in the subsequent

sections.
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2.3 A little bit of Galois theory

So far, we have outlined the properties of the most general spectral cover with a

monodromy action acting on four of the roots of the perpendicular SU(5) group.

This monodromy action is the Weyl group S4, however a subgroup is equally

admissible as the action. Transitive subgroups are subject to the theorems of

Galois theory, which will allow us to determine what properties the coefficients

of the quartic factor of Equation (2.24) must have in order to have roots with a

particular symmetry [47]- [3]. In this paper we shall focus on the Klein group,

V4
∼= Z2×Z2. As already mentioned, the transitive V4 subgroup of S4 is contained

within the A4 subgroup of S4, and so shall share some of the same requirements

on the coefficients.

While Galois theory is a field with an extensive literature to appreciate, in

the current work we need only reference a handful of key theorems. We shall

omit proofs for these theorems as they are readily available in the literature and

are not required for the purpose at hand.

Theorem 1. Let K be a field with characteristic different than 2, and let f(X)

be a separable, polynomial in K(X) of degree n.

• If f(X) is irreducible in K(X) then its Galois group over K has order

divisible by n.

• The polynomial f(X) is irreducible in K(X) if and only if its Galois group

over K is a transitive subgroup of Sn.

This first theorem offers the key point that any polynomial of degree n, that

has non-degenerate roots, but cannot be factorised into polynomials of lower

order with coefficients remaining in the same field must necessarily have a Galois

group relating the roots that is Sn or a transitive subgroup thereof.

Theorem 2. Let K be a field with characteristic different than 2, and let f(X)

be a separable, polynomial in K(X) of degree n. Then the Galois group of f(X)

over K is a subgroup of An if and only if the discriminant of f is a square in K.
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As already stated, we are interested specifically in transitive V4 subgroups.

Theorem 2 gives us the requirement for a Galois group that is A4 or its transitive

subgroup V4 - both of which are transitive in S4. Note that no condition imposed

on the coefficients of the spectral cover should split the polynomial (C4 → C2 ×

C2), due to Theorem 1. We also know by Theorem 2 that both V4 and A4 occur

when the discriminant of the polynomial is a square, so we necessarily require

another mechanism to distinguish the two.

2.3.1 The Cubic Resolvent

The so-called Cubic Resolvent, is an expression for a cubic polynomial in terms

of the roots of the original quartic polynomial we are attempting to classify. The

roots of the cubic resolvent are defined to be,

x1 = (t1t2 + t3t4), x2 = (t1t3 + t2t4), x3 = (t1t4 + t2t3) (2.40)

and one can see that under any permutation of S4 these roots transform between

one another. However, in the event that the polynomial has roots with a Galois

group relation that is a subgroup of S4, the roots need not all lie within the same

orbit. The resolvent itself is defined trivially as:

(x−(t1t2+t3t4))(x−(t1t3+t1t4))(x−(t1t4+t3t2)) = g3x
3+g2x

2+g1x+g0 (2.41)

The coefficients of this equation can be determined by relating of the roots to the

original C4 coefficients. This resulting polynomial is:

g(x) = a3
5x

3 − a3a
2
5x

2 + (a2a4 − 4a1a5) a5x− a2
2a5 + 4a1a3a5 − a1a

2
4 (2.42)

Note that this may be further simplified by making the identification y = a5x.

g(y) = y3 − a3y
2 + (a2a4 − 4a1a5) y − a2

2a5 + 4a1a3a5 − a1a
2
4 (2.43)
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Group Discriminant Cubic Resolvent

S4 ∆ 6= δ2 Irreducible
A4 ∆ = δ2 Irreducible

D4/Z4 ∆ 6= δ2 Reducible
V4 ∆ = δ2 Reducible

Table 2.3: A summary of the conditions on the partially symmetric polynomials
of the roots and their corresponding Galois group.

If the cubic resolvent is factorisable in the field K, then the Galois group does

not contain any three cycles. For example, if the Galois group is V4, then the

roots will transform only under the 2+2-cycles:

V4 ⊂ A4 = {(1), (12)(34), (13)(24), (14)(23)} . (2.44)

Each of these actions leaves the first of the roots in Equation (2.40) invariant,

thus implying that the cubic resolvent is reducible in this case. If the Galois group

were A4, the 3-cycles present in the group would interchange all three roots, so

the cubic resolvent is necessarily irreducible. This leads us to a third theorem,

which classifies all the Galois groups of an irreducible quartic polynomial (see

also Table 2.3).

Theorem 3. The Galois group of a quartic polynomial f(x) ∈ K, can be de-

scribed in terms of whether or not the discriminant of f is a square in K and

whether or not the cubic resolvent of f is reducible in K.

2.4 Klein monodromy and the origin of matter parity

In this section we will analyse a class of four-dimensional effective models obtained

under the assumption that the compactification geometry induces a Z2 × Z2

monodromy. As we have seen in the previous section, there are two distinct ways

to realise this scenario, which depends on whether the corresponding Klein group

is transitive or non-transitive.

There are significant differences in the phenomenological implications of these

models since in a factorised spectral surface matter and Higgs are associated with
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different irreducible components 4.

In the present work we will choose to explore the rather promising case where

the monodromy Klein group is non-transitive. In other words, this essentially

means that the spectral cover admits a C2 × C ′2 × C1 factorisation. The case of

a transitive Klein group is more involved and it is not easy to obtain a viable

effective model.

Hence, turning our attention to the non-transitive case, the basic structure

of the model obtained in this case corresponds to one of those initially presented

in [14] and subsequently elaborated by other authors [49]- [55]. This model pos-

sesses several phenomenologically interesting features and we consider it is worth

elaborating it further.

2.4.1 Analysis of the Z2 × Z2 model

To set the stage, we first present a short review of the basic characteristics of

the model following mainly the notation of [49]. The Z2 × Z2 monodromy case

implies a 2 + 2 + 1 splitting of the spectral fifth-degree polynomial which has

already been given in Equation (2.32). Under the action Equation (2.31), for

each element, either x2 and x3 roots defined in Equation (2.40) are exchanged or

the roots are unchanged.

The effective model is characterised by three distinct 10 matter curves, and

five 5 matter curves. The matter curves, along with their charges under the

perpendicular surviving U(1) and their homology classes are presented in table

2.4.

Knowing the homology classes associated to each curve allows us to determine

the spectrum of the theory through the units of Abelian fluxes that pierce the

matter curves. Namely, by turning on a flux in the U(1)X directions, we can

endow our spectrum with chirality and break the perpendicular group. In order

4Further phenomenological issues concerning proton decay and unbroken U(1) factors beyond
a local spectral cover can be found in [26,56].
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Curve U(1) Charge Defining Equation Homology Class

101 t1 a1 −2c1 + χ1

103 t3 a4 −2c1 + χ2

105 t5 a7 η − c1 − χ1 − χ2

51 −2t1 a6a7 + a5a8 η − c1 − χ1

513 −t1 − t3 a2
1 − a1(a5a7 + 2a4a8)c+ . . . −4c1 + 2χ1

515 −t1 − t5 a1 − a5a7c −2c1 + χ1

535 −t3 − t5 a6a
2
7 + a8(a5a7 + a4a8) 2η − 2c1 − 2χ1 − χ2

53 −2t3 a5 −c1 + χ2

Table 2.4: Matter curves and their charges and homology classes

to retain an anomaly free spectrum we need to allow for

∑
M5 +

∑
M10 = 0, (2.45)

where M5 (M10) denote U(1)X flux units piercing a certain 5 (10) matter curve.

A non-trivial flux can also be turned on along the Hypercharge. This will

allow us to split GUT irreducible representations, which will provide a solution

for the doublet-triplet splitting problem. In order for the Hypercharge to remain

unbroken, the flux configuration should not allow for a Green-Schwarz mass,

which is accomplished by

FY · c1 = 0, FY · η = 0, (2.46)

where FY is the hypercharge flux and the dot notation indicates the intersection,

with the flux restricting trivially upon the tangent and normal bundles [48].

For the new, unspecified, homology classes, χ1 and χ2 we let the flux units

piercing them to be

FY · χ1 = N1, FY · χ2 = N2, (2.47)

where N1 and N2 are flux units, and are free parameters of the theory.

For a fiveplet, 5 one can use the above construction to split the doublet and
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Curve Weight NY NX Spectrum
101 t1 N1 M101 M101Q+ (M101 −N1)uc + (M101 +N1)ec

103 t3 N2 M103 M103Q+ (M103 −N2)uc + (M103 +N2)ec

105 t5 −N M105 M105Q+ (M105 +N)uc + (M105 −N)ec

51 −2t1 −N1 M51 M51d
c + (M51 −N1)L

513 −t1 − t3 2N1 M513 M513d
c + (M513 + 2N1)L

515 −t1 − t5 N1 M515 M515d
c + (M515 +N1)L

535 −t3 − t5 −N1 −N M535 M535d
c + (M535 − 2N1 −N2)L

53 −2t3 N2 M53 M53d
c + (M53 +N2)L

Table 2.5: Matter curve spectrum. Note that N = N1 + N2 has been used as
short hand.

triplet representations

n(3, 1)−1/3 − n(3, 1)1/3 = M5, (2.48)

n(1, 2)1/2 − n(1, 2)−1/2 = M5 +N, (2.49)

where the states are presented in the SM basis. For a 10 we have

n(3, 2)1/6 − n(3, 2)−1/6 = M10, (2.50)

n(3, 1)−2/3 − n(3, 1)2/3 = M10 −N, (2.51)

n(1, 1)1 − n(1, 1)−1 = M10 +N. (2.52)

In the end, given a value for each M5, M10, N1, N2 the spectrum of the theory

is fully defined as can be seen in Table 2.5

2.4.2 Matter Parity

Some major issues in supersymmetric GUT model building, including operators

leading to fast proton decay and other flavour processes at unacceptable rates,

are usually solved by introducing the concept of R-parity. In early F-theory

model building [49,51], such matter parity symmetries where introduced by hand.

Here, in the present approach, the conjecture is that as in the case of the GUT

symmetries which are associated with the manifold singularities, R-parity can

also be attributed to the geometric properties of the manifold.

In this work we concentrate on models with matter being distributed on dif-
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ferent matter curves in contrast to the models where all three families reside on

a single curve. In such models the Higgs field, Hu, is accommodated on a suit-

able curve so that a tree-level coupling for the up-quark fermion mass matrix is

ensured. Similarly, we may require at most one tree level coupling for down-type

quarks. Because of U(1) symmetries left over under some chosen monodromy

action, all other mass entries are generated at higher orders. However, despite

the existence of U(1) symmetries, it is possible that other trilinear (tree-level)

couplings among the fermion fields themselves are still allowed in the effective

superpotential. In the present 2 + 2 + 1 spectral cover splitting for example, we

can see that more than one down-quark type trilinear coupling exists, since any

of the following 101(5̄135̄35 + 5̄155̄3), 103(5̄135̄15 + 5̄15̄35) and 105(5̄15̄3 + 5̄135̄13)

are invariant under all symmetries. A similar picture emerges for the up-quark

sector. Such terms are also present in 2 + 1 + 1 + 1 as well as other splittings

as can be easily checked. Assigning the Higgs in the appropriate fiveplet, one

of the above terms may account for the quark mass of the third generation. Of

course, we might seek appropriate flux parameters to eliminate chiral states on

the unwanted fiveplets involved in the remaining terms, but this is not always

possible. In such cases additional restrictions are required and a possible solution

to this drawback is the concept of R-parity.

In an F-theory framework, we can think of three different ways to introduce

R-parity in the model: As a first approach, we may impose, ad hoc , a Z2 sym-

metry on the grounds of the desired low energy phenomenology. As has already

been said, this has been suggested in early F-theory constructions. However,

inasmuch as F-theory gauge symmetries are intimately connected to geometric

properties, it would be desirable that R-parity has also a geometric origin. A

second possibility, then, is to seek such a symmetry within the properties of the

spectral cover. Finally, a third way to deal with the annihilation of the perilous

Yukawa couplings is to introduce new symmetries emerging from specific elliptic

fibrations possessing rational sections. Indeed, these imply the existence of new

U(1) symmetries [40] of the Mordell-Weil type, beyond those embedded in the
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non-Abelian part. Such symmetries may prevent undesirable terms.

Given the fact that the GUT symmetries in F-theory are associated with

geometric singularities, in the present work we think it is also worth exploring

the possibility that R-parity may be of a similar nature. Of course, imposing

R-parity in a bottom up approach is always possible, however, we will follow

the second path and attempt to describe R-parity from geometric symmetries

associated with the spectral cover. Such a conjecture might also look ad hoc but

in the following we will try to give a kind of ‘evidence’ of this correlation.

It was proposed [58], that in local F-Theory constructions there are geometric

discrete symmetries of the spectral cover that manifest on the final field theory. In

F-theory the relevant data originate form the geometric properties of the Calabi-

Yau four-fold and the G4-flux. For example, for a surface of the type S = P2,

it was shown in [58] that a Z2 transformation acting on S generates also a Z2

transformation on spinors. If this transformation is a symmetry of the specific

geometric configuration, it should also be a symmetry of the spectral surface and

this is indeed the case.

To be more precise, we analyse this in some detail for the SU(5) group where

the spectral surface is described by the equation
∑5

k=0 bks
5−k = 0. We consider

the GUT divisor SGUT and three open patches S, T, U covering SGUT ; we define

a phase φN = 2π
N and a map σN such that

σN : [S : T : U ] → [eiφNS : eiφNT : U ]

For a Z2 symmetry discussed in [58] one requires a Z2 background configuration,

with a Z2 action so that the mapping is

σ2 : [S : T : U ]→ [−S : −T : U ] or [S : T : −U ]

To see if this is a symmetry of the local geometry for a given divisor, we take local

coordinates for the three trivialization patches. These can be defined as (t1, u1) =

(T/S, U/S), (s2, u2) = (S/T, U/T ) and (s3, t3) = (S/U, T/U). Assuming that
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σ2(p), is the map of a point p under σ2 transformation the corresponding local

coordinates are mapped according to

(t1, u1, ξs)|σ2(p) = (t1,−u1,−ξs)|p,

(s2, u2, ξt)|σ2(p) = (s2,−u2,−ξt)|p,

(s3, t3, ξu)|σ2(p) = (−s3,−t3, ξu)|p.

(2.53)

This is an SU(3) rotation on the three complex coordinates, which acts on the

spinors in the same way. Hence, starting from a Z2 symmetry of the threefold

we conclude that a Z2 transformation is also induced on the spinors. The re-

quired discrete symmetry must be a symmetry of the local geometry. This can

happen if the defining equation of the spectral surface is left invariant under the

corresponding discrete transformation. Consequently we expect non-trivial con-

straints on the polynomial coefficients bk, which carry the information of local

geometry. In order to extract these constraints we focus on a single trivialization

patch and take s to be the coordinate along the fiber. Under the mapping of

points p→ σ(p) we consider the phase transformation

s(σ(p)) = s(p) eiφ, bk(σ(p)) = bk(p) e
i(χ−(6−k)φ).

Under this action, each term in the spectral cover equation transforms the same

way

bks
5−k → ei(χ−φ)bks

5−k

It can be readily observed that a non-trivial solution accommodates a ZN sym-

metry for φ = 2π
N . Thus, for N = 2, we have φ = π and the transformation

reduces to

s→ −s, bk → (−1)keiχ bk. (2.54)

Further, we may assume that this symmetry is communicated from the C5 the-

ory to the split spectral cover geometry. On matter curves GUT symmetry is
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enhanced while their geometric description is given by the defining equations.

Clearly, the properties of their coefficients are determined from bk’s. Our conjec-

ture is that the R-parity is determined in analogy with the bulk surface fields.

In this respect, for a Z2 choice, to all fields residing on a specific matter curve,

we assign either even or odd parity in accordance with the property of its corre-

sponding defining equation.

Returning to the present construction, for curves accommodating MSSM chi-

ral matter we will assume that R-parity is defined by the corresponding ‘parity’ of

its defining equation, which is fixed through its relation with the C5 coefficients.

Thus the chiral matter fields on the same matter curve must necessarily have the

same parity, since it is a symmetry arising from the matter curve itself. For the

specific models of this work, we can use [55] the equations relating

bk ∝ alaman, with l +m+ n = 17 (2.55)

to find the transformation rules of the ak such that the spectral cover equation

respects the symmetry of Equation (2.55). Consistency with Equation (2.55)

implies that the coefficients an should transform as

an → eiψnei(11/3−n)φan. (2.56)

We now note that the above transformations can be achieved by a ZN sym-

metry if φ = 32π
N . In that case one can find, by looking at the Equation (2.33)

for bk ∝ alaman that we have

ψ1 = ψ2 = ψ3 (2.57)

ψ4 = ψ5 = ψ6 (2.58)

ψ7 = ψ8 (2.59)
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meaning that there are three distinct cycles, and

χ = ψ1 + ψ4 + ψ7. (2.60)

Furthermore, the section c introduced to split the matter conditions (2.35)

has to transform as

c→ eiφcc, (2.61)

with

φc = ψ3−ψ6−ψ7+

(
−11

3
+ 11

)
φ , φc = ψ2−ψ5−ψ8+

(
−11

3
+ 11

)
φ. (2.62)

We can now deduce what would be the matter parity assignments for Z2 with

φ = 3(2π/2). Let p(x) be the parity of a section (or products of sections), x. We

notice that there are relations between the parities of different coefficients, for

example one can easily find

p(a1)

p(a2)
= −1 (2.63)

amongst others, which allow us to find that all parity assignments depend only

on three independent parities

p(a1) = i (2.64)

p(a4) = j (2.65)

p(a7) = k (2.66)

p(c) = ijk, (2.67)

where we notice that i2 = j2 = k2 = +. The parities for each matter curve – both

in form of a function of i, j, k and all possible assignments – can are presented in

the Table 2.6.

As such, models from Z2 × Z2 are completely specified by the information

present in Table 2.7.
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Curve Charge Parity All possible assignments

101 t1 i + − + − + − + −
103 t3 j + + − − + + − −
105 t5 k + + + + − − − −
51 −2t1 jk + + − − − − + +
513 −t1 − t3 + + + + + + + + +
515 −t1 − t5 i + − + − + − + −
535 −t3 − t5 j + + − − + + − −
53 −2t3 −j − − + + − − + +

Table 2.6: All possible matter parity assignments

Curve Charge Matter Parity Spectrum
101 t1 i M101Q+ (M101 −N1)uc + (M101 +N1)ec

103 t3 j M103Q+ (M103 −N2)uc + (M103 +N2)ec

105 t5 k M105Q+ (M105 +N1 +N2)uc + (M105 −N1 −N2)ec

51 −2t1 jk M51d
c + (M51 −N1)L

513 −t1 − t3 + M513d
c + (M513 + 2N1)L

515 −t1 − t5 i M515d
c + (M515 +N1)L

535 −t3 − t5 j M535d
c + (M535 − 2N1 −N2)L

53 −2t3 −j M53d
c + (M53 +N2)L

Table 2.7: All the relevant information for model building with Z2 × Z2 mon-
odromy

2.4.3 The Singlets

In the context of F-theory GUTs, the local geometry cannot tell us everything

about the singlets of the theory, however using the spectral cover formalism it is

possible to be consistent in our discussion of these fields. For the singlets on the

GUT surface we start by looking at the splitting equation for singlet states, P0.

For SU(5) these are found to be

P0 = 3125b45b
4
0 + 256b54b

3
0 − 3750b2b3b

3
5b

3
0 + 2000b2b

2
4b

2
5b

3
0 + 2250b23

b4b
2
5b

3
0 − 1600b3b

3
4b5b

3
0 − 128b22b

4
4b

2
0 + 144b2b

2
3b

3
4b

2
0 − 27b43b

2
4b

2
0 + 825

b22b
2
3b

2
5b

2
0 − 900b32b4b

2
5b

2
0 + 108b53b5b

2
0 + 560b22 (2.68)

b3b
2
4b5b

2
0 − 630b2b

3
3b4b5b

2
0 + 16b42b

3
4b0 − 4b32b

2
3b

2
4b0 + 108b52b

2
5b0

+ 16b32b
3
3b5b0 − 72b42b3b4b5b0

Applying the solution for the Z2 × Z2 monodromy from Eq.(2.34,2.35) the

70



above splits into 13 factors as follows

P0 = a2
6a

2
8c
(
a2

5 − 4a4a6

) (
a8(a4a8 − a5a7) + a6a

2
7

)2
(
c(a5a8 + a6a7)2 − 4a1a6a8

)
(a1a8 + a7c(a5a8 + 2a6a7))2

(
a2

1a6 + a1c
(
−2a4a6a8 + 2a2

5a8 + a5a6a7

)
+ a4c

2
(
a6a8(a4a8 + 3a5a7) + 2a2

5a
2
8 + a2

6a
2
7

))2
(2.69)

Their homologies and geometric parities can be founded by applying the results

from the previous section, and are presented in Table 2.8. Note that three of the

factors arising must have a charge of zero, indicating that they are not localised

on the GUT surface.

Equation Power Charge Homology Class Matter Parity

a6 2 ±(t1 − t3) χ2 j
a8 2 ±(t1 − t5) η − χ1 − χ2 −k
c 1 0 −η + 2χ1 ijk

a2
5 − . . . 1 0 −2c1 + χ2 +

a8(a4a8 − . . . 2 ±(t3 − t5) 2η − 2c1 − 2χ1 − χ2 j
c(a5a8 + . . . 1 0 η − 2c1 ijk
(a1a8 + . . . 2 ±(t1 − t5) η − 2c1 − χ2 −ik
(a2

1a6 + . . . 2 ±(t1 − t3) −4c1 + 2χ1 + χ2 j

Table 2.8: Defining equations, multiplicity, homologies, matter parity, and per-
pendicular charges of singlet factors

2.4.4 Application of Geometric Matter Parity

We study now the implementation of the explicit Z2 × Z2 monodromy model

presented in [49] alongside the matter parity proposed above. The model under

consideration is defined by the flux data

N1 = M515 = M535 = 0, (2.70)

N2 = M103 = M51 = 1 = −M105 = −M53 , (2.71)

M101 = 3 = −M513 , (2.72)
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which leads to the spectrum presented in Table 2.9 alongside all possible geometric

parities.

Curve Charge Spectrum All possible assignments

101 t1 3Q+ 3uc + 3ec + − + − + − + −
103 t3 Q+ 2ec + + − − + + − −
105 t5 −Q− 2ec + + + + − − − −
51 −2t1 Du +Hu + + − − − − + +

513 −t1 − t3 −3dc − 3L + + + + + + + +
515 −t1 − t5 0 + − + − + − + −
535 −t3 − t5 −Hd + + − − + + − −
53 −2t3 −Dd − − + + − − + +

Table 2.9: Spectrum and allowed geometric parities for the Z2 × Z2 monodromy
model

Name Charge All possible assignments

θ1 ±(t1 − t3) + + − − + + − −
θ2 ±(t1 − t5) − − − − + + + +

θ3 0 + − − + − + + −
θ4 0 + + + + + + + +

θ5 ±(t3 − t5) + + − − + + − −
θ6 0 + − − + − + + −
θ7 ±(t1 − t5) − + − + + − + −
θ8 ±(t1 − t3) + + − − + + − −

Table 2.10: Singlet curves and their perpendicular charges and geometric parity.
Note that singlets with zero charge are necessarily not localised on the GUT
surface.

Inspecting Table 2.9 one can arrive at some conclusions. For example, looking

at the spectrum from each curve it’s immediate that all matter is contained in

101 and 513, while the Higgs fields come from 51 and 535, and the rest of the

states are exotics that come in vector-like pairs. Immediately we see that there

will be R-Parity violating terms since 513 has positive parity.

In order to fully describe the model one also has to take into account the

singlets, whose perpendicular charges and all possible geometric parities can be

seen in Table 2.10, where the charge conjugated partner is included in the same

row - i.e. θi has the same parity as θi.

Note that not all the factors of Equation (2.69) appear to be singlets incident
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at points on the GUT divisor. In particular, the fields associated to the factors

c, a2
5− . . . and c(a5a8 + . . . are uncharged under the perpendicular group weights.

As such these cannot be incident upon the GUT surface and we shall not consider

them to participate in any couplings for the rest of this work.

Of the possible combinations {i, j, k} for the geometric parity assignments,

the only choices that allow for a tree-level top quark mass are:

{i, j, k} = {+,+,+} (2.73)

{i, j, k} = {−,+,+}

{i, j, k} = {+,−,−}

{i, j, k} = {−,−,−}

The option that most closely resembles the R-parity imposed in the model [49]

corresponds to the choice i = −, j = k = +. However, if R-parity has a geometric

origin the parity assignments of matter curves cannot be arbitrarily chosen. Using

the Mathematica package presented in [78], it is straight forward to produce the

spectrum of operators up to an arbitrary mass dimension. One can readily observe

that its implementation allows a number of operators that could cause Bilinear

R-Parity Violation (BRPV) at unacceptably high rates. For example, the lowest

order operators are:

HuLθ1, HuLθ5, HuLθ1θ4, HuLθ4θ8, HuLθ3θ4 (2.74)

with higher order operators also present, amplifying the scale of the problem. In

order to avoid problems, we must forbid vacuum expectations for a number of

singlets. This does not immediately appear to be a model killing issue, however

we must look to the exotic masses. Considering the Higgs triplets Du/d, the only
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mass terms are:

DuDdθ1θ1θ3, DuDdθ1θ1θ6, DuDdθ1θ2θ5, DuDdθ1θ3θ8,

DuDdθ1θ6θ8, DuDdθ2θ5θ8, DuDdθ3θ8θ8, DuDdθ6θ8θ8 (2.75)

As can be seen each of these terms contains θ1 or θ8. Since these are required

to have no vacuum expectation value, it follows that the Higgs triplets cannot

become massive. Since this is a highly disfavoured feature, we must rule out this

model.

It transpires that in a similar way, all the models with this flux assignment

must be ruled out when we apply this geometric parity. This is due to the tension

between BRPV terms and exotic masses, which seem to always be at odds in

models with this novel parity. This motivates one to search for models without

any exotics, as these models will not have any constraining features coming from

exotic masses, and we shall analyse one such model in the subsequence.

2.5 Deriving the MSSM with the seesaw mechanism

The parameter space of models is very large, given the number of reasonable

combinations of fluxes, multiplicities and choices of geometric parities. There

are a number of ways to narrow the parameter space of any search, for example

requiring that there be no exotics present in the spectrum, or contriving there to

be only one tree-level Yukawa coupling to enable a heavy top quark. Furthermore,

the observed large hierarchy of the up-quark mass spectrum emerges naturally

from a rank one mass matrix and this means that the associated gauge invariant

term 10ti10tj5−ti−tj can account for it only under a monodromy action such that

two matter curves are identified ti = tj .

We note however that in general monodromies allow more than one tree-

level coupling in the superpotential and therefore it is necessary to implement

some form of R-parity or matter parity in F-theory GUT models. For example

in [49, 51], the authors add such a parity by hand, protecting the models they
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Curve Charge Matter Parity Spectrum

101 t1 − Q3 +Q2 + uc3 + 3ec

103 t3 + −
105 t5 − Q1 + uc2 + uc1
51 −2t1 − −L1

513 −t1 − t3 + 2Hu

515 −t1 − t5 − −dc2 − d
c
1 − L2

535 −t3 − t5 + −2Hd

53 −2t3 − −dc3 − L3

115 = θ7 t1 − t5 − Na
R

151 = θ7 t5 − t1 − N b
R

Table 2.11: Matter content for a model with the standard matter parity arising
from a geometric parity assignment.

present from dangerous operators allowed in supersymmetric SU(5) GUTs - for

example trilinear R-parity violating terms.

Let us make a choice for the flux parameters and phases that enables the

implementation of a standard matter parity:

{N1 = 1, N2 = 0}

M101 = −M513 = 2

M105 = −M53 = 1 (2.76)

M103 = M51 = M515 = M535 = 0

i = −j = k = −

The matter spectrum of this model is summarised in Table 2.11. With this choice,

Table 2.10 will select the column with only the singlets θ7 and θ7 having a negative

matter parity. Provided this singlet does not acquire a vacuum expectation it

will then be impossible for Bilinear R-parity violating terms due to the nature

of the parity assignments. This will also conveniently give us candidates for

right-handed neutrinos, θ7 and θ7.
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2.5.1 Yukawas

Having written down a spectrum that has the phenomenologically preferred R-

parity, we must now examine the allowed couplings of the model. The model

only allows Yukawa couplings to arise at non-renormalisable levels, however the

resulting couplings give rise to rank three mass matrices. This is because the

perpendicular group charges must be canceled out in any Yukawa couplings. For

example, the Yukawa arising from 101 · 101 · 513 has a charge t1 − t3, which may

be canceled by the θ1/8 singlets. Consider the Yukawas of the Top sector,

101 · 101 · 513 · (θ1 + θ8)→ (Q3 +Q2)u3Hu(θ1 + θ8)

101 · 105 · 513 · θ5 → ((Q3 +Q2)(u1 + u2) +Q1u3)Huθ5 (2.77)

105 · 105 · 513 · θ2 · θ5 → Q1(u1 + u2)Huθ2θ5

where the numbers indicate generations (1, 2 and 3). The resulting mass matrix

should be rank three, however the terms will not all be created equally and the

rank theorem [35] should lead to suppression of operators arising from the same

matter curve combination5:

Mu,c,t ∼ vu


εθ2θ5 θ2θ5 θ5

ε2θ5 εθ5 ε(θ1 + θ8)

εθ5 θ5 θ1 + θ8

 (2.78)

where each element of the matrix has some arbitrary coupling constant. We

use here ε to denote suppression due to the effects of the Rank Theorem [35]

for Yukawas arising from the same GUT operators. The lightest generation will

have the lightest mass due to an extra GUT scale suppression arising from the

second singlet involved in the Yukawa. There are a large number of corrections at

higher orders in singlet VEVs, which we have not included here for brevity. These

corrections will also be less significant compared to the lowest order contributions.

5 The rank theorem of [35] states that for multiple generations of matter on the same matter
curve, only one generation gets a yukawa coupling at leading order. We refer the reader to [35]
for the details, however in short one can expect the remaining generations to be suppressed,
naturally giving a hierarchical structure.
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In a similar way, the Down-type Yukawa couplings arise as non-renormalisable

operators, coming from four different combinations. The operators for this sector

often exploit the tracelessness of SU(5), so that the sum of the GUT charges must

vanish. The leading order Yukawa operators,

101 · 53 · 535 · (θ1 + θ8)→ (Q3 +Q2)d3Hd(θ1 + θ8)

101 · 515 · 535 · θ5 → (Q3 +Q2)(d1 + d2)Hdθ5 (2.79)

105 · 53 · 535 · (θ1 + θ8)θ2 → Q1d3Hu(θ1 + θ8)θ2

105 · 515 · 535 · θ2 · θ5 → Q1(d1 + d2)Huθ2θ5

The resulting mass matrix will, like in the Top sector, be a rank three matrix,

with a similar form:

Md,s,b ∼ vd


εθ2θ5 θ2θ5 (θ1 + θ8)θ2

ε2θ5 εθ5 ε(θ1 + θ8)

εθ5 θ5 θ1 + θ8

 (2.80)

The structure of the Top and Bottom sectors appears to be quite similar in this

model, which should provide a suitable hierarchy to both sectors.

