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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF SOCIAL, HUMAN AND MATHEMATICAL SCIENCES
Social Statistics and Demography

Thesis for the degree of Doctor of Philosophy

MULTIVARIATE STRUCTURE PRESERVING ESTIMATION FOR
POPULATION COMPOSITIONS

by Ángela Luna Hernández

This document introduces a new Structure Preserving Estimator for Small Area
compositions, using data from a proxy and a sample compositions. The pro-
posed estimator, the Multivariate Structure Preserving Estimator (MSPREE),
extends the two main SPREE-type estimators: the SPREE and the GSPREE. The
additional flexibility of the MSPREE may lead to estimates with less MSE than
its predecessors. An extension of the MSPREE including cell specific random
effects, the Mixed MSPREE (MMSPREE), is also presented, in an attempt to fur-
ther reduce the size of the bias when the associated sample size allows for it.
In order to estimate the variance components governing the variance structure
of the random effects in the MMSPREE, an unbiased moment-type estimator is
proposed. Furthermore, an estimator for the variance of the MSPREE, as well
as methodologies to evaluate the unconditional and finite population MSE of
both MSPREE and MMSPREE, are developed. The behaviour of the proposed
estimators is illustrated in a controlled setting via a simulation exercise, and in
a real data application.
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M
) . . . . . . . . . . . . . . . . . . . . 44

2.3.3 Estimation of FP-MSE(Ŷ
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Introduction

This thesis addresses the problem of obtaining Small Area (SA) estimates for
the cell counts or proportions of a population composition. That term would be
used through this document to denote a set of vectors with positive compo-
nents, arranged as rows in a two way table. Each vector may contain the fre-
quencies of a categorical variable in a given area, or the corresponding within-
area proportions. For instance, a labour force composition in England may
contain the frequencies of individuals belonging to the categories ”employed”,
”unemployed” and ”inactive” disaggregated by Local Authority (LA). Further-
more, it will be assumed that, given some covariates, the areas that constitute
the rows of the composition are exchangeable. Hence the methods hereby pre-
sented seem more intuitive when the areas correspond to some geographical
classification than when they correspond to domains in a more general sense.

The estimators that are proposed in this thesis presuppose the availability of
a proxy and sample estimate of the target composition, as well as its true mar-
gins. In practice, a proxy of the composition of interest can be obtained from
a population census or an administrative source, referring to the same set of
areas in a previous time period, maybe under a slightly different definition or
covering only partially the population of interest. A sample estimate of the tar-
get composition can often be obtained from the surveys routinely carried out
by most National Statistical Institutes (NSIs). However, because such estimate
is usually not accurate enough for the inner cells of the composition, the es-
timation of the composition as a whole is still considered a small area problem.

Information regarding the row and column margins of the composition of in-
terest can be found in hard sources, particularly administrative data. In the
absence of this type of information, sample estimates at very aggregated le-
vels can usually be considered accurate enough as for the estimation error to
be disregarded. For instance, in the previous example, the row margin of the
target composition is given by the size of the labour force population by LA
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which may be obtained via demographic methods. The column margin is the
total number of employed, unemployed and inactive people at the country
level and can be accurately estimated using survey data.

Furthermore, in order to propose the estimators that are the core of this do-
cument, it will be assumed that all cells in the target and proxy compositions
have strictly positive values. In that situation, Structure Preserving estimators,
hereby called SPREE-type1 estimators, can be used to produce estimates of the
composition of interest as explained below.

SPREE-type estimators

Let us denote the composition of interest by Y . In the conditions above re-
ferred, it is possible to induce an additive decomposition where the natural
logarithm of the quantity in each cell is expressed as the summation of four
components: a global effect, row and column specific effects and an interaction
term (see for instance Agresti, 2013, section 9.1.3). The first three components
conform to what has been called by Purcell and Kish (1980) the allocation struc-
ture whereas the interaction terms constitute the association structure of Y .

SPREE-type estimators provide an estimate of Y that preserves the association
structure observed in X while keeping the allocation structure implied by the
known margins. The exact meaning of the word preserves is given by a func-
tional relationship assumed between the association structures of X and Y , that
we will call the structural assumption. This assumption is used to derive an es-
timate of the association structure of Y which in turn, leads to an estimate of
Y via imposition of the known margins, typically using a multiplicative raking
algorithm such as Iterative Proportional Fitting (IPF, Deming and Stephan,
1940). Notice that in this approach, any benchmarking to the known row and
column margins is incorporated as part of the modelling, rather than as an
ex-post adjustment.

The first SPREE-type estimator, called simply SPREE, was proposed in Purcell
and Kish (1980). The structural assumption of this estimator is that X and Y

1The acronym SPREE will be used in this document both as a abbreviation for Structure
Preserving and to identify the SPREE-type estimator in Purcell and Kish (1980). The meaning
of the acronym should be clear according to the context.
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have the same association structure. This assumption is practically convenient
because no sample data is required to derive an estimate of Y . However, it
is difficult to justify why the association structure does not change, especially
when there is a big time gap between the reference periods of X and Y , or
when the definitions of the target populations are considerably different. De-
partures from this assumption lead to a biased estimator.

Provided that a direct estimate of the target composition, Ŷ , is also available,
Zhang and Chambers (2004) relaxed the assumption of equality, allowing both
association structures to be proportional. Their proposed estimator will hereby
be called Generalized SPREE (GSPREE). Even though this estimator is consi-
derably more flexible and contains the SPREE of Purcell and Kish (1980) as
a particular case, the use of one common proportionality constant governing
the relationship between the proxy and target composition results insufficient
in many practical situations, in which the GSPREE will be biased. Zhang
and Chambers (2004) also proposed a version of the GSPREE including cell-
specific random effects as a way to minimise the risk of bias. Unfortunately,
if the sample sizes are small, the inclusion of random effects may introduce a
considerable amount of variance that does not always compensate for the bias
reduction.

Problem statement

As with many other areas of SAE, there is growing need for estimation of SA
compositions. Particularly, it can be foreseen that future requirements of users
will involve domains defined by very detailed geographic classifications. As-
suming that sample sizes will not increase accordingly, this would indicate a
future decrease in the size of the, already small, areas for which estimates are
of interest, and a likely increase in the number of areas without sample data.
In this setting, fixed effects estimators for SA compositions under more flexible
structural assumptions acquire relevance with respect to estimators that rely on
random effects as the main way to reduce the potential bias, because the pre-
diction of random effects requires area-specific information: little gain could
be expected in cases where a considerable number of areas are out of sample.
Moreover, even if the sampling design ensures that all areas are in-sample, the
trade-off between bias and variance mentioned above seems unfavourable for
this type of estimator in a context with progressively smaller sample sizes.
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As aforesaid, a main drawback of the GSPREE estimator is the assumption of
the same proportionality constant holding for all the columns in the composi-
tion. In this thesis, we propose a new SPREE-type estimator called Multivariate
Structure Preserving Estimator (MSPREE), which generalises the proportio-
nality assumption underpinning the GSPREE without incurring in additional
data requirements. Because the estimator does not rely in random effects, bias
reduction respect to the existing SPREE-type estimators can be obtained even
in the cases with very small sample sizes.

Furthermore, an extension of the MSPREE including cell specific random ef-
fects, called Mixed MSPREE (MMSPREE), as well as an estimator for the va-
riance components, are proposed. Because the random effects are included di-
rectly in the linear predictor, the association structure under the mixed model
remains well defined after the inclusion of the random effects. Moreover,
neither the estimation of the variance components, nor the calculation of the
MMSPREE, require of computationally intensive methods.

Outline of the document

The document is divided in six chapters as follows. Chapter 1 introduces some
preliminary concepts related to the SAE problem and presents existing estima-
tors for population compositions, with emphasis on SPREE-type estimators.
Chapter 2 and 3 are devoted to the development of the proposed estimators,
MSPREE and MMSPREE. Chapter 4 illustrates the use of those estimators in
a simulation exercise. Chapter 5 presents the results of an application of the
proposed estimators, using data from the 2011 Census in England and the An-
nual Population Survey conducted by the Office for National Statistics (ONS).
Finally, Chapter 6 presents the conclusions of this document and suggests lines
for future research.
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Chapter 1

Preliminaries

1.1 The Small Area Estimation (SAE) problem

The interest for obtaining estimates of population characteristics has been tra-
ditionally satisfied by the use of existent sources of data, such as administra-
tive databases, or by collecting specific data, either via total enumeration when
feasible, or via survey samples. Use of existent sources of information has the
advantage that no additional cost is associated with the collection process.
However, unless existent sources collect exactly the data required to produce
the indicators of interest, this approach would only provide an approximation
to the target phenomena under study. Censuses, on the other hand, have been
traditionally the gold standard because, ignoring considerations of coverage
and measurement error, inference from them has no statistical uncertainty in-
volved. However, the costs associated with such an operation and the level of
burden that they imply in the population, make them an exception more than
a rule in terms of collecting data for statistical purposes.

Well-developed sample surveys have proved their ability to produce valid in-
ferences. Their broad use in almost all aspects of social research is a clear
indication of this. Even though classic books of survey sampling, such as
Cochran (1977) or Kish (1965) are still in common use, much research has been
devoted in the past 50 years to the development of sampling strategies that are
efficient in terms of bias and variance (regarding to the so-called design-based
approach of inference, as it will be explained next), while keeping costs under
control.

Survey sampling differs from most areas of statistics in regard to the main ap-
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proach of inference in use. Predominantly, survey sampling practitioners rely
on design-based inference, which uses the randomization induced by the sam-
pling design while assuming the values of the variables of interest are fixed.
Estimates are calculated using sampling weights that can be obtained from the
sampling design or calculated a posteriori using auxiliary information (Särndal
et al., 1992). Desirable estimators in this context are typically design-consistent,
i.e., their Mean Square Error (MSE) goes to zero as the sample size increases,
with the expectation calculated with respect to the distribution induced by the
sampling design. Between the two terms that compose the MSE, the variance
is commonly the dominant term.

However, in recent decades, interest in estimates for subgroups of the popu-
lation, i.e., domains, has increased. Under a design-based approach, if such
domains could be identified in advance, a sample strategy involving stratifica-
tion and sample allocation could, in principle, provide reliable estimates using
only domain-specific and perhaps auxiliary data. We will refer to those esti-
mates as direct. Unfortunately, in practice it is impossible to identify in advance
all domains that might be of interest and even in such a case, the sum of all
the required sample sizes could be extremely costly. In the case of unplanned
domains, direct estimation is unfeasible for out-of sample domains and may
be of limited use for in-sample domains due to big variances, especially if they
correspond to a small fraction of the population.

When a domain-specific sample is too small for reliable direct estimates to
be produced, that domain is considered small. The term Small Area Estima-
tion refers to the problem of producing reliable estimates for such domains.
Notice that the names area and domain are used interchangeably in this docu-
ment. Unlike direct estimators, most estimators used in SAE are indirect or
model-based (Rao and Molina, 2015, Chapter 3), i.e., they are built under the
assumption that a given statistical model holds for the population of interest,
respect to which the statistical inference is performed. Moreover, because di-
fferent domains have common attributes according to the assumed model, data
from other domains can be used to predict the value of a given domain, hence
borrowing strength by the increase of effective sample size available for domain-
specific estimation. Model-based estimators are not new to survey sampling
(see for instance Valliant et al., 2000), but have acquired a predominant role in
the case of small domains.
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The model underpinning a given indirect estimator may be implicitly or ex-
plicitly stated. A further distinction is made between estimators supported by
explicit models that explain between-domain heterogeneity only via covariates,
e.g., marginal models, and explicit models that include additional elements
to take into account extra heterogeneity, e.g., mixed effect models with area-
specific random effects or M-Quantile models (Chambers and Tzavidis, 2006).
In the former case, the estimators are called synthetic and can be calculated for
both in-sample and out-of-sample areas. In the latter, only in-sample areas can
be estimated. A compromise approach, common in practice for cases where
there is sample in many but not all areas of interest, is to work with a mixed
effects model, such as the General Linear Mixed Model (GLMM) which will
be introduced in section 1.2, and use the synthetic predictor obtained from the
fixed part of the model for out-of sample areas.

Because model-based predictors may perform poorly in the face of model mis-
specification, model selection and diagnostics are at the core of the production
of SA estimates. Moreover, even though the inference is still model-based, the
practice of testing the validity of SA predictors using design-based simulation
exercises has gained popularity. For a more detailed discussion on these topics
see ESSNet (2012) and Tzavidis et al. (2016).

This thesis addresses the issue of obtaining SA estimates for compositions. The
term has been previously used by Aitchison (2003, p. 26) to indicate a vector
with positive components whose sum is 1. The distribution of a categorical
variable in a given domain constitutes an example of a composition according
to this definition. As previously mentioned, in a SA setting, we are interested
in obtaining estimates for several domains, therefore, we will hereby extend
the term to refer not to an individual vector but to a set of them, arranged as
rows in a two way table. Such a table may contain the within-domain distri-
bution or the raw frequencies of a categorical variable.

In the next sections, a revision of the existent literature in SAE that we consider
relevant for the estimation of compositions is provided. Readers interested in
SAE methods in general may find a very comprehensive account in Rao and
Molina (2015), as well as a review of the most important developments of the
last decade in Pfeffermann (2013). The remaining of this chapter is organised
as follows. Section 1.2 introduces the GLMM, according to Chapter 5 of Rao
and Molina (2015). The GLMM covers many of the most commonly used mod-
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els in SAE. The notation in this section has been kept in accordance with the
one in Rao and Molina (2015), and may hence differ from the one used in the
rest of the document. Section 1.3 introduces the Structure Preserving (SPREE)-
type estimators, that are the main focus of this thesis, and discusses the issues
that motivate the development of the estimators proposed in this document.
Finally, Section 1.4 discusses other existing estimators for small area composi-
tions.

1.2 General Linear Mixed Model (GLMM)

Denote by y a vector of sample observations of dimension n× 1. Let X and Z
be known matrices of dimension n× p and n×h and u and e be random vec-
tors independently distributed with zero mean and variance covariance matri-
ces G and R respectively, governed by a set of parameters δ = (δ1, . . . δq)

T

called variance components. It is assumed that the sample data follows the
GLMM

y = Xβ+Zν+ e, (1.1)

where the vector ν represents a set of random effects and e denotes the error
terms of the model. The unconditional variance of y under the model is hence
V = R+ZGZT .

BLUP and EBLUP

The aim is to obtain a predictor for the linear combination

µ = lTβ+mTν, (1.2)

with l and m known vectors of constants. We use the term predictor instead
of estimator to acknowledge that ν in the equation above is a realization of
a random entity. Assuming the vector of variance components δ is known,
Henderson (1950) showed that the Best Linear Unbiased Predictor (BLUP) of
µ under model (1.1) is

µ̃H(δ) = lT β̃+mT ν̃ (1.3)

with β̃ the Best Linear Unbiased Estimator (BLUE) of β,

β̃ =
(
XTV−1X

)−1
XTV−1y (1.4)
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and
ν̃ = GZTV−1 (y−Xβ̃

)
. (1.5)

This result extends to the simultaneous estimation of r > 2 linear combina-
tions, µ = Lβ+Mν, for µ = (µ1, . . . ,µr) and L and M matrices of constants.
Moreover, assuming β known and ν and e normally distributed, (1.5) with
β̃ = β is the best predictor (BP) of ν. Without the normality assumption but
with β known, it remains the best among the class of linear predictors of ν.

In practice, the vector δ containing the variance components is unknown,
therefore the matrices G, R and V required for the calculation of the BLUP
are not available. A two stage estimator for µ is developed by obtaining an
estimate δ̂ (y) and using it as a substitute for δ in the definition of the above
mentioned matrices. The resulting estimator µ̃H(δ̂) is called the empirical best
linear unbiased predictor (EBLUP). Kackar and Harville (1981) showed that
the EBLUP remains unbiased for µ as long as three conditions are satisfied: i)
E
[
µ̃H(δ̂)

]
is finite; ii) the distributions of u and e are symmetric around 0; and

iii) the variance components estimators are even and translation-invariant i.e.,
δ̂(−y) = δ̂(y) and δ̂(y− Xb) = δ̂(y) for all y and b. Kackar and Harville
(1981) also showed that some of the most well known procedures to obtain
estimates of the variance components, such as Maximum Likelihood (ML), Re-
stricted (or residual) Maximum Likelihood (REML) and the method of Fitting
constants (Henderson, 1953), satisfy this property. For the sake of complete-
ness, ML and REML estimators under the assumption of normality will be
briefly introduced next.

ML and REML estimation

Under normality of ν and e, ML estimates of the variance components can be
obtained iteratively using the Fisher-scoring algorithm. Denote by V(j) the first
derivative of V with respect to δj and by V(j) the first derivative of V−1 with
respect to δj, noticing that V(j) = −V−1V(j)V

−1. The vector of first derivatives
of the log-likelihood l(β,δ) with respect to δ has components s1, . . . , sq with:

sj (β,δ) =
∂l(β,δ)
∂δj

= −
1
2

tr
(
V−1V(j)

)
−

1
2
(y−Xβ)T V(j) (y−Xβ) . (1.6)

The Fisher Information matrix has elements (j,k) given by

Ijk(δ) = −
1
2

tr
(
V(j)V(k)

)
. (1.7)
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In iteration i+ 1, a new estimate of δ is calculated as

δ(i+1) = δ(i) +
[
I
(
δ(i)
)]−1

s
[
β̃(δ(i)),δ(i)

]
, (1.8)

with β̃ and s defined as in equations (1.4) and (1.6). ML estimators of δ do
not take into account the loss of degrees of freedom due to the estimation of
β (Harville, 1977). In order to take them into consideration, a restricted log-
likelihood function lr(δ) (see for instance Pawitan, 2013, section 17) can be
maximised to obtain REML estimates of δ using a Fisher algorithm analogous
to (1.8). The new matrix of first derivatives sR has components sR1 , . . . sRq
defined as

sRj (δ) =
∂lR(δ)

∂δj
= −

1
2

tr
(
PV(j)

)
+

1
2
yTPV(j)Py, (1.9)

with P = V−1 − V−1X(XTV−1X)−1XTV−1. The Fisher Information matrix of
the restricted likelihood has elements (j,k) given by

IR,jk(δ) =
1
2

tr
(
PV(j)PV(k)

)
. (1.10)

Unfortunately, both ML and REML methods can lead to solutions for which
the variance matrices G and R are not positive definite. Solutions to this is-
sue proposed for specific versions of the GLMM are discussed in Rao and
Molina (2015), section 5.2.4. Asymptotically, ML and REML estimates are

equally efficient with variance covariance matrices V(β̃) =
(
XTV−1X

)−1
and

V(δ̂) = [I (δ)]−1.

Mean Square Error estimation

Because of their nature of borrowing strength from data in different domains
and from auxiliary sources, indirect estimators usually exhibit less variance
than direct estimators. However, because the models they rely cannot hold
perfectly in practice, indirect estimators also suffer from bigger biases. Estima-
tion of MSE is, therefore, a topic that has received appreciable attention in the
literature of SAE.

Following Rao and Molina (2015), Sections 5.2.2-5.2.6, let µ denote the target of
estimation, defined as in equation (1.2) and denote by t(δ) and t(δ̂) the BLUP
and EBLUP of µ, respectively. Consider the decomposition of the error of the

10



EBLUP
t(δ̂) − µ = [t(δ) − µ] +

[
t(δ̂) − t(δ)

]
. (1.11)

Under normality assumptions and provided that δ̂ is translation invariant,
squaring both sides and taking the expectation of (1.11) leads to

MSE
[
t(δ̂)

]
= MSE [t(δ)] + E

[
t(δ̂) − t(δ)

]2
. (1.12)

The first term on the right hand side of (1.12), the MSE of the BLUP, can be
further decomposed as the sum of two terms: g1(δ), which corresponds to the
variance of the BLUP with respect to the true µ when β is known, and g2(δ),
which carries the variability due to the estimation of β. For the GLMM defined
in equation 1.1, the terms g1 and g2 are given by

g1(δ) =m
T (G−GZTV−1ZG)m

and
g2(δ) = d

T (XTV−1X)−1d,

for dT = lT −bTX and bT =mTGZTV−1.

The second term on the right hand side of (1.12) cannot be simplified in ge-
neral. The use of a Taylor linearisation for t(δ̂) − t(δ) ignoring the terms co-
rresponding to derivatives of the error of the BLUE of β, (β̃−β), leads to the
approximation E

[
t(δ̂) − t(δ)

]2 ≈ g3(δ), for

g3(δ) = tr

(∂bT
∂δ

)
V

(
∂bT

∂δ

)T
V̄(δ̂)


where V = R + ZGZT and V̄(δ̂) is the asymptotic covariance matrix of δ̂.
Finally, an approximation of the MSE of the EBLUP is given by

MSE
[
t(δ̂)

]
≈ g1(δ) + g2(δ) + g3(δ). (1.13)

Studying the nested-error regression model (Battese et al., 1988), the random
regression coefficient model (Dempster et al., 1981) and the Fay-Herriot model
(Fay and Herriot, 1979), Prasad and Rao (1990) proposed the estimator

M̂SE
[
t(δ̂)

]
= g1(δ̂) + g2(δ̂) + 2g3(δ̂) (1.14)
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which is second-order unbiased under normality assumptions, provided that δ̂
is translation-invariant. Subsequently, under the assumption of unbiasedness
for the estimator of variance components, Harville and Jeske (1992) proposed
the estimator (1.14) for the GLMM. Furthermore, Lahiri and Rao (1995) showed
the robustness of this estimator to departures from normality of the random
effects, for the Fay-Herriot model, as long as some moment conditions are sa-
tisfied.

1.3 SPREE-type estimators

The underpinning idea of SPREE-type estimators can be tracked back to De-
ming and Stephan (1940) but was first used in the context of SAE by Chambers
and Fenney (1977); Bousfield (1977) (as referenced in Purcell and Kish (1980))
and Gonzalez and Hoza (1978). It is in Purcell and Kish (1980) where the con-
cept is formalized with the introduction of the SPREE estimator.

Denote by Y the population composition of interest, constituted by the counts
Yaj for a = 1, . . .A; j = 1 . . . , J. Y can be represented in the form of a saturated
log-linear model as

log Yaj = αY0 +αYa +α
Y
j +α

Y
aj. (1.15)

The quantities αY0 , αYa, αYj and αYaj can be defined in several ways. Hereby we
will use a centred-constraints parametrisation, given by

αY0 =
1
AJ

∑
a

∑
j

log Yaj,

αYa =
1
J

∑
j

log Yaj −αY0 ,

αYj =
1
A

∑
a

log Yaj −αY0 ,

αYaj = log Yaj −αYa −α
Y
j −α

Y
0 ,

(1.16)

satisfying the constraints
∑
a α

Y
a =
∑
j α
Y
j =
∑
a α

Y
aj =

∑
j α
Y
aj = 0. Expressed

as in (1.15), it is possible to decompose Y in two structures (Purcell and Kish,
1980):

1. The association structure: corresponds to the set of interaction terms αYaj,
for a = 1, . . .A; j = 1 . . . , J. It determines the relationship between rows
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and columns. In the theoretical case where both dimensions are indepen-
dent, αYaj = 0 for all pairs (a, j).

2. The allocation structure: it is given by the sets of terms αY0 , αYa, and αYj
for a = 1, . . .A; j = 1 . . . , J. It carries information about the scale of the
composition and the disparities within the sets of rows and columns.

SPREE-type estimators make use of the fact that the true row and column mar-
gins of Y may be known or sufficiently accurately estimated to assume so. In
such a case, only the association structure of the composition of interest needs
to be estimated because the corresponding allocation structure is exclusively
determined by the margins. SPREE-type estimators use a proxy composition
X (and a composition of sample estimates Ŷ if available), to build an estimate
of the association structure of Y and then impose the known margins. Ensu-
ring that the margins of the final estimate coincide with the known margins is
desirable, not only as a way to satisfy the necessity of arithmetic consistency
between different sets of estimates (for example, two compositions addressing
the same reference population) but also as protection against model misspeci-
fication, avoiding undesired departures of the model-based estimates from the
corresponding direct estimates at levels at which the latter are considered re-
liable.

1.3.1 SPREE

Purcell and Kish (1980) addresses the problem of how to produce postcensal
estimates of frequency characteristics for local areas or domains. Denote by Y
the composition of interest, with cell counts Yaj where a indexes the Local areas
and j indexes the values of the categorical variable, for a = 1, . . .A, j = 1 . . . J.
Purcell and Kish (1980) considers several scenarios of data availability. For
illustration purposes, we will hereby simplify the problem by assuming that a
proxy composition X of the same dimension as Y can be obtained, for instance,
from a past census, and that sets of margins Ya+ = (Y1+, . . . ,YA+) and Y+j =

(Y+1, . . . ,Y+J), where the symbol + substitutes the index in the summation,
can be estimated from hard data sources such as a census or administrative
data, i.e., they are accurate enough for the estimation error to be disregarded.
The aim is to produce an estimate Ŷ of Y with the same association structure
observed in X, satisfying the allocation structure determined by the known
sets of margins. Purcell and Kish (1980) propose to obtain such an estimate
using an iterative procedure described as follows:
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1. Rescale the rows of X as:

Ŷ
(1)
aj = Xaj

Y+j

X+j
,

2. Rescale the columns of Ŷ
(1)

as:

Ŷ
(2)
aj = Ŷ

(1)
aj

Ya+

Ŷ
(1)
a+

,

3. Rescale the rows of Ŷ
(2)

as:

Ŷ
(3)
aj = Ŷ

(2)
aj

Y+j

Ŷ
(2)
+j

.

Steps (2) and (3) are repeated alternately until convergence, using in each step
the estimates obtained in the previous step. This algorithm, due to Deming
and Stephan (1940), is known in the literature as Iterative Proportional Fitting
(IPF) and can be found in most textbooks about categorical data (e.g. Agresti,
2013, section 9.7.2). Because the final estimate, Ŷ

S
, has the association structure

observed in the proxy composition, the implicit structural assumption of the
SPREE of Purcell and Kish (1980) is

αYaj = α
X
aj for alla, j, (1.17)

with αYaj and αXaj defined as in equation (1.16).

When only one set of margins is available no iteration is required. The resul-
ting estimator minimises the χ-squared distance

Dχ2 =
∑
a

∑
j

(Yaj − Ŷaj)
2

Yaj
,

as well as the Kullback-Leibler discrimination information measure

DKL =
∑
a

∑
j

Yaj log
Yaj

Ŷaj
.

When more than one set of margins is available, iteration is required. Ire-
land and Kullback (1968) showed that if Yaj > 0 for all a, j, the IPF algorithm
converges to the optimal solution according to the discrimination information
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measure.

Noble et al. (2002) showed that generalized linear models (GLMs) can also be
used to calculate the SPREE. In the first step, a saturated log-linear model is
fitted to the proxy composition and the matrix αX containing the interaction
terms αXaj for a = 1, . . . ,A, j = 1, . . . , J is calculated. Then, a new composition X̃
is generated using the known sets of margins and assuming independence, i.e.,
X̃aj = (Ya+Y+j)/Y++ for a = 1, . . . ,A, j = 1, . . . , J. Finally, the SPREE is obtained
by fitting a non-saturated log-linear model to X̃, with offset αX. Noble et al.
(2002) argue in favour of using a Generalized Linear Model instead of the IPF
algorithm as a way to allow for sources of auxiliary information besides the
proxy composition, including discrete and continuous covariates.

1.3.2 GSPREE

Zhang and Chambers (2004) addresses the problem of obtaining an estimate
for a population composition, θY , that contains the within-area proportions,
θYaj = Yaj/Ya+ for a = 1, . . . ,A; j = 1 . . . , J, using information of a proxy com-

position θX and a composition of direct estimates θ̂
Y
. As a generalization of

the SPREE of Purcell and Kish (1980), this estimator will be hereby called Ge-
neralized SPREE (GSPREE).

The GSPREE assumes that the target and proxy compositions relate via the
Generalized Linear Structural Model (GLSM)

τYaj = λj +βτ
X
aj, (1.18)

with
∑
j λj = 0, for a = 1, . . . ,A; j = 1, . . . , J, where

τYaj = log θYaj −
1
J

J∑
l=1

log θYal, (1.19)

and τXaj is analogously defined. The model is fitted using the sample estimate

θ̂
Y

in place of θY . The GSPREE estimate of θY , denoted θ̂
Y,G

, is obtained
applying the inverse function

θ̂Y,G
aj =

exp τ̂Yaj∑J
l=1 exp τ̂Yal
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on the fitted values. Notice that equation (1.19) is generally not invertible.
However, as shown in Lemma 1 in page 19, the set of constraints θYa+ = 1 for
a = 1, . . . ,A ensures the existence of an inverse function in this particular case.

Because the estimation problem is formulated in the within-area proportion
scale, information regarding the margins of the target composition is not nece-
ssary. If Ya+ or Y+j were known, a GSPREE of the composition of counts,
denoted by Ŷ

G
, could be obtained imposing the known margins on θ̂

Y,G
using

IPF, without altering the fitted association structure.

The GLSM is reminiscent of a GLM but receives the name structural because
equation (1.18) is supposed to hold for the finite-population composition in-
stead of for its expected value, as in the GLM setting. Assuming that θ̂

Y
is an

unbiased estimator of θY with known block diagonal covariance matrix, Zhang
and Chambers (2004) proposes to fit the GLSM using an Iterative Weighted
Least Squares (IWLS) algorithm. Alternatively, if it is assumed that Ŷ is a re-
alization of a random composition with product multinomial distribution, the
GLSM can be considered a GLM and the IWLS leads to the ML estimate of the
proportions that parameterize that distribution (see for instance Agresti, 2013,
section 4.6).

Now we will turn to identify the structural assumption of the GSPREE. Notice
that

log θYaj = log Yaj − log Ya+

= αY0 + (αYa − log Ya+) +αYj +α
Y
aj

:= αY0 + α̃Ya +α
Y
j +α

Y
aj

where the αY0 ,αYa,αYj and αYaj are the corresponding terms for the table of counts
defined in (1.16). Also, note that

∑J
l=1 log θYal = J(αY0 + α̃Ya) given that in the

centred-constraints parametrisation
∑
l α

Y
l =
∑
l α

Y
al = 0. Hence, the link func-

tion defined in (1.19) is equivalent to

τYaj = α
Y
j +α

Y
aj, (1.20)

i.e. τYaj isolates the terms corresponding to the column effects and the interac-
tions of θY . Note that because these two sets of terms are the same whether the
composition is considered in the count or in the within-area proportions scale,
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the implied model for θY also holds for Y . Replacing (1.20) in the definition of
the GLSM, equation (1.18), and adding over the areas, we obtain

αYj +α
Y
aj = λj +β(α

X
j +α

X
aj)

⇒
∑

a
(αYj +α

Y
aj) = Aλj +β

∑
a
(αXj +α

X
aj)

⇒ αYj = λj +βα
X
j . (1.21)

The last line given by the sum to zero constraints of the centred-constraints
parameterization. Moreover, the constraint

∑
λj = 0 stated in the definition of

the model is implicit in the sum of (1.21). Substituting (1.21) and (1.20) in the
definition of the GLSM, we obtain to the structural assumption of the GSPREE:

τYaj = λj +βτ
X
aj,⇒ αYj +α

Y
aj = λj +β(α

X
j +α

X
aj)

⇒ λj +βα
X
j +α

Y
aj = λj +β(α

X
j +α

X
aj)

⇒ αYaj = βα
X
aj. (1.22)

Zhang and Chambers (2004) indicates that the sets of equations (1.21) and
(1.22) for a = 1, . . . ,A, j = 1 . . . , J are equivalent to equation (1.18) to define the
GLSM. However, the only true assumption underpinning the GSPREE is (1.22)
because given β it is always possible to set λj = αYj − βα

X
j to satisfy (1.21). In

this sense, notice that the set of parameters λ1, . . . , λJ are nuisance parameters
in the GLSM. The GSPREE assumes proportionality between the association
structures of the target and proxy compositions.

1.3.2.1 Alternatives to the GLSM

Even if a product multinomial distribution is assumed for Ŷ , bespoke software
is necessary to estimate β using the procedure described in Zhang and Cham-
bers (2004) because the link function used by the GLSM is not included in
the available packages for the fitting of GLMs. Lemmas 2 and 3 in subsection
1.3.2.3 present two new equations that also induce the structural assumption
(1.22) and can be used as alternatives to the GLSM to obtain the GSPREE using
a product multinomial or a Poisson likelihood and standard software.