The Charged Leptons will have a different structure to the Bottom-type

quarks in this model, due primarily to the fact the eci matter is localised on

one GUT tenplet. The Lepton doublets however all reside on different 5 repre-

sentations, which will fill out the matrix in a non-trivial way, with the operators:

101 · 53 · 535 · (θ1 + θ8)→ L3(ec1 + ec2 + ec3)Hd(θ1 + θ8)

101 · 515 · 535 · θ5 → L2(ec1 + ec2 + ec3)Hdθ5 (2.81)

101 · 51 · 535 · (θ1 + θ8)→ L1(ec1 + ec2 + ec3)Hd(θ1 + θ8)

The mass matrix for the Charged Lepton sector will be subject to suppressions

arising due to the effects discussed above.
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2.5.2 Neutrino Masses

The spectrum contains two singlets that do not have vacuum expectation values,

which protects the model from certain classes of dangerous operators. These

singlets, θ7/θ7, also serve as candidates for right-handed neutrinos. Let us make

the assignment θ7 = Na
R and θ7 = N b

R. This gives Dirac masses from two sources,

the first of which involve all lepton doublets and Na
R:

53 · 513 · θ7 · θ5 → L3N
a
RHuθ5

515 · 513 · θ7 · (θ1 + θ8)→ L2N
a
RHu(θ1 + θ8) (2.82)

51 · 513 · θ7 · (θ1 + θ8) · θ2 → L1N
a
RHu(θ1 + θ8)θ2

This generates a hierarchy for neutrinos, however the effect will be mitigated by

the operators arising from the N b
R singlet:

53 · 513 · θ7 · (θ1 + θ8) · θ2 → L3N
b
RHu(θ1 + θ8)θ2

515 · 513 · θ7 · θ2 · θ5 → L2N
b
RHuθ2θ5 (2.83)

51 · 513 · θ7 · θ5 → L1N
b
RHuθ5

If all these Dirac mass operators are present in the low energy spectrum, then the

neutrino sector should have masses that mix greatly. This is compatible with our

understanding of neutrinos from experiments, which requires large mixing angles

compared to the other sectors.

A light mass scale for the neutrinos can be generated using the seesaw mech-

anism [79], which requires large right-handed Majorana masses to generate light

physical left-handed Majorana neutrino mass at low values. The singlets involved

in this scenario has perpendicular charges that must be canceled out, as with the

quark and charged lepton operators. Fortunately, this can be achieved, in part

due to the presence of θ2/θ2, which have the same charge combinations as Na,b
R .

The leading contribution to the mass term will come from the off diagonal θ7θ7
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term, however there are diagonal contributions:

〈θ2〉2

Λ
θ

2
7 +

〈θ2〉2

Λ
θ2

7 + Mθ7θ7 (2.84)

Two right-handed neutrinos are sufficient to generate the appropriate physical

light masses for the neutrinos required by experimental constraints [80,81].

2.5.3 Other Features

An interesting property of this model is the requirement of extra Higgs fields.

Due to the flux factors, under doublet-triplet splitting it is necessary to have two

copies of the up and down-type Higgs. This insures that the model is free of

Higgs colour triplets, Du/Dd in the massless spectrum, while also allowing the

designation of + parity to Higgs matter curves. As a consequence of this, the

µ-term for the Higgs mass would seem to give four Higgs operators of the same

mass: MijH
i
uH

j
d , with i, j = 1, 2. However, since for both the up and down-types

there are two copies on the matter curve, we can call upon the rank theorem [35].

Consider the operator for the µ-term:

513 · 535 · θ2 →MijH
i
uH

j
d →M

 ε2h εh

εh 1


 H1

u

H2
u

( H1
d H2

d

)
(2.85)

This operator will give a mass that is naturally large for one generation of the

Higgs, while the second mass should be suppressed due to non-perturbative ef-

fects. This is parameterised by εh, which is required to be sufficiently small as to

allow a Higgs to be present at the electroweak scale, while the leading order Hig-

gsl must be heavy enough to remain at a reasonably high scale and not prevent

unification. Thus we should have a light Higgs boson as well as a heavier copy

that is as of yet undetected.

The spectrum is free of the Higgs colour triplets Du/Dd, however we must

still consider operators of the types QQQL and dcucucec, since the colour triplets

may appear in the spectrum at the string scale. Of these types of operator, most

are forbidden at leading order due to the charges of the perpendicular group.
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However, one operator is allowed and we must consider this process:

10110110553 → (Q3 +Q2)(Q3 +Q2)Q1L3 + (uc2 + uc1)uc3d
c
3(ec1 + ec2 + ec3) (2.86)

None of the operators arising are solely first generation matter, however due to

mixing they may contribute to any proton decay rate. The model in question

only has one of each type of Higgs matter curve, which means any colour triplet

partners must respect the perpendicular charges of those curves. The result

of this requirement is that the vertex between the initial quarks and the Du

colour triplet must also include a singlet to balance the charge, with the same

requirement for the final vertex. The resulting operator should be suppressed by

some high scale where the colour triplets are appearing in the spectrum - Λs. The

most dangerous contribution of this operator can be assume to be the Q2Q1Q2L3

component, which will mix most strongly with the lightest generation. It can be

estimated that, given the quark mixing and the mixing structure of the charged

Leptons in particular, the suppression scale should be in the region ∼ 104−6Λs.

This estimate seems to place the suppression of proton decay at too small a value,

though not wildly inconsistent.

However, if we consider Figure 2.3, we can see that while the external legs of

this process give an overall adherence to the charges of the perpendicular group

charges, the vertices require singlet contributions. For example, the first vertex

is Q2Q1Duθ5, which is non-renormalisable and we cannot write down a series

of renormalisable operators to mediate this effective operator. This is because

the combination of perpendicular group and GUT charges constrain heavily the

operators we can write down, which means proton decay can be seen to be sup-

pressed here by the dynamics as well as the symmetries required by the F-theory

formalism. The full determination of the coupling strengths of any process of

this type in F-theory should be found through computing the overlap integral of

the wavefunctions involved [38], and this will be discussed in upcoming work on

R-parity violating processes.
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Figure 2.3: Proton Decay graph

2.6 Conclusions

We have revisited a class of SU(5) SUSY GUT models which arise in the context

of the spectral cover with Klein Group monodromy V4 = Z2×Z2. By investigating

the symmetry structures of the spectral cover equation and the defining equations

of the mater curves it is possible to understand the F-theory geometric origin of

matter parity, which has hitherto been just assumed in an ad hoc way. In

particular, we have shown how the simplest Z2 matter parities can be realised

via the new geometric symmetries respected by the spectral cover. By exploiting

the various ways that these symmetries can be assigned, there are a large number

of possible variants.

We have identified a rather minimal example of this kind, where the low

energy effective theory below the GUT scale is just the MSSM with no exotics and

standard matter parity. Furthermore, by deriving general properties of the singlet

sector, consistent with string vacua, including the D and F-flatness conditions,

we were able to identify two singlets, which provide suitable candidates for a

two right-handed neutrinos. We were thus able to derive the MSSM extended by

a two right-handed neutrino seesaw mechanism. We also computed all baryon

and lepton number violating operators emerging from higher non-renormalisable

operators and found all dangerous operators to be forbidden.
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Chapter 3

A4 as a monodromy group and

family symmetry in F-theory

In the literature, there are a great many works that utilise the extra U(1)s of

F-theory, along with Abelian ZN monodromies to construct models with real-

istic quark and lepton mass hierarchies – for example [47, 49, 58]. While it is

gratifying that such symmetries can arise from a string derived model, where the

parameter space is subject to constraints from the first principles of the theory,

the possibility of having only continuous Abelian family symmetry in F-theory

represents a very restrictive choice. By contrast, other string theories have a

rich group structure embodying both continuous and discrete symmetries at the

same time [82]- [83]. It may be regarded as something of a drawback of the

F-theory approach that the family symmetry is constrained to be a product of

U(1) symmetries. Indeed the results of the neutrino oscillation experiments are

in agreement with an almost maximal atmospheric mixing angle θ23, a large solar

mixing θ12, and a non-vanishing but smaller reactor angle θ13, all of which could

be explained by an underlying non-Abelian discrete family symmetry (for recent

reviews see for example [84–86]).

Recently, discrete symmetries in F-theory have been considered [50] on an el-

liptically fibered space with an SU(5) GUT singularity, where the effective theory

is invariant under a more general non-Abelian finite group. They considered all
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possible monodromies that induce an additional discrete (family-type) symmetry

on the model. For the SU(5) GUT minimal unification scenario in particular, the

accompanying discrete family group could be any subgroup of the S5 permuta-

tion symmetry, and the spectral cover geometries with monodromies associated

to the finite symmetries S4, A4 and their transitive subgroups, including the di-

hedral group D4 and Z2 × Z2, were discussed. However a detailed analysis was

only presented for the Z2 × Z2 case, while other cases such as A4 were not fully

developed into a realistic model.

In this chapter we extend the analysis in [50] in order to construct realistic

models based on the case of A4, combined with SU(5) GUT, comparing our

results to existing field theory models based on these groups. We provide an

explicit calculation to support the emergence of the family symmetry as from the

discrete monodromies. We shall discuss the conditions for the transition of S4 to

A4 discrete family symmetry “escorting” the SU(5) GUT and propose a discrete

version of the doublet-triplet splitting mechanism for A4, before constructing a

realistic model which is analysed in detail.

Considering the case of an A4 monodromy, we must consider that the spectral

cover equation, C5, should be separable in the following two factors as in Equation

(2.27).

This implies the ‘breaking’ of the SU(5)⊥ to the monodromy group S4, (or

one of its subgroups such as A4), described by the fourth degree polynomial

C4 :
5∑

k=1

aks
k−1 = 0 (3.1)

and a U(1) associated with the linear part. New and old polynomial coefficients

satisfy simple relations bk = bk(ai) which can be easily extracted comparing

by consistency of Equation (2.27) with the unsplit spectral cover. Table 3.1

summarizes the relations between the coefficients of the unfactorised spectral

cover and the aj coefficients for the cases under consideration in the present

work.

The homologies of the coefficients bi are given in terms of the first Chern class
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bi aj coefficients for 4+1 aj coefficients for 3+2 aj coefficients for 3+1+1

b0 a5a7 a4a7 a4a6a8

b1 a5a6 + a4a7 a4a6 + a3a7 a4a6a7 + a4a5a8 + a3a6a8

b2 a4a6 + a3a7 a4a5 + a3a6 + a2a7 a4a5a7 + a3a5a8 + a3a6a7 + a2a6a8

b3 a3a6 + a2a7 a3a5 + a2a6 + a1a7 a3a5a7 + a2a5a8 + a2a6a7 + a1a6a8

b4 a2a6 + a1a7 a2a5 + a1a6 a2a5a7 + a1a6a7 + a1a5a8

b5 a1a6 a1a5 a1a5a7

Table 3.1: table showing the relations bi = bi(aj) between coefficients of the spec-
tral cover equation under various decompositions from the unfactorised equation.

of the tangent bundle (c1) and of the normal bundle (−t), which can be found in

Equation (2.13).

We may use these to calculate the homologies [aj ] of our aj coefficients, since

if bi = ajak . . . then [bi] = [aj ]+[ak]+. . ., allowing us to rearrange for the required

homologies. Note that since we have in general more aj coefficients than our fully

determined bi coefficients, the homologies of the new coefficients cannot be fully

determined. For example, if we factorise in a 3 + 1 + 1 arrangement, we must

have 3 unknown parameters, which we call χk=1,2,3. In the following sections we

will examine in detail the predictions of the A4 model.

3.1 A4 models in F-theory

We assume that the spectral cover equation factorises to a quartic polynomial and

a linear part, as shown in Equation (2.24). The homologies of the new coefficients

may be derived from the original bi coefficients. Referring to Table 3.1, we can

see that the homologies for this factorisation are easily calculable, up to some

arbitrariness of one of the coefficients - we have seven aj and only six bi. We

choose [a6] = χ in order to make this tractable. It can then be shown that the

homologies are those of Equation (2.28).

After referring to Table 3.1, we see that P10 = a1a6 = 0. Therefore there are

two tenplet matter curves, whose homologies are given by those of a1 and a6. We

shall assume at this point that these are the only two distinct curves, though a1

appears to be associated with S4 (or a subgroup) and hence should be reducible

in terms of representations of the monodromy group, since a quadruplet is not an
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Curve Equation Homology Hyperflux - N Multiplicity

10a a1 η − 5c1 − χ −N M10a

10b a6 χ +N M10b

5c a2
2a7 + a2a3a6 ∓ a0a1a

2
6 2η − 7c1 − χ −N M5c

5d a3a
2
6 + (a2a6 + a1a7)a7 η − 3c1 + χ +N M5d

Table 3.2: table of matter curves, their homologies, charges and multiplicities.

irreducible representation of S4. Similarly, for the fiveplets, we have the defining

equation as in Equation (2.27), which gives two coefficients.

The homologies of these curves are calculated from those of the bi coefficients

and are presented in Table 3.2. We may also impose flux restrictions if we define:

FY · χ = N ,

FY · c1 = FY · η = 0 ,

(3.2)

where N ∈ Z and FY is the hypercharge flux.

Considering equation (2.24), we see that b5/b0 = t1t2t3t4t5, so there are at

most five ten-curves, one for each of the weights. Under S4 and it’s subgroups,

four of these are identified, which corroborates with the two matter curves seen

in Table 3.1. As such we identify ti=1,2,3,4 with this monodromy group and the

coefficient a1 and leave t5 to be associated to a6.

Similarly, we have at most ten five-curves when s = 0, given in the form ti+tj

with i 6= j. Examining the equations for the two five curves that are manifest in

this model after application of our monodromy, the quadruplet involving ti + t5

forms the curve labeled 5d, while the remaining sextet - ti + tj with i, j 6= 5 - sits

on the 5c curve.

3.1.1 The discriminant

The above considerations apply equally to both the S4 and A4 discrete groups.

From the effective model point of view, all the useful information is encoded in the

properties of the polynomial coefficients ak and if we wish to distinguish these two

models further assumptions for the latter coefficients have to be made. Indeed,

if we assume that in the above polynomial, the coefficients belong to a certain
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field ak ∈ F , without imposing any additional specific restrictions on ak, the

roots exhibit an S4 symmetry. If, as desired, the symmetry acting on roots is the

subgroup A4 the coefficients ak must respect certain conditions. Such constraints

emerge from the study of partially symmetric functions of roots. In the present

case in particular, we recall that the A4 discrete symmetry is associated only to

even permutations of the four roots ti. Further, we note now that the partially

symmetric function

δ = (t1 − t2)(t1 − t3)(t1 − t4)(t2 − t3)(t2 − t4)(t3 − t4)

is invariant only under the even permutations of roots. The quantity δ is the

square root of the discriminant,

∆ = δ2 (3.3)

and as such δ should be written as a function of the polynomial coefficients ak ∈ F

so that δ ∈ F too. The discriminant is computed by standard formulae and is

found to be

∆(ak) = 256a3
1a

3
5 −

(
27a4

2 − 144a1a3a
2
2 + 192a2

1a4a2 + 128a2
1a

2
3

)
a2

5

− 2
(
2
(
a2

2 − 4a1a3

)
a3

3 −
(
9a2

2 − 40a1a3

)
a2a4a3 + 3

(
a2

2 − 24a1a3

)
a1a

2
4

)
a5

− a2
4

(
4a4a

3
2 + a2

3a
2
2 − 18a1a3a4a2 +

(
4a3

3 + 27a1a
2
4

)
a1

)
.

(3.4)

In order to examine the implications of (3.3) we write the discriminant as a

polynomial of the coefficient a3 [50]

∆ ≡ g(a3) =

4∑
n=0

cna
n
3 (3.5)

where the cn are functions of the remaining coefficients ak, k 6= 3 and can be

easily computed by comparison with (3.4). We may equivalently demand that
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g(a3) is a square of a second degree polynomial

g(a3) = (κa2
3 + λa3 + µ)2

A necessary condition that the polynomial g(a3) is a square, is its own discrimi-

nant ∆g to be zero. One finds

∆g ∝ D2
1D

3
2

where

D1 = a2
2a5 − a1a

2
4

D2 =
(
27a2

1a4 − a3
2

)
a3

4 − 6a1a
2
2a5a

2
4 + 3a2

(
9a3

2 − 256a2
1a4

)
a2

5 + 4096a3
1a

3
5

(3.6)

We observe that there are two ways to eliminate the discriminant of the polyno-

mial, either putting D1 = 0 or by demanding D2 = 0 [50].

In the first case, we can achieve ∆ = δ2 if we solve the constraint D1 = 0 as

follows

a2
2 = 2a1a3

a2
4 = 2a3a5

(3.7)

Substituting the solutions (3.7) in the discriminant we find

∆ = δ2 =
[
a2a4

(
a2

3 − 2 a2a4

) (
a2

3 − a2a4

)
/a3

3

]2
(3.8)

The above constitute the necessary conditions to obtain the reduction of the

symmetry [50] down to the Klein group V ∼ Z2 × Z2. On the other hand, the

second condition D2 = 0, implies a non-trivial relation among the coefficients

(a2
2a5 − a2

4a1)2 =

(
a2a4 − 16a1a5

3

)3

(3.9)
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Plugging in the b1 = 0 solution, the constraint (3.9) take the form

(a2
2a7 + a0a1a

2
6)2 = a0

(
a2a6 + 16a1a7

3

)3

(3.10)

which is just the condition on the polynomial coefficients to obtain the transition

S4 → A4.

3.1.2 Towards an SU(5)× A4 model

Using the previous analysis, in this section we will present a specific example

based on the SU(5) × A4 × U(1) symmetry. We will make specific choices of

the flux parameters and derive the spectrum and its superpotential, focusing in

particular on the neutrino sector.

It can be shown that if we assume an A4 monodromy any quadruplet is

reducible to a triplet and singlet representation, while the sextet of the fives

reduces to two triplets (details can be found in the appendix).

Singlet-Triplet Splitting Mechanism

It is known from group theory and a physical understanding of the group that

the four roots forming the basis under A4 may be reduced to a singlet and triplet.

As such we might suppose intuitively that the quartic curve of A4 decomposes

into two curves - a singlet and a triplet of A4.

As a mechanism for this we consider an analogy to the breaking of the

SU(5)GUT group by U(1)Y . We then postulate a mechanism to facilitate Singlet-

Triplet splitting in a similar vein. Switching on a flux in some direction of the

perpendicular group, we propose that the singlet and triplet of A4 will split to

form two curves. This flux should be proportional to one of the generators of

A4, so that the broken group commutes with it. If we choose to switch on U(1)s

flux in the direction of the singlet of A4, then the discrete symmetry will remain

unbroken by this choice.
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Continuing our previous analogy, this would split the curve as follows:

(10, 4) =


(10, 1) = M +Ns

(10, 3) = M

. (3.11)

The homologies of the new curves are not immediately known. However,

they can be constrained by the previously known homologies given in Table 3.2.

The coefficient describing the curve should be expressed as the product of two

coefficients, one describing each of the new curves - ai = c1c2. As such, the

homologies of the new curves will be determined by [ai] = [c1] + [c2].

If we assign the U(1) flux parameters by hand, we can set the constraints

on the homologies of our new curves. For example, for the curve given in Table

3.2 as 10a would decompose into two curves - 101 and 102, say. Assigning the

flux parameter, N , to the 102 curve, we constrain the homologies of the two new

curves as follows:

[101] =aη + bc1

[102] =cη + dc1 − χ

Where: a+ c = 1 and b+ d = −5 .

Similar constraints may also be placed on the five-curves after decomposition.

Using our procedure, we can postulate that the charge N will be associated

to the singlet curve by the mechanism of a flux in the singlet direction. This

protects the overall charge of N in the theory. With the fiveplet curves it is

not immediately clear how to apply this since the sextet of A4 can be shown to

factorise into two triplets. Closer examination points to the necessity to cancel

anomalies. As such the curves carrying Hu and Hd must both have the same

charge under N . This will insure that they cancel anomalies correctly. These

motivating ideas have been applied in Table 3.3.
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GUT-group doublet-triplet splitting

Initially massless states residing on the matter curves comprise complete vector

multiplets. Chirality is generated by switching on appropriate fluxes. At the

SU(5) level, we assume the existence of M5 fiveplets and M10 tenplets. The mul-

tiplicities are not entirely independent, since we require anomaly cancellation,1

which amounts to the requirement that
∑

iM5i +
∑

jM10j = 0. Next, turning

on the hypercharge flux, under the SU(5) symmetry breaking the 10 and 5, 5̄

representations split into different numbers of Standard Model multiplets [88].

Assuming N units of hyperflux piercing a given matter curve, the fiveplets split

according to:

n(3, 1)−1/3 − n(3̄, 1)+1/3 = M5 ,

n(1, 2)+1/2 − n(1, 2)−1/2 = M5 +N ,

(3.12)

Similarly, the M10 tenplets decompose under the influence of N hyperflux units

to the following SM-representations:

n(3, 2)+1/6 − n(3̄, 2)−1/6 = M10 ,

n(3̄, 1)−2/3 − n(3, 1)+2/3 = M10 −N ,

n(1, 1)+1 − n(1, 1)−1 = M10 +N .

(3.13)

Using the relations for the multiplicities of our matter states, we can construct

a model with the spectrum parametrised in terms of a few integers in a manner

presented in Table 3.3.

In order to curtail the number of possible couplings and suppress operators

surplus to requirement, we also call on the services of an R-symmetry. This is

commonly found in supersymmetric models, and requires that all couplings have

a total R-symmetry of 2. Curves carrying SM-like fermions are taken to have

R = 1, with all other curves R = 0. The existence of such symmetries relies on an

ad hoc assumption that such a symmetry exists, most likely through a geometric

property of the internal manifold. Similar assumptions are found in the literature,

1For a discussion in relaxing some of the anomaly cancellation conditions and related issues
see [87].
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Curve Rep. NY M Matter content R
101 (10, 3)0 0 MT1 3 [MT1QL + ucL(MT1 −NY ) + ecL(MT1 +NY )] 1
102 (10, 1)0 −N MT2 MT2QL + ucL(MT2 −NY ) + ecL(MT2 +NY ) 1
103 (10, 1)t5 +N MT3 MT3QL + ucL(MT3 −NY ) + ecL(MT3 +NY ) 1
51 (5, 3)0 0 MF1 3

[
MF1d̄

c
L + (MF1 +NY )L̄

]
1

52 (5, 3)0 −N MF2 3
[
MF2

¯̄D + (MF2 +NY )H̄d)
]

0

53 (5, 3)t5 +N MF3 3 [MF3D + (MF3 +NY )Hu] 0
54 (5, 1)t5 0 MF4 MF4d̄

c
L + (MF4 +NY )L̄ 1

Table 3.3: Table showing the possible matter content for an SU(5)GUT × A4 ×
U(1)⊥, where it is assumed the reducible representation of the monodromy group
may split the matter curves. The curves are also assumed to have an R-symmetry

for example [48,49], where the authors use add an R-parity to make their models

safe from bilinear and trilinear baryon/lepton number violating terms. In this

instance the choice of an R-symmetry could introduce an axion, which may also

serve as a dark matter candidate.

3.2 A simple model: N = 0

Any realistic model based on this table must contain at least 3 generations of

quark matter (10Mi), 3 generations of leptonic matter (5̄Mi), and one each of

5Hu and 5Hd . We shall attempt to construct a model with these properties using

simple choices for our free variables.

In order to build a simple model, let us first choose the simple case where

N=0, then we make the following assignments:

MT1 = MF4 = 0

MT2 = 1

MT3 = 2

MF1 = MF2 = −MF3 = −1

(3.14)

Note that it does not immediately appear possible to select a matter arrange-

ment that provides a renormalisable top-coupling, since we will be required to

use our GUT-singlets to cancel residual t5 charges in our couplings, at the cost

of renormalisability.
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Curve SU(5)×A4 × U(1) M Matter content R-Symmetry

101 (10, 3)0 0 - 1
102 = T3 (10, 1)0 1 QL + ucL + ecL 1
103 = T (10, 1)t5 2 2QL + 2ucL + 2ecL 1
5̄1 = F (5̄, 3)0 1 3L+ 3dcL 1
5̄2 = Hd (5̄, 3)0 1 3D̄ + 3Hd 0
53 = Hu (5, 3)t5 1 3D + 3Hu 0

54 (5, 1)t5 0 - 1
θa (1, 3)−t5 - Flavons 0
θb (1, 1)−t5 - Flavon 0
θc (1, 3)0 - νR 1
θd (1, 3)0 - Flavons 0
θa′ (1, 3)t5 - - 0
θb′ (1, 1)t5 - - 0

Table 3.4: Table of Matter content in N = 0 model

3.2.1 Basis

The bases of the triplets are such that triplet products, 3a×3b = 1+1′+1′′+31+32,

behave as:

1 = a1b2 + a2b2 + a3b3

1′ = a1b2 + ωa2b2 + ω2a3b3

1′′ = a1b2 + ω2a2b2 + ωa3b3

31 = (a2b3, a3b1, a1b2)T

32 = (a3b2, a1b3, a2b1)T

where 3a = (a1, a2, a3)T and 3b = (b1, b2, b3)T. This has been demonstrated in

the Appendix A.1, where we show that the quadruplet of weights decomposes to

a singlet and triplet in this basis. Note that all couplings must of course produce

singlets of A4 by use of these triplet products where appropriate.

3.2.2 Top-type quarks

The Top-type quarks admit a total of six mass terms, as shown in Table 3.5. The

third generation has only one valid Yukawa coupling - T3 · T3 ·Hu · θa. Using the
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Coupling type Generations Full coupling

Top-type Third generation T3 · T3 ·Hu · θa
Third-First/Second generation T · T3 ·Hu · θa · θb

T · T3 ·Hu · (θa)2

First/Second generation T · T ·Hu · θa · (θb)2

T · T ·Hu · (θa)2 · θb
T · T ·Hu · (θa)3

Bottom-type Third generation F ·Hd · T3

/Charged Leptons F ·Hd · T3 · θd
First/Second generation F ·Hd · T · θb

F ·Hd · T · θa
F ·Hd · T · θa · θd
F ·Hd · T · θb · θd

Neutrinos Dirac-type mass θc · F ·Hu · θa
θc · F ·Hu · θa · θd
θc · F ·Hu · θb

θc · F ·Hu · θb · θd
Right-handed neutrinos Mθc · θc

(θd)
n · θc · θc

Table 3.5: Table of all mass operators for N = 0 model.

above algebra, we find that this coupling is:

(1× 1)× (3× 3)→ 1× 1

→ 1

(T3 × T3)×Hu × θa → (T3 × T3)viai

i = 1, 2, 3

With the choice of vacuum expectation values (VEVs):

〈Hu〉 = (v, 0, 0)T

〈θa〉 = (a, 0, 0)T

〈θb〉 = b

(3.15)

this will give the Top quark it’s mass, mt = yva. The choice is partly motivated

by A4 algebra, as the VEV will preserve the S-generators. This choice of VEVs

will also kill off the operators T · T3 ·Hu · (θa)2 and T · T ·Hu · (θa)2 · θb, which

can be seen by applying the algebra above.
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The full algebra of the contributions from the remaining operators is included

in Appendix A.2. Under the already assigned VEVs, the remaining operators

contribute to give the overall mass matrix for the Top-type quarks:

mu,c,t = va


y3b

2 + y4a
2 y3b

2 + y4a
2 y2b

y3b
2 + y4a

2 y3b
2 + y4a

2 y2b

y2b y2b y1

 (3.16)

This matrix is clearly hierarchical with the third generation dominating the hier-

archy, since the couplings should be suppressed by the higher order nature of the

operators involved. Due to the rank theorem [35], the two lighter generations can

only have one massive eigenvalue. However, corrections due to instantons and

non-commutative fluxes are known as mechanisms to recover a light mass for the

first generation [35] [33].

3.2.3 Charged Leptons

The Charged Lepton and Bottom-type quark masses come from the same GUT

operators. Unlike the Top-type quarks, these masses will involve SM-fermionic

matter that lives on curves that are triplets under A4. It will be possible to avoid

unwanted relations between these generations using the ten-curves, which are

strictly singlets of the monodromy group. The operators, as per Table 3.5, are

computed in full in Appendix A.2. Since we wish to have a reasonably hierarchical

structure, we shall require that the dominating terms be in the third generation.

This is best served by selecting the VEV 〈Hd〉 = (0, 0, v)T. Taking the lowest

order of operator to dominate each element, since we have non-renormalisable

operators, we see that we have then:

me,µ,τ = v


y7d2b+ y11d3a y7d2b+ y11d3a y3d2

y5a y5a y2d1

y4b y4b y1

 . (3.17)

We should again be able to use the Rank Theorem to argue that while the first
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generation should not get a mass by this mechanism, the mass may be generated

by other effects [35] [33]. We also expect there might be small corrections due to

the higher order contributions, though we shall not consider these here.

The bottom-type quarks in SU(5) have the same masses as the charged lep-

tons, with the exact relation between the Yukawa matrices being due to a trans-

pose. However this fact is known to be inconsistent with experiment. In general,

when renormalization group running effects are taken into account, the problem

can be evaded only for the third generation. Indeed, the mass relation mb = mτ

at MGUT can be made consistent with the low energy measured ratio mb/mτ

for suitable values of tanβ. In field theory SU(5) GUTs the successful Georgi-

Jarlskog GUT relation ms/mµ = 1/3 can be obtained from a term involving the

representations 5̄ · 10 · 45 but in the F-theory context this is not possible due to

the absence of the 45 representation. Nevertheless, the order one Yukawa coeffi-

cients may be different because the intersection points need not be at the same

enhanced symmetry point. The final structure of the mass matrices is revealed

when flux and other threshold effects are taken into account. These issues will

not be discussed further here and a more detailed exposition may be found in [30],

with other useful discussion to be found in [34].

3.2.4 Neutrino sector

Neutrinos are unique in the realms of currently known matter in that they may

have both Dirac and Majorana mass terms. The couplings for these must involve

an SU(5) singlet to account for the required right-handed neutrinos, which we

might suppose is θc = (1, 3)0. It is evident from Table 3.5 that the Dirac mass

is formed of a handful of couplings at different orders in operators. We also

have a Majorana operator for the right-handed neutrinos, which will be subject

to corrections due to the θd singlet, which we assign the most general VEV,

〈θd〉 = (d1, d2, d3)T.