1.3.2.2 GSPREE with random effects

Zhang and Chambers (2004) proposed a mixed effects version of the GSPREE
with the aim of reducing the risk of bias due to model misspecification with
respect to the estimator with only fixed effects. However, because the pre-
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dicted random effects can be unstable, particularly under small sample sizes,
it is possible for this estimator to exhibit a higher MSE than its fixed-effects
counterpart. The GSPREE with random effects is defined by the Generalized
Linear Structural Mixed Model (GLSMM)

τYaj = λj +βτ
X
aj + νaj (1.23)

where (νa2, . . . ,νaJ)
T IID

∼ N(0,Σ) and νa1 = −
∑
j 6=1
νaj, for a = 1, . . . ,A; and

j = 1 . . . , J.

Following a process analogous to the one used with the GLSM, it is possible
to show that the GLSMM is equivalent to the sets of equations:

αYj = λj +βα
X
j + ν̄+j (1.24)

αYaj = βα
X
aj + (νaj − ν̄+j) (1.25)

with ν̄+j = (1/A)ν+j. Note that the term νa+ is zero by construction and
therefore, also ν++. On the other hand, nothing ensures that ν+j = 0. Asymp-
totically, as the number of areas increases, it is expected that the random effects
affect only the association structure, leading to the structural assumption

αYaj = βα
X
aj + νaj;

however, formally speaking, equations (1.24) and (1.25) imply that the random
effects will affect not only the association but also the allocation structure. It
would be desirable to impose the additional constraint ν+j = 0 but this would
introduce correlation across areas and complicate substantially the estimation.
Instead, Zhang and Chambers (2004) suggests to perform the estimation as-
suming that the νaj are independent between areas and standardize the esti-
mates ex-post. Because such adjustment is of order Op(A

−1/2), the expected
difference is small even for a moderate number of areas.

On the other hand, notice that equations (1.24) and (1.25) are sufficient to
guarantee a set of predicted interactions that satisfy the sum-zero constraints
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assumed by the centred-constraints parameterization because:∑
a

αYaj = β
∑
a

αXaj +
∑
a

(νaj − ν̄+j)

= ν+j −Aν̄+j

= 0,

given that αX+j = 0. Analogously,

∑
j

αYaj = β
∑
j

αXaj +
∑
j

(νaj − ν̄+j)

= νa+ −
1
A
ν++

= 0,

because αXa+ = νa+ = ν++ = 0.

1.3.2.3 Complementary Material

In this section, we expand the available results for the GSPREE (Zhang and
Chambers, 2004) in two directions. First, we proof that the link function
thereby used in the formulation of the GLSM is invertible. Second, we pro-
pose two sets of equations that are equivalent to the GSPREE assumption of
proportional interactions and therefore, can be used as an alternative to the
GLSM for the estimation of the proportionality parameter.

Throughout this section, denote by θY the target composition in the scale of
within-area proportions, θYaj = Yaj/Ya+ for a = 1, . . . ,A; j = 1, . . . , J. Denote by
αY0 ,αYa,αYj and αYaj the terms of its representation according to equation (1.15).

Invertibility of the link function of the GLSM
This lemma shows the invertibility of the link function used in the formulation
of the GLSM. It is referenced in page 16.

Lemma 1. Let g be a function defined in RA×J, the space of the real-valued matrices
of dimension A× J by g : θ 7→ τ, with τaj defined as in equation (1.19):

τaj = log θaj −
1
J

J∑
l=1

log θal,
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where the constraints θa+ = 1 for a = 1, . . . ,A are satisfied. Then, g(θ) = g(θ̃) if
and only if θ = θ̃.

Proof. The proof of θ = θ̃ implying g(θ) = g(θ̃) is trivial. To proof the remai-
ning implication, define γaj = log θaj and γ̃aj = log θ̃aj and notice that

g(θ) = g(θ̃) ⇐⇒ γaj −
1
J
γa+ = γ̃aj −

1
J
γ̃a+,

therefore,
γaj = γ̃aj + ka, (1.26)

for ka = 1
J (γa+ − γ̃a+). On the other hand, as θaj = expγaj, the constraints

θa+ = 1 for a = 1, . . . ,A imply ∑
j

expγaj = 1. (1.27)

Substituting equation (1.26) in equation (1.27) leads to

1 =
∑
j

expγaj = expka
∑
j

exp γ̃aj = expka, (1.28)

because equation (1.27) also holds for the set of γ̃aj. The proof is complete
because, as ka = 0 for a = 1, . . . ,A, then γaj = γ̃aj and hence θaj = θ̃aj

for a = 1, . . . ,A and j = 1, . . . , J, because of the invertibility of the logarithm
function.

GSPREE using a logit link
This lemma proposes equations to obtain the GSPREE using a logit link. It is
referenced in Section 1.3.2.1, page 17.

Lemma 2. Define the logit function with reference category r,

ρY,r
aj = log θYaj − log θYar .

Assume analogous definitions for the proxy composition θX. The two following sets of
equations are equivalent:

ρY,r
aj = φj +β(α

X
aj −α

X
ar), for a = 1, . . . ,A; j = 1, . . . , J; j 6= r (1.29)

αYaj = βα
X
aj, for a = 1, . . . ,A; j = 1, . . . , J. (1.30)
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Proof. Notice that
ρY,r
aj = (αYj −α

Y
r ) + (αYaj −α

Y
ar), (1.31)

for a = 1, . . . ,A; j = 1, . . . , J; j 6= r. Substitute (1.31) into (1.29) to obtain,

(αYj −α
Y
r ) + (αYaj −α

Y
ar) = φj +β(α

X
aj −α

X
ar). (1.32)

Adding (1.32) over the areas:

αYj −α
Y
r = φj, (1.33)

because αYa+ = αXa+ = 0 for a = 1, . . . ,A. Substituting (1.33) back in (1.29):

αYaj −α
Y
ar = β(α

X
aj −α

X
ar), (1.34)

To prove the theorem it is enough to prove the equivalence between (1.34) and
(1.30) because for any value of β it is possible to set φj = (αYj − α

Y
r ) so that

(1.33) is satisfied.

Adding (1.34) over j:

∑
j 6=r
αYaj − (J− 1)αYar = β

∑
j 6=r
αXaj − (J− 1)αXar


αYar = βα

X
ar

because αYa+ = αXa+ = 0 for a = 1, . . . ,A. As the choice of the reference category
is arbitrary, we conclude that (1.34) =⇒ (1.30). Finally, (1.30) =⇒ (1.34) can
be easily seen by subtracting the equation for the reference category from all
the other equations in (1.30).

GSPREE using a log link
This lemma proposes equations to obtain the GSPREE using a log link. It is
referenced in Section 1.3.2.1 in page 17.

Lemma 3. The set of equations

ζYaj = γa + λ̃j + β̃α
X
aj, for a = 1, . . . ,A; j = 1, . . . , J (1.35)

where ζYaj = log Yaj, is also equivalent to (1.30).
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Proof. Remember that ζYaj = αY0 + αYa + α
Y
j + α

Y
aj defined as in equation (1.15).

Substituting this in (1.35) and summing either over rows or columns it is pos-
sible to arrive to the sets of equations:

αY0 +αYa = γa

αYj = λ̃j

αYaj = βα
X
aj.

for a = 1, . . . ,A; j = 1, . . . , J.

The extra set of nuisance parameters γa represents the row scale of the table,
therefore they do not appear in the equations where the link function is stan-
dardized with respect to the row scale, such as the centred-log used by the
GLSM or the logit link.

1.3.3 Inclusion of random effects on SPREE-type estimators

Notice that none of the previously presented SPREE-type mixed effect esti-
mators consider the possibility of including area-specific or column-specific
random effects. The reason behind this is that only cell-specific random effects
would have an impact on the final estimates, given the raking procedure that
constitutes the last step of estimation for this type of estimators. For illus-
tration, consider the fixed effects GSPREE as starting point and assume that
αYaj = βαXaj + νa, where νa,a = 1, . . .A are independent area-specific random
effects with E(νa) = 0 and V(νa) = σ2

ν. An estimate of the interaction in cell
a, j would have the form:

α̂Yaj = β̂α
X
aj + ν̂a.

Denote by Ŷ0
aj = exp(α̂Yaj) = exp(β̂αXaj) exp(ν̂a). Hence,

Ŷ0
a+ =

∑
j

Ŷ0
aj = exp(ν̂a)

∑
j

exp(β̂αXaj).

According to section 1.3.1, the set of estimates that satisfy the row margin Ya+

is obtained from the equation Ŷ1
aj = Ya+

Ŷ0
aj

Ŷ0
a+

. In this case,

Ŷ1
aj = Ya+

exp(β̂αXal) exp(ν̂a)
exp(ν̂a)

∑
j exp(β̂αXal)

= Ya+
exp(β̂αXal)∑
j exp(β̂αXal)

,
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i.e., an area-specific random effect νa would have no effect on the estimates
once they have been benchmarked by row. Analogously, column-specific ran-
dom effects would disappear when the benchmarking of the column margins.

The inclusion of a set of cell-specific random effects at the interaction level is
desirable but it poses the additional difficulty of imposing on the random ef-
fects the same sum-to-zero row and column constraints satisfied by the interac-
tion terms under the centred constraints parametrisation, in order to obtain a
valid structure for the table of interest. The estimation of the model parame-
ters under such constraints can be computationally difficult, specially if a fully
parametric approach is being used.

1.3.4 Limitations of the SPREE and GSPREE estimators

The previously discussed fixed effects SPREE estimators assume at maximum
one parameter to control the relationship between the interaction structures
of the proxy and target compositions. Further reductions in the bias of the
estimator are obtained by the inclusion of random effects. However, the in-
teractions terms corresponding to different categories of a given area are re-
lated to each other because they satisfy sum zero constraints, something that is
ignored by the above mentioned SPREE-type estimators. Moreover, the same
proportionality constant is assumed for all categories, which can lead to model
misspecification if more than one constant of proportionality is required. Fi-
nally, notice that random effects cannot be accurately predicted if the sample
sizes are too small.

We will illustrate these issues considering data from the Population Censuses
2001 and 2011 in England. For each census, a composition of the population
counts disaggregated by LA and Economic Activity status (Employed, Unem-
ployed, Inactive) was obtained. Such compositions where transformed into
the log-scale and the interaction terms αaj defined in equation (1.16) were cal-
culated. Figure 1.1 presents scatter plots of the corresponding pairs of those
interaction terms for each one of the categories of the labour force variable,
being those of the 2001 composition in the X axis, and those of the 2011 com-
position in the Y axis. In each plot, the continuous black line represents the
assumption made by the SPREE, i.e., that the interaction terms of both compo-
sitions are the same (Y=X). The black dashed line represents the assumption
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made by the GSPREE, i.e., that the interaction terms of the 2011 composi-
tion are proportional to those in the 2001 composition, with a proportionality
constant that, for this data, is estimated as 0.8044. Finally, the continuous red
line corresponds to an OLS fit independently for each category of the variable
and corresponds to the best possible linear fit between the interaction terms
for each category.

Figure 1.1: Interaction terms αaj in the compositions of Local Authority by
Economic Activity. Population censuses 2001 and 2011 in England.
Lines: Continuous black : SPREE. Dashed black: GSPREE. Continuous red:
Category-specific OLS fit.
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As the points in figure 1.1 do not accumulate above any of the black lines, it
is possible to conclude that both SPREE and GSPREE estimators are biased.
However, because the line corresponding to the GSPREE assumption is closer
to the OLS fit for categories employed and unemployed, it is expected for the
GSPREE to present less bias than the SPREE for those categories. Furthermore,
as the slope of the OLS fit for category inactive (0.9406) is considerably diffe-
rent from the slopes for the other two categories (around 0.77), estimates for
that category will much benefit from an estimator which allows for category-
specific proportionality constants instead of imposing a common one.

Unfortunately, a natural extension based on an assumption such as αYaj = βjα
X
aj

would impose the additional constraint
∑
j βjα

X
aj = 0 for a = 1, . . . ,A, in order

to ensure valid estimates of the interaction structure. Given that in practice
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A > J, and because the column rank of the matrix that contains the interaction
terms is at most J− 1, such constraint cannot be satisfied in general.

1.4 Other estimators for population compositions

1.4.1 Multinomial models for the estimation of compositions

Multinomial GLMs have also been proposed for the estimation of population
compositions. Molina et al. (2007) addresses the issue of estimating the pro-
portions of people in three categories of labour force: unemployed; employed and
not in the labour force, in a composition disaggregated by unitary and local au-
thorities in the UK. Indicator variables of region, and age by sex groups, were
used as covariates, as well as the proportion of unemployment according to
administrative data which was included in the logarithmic scale. Molina et al.
(2007) uses the logistic mixed model:

log
(
θijk

θij3

)
= xTijβk + ϑi (1.36)

where k indexes the categories, i indexes the areas and j = 1 . . . , 6 indexes the
gender by age groups. The random effects ϑi are assumed independent and
normally distributed with mean zero and variance σ2

ϑ.

The estimation of the parameters of the model is performed using a combina-
tion of penalized quasi-likelihood (PQL, Breslow and Clayton (1993)) for the
fixed terms of the model and the random effects, and REML for the variance
components. Mean square error estimates of the small area estimates are ob-
tained via parametric bootstrap.

Scealy (2010) extends the model proposed in Molina et al. (2007) to include
category-specific random effects. In this case, the interest is in obtaining esti-
mates for population counts according to the three categories of labour force
mentioned above, by local government areas in Australia. Scealy (2010) indi-
cates that initial analysis carried out using separate logistic mixed models for
the three categories of the labour force variable, showed evidence of different
variances in the random effects structure, which motivated the extension of
equation (1.36) to include category-specific random effects, ϑik, following a bi-
variate normal distribution in each area.
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The model includes indicator variables of area, age by sex and remoteness, as
well as household type and socio-economic indexes at the area level, obtained
either from the Labour Force Survey or from the Census of Population and
Housing. Moreover, benefit payment variables obtained from administrative
sources are also included in the model. An approach analogous to the one
presented in Molina et al. (2007) is used to obtain estimates for the parameters
in the model and the random effects, as well as mean square estimates of the
small area counts. Furthermore, the properties of the estimation strategy are
also evaluated using parametric bootstrap.

Once again in the context of estimation of SAE of labour characteristics in the
UK, Saei and Taylor (2012) proposes another extension of the model conside-
red in Molina et al. (2007). Using a multinomial model with category-specific
random effects following a bivariate normal distribution, An EBLUP-type pre-
dictor is developed. Starting with Pseudo-Likelihood estimates of the com-
ponents of the model, ML is used to obtain final estimates of the fixed terms
and predicted random effects, whereas the estimation of the variance compo-
nents is performed via REML. Saei and Taylor (2012) compare two models with
category-specific random effects (uncorrelated or potentially correlated) and
the model with area-specific random effects proposed in Molina et al. (2007).
According to their analysis, the model with correlated category-specific effects
performs considerably better, in particular for the category unemployed.

Model (1.36) considered at the area level has also been used to propose exten-
sions such as the inclusion of independent category-specific or time-correlated
random effects. See López-Vizcaı́no et al. (2013) and López-Vizcaı́no et al.
(2015) for more details.

1.4.2 Berg and Fuller (2014)

Berg and Fuller (2014) develops a small area estimator for a two way table
containing the distribution of occupied people among categories of occupation
and provinces in Canada. Direct estimates of the within area proportions are
available from the Canadian Labour Force Survey, but due to the small sizes
in the cells, they have prohibitively large variances. Auxiliary information
is available, in the form of the same table obtained from the last population
census. Indexing the areas by k = 1, . . . ,K and the categories of Occupation by
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i = 1, . . . ,R, the model proposed is defined by the two equations:

P̂ik = Pik + eik (1.37)

Pik = PT ,ik + uik (1.38)

where Pik is the within-province proportion of interest, P̂ik denotes its direct
estimator and PT ,ik is a function of the covariates, PT ,ik = g(x ′ikλ) such that
two conditions are satisfied: i) 0 6 g(x ′ikλ) 6 1 and ii)

∑R
i=1 g(x

′
ikλ) = 1. In

particular, Berg and Fuller (2014) uses a logistic function,

PT ,ik = g(x
′
ikλ) =

ex
′
ikλ(

1 +
∑R
i=2 e

x ′ikλ
)

for i = 2, . . . ,R and PT ,1k = 1 −
∑R
i=2 PT ,ik. The vector xik = (xik,1, . . . , xik,R) of

covariates is composed by R− 1 indicator variables of categories i = 2, . . . ,R
and the interaction term corresponding to the same cell in the auxiliary table,
αXaj.