If we now analyze the operators for the neutrino sector in brief, the two leading

order contribution are from the θc ·F ·Hu ·θa and θc ·F ·Hu ·θb operators. With the
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VEV alignments 〈θa〉 = (a, 0, 0)T and 〈Hu〉 = (v, 0, 0)T, we have a total matrix

for these contributions that displays strong mixing between the second and third

generations:

m =


y0va 0 0

0 y1va y9bv

0 y8bv y1va

 , (3.18)

where y0 = y1 + y2 + y3. The higher order operators, θc · F · Hu · θa · θd and

θc · F · Hu · θb · θd, will serve to add corrections to this matrix, which may be

necessary to generate mixing outside the already evident large 2-3 mixing from

the lowest order operators. If we consider the θc · F ·Hu · θb · θd operator,

θc · F ·Hu · θd · θb →


0 z3vd2b z2vd3b

z1vd2b 0 0

z4vd3b 0 0

 . (3.19)

We use zi coefficients to denote the suppression expected to affect these couplings

due to renormalisability requirements. We need only concern ourselves with the

combinations that add contributions to the off-diagonal elements where the lower

order operators have not given a contribution, as these lower orders should dom-

inate the corrections. Hence, the remaining allowed combinations will not be

considered for the sake of simplicity. If we do this we are left a matrix of the

form:

MD =


y0va z3vd2b z2vd3b

z1vd2b y1va y9bv

z4vd3b y8bv y1va

 . (3.20)

The right-handed neutrinos admit Majorana operators of the type θc ·θc ·(θd)n,

with n ∈ {0, 1, . . . }. The n = 0 operator will fill out the diagonal of the mass

matrix, while the n = 1 operator fills the off-diagonal. Higher order operators

can again be taken as dominated by these first two, lower order operators. The

Majorana mass matrix can then be used along with the Dirac mass matrix in
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order to generate light effective neutrino masses via a see-saw mechanism,

MR = M


1 0 0

0 1 0

0 0 1

+ y


0 d3 d2

d3 0 d1

d2 d1 0

 . (3.21)

The Dirac mass matrix can be summarised as in equation (3.20). This matrix

is rank 3, with a clear large mixing between two generations, which we expect to

generate a large θ23. In order to reduce the parameters involved in the effective

mass matrix, we will simplify the problem by searching only for solutions where

z1 = z3 and z2 = z4, which significantly narrows the parameter space. We will

then define some dimensionless parameters that will simplify the matrix:

Y1 =
y1

y0
≤ 1 (3.22)

Y2,3 =
y8,9b

y0a
(3.23)

Z1 =
z1d2b

y0a
(3.24)

Z2 =
z2d3b

y0a
(3.25)

If we implement these definitions, we find the Dirac mass matrix becomes:

MD = y0va


1 Z1 Z2

Z1 Y1 Y3

Z2 Y2 Y1

 (3.26)

The Right-handed neutrino Majorana mass matrix can be approximated if we

take only the θc · θc operator, since this should give a large mass scale to the

right-handed neutrinos and dominate the matrix. This will leave the Weinberg
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Central value Min → Max

θ12/
◦ 33.57 32.82→34.34

θ23/
◦ 41.9 41.5→42.4

θ13/
◦ 8.73 8.37→9.08

∆m2
21/10−5eV 7.45 7.29→ 7.64

∆m2
31/10−3eV 2.417 2.403→ 2.431

R =
∆m2

31

∆m2
21

32.0 31.1→ 33.0

Table 3.6: Summary of neutrino parameters, using best fit values as found at
nu-fit.org, the work of which relies upon [89] .

operator for effective neutrino mass, Meff = MDM
−1
R MT

D, as:

Meff = m0


1 + Z2

1 + Z2
2 Y1Z1 + Y3Z2 + Z1 Y2Z1 + Y1Z2 + Z2

Y1Z1 + Y3Z2 + Z1 Y 2
1 + Y 2

3 + Z2
1 Y1(Y2 + Y3) + Z1Z2

Y2Z1 + Y1Z2 + Z2 Y1(Y2 + Y3) + Z1Z2 Y 2
1 + Y 2

2 + Z2
2

 ,

(3.27)

Where we have also defined a mass parameter:

m0 =
y2

0v
2a2

M
, (3.28)

We then proceed to diagonalise this matrix computationally in terms of three

mixing angles as is the standard procedure [90], before attempting to fit the

result to experimental inputs.

3.2.5 Analysis

We shall focus on the ratio of the mass squared differences:

R =

∣∣∣∣m2
3 −m2

2

m2
2 −m2

1

∣∣∣∣ , (3.29)

which is known due to the well measured mass differences, ∆m2
32 and ∆m2

21

[89]. These give us a value of R ≈ 32, which we may solve for numerically in

our model using Mathematica or another suitable maths package. If we then

fit the optimised values to the mass scales measured by experiment, we may

predict absolute neutrino masses and further compare them with cosmological
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Figure 3.1: Plots of lines with the best fit value of R = 32 in the parameter space
of (Y1, Y2). Left: The full range of the space examined. Right: A close plot of a
small portion of the parameter space taken from the full plot. The curves have
(Y3, Z1, Z2) values set as follows: A = (1.08, 0.05, 0.02), B = (1.08, 0.0, 0.08),
C = (1.07, 0.002, 0.77), and D = (1.06, 0.01, 0.065).

constraints.

The fit depends on a total of six coefficients, as can be seen from examining the

undiagonalised effective mass matrix. Optimising R, we should also attempt to

find mixing angles in line with those known to parameterize the neutrino sector

- i.e. large θ23 and θ12, with a comparatively small (but non-zero) θ13. This

is necessary to obtain results compatible with neutrino oscillation experiments.

Table 3.6 summarises the neutrino parameters the model must be in keeping with

in order to be acceptable [89]. We should note that the parameter m0 will be

trivially matched up with the mass differences shown in Table 3.6.

If we take some choice values of three of our five free parameters, we can

construct a contour plot for curves with constant R using the other two. Figure

3.1 shows this for a series of fixed parameters. Each of the lines is for R = 32,

so we can see that there is a deal of flexibility in the parameter space for finding

allowed values of the ratio.

In order to further determine which parts of the broad parameter space are

most suitable for returning phenomenologically acceptable neutrino parameters,

we can plot the value of sin2(θ12) or sin2(θ23) in the same parameter space as
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Figure 3.2: The figures show plots of two large neutrino mixing angles at their
current best fit values. Left: Plot of sin2(θ12) = 0.306, Right: Plot of sin2(θ23) =
0.446. The curves have (Y3, Z1, Z2) values set as follows: A = (1.08, 0.05, 0.02),
B = (1.08, 0.0, 0.08), C = (1.07, 0.002, 0.77), and D = (1.06, 0.01, 0.065).

Figure 3.1 - (Y1, Y2). The first plot in Figure 3.2 shows that the angle θ12 con-

straints are best satisfied at lower values of Y1, while there are the each line spans

a large part of the Y2 space. The second plot of Figure 3.2 suggests a preference

for comparatively small values of Y2 based on the constraints on θ23. As such,

we might expect that for this corner of the parameter space there will be some

solutions that satisfy all the constraints.

Figure 3.3 also shows a plot for contours of best fitting values of R, with the

free variables chosen as Y3 and Z1. As before, this shows that for a range of the

other parameters, we can usually find suitable values of (Y3, Z1) that satisfy the

constraints on R. This being the case, we expect that it should be possible to find

benchmark points that will allow for the other constraints to also be satisfied.

This flexibility in the parameter space translates to the other experimental

parameters, such that the points that allow experimentally allowed solutions are

abundant enough that we can fit all the parameters quite well. Table 3.7 shows

a collection of so-called benchmark points, which are points in the parameter

space where all constraints are satisfied within current experimental errors - see

Table 3.6. The table only shows values where θ23 is in the first octant. We might

expect that the model should also admit solutions for second octant θ23, however
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Figure 3.3: Plots of lines with the best fit value of R = 32 in the parameter space
of (Y3, Z1). The curves have (Y1, Y2, Z2) values set as follows: A = (1

5 , 1.4, 0.02),
B = (0.05, 1.5, 0.01), C = (1

2 , 1.6, 0.01), and D = (2
3 , 1.8, 0.5).

Inputs

Y1 0.08 0.09 0.09 0.10
Y2 1.09 1.10 1.10 1.11
Y3 1.07 1.08 1.08 1.09
Z1 0.01 0.01 0.00 0.01
Z2 0.07 0.08 0.08 0.08
m0 54.0meV 51.6meV 50.3meV 47.8meV

Outputs

θ12 33.5 33.2 33.1 32.8
θ13 8.70 8.82 9.05 9.05
θ23 41.9 41.7 41.7 41.5
m1 53.4meV 51.1meV 49.8meV 47.3meV
m2 54.1meV 51.8meV 50.5meV 48.1meV
m3 73.2meV 71.5meV 70.8meV 69.1meV

Table 3.7: Table of Benchmark values in the Parameter space, where all exper-
imental constraints are satisfied within errors. These point are samples of the
space of all possible points, where we assume θ23 is in the first octant. All inputs
are given to two decimal places, while the outputs are given to 3s.f.

attempts as numerical solution indicate this possibility is strongly disfavoured.

We also note that current Planck data [91] puts the sum of neutrino masses to

be Σmν ≤ 0.23eV, which the bench mark points are also consistent with.

3.2.6 Proton decay

As mentioned in the introduction to this thesis, proton decay is a feature of generic

supersymmetric SU(5) GUTs. Within the context of the SU(5) × A4 × U(1) in
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F-theory, these operators arise from effective operators of the type:

10 · 10 · 10 · 5̄ , (3.30)

where the 5̄ contains the SU(2) Lepton doublet and the dc, and the quark doublet,

uc and ec arise from 10 of SU(5). The interaction will be mediated by the Hu

and Hd doublets.

In the model under consideration, two matter curves are in the 10 represen-

tation of the GUT group: T3 containing the third generation, and T containing

the lighter two generations. In general these can be expressed as:

T i · T j3 · F

i+ j = 3 and i, j ∈ {0, 1, 2, 3}
(3.31)

Here, the role of R-symmetry in the model becomes important, since due to the

assignment of this symmetry, these operators are all disallowed. Further more,

the operators which have i 6= 0 will have net charge due to the U(1)⊥, requiring

them to have flavons to balance the charge. This would offer further suppression

in the event that R-symmetry were not enforced.

There are also proton decay operators mediated by D-Higgs triplets and their

anti-particles, which arise from the same operators, but in a similar way, these

will be disallowed by R-symmetry thus preventing proton decay via dimension-six

operators.

The dimension-four operators, which are mediated by superpartners of the

Standard Model, will also be prevented by R-symmetry. However, even in the

absence of this symmetry, the need to balance the charge of the U(1)⊥ would

lead to the presence of additional GUT group singlets in the operators, leading

to further, strong suppression of the operator.
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3.2.7 Unification

The spectrum in Table 4 is equivalent to three families of quarks and leptons plus

three families of 5 + 5 representations which include the two Higgs doublets that

get VEVs. Such a spectrum does not by itself lead to gauge coupling unification

at the field theory level, and the splittings which may be present in F-theory

cannot be sufficiently large to allow for unification, as discussed in [54]. However,

as discussed in [54], where the low energy spectrum is identical to this model

(although achieved in a different way) there may be additional bulk exotics which

are capable of restoring gauge coupling unification and so unification is certainly

possible in this mode. We refer the reader to the literature for a full discussion.

3.3 Conclusions

In this chapter we considered the phenomenological implications of F-theory

SU(5) models with non-Abelian discrete family symmetries. We discussed the

physics of these constructions in the context of the spectral cover, which, in

the elliptical fibration and under the specific choice of SU(5) GUT, implies that

the discrete family symmetry must be a subgroup of the permutation symme-

try S5. Furthermore, we exploited the topological properties of the associated

5-degree polynomial coefficients (inherited from the internal manifold) to derive

constraints on the effective field theory models. Since we dealt with discrete gauge

groups, we also proposed a discrete version of the flux mechanism for the split-

ting of representations. We started our analysis splitting appropriately with the

spectral cover in order to implement the A4 discrete symmetry as a subgroup of

S4. Hence, using Galois Theory techniques, we studied the necessary conditions

on the discriminant in order to reduce the symmetry from S4 to A4. Moreover,

we derived the properties of the matter curves accommodating the massless spec-

trum and the constraints on the Yukawa sector of the effective models. Then, we

first made a choice of our flux parameters and picked up a suitable combination of

trivial and non-trivial A4 representations to accommodate the three generations

so that a hierarchical mass spectrum for the charged fermion sector is guaranteed.
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Next, we focused on the implications of the neutrino sector. Because of the rich

structure of the effective theory emerging from the covering E8 group, we found a

considerable number of Yukawa operators contributing to the neutrino mass ma-

trices. Despite their complexity, it is remarkable that the F-theory constraints

and the induced discrete symmetry organise them in a systematic manner so that

they accommodate naturally the observed large mixing effects and the smaller

θ13 angle of the neutrino mixing matrix.

In conclusion, F-theory SU(5) models with non-Abelian discrete family sym-

metries provide a promising theoretical framework within which the flavour prob-

lem may be addressed. The present chapter presents the first such realistic ex-

ample based on A4, which is amongst the most popular discrete symmetries used

in the field theory literature in order to account for neutrino masses and mix-

ing angles. By formulating such models in the framework of F-theory SU(5), a

deeper understanding of the origin of these discrete symmetries is obtained.
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Chapter 4

Phenomenological implications

of a D4 monodromy and

geometric matter parity

In this chapter we review the basic mechanisms responsible for the origin of both

non-Abelian discrete family symmetry and Abelian continuous family symmetry,

as well as matter parity, from F-theory SUSY GUTs, before piecing together

the first realistic example model of its kind which includes all three types of

symmetries.

F-theory effective models are endowed with Abelian and discrete symmetries,

which may arise either as a subgroup of the non-Abelian symmetry or from a non-

trivial Mordell-Weil group associated to rational sections of the elliptic fibration.

It is well known that the discrete symmetries in particular are extremely impor-

tant in suppressing undesired proton decay operators and generating a hierar-

chical fermion mass spectrum 1. Furthermore, non-Abelian discrete groups were

introduced to interpret the mixing properties of the neutrino sector [84–86,94].

In the present work, then, we will focus on non-Abelian discrete symme-

tries emerging in the context of the spectral cover, accompanied by continuous

Abelian symmetry. We continue to investigate the discrete symmetries emerging

1For discussions in a wider framework of discrete symmetries in String Theory see refer-
ences [92]- [93].
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as subgroups of the SU(5)⊥ spectral cover symmetry. Motivated by the success-

ful implementation of a class of such symmetries to the neutrino sector, we focus

on the subgroups of S4. We also show how a geometric discrete Z2 symmetry

can additionally emerge, leading to matter parity which can control proton de-

cay operators. However, due to the basic feature of F-theory constructions with

flux breaking of the GUT group yielding doublet-triplet splitting and incomplete

GUT representations, the matter parity is necessarily of a new kind. In the par-

ticular example we develop, based on D4×U(1) family symmetry, with an SU(5)

GUT group, broken by fluxes, the geometric Z2 matter parity, while suppressing

proton decay, allows neutron-antineutron oscillations, providing a distinctive sig-

nature of the set-up. To be precise, while QLdc is forbidden, the operator ucdcdc

is present leading to nn̄ oscillations at a calculable rate.

The layout of the remainder of the chapter is as follows. In Section 4.2 we show

how a D4 discrete symmetry subgroup of the S4 can emerge. The structure of this

non-Abelian discrete symmetry seems promising, so can be used to illustrate in

the simplest setting many of the features of interest, and can be used as the basis

for constructing a realistic model, which we do in Section 4.3. In Section 4.4 we

investigate the physics of baryon number violation in this model, showing how the

combination of symmetries can suppress proton decay, but allows baryon number

violating operators which can yield neutron-antineutron oscillations, providing a

distinctive signature of our scheme.

4.1 Discrete symmetries from the spectral cover

There are various phenomenological reason suggestive for a non-Abelian discrete

symmetry. In the context of F-theory in particular, the D4 symmetry was sug-

gested in [14] for a successful implementation of a consistent effective model. This

was considered in the context of a model where all Yukawa hierarchies emerge

from a single E8 enhancement point. It was further shown that the D4 symmetry

is one of the few possible monodromy groups accommodating only the minimal

matter, and at the same time being compatible with viable right-handed neu-
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trino scenarios. In this chapter, we will try to exploit the non-abelian nature of

this discrete group in order to construct viable fermion mass textures, interpret

neutrino data, and make possible predictions for other interesting processes of

our effective model.

As already pointed out in the introduction, guided by reasons of phenomenol-

ogy, we will analyse the C4×C1 case, as per the case of Equation (2.24). For this

case the splitting of the five-degree polynomial is given in Equation (2.24), where

the coefficients ai of the new polynomials are related to bk in a straightforward

manner. We have already explained how these relations determine the homolo-

gies of the new coefficients from those of bk’s and discussed their implications

on the effective theory in the previous sections. However, there are additional

interesting features of these coefficients with respect to the monodromy groups

which we now analyse. For our case of interest, the non-trivial part is related

to the fourth order polynomial so that the maximal symmetry group S5 reduces

down to S4, (i.e. the permutation of four objects), or to some of its subgroups.

The precise determination of the Galois group depends solely on the specific

structure of the coefficients an, n = 1, . . . , 5. Leaving the details for the appendix,

we only state here that they can be classified in terms of symmetric functions of

the roots. Concerning the particular symmetry groups we are dealing with, it

suffices to examine the Discriminant ∆4 and the resolvent of the corresponding

fourth-degree polynomial.

The discriminant ∆4 is a symmetric function of the roots t1,2,3,4 and as such

it can always be expressed as a function of the coefficients ai, hence ∆4 = ∆4(ai).

For generic coefficients ai the symmetry is S4 unless ∆4 can be written as a

square of a quantify δ(ai) which is invariant under the S4-even permutations

which constitute the group A4.

The resolvent is the cubic polynomial

f(x) = a
3
2
5 (x− x1)(x− x2)(x− x3) ∼ x3 + c1x

2 + c2x+ c3. (4.1)
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where the roots x1,2,3 are the three ti-combinations

x1 = t1t2 + t3t4, x2 = t1t3 + t2t4, x3 = t3t2 + t1t4 (4.2)

These are invariant under the group D4 which is the symmetry of the square. It

can be seen that all coefficients ck of the polynomial are symmetric functions of

ti and therefore they can also be expressed as functions of ai, ck(ai). Depending

on the specific properties of the two quantities ∆4 and f(x), the Galois group

may be any of the S5 subgroups.

From the point of view of the low energy effective theory, there is a clear

distinction between the two categories of discrete groups. As is well known,

non-Abelian discrete groups are endowed with non-trivial (non-singlet) represen-

tations. In effect, ordinary GUT representations transform non-trivially under

such symmetries. This way, additional restrictions might be imposed on super-

potential terms while specific forms of mass textures may arise at the same time.

In the subsequent, we will focus on the particular discrete symmetry of D4.

4.2 The discrete group D4 as a Family Symmetry

In a realistic F-theory effective model a superpotential should emerge containing

all necessary interaction terms. In particular it should distinguish the three

families and provide correct masses to all fermion fields and at the same time

should exclude all other undesired ones. In the previous sections, it has become

evident that the imperative distinction of the three fermion families, in F-theory

should be related to possible additional symmetries and geometric properties

carried by the SU(5) matter curves.

In this section we will continue to explore the origin of such symmetries in

the context of the spectral cover equation, Equation (2.24), which is split as

C4 × C1 splitting. With respect to the corresponding gauge group, we may turn

on suitable Abelian and non-Abelian fluxes which result in the breaking of the

SU(5)⊥ symmetry. Hence, in the present case for example one can turn on a
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SU(4) ⊂ SU(3) ⊂ S4

4 → 3 + 1 → 3 + 1
6 → 3 + 3̄ → 3 + 3
15 → 8 + 1 + 3 + 3̄ → 3 + 3′ + 2 + 1

Table 4.1: The embedding of S4 representations in the C4 spectral cover symmetry

flux along a non-trivial line bundle of the corresponding Cartan U(1) so that

the group originally breaks to SU(4)⊥ × U(1)⊥. Furthermore, one may assume

the reduction of the SU(4)⊥ part to some discrete group, as a consequence of

a suitable non-Abelian flux or appropriate Higgsing. The case of D4 ⊂ S4 in

particular can be reached from our initial maximal symmetry of C4 under the

following chain SU(4) → SU(3) → S4. Indeed, we may invoke the one-to-one

correspondence [95] of the S4 representations to those of SU(3), and decompose

the SU(4) ones according to the pattern shown in Table 4.1.

An analogous symmetry reduction could be attained through the Higgs bundle

description and in particular the spectral cover of the fundamental and anti-

symmetric representations of our GUT gauge group. In this local picture we

may exploit the fact that the geometric singularities essentially correspond to

particular symmetries of the effective theory model. Hence, in accordance with

the choice of the family group in our previous discussion, we will appeal to local

geometry and assume the non-Abelian discrete group D4 acting on the SU(5)GUT

representations. To study its implications in our particular construction we start

by splitting the five roots ti into two sets

C4 ↔ {t1, t2, t3, t4}, C1 ↔ {t5}

in accordance with our choice of spectral cover splitting. Because SU(5)GUT

representations are characterised by the weights ti, as a result they fall into

appropriate orbits. Hence, the matter curves accommodating the tenplets of
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SU(5)GUT are

10a : {t1, t2, t3, t4}

10b : {t5}

In the same way, if no other restrictions are imposed, the matter curves for the

fiveplets of SU(5) also fall into two categories

5̄c : {t1 + t2, t2 + t3, t3 + t4, t4 + t1, t1 + t3, t2 + t4}

5̄d : {t1 + t5, t2 + t5, t3 + t5, t4 + t5}

We can readily observe that the orbits are ‘closed’ under the action of the elements

of the S4 group. The SU(5) superpotential couplings are subject to constraints

in accordance with the above classification. Hence, for example the 10a10b5d

coupling is allowed while 10a10b5c is incompatible with the S4 rules.

The invariance of the orbits under the action of the whole set of S4 elements

reflects the fact that the polynomial coefficients ak of the corresponding spectral

cover fourth-order polynomial are quite generic. On the contrary, if specific re-

strictions are imposed on ak the discrete group will be a subgroup of S4, while

further splitting of the orbits will occur. We will now be more specific and con-

sider the case of the dihedral group, D4 ⊂ S4.

In the context of F-theory with an SU(5) GUT group, if the left-over discrete

group is D4, then the four of the roots of the original SU(5)⊥ group are permuted

in accordance to the specific D4 rules and the overall symmetry structure is:

E8 →SU(5)GUT × SU(5)⊥

→SU(5)GUT ×D4 × U(1)⊥ .

In order to have a D4 symmetry relating the four roots, rather than an S4,

we must appeal to Galois theory. From Table B.2 in the Appendix, we can see

that this means the discriminant of the quartic part of Equation (2.24) must not
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be a square, while the cubic resolvent of the polynomial must be reducible.

If we assume the roots ti=1,2,3,4, then the quartic part of Equation (2.24) has

a cubic resolvent of the form given in (4.1) where the roots xi are the symmetric

polynomials of the weights ti given in (4.2).

It can be shown that the discriminant (∆f ) of Equation (4.1) is:

27∆f = 4
(
a2

3 − 3a2a4 + 12a1a5

)
3−
(
2a3

3 − 9 (a2a4 + 8a1a5) a3 + 27
(
a5a

2
2 + a1a

2
4

))
2,

(4.3)

which is also equal to the discriminant of the quartic polynomial relating the four

roots - this is a standard property of all cubic resolvents2.

By computing the coefficients as functions of the ai coefficients, the cubic

takes the form

f(s) = a
− 3

2
5 [(a5s)

3−a3(a5s)
2+(a2a4−4a1a5)a5s+(4a1a3a5−a2

2a5−a1a
2
4)] . (4.4)

The simplest way to make this polynomial reducible, is to demand the zero order

term to vanish, f(0) = 0. This means that one of the roots equals to zero.

By setting f(0) = 0 and using the SU(5) tracelessness constraint 3 we take the

following known condition [50] between the ai’s :

a2
2a7 = a1(a0a

2
6 + 4a3a7) , (4.5)

If we then substitute this into the equation for the fiveplets of the GUT group,

Equation (2.27), we get an equation factorised into 3 parts,

P5 = a3(a2a6 + 4a1a7)(a3a
2
6 + a7(a2a6 + a1a7)) , (4.6)

which indicates that we have at least 3 distinct matter curves by the usual inter-

pretation.

The so obtained splittings of the non-trivial SU(5) representations are collected in

Table 2. The first column indicates the SU(5) representation, while the defining

2An alternative cubic resolvent is presented in the Appendix.
3Tracelessness constraint: b1 = 0. Note that b1 = a5a6 + a4a7 = 0
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SU(5) Rep. Equation Homology

10a a1 η − 5c1 − χ
10b a6 χ
5a a3 η − 3c1 − χ
5b a2a6 + 4a1a7 η − 4c1

5c a3a
2
6 + a7(a2a6 + a1a7) η − 3c1 + χ

Table 4.2: Summary of the default matter curve splitting from spectral cover
equation in the event of a D4 symmetry accompanying an SU(5) GUT group in
the case of the symmetric polynomials xi=1,2,3 as discussed in text.

equation of each corresponding matter curve is shown in column 2. In the third

column we designate the associated homologies. These are readily determined

from the known Chern classes of the bk coefficients through the equations bk =

bk(ai) given in (2.24), using well known procedures [49, 51]. These are expressed

in terms of the known classes 4 η, c1 and an arbitrary one designated by χ.

4.2.1 Irreducible Representations

Thus far we have largely ignored how the group theory must be applied to matter

curves in this construction. We shall now examine this side of the problem, with

a particular view being taken to find the irreducible representations where possi-

ble. Given the earlier conjecture that non-Abelian fluxes can break SU(5)⊥ to D4,

which acts as a family symmetry group in the low energy effective theory, it then

follows that the low energy states must transform according to irreducible repre-

sentations of D4. In the Appendix we show how reducible 4 and 6 dimensional

representations of D4 decompose into irreducible representations. The argument

is summarised as follows.

Knowing that we have four weights ti=1,2,3,4, which are related by a D4 sym-

metry, we might exploit the nature of D4. Specifically, since D4 can be physically

interpreted as a square, we might label the corner of such a square with our

weights and see how they must transform based on this. It is then clear that

there should be two generators for this symmetry: a rotation about the centre by

π
2 and a reflection along one of the lines of symmetry, which we will call a and b

4The Chern class of bk is [bk] = (6 − k)c1 − t = η − kc1 where c1 is the first Chern class of
the GUT “divisor” S and −t the corresponding one of the normal bundle [17].
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Curve D4 rep. t5
10α 1++ 0
10β 1+− 0
10γ 2 0
10δ 1++ 1

Table 4.3: Table summarising the representations of the tens of SU(5)GUT

respectively. This is in keeping with the presentation of D4:

a4 = e, b2 = e, bab = a−1 , (4.7)

where e is the identity.

It can be shown that this quadruplet of weights can be rotated into a basis

with irreducible representations of D4 - see Appendix - by use of appropriate

unitary transformations. It transpires that the irreducible basis includes a trivial

singlet, a non-trivial singlet and a doublet, as summarised in Table 4.3. Note that

we also have an extra singlet that is charged under the fifth weight (10δ), which

must logically be a trivial singlet since it is uncharged under the D4 symmetry.

The 5̄/5 representations of the GUT group have a maximum of 10 weights

before the reduction of the SU(4) → D4 symmetry. These have weights related

to the 10s of the GUT group: ±(ti + tj). By consistency these must transform in

the same manner as the weights of the 10s, allowing us to unambiguously write

down the generators a and b.

By the same process as before, we may decompose this tenplet under D4 into

irreducible representations of the group. Referring to the Appendix once again,

we may obtain a total of eight representations, as shown in Table 4.4. However,

we note that three of the representations5 are entirely indistinguishable as they

are trivial singlets with only charges under ti=1,2,3,4.

4.2.2 Reconciling Interpretations

It is clear at this point that there is some tension between the two angles of

attack for this problem. Obviously we must be able to describe both the non-

55̄δ, 5̄ε, and 5̄ζ
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Curve D4 rep. t5 charge weight relation

5̄α 1++ 1
∑4

i=1 ti
5̄β 1+− 1 (t1 + t3)− (t2 + t4)

5̄γ 2 1

(
t1 − t3
t2 − t4

)
5̄δ 1++ 0

∑4
i=1 ti

5̄ε 1++ 0
∑4

i=1 ti
5̄ζ 1++ 0

∑4
i=1 ti

5̄η 1+− 0 (t1 + t3)− (t2 + t4)

5̄θ 2 0

(
t1 − t3
t2 − t4

)
Table 4.4: Table summarising the representations of the fives of SU(5)GUT

Abelian discrete group representations of the matter curves, while also being able

to obtain them in some manner from the spectral cover approach. In order to

achieve this, we shall attempt some form of multifurcation of the spectral cover

by definition of new sections in a consistent manner.

Let us begin by defining two new sections κ, λ such that

a3 → κa7, a2 → λ a6 . (4.8)

It is clear that this approach has some similarity with the tracelessness constraint

solution usually employed (b1 = a4a7 + a5a6 = 0). Furthermore, these definitions

do not generate new unwanted sections. For example, the bk’s

b0 = −a0a
2
7, b1 = 0, b2 = a2

7κ+ a0a
2
6, b3 = (κ+λ)a6a7, b4 = λa2

6 + a1a7, b5 = a1a6 ,

(4.9)

do not acquire an overall common factor, while the discriminant

∆ = 108a0

(
λa2

6 + 4a1a7

) (
κ2a2

7 + a0

(
λa2

6 + 4a1a7

))
2 6= δ2 (4.10)

is not a square - as required for the case of a D4 monodromy group. On the

contrary, substitution to Equation (2.27) gives

Pa = a2
6 ((κ+ λ)λa7 − a0a1) (4.11)
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Constraints Pa Pb P10

a1 = κa2

a3 = λa7 a2
2

(
a7 + λµa7 − α0κµ

2a2

)
a2a7 (κa7 + (λµ+ 1)µa2) κµa2

2

a6 = µa2

Table 4.5: A viable splitting option of the matter curves, respecting the constraint
∆ 6= δ2 as required for D4 symmetry.

and

Pb = a7

(
(κ+ λ)a2

6 + a1a7

)
. (4.12)

This appears to generate extra matter curves by increasing the number of factors

available, with the added advantage that we can easily find the homologies of

our matter curves and know the flux restraints for each. We can interpret these

results as a multifurcation to irreducible representations of the D4 group.

If we further assume a1 → µa6, then

Pb = a6a7 (a6(κ+ λ) + µa7) , (4.13)

and the tens of the GUT group now become:

P10 → b5 = µa6a6 . (4.14)

So we add extra curves here as well.

This is not a unique choice of splitting, and in fact we have a number of possi-

ble options that would be compatible with the requirement to prevent unwanted

overall factors. A second option is the splitting:

a1 → λa2, a3 → κa7 . (4.15)

With this choice, the fives are now

Pa = a2

(
a7 (a6κ+ a2)− a0a

2
6λ
)

(4.16)
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P10 = κµa2
2

Curve factor Homology

101 κ −c1

102 a2 η − 4c1 − χ
103 a2 η − 4c1 − χ
104 µ −η + 4c1 + 2χ

Table 4.6: Distribution of the tens according to the new factorisation, P10 = κµa2
2.

and

Pb = a7

(
a2

6κ+ a2 (a7λ+ a6)
)
. (4.17)

The tens now reads P10 = a1a6 → λa2a6.

In the same way we can find a number of combinations that leads in suitable

splits. In Table 4.5 we show the most interesting case

a1 → κa2, a3 → λa7, and a6 → µa2. (4.18)

As we can see (4.18) leads in a maximal factorisation for the fives (six factors)

and the tens (four factors). The homologies of the new coefficients are

[κ] = −c1, [µ] = −[λ] = 4c1 + 2χ− η. (4.19)

Using the above, we can calculate the homologies of the all new factors of tenplets

and fives. This case is of particular interest because we have seen that we have

four tens of the GUT group, while we will also have six of the fives provided we

interpret the trivial singlets as one representation. This last assumption seems

reasonable given that they are otherwise indistinguishable.

Flux Restrictions

In order to finally marry the two understandings present in this work, we must

appeal to flux restrictions. We summarise the homologies of the various matter

curves in Table 4.6 and Table 4.7 with this in mind. Let us assume the usual flux

restriction rules. We denote with FY the U(1)Y flux that breaks SU(5) to the

Standard Model and at the same time generates chirality for the fermions. In
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Pb = a2a7 (κa7 + (λµ+ 1)µa2)

Curve t5 charge factor Homology

5̄a 1 a2 η − 4c1 − χ
5̄b 1 a7 c1 + χ

5̄c 1 κa7 + (λµ+ 1)µa2 χ

Pa = a2
2

(
a7 + λµa7 − α0κµ

2a2

)
Curve t5 charge factor Homology

5̄d 0 a2 η − 4c1 − χ
5̄e 0 a2 η − 4c1 − χ
5̄f 0 a7 + λµa7 − α0κµ

2a2 c1 + χ

Table 4.7: Distribution of the fives into Pa and Pb. As we can see Pb are related
with the t5 charge.

order to avoid a Green-Schwarz mass for the corresponding gauge boson we must

require FY · η = FY · c1 = 0. For the unspecified homology χ we parametrise the

corresponding flux restriction with an arbitrary integer N = FY · χ, hence we

have the constraints:

FY · χ = N, FY · c1 = FY · η = 0 . (4.20)

We shall also assume the doublet-triplet splitting mechanism to be powered by

this flux. Indeed, assuming N units of hyperflux piercing a given matter curve,

the 5/5̄ split according to:

n(3, 1)−1/3 − n(3̄, 1)+1/3 = M5 ,

n(1, 2)+1/2 − n(1, 2)−1/2 = M5 +N .

(4.21)

Thus, as long as N 6= 0, for the fives residing on a given matter curved the

number of doublets differs from the number of triplets in the effective theory.

Choosing M5 = 0 for a Higgs matter curve the coloured triplet-antitriplet fields

appear only in pairs which under certain conditions [15, 18] form heavy massive

states. On the other hand, the difference of the doublet-antidoublet fields is non-

zero and is determined solely from the hyperflux integer parameter N . Similarly,

on a matter curve accommodating fermion generations, Equation (4.21) implies

different numbers of lepton doublets and down quarks on this particular matter
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GUT rep Def. Eqn. Parity: Matter content

101 κ − M1QL + ucLM1 + ecLM1

102 a2 a M2QL + ucL(M2 +N) + ecL(M2 −N)
103 a2 a M3QL + ucL(M3 +N) + ecL(M3 −N)

104 µ parity(a6)
a M4QL + ucL(M4 − 2N) + ecL(M4 + 2N)

5a a2 a Mad̄
c
L + (Ma −N)L̄

5b a7 b MdDu + (Md +N)Hu

5c κa7 −b Mcd̄
c
L + (Mc +N)L̄

5d a2 a MbD̄d + (Mb −N)H̄d

5e a2 a Med̄
c
L + (Me −N)L̄

5f a7 b Mf d̄
c
L + (Mf +N)L̄

Table 4.8: The Generalized matter spectrum for the model before marrying D4

representations and the matter curves from the spectral cover.

curve. As a consequence, the corresponding mass matrices are expected to differ.

Similarly, the 10s decompose under the influence of N hyperflux units to the

following SM-representations:

n(3, 2)+1/6 − n(3̄, 2)−1/6 = M10 ,

n(3̄, 1)−2/3 − n(3, 1)+2/3 = M10 −N ,

n(1, 1)+1 − n(1, 1)−1 = M10 +N .

(4.22)

Hence, as in the case of fives above, the flux effects have analogous implications

for the tenplets. The first line in (4.22) in particular, generates the required

up-quark chirality since for M10 6= 0 the number of Q = (3, 2)1/6 differs from

Q̄ = (3̄, 2)−1/6 representations. Moreover, from the second line it is to be observed

that N 6= 0 leads to further splitting between the Q = (3, 2)1/6 and uc = (3̄, 1)−2/3

multiplicities. This fact as we will see provides interesting non-trivial quark mass

matrix textures.

4.3 Constructing An N = 1 Model

Referring to the aforementioned geometric symmetry discussed at length in the

Appendix, we may start out by assigning a Z2 symmetry to our matter curves,

Table 4.9. We shall demand some doublet-triplet splitting in our model, so we

take the liberty of setting N = 1, motivated by a desire to produce a spectrum
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GUT rep Def. Eqn. Parity: (−,−) (+,−) (−,+) (+,+) N = 1 Matter spectrum

101 κ − − − − − M1QL + ucLM1 + ecLM1

102 a2 a − + − + M2QL + ucL(M2 + 1) + ecL(M2 − 1)
103 a2 a − + − + M3QL + ucL(M3 + 1) + ecL(M3 − 1)

104 µ parity(a6)
a

− + + − M4QL + ucL(M4 − 2) + ecL(M4 + 2)

5a a2 a − + − + Mad̄
c
L + (Ma − 1)L̄

5b a7 b − − + + MdDu + (Md + 1)Hu
5c κa7 −b + + − − Mcd̄

c
L + (Mc + 1)L̄

5d a2 a − + − + MbD̄d + (Mb − 1)H̄d
5e a2 a − + − + Med̄

c
L + (Me − 1)L̄

5f a7 b − − + + Mf d̄
c
L + (Mf + 1)L̄

Table 4.9: Parity options are (a = ±, b = ±). Any matter curve that has a
D4-doublet must produce doublets - i.e. split twice as fast. a = parity(a2) and
b = parity(a7), by convention.

free of Higgs colour triplets.

The Z2 parity has arbitrary phases connecting the coefficients in two cycles:

a1,...,5 and a6,7, which we must choose so that we can best fit the standard mat-

ter parity. If we start with a handful of basic requirements it becomes quickly

apparent how to do this and guides our assignments of the D4 irreducible repre-

sentations.

1. We must have a tree-level Top Yukawa coupling and no other tree-level

Yukawas

2. We wish to forbid Dimension-4 proton decay - which may be achieved if

our Higgs have + parity and our matter − parity

3. We want a spectrum that resembles the MSSM

If we examine Table 4.9, we can see that in order to be free from Du,d matter,

we should choose the parity option a = b = +. The subtlety here is that the Hu

and Hd must be on matter curves that have different homologies so that if we set

the multiplicity for those curves to zero (preventing the Du,d matter), the flux

naturally pushes the Hu to be on a 5 of the GUT group, while it pushes the Hd

to be a 5̄.
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GUT rep Def. Eqn. Parity Matter content D4 rep. t5 charge

101 κ − QL + ucL + ecL 1+− 0
102 a2 + ucL − ecL 1++ 0
103 a2 + ucL − ecL 1++ 1
104 µ − 2QL + 4ecL 2 0

5a a2 + 2d̄cL 2 0
5b a7 + Hu 1++ 0
5c κa7 − −4d̄cL − 3L̄ 1+− 0
5d a2 + −H̄d 1++ −1
5e a2 + d̄cL 1+− −1
5f a7 + −2d̄cL 2 −1

Table 4.10: Full spectrum for an SU(5)×D4×U(1)t5 model from an F-theory con-
struct. Note that the −t5 charge corresponds to the 5, while any representations
that are a 5̄ will instead have t5.

Singlet Parity D4 rep. t5 charge Vacuum Expectation

θα + 1++ −1 〈θα〉 = α
θβ − 1+− −1 〈θβ〉 = β
θγ + 2 −1 〈θγ〉 = (γ1, γ2)
θa + 2 0 〈θa〉 = (a1, a2)
νr − 1+− 0 −
νR − 2 0 −

Table 4.11: Spectrum of the required singlets to construct full Yukawa matrices
with the model outlined in Table 4.10.

We now select our multiplicities Mi as follows:

M2 =M3 = Mb = Md = 0

M1 =Ma = −Mf = 1

M4 =2

Mc =− 4

This provides us with a spectrum that has only a Top Yukawa at tree-level, the

correct number of matter generations, and only ucdcdc type dimension 4 parity

violating operators, which should shield us from the most dangerous proton decay

operators. The spectrum is summarized in Table 4.10.
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Low Energy Spectrum D4 rep U(1)t5 Z2

Q3, u
c
3, e

c
3 1+− 0 −

uc2 1++ 1 +
uc1 1++ 0 +

Q1,2, e
c
1,2 2 0 −

Li, d
c
i 1+− 0 −

νc3 1+− 0 −
νc1,2 2 0 −
Hu 1++ 0 +
Hd 1++ −1 +

Table 4.12: A summary of the low energy spectrum of the model considered. The
charges include the Standard Model matter content, the D4 family symmetry, the
remaining U(1)t5 from the commutant SU(5) descending from E8 orthogonally
to the GUT group, and finally the geometric Z2 symmetry.

4.3.1 Operators

Models of the form presented here taken at face-value allow a large number of

GUT operators, however we must ensure that all symmetries are respected. This

being the case, we find that the tree-level operators found in Table 4.13, and

constructed from the low energy spectrum summarised in Table 4.12, form the

basis for our model, assuming the D4 algebra rules:

2×2 = 1++ + 1+− + 1−+ + 1−− ,

1a,b×1c,d = 1ac,bd ,

with: a, b, c, d = ±

As well as the expected Yukawas for the quarks and charged leptons, there are

also a number of parity violating operators that could lead to dangerous and

unacceptable rates of proton decay. However, provided the singlet spectrum

is aligned correctly it is possible to avoid unacceptable proton decay rates via

dimension-4 operators. It will not be possible to remove all parity violating

operators from the spectrum though, and we will be left with ucdcdc operators

that may facilitate neutron-antineutron oscillations.
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Operator→ type D4 irrep. t5 charge Z2 parity
1011015b → QUH 1++ 0 1
1011025b → QUH 1+− 0 −1
1011035b → QUH 1+− 1 −1
1041015b → QUH 2 0 1
1041025b → QUH 2 0 −1
1041035b → QUH 2 1 −1
1015̄c5̄d → QDH 1++ 1 1
1045̄c5̄d → QDH 2 1 1
1015̄c5̄d → LEH 1++ 1 1
1045̄c5̄d → LEH 2 1 1
1015̄c5̄c → UDD 1+− 0 −1
1025̄c5̄c → UDD 1++ 0 1
1035̄c5̄c → UDD 1++ 1 1
1015̄c5̄c → QLD 1+− 0 −1
1045̄c5̄c → QLD 2 0 −1
1015̄c5̄c → ELL 1+− 0 −1
1045̄c5̄c → ELL 2 0 −1

Table 4.13: List of all trilinear couplings available in the SU(5)×D4×U(1) model
presented. At tree-level, these operators are not all immediately allowed, since
the D4 and t5 symmetries must be respected.

Quark sector

The up-type quarks have four operators that contribute to the Yukawa matrix.

Firstly, we have a tree level top quark coming from the operator 1011015b, which

is the only tree level Yukawa operator found in the Quark and Charged Lepton

sectors. The remaining three operators are non-renormalisable operators sub-

ject to suppression. We shall assume that the up-type Higgs gets a vacuum

expectation value, 〈Hu〉 = vu. The singlets involved get vacuum expectations:

〈θa〉 = (a1, a2)T and 〈θβ〉 = β. The following mass terms are generated

1011015b → y1vuQ3u
c
3

1041015bθa → y2vu(Q2a2 +Q1a1)uc3

1041035bθaθβ → y3vuβ(Q2a2 +Q1a1)uc2

1011035bθβ → y4vuβQ3u
c
2
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giving rise to the up-quark mass texture

Mu,c,t = vu


0 y3a1β y2a1

0 y3a2β y2a2

0 y4β y1

 . (4.23)

The lightest generation does not get an explicit mass from this mechanism, but

we can expect a small correction to come from non-commutative fluxes or instan-

tons [33,35,37], thus generating a small mass for the first generation.

The down-type quarks contribute a further two operators to the model. These

will be symmetric across the right-handed dc since all three generations are found

on the 5c matter curve. We once again assume the Higgs to get a vacuum expecta-

tion, 〈Hd〉 = vd. As before, we also give the singlets a vacuum expectation value:

〈θα〉 = α and 〈θγ〉 = (γ1, γ2)T . As a result, we get the Yukawa contributions

1015̄c5̄dθα → y4,ivdQ3d
c
iα

1045̄c5̄dθγ → y5,ivd(Q2γ2 +Q1γ1)dci

and consequently, the down quark mass matrix form

Md,s,b = vd


y5,1γ1 y5,2γ1 y5,3γ1

y5,1γ2 y5,2γ2 y5,3γ2

y4,1α y4,2α y4,3α

 . (4.24)

However, this mass matrix will be subject to the rank theorem, requiring that

there be some suppression factor between the copies of the operator, which we

indicate by the second index, yi,j .
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Charged Leptons

The Charged Lepton Yukawas are determined by the same operators as the Down-

type quarks, subject to a transpose. As such their mass matrix is as follows:

1015̄c5̄dθα → y6,ivdLie
c
3α

1045̄c5̄dθγ → y7,ivdLi(e
c
2γ2 + ec1γ1)

Me,µ,τ = vd


y7,1γ1 y7,1γ2 y6,1α

y7,2γ1 y7,2γ2 y6,2α

y7,3γ1 y7,3γ2 y6,3α

 (4.25)

The mass relations between charged leptons and down-type quarks will not be

constrained to be exact as the operators can be assumed to be localized to dif-

ferent parts of the GUT surface. Once again this is subject to the rank theorem,

but will be able to produce a light first generation through other mechanisms.

Neutrinos

As already explained in the introduction, neutrino masses may admit both Dirac

and Majorana masses, which can be used to create a seesaw mechanism and make

the effective neutrino masses suitably small, which we shall exploit in this model.

In order to obtain sharp predictions for lepton mixing angles along with these

small masses, the relevant Yukawa coupling ratios need to be fixed, for example

using vacuum alignment of family symmetry breaking flavons (for reviews see

e.g. [84–86,94]).

Any Dirac-type mass comes from an operator of the form mD ∼ θν5b5̄c, while

the right-handed Majorana mass terms are of the form Mθνθν . Although we

have a non-Abelian D4 family symmetry, the lepton doublets L are in singlet

representations (see Table 4.12), so the model offers no opportunity to make

predictions for the lepton mixing angles.

The singlet representations and parities, as detailed in the Appendix, allow us

up to nine singlets in this model. Let us then match our right-handed neutrinos
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to the representations 1+− and a doublet, as allowed from our spectrum. This

will then give the operators for the Dirac mass:

θνr5b5̄c → y8,ivuν
c
3Li

θνR5b5̄cθa → y9,ivu(νc1a1 + νc2a2)Li

mD = vu


y9,1a1 y9,1a2 y8,1

y9,2a1 y9,2a2 y8,2

y9,3a1 y9,3a2 y8,3

 . (4.26)

This Dirac matrix can be shown to be rank two, which will cause our lightest

neutrino to be massless. While this is not explicitly ruled out by experiment,

a small mass can be generated through some higher order operators from other

singlets in the spectrum if required - for example a singlet of the type 1−− with

+ parity. This will allow an explicit Dirac type mass, however similar analysis

has been done elsewhere ( for example [2]), so we omit in depth discussion here.

The Majorana terms corresponding to this choice of neutrino spectrum are

simply calculated, as one might expect:

θνrθνr → mνc3ν
c
3

θνRθνR →Mνc1ν
c
2

θνrθνRθa → yνc3ν
c
2a2 + yνc3ν

c
1a1

MR =


0 M ya1

M 0 ya2

ya1 ya2 m

 (4.27)

This may also be allowed corrections via extra singlets, though it will not be

needed for this work.

The effective neutrino mass can be calculated from the seesaw mechanism

via mν = −mDM
−1
R mT

D. The resulting mass matrix appears complicated, with
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elements given in full as:

m11 =My8,1
2 + 2a1a2y9,1(my9,1 − 2y8,1y)

m12 = m21 =My8,1y8,2 − 2a1a2(y8,2yy9,1 −my9,2y9,1 + y8,1yy9,2)

m13 = m31 =My8,1y8,3 − 2a1a2(y8,3yy9,1 −my9,3y9,1 + y8,1yy9,3) (4.28)

m22 =My8,2
2 + 2a1a2y9,2(my9,2 − 2y8,2y)

m23 = m32 =My8,2y8,3 − 2a1a2(y8,3yy9,2 −my9,3y9,2 + y8,2yy9,3)

m33 =My8,3
2 + 2a1a2y9,3(my9,3 − 2y8,3y)

with an overall scaling of m0 = v2
u(Mm− 2a1a2y

2)−1.

In order to extract mixing parameters and mass scales, we will parameterize

the matrix in the following way:

Xi =
y8,i

y8,1
, Zi =

y9,i

y8,1
, G =

2a1a2

M
(4.29)

with i = 1, 2, 3, and trivially X1 = 1. Note that X2,3 and Zj are not required

to be order one due to the parametrization choice. Let us go a step further,

approximating m ≈M and setting Z3 = 0, then the mass matrix is given by:

mν ≈ m0


GZ1(Z1 − 2y) + 1 −GyZ1X2 +X2 +G(Z1 − y)Z2 X3 −GX3yZ1

−GyZ1X2 +X2 +G(Z1 − y)Z2 X2
2 − 2GyZ2X2 +GZ2

2 X3(X2 −GyZ2)

X3 −GX3yZ1 X3(X2 −GyZ2) X2
3


(4.30)

where:

m0 =
v2
uMx2

1

M2 −Gy2
. (4.31)

This parametrization allows for comparatively straightforward extraction of mix-

ing parameters. Using Mathematica, we fit the Ratio of mass squared differences

in this model to experimental constraints, allowing us to extract a mass scale for

the neutrinos while fitting parameters to allow acceptable mixing angles.

Figure 4.1 shows plots of the 3σ ranges of sin2 θ12, sin2 θ23 and R =
∣∣∣m2

3−m2
2

m2
2−m2

1

∣∣∣
in the parameter space of (X2, X3). This shows that while there are some sharp
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Figure 4.1: Left: Plot of sin2 θ12 across its 3σ range (blue-0.270, pink-0.304,
yellow-0.344), Center: Plot of sin2 θ23 across its 3σ range (blue-0.382, pink-0.452,
yellow-0.5). Note that the upper bound of sin2 θ23 is 0.643, but this is not allowed
by the model, which permits a maximum of 0.5 for these parameters. Right: Plot
of the mass squared difference ratio, R, for its upper and lower bounds of 31.34
(blue) and 34.16 (yellow). For all three plots the parameter space (X2, X3) is
plotted since these terms should lead the mixing. The remaining parameters are
set at values that yield consistent mixing parameters: (Z1 ≈ 2.4, Z2 ≈ 4.1, G ≈
0.6, y ≈ 0.3).

cutoffs in the parameter space, the key variables can still be allowed. A full

simulation of parameters gives, for example:

Inputs: (X2 = 4.5, X3 = 5.7, Z1 = 2.4, Z2 = 4.1, G = 0.6, y = 0.3) (4.32)

Outputs: (R = 33.2, θ12 = 32.4, θ13 = 9.07, θ23 = 39.2)

This also allows us to extract the neutrino masses using the mass differences,

which are an implicit input parameter used in calculation of R. We know from

the Dirac matrix rank that at this order of operator one neutrino is massless,

so then the remaining two masses are (within experimental errors) equal to the

square root of the mass differences:

m1 = 0 meV , m2 = 8.66 meV , m3 = 50.3 meV . (4.33)

Being at the absolute minimum scale for the neutrino masses, this is automatically

compatible with cosmological constraints.

129



4.3.2 µ-Terms

In this set-up the standard Higgs sector µ-term requires coupling to a singlet in

order to cancel the charges under U(1)t5 . The most suitable coupling allowed by

the singlet sector is a term of the type:

λ1θαHuHd . (4.34)

As such the µ term is proportional to the vacuum expectation of the singlet θα:

µ = λ1〈θα〉. (4.35)

Since this singlet couples to the charged lepton and the bottom quark Yukawa

matrices, the resulting vacuum expectation should allow a TeV scale µ-term while

not affecting these Yukawas too strongly. Note that since the operators in the

charged lepton and bottom quark sectors are non-renormalisable, the coupling

should be suppressed by a large mass scale, making this possible. It is also shown

in the D-flatness conditions (provided in the appendix) that we have a deal of

freedom when choosing the vacuum expectation value for θα.

A second term of the type:

λ2θaθγHuHd . (4.36)

will also contribute to the µ terms, which is non-renormalisable and should be

suppressed by some large mass scale. Refering to the F-flatness conditions and a

cursory calculation of this coupling, we see that this contributes proportionally

to the product of the vacuum expectations of the θa and θγ singlets. This again

seems acceptable.
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Figure 4.2: Feynman graphs for n− n̄ oscillation processes. Top: oscillation via
a gluino, Bottom: box-graph process.

4.4 Baryon number violation

4.4.1 Neutron-antineutron oscillations

As mention in the previous section, the model presented is free from proton decay

at the lowest orders. However, it is subject to operators which are classically

considered to be parity violating. Since these operators are all of the type ucdcdc,

they will instead facilitate neutron-antineutron oscillations. While this is a seldom

considered property of GUT models, work has been done to calculate transmission

amplitudes of such processes by Mohapatra and Marshak [96] and later on by

Goity and Sher [97] among others. The contributions to the process are generated

from tree-level and box type graphs (see [97], the reviews [98, 99] and references

therein), with typical cases shown in Figure 4.2.

In the paper of Goity and Sher, they argue that one can identify a competi-

tive mechanism, with a fully calculable transition amplitude, which sets a bound

on λdbu. This mechanism is based on the sequence of reactions uRdR + dL →

b̃∗R + dL → (b̃∗L + dL → d̄L + b̃L) → d̄L + ūRd̄R, where the intermediate transi-

tion in the parentheses, b̃∗L + dL → d̄L + b̃L, is due to a W boson and gaugino
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exchange box diagram. The choice of intermediate bottom squarks is the most

favourable one in order to maximise factors such as m2
b/m

2
W , which arise from

the electroweak interactions of d-quarks in the box diagram (Figure 3).

Calculation of the diagram gives the following relation for the decay rate,

Γ = −
3g4λ2

dbuM
2
b̃LR

mw̃

8π2M4
b̃L
M4
b̃R

|ψ(0)|2
u,c,t∑
j,j′

ξjj′J(M2
w̃,M

2
W ,M

2
uj ,M

2
ũj′

) (4.37)

where the mass term Mb̃LR
, which mixes b̃L and b̃R, is given by Mb̃LR

= Amb.

Here A is the soft SUSY breaking parameter with A = mw̃ = 200GeV , and ξjj′

is a combination of CKM matrix parameters,

ξjj′ = VbujV
†
ujd
Vbuj′V

†
uj′d

(4.38)

and the J functions are given by:

J(m1,m2,m3,m4) =

4∑
i=1

m4
i ln(m2

i )∏
k 6=i(m

2
i −m2

k)
. (4.39)

The n-n̄ oscillation time is τ = 1/Γ and the current experimental limits is τ &

108sec. [98]. Finally |ψ(0)| is the baryonic wave function matrix element for three

quarks inside a nucleon. This parameter was calculated to be |ψ(0)|2 = 10−4 and

0.8 × 10−4GeV −6 in MIT Bag models6. From the experimental limit on the

neutron oscillation time we can obtain the bound on λdbu. The results depend on

CKM parameters and the squarks masses. In Figure 4.3 we reproduce the results

of Goity and Sher. As we can see the upper bound on λdbu is between 0.005 and

0.1.

Next we use the Equation (4.37) to recalculate the bounds on λdbu with the

latest experimental results for the SUSY mass parameters. In Figure 4.4 the

curves correspond to squark masses of 800, 1000 and 1200GeV (Blue, dashed and

dotted accordingly). As we can see the value of λdbu lies between 0.1 and ∼ 0.5

for stop mass between 500 and 1600GeV, neglecting GIM effects.

6Goity and Sher used a slightly more stringent bound, τ > 1.2× 108sec. and for the matrix
element they took |ψ(0)|2 = 3× 10−4GeV 6.

132



100 200 300 400 500 600
0.001

0.002

0.005

0.010

0.020

0.050

M
t
�HGeVL

 Λ
db

u
¤

Figure 4.3: Goity and Sher bounds on λdbu. They assumed that up and bottom
squark masses are degenerate. Blue: Mũ = Mc̃ = 200GeV , Dashed: Mũ = Mc̃ =
400GeV , Dotted: Mũ = Mc̃ = 600GeV . Also we took Mb̃L

= Mb̃R
= 350GeV .

The peaks corresponds to GIM mechanism effects.

In F-theory there is an associated wavefunction [59] [34] to the state residing

on each matter curve and it can be determined by solving the corresponding

equations of motion [18]. The solutions show that each wavefunction is peaked

along the corresponding matter curve. Yukawa couplings are formed at the point

of intersection of three matter curves where the corresponding wavefunctions

overlap. To estimate the corresponding Yukawa coupling we need to perform an

integration over the three overlapping wavefunctions of the corresponding states

participating in the trilinear coupling. Taking into account mixing effects this

particular coupling is estimated to be of the order λdbu ≤ 10−1. From the figure

it can be observed that recent n − n̄ oscillation bounds on λdbu are compatible

with such values.

4.5 Conclusions

In this chapter an F-theory derived SU(5) model was constructed [2], with the

implications of the arising non-Abelian familiy symmetry being considered, fol-
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Figure 4.4: New bounds on λdbu using the latest experimental limits. Blue: Mũ =
Mc̃ = 800GeV , Dashed: Mũ = Mc̃ = 1000GeV , Dotted: Mũ = Mc̃ = 1200GeV .
Also we use the following values for the other parameters: Mb̃L

= Mb̃R
= 500GeV ,

τ = 108sec. and |ψ(0)| = 0.9× 10−4GeV −6.

lowing from work in [50] and [2]. Using the spectral cover formalism, assuming a

point of E8 enhancement descending to an SU(5) GUT group, the corresponding

maximal symmetry (also SU(5)) should reduce down to a subgroup of the Weyl

group, S5. In this chapter we derived the conditions on the spectral cover equa-

tion in the case of the non-abelian discrete group D4, which was assumed to play

the role of a family symmetry. A novel geometric symmetry was also employed

to produce an R-parity-like Z2 symmetry. The combined effect of this frame-

work on the effective field theory has been examined, and the resulting model

shown to exhibit R-parity violation in the form of neutron-antineutron oscilla-

tions, while being free from dangerous proton decay operators. The experimental

constraints on this interesting process have been calculated, using current data

on the masses of supersymmetric partners. Detection of such baryon-violating

processes, without proton decay, would serve as a potential smoking gun for this

type of model.

The physics of the neutrino was also considered, and it was shown that at

lowest orders this model predicts a massless first generation neutrino. Corre-

spondingly, the masses of the two other generations then equate to the mass
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differences from experiment, with the hierarchy being normal ordered. The mix-

ing angles were also probed numerically, with results that are consistent with

large mixing in the neutrino sector and a non-zero reactor mixing angle.

In conclusion F-theory model building predicts in a natural way the coexis-

tence of GUT models with non-Abelian discrete symmetry extensions. The rich

symmetry content following from the decomposition of the E8 covering group

and the geometric symmetries emerging from the internal manifold structure are

sufficient to incorporate successful non-Abelian groups which have already been

proposed in phenomenological constructions during the last decade. The distinct

role of the discrete groups as family symmetries occurs naturally in the F-theory

constructions. Moreover, the theory provides powerful tools to get an effective

field theory with definite predictions.
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Chapter 5

F-theory, E6, and the 750GeV

resonance

Recently ATLAS and CMS experiments have reported an excess of 14 and 10

diphoton events at an invariant mass around 750 GeV and 760 GeV from gath-

ering data at LHC Run-II with pp collisions at the center of mass energy of 13

TeV [100, 101]. The local significance of the ATLAS events is 3.9 σ while that

of the CMS events is 2.6 σ, corresponding to cross sections σ(pp → γγ) = 10.6

fb and σ(pp → γγ) = 6.3 fb. ATLAS favours a width of Γ ∼ 45 GeV, while

CMS, while not excluding such a broad resonance, prefers a narrow width. The

Landau-Yang theorem implies spin 0 or 2 are the only possibilities for a reso-

nance decaying into two photons. The only modest diphoton excesses observed

by ATLAS and CMS at this mass scale may be (at least partially) understood

by the factor of 5 gain in cross-section due to gluon production. However there

is no evidence for any coupling of the resonance into anything except gluons and

photons (no final states such as tt̄, bb̄, ll̄, ZZ, WW , etc., with missing ET or jets

have been observed).

If these facts are confirmed by future data, it will be the first indication for new

physics at the TeV scale and possibly a harbinger of more exciting discoveries in

the future. These findings also pose a challenging task for theoretical extensions of

the Standard Model (SM) spectrum. Several interpretations have been suggested
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based in what now constitutes an extensive literature base: [102–216]

Many of these papers suggest a spinless singlet coupled to vector-like fermions.

Indeed, the observed resonance could be interpreted as a Standard Model scalar

or pseudoscalar singlet state X with mass mX ∼ 750− 760 GeV. The process of

generating the two photons can take place by the gluon-gluon fusion mechanism

according to the process

gg → X → γγ

hence it requires production and decay of the particle X. In a renormalisable

theory this interaction can be realised assuming vector-like multiplets f + f̄ at

the TeV scale, where f carry electric charge and colour. Such vector like pairs

have not been observed at the LHC, hence the mass of the fermion pair Mf is

expected roughly to be at or above the TeV scale, Mf & 1 TeV.

If this theoretical interpretation is adopted, effective field theory models de-

rived in the context of String Theory are excellent candidates to accommodate

the required states. Indeed, singlet scalar fields are the most common character-

istic of String Theory effective models. These can be either scalar components

of supermultiplets or of pseudoscalar nature such as axion fields having direct

couplings to gluons and photons and therefore relevant to the observed process.

However another aspect of string theory interests us here, namely that in the

low energy spectrum of a wide class of string models vector-like supemultiplets

either with the quantum numbers of ordinary matter or with exotic charges are

generically present. Moreover, in specific constructions they can remain in the

low energy spectrum and get a mass at the TeV scale. A particularly elegant

possibility is that the low energy spectrum consists of the matter content of three

complete 27-dimensional representations of E6, as in the E6SSM [12,217], or min-

imal E6SSM [218], minus the three right-handed neutrinos which have zero charge

under the low energy gauged U(1)N , and hence may get large masses. In both

versions additional singlet and vector-like states from E6 reside at the TeV scale,

together with a Z ′. In the original version [12,217] extra vector-like Higgs states

are added for the purposes of unification, while in the minimal E6SSM [218] they
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are not.

In this paper we will revisit an F-theory E6 GUT model that has the TeV

spectrum of the minimal E6SSM, namely three complete 27-dimensional repre-

sentations of E6 minus the right-handed neutrinos [52, 53] plus additional bulk

exotics which provide the necessary states for unification [54]. Unification is

achieved since the matter content is that of the MSSM supplemented by four

families of SU(5) 5 + 5̄ states, although in the present model all the extra states

are incomplete SU(5) multiplets and crucially there are three additional TeV

scale singlet states (in addition to the three high mass right-handed neutrinos

which are sufficient to realise the see-saw mechanism). Moreover some of the

low energy singlets couple to three families of TeV scale vector-like matter with

the quantum numbers of down-type quarks [53] called here D, D̄. Unlike the

E6SSM, the extra gauged U(1)N may be broken at the GUT scale, leading to an

NMSSM-like theory without an extra Z ′, but with extra vector-like matter, as

in the NMSSM+ [219]. However, here we focus exclusively on the model in [54]

where one of the three low energy singlets is responsible for the Higgs µ term, and

acquires an electroweak scale vacuum expectation value (VEV), while the other

two singlets do not couple to Higgs but do couple to vector-like quarks D, D̄, ac-

quiring a TeV scale VEV. These latter candidates are therefore candidates for the

750 GeV mass resonance, able to account for the ATLAS and CMS data, since

they have couplings to D, D̄, and may have the couplings required to generate

the process pp→ X → γγ via loops of D, D̄ and inert Higgsinos. We emphasise

that these models were proposed before the recent ATLAS and CMS data, so

the interpretation that we discuss is not based on ad hoc modifications to the

Standard Model, but rather represents a genuine consequence of well motivated

theoretical considerations.

The layout of the remainder of this chapter is as follows. In the next section

we review the basic features of the specific E6 F-theory model focusing mainly

on its spectrum and in particular on the properties of the predicted exotics. We

start section 5.2 by writing down the Yukawa interactions related to the processes
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that interest us in this work. Next, we compute the corresponding cross sections

and compare our findings with the recent experimental results, before we finally

present our conclusions.