The sampling error component, ek = (e1k, . . . , eRk) has E(ek|Pk) = 0 and
V(ek|Pk) = Σee,k,c, where Pk = (P1k, . . . ,PRk) . Finally, uk = (u1k, . . . ,uRk)
is a random component with E(uk) = 0 and V(uk) = Σuu,k. It is assumed that
Σuu,k = ψΓPT ,k , where ΓPT ,k is the variance covariance matrix of a multino-
mial distribution parametrized by PT ,k = (PT ,1k, . . . ,PT ,Rk). Besides simplifying
considerably the model, this specification has two additional advantages: i) it
ensures that V(Pik) → 0 when PT ,ik → 0 and ii) because Σuu,k is not full rank,∑
i uik is constrained and as consequence

∑
i Pik = 1.

Use the symbol (1) to indicate that in a vector or matrix, the first component
or the first row and column, respectively, has been removed. Assuming λ,ψ
and the unconditional variance-covariance matrix of the sampling errors Σee,k
known, Berg and Fuller (2014) shows that the BLUP of Pk is given by

P̂
(1)
k = P

(1)
T ,k +Σ

(1)
uu,k(Σ

(1)
uu,k +Σ

(1)
ee,k)

−1(P̂
(1)
k −P

(1)
T ,k). (1.39)

The predictor for the first category can be obtained by subtraction. Further-
more, the same BLUP estimates do not depend on the category being removed.
Unfortunately, the predictor in equation (1.39) may not remain in the interval
(0, 1). For the cases where the predictor falls outside the parameter space, Berg
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and Fuller (2014) propose to obtain the predictor P∗(1)k that minimises

(P̂
(1)
k −P

∗(1)
k )T

[
Σ
(1)
uu,k +Σ

(1)
ee,k

]−1
(P̂

(1)
k −P

∗(1)
k ),

subject to δik 6 P∗ik 6 1 − δik, where δik are specified positive constants.

Furthermore, assuming that V(ek|uk) = n−1
k dk[diag(Pk) − PkPTk], where nk is

the total sample size in province k and dk plays the role of an average design
effect (Rao and Scott, 1981) for that province, we obtain

Σee,k = E [V(ek|uk)] = n
−1
k ck[diag(PT ,k) −PT ,kP

T
T ,k],

where ck = dk(1 − ψ). Under this working model, the predictor in (1.39)
simplifies to:

P̃ik = PT ,ik + γk(P̂ik − PT ,ik), s

with γk = ψ/(ψ+ ckn
−1
k ). Notice that for this working model, as γk does not

depend on the category, the predicted P̃ik automatically belong to the interval
(0, 1).

The estimators of λ, PT ,ik, ck and ψ are obtained iteratively, using either Ma-
ximum Likelihood or Generalized Least Squares. The estimation of the MSE
of the predictor without benchmark can be performed using a closed form ap-
proximation that is proposed in Berg and Fuller (2014). If benchmark has been
used, an adaptation from the moment-matching bootstrap approach conside-
ring the first two moments is proposed.

Discussion
Berg and Fuller (2014) presents a model for proportions in a population com-
position that is simple but very flexible. In principle, no restrictions are im-
posed on the type of covariate information that is allowed in the model because
the constrains satisfied by g(·) ensure that the synthetic estimator PT ,ik belongs
to the parameter space. In particular, the choice of g(·) and xik presented at
the beginning of this section, induce on the PT ,ik the structural assumption of
the GSPREE.

The proposed predictors for the small area proportions are built over a very
general form for the variance covariance matrix of the sampling errors and
random effects. Particular working models suggested in Berg and Fuller (2014)
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lead to substantial simplifications without compromising the efficiency of the
predictors. The proposed methods for estimating the parameters of the model
are not computationally intensive.

The inclusion of random effects at the probability scale, as in equation (1.38), is
convenient but may allow for within-province proportions of interest Pik which
are not necessarily between 0 and 1. The first predictor proposed, derived as
the BLUE for the proportions of interest, may also provide estimates outside
the parameter space. However, an alternative predictor with the desirable
property of being close to the BLUE is proposed. Furthermore, this problem
can avoided by using the working model proposed for Σee,k, as long as the
data supports this alternative.

1.4.3 Dostál et al. (2016)

Another estimator for population compositions was proposed by Dostál et al.
(2016) as a way to obtain coverage corrections by areas and subgroups of the
population, for the German census 2011. The proposed estimator is an exten-
sion of the SPREE of Purcell and Kish (1980), which minimises the Chi-square
distance to the proxy composition while satisfying constraints given by sets of
estimated margins.

For a given composition M with cells mij, for i = 1, . . . , I; j = 1, . . . , J, the idea
is to obtain an estimator N with cells nij such that the distance

d =
∑
i

∑
j

(
nij
n++

−
mij

m++

)2

mij

is mimimal, subject to constraints on the row and column margins ni+ and
n+j. When only one margin is fixed, the solution to this problem is given by
the SPREE (see Purcell and Kish, 1980, Section 4) and can be calculated using
IPF.

Using Lagrange multipliers, Dostál et al. (2016) show that when two margins
are fixed, the solution to the minimisation problem above is given by

n̂ij =
(
λi + µj

)
mij, (1.40)

where the vector of parameters ψT = (λ1, . . . , λI,µ1, . . . ,µJ) is estimated as the
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solution of the linear system Aψ = b, for

A =

 diag(mi+) M

M diag(m+j)


and bT = (n1+, . . . ,nI+,n+1, . . . ,n+J). Because A is not full rank, a Moore-
Penrose inverse of A is used to solve the linear system. All solutions are given
by ψ̂ = A+b+

(
I−A+A

)
Z, with A+ the Moore-Penrose inverse of A and Z

a free vector. The λi and µj are not identifiable, but (λi + µj) is unique.

Discussion
The estimator proposed in Dostál et al. (2016) only assumes the existence of
a proxy table M and the true sets of margins ni+ and n+j. The methodology
proposed is very convenient because the estimator has a closed form. Fur-
thermore, as no particular treatment is given to the rows or columns of the
composition, no assumption of exchangeability across rows is required, there-
fore it can be use in a wide range of situations.

In order to study the structural assumption underpinning the estimator, ta-
king the logarithm on both sides of equation (1.40) notice that the counts of
the proxy composition M act as an offset in determining the association struc-
ture of the estimated composition, as in the case of the SPREE. However, be-
cause the term (λi + µj) is cell-specific, it induces an update of the association
structure which is governed by I + J parameters. Dostál et al. (2016) report
encouraging results for the proposed estimator in a simulation study, except
for outliers respect to the association structure. However, considering that the
only estimates for the cells that are assumed to be available correspond to
the proxy composition, it seems somehow strange to use only marginal in-
formation to update the association structure rather than preserving the one
observed in the proxy composition. Further research, for instance comparing
this estimator with the estimators proposed in this document may be desirable.
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Chapter 2

MSPREE

This chapter introduces the Multivariate SPREE (MSPREE). The chapter begins
with the introduction of the structural assumption underpinning the estimator.
Then, alternatives to estimate the matrix of parameters that governs the estima-
tor are presented. Finally, an analytic estimator to approximate the variance of
the estimator, and bootstrap procedures to estimate its MSE are proposed. In
what follows, it will be assumed that the target composition Y and the proxy
composition X, both of dimension A× J with A > J, have no structural ze-
roes, i.e., it will be assumed that all cell counts (or their expectations, if Y is
assumed random) are strictly positive. Moreover, it will be assumed that the
two true sets of margins Ya+ = (Y1+, · · · , YA+) and Y+ j = (Y+1, · · · , Y+J) are
known. Furthermore, it will be assumed that sample data about Y , in the form
of a composition of direct estimates Ŷ or sample counts y or the corresponding
within-area proportions, is available.

Throughout this chapter, whenever a particular lemma or theorem is required
to support a given assertion, this is indicated including the corresponding theo-
rem number and page. However, in order to avoid breaking the flow of the text,
all lemmas and theorems and their respective proofs are presented as part of
the Complementary Material, in subsection 2.4.2, at the end of this chapter. To
ease the cross-referencing between lemmas and theorems and the results they
are linked to, a paragraph has been added before the enunciate of each lemma
or theorem, indicating the context and pages where they are being used.
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2.1 Multivariate SPREE (MSPREE)

The Multivariate SPREE is built upon the assumption that, for each area a, the
set of interactions of the target composition, αYa = (αYa1, . . . ,αYaJ)

T , is a linear
combination of the interactions of the same area in the auxiliary composition,
αXa = (αXa1, . . . ,αXaJ)

T , with coefficients that may vary from one category to
another but are common for all areas (between area exchangeability). The
structural assumption of the MSPREE can hence be written as:

αYa1
...
αYaJ

 =


β11 . . . β1J

... . . . ...
βJ1 . . . βJJ



αXa1

...
αXaJ


αYa = β αXa ,

(2.1)

for a = 1, . . . ,A, or equivalently, as

αYaj =
∑
l

βjlα
X
al , (2.2)

for a = 1, . . . ,A and j, l = 1, . . . , J.

Lemma 4 in page 47 shows that under equation (2.2), the set of constraints
β+l = βj+ = 0 for j, l = 1, . . . , J, are required in order to ensure a valid associa-
tion structure for Y , i.e., to ensure that the set of αYaj above defined satisfies the
sum-zero constraints of the centred-constraints parametrisation. Notice that
despite β being a J × J matrix, such constraints imply that the relationship
between the two association structures is characterized by (J− 1)2 free para-
meters. Moreover, because the interaction terms are centred around zero and
the matrix αZ containing as rows the vectors αZa for Z ∈ {X,Y} has a maximum
rank of J− 1, as long as exchangeability between areas is assumed, (J− 1)2 is
the maximum number of parameters that can characterise a linear relationship
between two compositions in the interaction scale.

The MSPREE of Y is obtained by imposing the allocation structure determined
by the margins Ya+ and Y+j, on an estimate of the association structure ob-
tained under the structural assumption (2.2), via IPF, i.e.:

Ŷ
M

= IPF
(

exp α̂Y ; Ya+ ; Y+j

)
, (2.3)
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where for each area:
α̂Ya = β̂αXa . (2.4)

Several alternatives to obtain β̂ will be proposed in section 2.2.

The MSPREE has been called Multivariate in an intention to emphasize that, in
each area, the quantity of interest is the vector of interactions of the target com-
position, in contrast with all existing estimators under the SPREE approach,
that deal with the interaction terms in an univariate fashion. Approaching the
problem in a multivariate way may lead to potential gains in efficiency derived
from the association between the sample counts or direct estimates in each
area, in an analogous way to the Multivariate Fay-Herriot model of Datta et al.
(1991). Furthermore, a multivariate approach provides a mathematically con-
venient way of generalising the structural assumptions of SPREE and GSPREE.
Those two estimators are, indeed, special cases of the proposed MSPREE. In
order to justify this claim, it is enough to prove that the structural assump-
tion stated in equation (2.2) covers the assumptions underpinning SPREE and
MSPREE as special cases because, given an estimated association structure for
the target composition, the procedure used to impose the known margins is
the same for all estimators. Such a proof is presented in Lemma 6 in page 49
and its corollary.

The definition of the MSPREE given in section 2.1 is not complete until we have
proposed a methodology to obtain an estimate of the matrix of parameters β.
In the next section, we will discuss the issues associated with an attempt to
produce such estimates directly from equation (2.2) and, in consequence, pro-
pose a methodology based on alternative expressions of this assumption and
the use of ML or IWLS.

2.2 Estimation of β

The formulation of a statistical model to obtain estimates of the matrix β di-
rectly from the structural assumption of the MSPREE, i.e., in the interaction
scale, would require a sample estimate of the matrix αY containing the terms
αYaj for a = 1, . . . ,A and j = 1, . . . , J. An intuitive estimator is given by α̂Y = αŶ ,
the association structure of the composition of direct estimates. However, given
that the sample sizes in the SA are assumed to be small, it is not unlikely that
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some of the sample counts in the cells are zero despite the assumption of no
zeroes in Y , a situation in which the association structure of neither Ŷ nor y
can be calculated. Moreover, even if y and hence Ŷ contain no zeroes, the
logarithmic transformation required to obtain αŶ from Ŷ would imply bias for
the former due to non-linearity. Therefore, a methodology of estimation of the
βjl using either Ŷ or y or the corresponding proportions would be preferred.

We present in this section two alternative equations for the MSPREE assump-
tion, which can be used in conjunction with suitable distributional assump-
tions in order to obtain estimates of the βjl via ML or IWLS. The validity of
this approach relies on the equivalence between the parameters of the alterna-
tive equations and those of the structural assumption of the MSPREE, which
is proved in Theorems 7 and 8 in pages 50 and 51, at the end of this chapter.

2.2.1 Alternative equations

Log link
ζYaj = log Yaj = γa + λj +

∑
l

βjlα
X
al , (2.5)

for a = 1, . . . ,A and j, l = 1, . . . , J with βj+ = β+l = λ+ = 0. Denoting by
vec(·) the vector operator, which transforms a matrix into a column vector by
stacking its columns, equation (2.5) can be written in matrix notation as

ζY = ZlogΨlog,

where ζY = vec(log(Y)), Zlog is a design matrix of dimensionAJ× (A+ J(J− 1))
given by:

Zlog =
[

1(J×1) ⊗ I(A) T ⊗ 1(A×1) T ⊗ (αXT )
]

, (2.6)

with αX the A× J matrix containing the interactions of the auxiliary composi-
tion, ⊗ denoting the Kronecker product and T defined as

T (J×(J−1)) =

[
I(J−1)

−11×(J−1)

]
. (2.7)

Ψlog is the column vector of parameters:

Ψlog =
[
γ1 . . . γA λ1 . . . λJ−1 β1,1 β1,2 . . . βJ−1,1 βJ−1,J−1

]T
.
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The constraints βj+ = β+l = 0 and λ+ = 0 have been implicitly included in the
design matrix, by setting βjJ = −

∑
l<J βjl, βJl = −

∑
j<J βjl for j, l = 1, . . . , J

and λJ = −
∑
j<J λj, respectively. Neither β, λ or their estimates depend on

which subset of J− 1 categories has free parameters.

Logit link

ρY,r
aj = log

(
θYaj

θYar

)
= φrj +

∑
l6=r
β̃rjl(α

X
al −α

X
ar) , (2.8)

with θYaj = Yaj/Ya+ for a = 1, . . . ,A and j, l = 1, . . . , J, j, l 6= r. Using category J
as reference and stacking Y by column, equation (2.8) can be written in matrix
notation as:

ρY ,J = ZJlogitΨ
J
logit,

where

ρY ,J =
[

log(θY1,1/θ
Y
1,J) . . . log(θYA,1/θ

Y
A,J) . . . log(θY1,J−1/θ

Y
1,J) . . . log(θYA,J−1/θ

Y
A,J)

]T
,

and ZJlogit is a design matrix of dimension A(J− 1)× (J(J− 1)) given by:

ZJlogit =
[
I(J−1) ⊗ 1(A×1) 1(A×1) ⊗ (αXT )

]
, (2.9)

with αX and T defined as in (2.7). ΨJlogit is the column vector of parameters:

ΨJlogit =
[
φr1 . . . φr(J−1) β̃J1,1 β̃J1,2 . . . β̃JJ−1,1 β̃JJ−1,J−1

]T
.

In general, the vectors of parameters corresponding to two different reference
categories differ. However, there is a one-to-one relationship between the set
of parameters β̃rjl corresponding to any reference category r, and the set of βjl
used in the definition of the structural assumption of the MSPREE (equation
2.2). This equivalence, which is presented as part of the proof of Theorem 8
(equation (2.28), page 52), ensures that the matrix β in equation 2.1 is invariant
to the reference category chosen.