5.1 The F-theory model with extra vector-like matter

In F-theory constructions SM-singlets and vector-like quark or lepton type fields

are ubiquitous. Many such pairs are expected to receive masses at a high scale,

but it is possible that several of them initially remain massless, later acquiring

TeV scale masses. To set the stage, we start with a short description on the origin

of the SM spectrum and bulk vector-like states in F-theory GUTs in general.

We choose E6 as a working example where it was shown sometime ago [52–54]

that scalars as well as vector-like fermion fields at the TeV scale are naturally

accommodated. We start with the decomposition of the E8-adjoint under the

breaking E8 ⊃ E6 × SU(3)

248→ (78, 1) + (1, 8) + (27, 3) + (27, 3̄)

and label with ti the SU(3) weights (subject to the tracelessness condition t1 +

t2 + t3 = 0). Along the SU(3) Cartan subalgebra, (1, 8) decomposes to singlets

θij , i, j = 1, 2, 3 whilst the 27’s are characterised by the three charges ti. We

impose a Z2 monodromy t1 = t2 thus, we have the correspondence

(1, 8)→ θ13, θ31, θ0; (27, 3)→ 27t1 , 27t3 ; (27, 3̄)→ 27−t1 , 27−t3 . (5.1)

Notice that because of the Z2 monodromy we get the identifications θ12 = θ21 ≡

θ0, as well as θ23 = θ13 and θ32 = θ31 and analogously for the 27t1 = 27t2 . Addi-

tional bulk singlets θkl and vector-like pairs are obtained under further breaking

of the symmetry down to SU(5).

The SU(5) breaking is realised by a non-trivial hypercharge flux. Hence,

assuming M10,M5 the number of flux units determining the chiral SU(5) repre-

sentations and NY hypercharge flux units, for given tenplet and fiveplet we get
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the following splittings:

10ti =



Representation flux units

#Q−#Q̄ = M i
10

#uc −#ūc = M i
10 −N i

Y

#ec −#ēc = M i
10 +N i

Y

(5.2)

5ti =


Representation flux units

#dc −#d̄c = M i
5

#¯̀−#` = M i
5 +N i

Y

(5.3)

We observe that a non-trivial flux differentiates the SM content on a given mat-

ter curve. The various flux parameters are subject to restrictions coming from

anomaly cancellation conditions and flux conservation [87,88].

The detailed derivation of the particular F-theory model we are interested in

can be found in reference [54]. In the present note, we only present the E6 origin of

the low energy spectrum and the corresponding SU(5)×U(1)N multiplets, which

are summarised in Table 5.1. The last column shows the ‘charge’ QN of the U(1)N

Abelian gauge factor contained in E6, under which the right-handed neutrinos

are singlets as in the E6SSM [12,217]. Due to hypercharge flux conservation, the

Standard Model massless states must assemble into complete SU(5) multiplets.

Indeed, referring to Table 5.1, the matter in the 27t1 representation (3D + 2Hu)

together with the Hu from the 27t3 form three complete fiveplets. Similarly, the

3(D +Hd) matter from 27t1 forms three complete anti-fiveplets.

Without the bulk exotics the spectrum has the matter equivalent of three fam-

ilies of E6 27-dimensional representations as in the minimal E6SSM [218], which

form an anomaly free set by themselves. Such a model was realised in F-theory

context [53] while it was shown that unification can be successfully achieved with

the inclusion of the bulk exotics [54] relevant to our present discussion. The total

low energy spectrum, including bulk exotics, then has the matter content of the

MSSM plus four extra vector-like 5 + 5 families plus three extra singlets, which

do not affect the unification scale. Three right-handed neutrinos are present at
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E6 SU(5) Weights TeV spectrum
√

10QN

27t1 5 t1 + t5 3(dc + L) 1
27t1 10 t1 3(Q+ uc + ec) 1

2
27t1 5 −t1 − t3 3D + 2Hu −1
27t1 5 t1 + t4 3(D +Hd) − 3

2
27t1 1 t1 − t4 θ14

5
2

27t3 5 −2t1 Hu − 1
2

27t3 1 t3 − t4 2 θ34
5
2

78 5 0 2XHd
+Xdc − 3

2

78 5 0 2XHd
+Xdc

3
2

1 1 ±(t1 − t3) θ13, θ31, θ0 0

Table 5.1: The low energy spectrum for the F-theory E6SSM-like model with TeV scale
bulk exotics taken without change from [54]. The fields Q, uc, dc, L, ec represent quark
and lepton SM superfields in the usual notation. In this spectrum there are three families
of Hu and Hd Higgs superfields, as compared to a single one in the MSSM. There are
also three families of exotic D and D colour triplet superfields, where D has the same
SM quantum numbers as dc, and D has opposite quantum numbers. We have written
the bulk exotics as X with a subscript that indicates the SM quantum numbers of that
state. The superfields θij are SM singlets, with the two θ34 singlets containing spin-0
candidates for the 750 GeV resonance.

high energies. Renormalisation Group analysis shows [54] that perturbative uni-

fication can be achieved as shown in Fig.5.1. With this in mind, next we focus

on the characteristic properties of the model that are required to accommodate

the recent experimental data.

5.1.1 Proton Decay

One of the main obstacles in realising a viable SU(5) model is the appearance

of colour triplets D, D̄ in the Higgs fiveplets which can mediate proton decay. In

simple field theory GUT models, a doublet-triplet splitting mechanism ensures

the existence of light Higgs doublets, while coloured triplets acquire a GUT mass

through a term 〈Φ〉5̄H̄5H . Yet, even a mass of 〈Φ〉 ∼ MGUT is not adequate to

suppress proton decay within the present experimental bounds.

In the present model the problem is apparently much more severe since there

are colour triplets D, D̄ at the TeV scale. However, these TeV scale colour triplets

do not give rise to proton decay diagrams, due to the conserved weights ti, which

forbid the couplings required in these diagrams. The leading proton decay di-

agram involves string scale colour triplets, and leads to sufficiently suppressed
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Figure 5.1: Gauge coupling unification in the model in Table 5.1 with TeV scale
bulk exotics with supersymmetry. The low energy matter content is equivalent
to that of the MSSM plus four extra 5 + 5 families of SU(5) at the TeV scale.
Therefore we expect that the unification scale MGUT ∼ 1016−17 is preserved, but
the value of the coupling constant at that scale to be increased, exactly as indi-
cated in this figure. However it is worth emphasising that the low energy matter
content at the TeV scale, although equivalent to four extra 5 + 5 families, comes
from incomplete multiplets, comprising 3(D + D̄) and 2(Hu + Hd) distributed
amongst two different matter curves, plus 2XHd + Xdc and 2XHd

+ Xdc from
the bulk. In addition there are extra singlets responsible for the 750 GeV signal
which do not affect unification.

proton decay as discussed in [53]. Furthermore, because up and down Higgs

fields are accommodated in different matter curves, a tree-level proton decay

diagram realised for the corresponding Kaluza-Klein modes DKK , D̄KK is also

avoided.

5.2 Production and decay of the 750 GeV scalar/pseudoscalar

The terms in the superpotential which are responsible for generating the µ term

and the exotic masses are [54]

W ∼ λθ14HdHu + λαβγθ
α
34H

β
dH

γ
u + καjkθ

α
34DjDk. (5.4)

These couplings all originate from the 27t127t127t3 E6 coupling, which is the only

coupling of this type and will also give rise to the Yukawa couplings of the model.

This coupling is both invariant under the E6 GUT group and balances the charges
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of the perpendicular group due to tracelessness of the SU(3) remaining from the

original E8 point. Thus two of the singlets θα34 couple to all three of the colour

triplet charge ∓1/3 vector-like fermions Dk, Dj as well as two families of inert

Higgs doublets Hβ
d , H

γ
u (which do not get VEVs) (α, β, γ = 1, 2). One or both (if

they are degenerate) singlet scalars may have a mass of 750 GeV and be produced

by gluon fusion at the LHC, decaying into two photons as shown in Figs. 5.2 and

5.3. A third singlet θ14 couples to the two Higgs doublets of the MSSM, and is

responsible for the effective µ term as in the NMSSM. However this singlet does

not couple to coloured fermions and so cannot be strongly produced at the LHC.

It should also be mentioned in passing that the E6 singlets can generate couplings

such as θ0XdX̄d̄ from the E6 invariant term 78 · 78 · 1, which can give masses to

bulk modes though we shall not discuss this further.

We therefore identify the 750 GeV scalar S with a spin-0 component of one of

the F-theory singlets θ34, which couples to three families of vector-like fermions

Dk, Dj and two families of inert Higgs doublets Hβ
d , H

γ
u . The scalar components

of θ34 are both assumed to develop TeV scale VEVs which are responsible for

generating the vector-like fermion masses for Dk, Dj . Since there are two complex

singlets θ34, the spectrum will therefore contain two scalars, two pseudoscalars

and two complex Weyl fermions. The two scalars plus two pseudoscalars are

all candidates for the observed 750 GeV resonance. If two or more of them

are degenerate then this may lead to an initially unresolved broad resonance.

Eventually all four states may be discovered with different masses around the

TeV scale, providing a smoking gun signature of the model.

5.2.1 Cross Section

We have seen that the spectrum of the F-theory derived model contains complex

singlet superfields possessing scalar and pseudoscalar components. The superpo-

tential in Eq.5.4, below the scale of the VEVs of X and the SUSY breaking scale,
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Figure 5.2: The new singlet scalar/pseudoscalar X ≡ θ34 with mass 750 GeV
is produced by gluon fusion due to its coupling to a loop of vector-like fermions
D,D which are colour triplets and have electric charge ∓1/3.

Figure 5.3: The new singlet scalar/pseudoscalar X ≡ θ34 with mass 750 GeV is
decays into a pair of photons due to its coupling to a loop of vector-like fermions
H,H which are colour singlet inert Higgsinos with electric charge ±1 and D,D
which are colour triplets and have electric charge ∓1/3.

gives rise to the low energy effective Lagrangian containing the terms

L ∼ κiXD̄iDi + λαXH
α
uH

α
d +MiD̄iDi +MHαH

α
uH

α
d +

1

2
M2X2 + · · ·

where X is a scalar or pseudoscalar field originating from the θ34 coupled to

a vector pair of fermions identified with the fermionic components of the three

coloured triplet pairs Di, D̄i, while Mi are the three masses of the triplet fermions

with Mi ∼ κ〈θ34〉 of (5.4) and M is the mass of the singlet field originating from a

combination of soft SUSY breaking masses and the VEVs of the singlets. Similar

couplings are also shown to the two families of vector-like inert Higgsinos, labeled

by α = 1, 2. Note that the aforementioned soft SUSY breaking is assumed to
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occur above the TeV scale.

The vector-like fermions generate loops diagrams which give rise to Effective

Field Theory dimension-5 operators. For the scalar component X → S

Leff ∝ −
1

4
S (gSγFµνF

µν + gSgGµνG
µν) (5.5)

and analogously for pseudoscalar X → A,

Leff ∝ −
1

4
A
(
gAγFµνF̃

µν + gAgGµνG̃
µν
)
. (5.6)

A related mechanism has been already suggested as a plausible scenario in string

derived models [182,206,208], where pseudoscalar fields such as axions and scalar

fields such as the dilaton field have couplings of the above form. Here, instead, we

regard the scalar and pseudoscalar as originating from a 27-dimensional matter

superfield, coupling to vector-like extra quarks that appear in the 27-rep of E6.

We consider a scalar/pseudoscalar particle X originating from one of the two

θ34 fields, coupling to three families of colour triplet charge ∓1/3 extra vector-

like quarks Di, D̄i and two families of Higgsinos Hα
u/d - as per Equation 5.4.

The cross section for production of this scalar/pseudoscalar from gluon fusion,

σ(pp→ X → γγ), where X is an uncoloured boson with mass M and spin J = 0,

can be written as [103]

σ(pp→ X → γγ) =
1

MΓs
CggΓ(X → gg)Γ(X → γγ) (5.7)

where Cgg is the dimensionless partonic integral for gluon production, which at

√
s = 13 TeV is Cgg = 2137. Here Γ = Γ(X → gg) + Γ(X → γγ) since no other

interactions contribute to the effect.

For the case in which a scalar/pseudoscalar resonance is produced from gluon

fusion, mediated by extra vector-like fermions Di, D̄i with mass Mi and charges

Qi, decaying into two photons by a combination of the same vector-like fermions

and Higgsinos Hα
d and Hα

u , the corresponding decay widths read [103]:
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Γ(X → gg)

M
=

α2
3

2π3

∣∣∣∣∣∑
i

Criκi
2Mi

M
X
(

4M2
i

M2

)∣∣∣∣∣
2

, (5.8)

Γ(X → γγ)

M
=

α2

16π3

∣∣∣∣∣∑
i

driQ
2
iκi

2Mi

M
X
(

4M2
i

M2

)
+
∑
α

drαQ
2
αλα

2MHα

M
X
(

4M2
Hα

M2

)∣∣∣∣∣
2

.

(5.9)

The function X (t) takes a different form, depending on whether the particle

is a scalar or a pseudoscalar - S or P respectively [220]:

P(t) = arctan2(1/
√
t− 1), (5.10)

S(t) = 1 + (1− t)P(t) . (5.11)

In the case in question with colour triplets of mass Mi mediating the process,

Qi = 1/3, Cri = 1/2, and dri = 3, while the Higgsinos have Qi = dri = 1 and a

mass of Mk. Combining the equations above we calculate the cross section for a

scalar of mass M = 750 GeV at
√
s = 13 TeV. While the 750 GeV mass scale

arises from an assumed soft, SUSY-breaking singlet scalar mass at that scale, the

mass scale of the vector-like exotics in this model arise from singlet scalar VEVs,

also assumed to be around the TeV scale. For simplicity we set all the masses

of the vector-like fermions to be equal (likewise for the Higgsinos), and all the

couplings of the scalar singlet to the fermions to be equal to yf . The results are

presented in Figure 5.4 and Figure 5.5. Note also that the Γ(X → gg)/M take

values in the region of 10−4 and 10−5, which is not excluded by searches for dijet

resonances at Run 1.

In the computations of the cross sections presented above we have considered

only the fermionic contributions while we have ignored the scalar ones. Masses

of the scalar partners are related to SUSY breaking. Although the details of

the SUSY breaking are not known, given the present experimental bounds on

squark masses from the LHC, we assume that the scalar components of the ex-

otic coloured fermions to be above O(1) TeV, whilst the corresponding coloured
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Figure 5.4: The cross section σ(pp → X → γγ) (in fb units) in the parametric

space of the Higgsinos Hβ
u /H

γ
d , for a selection of masses of the vector-like Di/Di

with all masses Mi set equal to Mf and the coupling yf , with yf = 1. The solid
lines correspond to the Pseudoscalar candidate state, while the dashed lines of
the same hue correspond to the Scalar option.
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Figure 5.5: The mass weighted width Γ(X → γγ) in the parametric space of

the Higgsinos Hβ
u /H

γ
d , for a selection of masses of the vector-like Di/Di with

masses Mf and the coupling yf , with yf = 1. The solid lines correspond to the
Pseudoscalar candidate state, while the dashed lines of the same hue correspond
to the Scalar option.

fermions are assumed to be somewhat lighter. Furthermore we know that loops of

scalar bosons give smaller contributions to the anomalous loop amplitudes than

do fermions of the same mass. (see also similar reasoning in [221]). Given also

that fermion components are lighter, we anticipate that the contribution of the
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latter dominates the cross section.

5.3 Conclusions

We have interpreted the 750-760 GeV diphoton resonance as one or more of

the spinless components of two singlet superfields arising from the three 27-

dimensional representations of E6 in F-theory, which also contain three copies

of colour-triplet charge ∓1/3 vector-like fermions Di, D̄i as well as inert Higgsino

doublets Hβ
d , H

γ
u to which the singlets may couple. For definiteness we have con-

sidered (without change) a model that was proposed some time ago that contains

such states, as well as bulk exotics, leading to gauge coupling unification.

In order to obtain a large enough cross-section, we require the resonance

to be identified with one of the two pseudoscalar (rather than scalar) states.

However even in this case, a sufficiently large cross-section requires quite light

colour triplets and charged Higgsinos below a TeV, even with of order unit Yukawa

couplings, which is one of the predictions of the model.

The smoking gun prediction of the model is the existence of other similar

spinless resonances, possibly close in mass to 750-760 GeV, decaying into dipho-

tons, as well as the three families of vector-like fermions Di, D̄i and two families

of inert Higgsino doublets Hβ
d , H

γ
u .

It is possible that two or more of the singlet spinless states may be close

in mass, providing nearby resonances, which could be initially mistaken for a

single broad resonance in the current data. Indeed, from the 27-dimensional

representations of the E6 F-theory model there are two singlet superfields that

couple to the vector-like fermions Di, D̄i, so there could be up to four spinless

resonances to can be searched for.

Further bulk singlets arising from the 78 reps of the E6 F-theory model are also

expected to be present in the low energy spectrum whose VEVs are responsible

for the low energy exotic bulk masses of the 2XHd , Xdc and their vector partners.

These bulk singlets are also candidates for the 750 GeV diphoton resonance, or

may have similar masses.
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In conclusion, realistic E6 F-theory models generically contain extra low en-

ergy states, which include a plethora of spinless singlets and vector-like fermions

with various charges and colours, especially colour singlet unit charged states and

colour triplets with charges ∓1/3, which appear to have the correct properties

to provide an explanation of the 750 GeV diphoton resonance indicated by the

LHC Run 2 data. We have discussed an already existing model (without change)

that is perfectly capable of accounting for these data, as well as furnishing many

predictions of multiple other similar resonances as well as the exotic fermions and

their superpartners, which should be observable in future.
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Chapter 6

R-parity violation and Yukawa

couplings from local F-theory

In the previous chapters various phenomenological aspects of F-theory effective

models using the spectral cover description [1–3] have been considered. While,

in F-theory constructions, R-parity conservation (RPC) can emerge either as a

remnant symmetry of extra U(1) factors, or it can be imposed by appealing to

some geometric property of the internal manifold and the flux [58], and there

is no compelling reason to assume this. Moreover, experimental bounds permit

R-parity violating (RPV) interactions at small but non-negligible rates.

Typically, in the absence of a suitable symmetry or displacement mechanism,

the tree-level operators QLdc, dcdcuc, ecLL all appear simultaneously, which leads

to Baryon and Lepton (B and L) violating processes at unacceptable rates [222].

On the other hand, in F-theory constructions, parts of GUT multiplets are typ-

ically projected out by fluxes, giving rise only to a part of the above operators,

as we have seen in Chapter 4. In other cases, due to symmetry arguments, the

Yukawa couplings relevant to RPV operators are identically zero. As a result,

several B/L violating processes, either are completely prevented or occur at lower

rates in F-theory models, providing a controllable signal of RPV. This observa-

tion motivates a general study of RPV in F-theory, which is the subject of this

chapter.
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In this chapter, we will consider RPV in local F-theory, trying to be as general

as possible, with the goal of making a bridge between F-theory and experiment.

The principal aim is to compute the strength of the RPV Yukawa couplings, which

mainly depend on the topological properties of the internal space and are more or

less independent of many details of a particular model, enabling us to work in a

generic local F-theory setting. We focus on F-theory SU(5) constructions, where

a displacement mechanism, based on non-trivial fluxes, renders several GUT mul-

tiplets incomplete. This mechanism has already been suggested to eliminate the

colour triplets from the Higgs five-plets, so that dangerous dimension-5 proton

decay operators are not present. However, it turns out that, in several cases,

not only the Higgs but also other matter multiplets are incomplete, while the

superpotential structure is such that it implies RPV terms. In this context, it is

quite common that not all of the RPV operators appear simultaneously, allowing

observable RPV effects without disastrous proton decay.

Our goal in this chapter is twofold. Firstly, to present a detailed analysis

of all possible combinations of RPV operators arising from a generic semi-local

F-theory spectral cover framework, assuming an SU(5) GUT. This includes a

detailed analysis of the classification of all possible allowed combinations of RPV

operators, originating from the SU(5) term 10 · 5̄ · 5̄, including the effect of U(1)

fluxes, with global restrictions, which are crucial in controlling the various pos-

sible multiplet splittings. Secondly, using F-theory techniques developed in the

last few years, we perform explicit computations of the bottom/tau and RPV

Yukawa couplings, assuming only local restrictions on fluxes, and comparing our

results with the present experimental limits on the coupling for each specific RPV

operator. The ingredients for this study have already appeared scattered through

the literature, which we shall refer to as we go along.

We emphasise that the first goal is related to the nature of the available global

Abelian fluxes of the particular model and their restrictions on the various matter

curves, hence, on its specific geometric properties. The second goal requires the

computation of the strengths of the corresponding Yukawa couplings. This in turn
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requires knowledge of the wavefunctions’ profiles of the particles participating in

the corresponding trilinear Yukawa couplings and, as we will see, these involve

the local flux data. Once such couplings exist in the effective Lagrangian, we wish

to explore the regions of the available parameter space where these couplings are

sufficiently suppressed and are compatible with the present experimental data.

Our aim in this dedicated study is to develop and extend the scope of the

existing results in the literature, in order to provide a complete and comprehensive

study, which makes direct contact with experimental limits on RPV, enabling F-

theory models to be classified and confronted with experiment more easily and

directly than previously. This is the first study in the literature that focuses

exclusively on RPV in F-theory.

The remainder of the chapter divides into two parts: in the first part, we con-

sider semi-local F-theory constructions where global restrictions are imposed on

the fluxes, which imply that they take integer values. In Section 6.1 we show that

RPV is a generic expectation of semi-local F-theory constructions. We start by

detailing the numerous options for Abelian monodromies in semi-local F-theory,

then in Section 6.1.1 we introduce the notion of flux, quantised according to

global restrictions, which, when switched on, leads to incomplete SU(5) multi-

plets in the low energy (massless) spectrum, which can lead in incomplete GUT

multiplets and a subset of R-parity violating processes. Appendix C.1 details

all possible sources of R-parity violating couplings for all models classified with

respect to the monodromies in semi-local F-theory constructions.

In the second part of the chapter, we relax the global restrictions of the semi-

local constructions, and allow the fluxes to take general values, subject only to

local restrictions. In Section 6.2 we describe the calculation of a Yukawa coupling

originating from an operator 10 · 5̄ · 5̄ at an SO(12) local point of enhancement in

the presence of general local fluxes, with only local (not global) flux restrictions.

In Section 6.3 we apply these methods to calculate the numerical values of Yukawa

couplings for bottom, tau and RPV operators, exploring the parameter space

of local fluxes. In Section 6.4 we finally consider RPV coupling regions and
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calculate ratios of Yukawa couplings from which the physical RPV couplings at

the GUT scale can be determined and compared to limits on these couplings

from experiment. Appendix C.2 details the local F-theory constructions and

local chirality constraints on flux data and RPV operators.

6.1 R-parity violation in semi-local F-theory construc-

tions

In the previous chapters of this thesis we have presented models based on the

spectral cover analysis, which is a so-called semi-local approach. In particular,

we have emphasised the role of monodromies in these constructions, as well as

the effect this has on the physical processes of such models.

A classification of the set of models with simple monodromies (Abelian ZN

types) that retain some perpendicular U(1)⊥ charges associated with the weights

ti has been put forward in [14,47,49], where we follow the notation of Dudas and

Palti [49] . In the following, we categorize these models in order to assess whether

tree-level, renormalisable, perturbative RPV is generic if matter is allocated in

different curves. More specifically, we present four classes, characterised by the

splitting of the spectral cover equation. These are:

• 2+1+1+1-splitting, which retains three independent perpendicular U(1)⊥.

These models represent a Z2 monodromy (t1 ↔ t2), and as expected we are

left with seven 5 curves, and four 10 curves.

• 2 + 2 + 1-splitting, which retains two independent perpendicular U(1)⊥.

These models represent a Z2 × Z2 monodromy (t1 ↔ t2, t3 ↔ t4), and as

expected we are left with five 5 curves, and three 10 curves.

• 3 + 1 + 1-splitting, which retains two independent perpendicular U(1)⊥.

These models represent a Z3 monodromy (t1 ↔ t2 ↔ t3), and as expected

we are left with five 5 curves, and three 10 curves.

• 3 + 2-splitting, which retains a single perpendicular U(1)⊥. These models
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represent a Z3 × Z2 monodromy (t1 ↔ t2 ↔ t3, t4 ↔ t5), and as expected

we are left with three 5 curves, and two 10 curves.

We note also that the cases 4 + 1 and 5 exist for the spectral cover, though for

Abelian monodromies they are too constraining to be suitable for model building.

In Appendix C.1 we develop the above classes of models, identifying which

curve contains the Higgs fields and which contains the matter fields, in order to

show that RPV is a generic phenomenon in semi-local F-theory constructions.

Of course, if all the RPV operators are present, then proton decay will be an

inevitable consequence. In the next subsection we show that this is generally

avoided in semi-local F-theory constructions when fluxes are switched on, which

has the effect of removing some of the RPV operators, while leaving some ob-

servable RPV in the low energy spectrum.

6.1.1 Hypercharge flux with global restrictions and R-parity vi-

olating operators

As we have seen in the previous chapters, hypercharge flux may be used to break

GUT groups to the SM in F-theory constructions. This doublet-triplet spliting

principally serves to eliminate colour triplets arising from the Higgs GUT mul-

tiplet from the spectrum. This would be an alternative to the doublet-triplet

scenario since only the two Higgs doublets remain and the light spectrum. The

occurrence of this minimal scenario presupposes that all other matter curves are

left intact by the flux.

However, this is usually not the case, with the majority of models exhibiting

incomplete representations for some or all matter representations. This stands

as an important feature if one does not assume some mechanism to eliminate

baryon and lepton number violating operators, since it can lead to models where

only a subset of the operators are allowed. In this event, one may avoid proton

decay, while still having other exotic processes - a good review of these is found

in [99]. In Appendix C.1 we further develop the ideas relating to these models.
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6.2 Yukawa couplings in local F-theory constructions:

formalism

In this section (and subsequent sections) we relax the global constraints on fluxes,

and consider the calculation of Yukawa couplings, imposing only local flux re-

strictions. The motivation for doing this is to calculate the Yukawa couplings

associated with the RPV operators in a rather model independent way, and then

compare our results to the experimental limits. Flavour hierarchies and Yukawa

structures in F-theory have been studied in a large number of papers [59] [57]. In

this section we shall discuss Yukawa couplings in F-theory, following the approach

of [32–34].

In the previous section we assessed how chirality is realised on different curves

due to flux effects. These considerations take into account the global flux data and

are therefore called semi-local models. The flux units considered in the examples

above are integer valued as they follow from the Dirac flux quantisation

1

2π

∫
Σ⊂S

F = n (6.1)

where n is an integer, Σ a matter curve (two-cycle in the divisor S), and F the

gauge field-strength tensor, i.e. the flux. In conjugation with the index theorems,

the flux units piercing different matter curves Σ will tell us how many chiral states

are globally present in a model.

While the semi-local approach defines the full spectrum of a model, the com-

putation of localised quantities, such as the Yukawa couplings, requires appropri-

ate description of the local geometry. As we will see below, a crucial quantity in

the local geometry is the notion of local flux density, understood as follows.

First we notice that the unified gauge coupling is related to the compactifi-

cation scale through the volume of the compact space

α−1
G = m4

∗

∫
S

2ω ∧ ω = m4
∗

∫
dVolS = Vol(S)m4

∗ (6.2)
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where αG is the unified gauge coupling, m∗ is the F-Theory characteristic scale,

S the GUT divisor with Kähler form

ω =
i

2
(dz1 ∧ dz̄1 + dz2 ∧ dz̄2) (6.3)

that defines the volume form

dVolS = 2ω ∧ ω = dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2. (6.4)

As the volume of Σ is bounded by the volume of S, we assume that

Vol(Σ) '
√

vol(S), (6.5)

and if we now consider that the background of F is constant, we can estimate

the values that F takes in the S by

F ' 2π
√
αGm

2
∗n. (6.6)

This means that, in units of m∗, the background F is a real number of order one.

Since in the computation of Yukawa couplings it is the local values of F – and

not the global quantisation constraints – that matter, we will from now on abuse

terminology and refer to flux densities, F , as fluxes. Furthermore, as we will see

later, the local values of F also define what chiral states are supported locally.

This will be crucial to study the full plenitude of RPV couplings in different parts

of the parameter space.

6.2.1 The local SO(12) model

In F-theory matter is localised along Riemann surfaces (matter curves), which

are formed at the intersections of D7-branes with the GUT surface S. Yukawa

couplings are then realised when three of these curves intersect at a single point

on S, while, at the same time, the gauge symmetry is enhanced. The computation

relies on the knowledge of the profile of the wavefunctions of the states participat-
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ing in the intersection. When a specific geometry is chosen for the internal space

(and in particular for the GUT surface) these profiles are found by solving the

corresponding equations of motion [32–35]. Their values are obtained by com-

puting the integral of the overlapping wavefunctions at the triple intersections.

In this chapter we focus on the SO(12) point of enhancement, which corresponds

to the SU(5) Yukawa coupling for the bottom and tau Yukawa couplings, as well

as R-parity violating couplings. To do this we shall use the techniques presented

in [34].1

The 4-dimensional theory can be obtained by integrating out the effective

8-dimensional action over the divisor S

W = m4
∗

∫
S

Tr(F ∧ Φ) (6.7)

where F = dA− iA ∧ A is the field-strength of the gauge vector boson A and Φ

is (2, 0)-form on S.

From the above superpotential, the F-term equations can be computed by

varying A and Φ. In conjugation with the D-term

D =

∫
S
ω ∧ F +

1

2
[Φ, Φ̄], (6.8)

where ω is the Kähler form of S, a 4-dimensional supersymmetric solution for the

equations of motion of F and Φ can be computed.

Both A and Φ, locally are valued in the Lie algebra of the symmetry group at

the Yukawa point. In the case in hand, the fibre develops an SO(12) singularity

at which point couplings of the form 10 · 5̄ · 5̄ arise. Away from the enhancement

point, the background Φ breaks SO(12) down to the GUT group SU(5). The rôle

of 〈A〉 is to provide a 4d chiral spectrum and to break further the GUT gauge

group.

More systematically, the Lie-Algebra of SO(12) is composed of its Cartan

generators Hi with i = 1, ..., 6, and 60 step generators Eρ. Together, they respect

1For a general E8 point of enhancement that containing both type of couplings see [36, 37].
Similar, an E7 analysis is given in [223].
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the Lie algebra

[Hi, Eρ] = ρiEρ (6.9)

where ρi is the ith component of the root ρ. The Eρ generators can be completely

identified by their roots

ρ = (±1,±1, 0, 0, 0, 0, 0) (6.10)

where underline means all 60 permutations of the entries of the vector, including

different sign combinations. To understand the meaning of this notation it is

sufficient to consider a simpler example:

(0, 1, 0, 0, 0, 0, 0) ≡ {(0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0)} (6.11)

The background of Φ will break SO(12) away from the SO(12) singular point.

In order to see this consider that it takes the form

Φ = Φz1z2dz1 ∧ dz2 (6.12)

where it’s now explicit that it parameterises the transverse directions to S. The

background we are considering is

〈Φz1z2〉 = m2 (z1Qz1 + z2Qz2) (6.13)

where m is related to the slope of the intersection of 7-branes, and

Qz1 = −H1 (6.14)

Qz2 =
1

2

∑
i

Hi. (6.15)

The unbroken symmetry group will be the commutant of 〈Φz1z2〉 in SO(12).

The commutator between the background and the rest of the generators is

[〈Φz1z2〉, Eρ] = m2qΦ(ρ)Eρ (6.16)
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Curve Roots qΦ SU(5) irrep qz1 qz2

Σa± (±1,∓1, 0, 0, 0, 0) ∓z1 5̄/5 ∓1 0

Σb± (0,±1,±1, 0, 0, 0) ∓z2 10/1̄0 0 ±1

Σc± (∓1,∓1, 0, 0, 0, 0) ±(z1 − z2) 5̄/5 ±1 ∓1

Table 6.1: Matter curves and respective data for an SO(12) point of enhancement
model with a background Higgs given by Equation 6.13. The underline represent
all allowed permutations of the entries with the signs fixed

where qΦ(ρ) are holomorphic functions of the complex coordinates z1, z2. The

surviving symmetry group is composed of the generators that commute with 〈Φ〉

on every point of S. With our choice of background, the surviving step generators

are identified to be

Eρ : (0, 1,−1, 0, 0, 0), (6.17)

which, together with Hi, trivially commute with 〈Φ〉, generating SU(5)×U(1)×

U(1).

When qΦ(ρ) = 0 in certain loci we have symmetry enhancement, which ac-

counts for the presence of matter curves. This happens as at these loci, extra

step generators survive and furnish a representation of SU(5)×U(1)×U(1). For

the case presented we identify three curves joining at the SO(12) point, these are

Σa = {z1 = 0} (6.18)

Σb = {z2 = 0} (6.19)

Σc = {z1 = z2}, (6.20)

and defining a charge under a certain generator as

[Qi, Eρ] = qi(ρ)Eρ (6.21)

all the data describing these matter curves are presented in Table 6.1. Since the

bottom and tau Yukawas come from such an SO(12) point, in order to have such

a coupling the point must have the a+, b+, and c+.
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In order to both induce chirality on the matter curves and break the two U(1)

factors, we have to turn on fluxes on S valued along the two Cartan generators

that generate the extra factors.

We first consider the flux

〈F1〉 = i(Mz1dz1 ∧ dz̄1 +Mz2dz2 ∧ dz̄2)QF , (6.22)

with

QF = −Qz1 −Qz2 =
1

2
(H1 −

6∑
j=2

Hj). (6.23)

It’s easy to see that the SU(5) roots are neutral under QF , and therefore this

flux does not break the GUT group. On the other hand, the roots on a, b sectors

are not neutral. This implies that this flux will be able to differentiate 5̄ from 5

and 10 from 1̄0 ∫
Σa, Σb

F1 6= 0⇒ Induced Chirality. (6.24)

This flux does not induce chirality in c± curves as qF = 0 for all roots in c±.

To induce chirality in c± one needs another contribution to the flux

〈F2〉 = i(dz1 ∧ dz̄2 + dz2 ∧ dz̄1)(NaQz1 +NbQz2) (6.25)

that does not commute with the roots on the c± sectors for Na 6= Nb.

Breaking the GUT down to the SM gauge group requires flux along the Hyper-

charge. In order to avoid generating a Green-Schwarz mass for the Hypercharge

gauge boson, this flux has to respect global constraints. Locally we may define it

as

〈FY 〉 = i[(dz1 ∧ dz̄2 + dz2 ∧ dz̄1)NY + (dz2 ∧ dz̄2 − dz1 ∧ dz̄1)ÑY ]QY (6.26)

and the Hypercharge is embedded in our model through the linear combination

QY =
1

3
(H2 +H3 +H4)− 1

2
(H5 +H6). (6.27)
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Since this contribution to the flux does not commute with all elements of

SU(5), only with its SM subgroup, distinct SM states will feel this flux differently.

This fact is used extensively in semi-local models as a mechanism to solve the

doublet-triplet splitting problem. As we will see bellow, it can also be used to

locally prevent the appearance of certain chiral states and therefore forbid some

RPV in subregions of the parameter space.

The total flux will then be the sum of the three above contributions. It can

be expressed as

〈F 〉 =i(dz2 ∧ dz̄2 − dz1 ∧ dz̄1)QP

+ i(dz1 ∧ dz̄2 + dz2 ∧ dz̄1)QS

+ i(dz2 ∧ dz̄2 + dz1 ∧ dz̄1)Mz1z2QF (6.28)

with the definitions

QP =MQF + ÑYQY (6.29)

QS =NaQz1 +NbQz2 +NYQY (6.30)

and

M =
1

2
(Mz1 −Mz2) (6.31)

Mz1z2 =
1

2
(Mz2 +Mz1). (6.32)

As the Hypercharge flux will affect SM states differently, breaking the GUT

group, we will be able to distinguishing them inside each curve. The full split of

the states present in the different sectors and all relevant data are presented in

Table 6.2.

6.2.2 Wavefunctions and the Yukawa computation

In general, the Yukawa strength is obtained by computing the integral of the

overlapping wavefunctions. More precisely, according to the discussion in the
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Sector Root SM qF qz1 qz2 qS qP

a1 (1,−1, 0, 0, 0, 0) (3̄,1)− 1
3

1 −1 0 −Na − 1
3NY M − 1

3ÑY

a2 (1, 0, 0, 0,−1, 0) (1,2) 1
2

1 −1 0 −Na + 1
2NY M + 1

2ÑY

b1 (0, 1, 1, 0, 0, 0) (3,1) 2
3

−1 0 1 Nb + 2
3NY −M + 2

3ÑY

b2 (0, 1, 0, 0, 1, 0) (3,2)− 1
6
−1 0 1 Nb − 1

6NY −M − 1
6ÑY

b3 (0, 0, 0, 0, 1, 1) (1,1)−1 −1 0 1 Nb −NY −M − ÑY

c1 (−1,−1, 0, 0, 0, 0) (3̄,1)− 1
3

0 1 −1 Na −Nb − 1
3NY − 1

3ÑY

c2 (−1, 0, 0, 0,−1, 0) (1,2) 1
2

0 1 −1 Na −Nb + 1
2NY

1
2ÑY

Table 6.2: Complete data of sectors present in the three curves crossing in an
SO(12) enhancement point considering the effects of non-vanishing fluxes. The
underline represent all allowed permutations of the entries with the signs fixed

previous section, one has to solve for the zero mode wavefunctions for the sectors

a, b and c presented in Table (6.2). The physics of the D7-Branes wrapping on

S can be described in terms of a twisted 8-dimensional N = 1 gauge theory on

R1,3×S, where S is a Kähler submanifold of elliptically fibered Calabi-Yau 4-fold,

X. One starts with the action of the effective theory, which was given in [19].

The next step is to obtain the equations of motion for the 7-brane fermionic zero

modes. This procedure has been performed in several papers [33, 34, 36] and we

will not repeat it here in detail. In order for this chapter to be self-contained we

highlight the basic computational steps.

The equations for a 4-dimensional massless fermionic field are of the Dirac

form:

DAΨ = 0 (6.33)

where

DA =



0 D1 D2 D3

−D1 0 −D3̄ D2̄

−D2 −D3̄ 0 −D1̄

−D3 −D2̄ D1̄ 0


, Ψ = ΨEρ =



−
√

2η

ψ1̄

ψ2̄

χ12


. (6.34)
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The indices here are a shorthand notation instead of the coordinates z1, z2, z3.

The components of Ψ represent 7-brane degrees of freedom. Also the covariant

derivatives are defined as Di = ∂i − i[〈Ai〉, . . .] for i = 1, 2, 1̄, 2̄ and as D3̄ =

−i[〈Φ12〉, . . .] for the coordinate z3. It is clear from equations (6.33,6.34) that we

have to solve the equations for each sector. According to the detailed solutions

in [34] the wavefunctions for each sector have the general form

Ψ ∼ f(az1 + bz2)eMijzizj (6.35)

where f(az1 + bz2) is a holomorphic function and Mij incorporates flux effects.

In an appropriate basis this holomorphic function can be written as a power of

its variables fi ∼ (az1 + bz2)3−i and in the case where the generations reside in

the same matter curve, the index-i can play the rôle of a family index. Moreover

the Yukawa couplings as a triple wavefunction integrals have to respect geometric

U(1) selection rules. The coupling must be invariant under geometric transfor-

mations of the form: z1,2 → eiαz1,2. In this case the only non-zero tree level

coupling arises for i = 3 and by considering that, the index in the holomorphic

function fi indicates the fermion generation we obtain. Hierarchical couplings for

the other copies on the same matter curve can generated in the presence of non

commutative fluxes [35] or by incorporating non-perturbative effects [33] [223].

The RPV couplings under consideration emerge from a tree level interaction.

Hence, its strength is given by computing the integral where now the rôle of the

Higgs 5̄H is replaced by 5̄M . We consider here the scenario where the generations

are accommodated on different matter curves. In this case the two couplings,

the bottom/tau Yukawa and the tree level RPV, are localised at different SO(12)

points on SGUT , (see Figure 6.1). In this approach, at first approximation we

can take the holomorphic functions f as constants absorbed in the normalization

factors.

As a first approach, our goal is to calculate the bottom Yukawa coupling as

well as the coupling without hypercharge flux and compare the two values. So,

at this point we write down the wavefunctions and the relevant parameters in a
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Figure 6.1: Intersecting matter curves, Yukawa couplings and the case of RPV .

more detailed form as given in [34] but without the holomorphic functions. The

wavefunctions in the holomorphic gauge have the following form

~ψ(b)hol
10M

= ~v(b)χ(b)hol
10M

= ~v(b)κ(b)
10M

eλbz2(z̄2−ζbz̄1) (6.36)

~ψ(a)hol
5M

= ~v(a)χ(a)hol
5M

= ~v(a)κ(a)
5M
eλaz1(z̄1−ζaz̄2) (6.37)

~ψ(c)hol
5H

= ~v(c)χ(c)hol
5H

= ~v(c)κ(c)
5H
e(z1−z2)(ζcz̄1−(λc−ζc)z̄2) (6.38)

~ψ(c)hol
5M

= ~v(c)χ(c)hol
5H

= ~v(c)κ(c)
5M
e(z1−z2)(ζcz̄1−(λc−ζc)z̄2) (6.39)

where

ζa = − qS(a)

λa − qP (a)
(6.40)

ζb = − qS(b)

λb + qP (b)
(6.41)

ζc =
λc(λc − qP (c)− qS(c)

2(λc − qS(c))
(6.42)

and λρ is the smallest eigenvalue of the matrix

mρ =


−qP qS im2qz1

qS qP im2qz2

−im2qz1 −im2qz2 0

 . (6.43)

To compute the above quantities we make use of the values of qi from Table
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6.2. It is important to note that the values of the flux densities in this table

depend on the SO(12) enhancement point. This means that one can in principle

have different numerical values for the strength of the interactions at different

points.

The column vectors are given by

~v(b) =


− iλb
m2 ζb

iλb
m2

1

 , ~v(a) =


− iλa
m2

iλa
m2 ζa

1

 , ~v(c) =


− iζc
m2

i(ζc−λc)
m2

1

 . (6.44)

Finally, the κ coefficients in equations (6.36-6.37) are normalization factors.

These factors are fixed by imposing canonical kinetic terms for the matter fields.

More precisely, for a canonically normalized field χi supported in a certain sector

(e), the normalization condition for the wavefunctions in the real gauge is

1 = 2m4
∗||~v(e)||2

∫
(χ(e)real)∗iχ

(e)real
i dVolS (6.45)

where χ
(e)real
i are now in the real gauge, and in our convention TrE†αEβ = 2δαβ.

The wavefunctions in real and holomorphic gauge are related by

ψreal = eiΩψhol (6.46)

where

Ω =
i

2

[(
Mz1 |z1|2 +Mz2 |z2|2

)
QF − ÑY

(
|z1|2 − |z2|2

)
QY + (z1z̄2 + z2z̄1)QS

]
,

(6.47)

which only transforms the scalar coefficient of the wavefunctions, χ, leaving the

~v part invariant.

With the above considerations, one can find the normalization factors to be

|κ(a)
5M
|2 = −4πgsσ

2 · qP (a)(2λa + qP (a)(1 + ζ2
a))

λa(1 + ζ2
a) +m4

, (6.48)
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|κ(b)
10M
|2 = −4πgsσ

2 ·
qP (b)(−2λb + qP (b)(1 + ζ2

b ))

λb(1 + ζ2
b ) +m4

, (6.49)

|κ(c)
5H
|2 = −4πgsσ

2 · 2(qP (c) + ζc)(qP (c) + 2ζc − 2λc) + (qS(c) + λc)
2

ζ2
c + (λc − ζc)2 +m4

, (6.50)

|κ(c)
5M
|2 = −4πgsσ

2 · 2(qP (c) + ζc)(qP (c) + 2ζc − 2λc) + (qS(c) + λc)
2

ζ2
c + (λc − ζc)2 +m4

, (6.51)

where we used the relation
(
m
m∗

)2
= (2π)3/2g

1/2
s σ, making use of the dimen-

sionless quantity σ = (m/mst)
2, where mst the string scale. The expressions

(6.48-6.51) above can be shown numerically to be always positive.

The superpotential trilinear couplings can be taken to be in the holomorphic

gauge. For the bottom Yukawa, we consider that ψ10M
and ψ5M contain the

heaviest down-type quark generations. In this case the bottom and tau couplings

can be computed:

y
b,τ

=m4
∗ tabc

∫
S

det(~ψ(b)hol
10M

, ~ψ(a)hol
5M

, ~ψ(c)hol
5H

)dVolS

=m4
∗ tabc det(~v(b), ~v(a), ~v(c))

∫
S
χ(b)hol

10M
χ(a)hol

5M
χ(c)hol

5H
dVolS . (6.52)

The bottom and tau Yukawa couplings differ since they have different SM quan-

tum numbers and arise from different sectors, leading to different qS and qP as

shown in Table 6.2.

A similar formula can be written down for the RPV coupling

yRPV =m4
∗ tabc

∫
S

det(~ψ(b)hol
10M

, ~ψ(a)hol
5M

, ~ψ(c)hol
5′
M

)dVolS

=m4
∗ tabc det(~v(b), ~v(a), ~v(c))

∫
S
χ(b)hol

10M
χ(a)hol

5M
χ(c)hol

5M
dVolS . (6.53)

Here this RPV Yukawa coupling can in principle refer to any generation of squarks

and sleptons, and may have arbitrary generation indices (suppressed here for

simplicity).The factor tabc represents the structure constants of the SO(12) group.

The integral in the last term can be computed by applying standard Gaussian
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techniques. Computing the determinant and the integral, the combined result of

the two is a flux independent factor and the final result reads:

y
b,τ

= π2
(m∗
m

)4
tabcκ

(b)
10M

κ(a)
5M
κ(c)

5H
. (6.54)

This is a standard result for the heaviest generations. As we observe the flux

dependence is hidden in the normalization factors.

We turn now our attention to the case of a tree-level RPV coupling of the form

10M · 5̄M · 5̄M . This coupling can be computed at a different SO(12) enhancement

point p. As a first approach we consider that the hypercharge flux parameters

are zero in the vicinity of p. From a different point of view, 5̄M replace the Higgs

matter curve in the previous computation. The new wavefunction (ψ(c)
5M

) can be

found by setting all the Hypercharge flux parameters on ψ(c)
5H

, equal to zero. The

RPV coupling will be given by an equation similar to that of the bottom coupling:

yRPV = π2
(m∗
m

)4
tabcκ

(b)
10M

κ(a)
5M
κ(c)

5M
. (6.55)

Notice that the κ’s in equations (6.54, 6.55) are the modulus of the normalization

factors defined in equations (6.48-6.51).

In the next section, using equations (6.54) and (6.55), we perform a numerical

analysis for the couplings presented above with emphasis on the case of the RPV

coupling. We notice that in our conventions for the normalization of the SO(12)

generators, the gauge invariant coupling supporting the above interactions has

tabc = 2.

6.3 Yukawa couplings in local F-theory constructions:

numerics

Using the mathematical machinery developed in the previous section, we can

study the behaviour of SO(12) points in F-theory - including both the bottom-

tau point of enhancement and RPV operators. The former has been well studied

in [34] for example. The coupling is primarily determined by five parameters -
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Figure 6.2: Ratio between bottom and tau Yukawa couplings, shown as contours
in the plane of local fluxes. The requirement for chiral matter and absence of
coloured Higgs triplets fixes Nb = Na − 1

3NY

Na, Nb, M , NY and ÑY . The parameters Na and Nb give net chirality to the

c-sector, while NY and ÑY are components of hypercharge flux, parameterising

the doublet triplet splitting. M is related to the chirality of the a and b-sectors.

There is also the Nb = Na − 1
3NY constraint, which ensures the elimination of

Higgs colour triplets at the Yukawa point. This can be seen by examining the

text of the previous section, based on the work found in [34].

For a convenient and comprehensive presentation of the results we make the

following redefinitions. In Eq. (6.54) and (6.55), one can factor out 4πgsσ
2

from inside Eq. (6.48),(6.49), and (6.50). In addition by noticing that
(
m
m∗

)2
=

(2π)3/2g
1/2
s σ, we obtain

y
b,τ

= 2g1/2
s σ y′

b,τ
(6.56)

yRPV = 2g1/2
s σ y′

RPV
(6.57)

where y′b,τ and y′RPV are functions of the flux parameters. Furthermore, we set

the scale m = 1 and as such the remainder mass dimensions are given in units

of m. The presented values for the strength of the couplings are then in units of

2g
1/2
s σ.
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Figure 6.2 shows the ratio of the bottom and tau Yukawa couplings at a point

of SO(12) in a region of the parameter space with reasonable values. These

results are consistent with those in [34]. Note that the phenomenological desired

ratio of the couplings at the GUT scale is Yτ/Yb = 1.37 ± 0.1± 0.2 [224], which

can be achieved within the parameter ranges shown in Figure 6.2. Having shown

that this technique reproduces the known results for the bottom- tau ratio, we

now go on to study the behaviour of an RPV coupling point in SO(12) models.

6.3.1 Behaviour of SO(12) points

The simplest scenario for an SO(12) enhancement generating RPV couplings,

would be the case where all three of the types of operator, QLD, UDD, and

LLE arise with equal strengths, which would occur in a scenario with vanishing

hypercharge flux, leading to an entirely “unsplit” scenario. This assumption sets

NY and ÑY to vanish, and we may also ignore the condition Nb = Na − 1
3NY .

The remaining parameters determining are then Na, Nb and M . Figure 6.3 shows

the coupling strength in the Na plane for differing Nb and M values. The general

behaviour is that coupling strength is directly related to M , while the coupling

vanishes at the point where Na = Nb. This latter point is due to the flip in net

chirality for the c-sector at this point in the parameter space - Na > Nb gives the

c+ part of the spectrum.

Figure 6.4 and Figure 6.5 also demonstrate this set of behaviours, but for

contours of the coupling strength. Figure 6.4, showing all combinations of the

three non-zero parameters, shows that in the Na − Nb plane there is a line of

vanishing coupling strength about the Na = Nb, chirality switch point for the

c-sector. The figure also reinforces the idea that small values of M correspond to

small values of the coupling strength, as close to the point of M = 0 the coupling

again reduces to zero. Figure 6.5 again shows this behaviour, with the smallest

values of M giving the smallest values of the coupling. From this we can infer

that an RPV SO(12) point is most likely to be compatible with experimental

constraints if M takes a small value.
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Figure 6.3: Dependency of the RPV coupling (in units of 2g
1/2
s σ) on Na in the

absence of hypercharge fluxes, for different values of M and Nb.
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Figure 6.6a (and Figure 6.6b) shows the RPV coupling strength in the absence

of flux for the Na (Nb) plane, along with the “bottom” coupling strength for

corresponding values. The key difference is that the Hypercharge flux is switched

on at the bottom SO(12) point, with values of NY = 0.1 and ÑY = 3.6. The

figures show that for the bottom coupling, the fluxes always push the coupling

higher, similarly to increasing the M values.

Figure 6.6c plots out the two couplings in the M -plane, showing that the

bottom Yukawa goes to zero for two values of M , while the RPV point has only
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one. Considering the form of Equation (6.54), we can see that the factors κ5M

and κ10M are proportional to the parameter qp. Referring to Table 6.2, one can

see which values these take for each sector - namely, qp(a1) = M − 1
3ÑY and

qp(b2) = −M − 1
6ÑY . Solving these two equations shows trivially that zeros

should occur when M = 1
3ÑY and −1

6ÑY , which is the exact behaviour exhibited

in Figure 6.6c.
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6.4 R-parity violating Yukawa couplings: allowed re-

gions and comparison to data

In this section we focus on calculating the RPV Yukawa coupling constant at the

GUT scale, which may be directly compared to the experimental limits, using

the methods and results of the previous two sections. As a point of notation,

we have denoted the RPV Yukawa coupling at the GUT scale to be generically

yRPV , independently of flavour or operator type indices. This coupling may be

directly compared to the phenomenological RPV Yukawa couplings at the GUT

scale λijk, λ
′
ijk and λ′′ijk as defined below.

Recall that, in the weak/flavour basis, the superpotential generically includes

RPV couplings, in particular:

W ⊃ 1

2
λijkLiLje

c
k + λ′ijkLiQjd

c
k +

1

2
λ′′ijku

c
id
c
jd
c
k (6.58)

In the local F-theory framework, each of the above Yukawa couplings (generically

denoted as yRPV ) is computable through Eq. (6.55). What distinguishes different

RPV couplings, say λ from λ′, are the values of the flux densities, namely the

hypercharge flux. This is because the normalization of matter curves depends

on the hypercharge flux density. As such, different SM states will have different

hypercharges and consequently different respective normalization coefficient.

Even though a given SO(12) enhancement point can in principle support dif-

ferent types of trilinear RPV interactions, the actual effective interactions arising

at such point depend on the local chiral spectrum present at each curve. For

example, in order to have an LLec interaction, both Σa and Σc curves need to

have chiral L states, and the Σb curve an ec state at the enhancement point.

In Figure 6.7 we show contours on the (Na,Nb) plane for the different types of

trilinear RPV couplings.

The local spectrum is assessed by local chiral index theorems [36]. In Ap-

pendix C.2 we outline the results for the constraints on flux densities such that

different RPV points are allowed at a given SO(12) enhancement point. These
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results are graphically presented in Figure 6.8. Thus, the green coloured region is

associated with the 1035̄15̄1 operator of this Table, the blue colour with 1015̄35̄3,

the pink with 1025̄45̄4 and so on. Thus different regions of the parameter space

can support different types of RPV interactions at a given enhancement point.

We can then infer that in F-theory the allowed RPV interactions can, in principle,

be only a subset of all possible RPV interactions.

In the limiting cases where only one coupling is turned on, one can derive

bounds on its magnitude at the GUT scale from low-energy processes [225]. In

order to do so, one finds the bounds at the weak scale in the mass basis, performs

a rotation to the weak basis and then evaluates the couplings at the GUT scale

with the renormalisation group equation. Since the effects of the rotation to

the weak basis in the RPV couplings requires a full knowledge of the Yukawa

matrices, we assume that the mixing only happens in the down-quark sector as

we are not making any considerations regarding the up-quark sector in this work.

Table 6.3 shows the upper bounds for the trilinear RPV couplings at the GUT

scale.

The bounds presented in Table 6.3 have to be understood as being derived

under certain assumptions regarding mixing and points of the parameter space

[99, 226]. For example, the bound on λ12k can be shown to have an explicit

dependence on
m̃ek,R

100 GeV
(6.59)

where m̃ek,R refers to a ‘right-handed’ selectron soft-mass. The values presented

in Table 6.3, as found in [225], were obtained by setting the soft-masses to 100

GeV, which are ruled out by more recent LHC results [227–232] . By assuming

heavier scalars, for example around 1 TeV, we would then get the bounds in Table

6.3 to be relaxed by one order of magnitude.

The results show that the λ type of coupling, corresponding to the LLec

interactions, is constrained to be < 0.05 regardless of the indices taken. The red

regions of Figures 6.11a and 6.9 show the magnitude of the coupling where it is

allowed. A similar analysis can be carried out for the remaining couplings. The
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ijk λijk λ′ijk λ′′ijk
111 - 1.5× 10−4 -
112 - 6.7× 10−4 4.1× 10−10

113 - 0.0059 1.1× 10−8

121 0.032 0.0015 4.1× 10−10

122 0.032 0.0015 -
123 0.032 0.012 1.3× 10−7

131 0.041 0.0027 1.1× 10−8

132 0.041 0.0027 1.3× 10−7

133 0.0039 4.4× 10−4 -
211 0.032 0.0015 -
212 0.032 0.0015 (1.23)
213 0.032 0.016 (1.23)
221 - 0.0015 (1.23)
222 - 0.0015 -
223 - 0.049 (1.23)
231 0.046 0.0027 (1.23)
232 0.046 0.0028 (1.23)
233 0.046 0.048 -
311 0.041 0.0015 -
312 0.041 0.0015 0.099
313 0.0039 0.0031 0.015
321 0.046 0.0015 0.099
322 0.046 0.0015 -
323 0.046 0.049 0.015
331 - 0.0027 0.015
332 - 0.0028 0.015
333 - 0.091 -

Table 6.3: Upper bounds of RPV couplings (ijk refer to flavour/weak basis) at
the GUT scale under the assumptions: 1) Only mixing in the down-sector, none
in the Leptons; 2) Scalar masses m̃ = 100 GeV; 3) tanβ(MZ) = 5; and 4) Values
in parenthesis refer to non-perturbative bounds, when these are stronger than
the perturbative ones. This Table is reproduced from [225].
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Figure 6.7: Strength of different RPV couplings (in units of 2g
1/2
s σ) in the

(Na, Nb)-plane in the presence of Hypercharge fluxes NY = 0.1, ÑY = 3.6, and
with M = 1. The scripts a, b, c refer to which sector each state lives.

λ′ coupling, which measures the strength of the LQdc type of interactions, can

be seen in the yellow regions of Figure 6.10. Finally, the derived values for λ′′

coupling, related to the ucdcdc type of interactions, are shown in the blue regions

of Figures 6.10 and 6.11b. However these couplings shown are all expressed in

units of 2g
1/2
s σ, and so cannot yet be directly compared to the experimental

limits.

In order to make contact with experiment we must eliminate the 2g
1/2
s σ coef-

ficient. We do this by taking ratios of the couplings computed in this framework

where the 2g
1/2
s σ coefficient cancels in the ratio. The ratio between any RPV

coupling and the bottom Yukawa at the GUT scale is given by

r =
yRPV
y
b

=
y′
RPV

y′b
, (6.60)

as defined in Equation (6.56) and Equation (6.57). This ratio can be used to

assess the absolute strength of the RPV at the GUT scale as follows.

First we assume that the RPV interaction is localised in an SO(12) point

far away from the bottom Yukawa point. This allows us to use different and

independent flux densities at each point. We can then compute y′b at a point in
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Figure 6.8: Allowed regions in the parameter space for different RPV couplings.
These figures should be seen in conjunction with the allowed combinations of
R-parity violating operators.

the parameter space where the ratio yb/yτ takes reasonable values, following [34].

Finally we take the ratio, r. In certain regions of the parameter space, r is

naturally smaller than 1. This suppression of the RPV coupling in respect to the

bottom Yukawa is shown in Figures 6.12a, 6.12b, 6.12c, and 6.12d, for different

regions of the parameter space that allows for distinct types of RPV interactions.

Since r is the ratio of both primed and unprimed couplings, respectively

unphysical and physical, at the GUT scale, we can extend the above analysis to

find the values of the physical RPV couplings at the GUT scale. To do so, we

use low-energy, experimental, data to set the value of the bottom Yukawa at the

weak scale for a certain value of tanβ. Next, we follow the study in [224] to assess

177



2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Na

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

M

1.500

1.250

1.000

0
.7

5
0

0
.5

0
0

UDD

UDD

LLE

QLD+LLE

ALL

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Na

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

M

0
.2

0
0

0
.4

0
0

0.600

0
.8

0
0

1
.0

0
0

1.200

LLE

UDD

LLE

QLD+LLE

ALL

Figure 6.9: Allowed regions in the parameter space for different RPV couplings
with ÑY = −NY = 1. We have also include the corresponding contours for the
ucdcdc operator (left) and LLec (right).

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Na

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

M

0.200

0
.2

0
0

0.400

0
.4

0
0

0.600
0.800

UDD

UDD

QLD

UDD+QLD

QLD+LLE

ALL

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Na

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

M

1.200

1.000

0.800

0.600

0.400

0.200

Qb La Dc

UDD

QLD

UDD+QLD

QLD+LLE

ALL

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Na

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

M 0.250

0
.5

0
0

0
.7

5
0

1.000

1.250

Qb Lc Da

UDD

QLD

UDD+QLD

QLD+LLE

ALL

Figure 6.10: Allowed regions in the parameter space for different RPV couplings
with NY = −ÑY = 1. We have also include the corresponding contours for the
ucdcdc operator (left) and QLdc (middle and right). The scripts a, b and c refer
to which sector each state lives.

the value of the bottom Yukawa at the GUT scale through RGE runnings.

In order to make a connection with the bounds in Table 6.3, we pick tanβ = 5

and we find yb(MGUT ) ' 0.03. The results for the value of the RPV couplings

in different regions in the parameter space at the GUT scale are presented in

Figures 6.13a, 6.13b, 6.13c, and 6.13d. These results show that, for any set of

flavour indices, the strength of the coupling λ related to an LLec interaction is

within the bounds. This means that this purely leptonic RPV operator, which
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(a) LLec regions with ÑY = NY = 1
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Figure 6.11: Allowed regions in the parameter space for different RPV couplings.
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Figure 6.12: yRPV /yb ratio. The bottom Yukawa was computed in a parameter
space point that returns a reasonable yb/yτ ratio [34]

violates lepton number but not baryon number, may be present with a sufficiently

suppressed Yukawa coupling, according to our calculations. Therefore in the

future lepton number violating processes could be observed.

By contrast, only for a subset of possible flavour index assignments for baryon
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Figure 6.13: yRPV at GUT scale for tanβ = 5. The values here can be compared
directly to the bounds presented in Table 6.3.

number violating (but lepton number conserving) ucdcdc couplings are within the

bounds in Table 6.3. The constraint on the first family up quark coupling λ′′1jk for

the uc1d
c
jd
c
k interaction is so stringent, that this operator must only be permitted

for the cases uc2d
c
jd
c
k and uc3d

c
jd
c
k (corresponding to the two heavy up-type quarks

cc, tc), assuming no up-type quark mixing. However, if up-type quark mixing is

allowed, then such operators could lead to an effective uc1d
c
jd
c
k operator suppressed

by small mixing angles, in which case it could induce n− n̄ oscillations [3].

Finally the LQdc operator with Yukawa coupling λ′ apparently must be

avoided, since according to our calculations, the value of λ′ that we predict

exceeds the experimental limit by about an order of magnitude for all flavour

indices, apart from λ′333 coupling corresponding to the L3Q3d
c
3 operator. This

implies that we should probably eliminate such operators which violate both

baryon number and lepton number, using the flux mechanism that we have de-
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scribed. However in some parts of parameter space, for certain flavour indices,

such operators may be allowed leading to lepton number violating processes such

as K+ → π−e+e+ and D+ → K−e+e+.

6.5 Conclusions

In this chapter we have provided the first dedicated study of R-parity violation

(RPV) in F-theory semi-local and local constructions based on the SU(5) grand

unified theory (GUT) contained in the maximal subgroup SU(5)GUT ×SU(5)⊥ of

an E8 singularity associated with the elliptic fibration. Within this framework,

we have tried to be as general as possible, with the primary aim of making a

bridge between F-theory and experiment.

We have focused on semi-local and local F-theory SU(5) constructions, where

a non-trivial hypercharge flux breaks the GUT symmetry down to the Standard

Model and in addition renders several GUT multiplets incomplete. Acting on

the Higgs curves this novel mechanism can be regarded as the surrogate for the

doublet-triplet splitting of conventional GUTs. However, from a general perspec-

tive, at the same time the hyperflux may work as a displacement mechanism,

removing certain components of GUT multiplets while accommodating fermion

generations on other matter curves.