Further remarks
It was mentioned at the beginning of this section that the MSPREE of Y could
be obtained by imposing the known margins on an estimate of its associa-

tion structure given by exp α̂Y =
{

exp α̂Y1 , . . . , exp α̂YA
}T

where for each area,

α̂Ya = β̂αXa , with β̂ obtained directly from equation (2.5), or from (2.8) using
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equation (2.28) (page 52). Notice that the same estimate would be obtained
if such margins were imposed directly on the composition of fitted counts or
within area proportions because all the parameters related to the allocation
structure would be recalculated in the IPF process. In this sense, the addi-
tional parameters γa and λj, or φrj , depending on which of the two alternative
equations is used, can be considered nuisance parameters.

2.2.2 ML estimates

ML estimates of βjl for j, l = 1, . . . , J can be obtained making suitable distribu-
tional assumptions for Yaj and using the alternative equations to formulate an
associated GLM, as follows:

• Assuming Yaj|α
X
a

ind
∼ Poisson(µaj) for a = 1, . . . ,A, j = 1, . . . , J. Af-

ter substituting Yaj by µaj, equation (2.5) defines a Poisson Regression
Model.

• Assuming Ya|αXa
ind
∼ Multinomial (Ya+,πYa) for a = 1, . . . ,A. Substitu-

ting θaj by πaj, equation (2.8) defines a Multinomial Logistic Regression
Model.

Both alternatives are equivalent, i.e., they lead to the same estimate of the as-
sociation structure, because a term for the margin that is assumed fixed under
the product multinomial distribution is included in (2.5) (see Birch, 1963).

The use of a Poisson or Multinomial likelihood to obtain MLE estimates of
β is practically convenient because such models can be fitted using standard
software. An illustration using the functions glm and mlogit (packages stats

and mlogit in the software R) is included in section 2.4.3, at the end of this
chapter. However, if the sample has been obtained using a complex sampling
procedure, this approach can lead to model misspecification, as will be dis-
cussed next.

First, the use of a complex sampling procedure may result in informativeness of
the sampling design (see for instance Pfeffermann 1993, Chambers and Clark
2012, Section 1.4). This term has been used to indicate the situation where the
model which holds for the sample data is different from the model holding for
the population from which such sample has been selected. In the context of
model-based estimation, and specially in SAE, accounting for informativeness
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is of key importance in order to avoid bias in the SA predictors.

Perhaps the most common situation that induces informativeness is the use of
sampling designs with unequal selection probabilities, whenever such proba-
bilities are related to the study variable of interest. This can occur either at the
area level, if not all areas are sampled, or at a lower level, when households or
individuals are selected. For instance, sample boosts which target individuals
in a given domain, in order to produce estimates of a minimum level of accu-
racy, may result in informative sampling designs.

Regarding the use of SPREE-type estimators, notice that as long as all the infor-
mation concerning the design of the sample is available, it would be possible
to account for informativeness below the area level, by using appropriate di-
rect estimators for the cells in the composition, e.g, Horvitz-Thompson estima-
tors which weight each observation by the inverse of its inclusion probability
(Särndal et al., 1992, Section 2.8). However, it would be difficult in that case,
to justify a fully distributional assumption for the estimators in the sample,
and therefore an IWLS approach instead of ML would be recommended. That
route of analysis will be discussed below, in section 2.2.3.

Furthermore, notice that because the row margins of the target composition are
assumed known, the use of different sampling fractions across areas would not
necessarily constitute informativeness when using SPREE-type estimators, as
long as the within-area proportions observed in the sample remain unbiased
for the corresponding population quantities. In such a case, a ML approach
using the sample composition could be used to obtain the MSPREE. Unfor-
tunately, due to the assumption of exchangeability across areas, neither the
existing nor the new estimators proposed in this document could take into ac-
count informativeness at the area level.

Second, even if informativeness is not an issue, it is still possible that the va-
riance structure assumed under a Poisson or Multinomial likelihood does not
represent appropriately the variability observed in the sampling data, e.g., due
to the selection of clusters instead of individual units, as in multi-stage sam-
pling. Model misspecification in this sense would affect the efficiency of the
estimators of βjl, but would not compromise their asymptotic unbiasedness
(see Liang and Zeger, 1986). Alternative methods have been proposed in the
literature to deal with the modelling of count data with over-dispersion, for in-
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stance, the use of Quasi-Likelihood functions (Wedderburn 1974, McCullagh
1983) or negative binomial regression (see Agresti, 2013, section 14.4). Study-
ing the efficiency of any of those approaches is considered beyond the scope
of this document.

On a final note, in accordance with what was mentioned before about the
difficulties of obtaining estimates of the βjl directly from equations (2.1) or
(2.2), notice that a MLE approach in the interaction scale would be difficult to
justify given that there is not an intuitive candidate for the joint distribution of
the αYaj. On the other hand, MLE seems a natural alternative when considering
the MSPREE assumption at the proportion or count scale via the alternative
equations.

2.2.3 IWLS estimates

The discussion above illustrates why, in some cases, a fully distributional ap-
proach could be undesirable for the purposes of obtaining the estimates of the
matrix of parameters β. On the other hand, considering the target composi-
tion Y as fixed and assuming that the β that better represents the relationship
between Y and X is also the one that better represents the relationship between
the composition of direct estimates of the counts Ŷ or proportions θ̂Y and X,
Ŷ and an estimate of its variance-covariance matrix are enough to obtain esti-
mates of the parameters of interest via IWLS.

For the sake of completeness, we will briefly describe the procedure here. For
a more detailed explanation, see for instance Jiang (2007), Section 1.4.3. For
this description, let us assume that Y is a random vector with n components,
such that E(Y) = µ and V(Y) = V. We are interested in obtaining estimates for
Ψ, the vector of unknown parameters of the (possibly non-linear) model:

η = g(µ) = ZΨ (2.10)

where η is a n× 1 vector, g is an invertible link function and Z is a design
matrix of dimension n× p. A linear approximation of g(Y) around µ is given
by the expression:

η̃ = η+ g′(µ)(Y − µ) (2.11)

where g′ is the matrix of first derivatives of g with respect to Y , i.e., g′i,j =
∂ηi
∂Yj

.

Considering (2.10) and (2.11) together, it is clear than an estimate for Ψ can be
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obtained from the linear model:

η̃ = ZΨ+ e (2.12)

for e = g′(µ)(Y − µ). Notice that E(e) = 0 and:

V(e) =
(
g′(µ)

)
V
(
g′(µ)

)T
:=W−1.

In general, W−1 is not proportional to the identity matrix, therefore Weighted
Least Squares (WLS) are necessary in order to fit (2.12). As both η̃ and W
depend on the unknown µ, an iterative algorithm such as the following is
required:

1. Define an initial estimate of µ, denoted by µ∗

2. Calculate η̃ = g(µ∗) + g′(µ∗)(y−µ∗), where y is a sample observation of
the random vector Y

3. CalculateW∗ =
[
(g′(µ∗)) V (g′(µ∗))T

]−1
. If unknown, V can be replaced

by a consistent estimate

4. Obtain an estimate of the vector of parameters,Ψ∗ =
(
ZTW∗Z

)−1
ZTW∗η̃

5. Calculate a new estimate of E(Y), µ∗ = g−1(ZΨ∗)

6. Repeat from 2 until convergence is achieved.

Under mild conditions, Jiang et al. (2007) showed that: i) the IWLS algorithm
converges with probability tending to one as the sample size increases and ii)
the limit estimator of Ψ is consistent and as efficient as the BLUE asymptoti-
cally. In this case “sample size” refers to the number of rows, A. Furthermore,
the variance-covariance matrix of the estimated parameters can be estimated
by V̂Ψ̂ = (ZTŴ−1Z)−1.

Turning back to the MSPREE, direct estimators and their observed values play
the roles of the random vector Y and its sample observation y, and the fixed
composition acts as µ in the above description. Notice that it is being implicitly
assumed that the direct estimators are unbiased or approximately unbiased.
An initial estimate of µ can be obtained using the classic SPREE, i.e., imposing
the known margins on the auxiliary composition via IPF.
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The alternative equations presented in section 2.2.1 can be used to set up an
IWLS algorithm to obtain estimates of the matrix β as follows:

Using the Log link
In this case η = g(Y) = log(Y) and ∂ηaj/∂Y∗sl = (Y∗aj)

−1 if s = a; l = j and zero
otherwise, i.e., the matrix of first derivatives is diagonal. Y∗ is an initial es-
timate of Y in the first iteration and is obtained as Y∗ = exp(ZlogΨ̂log) in the
following iterations.

Using the Logit link
Assuming category J as the reference and considering the target and proxy
compositions stacked by column, η = g(θY) = ρY ,J as defined in section 2.2.1.
The matrix of first derivatives has components:

∂ηaj

∂θ∗sl
=


(θ∗aj)

−1 + (θ∗aJ)
−1 if s = a; l = j

(θ∗aJ)
−1 if s = a; l 6= j

0 if s 6= a; l 6= j

for a, s = 1, . . . ,A, j, l = 1, . . . , J − 1. The matrix of first derivatives g′(θ∗),
of dimension A(J− 1)×A(J− 1), is formed by blocks of diagonal matrices of
dimension A×A. θ∗ has entries θ∗aj that correspond to initial estimates of θYaj
in the first iteration and are defined by:

θ∗aj =



expη∗aj

1 +
J−1∑
j

expη∗aj

for j 6= J

1

1 +
J−1∑
j

expη∗aj

for j = J

in the following iterations. In each iteration, the matrix η∗ is the estimated
linear predictor ZJlogitΨ

∗J
logit.

IWLS with V proportional to a Multinomial covariance matrix
Direct estimates of the variances and covariances of the direct estimators can
be very unstable when the sample sizes in the different areas are small. Ge-
neralized Variance Functions (see Wolter, 2007, Chapter 7) or some type of
smoothing of the variance estimates prior to the estimation of β may be nece-

40



ssary in order to address this issue.

Moreover, in many practical situations, an estimate of V = V(Ŷ), may not be
available at all. Using the logit-link, a possible solution in that case is to ignore
any correlation among estimates belonging to different areas and use the co-
variance matrix of a product multinomial distribution parametrized by θ̂

Y
and

Ya+, multiplied by a scalar, in place of V. This approach coincides with the
idea of using the variance estimate corresponding to a simple random sample
without replacement (SRSWOR) selected independently in each area, multi-
plied by a design effect, ∆. An estimate of the covariance matrix of θ̂

Y
in area

a would hence have entries:

V̂a,jl =


∆ θ̂aj(1 − θ̂aj)

na
if j = l

−∆ θ̂ajθ̂al
na

if j 6= l

2.3 MSE estimation

Five alternatives will be proposed to estimate a measure of uncertainty of the
MSPREE. In this section we will introduced three of them, assuming that equa-
tion (2.2) holds. The first proposal is an analytical approximation for the va-
riance of the estimator, using a Taylor linearisation on the first cycle of the
IPF. Such an approximation has already been used by Rao (1986) to propose
a variance approximation for the SPREE, however, that result is not extensible
to the MSPREE because only the uncertainty associated with the estimation of
the margins is taking into consideration in that case. The second proposal uses
the bootstrap to estimate

MSE(Ŷ
M
) = E(Ŷ

M
− Y)2 ,

with the expectation calculated both over Y and the sampling mechanism. The
third proposal, aims to estimate a Finite Population MSE defined as

FP-MSE(Ŷ
M
) = E(Ŷ

M
− Y |Y),

using the bootstrap as well. The last two proposals attempt to estimate the
MSE and FP-MSE above mentioned under a more general structural equation
than (2.2) and will be presented in the next chapter, in section 3.3.
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2.3.1 Analytical approximation to V(Ŷ
M
)

This alternative approximates the variance of the MSPREE using an estimate of
the variance covariance matrix of β̂ and a first order Taylor approximation to
the first cycle of the IPF algorithm. Because the resulting estimator is analytic
and closed-form, its calculation is simple and does not involve considerable
computational efforts, on top of the estimation of Y . However, any potential
bias resulting from model misspecification in case equation (2.2) does not hold
is ignored.

Let h1 be a function defined in RA×J, the space of real-valued matrices of
dimension A× J, and h2 and h3 be functions defined in {R+}

A×J, the subspace
of matrices A× J with only positive entries; h1, h2 and h3 defined as follows:

• h1 : α 7→ υ with υaj = expαaj

• h2 : υ 7→ Y(1); Y
(1)
aj =

(
υaj

υa+

)
Ya+

• h3 : Y(1) 7→ Y(2); Y
(2)
aj =

Y(1)aj
Y
(1)
+j

 Y+j
where Y ·+ = (Y1+, . . . ,YA+) and Y+· = (Y+1, . . . ,Y+J) are fixed positive vectors,
υa+ =

∑
j υaj and Y(1)+j =

∑
a Y

(1)
aj .

It is possible to see the IPF algorithm presented in section 1.3.1 as a successive
composition of functions h2 and h3 until convergence is achieved. Moreover,
considering only the first iteration cycle of the IPF it is possible to approximate
the MSPREE of composition Y , previously defined in equation (2.3) as:

Ŷ
M

= IPF
(

exp α̂Y ; Y ·+ ; Y+ ·
)

by h̃
(
α̂Y
)
= h3 ◦ h2 ◦ h1

(
α̂Y
)
.

A linear approximation to Ŷ
M

can be used to obtain an approximation of the
variance of the MSPREE, V

(
ŶM

)
. A first order Taylor approximation of h̃(·)

around the true association structure αY , is given by:

Ỹ
M

= h̃(αY) + h̃′(αY)(α̂Y −αY)
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and hence, an analytic approximation for V
(
ŶM

)
is given by:

AV
(
Ŷ
M
)
= V

(
Ỹ
M
)
=
(
h̃′(αY)

)
Vα̂

(
h̃′(αY)

)T
(2.13)

where h̃′ is the matrix of first derivatives with terms ∂ỸMaj /∂α̂
Y
rk, evaluated in

the set of true αYaj.

The deduction of the matrix of first derivatives h̃′ is presented in Lemma 9
in page 53. Having stacked the compositions by column, h̃′ is composed by
block matrices of dimension A×A. The blocks in the main diagonal of h̃′ have
diagonal elements:

∂ŶMaj

∂α̂aj
=

 Y+j
Y
(1)
+j

1 −
Y
(1)
aj

Y
(1)
+j

1 −
Y
(1)
aj

Ya+

 Y(1)aj (2.14)

and off-diagonal ones:

∂ŶMaj

∂α̂sj
=

 Y+j
Y
(1)
+j

Y(1)aj
Y
(1)
+j

1 −
Y
(1)
sj

Ys+

[−Y(1)sj ] . (2.15)

Analogously, the blocks outside the main diagonal have diagonal elements:

∂ŶMaj

∂α̂al
=

 Y+j
Y
(1)
+j

1 −
Y
(1)
aj

Y
(1)
+j

Y(1)aj
Ya+

[−Y(1)al ] (2.16)

and off-diagonal ones:

∂ŶMaj

∂α̂sl
=

 Y+j
Y
(1)
+j

Y(1)aj
Y
(1)
+j

Y(1)sj
Ys+

 Y(1)sl . (2.17)

An estimate for V
(
ŶM

)
can be obtained, substituting the unknown αY and Vα̂

in equation (2.13) by their corresponding estimates.

The only remaining thing to be discussed is how to obtain an estimate of Vα̂.
Because for each area, α̂Ya = β̂αXa , all the variability arises from the estimation
of the matrix of coefficients β. If one of the alternative equations provided in
section 2.2 was used to obtain β̂, the corresponding block of V̂Ψ is an estimate
of their variance-covariance matrix. Such an estimate can be easily obtained as
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the the inverse of the Hessian matrix calculated at the MLE if the ML approach
has been followed, or the inverse of (ZTW−1Z) if IWLS was used. Denoting
this estimate by V̂β, Vα̂ can be estimated by:

V̂α = ZαV̂βZ
T
α, (2.18)

where Zα = T ⊗ (αXT ), for T defined as in equation (2.7) and αX denoting the
A× J matrix containing the interactions of the auxiliary composition. Remem-
ber that if the logit link function was used, the parameter estimates correspond
to the set of β̃ instead of β and need to be multiplied on the left by the ma-
trix [I− (1/J)1] (see the equivalence between the two sets of parameters, as
part of the proof of Theorem 8 in page 51). Hence, if the logit link was used,
V̂β = [I− (1/J)1] V̂β̃ [I− (1/J)1]T .