In the first part of the chapter we considered semi-local constructions, focus-

ing on F-theory SU(5)GUT models which are classified according to the discrete

symmetries – acting as identifications on the SU(5)⊥ representations – and ap-

pearing as a subgroup of the maximal SU(5)⊥ Weyl group S5. Furthermore, we

considered phenomenologically appealing scenarios with the three fermion gener-

ations distributed on different matter curves and showed that RPV couplings are

a generic feature of such models. Upon introducing the flux breaking mechanism,

we classified all possible cases of incomplete GUT multiplets and examined the

implications of their associated RPV couplings. Then we focused on the induced

MSSM plus RPV Yukawa sector which involves only part of the MSSM allowed

RPV operators as a consequence of the missing components of the multiplets
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projected out by the flux. Next, we tabulated all distinct cases and the type of

physical process that can arise from particular operators involving different types

of incomplete multiplets.

In the second part of the chapter we computed the strength of the RPV

Yukawa couplings, which mainly depend on the topological properties of the in-

ternal space and are more or less independent of many details of a particular

model, enabling us to work in a generic local F-theory setting. Due to their phys-

ical relevance, we paid special attention to those couplings originating from the

SU(5) operator 10 · 5̄ · 5̄ in the presence of general fluxes, which is realised at an

SO(12) point of enhancement. Then, we applied the already developed F-theory

techniques to calculate the numerical values of Yukawa couplings for bottom, tau

and RPV operators. Taking into account flux restrictions, which limit the types

of RPV operators that may appear simultaneously, we then calculated ratios of

Yukawa couplings, from which the physical RPV couplings at the GUT scale can

be determined. We have explored the possible ranges of the Yukawa coupling

strengths of the 10 · 5̄ · 5̄-type operators in a five-dimensional parameter space,

corresponding to the number of the distinct flux parameters/densities associated

with this superpotential term. Varying these densities over a reasonable range

of values, we have observed the tendencies of the various Yukawa strengths with

respect to the flux parameters and, to eliminate uncertainties from overall nor-

malization constants, we have computed the ratios of the RPV couplings to the

bottom Yukawa one. This way, using the experimentally determined mass of

the bottom quark, we compared our results to limits on these couplings from

experiment.

The results of this paper show firstly that, in semi-local F-theory constructions

based on SU(5) GUTs, RPV is a generic feature, but may occur without proton

decay, due to flux effects. Secondly, our calculations based on local F-theory

constructions show that the value of the RPV Yukawa couplings at the GUT scale

may be naturally suppressed over large regions of parameter space. Furthermore,

we found that the existence of LLec type of RPV interactions from F-Theory are
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expected to be within the current bounds. This implies that such lepton number

violating operators could be present in the effective theory, but simply below

current experimental limits, and so lepton number violation could be observed in

the future. Similarly, the baryon number violating operators ccdcjd
c
k and tcdcjd

c
k

could also be present, leading to n− n̄ oscillations. Finally some QLdc operators

could be present leading to lepton number violating processes such as K+ →

π−e+e+ and D+ → K−e+e+. In conclusion, our results suggest that RPV SUSY

consistent with proton decay and current limits may be discovered in the future,

shedding light on the nature of F-theory constructions.
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Chapter 7

Conclusions

In this thesis, semi-local F-theory GUT models have been examined, using an

SU(5) GUT group. Developing existing ideas in the literature, non-Abelian mon-

odromy groups were considered, with particular interest in a few particular sub-

groups of the S4 Weyl group of the split spectral cover. In chapter 2, the Klein

monodromy group was discussed as a candidate monodromy, leading to a model

similar to the MSSM [1]. The model was endowed with a geometric parity aris-

ing from the spectral cover equation, which eliminated the usual dimension-4

R-parity violating terms known to facilitate proton decay. This parity mecha-

nism added extra constraints when considering model building, meaning not all

models in the literature would be compatible with it, as we showed.

Chapter 3 features an SU(5) GUT model with an A4 monodromy, where the

focus of the work was to utilise the irreducible representation of the monodromy

group to generate large mixings for the neutrinos of the model [2]. This was

achieved using singlets of the GUT group, which allowed effective operators that

were invariant under the requisite symmetries. By numerically fitting the ratio

of the mass differences in the model against those from experiment, it was also

possible to predict an absolute mass scale for the neutrinos in this model, with

a prediction for the lightest neutrino being in the region of 50meV. This was

compatible with constraints from cosmology on the sum of the neutrino masses.

In keeping with this train of thought, considering subgroups of S4, in chap-
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ter 4 a D4 monodromy was applied to an SU(5) GUT [3]. Pairing this with

implementation of the geometric parity discussed in chapter 2, a model was con-

structed with a number of novel features. In particular, the geometric parity does

not eliminate the complete spectrum of R-parity violating operators, allowing the

UDD operators to remain in the model. Consequently, while proton decay can-

not occur due to the absence of the QLD operator, the model will exhibit baryon

number violating. This manifests in the form of neutron-antineutron oscillations,

which are a seldom considered R-parity violating process. The neutrino sector

of the model also has interesting features, requiring a massless lightest neutrino,

essentially setting the neutrino masses exactly.

In chapter 5 we discussed the LHC diphoton excess, which indicated a 750GeV

scalar or pseudoscalar [4]. This was shown to be compatible with an F-theory

E6 mode, based on [52–54]l, where the new particle would be identified with

bulk singlets, which arise from breaking the E6 symmetry to SU(5). The model

appears to favour a psuedoscalar to be compatible with the excess, however, the

production and decay are mediated by a combination of higgs colour triplets and

higgsinos, which would need to be below 1TeV in mass. This prediction of the

model would require the discovery of these mediating particles in order to remain

viable. More recently, new data greatly reduced the significance of the excess.

The final chapter provides an examination of the potential strength of R-

parity violating couplings in F-theory [5]. Using a local approach, the interactions

are reduced to a point of enhanced symmetry on the assumed SU(5) GUT surface.

The enhancement to a point of SO(12), previously used to calculate the bottom

and tau Yukawa couplings, was reinterpreted and reused to describe R-parity

violating couplings, which must also be an SO(12) point. An exhaustive discus-

sion of the behaviour of the coupling was then offered, with a set of conditions

for single-coupling regions of R-parity violation. This special case is important,

since in scenarios where one coupling type is isolated, the experimental bounds

are less strict. It was shown that single R-parity couplings from F-theory can

then be within the experimental limits, with some couplings on the edge of the
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natural parameter space, indicating that R-parity violation should be discovered

by experiment if the parameter space is not to be pushed to unnatural limits.

Non-Abelian monodromies have been shown to provide interesting platforms

for building models in semi-local F-theory, which has been very much under-

utilised by model builders in the literature. These monodromies should now be

explored in the context of global constructions, which may prove a challenge for

future research. The direction of the F-theory community seems to be geared

towards realising global models, so it is not a stretch to imagine that work will

be done on this matter.

Another key finding of this thesis is that R-parity violation in F-theory should

be considered a generic feature of all SU(5) models. Previously such operators

have been eliminated by ad hoc methods and assumptions that can only be justi-

fied by the anthropic principle. While we present a mechanism for removing such

operators from the spectrum, the problem should be addressed in more depth,

with the option to consider that such operators may be accommodated without

issue in the appropriate parameter space as shown in chapter 6. In the case

that R-parity is discovered by experimentalists at future experiments, F-theory

would certainly provide for such an outcome, whether or not a single coupling is

detected or a more generic spectrum of effects.

In conclusion, F-theory GUTs are an intriguing prospect for model building,

with a host of novel features that could be sought by experiment, ranging form

absolute predictions of neutrino masses to R-parity violation.
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Appendix A

Appendix: chapter 3

A.1 Block diagonalisation of A4

A.1.1 Four dimensional case

From considering the symmetry properties of a regular tetrahedron, we can see

quite easily that it can be parameterised by four coordinates and its transforma-

tions can be decomposed into a mere two generators. If we write these coordinates

as a basis for A4, which is the symmetry group of the tetrahedron, it would be of

the form (t1, t2, t3, t4)T. The two generators can then be written in matrix form

explicitly as:

S =



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


and T =



1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0


. (A.1)

However, it is well known that A4 has an irreducible representation in the form of

a singlet and triplet under these generators. If we consider the tetrahedron again,

this can be physically interpreted by observing that under any rotation through

one of the vertices of the tetrahedron the vertex chosen remains unmoved under

the transformation.1 In order to find the irreducible representation, we must note

1This is a trivial notion for the T generator, but slightly more difficult for the S generator.
In the latter case, consider fixing one vertex in place and performing the transformation about
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some conditions that this decomposition will satisfy.

In order to obtain the correct basis, we must find a unitary transformation

V that block diagonalises the generators of the group. As such, we have the

following conditions:

V SV T = S′ =



1 0 0 0

0 − − −

0 − − −

0 − − −


,

V TV T = T ′ =



1 0 0 0

0 − − −

0 − − −

0 − − −


,

V V T = I4x4 ,

(A.2)

as well as the usual conditions that must be satisfied by the generators: S2 =

T 3 = (ST )3 = I. It will also be useful to observe three extra conditions, which

will expedite finding the solution. Namely that the block diagonal of one of the

two generators must have zeros on the diagonal to insure the triplet changes

within itself.

If we write an explicit form for V,

V =



v11 v12 v13 v14

v21 v22 v23 v24

v31 v32 v33 v34

v41 v42 v43 v44


, (A.3)

we can extract a set of quadratic equations and attempt to solve for the elements

of the matrix. Note that we have assumed as a starting point that vij ∈ R∀i, j.

it.
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The complete list is included in the appendix. The problem is quite simple, but

at the same time would be awkward to solve numerically, so we shall attempt to

simplify the problem analytically first. If we start be using:

v2
11 + v2

12 + v2
13 + v2

14 = 1 ,

& 2v12v13 + 2v11v14 = 1 ,

(A.4)

we can trivially see two quadratics,

(v11 − v14)2 + (v12 − v13)2 = 0 . (A.5)

Since we assume that all our elements or V are real numbers, it must be true

then that:

v11 = v14 and v12 = v13 . (A.6)

We may now substitute this result into a number of equations. However, we chose

to focus on the following two:

v11v21 + v12v23 + v13v24 + v14v22 → v11(v21 + v22) + v12(v23 + v24) and

v11v21 + v12v24 + v13v22 + v14v23 → v11(v21 + v23) + v12(v22 + v24) .

(A.7)

Taking the difference of these two equations, we can easily see there is a solution

where v11 = v12, and as such by the previous result:

v11 = v12 = v13 = v14 = ±1

2
. (A.8)

We are free to choose whichever sign for these four elements we please, provided

they all have the same sign. This outcome reduces the number of useful equations

to twelve, as nine of them can be summarised as

∑
i

v2i =
∑
i

v3i =
∑
i

v4i = 0 . (A.9)

Let us consider the first of these three derived conditions, along with the condi-
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tions:

v2
21 + v2

22 + v2
23 + v2

24 = 1 ,

v2
21 + v22v23 + v22v24 + v23v24 = 0 .

(A.10)

Squaring the condition
∑

i v2i = 0 and using these relations, we can derive easily

that v21 = ±1
2 . Likewise we can derive the same for v31 and v41. As before, we

might chose either sign for each of these elements, with each possibility yielding

a different outcome for the basis, though our choices will constrain the signs of

the remaining elements in V.

Let us make a choice for the signs of our known coefficients in the matrix and

choose them all to be positive for simplicity. We are now left with a much smaller

set of conditions:
4∑
i=2

vji = −1

2
,

4∑
i=2

v2
ji =

3

4
and

4∑
i=2

vjivki =
1

4
,

j, k ∈ {2, 3, 4} and k 6= j .

(A.11)

After a few choice rearrangements, these coefficients can be calculated numerically

in Mathematica. This yields a unitary matrix,

V =
1

2



1 1 1 1

1 −1 −1 1

1 −1 1 −1

1 1 −1 −1


, (A.12)

up to exchanges of the bottom three rows, which arises due to the fact the triplet

arising in this representation may be ordered arbitrarily. There is also a degree

of choice involved regarding the sign of the rows. However, this is again largely

unimportant as the result would be equivalent.
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If we apply this transformation to our original basis ti, we find that we have

a singlet and a triplet in the new basis,

tsinglet = t1 + t2 + t3 + t4

ttriplet = (t1 − t2 − t3 + t4, t1 − t2 + t3 − t4 , t1 + t2 − t3 − t4) ,

(A.13)

and that our generators become block-diagonal:

S′ =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1



T ′ =



1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0


.

(A.14)
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List of Conditions

0) vij ∈ R∀i, j

1-4)
4∑
j=1

v2
ij = 1 i ∈ {1, 2, 3, 4}

5) v11v21 + v12v22 + v13v23 + v14v24 = 0

6) v11v31 + v12v32 + v13v33 + v14v34 =

7) v11v41 + v12v42 + v13v43 + v14v44 = 0

8) v21v31 + v22v32 + v23v33 + v24v34 = 0

9) v21v41 + v22v42 + v23v43 + v24v44 = 0

10) v31v41 + v32v42 + v33v43 + v34v44 = 0

11) 2v12v13 + 2v11v14 = 1

12) v11v24 + v12v23 + v13v22 + v14v21 = 0

13) v11v34 + v12v33 + v13v32 + v14v31 = 0

14) v11v44 + v12v43 + v13v42 + v14v41 = 0

15) v2
11 + v12v13 + v12v14 + v13v14 = 1

16) v11v21 + v12v24 + v13v22 + v14v23 = 0

17) v11v31 + v12v34 + v13v32 + v14v33 = 0

18) v11v41 + v12v44 + v13v42 + v14v43 = 0

19) v11v21 + v12v23 + v13v24 + v14v22 = 0

20) v11v31 + v12v33 + v13v34 + v14v32 = 0

21) v11v41 + v12v43 + v13v44 + v14v42 = 0

22) v2
21 + v22v23 + v22v24 + v23v24 = 0

23) v2
31 + v32v33 + v32v34 + v33v34 = 0

24) v2
41 + v42v43 + v42v44 + v43v44 = 0

(A.15)

A.2 Yukawa coupling algebra

Table 3.5 specifies all the allowed operators for the N = 0 SU(5) × A4 × U(1)

model discussed in the main text. Here we include the full algebra for calculation
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of the Yukawa matrices given in the text. All couplings must have zero t5 charge,

respect R-symmetry and be A4 singlets. In the basis derived in Appendix A.1,

we have the triplet product:

3a × 3b = 1 + 1′ + 1′′ + 31 + 32

1 = a1b2 + a2b2 + a3b3

1′ = a1b2 + ωa2b2 + ω2a3b3

1′′ = a1b2 + ω2a2b2 + ωa3b3

31 = (a2b3, a3b1, a1b2)T

32 = (a3b2, a1b3, a2b1)T

where 3a = (a1, a2, a3)T and 3b = (b1, b2, b3)T.

A.2.1 Top-type quarks

The top-type quarks have four non-vanishing couplings, while the T ·T3 ·Hu ·θa ·θa

and T · T ·Hu · θa · θa · θb couplings vanishings due to the chosen vacuum expec-

tations: 〈Hu〉 = (v, 0, 0)T and 〈θa〉 = (a, 0, 0)T.

The contribution to the heaviest generation self-interaction is due to the T3 ·

T3 ·Hu · θa operator:

(1× 1)× (3× 3)→ 1× 1

→ 1

(T3 × T3)×Hu × θa → (T3 × T3)va

We note that this is the lowest order operator in the top-type quarks, so should

dominate the hierarchy.

The interaction between the third generation and the lighter two generations
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is determined by the T · T3 ·Hu · θa · θb operator:

(1× 1)× (3× 3)× 1→ 1× 1× 1

→ 1

T × T3 ×Hu × θa × θb → vab

The remaining, first-second generation operators give contributions, in brief:

T × T ×Hu × θa × (θb)
2 → vab2

T × T ×Hu × (θa)
3 → va3

These will be subject to Rank Theorem arguments, so that only one of the gener-

ations directly gets a mass from the Yukawa interaction. However the remaining

generation will gain a mass due to instantons and non-commutative fluxes, as

in [35] [33].

A.2.2 Charged leptons

The charged Leptons and Bottom-type quarks come from the same operators in

the GUT group, though in this exposition we shall work in terms of the Charged

Leptons. The complication for Charged leptons is that the Left-handed doublet is

an A4 triplet, while the right-handed singlets of the weak interaction are singlets

of the monodromy group. There are a total of six contributions to the Yukawa

matrix, with the third generation right-handed types being generated by two op-

erators.

The operators giving mass to the interactions of the right-handed third gener-

ation are dominated by the tree level operator F ·Hd·T3, which gives a contribution
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as:

3× 3× 1→ 1× 1→ 1

F ×Hd × T3 → y1


0 0 v1

0 0 v2

0 0 v3


Clearly this should dominated the next order operator, however when we choose a

vacuum expectation for the Hd field, we will have contributions from F ·Hd ·T3 ·θd:

3× 3× 3× 1→ 3× 3× 1→ 1

F ×Hd × θd × T3 →


0 0 y2v2d3 + y3v3d2

0 0 y2v3d1 + y3v1d3

0 0 y2v1d2 + y3v2d1


The generation of Yukawas for the lighter two generations comes, at leading order,

from the operators F ·Hd · T · θb and F ·Hd · T · θa:

F ×Hd × T × θb → y4b


v1 v1 0

v2 v2 0

v3 v3 0



F ×Hd × T × θa → y5a


0 0 0

v3 v3 0

v2 v2 0

 ,

where the vacuum expectations for θa and θb are as before. The next order of

operator take the same form, but with corrections due to the flavon triplet, θd.

F ×Hd × T × θb × θd →


y6v2d3 + y7v3d2 y6v2d3 + y7v3d2 0

y6v3d1 + y7v1d3 y6v3d1 + y7v1d3 0

y6v1d2 + y7v2d1 y6v1d2 + y7v2d1 0


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F ×Hd × T × θa × θd → a


y8v1d1 + y10v2d2 + y11v3d3 y8v1d1 + y10v2d2 + y11v3d3 0

y12v1d2 y12v1d2 0

y9v1d3 y9v1d3 0


A.2.3 Neutrinos

The neutrino sector admits masses of both Dirac and Majorana types. In the

A4 model, the right-handed neutrino is assigned to a matter curve constituting

a singlet of the GUT group. However it is a triplet of the A4 family symmetry,

which along with the SU(2) doublet will generate complicated structures under

the group algebra.

Dirac Mass Terms

The Dirac mass terms coupling left and right-handed neutrinos comes from a

maximum of four operators. The leading order operators are θc · F ·Hu · θb and

θc · F ·Hu · θa, where as we have already seen the GUT singlet flavons θa and θb

are used to cancel t5 charges. The right-handed neutrino is presumed to live on

the GUT singlet θd .

200



The first of the operators, θc · F ·Hu · θb, contributes via two channels:

3× 3× 3× 1→ 3× 3a × 1→ 1× 1

→


c1

c2

c3

×


F2v3

F3v1

F1v2

× b→ y8b


0 0 v2

v3 0 0

0 v1 0


3× 3× 3× 1→ 3× 3b × 1→ 1× 1

→


c1

c2

c3

×


F3v2

F1v3

F2v1

× b→ y9b


0 v3 0

0 0 v1

v2 0 0


With the VEV alignments 〈θa〉 = (a, 0, 0)T and 〈Hu〉 = (v, 0, 0)T, we have a total matrix for the operator:

→


0 0 0

0 0 y9bv

0 y8bv 0


The second leading order operator, θc ·F ·Hu · θa, is more cimplicated due to the

presence of four A4 triplet fields. The simpelst contribution to the operator is:

(3× 3)× (3× 3)→ 1× 1

→


y1(v1a1 + v2a2 + v3a3) 0 0

0 y1(v1a1 + v2a2 + v3a3) 0

0 0 y1(v1a1 + v2a2 + v3a3)

 ,

which only contributes to the diagonal. This is accompanied by two similar
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operators in the way of:

(3× 3)× (3× 3)→ 1′ × 1′′

→ (c1F1 + ωc2F2 + ω2c3F3)× (v1a1 + ω2v2a2 + ωv3a3)

→ y2


v1a1 0 0

0 v2a2 0

0 0 v3a3


(3× 3)× (3× 3)→ 1′′ × 1′

→ (c1F1 + ω2c2F2 + ωc3F3)× (v1a1 + ωv2a2 + ω2v3a3)

→ y3


v1a1 0 0

0 v2a2 0

0 0 v3a3

 .

The remaining contribtuions are the complicated four-triplet products. However,

upon retaining to our previous vacuum expectation values, these will all vanish,

leaving an overall matrix of:

→


y0va 0 0

0 y1va 0

0 0 y1va


Where y0 = y1 + y2 + y3 as before. These contributions will produce a large

mixing between the second and third generations, however they do not allow for

mixing with the first generation.

Corrections from the next order operators will give a weaker mixing with the

first generation. These correcting terms are θc ·F ·Hu ·θd ·θb and θc ·F ·Hu ·θd ·θa,

though we choose to only consider the first of these two operators, since the flavon

θa will generate a very complicated structure, hindering computations with little

obvious benefit in terms of model building. The θc · F ·Hu · θd · θb operator has
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of diagonal contributions as:

(3× 3)× (3× 3)× 1→ 3a × 3x × 1→ 1

θc × F ×Hu × θd × θb →


c2F3

c3F1

c1F2

×


0

0

vd2

× b

→


0 0 0

z1vd2b 0 0

0 0 0

 .

This is mirrored by similar combinations from the other 3 triplet-triplet combi-

nations allowed by the algebra. Overall, this gives:

→


0 z3vd2b z2vd3b

z1vd2b 0 0

z4vd3b 0 0

 .

Due to the choice of Higgs vacuum expectation, the diagonal contributions will

only correct the first generation mass, giving a contribution to it ∼ vd1b.

Majorana operators

The right-handed neutrinos are also given a mass by Majorana terms. These are

as it transpires relatively simple. The leading order term θc · θc, gives a diagonal

contribtuion:

3× 3→ 1

θc · θc →M I3×3
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There may also be corrections to the off diagonal, due to operators such as θc·θc·θd.

These yield:

3× 3× 3→ 3× 3→ 1

θc × θc × θd →


0 d3 d2

d3 0 d1

d2 d1 0

 ,

Higher orders of the flavon θd are also permitted, but should be suppressed by

the coupling.

A.3 Flux mechanism

For completeness, we discribe here in a simple manner the flux mechanism intro-

duced to break symmetries and generate chirality.

• We start with the U(1)Y -flux inside of SU(5)GUT .

The 5’s and 10’s reside on matter curves Σ5i ,Σ10j while are characterised

by their defining equations. From the latter, we can deduce the corresponding

homologies χi following the standard procedure. If we turn on a U(1)Y -flux FY ,

we can determine the flux restrictions on them which are expressed in terms of

integers through the “dot product”

NYi = FY · χi

The flux is responsible for the SU(5) breaking down to the Standard Model and

this can happen in such a way that the U(1)Y gauge boson remains massless [15,

18]. On the other hand, flux affects the multiplicities of the SM-representations

carrying non-zero U(1)Y -charge.

Thus, on a certain Σ5i matter curve for example, we have

5 ∈ SU(5)⇒


n(3,1)− 1

3

− n(3̄,1) 1
3

= M5

n(1,2) 1
2

− n(1,2)− 1
2

= M5 +NYi

(A.16)
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where NYi = FY · χi as above. We can arrange for example M5 + NYi = 0 to

eliminate the doublets or M5 = 0 to eliminate the triplet.

• Let’s turn now to the SU(5)× S3. The S3 factor is associated to the three

roots t1,2,3 which can split to a singlet and a doublet

1S3 = ts = t1 + t2 + t3, 2S3 = {t1 − t2, t1 + t2 − 2t3}T

It is convenient to introduce the two new linear combinations

ta = t1 − t3, tb = t2 − t3

and rewrite the doublet as follows

2S3 =

 ta − tb

ta + tb

 →
 −tb

+tb


ta

(A.17)

Under the whole symmetry the SU(5)GUT 10ti , i = 1, 2, 3 representations trans-

form

(10,1S3) + (10,2S3)

Our intention is to turn on fluxes along certain directions. We can think of

the following two different choices:

1) We can turn on a flux Na along ta
2. The singlet (10,1S3) does not trans-

form under ta, hence this flux will split the multiplicities as follows

10ti ⇒

 (10,1S3) = M

(10,2S3) = M +Na

(A.18)

This choice will also break the S3 symmetry to Z3.

2) Turning on a flux along the singlet direction ts will preserve S3 symmetry.

2In the old basis we would require Nt1 = 2
3
Na and Nt2 = Nt3 = − 1

3
Na.
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The multiplicities now read

10ti ⇒

 (10,1S3) = M +Ns

(10,2S3) = M
(A.19)

To get rid of the doublets we choose M = 0 while because flux restricts non-

trivially on the matter curve, the number of singlets can differ by just choosing

Ns 6= 0.
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A.4 The b1 = 0 constraint

To solve the b1 = 0 constraint we have repeatidly introduced a new section a0 and

assumed factorisation of the involved ai coefficients. To check the validity of this

assumption, we take as an example the S3×Z2 case, where b1 = a2a6 +a3a5 = 0.

We note first that the coefficients bk are holomorphic functions of z, and as such

they can be expressed as power series of the form bk = bk,0 + bk,1z + · · · where

bk,m do not depend on z. Hence, the coefficients ak have a z-independent part

ak =
∑
m=0

ak,mz
m

while the product of two of them can be cast to the form

al ak =
∑
p=0

βp z
p, with βp =

p∑
n=0

alnak,p−n

Clearly the condition b1 = a2a6 + a3a5 = 0 has to be satisfied term-by-term.

To this end, at the next to zeroth order we define

λ =
a3,1a5,0 + a2,1a6,0

a5,1a6,0 − a5,0a6,1
(A.20)

The requirement a5,1a6,0 6= a5,0a6,1 ensures finiteness of λ, while at the same time

excludes a relation of the form a5 ∝ κa6 where κ would be a new section.

We can write the expansions for a2, a3 as follows

a2 = λa5,0 + a2,1z +O(z2)

a3 = −λa6,0 + a3,1z +O(z2)

(A.21)

The b1 = 0 condition is now

b1 = 0 + 0 z +O(z2)

i.e., satified up to second order in z. Hence, locally we can set z = 0 and simply
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write

a2 = λ a5, a3 = −λ a6
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Appendix B

Appendix: chapter 4

B.1 Irreducible representations of D4

Since we have four weights related, the representation of the 10s of the GUT

group will be quadruplets of D4: (t1, t2, t3, t4)T. Physically we may take each of

these weights to represent a corner of a square (or an equivalent interpretation).

These weights will transform in this representation such that the two genera-

tors required to describe all possible transformations are equivalent to a rotation

about the center of the square of π
2 and a reflection about a line passing through

the center - say the diagonal running between the top right and bottom left cor-

ners (see Figure B.1).
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The two generators are:

a =



0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0


, (B.1)

b =



1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0


. (B.2)

These generators must obey the general conditions for dihedral groups, which for

D4 are:

a4 = b2 =I (B.3)

b · a · b =a−1 (B.4)

It is trivial to see that these conditions are obeyed by our generators. In order to

obtain the irreducible representations we should put this basis into block-diagonal

form, which is achieved by applying the appropriate unitary matrices.

a b

d c

Figure B.1: A physical representation of the symmetry group D4. The dashed
line shows a possible reflection symmetry, while it also has a rotational symmetry
if rotated by nπ

2 .

210



Since D4 is known to have a two-dimensional irreducible representation, we

might assume that our four-dimensional case can be taken to a block diagonal

form including either a doublet and two singlets or two doublets via a unitary

transformation.

If we initially assume two doublets, then we may put some conditions on our

unitary matrix:

A′ =U ·A · UT =



− − 0 0

− − 0 0

0 0 − −

0 0 − −


(B.5)

B′ =U ·B · UT =



− − 0 0

− − 0 0

0 0 − −

0 0 − −


(B.6)

I =U · UT . (B.7)

If we make use of these conditions, there are a number of equivalent solutions for

U , one of which is:

U =
1√
2



1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1


. (B.8)
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This matrix will give a block diagonal form for the generators. Explicitly this is:

A′ =



0 1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0


, (B.9)

B′ =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


, (B.10)



t1

t2

t3

t4


→ 1√

2



t1 + t3

t2 + t4

t1 − t3

t2 − t4


. (B.11)

A cursory examination reveals that the conditions for D4 are still fulfilled by this

new basis, and it would seem that at a minimum we have two doublets of the

group. However we shall now examine if one of the doublets decomposes to two

singlets.

B.1.1 D4 representations for GUT group antisymmetric repre-

sentation

The upper block of the B′ generator takes the form of the identity, so we might

suppose that the first of our two doublets could decompose into two singlets.

Using the same conditions as for the four-dimensional starting point, which can
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be enforced on the two-dimensional case, we can find easily that:

V =
1√
2

 1 1

1 −1

 (B.12)

A′′ =

 1 0

0 −1

 (B.13)

B′′ =

 1 0

0 1

 (B.14)

1√
2

 t1 + t3

t2 + t4

→ 1

2

 t1 + t2 + t3 + t4

t1 − t2 + t3 − t4

 (B.15)

It would seem then in this case that the four-dimensional representation of D4 can

be reduced to a doublet and two singlets forming an irreducible representation.

The type of the singlets can be determined by examination of the conjugacy

classes of the group, which reveals that the upper singlet is of the type 1++,

while the lower is 1+−. Table 2 summarising the representations of the tens.

B.1.2 D4 representations for GUT group fundamental represen-

tation

The roots of the five-curves can also be described in terms of the roots:

ti + tj = 0∀i 6= j . (B.16)

which gives a total of ten solutions, though these will be related by the discrete

group. Under the D4 symmetry, we can see trivially that since the weight t5 is

chosen to be the invariant root, all the roots corresponding to the fives of the

form ti+ t5 will transform separately to the i, j 6= 5 roots. In fact, these will form

a doublet and two singlets: 1++ and 1+−.
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The remaining six roots of P5 can be constructed into a sextet:

R6 =



t1 + t3

t2 + t4

t1 + t2

t3 + t4

t1 + t4

t2 + t3


. (B.17)

By construction, we have arranged that the array manifestly has block diagonal

generators, A and B, such that the first two lines have generators:

A =

 0 1

1 0

 B =

 1 0

0 1

 . (B.18)

We can again refer to the previous results to see that this reduces to two singlets:

1++ and 1+−.

The remaining quadruplet has generators:

A =



0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0


B =



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


, (B.19)

which we can block diagonalise using the unitary matrix:

U =
1√
2



1 1 0 0

0 0 1 1

−1 1 0 0

0 0 1 −1


. (B.20)

214



This gives two blocks, which are distiniguished principally by their A generators:

A′ =



0 1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0


B′ =



0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


. (B.21)

The upper block can be further diagonalised to yield two singlets, using the

unitary matrix:

Vu =
1√
2

 1 1

1 −1

 , (B.22)

A′′u = B′′u =

 1 0

0 1

 , (B.23)

which, after consulting a character table for the group, returns two singlets of

the type 1++.

The lower block can be rotated into the usual doublet basis by the matrix:

Vd =
1√
2

 1 1

−1 1

 . (B.24)

The full set of states arising from the five-curves is given in Table 4.4.

B.1.3 D4 representations for GUT group singlet spectrum

The singlets in F-theory correspond to differences of weights of the perpendicular

group:

±(ti − tj) ∀i 6= j .

As such in the case of an SU(5) GUT group we have a total of 20 possible singlets

allowed on the GUT surface. Note that four of the singlets have no weight. In the
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case where four of the roots are related by a D4, the singlets can be considered

to split into two different sets:

±(ti − tj) = 0 ,

±(ti − t5) = 0 ,

i 6= j .

This is obvious given that we consider t5 not to transform with the D4 action.

±(ti − t5)

In the event ti − t5 is considered we can essentially ignore the t5 weight, since

it doesn’t transform. Then we can immediately refer to the known result for

decomposing the 10s of the GUT group:



t1 − t5

t2 − t5

t3 − t5

t4 − t5


→ 1−t5++ + 1−t5+− + 2−t5

The diagonalising matrix is:

U =
1

2



1 1 1 1

1 −1 1 −1
√

2 0 −
√

2 0

0
√

2 0 −
√

2



For t5 − ti, we expect a similar decomposition by symmetry. However, if we

decompose to the same generators as the ti − t5 case, then the ti charges are

negative.
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±(ti − tj)

The t5-free singlet combinations fill out 12 combinations. In the “traditional ”

interpretation of a monodromy group in F-theory, these would all be weightless.

I.e. because we identify ti (with i = 1, 2, 3, 4) under our monodromy group action

they would all have ti − ti = 0.

However, in the case that we have a non-Abelian group such as D4 the weights

are not directly identified. In this case the irreducible representations appear to

be important. We can treat these in a few “clusters”, which will simplify block

diagonalising. Firstly:



t1 − t3

t2 − t4

t3 − t1

t4 − t2


→



t4 − t2

t1 − t3

t1 + t3

t2 + t4


The upper-block is manifestly a doublet of the type already encountered in other

part of the spectrum, while the lower part can be rotate into a basis with a trivial

singlet and a non trivial singlet: 1++ and 1+−.

The remaining weight combinations have a symmetry under exchange of i→

−i that allows them to be decomposed into two sets:

±



t1 − t2

t2 − t3

t3 − t4

t4 − t1


(B.25)
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D4 rep. t5 ti Type

1++ −1 t1 + t2 + t3 + t4 θα
1+− −1 t1 − t2 + t3 − t4 θβ

2 −1

(
t4 − t2
t1 − t3

)
θγ

1++ +1 −t1 − t2 − t3 − t4 θ′α
1+− +1 −t1 + t2 − t3 + t4 θ′β

2 +1

(
t2 − t4
t3 − t1

)
θ′γ

1++ 0 t1 + t2 + t3 + t4 θ1

1+− 0 t1 − t2 + t3 − t4 θ2

1+− 0 −t1 + t2 − t3 + t4 θ2

1−− 0 −t1 − t2 − t3 − t4 θ3

2 0

(
t2 − t4
t3 − t1

)
θ4

1+− 0 t1 − t2 + t3 − t4 θ2

1−− 0 t1 + t2 + t3 + t4 θ3

2 0

(
t4 − t2
t1 − t3

)
θ4

Table B.1: The complete list of the irreducible representations of D4 obtained by
block diagonalizing the singlets of the GUT group. Each of these GUT singlets is
duly labeled θi to classify them, since some appear to be in some sense degenerate.

These can be decomposed into a doublet and two singlets by:

U =
1

2



0
√

2 0 −
√

2

−
√

2 0
√

2 0

1 −1 1 −1

1 1 1 1


(B.26)

The interesting result here is that the singlets are of the types: 1+− and 1−−,

which is unique to our singlet sector. A complete list of the singlet spectrum is

given in Table B.1

B.1.4 Basic galois theory

According to Galois theory if L is the splitting field of a separable polynomial

P ∈ F [x], then the Galois group Gal(L/F) is associated with the permutations

of the roots of P . Let P has degree n. Then in L[x] we can write the P as the
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product

P (x) = c(x− t1) . . . (x− tn) (B.27)

where c 6= 0 and the roots t1, . . . tn ∈ L are distinct. In this situation we get a

map

Gal(L/F)→ Sn

which is a one-to-one group homomorphism. Important rôle in the determination

of the Galois group of a polynomial plays the discriminant, which is a symmetric

function of the roots ti. The discriminant ∆(P ) ∈ F of a (monic) polynomial

P ∈ F [x] with P = (x− t1) . . . (x− tn) in a splitting field L of P is

∆(P ) =
∏
i<j

(ti − tj)2. (B.28)

Another useful object is the square root of the discriminant:

√
∆(P ) =

∏
i<j

(ti − tj) ∈ L. (B.29)

Note that while ∆ is uniquely determined by P , the above square root depends

on how the roots are labeled. It is obvious that the
√

∆(P ) controls the relation

between Gal(L/F) and the alternating group An ⊂ Sn. More precisely, the image

of Gal(L/F) lies in An if and only if
√

∆(P ) ∈ F (i.e., ∆(P ) is the square of an

element of F). In our case we deal with a fourth degree polynomial corresponding

to the spectral surface C4, hence our starting point is S4 and A4.

To reduce further the S4/A4 down to their subgroups (D4, Z4 and V4) we

need the service of the so called resolvent cubic of P

R3 = (x− x1)(x− x2)(x− x3) (B.30)

where now the xi’s are symmetric polynomials of the roots with
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∆(P ) R3 in F Gal(L/F)

6= � irreducible S4

= � irreducible A4

6= � reducible D4 or Z4

= � reducible V4

Table B.2: The Galois groups for the various cases of the discriminant and the
reducibility of the cubic resolvent R3.

x1 = t1t2 + t3t4, x2 = t1t3 + t2t4, x3 = t3t2 + t1t4 (B.31)

A permutation of the indices carries x1 to one of the three polynomials xi, i=1,2,3.

Since S4 has order 24, the stabilizer of x1 is of order 8, it is one of the three

dihedral groups D4. Also, ∆(R3) = ∆(P ), so when P is separable so is R3.

Using the discriminant and the reducibility of the cubic resolvent we can correlate

the groups S4, D4, Z4, A4 and V4 with the Galois group of a quartic irreducible

polynomial. The analysis above with respect to ∆(P ) and R3 is summarized in

Table B.2.
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B.2 Flatness conditions

In order to obtain a realistic model we use the SU(5) singlets which acquire VEV’s

. Any such VEV’s should be consistent with F and D flatness conditions. Singlets

spectrum in F-Theory is described by the equation

∏
i 6=j

(ti − tj) = 0

where the product is the discriminant of the spectral cover polynomial. By calcu-

lating the discriminant using the b1 = 0 constraint as well as the splitting options

we end up with the following equation

a0a
3
2a

2
7

(
−a3

7κ− a2a
2
7λµ

2 + 2a0a
3
2µ

4 + a2a
2
7µ
)

2

(
256a2

0a
3
7a

2
2κ

3 + 128a0a
4
7a2κ

2λ2 + 144a2
0a

2
7a

3
2κ

2λµ2 + 27a3
0a

5
2κ

2µ4 + 192a2
0a

2
7a

3
2κ

2µ+ 16a5
7κλ

4

+4a0a
3
7a

2
2κλ

3µ2 − 18a2
0a7a

4
2κλµ

3 − 144a0a
3
7a

2
2κλ− 6a2

0a7a
4
2κµ

2 − 4a4
7a2λ

3 − a0a
2
7a

3
2λ

2µ2

+18a0a
2
7a

3
2λµ− 80a0a

3
7a

2
2κλ

2µ+ 4a2
0a

5
2µ

3 + 27a0a
2
7a

3
2

)
= 0 (B.32)

As we can see we have nine factors, four of which correspond to a negative

parity (the a0 factor, the double factor
(
−a3

7κ− a2a
2
7λµ

2 + 2a0a
3
2µ

4 + a2a
2
7µ
)

and

256a2
0a

3
7a

2
2κ

3 + . . . ).

B.2.1 F -flatness

In general the Superpotential for the massless singlet fields (θij ≡ θti−tj ) is given

by

W = µijkθijθjkθki (B.33)

and the F-flatness conditions are given by :

∂W
∂θij

= µijkθjkθki = 0. (B.34)
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Wθ = µ1θ1θαθ
′
α + µ2θ1θβθ

′
β + µ3θ1θγθ

′
γ + µ4θ3θγθ

′
γ

+ λ1θ4θγθ
′
α + λ2θ4θ

′
γθα + λ3θ

′
4θ
′
γθβ + λ4θ

′
4θγθ

′
β

+ λ5θ2θαθ
′
β + λ6θ2θ

′
αθβ + λ7θ2θ4θ

′
4 (B.35)

where all the singlets have positive parity except the θβ, θ′β, θ2 and θ′4. Here with

θ4 we mean the θa (θ′4corresponds to νR).

Minimization of the superpotential leads to the following equations:

∂W
∂θ1

= µ1θαθ
′
α + µ2θβθ

′
β + µ3θγθ

′
γ = 0

∂W
∂θ2

= λ5θαθ
′
β + λ5θ

′
αθβ + λ7θ4θ

′
4 = 0

∂W
∂θ3

= µ4θγθ
′
γ = 0

∂W
∂θ4

= λ1θγθ
′
α + λ2θ

′
γθ
′
α + λ7θ2θ

′
4 = 0

∂W
∂θ′4

= λ3θ
′
γθβ + λ4θγθ

′
β + λ7θ2θ4 = 0

∂W
∂θα

= µ1θ1θ
′
α + λ2θ4θ

′
γ + λ5θ2θ

′
β = 0

∂W
∂θ′a

= µ1θ1θα + λ1θ4θγ + λ6θβθ2 = 0

∂W
∂θβ

= µ2θ1θ
′
β + λ3θ

′
4θ
′
γ + λ6θ2θ

′
α = 0

∂W
∂θ′β

= µ2θ1θβ + λ4θ
′
4θγ + λ5θ2θα = 0

∂W
∂θγ

= µ3θ1θ
′
γ + µ4θ3θ

′
γ + λ1θ4θ

′
α + λ4θ

′
4θ
′
β = 0

∂W
∂θ′γ

= µ3θ1θγ + µ4θ3θγ + λ2θ4θα + λ3θ
′
4θb = 0

As we can see we have a system of 11-equations. Solving the system with the

requirements 〈θ′4〉 = 0→ 〈ν1〉 = 〈ν2〉 = 0 and 〈θ2〉 = 0 we end up with a number

of solutions. The most palatable solution gives the following relations between

the VEV’s,
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〈θα〉2 ≡ α2 = 2
λ1µ3

λ2µ1
γ1γ2 (B.36)

a2
1 =

µ1µ3

2λ1λ2

γ1〈θ1〉
γ2

and a2
2 =

µ1µ3

2λ1λ2

γ2〈θ1〉
γ1

(B.37)

〈θ3〉 =
µ2

µ3
〈θ1〉 (B.38)

with all the other singlet VEV’s equal to zero, except the 〈θβ〉 which will be

designated by D-flatness condition. Notice that equation (B.36) gives α2 = 2γ1γ2

for λ1µ3 = λ2µ1. We should also observe that combining the equations in (B.37)

we have a1γ2 = ±a2γ1.

B.2.2 D-flatness

The D-flatness condition for an anomalous U(1) is given by

∑
i,j

QAij
(
|〈θij〉|2 − |〈θji〉|2

)
= −TrQ

A

192π2
g2
sM

2
s (B.39)

where QAij are the singlet charges and the trace TrQA is over all singlet and non-

singlet states. The D-flatness conditions must be checked for each the U(1)′s. In

our case we have a D4 symmetry and one U(1). The trace in the SU(5) case has

the general form

TrQA = 5
∑

nij(ti − tj) + 10
∑

nktk +
∑

mij(ti − tj) (B.40)

The coefficients nij , nk and mij corresponds to the MU(1) multiplicities. Only the

curves with a t5 charge contributes to the relation since the tl=1,2,3,4 are subject

to the D4 rules. Using this information, the computation of the trace gives:

TrQ = (m′α +m′β + 2m′γ −mα −mβ − 2mγ − 5)t5 (B.41)

where the mi,m
′
i are the (unknown) multiplicities of the singlets θi and θ′i, with
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i = α, β, γ. Inserting the trace in the relation (B.39) we end up with the following

equation

|θ′α|2 − |θα|2 + |θ′β|2 − |θβ|2 + |θ′γ |2 − |θγ |2 = (5− m̃α − m̃β − 2m̃γ)X (B.42)

where m̃i ≡ m′i −mi and X = g2sM
2
s

192π2 . By using the results of the F-flatness

conditions the last relation takes the form

α2 + β2 + 2γ1γ2 = (m̃α + m̃β + 2m̃γ − 5)X (B.43)

which gives an estimation for the β VEV ,

β2 = M̃X −
(

1 +
µ1λ2

µ3λ1

)
α2 ≈ M̃X − 2α2 (B.44)

where we make use of the equation (B.36) and the approach λ1µ3 ≈ λ2µ1 in

the last step. Finally for shorthand we have set M̃ ≡ m̃α + m̃β + 2m̃γ − 5.

Checking equation (B.44) we see that M̃ is a positive number and as a result

m̃α + m̃β + 2m̃γ > 5.

Summarizing, equations (B.36,B.37,B.38) and (B.44) show us that controlling

the scale of γ1,2 and 〈θ1〉 we can have an estimation of the scale of all the singlets

participating in the model.

B.3 An alternative polynomial

Another resolvent cubic that shares its discriminant with the quartic polynomial

can be built using the following three roots:

z1 = (t1 + t2)(t3 + t4), z2 = (t1 + t3)(t2 + t4), z3 = (t1 + t4)(t2 + t3) (B.45)
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with the two symmetric polynomial set-ups related as follows :

z1 = x2 + x3, z2 = x1 + x3, z3 = x1 + x2. (B.46)

To see that the two discriminants coincide, note that the differences for each set

of symmetric polynomials are related as:

xi − xj = −(zi − zj) (B.47)

and since the discriminant can be expressed as products of these difference it is

trivial to see that the two must coincide:

∆ =
∏
i 6=j

(zi − zj) =
∏
i 6=j

(xi − xj) . (B.48)

In this case the cubic resolvent polynomial has the form:

g(s) = a
−3/2
5 [(a5s)

3−2a3(a5s)
2 +(a2

3 +a2a4−4a1a5)a5s+(a2
2a5−a2a3a4 +a1a

2
4)] .

(B.49)

And we can see that by setting g(0) = 0 we obtain the following condition:

a2
2a5 − a2a3a4 + a1a

2
4 = 0 . (B.50)

Substituting the above condition in the equation of the fives the result is zero,

which is not a surprising result since the three symmetric functions of the roots,

zi, can be used to rewrite the equation of the GUT fives as:

P5 =
∏
i,j

(ti + tj) = z1z2z3

4∏
i

(ti + t5) = −g(0)

4∏
i

(ti + t5). (B.51)

If we substitute this new condition into the discriminant we find that it now

reads:

∆ ∝ 4 (4a1a5 − a2a4)
(
a2

3 + a2a4 − 4a1a5

)
2 (B.52)
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Combined with the constraint for tracelessness of the GUT group1, b1 = 0,

the condition becomes:

g(0) = 0→ a7a
2
2 + a3a6a2 = a0a1a

2
6 . (B.53)

Correspondingly the fives of the GUT group now have an equation that factors

into only two parentheses,

P5 =
(
a7a

2
2 + a3a6a2 − a0a1a

2
6

) (
a3a

2
6 + a7 (a2a6 + a1a7)

)
→ PaPb , (B.54)

where, the first factor vanishes due to the constraint and corresponds to the roots

z1z2z3 = 0.

In this relation it is clear that the trivial condition g(0) = 0 automatically leads

to P5 = 0. So we need a more general factorisation for the cubic polynomial. In

general a cubic is reducible if it can be factorised as a linear and a quadratic part.

B.4 Matter parity from geometric symmetry

One of the major issues in supersymmetric GUT model building is the appear-

ance of dimension four violating operators leading to proton decay at unaccept-

able rates. The problem is usually solved by introducing the concept of R-parity

which is a suitable discrete symmetry preventing the appearance of baryon and

lepton four-dimensional non-conserving operators in the Lagrangian. R-parity is

equivalent to a Z2 symmetry, which is the simplest possibility. However, other

discrete symmetries in more involved models may be useful as well. The imple-

mentation of such a scenario in String and F-theory models in particular has been

the subject of considerable recent work.

In our present approach we have constantly dealt with non-Abelian discrete

symmetries which were used to organise the fermion mass hierarchies and in par-

1{a4 → a0a6, a5 → −a0a7}
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ticular the neutrino mass textures aiming to reconcile the current experimental

data. At the same time, they are also expected to suppress flavour changing

operators. Phenomenological investigations however, have shown that additional

discrete symmetries may account for the rare flavour decays in a more elegant

manner. This fact could be used as an inspiration to search for discrete symme-

tries of different origin in the present constructions.

Indeed, a thorough study of the effective F-theory models the last few years

has uncovered a plentiful source of such symmetries which may arise from the

internal geometry and the fluxes. We will present such a mechanism (firstly pro-

posed in [58] and implemented on specific GUT constructions in [55]) in what

follows.

In constructing models in F-theory the relevant data originate form the ge-

ometric properties of the Calabi-Yau four-fold X and the G4-flux. Therefore, if

we wish to obtain a Z2 (or some other discrete) symmetry of geometric origin,

in principle we need to impose it on the (X,G4) pair. It is not easy to prove the

existence of such symmetries globally. Nevertheless for the local model construc-

tions we are interested in it is sufficient to work out such a symmetry in the local

geometry around the GUT divisor SGUT , which in our case corresponds to an

SU(5) singularity. This incorporates the concept of the spectral surface.

Indeed, in the weakly coupled limit of F-theory, the supersymmetric config-

urations of the effective theory can be described in terms of the adjoint scalars

and the gauge fields. A convenient simplification is based on the spectral cover

description where the Higgs is replaced by its eigenvalues and the bundle by the

corresponding eigenvectors. Since our primary interest is the reduction of E8 to

SU(5)×SU(5)⊥ we focus in SU(5) group where the spectral surface is described

by the equation:
5∑

k=0

bks
5−k = 0 . (B.55)

227



We consider the GUT divisor SGUT and three open patches S, T, U covering

SGUT ; we define a phase φN = 2π
N and a map σN such that:

σN : [S : T : U ] → [eiφNS : eiφNT : U ] . (B.56)

For a Z2 symmetry discussed in [58] one requires a Z2 background configuration,

with a Z2 action so that the mapping is:

σ2 : [S : T : U ]→ [−S : −T : U ] or [S : T : −U ] . (B.57)

To see if this is a symmetry of the local geometry for a given divisor, we take local

coordinates for the three trivialization patches. These can be defined as (t1, u1) =

(T/S, U/S), (s2, u2) = (S/T, U/T ) and (s3, t3) = (S/U, T/U). Assuming that

σ2(p), is the map of a point p under σ2 transformation, the corresponding local

coordinates are mapped according to

(t1, u1, ξs)|σ2(p) = (t1,−u1,−ξs)|p

(s2, u2, ξt)|σ2(p) = (s2,−u2,−ξt)|p

(s3, t3, ξu)|σ2(p) = (−s3,−t3, ξu)|p

(B.58)

This is an SU(3) rotation on the three complex coordinates which acts on

the spinors in the same way. Hence, starting from a Z2 symmetry of the three-

fold we conclude that a Z2 transformation is also induced on the spinors. The

required discrete symmetry must be a symmetry of the local geometry. This

can happen if the defining equation of the spectral surface is left invariant under

the corresponding discrete transformation. Consequently we expect non-trivial

constraints on the polynomial coefficients bk which carry the information of local

geometry.

In order to extract these constraints we focus on a single trivialization patch

and take s to be the coordinate along the fiber. Under the mapping of points
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p→ σ(p) we consider the phase transformation

s(σ(p)) = s(p) eiφ, bk(σ(p)) = bk(p) e
i(χ−(6−k)φ) . (B.59)

Under this action, each term in the spectral cover equation transforms the same

way,

bks
5−k → ei(χ−φ)bks

5−k . (B.60)

We observe that the spectral surface equation admits a continuous symmetry. A

trivial solution arises for φ = 0 where all bk pick up a common phase:

s→ s, bk → bk e
iχ (B.61)

In the general case however, the non-trivial solution accommodates a ZN sym-

metry for

φ =
2π

N
(B.62)

Thus, for N = 2, we have φ = π and the trasformation reduces to

s→ −s, bk → (−1)keiχ bk (B.63)

B.4.1 Extension to C5 → C4 × C1

In the event that the spectral cover is taken to split down to products of factors,

for example C5 → C4 × C1, this symmetry is conveyed to the matter curves by

consistency with the original spectral cover equation. It is trivial to determine

that the coefficients of C5 are related to the C4 × C1 coefficients by:

bk =
∑

n+m=12−k
aiaj (B.64)

where i 6= j. As such, we can directly write that if

an → eiψnei(3−n)φan (B.65)
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an N = 2 N = 3 N = 4 N = 5

a1 − α2 β2 γ2

a2 + α β γ
a3 − 1 1 1
a4 + α2 β3 γ4

a5 − α β2 γ3

a6 + 1 β γ2

a7 − α2 1 γ

Table B.3: ZN parities coming from geometric symmetry of the spectral cover.
In the case of C5 → C4×C1, a general phase relates the parities of a1,2,3,4,5, such
that if we flip the parity of a1 all the other ai in this chain must also change. A
similar rule applies to a6,7.

so that the product anam picks up a total phase:

anam → ei(ψn+ψm)ei(6−n−m)φanam = ei(ψn+ψm)e−i(6−k)φanam (B.66)

then provided the phases of the an coefficients satisfy χ = ψn+ψm, the symmetry

is handed down to the split spectral cover. This is trival to enforce since the

phases are independent of the index k. It can also be demonstrated that this

consistency requires the coefficients of C4 × C1 to have phases in two cycles:

ψi = ψ1 = ψ2 = · · · = ψ5 and ψj = ψ6 = ψ7, in order to be consistent with the

C5 phase.

Table B.3 shows some examples of possible parities we might assign to the

C4×C1 coefficients. In most cases, the minimal N = 2 scenario will be the most

appealing and manageable choice, though this mechanism is not confined to it.
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Appendix C

Appendix: chapter 6

C.1 Semi-local F-theory constructions: R-Parity vio-

lating couplings for the various monodromies

In this Appendix we examine the semi-local F-theory models in detail in order

to demonstrate that RPV couplings are generic or at least common. To this end

we note that:

1. We want models with matter being distributed on different curves. This

setup we call multi-curve models, in contrast to the models presented sec-

tion 4 of [49] and usually considered in other papers that compute Yukawa

couplings.

2. The models defined in this framework “choose” the Hu assignment for us,

since a tree-level, renormalizable, perturbative top-Yukawa requires the ex-

istence of the coupling

10a10a5b (C.1)

such that the perpendicular charges cancel out. As such, all the models

listed above will have a definite assignment for the curve supporting Hu,

and we do not assign the remaining MSSM states to curves, i.e. all the

remaining 5 curves will be called 5a, making clear that they are either

supporting some 5M or Hd. Furthermore, we will refer to the 10 curve
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containing the top quark as 10M .

3. The indication for existence of tree-level, renormalizable, perturbative RPV

is given by the fact we can find two couplings of the form

10a5b5c (C.2)

10d5e5f (C.3)

for (b, c) 6= (e, f), and a, d unconstrained. This happens as Hd cannot be

both supported in one of the 5b, 5c and at the same in one of the 5e, 5f .

4. We do not make any comment on flux data. The above criteria can be

evaded by switching off the fluxes such that the RPV coupling (once the

assignment of Hd to a curve is realised) disappears.

With this in mind we study the possible RPV realisations in multi-curve

models.

C.1.1 2 + 1 + 1 + 1

In this case the spectral cover polynomial splits into four factors, three linear

terms and a quadratic one. Also, due to the quadratic factor we impose a Z2

monodromy. The bestiary of matter curves and their perpendicular charges (ti)

is given in the Table 6.

Curve : 5Hu 51 52 53 54 55 56 10M 102 103 104

Charge : −2t1 −t1−t3 −t1−t4 −t1−t5 −t3−t4 t3−t5 −t4−t5 t1 t3 t4 t5

Table C.1: Matter curves and the corresponding U(1) charges for the case of a
2 + 1 + 1 + 1 spectral cover split. Note that because of the Z2 monodromy we
have t1 ←→ t2.

In this model RPV is expected to be generic as we have the following terms

1045152, 1035153, 10M5156, 1025253, 10M5255, 10M5354 (C.4)
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C.1.2 2 + 2 + 1

Here the spectral cover polynomial splits into three factors, it is the product of

two quadratic terms and a linear one. We can impose a Z2 × Z2 monodromy

which leads to the following identifications between the weights,(t1 ↔ t2) and

(t3 ↔ t4) . In this case there are two possible assignments for Hu (and 10M ), as

we can see in Table 7.

case 1
Curve 5Hu 51 52 53 54 10M 102 103

Charge −2t1 −t1−t3 −t1−t5 −t3−t5 −2t3 t1 −t3 t5

case 2
Curve 5Hu 51 52 53 54 10M 102 103

Charge −2t3 −t1−t3 −t1−t5 −t3−t5 −2t1 t3 −t1 t5

Table C.2: The scenario of a 2 + 2 + 1 spectral cover split with the corresponding
matter curves and U(1) charges. Note that we have two possible cases.

2 + 2 + 1 case 1

The bestiary of matter curves and their perp charges is given in the upper half

table of Table 7.

In this model RPV is expected to be generic as we have the following terms

1025152, 10M5153, 10M5254, 1035151 (C.5)

Notice that if 51 contains only one state, then the last coupling is absent due

to anti-symmetry of SU(5) contraction.

2 + 2 + 1 case 2

The bestiary of matter curves and their perp charges is given in the lower half

table of Table 7.

In this model RPV is expected to be generic as we have the following terms

10M5152, 1025153, 10M5354, 1035151 (C.6)
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Notice that if 51 contains only one state, then the last coupling is absent due

to anti-symmetry of SU(5) contraction.

C.1.3 3 + 1 + 1

In this scenario the splitting of the spectral cover leads to a cubic and two linear

factors. We can impose a Z3 monodromy for the roots of the cubic polynomial.

The bestiary of matter curves and their perpendicular charges is given in Table 8:

Curve 5Hu 51 52 53 10M 102 103

Charge −2t1 −t1−t4 −t1−t5 −t4−t5 t1 t4 t5

Table C.3: Matter curves and the corresponding U(1) charges for the case of a
3 + 1 + 1 spectral cover split. Note that we have impose a Z3 monodromy.

In this model R-parity violation is not immediately generic as we only have

1025152, 10M5153 (C.7)

and as such assigning Hd to 51 avoids tree-level, renormalizable, perturbative

RPV.

C.1.4 3 + 2

These type of models are in general very constrained because of the large mon-

odromies which leads to a low number of matter curves.

In this case there are two possible assignments for Hu (and 10M ), as described

in Table 9.

case 1
Curve 5Hu 52 53 10M 102

Charge −2t1 −t1−t3 −2t3 t1 t3

case 2
Curve 5Hu 52 53 10M 102

Charge −2t3 −t1−t3 −2t1 t3 t1

Table C.4: The two possible cases in the scenario of a 3 + 2 spectral cover split,
the matter curves and the corresponding U(1) charges.
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3 + 2 case 1

The matter curves content is given in the upper half of Table 9 (case 1).

Possible RPV couplings are

10M5253 , 1025252 (C.8)

Notice that if 52 contains only one state, then the last coupling is absent due

to anti-symmetry of SU(5) contraction.

3 + 2 case 2

This second scenario is referred as case 2 in the lower half of Table 9.

Only one coupling

10M5252 (C.9)

which is either RPV or is absent. Notice that if 52 contains only one state, then

the last coupling is absent due to anti-symmetry of SU(5) contraction.

C.2 Local F-theory constructions: local chirality con-

straints on flux data and R-Parity violating op-

erators

The chiral spectrum of a matter curve is locally sensitive to the flux data. This is

happens as there is a notion of local chirality due to local index theorems [36,39].

The presence of a chiral state in a sector with root ρ is given if the matrix

mρ =


−qP qS im2qz1

qS qP im2qz2

−im2qz1 −im2qz2 0


with qi presented in Table 6.2, has positive determinant

detmρ > 0. (C.10)
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As such, if we want a certain RPV coupling to be present, then the above

condition has to be satisfied for the three states involved in the respective interac-

tion at the SO(12) enhancement point. For example, in order for the emergence

of an QLdc type of RPV interaction, locally the spectrum has to support a Q,

a L, and a dc states. The requirement that at a single point Equation (C.10)

hold for each of these states imposes constraints on the values of the flux density

parameters.

Therefore, while RPV effects in general include all three operators - QLdc,

ucdcdc, LLec - there are regions of the parameter space that allow for the elim-

ination of some or all of the couplings. These are in principle divided into four

regions, depending on the sign of the parameters ÑY and NY . In this appendix

we present the resulting regions of the parameter space and which operators are

allowed in each.

These regions are graphically represented in the main text, see Figure 6.8 and

related figures.

C.2.1 Parameter space regions for ÑY ≤ 0

For ÑY ≤ 0, the conditions on the flux density parameters for which each RPV

interaction is turned on are

QLdc : M >
−ÑY

6

Na −Nb >
−NY

2

ucdcdc : M >
ÑY

3

Na −Nb > −
NY

3

LLec : M > −ÑY

Na −Nb >
−NY

2

Depending on the sign of NY , the above conditions define different regions of

the flux density parameter space. These are presented in Tables C.5 and C.6.
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The case of NY > 0

− M < ÑY

3
ÑY

3 < M < −ÑY

6
−ÑY

6 < M < −ÑY −ÑY < M

(Na −Nb) <
−NY

2 None None None None
−NY

2 < (Na −Nb) <
NY

3 None None QLdc QLdc, LLec
NY

3 < (Na −Nb) None ucdcdc QLdc, ucdcdc All

Table C.5: Regions of the parameter space and the respective RPV operators
supported for ÑY ≤ 0, NY > 0

The case of NY < 0

− M < ÑY

3
ÑY

3 < M < −ÑY

6
−ÑY

6 < M < −ÑY −ÑY < M

(Na −Nb) <
NY

3 None None None None
NY

3 < (Na −Nb) <
−NY

2 None ucdcdc ucdcdc ucdcdc
−NY

2 < (Na −Nb) None ucdcdc QLdc, ucdcdc All

Table C.6: Regions of the parameter space and the respective RPV operators
supported for ÑY ≤ 0, NY < 0

C.2.2 Parameter space regions for ÑY > 0

For ÑY > 0, the conditions on the flux density parameters for which each RPV

interaction is turned on are

QLdc : M >
ÑY

3

Na −Nb >
−NY

2

ucdcdc : M >
2ÑY

3

Na −Nb > −
NY

3

LLec : M >
−ÑY

2

Na −Nb >
−NY

2

Depending on the sign of NY , the above conditions define different regions of

the flux density parameter space. These are presented in Tables C.7 and C.8.
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− M < −−ÑY

2 −−ÑY

2 < M < ÑY

3
ÑY

3 < M < 2ÑY

3
2ÑY

3 < M

(Na −Nb) <
−NY

2 None None None None
−NY

2 < (Na −Nb) <
NY

3 None LLec QLdc, LLec QLdc, LLec
NY

3 < (Na −Nb) None LLec QLdc, LLec All

Table C.7: Regions of the parameter space and the respective RPV operators
supported for ÑY > 0, NY > 0

The case of NY > 0

The case of NY < 0

− M < −−ÑY

2 −−ÑY

2 < M < ÑY

3
ÑY

3 < M < 2ÑY

3
2ÑY

3 < M

(Na −Nb) <
NY

3 None None None None
NY

3 < (Na −Nb) <
−NY

2 None None None ucdcdc
−NY

2 < (Na −Nb) None LLec QLdc, LLec All

Table C.8: Regions of the parameter space and the respective RPV operators
supported for ÑY > 0, NY < 0
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