Remark
A requirement for the proposed approximation to work is that the initial esti-
mate of Y that enters the IPF, i.e., υ in this case, is not substantially far from
the scale given by the known margins. Unfortunately, that is not the case of
the MSPREE defined as above, because the initial υ = expαY ignores the terms
corresponding to the allocation structure of Y . For the purposes of variance
estimation, we suggest creating an initial estimate υ̃ by exponentiating the sum
of a sensible allocation structure and the estimated association structure. The
matrix of first derivatives h̃′(·) defined by equations 2.14 - 2.17 can then be eva-
luated on Ỹ (1)

= h2(υ̃). Notice that this procedure has no impact, either on the
point estimate or on the variance of the MSPREE, because any initial allocation
added to the estimated structure would lead to the same MSPREE after IPF.
The only aim of this procedure is to improve the quality of the approximation
of one-cycle IPF to the IPF after convergence. Adding an allocation structure
can be done in several ways, for instance, by including in the initial estimate
the nuisance parameters of the equations for the estimation of β presented in
section 2.2.1, i.e., using the fitted values instead of only the interaction terms,
or by making an initial IPF of the estimated association structure to the mar-
gins of X.

2.3.2 Estimation of MSE(Ŷ
M
)

The MSPREE of Y and one of the GLMs associated with the alternative equa-
tions proposed in section 2.2.1 can be used to set up a parametric bootstrap to
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estimate MSE(Ŷ
M
) = E(Ŷ

M
− Y)2. As in section 2.2.2, assume that Ya|αXa

ind
∼

Multinomial (Ya+,πYa). Furthermore, suppose that πa = θ̂
M
a , the estimated

vector of within-area proportions of the MSPREE for area a, a = 1, . . . ,A.
The bootstrap procedure consists in generating repeatedly population compo-
sitions from the above distribution, selecting a sample from each population
and calculating the MSPREE based on the bootstrap sample. If B populations
have been generated, Ŷ

M,b
denotes the MSPREE for the composition of popu-

lation b, Yb, and vec(·) denotes the vector operator, the estimate of MSE(Ŷ
M
)

is obtained using the Monte Carlo approximation:

M̂SE(Ŷ
M
) :=

1
B

∑
b

vec
(
Ŷ
M,b

− Yb
)

vec
(
Ŷ
M,b

− Yb
)T

.

2.3.3 Estimation of FP-MSE(Ŷ
M
)

Assume Ŷ
M

, the MSPREE calculated over the original sample, as the fixed
parameter of interest. By sampling repeatedly from the population defined by
that composition, it is possible to propose a bootstrap estimate of uncertainty
that only considers the variability due to the sampling procedure, having an
interpretation that is closer to the uncertainty in the design-based approach
of inference. The quantity of interest, FP-MSE(Ŷ

M
) = E(Ŷ

M
− Y |Y), can be

estimated using the Monte Carlo approximation:

̂FP-MSE(Ŷ
M
) :=

1
B

∑
b

vec
(
Ŷ
M,b

− Ŷ
M
)

vec
(
Ŷ
M,b

− Ŷ
M
)T

with Ŷ
M,b

the MSPREE of the fixed Ŷ
M

calculated over sample b.

Notice that, because all populations for the first estimator, and all samples
for the second, have been derived on base of Ŷ

M
, neither M̂SE(Ŷ

M
), nor

̂FP-MSE(Ŷ
M
) are able to take into account any potential misspecification in

case equation (2.2) does not hold.

2.4 Complementary Material

2.4.1 Parameter interpretation

The MSPREE assumes that the interactions in the target composition are a
linear combination of the interactions in the proxy composition, with coeffi-
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cients given by a J× J matrix denoted by β with components βjl. Because the
scale β depends on the number of categories of the composition, an intuitive
interpretation of the estimated parameters β̂jl is difficult. To illustrate this,
consider that according to the corollary of Lemma 6 in page 49, SPREE is a
special case of MSPREE with β = C, for C = I− J−11. This means that the
matrix of coefficients β for SPREE has diagonal components βjj = (J − 1)/J
and off-diagonal ones βjl = −1/J. For instance, if J = 5, the diagonal terms
will be 0.8 but if J = 3, they would be approximately 0.66 even though in both
cases the interactions are assumed to remain unaltered.

On the other hand, the SPREE and GSPREE have an intuitive interpretation in
terms of the assumption of proportional interactions. Extending the GSPREE
idea to J proportionality constants, it is possible to think of another special
case of the MSPREE with only J free parameters and a matrix of coefficients
β = CBC where B = diag {b1,b2, ...bJ}, that we will denote MSPREE(J). It is
straightforward to show that the structural assumption of the MSPREE(J) is

αYaj = bjα
X
aj −

1
J

∑
l

blα
X
al.

Because the second term on the right hand side is the same for all the in-
teraction terms in a given area, its task is only to ensure that αYaj satisfy the
constraint

∑
a α

Y
aj = 0. Hence, the coefficients {b1,b2, ...bJ} can be considered

as category-specific proportionality constants, with bi only affecting the in-
teraction terms of category i.

Paying attention to the expression β = CBC, notice that the multiplication on
the left and on the right by C aims to ensure that the constraints βj+ = β+l = 0
for j, l = 1, . . . , J are satisfied. Moreover, because C is idempotent, the SPREE
and GSPREE can be written analogously in a very convenient way, with B = I

and B = βI respectively. In all those cases, the structural assumptions of
the estimator are clearly stated in the corresponding matrix B. Unfortunately,
there is an identifiability problem on the relationship between β and B be-
cause β = CBC = C(B+ k11T )C for any scalar k. However, if B is forced to
be diagonal in order to make an interpretation of the parameters in the spirit
of proportional interactions, the identifiability problem ceases.

For the MSPREE in the general case, it is always possible to write β = CBC but
clearly a diagonal matrix would not be able to manage the (J− 1)2 free com-
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ponents of β. For parameter interpretation purposes, we propose to rescale β
in the general case to a matrix Bp with components bpjl such that the diagonal
components are free but the off-diagonal ones are forced to sum to zero, by
row and column, as is the case for the three estimators mentioned above. Such
a matrix is given by

b
p
jl = βjl +

1
J− 2

(
βjj +βll −

Tr(β)

J− 1

)
. (2.19)

The details of the derivation of (2.19) are given in Lemma 10, page 54. It is
straightforward to show that Bp corresponding to estimators SPREE, GSPREE
and MSPREE(J) are I, βI and diag {b1,b2, ...bJ} respectively. Hence, the super-
script p has been added to emphasize that the parameters on that scale relate
to the proportional interactions assumption.

The suggested interpretation in terms of Bp is as follows. The diagonal terms
b
p
jj are an indicator of how the interactions of a given category in the tar-

get composition shrink or expand with respect to the same terms in the proxy
composition, as in the case of the GSPREE. On the other hand, the off-diagonal
terms would indicate how the interactions of the remaining categories can
be better arranged in order to compensate for the unequal proportionality
constants among columns, in order to satisfy the constraints of the centred-
constraints representation. An illustration of this interpretation using real data
will be shown in chapter 4.

2.4.2 Proofs

Constraints imposed on β
This lemma proves that the constraints β+l = βj+ = 0 for j, l = 1, . . . , J, together
with the MSPREE structural assumption, ensure a well defined interaction
structure for the target composition. It is referenced in the definition of the
MSPREE in page 32.

Lemma 4. Equation (2.2) with the constraints β+l = βj+ = 0 for j, l = 1, . . . , J
imply:

1. αYa+ = αY+j = 0

2. If αYaj =
∑
l

βjlα
X
al =

∑
l

β̃jlα
X
al, then βjl = β̃jl for j, l = 1, . . . , J.
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Proof. We will start by proving item 1. In order to satisfy the constraint αY+j = 0
it is only necessary to ensure that the same β is used for all areas, given that

αY+j =
∑
a

∑
l

βjlα
X
al =

∑
l

βjl
∑
a

αXal = 0,

since the αXal sum to zero by column. On the other hand,

αYa+ =
∑
j

∑
l

βjlα
X
al =

∑
l

αXal

∑
j

βjl,

so the constraint αYa+ = 0 is only satisfied if β+l = 0 for l = 1 . . . , J. The column
constraints ensure that equation (2.2) is well defined in the interaction scale.

Regarding item 2, notice that∑
l

βjlα
X
al =

∑
l

β̃jlα
X
al ⇐⇒

∑
l

αXal(βjl − β̃jl) = 0.

for j = 1, . . . , J. The last equality is satisfied as long as βjl − β̃jl = kj, indepen-
dent of l because:

kj
∑
l

αXal = 0

given that the αXaj sum to zero by row. This evidences an identifiability issue
in the sense that a particular βjl and any β̃jl = βjl − kj would lead to the same
association structure for the target composition. The constraints βj+ = β̃j+ = 0
for j = 1, . . . , J ensure identifiability because:∑

l

βjl = Jkj +
∑
l

β̃jl = Jkj = 0

implies kj = 0 and hence βjl = β̃jl for j = 1, . . . , J.

Matrix C
This lemma shows some properties of the matrix C that are used to proof
several lemmas and theorems across the document. Is used in the proof of
Lemma 6 (page 49), Theorem 8 (page 51), Lemma 10 (page 54), Lemma 11
(page 68), Lemma 13 (page 71), Lemma 14 (page 72) and Theorem 15 (page 73).

Lemma 5. Define the J× J matrix C = I− J−11, where I denotes the identity matrix
and 1 is a squared matrix with all component equal to 1. Hence,

1. C is symmetric.
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2. C is idempotent.

3. For any matrix B of dimension J× J:

(a) The product CB sums to zero by column.

(b) The product BC sums to zero by row.

(c) The product CBC sums to zero by both row and column.

Proof. The first two properties are easily derived from the definition of C. First,
notice that CT = IT − J−11T = C because both matrices are symmetric. Second,
see that:

CC = C
(
I− J−11

)
= C− J−1C1 = C− J−1

(
I− J−11

)
1 = C− J−1

(
1 − J−111

)
.

As 11 = J1, we can conclude that C is idempotent. For a proof of item 3, notice
that any matrix A sums to zero by column if and only if, 1A = 0, the zero
matrix of the corresponding dimension. Analogously, A sums to zero by row
if and only if A1 = 0. Consider the product:

1CB = 1
(
I− J−11

)
B = 1B− J−111B.

As 11 = J1, we conclude that 1CB = 0 i.e., CB sums to zero by column. For a
proof of (b), consider the product:

BC1 = B
(
I− J−11

)
1 = B1 − J−1B11,

using the same argument, we conclude that BC sums to zero by row. Fi-
nally, for (c), notice that 1CBC = (1CB)C = 0, according to (a). Analogously,
CBC1 = C (BC1) = 0 according to (b). Therefore, CBC sums to zero by both
row and column.

SPREE and GSPREE as special cases
This lemma and its corollary show that the SPREE and GSPREE are special
cases of the MSPREE. They are referenced in pages 33 and 46.

Lemma 6. Equation (2.1) with β = βC is equivalent to the structural assumption of
the GSPREE, αYaj = βα

X
aj for a = 1, . . . ,A and j = 1, . . . , J.

Proof. C satisfies the constraints imposed on β in equation (2.1), βj+ = β+l = 0
for j, l = 1, . . . , J, given that:

1C = 1
(
I− J−11

)
= 0
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because 11 = J1. As well, C1 =
(

1CT
)

= 0 because C is symmetric. As β
multiplies the entire matrix, βC also satisfies the constraints. Substituting βC
in equation (2.1) leads to the set of equations:

αYaj = β

(
1 −

1
J

)
αXaj −β

(
1
J

)∑
l6=j
αXal = βα

X
aj −β

(
1
J

)∑
l

αXal,

for j = 1, . . . , J. However, the last term at the right hand side vanishes given
that αXa+ = 0.

Corollary 6.1. The structural assumption of the SPREE, αYaj = βα
X
aj for a = 1, . . . ,A

and j = 1, . . . , J, is obtained for β = 1.

Equivalence between the alternative equations and the structural assump-
tion of the MSPREE
The following two theorems show the equivalence between the two alternative
equations and the structural assumption of the MMSPREE. They are referenced
in pages 34, 35, 44 and 61.

Theorem 7. Denote ζYaj = log Yaj, for a = 1, . . . ,A, j, l = 1, . . . , J. The set of
equations (2.5):

ζYaj = γa + λj +
∑
l

βjlα
X
al

where βj+ = β+l = 0 for j, l = 1, . . . , J and λ+ = 0, is equivalent to the structural
assumption of the MSPREE (equation 2.2):

αYaj =
∑
l

βjlα
X
al ,

for a = 1, . . . ,A, j = 1, . . . , J.

Proof. We will start the proof by showing that equation (2.5) implies (2.2). As
ζYaj = log Yaj, using the centred-constraint parametrisation given in equation
(1.16), it is possible to rewrite equation (2.5) as:

ζYaj = α
Y
0 +αYa +α

Y
j +α

Y
aj = γa + λj +

∑
l

β̃jlα
X
al . (2.20)

Given the constraints satisfied by the set of αYaj, and the constraints β̃+l = 0 for
l = 1, . . . , J and λ+ = 0, by summing across j in both sides of (2.20) we obtain:

αY0 +αYa = γa . (2.21)

50



Substituting (2.21) in (2.20) and summing across a we obtain:

αYj = λj . (2.22)

Substituting equations (2.21) and (2.22) back in equation (2.20), we obtain equa-
tion (2.2), completing the proof of the first implication. The equivalence is
proved because, as there are no constraints regarding the possible values of γa
and the only constraint for λj, i.e., λ+ = 0 is automatically satisfied by λj = αYj ,
it is always possible to set γa and λj as in equations (2.21) and (2.22) to obtain
(2.20).

Theorem 8. Denote by ρY,r
aj the logit between category j and category r in area a, i.e.,

ρY,r
aj = log

(
Yaj/Yar

)
, for a = 1, . . . ,A; r ∈ {1, . . . , J}; j, l = 1, . . . , J; j, l 6= r. The

set of equations (2.8):
ρY,r
aj = φj +

∑
l6=r
β̃jl(α

X
al −α

X
ar)

with φ+ =
∑
j 6=rφj = 0 is equivalent to the structural assumption of the MSPREE

(equation 2.2):
αYaj =

∑
l

βjlα
X
al .

with βj+ = β+l = 0 for a = 1, . . . ,A, j = 1, . . . , J.

Proof. We will prove first the implication (2.8)⇒ (2.2). Notice that:

ρY,r
aj = log Yaj − log Yar

= (αYj −α
Y
r ) + (αYaj −α

Y
ar) (2.23)

Substituting (2.23) in (2.8) and summing over a we obtain:

(αYj −α
Y
r ) = φj , (2.24)

given that αYa+ = 0 under this parametrisation. Substituting (2.23) and (2.24)
back in (2.8) leads to:

(αYaj −α
Y
ar) =

∑
l6=r
β̃jl(α

X
al −α

X
ar), (2.25)

for a = 1, . . . ,A; j = 1, . . . , J, j 6= r.
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Consider now the sum of (2.25) over j:∑
j 6=r

(
αYaj −α

Y
ar

)
=
∑
j 6=r

∑
l6=r
β̃jl(α

X
al −α

X
ar)

−JαYar =

∑
l6=r
αXal

∑
j 6=r
β̃jl

−

αXar∑
l6=r

∑
j 6=r
β̃jl


αYar =

1
J

β̃++α
X
ar −
∑
l6=r
β̃+lα

X
al

 . (2.26)

Finally, substituting (2.26) in (2.25) we obtain:

αYaj =
∑
l6=r

(
β̃jl −

1
J
β̃+l

)
αXal +

(
1
J
β̃++ − β̃j+

)
αXar . (2.27)

Equations (2.26) and (2.27) are equivalent to the structural assumption of the
MSPREE (2.2), with:

βjl =



β̃jl −
1
J β̃+l for j 6= r, l 6= r

1
J β̃++ − β̃j+ for j 6= r, l = r

−1
J β̃+l for j = r, l 6= r

1
J β̃++ for j = r, l = r

(2.28)

Equivalently, the square matrix containing the (J− 1)2 independent terms βjl
for j, 1 = 1, . . . , J; j, l 6= r can be obtained as:

[I− (1/J)1] β̃. (2.29)

The remaining βj,r,βr,j for j = 1, . . . , J and βrr can be obtained by substrac-
tion, due to the constraints βj+ = β+l = 0. Notice that the matrix [I− (1/J)1]
above, corresponds to the first (J− 1) rows and columns of matrix CJ defined
in Lemma 5.

To prove the implication (2.2) ⇒ (2.8) it is enough to prove (2.2) ⇒ (2.25) be-
cause φj can always be set as in (2.24) to satisfy (2.8). Subtracting equation
(2.2) for the reference category from the equation corresponding to category j
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and using the definition of βjl in (2.28) we obtain:

αYaj −α
Y
ar =

∑
l

(βjl −βrl)α
X
al

=
∑
l6=r

(
β̃jl −

1
J
+

1
J

)
αXal +

(
1
J
β̃++ − β̃j+ −

1
J
β̃++

)
αXar

=
∑
l6=r

(
β̃jlα

X
al − β̃j+α

X
ar

)
=
∑
l6=r
β̃jl

(
αXal −α

X
ar

)
i.e., (2.2)⇒ (2.25) completing the proof.

Matrix of first derivatives of h̃(·)
This lemma shows the first derivatives of h̃(·). It is referenced in page 43.

Let h1 be a function defined in RA×J, the space of the real-valued matrices of
dimension A× J by h1 : α 7→ υ with υaj = expαaj. Let h2,h3 be functions in
the subspace of RA×J of matrices with only positive entries, defined by:

h2 : υ 7→ Y(1); Y
(1)
aj =

(
υaj

υa+

)
Ya+

h3 : Y(1) 7→ Y(2); Y
(2)
aj =

Y(1)aj
Y
(1)
+j

 Y+j
where Y .+ = (Y1+, . . . ,YA+) and Y+. = (Y+1, . . . ,Y+J) are fixed positive vectors,
υa+ =

∑
j υaj and Y(1)+j =

∑
a Y

(1)
aj .

Lemma 9. The composition of the functions defined above, h̃ = h3 ◦ h2 ◦ h1, has first
derivatives:

h̃′ :
∂Y

(2)
aj

∂αsl
=

 Y+j
Y
(1)
+j

1[s=a] −
Y+j

Y
(1)
+j

Y
(1)
aj

Y
(1)
+j

Y(1)sl 1[l=j] − Y
(1)
sl

Y
(1)
sj

Ys+


for a, s = 1, . . . ,A and j, l = 1, . . . , J. 1[x=y] denotes the indicator function of x = y.
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Proof. The derivatives of each one of the functions h1, h2 and h3 are:

h′1 :
∂υaj

∂αsl
= υaj1[s=a;l=j], (2.30)

h′2 :
∂Y

(1)
aj

∂υsl
=

1
υa+

(
Ya+1[l=j] − Ya+

υaj

υa+

)
1[s=a]

=
1
υa+

(
Ya+1[l=j] − Y

(1)
aj

)
1[s=a] (2.31)

h′3 :
∂Y

(2)
aj

∂Y
(1)
sl

=

 Y+j
Y
(1)
+j

1[s=a] −
Y+j

Y
(1)
+j

Y
(1)
aj

Y
(1)
+j

 1[l=j] (2.32)

Using the chain rule,

h̃′ :
∂Y

(2)
aj

∂αsl
=
∂Y

(2)
aj

∂Y
(1)
sj

∂Y
(1)
sj

∂υsl

∂υsl
∂αsl

(2.33)

because all the other terms are zero. Substituting (2.30), (2.31) and (2.32) in
(2.33), and using the fact that υsl/υs+ = Y

(1)
sl /Ys+, the theorem is proved.

Matrix Bp for parameter interpretation
This lemma shows how the matrix C of Lemma 5 can be used to transform β

into the alternative parameterization B. The new matrix B is used to provide
an interpretation of the coefficients of the MSPREE in terms of the assumption
of proportional interactions. It is referenced in page 47.

Lemma 10. Let β and C be J× J matrices, with C = I− J−11 and βj+ = β+l = 0
for j, l = 1 . . . , J.

1. β can be written in the form β = CBC with B a matrix with components bjl
such that bj+ = bjj and b+l = bll for j, l = 1, . . . , J.

2. B is unique.

Proof. We will start by studying the product CBC := β̃. Given the definition
of C we have

β̃jl = bjl − b̄j+ − b̄+l + b̄++

where b̄j+ = (1/J)
∑
l bjl, b̄+l = (1/J)

∑
j bjl, and b̄++ = (1/J2)

∑
j

∑
l bjl. Given

the constraints imposed on B, this equation can be rewritten as

β̃jl = bjl −
1
J
bjj −

1
J
bll +

1
J2

Tr(B). (2.34)
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Simplifying, the diagonal elements of β̃ are

β̃jj =
1
J2

(
J(J− 2)bjj + Tr(B)

)
. (2.35)

Let us turn now to Tr(β̃). Substituting (2.35) in the definition of the trace we
obtain Tr(β̃) = ((J− 1)/J)Tr(B), from which Tr(B) = (J/(J− 1))Tr(β̃). Substi-
tuting this in (2.35),

β̃jj =
(J− 2)
J

bjj +
1

J(J− 1)
Tr(β̃),

or equivalently,

bjj =
J

(J− 2)

[
β̃jj −

1
J(J− 1)

Tr(β̃)
]

. (2.36)

Substituting (2.36) in (2.34), it can be seen that the off-diagonal elements of β̃
are

β̃jl = bjl −
1

J− 2

[
β̃jj + β̃ll −

Tr(β̃)

J− 1

]
.

from where

bjl = β̃jl +
1

J− 2

[
β̃jj + β̃ll −

Tr(β̃)

J− 1

]
. (2.37)

Equation (2.37) is enough to define, for a given β̃, the matrix B such that
β̃ = CBC because for the diagonal elements (2.37) is equivalent to (2.36).
Notice that the only constraints imposed so far on β̃ are β̃j+ = β̃+l = 0 for
j, l = 1, . . . , J, which is derived from β̃ = CBC and Lemma 5. Hence, by taking
β = β̃, item 1 is proven. To prove item 2, it is enough to notice that all the
multiple solutions of β = CBC have the form M = B+ k11T for some scalar
k. Because of the constraints bpj+ = b

p
jj and bp+l = b

p
ll for j, l = 1, . . . , J, B is

unique.

2.4.3 Illustration. MSPREE via ML using Poisson/Multinomial

regression in R

A <- 6 #Number of rows (areas)

J <- 4 #Number of columns (categories)

###### Data

Xtable <- matrix(c(1238, 216, 1981, 1128, 2419, 62, 1105, 581, 908, 846,
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2717, 1047, 2384, 217, 2121, 979, 1881, 258, 1561,

1142, 2215, 307, 1814, 1124),

nrow = A, ncol = J, byrow = T) #Auxiliary composition

ytable <- matrix(c(1828, 285, 1858, 946, 2265, 36, 569, 1632, 884, 748,

3603, 435, 2767, 151, 1787, 1642, 1415, 199, 2776,

905, 2659, 269, 2914, 1193),

nrow = A, ncol = J, byrow = T) #sample composition

Ya. <- c(4917, 4502, 5670, 6347, 5295, 7035) #True row margins

Y.j <- c(11818, 1688, 13507, 6753) #True column margins

###### Column id

col <- kronecker(matrix(seq(1:J),1,J),matrix(1,1,A))

###### Interaction structure of X

f.LLRep<-function(y){

A <- nrow(y); J <- ncol(y);

Z <- log(y)

alpha0 <- mean(Z)

alphaa <- rowSums(Z)/J-alpha0

alphaj <- colSums(Z)/A-alpha0

alphaaj <- Z- matrix(alphaa,nrow=A,ncol=J,byrow=F)-

matrix(alphaj,nrow=A,ncol=J,byrow=T)-

matrix(alpha0,nrow=A, ncol=J)

alphaaj

}

alpha.Xaj <- f.LLRep(Xtable)

###### Design matrices

zg <- kronecker(matrix(1,J,1),diag(A)) #area effects

zl <- kronecker(rbind(diag(J-1),rep(-1,J-1)),matrix(1,A,1)) #column effects

matrixT <- rbind(diag(J-1),matrix(-1,1,J-1))

#for the poisson, the beta coefficients for the last column are -sum(row)

#for the multinomial, the last column is the reference

talpha <- alpha.Xaj%*%matrixT #auxiliary structure
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z.pois <- cbind(zg,zl,kronecker(matrixT,talpha))

z.mult <- kronecker(matrix(1,J,1),talpha)

###### Poisson fitting

model.poisson <- glm(c(ytable) ~ -1+z.pois,family = "poisson")

###### Multinomial fitting

library(mlogit)

data1 <- as.data.frame(cbind(factor(c(col)),c(ytable),z.mult))

data2 <- mlogit.data(data1, choice = "V1", shape="wide", alt.levels = seq(1,J))

model.multi <- mlogit(V1~1|V3+V4+V5, weights=V2, data=data2, reflevel = J)

###### Comparison of the two fitted structures

Yhat.poisson <- matrix(fitted(model.poisson),A,J,byrow=F)

struc.poisson <- f.LLRep(Yhat.poisson)

Yhat.multi<- matrix(fitted(model.multi),A,J,byrow=F)

struc.multi <- f.LLRep(Yhat.multi)

max(abs(struc.poisson - struc.multi))

par(mfrow=c(2,2))

for (i in 1:ncol(struc.poisson)){

plot(struc.poisson[,i],struc.multi[,i])

abline(0,1)

}

###### Imposition of the known column and row margins

Yhat.mspree <- loglin(outer(Ya.,Y.j)/sum(Ya.),margin=list(1,2),

start=Yhat.poisson, fit=TRUE, eps=1.e-08, iter=100)$fit
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Chapter 3

Mixed MSPREE

This chapter introduces the MMSPREE, a mixed effects version of the MSPREE
presented in the previous chapter, in an attempt to reduce the bias in the cases
when the sample size allows for it. The chapter is composed of four sections.
Section 3.1 starts with a motivation and then defines the structural assumption
underpinning the MMSPREE. Section 3.2, presents a proposal to obtain esti-
mates of the variance components and predictors of the random effects. Sec-
tion 3.3 contains the proposed methodology to estimate the MSE of the mixed
effects estimator. Finally, section 3.4 contains all the proofs corresponding to
this chapter.

3.1 Mixed MSPREE (MMSPREE)

The MSPREE introduced in the previous chapter is built on the structural as-
sumption

αYaj =
∑
l

βjlα
X
al,

where αYaj and αXaj are the interaction terms corresponding to the association
structure of the target and proxy composition, respectively, for a = 1, . . . ,A
and j = 1, . . . , J, and βjl are unknown parameters that satisfy βj+ = β+l = 0.
However, in practice, it is difficult to expect the equality to hold. Notice though
that all differences between the true association structure of Y and the one
assumed by the MSPREE can be expressed in terms of a set of unknown fixed
quantities

maj := α
Y
aj −
∑
l

βjlα
X
al. (3.1)
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for a = 1, . . . ,A and j = 1, . . . , J such that, differently from the structural as-
sumption of the MSPREE, the assumption

αYaj =
∑
l

βjlα
X
al +maj

always holds. Summing both sides of (3.1) over a or over j, it is clear that the
maj terms satisfy ma+ = m+j = 0 for a = 1, . . . ,A and j = 1, . . . , J.

The Mixed MSPREE (MMSPREE) is an extension of the MSPREE with the
aim of reducing the risk of bias due to misspecification in the sense of (3.1).
Substituting the fixed maj in the above equation by cell-specific random effects
uaj, and acknowledging, in principle, that the set of parameters that better
explain the relationship between αY and αX may differ between structural
assumptions with or without random effects, lead us to the mixed structural
assumption:

αYaj =
∑
l

β̃jlα
X
al + uaj . (3.2)

In order to ensure that the constraints ua+ = 0 and u+j = 0 are, not only on
expectation but always, satisfied, the random effects are defined as a linear
transformation of a set of independent cell-specific random variables ϑaj, with
E(ϑaj) = 0 and V(ϑaj) = σ2

j , as

uaj = ϑaj −
1
A
ϑ+j −

1
J
ϑa+ +

1
AJ
ϑ++. (3.3)

Arranging the set of ϑaj in an (A× J) matrix denoted by ϑ and using vec(·)
to denote the vector operator, it is possible to write equation (3.3) in matrix
notation as

u := vec(C(A)ϑC(J)), (3.4)

where C is the matrix defined in Lemma 5 as C(K) = Ik −K
−11(K) (page 48).

As it is shown in Lemma 11 (page 68), equation (3.4) induces

Σu := V(u) = (C(J) ⊗C(A))Σϑ(C(J) ⊗C(A)) (3.5)

with ⊗ denoting the Kronecker product, Σϑ = V(vec(ϑ)) = diag(σ2)⊗ IA and
σ2 = [σ2

1, . . . ,σ2
J ]
T . For computational purposes, notice that the product on the

right hand side of equation (3.5) can also be written as (C(J)diag(σ2)C(J))⊗
C(A).
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As in other SPREE-type estimators, the MMSPREE of Y is obtained by impos-
ing, via IPF, the known row and column margins of Y , Ya+; Y+j on an estimate
of its association structure, i.e.,

Ŷ
MM

= IPF
(

exp
{
α̃Y + û

}
; Ya+ ; Y+j

)
. (3.6)

The details behind the estimation of α̃ and the prediction of the random effects
will be explained in detail in the next section.

3.2 Estimation of the association structure

In section 2.2.1 we proposed an equation based on a log-link that is equiva-
lent to the structural assumption of the MSPREE and can be used to obtain
estimates for the parameters of interest. In a similar way, it is possible to see
that

ζYaj = log Yaj = γ̃a + λ̃j +
∑
l

β̃jlα
X
al + uaj , (3.7)

is equivalent to the mixed structural assumption (3.2) that is the base of the
MMSPREE. A formal proof is analogous to the proof of Theorem 7 (page 50)
because the set of terms uaj satisfy ua+ = u+j = 0 always (not only in expecta-
tion).

Hereafter, we will assume that the set of parameters β̃jl that determine the
MMSPREE is the same as the MSPREE, and hence, the fixed part of the struc-
tural assumption is the same for both estimators. This is convenient because
it allows us to see the MSPREE as the synthetic estimator derived from the
MMSPREE when ignoring the random effects. Moreover, as will be shown
next, the two sets of parameters are actually the same if normality is assumed
for the random effects. To see that, exponentiate both sides of equation (3.7) to
obtain

Yaj = exp

{
γ̃a + λ̃j +

∑
l

β̃jlα
X
al

}
euaj .

Conditioning on the proxy composition and the known margins and taking
the expectation on both sides, we have

E[Yaj|X,Ya+,Y+j] = exp

{
γ̃a + λ̃j +

∑
l

β̃jlα
X
al

}
E[euaj] . (3.8)
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The last term on the right hand side of equation (3.8) is the moment-generating
function of uaj, Muaj(t) = E(etuaj) evaluated at t = 1. Under the assumption

of normality for uaj, E[euaj] = e
1
2σ

2
uaj . However, according to the corollary of

Lemma 11 (page 68),

σ2
uaj

= V(uaj) =
(A− 1)
AJ

[
(J− 2)σ2

j + σ̄
2
]

,

with σ̄2 = J−1(σ2
+), i.e., σ2

uaj
depends only on j. This means that under the

normality assumption, the introduction of random effects has a multiplicative
effect on the expected value of Yaj that it is not cell-specific. Hence, in expec-
tation, it may modify the remaining parameters of (3.7) but not the ones that
control the relationship between the αY and αX, i.e., the matrix of parameters
β.

Therefore, hereby we propose to obtain estimates of the vector of variance
components σ2, as well as predictions of the vector of random effects u, using
the equation

ηaj = ζ
Y,M
aj − α̂Yaj = γ̃a + λ̃j + uaj + eaj, (3.9)

where ζY,M
aj is the first order Taylor approximation of logYaj around the corres-

ponding MSPREE, ŶMaj , given by

ζY,M
aj := log ŶMaj +

1
ŶMaj

(Yaj − Ŷ
M
aj ); (3.10)

α̂Yaj is the estimated interaction for cell (a, j) obtained from the MSPREE of the

composition, Ŷ
M

; uaj are the random effects defined in equation (3.3) and eaj
is an error term measured in the log-scale, with known variance-covariance
matrix. Stacking all the relevant components by column and using matrix
notation, equation (3.9) can be written as

η = ζY,M − vec(α̂Y) = ZΨ̃+u+ e, (3.11)

where Z is the design matrix of dimension (AJ× (A+ J− 1)) defined as

Z =
[

1(J×1) ⊗ I(A) T ⊗ 1(A×1)

]
with T defined previously in section 2.2.1, i.e., T (J×(J−1)) =

[
I −1

]T
, and
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Ψ̃ =
[
γ̃1 . . . γ̃A λ̃1 . . . λ̃J−1

]T
contains the nuisance parameters due to

the rows and columns, once the estimated interactions have been taken into
account. Furthermore, it is assumed that E[e] = 0 and V(e) = Σe known, and
that Cov(u,e) = 0.

Conditioning on Ŷ
M

and substituting Y by the composition of direct estimates
Ŷ in the definition of ζY,M, equation (3.11) can be seen as a linearised version of
a particular case of the GLMM defined in section 1.2. This equation defines an
area-level model, which is different from the standard Fay-Harriot model (Fay
and Herriot, 1979) and also different from its extension including correlated
sampling errors (see Rao and Molina, 2015, section 8.2) because both matrices
Σu and Σe are allowed to contain non-zero correlations.

Notice that, in the definition of η, a Taylor approximation to log(·) was pre-
ferred over a direct transformation of the response variable. In the first place,
this rules out issues associated with sample zeroes. Moreover, because a non-
linear transformation has been avoided, when conditioning on Ŷ

M
, the ex-

pected value of the error terms may still be assumed as zero.

The linear approximation for the logarithm can be considered good as long as
Yaj and ŶMaj are strictly positive and reasonably close. As it is shown in Lemma
12 (page 69), if Yaj and ŶMaj are greater than zero and

δaj :=

∣∣∣∣∣Yaj − ŶMajYaj

∣∣∣∣∣ < k,

then the absolute value of the remainder of the linear approximation, |R|, is

smaller than
1
2

(
k

1 − k

)2

. For instance, if δaj < 0.1, then |R| < 0.006.

As previously described in equations (1.4) and (1.5) in section 1.2, for known
Σu and Σe, the BLUP of u under model (3.11) is given by

ũ = ΣuV
−1 (η−ZΨ̃

)
, (3.12)

with
Ψ̃ =

(
ZTV−1Z

)−1
ZTV−1η (3.13)

for V = (Σe +Σu). Notice that α̂Y and hence Ŷ
M

have been assumed fixed. In
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our set-up, it has been assumed that Σe is known but the vector of variance
components σ that governs Σu, and hence Σu are unknown. Given an estimate
σ̂2 = [σ̂2

1, . . . , σ̂2
J ] of σ2, the estimate

Σ̂u = (C(J)diag(σ̂2)C(J))⊗C(A)

implies the estimate V̂ = Σe+Σu. With Ψ̂ =
(
ZT V̂

−1
Z
)−1

ZT V̂
−1
η, the EBLUP

of u is given by
û = Σ̂uV̂

−1 (
η−ZΨ̂

)
. (3.14)

Because the matrix Σ̂u is not full rank, the predicted set of random effects
using the equation above satisfies ûa+ = û+j = 0 automatically.

Assuming normality of both u and e, a Fisher-scoring algorithm can be used
to obtain ML or REML estimates Ψ̂ and û, as described in section 1.2. It is
straightforward to show that, given the structure of random effects assumed,
the matrix V(j) containing the first derivatives of V with respect to σ2

j is given
by

(C(J) ⊗C(A))(1
jj
(J)
⊗ I(A))(C(J) ⊗C(A)),

where 1
jj
(J)

denotes a square matrix of dimension J with zeroes in all compo-
nents except for the entry (j, j).

Without the normality assumption, the proposal is to carry out the estimation
of the variance components using a moment-type estimator that we have de-
veloped for model (3.11), in the spirit of Henderson (1953), and which will be
introduced next. Denote by ẽaj, the residual corresponding to unit (a, j) from
the Ordinary Least Squares (OLS) fit of model (3.24) and let SSRj =

∑A
a=1 ẽ

2
aj

be the sum of squares of the residuals for column j. The proposed estimator is
given by the expression

σ̂2
j =

1
(A− 1)(J− 1)(J− 2)

(
J(J− 1)(SSRj − ξj) −

∑
k

(SSRk − ξk)

)
, (3.15)

for j = 1, . . . , J, where ξj = Tr
[
DjΣe

]
with Dj =

(
C(J)1

jj
(J)
C(J)

)
⊗C(A). C is

the matrix defined in Lemma 5 (page 48) and 1
jj
(J)

was defined above. Theorem
16 (page 76), proves that σ̂2

j is unbiased under model (3.11). Because an OLS
rather than Weighted Least Squares (WLS) fitting has been used to develop the
estimator, no iteration is required.
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Unfortunately, ML, REML and the method proposed above, can produce ne-
gative solutions. In our experience, this is prone to happen when the variance
components are very small, particularly if the survey sizes are small as well.
A first possible solution is use truncated versions of the estimators, where ne-
gative estimates are replaced by zero but not recalculation of the remaining
estimates is performed. Clearly, for an unbiased estimator such as the one pro-
posed in equation (3.15), this would create a positive bias. Further study will
be required to determine the impact of such bias in the MSE of the MMSPREE.

A second alternative to this situation is to truncate all negative estimates, elimi-
nate the observations corresponding to those categories from model (3.11) and
repeat the estimation for the remaining categories. Furthermore, in cases with
more than one variance component with a negative estimate, this procedure
can be performed in a progressive way, starting with the most negative esti-
mate. This alternative, that may seem appealing in principle, has performed
poorly in initial simulation studies. The recalculation of variance estimates has
often derived in new negative estimates, sometimes up to the point where all
variance components receive a zero estimate. A possible explanation for this
behaviour arises from the use of interaction terms to model the relationship be-
tween the proxy and target compositions in SPREE-type estimators. Because a
given set of interactions depends on all categories simultaneously, considering
only a subset of them somehow seems to distort our observation of the rela-
tionships between the two compositions.

A final alternative, which has been attempted successfully in initial simula-
tion studies and has also been used in the application that will be discussed
in Chapter 5, is to perform the estimation of the variance components using
hard sources, e.g., another proxy composition, rather than survey data. Even
though the MMSPREE can lose some efficiency due to the lack of unbiasedness
in such situation, gains can still be obtained in comparison with the synthetic
version of the estimator.

So far it has been assumed that Σe is known. Given an estimate of the variance-
covariance matrix of the direct estimators, ΣŶ , it is possible to approximate the
variance of the error terms on the log-scale using the Taylor approximation
(3.10), to obtain

Σe ≈ GΣŶG,
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for G = [diag(1/vec(Ŷ
M
))].

3.3 MSE estimation

In section 2.3 we presented alternatives to estimate two different quantities
related to the uncertainty of the MSPREE estimator. An unconditional MSE
where the expectation is taken both over Y and over the sampling mechanism,
and a Finite-Population MSE that only considers the uncertainty associated
with the selection of the sample. In an analogous way, to study the uncertainty
of the MMSPREE we will be interested in obtaining estimates for the quantities:

MSE(Ŷ
MM

) = E(Ŷ
MM

− Y)2,

and
FP-MSE(Ŷ

MM
) = E(Ŷ

MM
− Y |Y).

For each one of those targets of estimation, a bootstrap procedure will be pro-
posed. Finally, notice that these procedures can also be used to obtain esti-
mates of MSE and FP-MSE for the MSPREE that take into account possible
misspecification of the MSPREE in the sense of (3.1).

3.3.1 Estimation of MSE(Ŷ
MM

)

Estimation of MSE(Ŷ
MM

) can be performed using the parametric bootstrap
under assumption (3.2), given the estimates β̂ and Σ̂u obtained from the origi-
nal sample, and assuming normality for the random effects uaj. The proposed
procedure follows:

For b = 1, . . . ,B,

1. Generate independent random variables ϑbaj ∼ N(0, σ̂2
j ) for a = 1, . . . ,A;

j = 1, . . . , J. Arrange them in the (A× J) matrix ϑb.

2. Calculate ub = vec(C(A)ϑ
bC(J)).

3. Make αY
b

aj =
∑
l β̂jlα

X
aj + u

b
aj, for a = 1, . . . ,A; j = 1 . . . , J.

4. Obtain the population composition Yb = IPF
(

expαY
b

aj ;Ya+,Y+j

)
.

5. Select a sample from the population defined by the Yb.
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6. Using the data in the sample, obtain the MMSPREE of Yb, Ŷ
MM,b

.

The quantity of interest can be estimated using the Monte Carlo approxima-
tion:

M̂SE(Ŷ
MM

) =
1
B

∑
b

vec
(
Ŷ
MM,b

− Yb
)

vec
(
Ŷ
MM,b

− Yb
)T

.

Furthermore, having obtained estimates of the variance components σ2
j for

j = 1, . . . , J, it is possible to substitute the MMSPREE by the MSPREE in step
6 above, to obtain a bootstrap estimate of MSE(Ŷ

M
) under a more general

structural assumption than the estimator proposed in section 2.3.2. This seems
practically appealing because it would provide protection against possible mis-
specification of the MSPREE.

3.3.2 Estimation of FP-MSE(Ŷ
MM

)

The interest in this section is to obtain an estimate of the MSE where the po-
pulation of interest has been set as fixed and only the variability associated
with the sampling mechanism is taken into account. Under assumption (3.2),
the MMSPREE estimate based on the original sample, Ŷ

MM
is a suitable com-

position to play the role of fixed population for evaluation purposes. The
procedure then is to repeatedly select samples from the population defined
by the composition Ŷ

MM
, and calculate in each of them the MMSPREE, Ŷ

MM
.

Then, the Monte Carlo approximation

̂FP-MSE(Ŷ
MM

) :=
1
B

∑
b

vec
(
Ŷ
MM,b

− Ŷ
MM

)
vec

(
Ŷ
MM,b

− Ŷ
MM

)T
,

can be used to estimate the FP-MSE(Ŷ
MM

) = E(Ŷ
MM

− Y |Y). As with the
method proposed in section 3.3.1, this procedure can be used to obtain an
estimate of the finite population MSE of the MSPREE that takes into account
possible misspecification of the structural assumption of the MSPREE.

3.4 Proofs

Definition u and induced variance
This lemma shows how to obtain the random effects u of the MMSPREE, star-
ting with the matrix of random variables ϑ. Its corollary specifies the variance
of u as induced from ϑ. The lemma and its corollary are used in the proof
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of Theorem 15, and referenced in the definition of the MMSPREE, page 60, as
well as in page 62.

Lemma 11. Let {ϑ11, . . . , ϑAJ} be a set of independent random variables with E(ϑaj) = 0
and V(ϑaj) = σ2

j for a = 1, . . . ,A; j = 1 . . . , J, arranged in a matrix of dimension
(A× J) denoted by ϑ. Thus:

1. The product C(A)ϑC(J), with C defined as in Lemma 5, sums to zero by row and
column.

2. Let u be the column vector of dimension (AJ) defined as u = vec
(
C(A)ϑC(J)

)
,

where vec represents the vector operator. Then

Σu := V(u) = (C(J) ⊗C(A))Σϑ(C(J) ⊗C(A))

for Σϑ := V(vec(ϑ)) = diag(σ2)⊗ IA and σ2 = [σ2
1, . . . ,σ2

J ]
T

Proof. The proof of the first item is a direct application of Lemma 5. Notice
that this item implies that the row and column margins of C(A)ϑC(J) are non
random and equal to zero for any realisation of ϑ.

To prove the second item we will use a relationship between the vector operator
and matrix multiplication. According to Theorem 16.2.1 in Harville (1997), for
any matrices A,B and C such that the product ABC is defined,

vec(ABC) = (CT ⊗A)vec(B).

An application of this result in the case of u, leads to

u = (C(J) ⊗C(A))vec(ϑ),

given that the matrix C is symmetric, as proven in Lemma 5. Moreover, since
the Kronecker product of two symmetric matrices is symmetric (see for in-
stance Harville, 1997, equation 1.15, page 336) it is possible to conclude that
(C(J)⊗C(A)) is a symmetric matrix of constants. The desired expression is then
obtained using the bilinearity property of the variance.

Corollary 11.1. The covariance assumed between components uaj and ual defined as
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in Lemma 11 is:

Cov(uaj,url) =



(A−1)
AJ

[
(J− 2)σ2

j + σ̄
2
]

for a = r, j = l

−1
AJ

[
(J− 2)σ2

j + σ̄
2
]

for a 6= r, j = l

−(A−1)
AJ

[
σ2
j + σ

2
l − σ̄

2
]

for a = r, j 6= l

1
AJ

[
σ2
j + σ

2
l − σ̄

2
]

for a 6= r, j 6= l

with σ̄2 = J−1(σ2
+).

Remainder of the linear approximation to log Yaj
This lemma presents a bound for the remainder of the linear approximation
applied to log Yaj as part of the process of estimation of the MMSPREE. It is
referenced in page 63.

Lemma 12. For Yaj and ŶMaj strictly positive such that∣∣∣∣∣Yaj − ŶMajYaj

∣∣∣∣∣ 6 k,

a bound for the remainder of the Taylor approximation of order 1 to log Yaj around ŶMaj
is given by (

−
1
2

(
k

1 − k

)2

, 0

)
.

Proof. The first part of this proof uses the so-called Lagrange’s form of the remain-
der, which can be found in many Calculus textbooks (see for instance Stewart,
2008, page 738). For f(x) a continuous function, with derivatives of all orders,
if the n+ 1 derivative of f is continuous on an open interval I that contains a,
and x is in I, then the remainder of the Taylor approximation of order n of f(x)
around a, R(x), satisfies:

R(x) =
f(n+1)(c)

(n+ 1)!
(x− a)n+1, (3.16)

for some number c between a and x.

The linear approximation in consideration satisfies the requirements of the
formula above as long as Yaj and ŶMaj are strictly positive. Hence, under those
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conditions, there exists a number c between Yaj and ŶMaj such that

R(Yaj) = −
1

2c2 (Yaj − Ŷ
M
aj )

2. (3.17)

Notice that equation (3.17) corresponds to an inverted parabola with vertex in(
ŶMaj , 0

)
. Moreover, as R(Yaj) 6 0, the linear approximation overestimates the

value of the function for all values of Yaj.

For each Yaj, the actual value of c for which equation (3.17) holds is unknown.
However, it is possible to build a lower bound for R(Yaj) considering the values
of c that would lead to a minimum value. For fixed Yaj and ŶMaj , the minimum
of R(Yaj) is obtained when c → 0. However, as c is between Yaj and ŶMaj , the
minimum is obtained when c = min(Yaj, ŶMaj ), i.e., for c = Yaj when Yaj < ŶMaj
and for c = ŶMaj when ŶMaj < Yaj.

Now we will connect the lower bound of the reminder with the relative error
δaj given in the enunciate of the lemma. For the case where Yaj < ŶMaj , we have

0 > R(Yaj) > −
1
2

(
Yaj − Ŷ

M
aj

Yaj

)2

> −
1
2
k2. (3.18)

On the other hand, from the enunciate of the lemma,∣∣∣∣∣Yaj − ŶMajYaj

∣∣∣∣∣ 6 k ⇔

(
Yaj − Ŷ

M
aj

ŶMaj

)2

6

(
kYaj

ŶMaj

)2

, (3.19)

for ŶMaj > 0. Moreover,

−k 6
Yaj − Ŷ

M
aj

Yaj
6 k ⇔ −k 6 1 −

ŶMaj

Yaj
6 k.

Subtracting 1 in all sides of the inequality, inverting and multiplying by (−1)
it is possible to obtain

k

k+ 1
6
kYaj

ŶMaj
6

k

1 − k
,

for k > 0; k 6= 1. Applying the square and taking the right hand side of the
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inequality, we arrive to the inequality

(
kYaj

ŶMaj

)2

<

(
k

1 − k

)2

. (3.20)

Finally, substituting equation (3.20) in the right hand side of (3.19) leads to

(
Yaj − Ŷ

M
aj

ŶMaj

)2

<

(
k

1 − k

)2

.

Going back to the case where ŶMaj < Yaj, the previous equation together with
the bound for R(Yaj) obtained when c = ŶMaj allows us to conclude that

0 > R(Yaj) > −
1
2

(
Yaj − Ŷ

M
aj

ŶMaj

)2

> −
1
2

(
k

1 − k

)2

. (3.21)

Between the two bounds proposed for R(Yaj) in equations (3.18) and (3.21), the
wider bound is then chosen.

Unbiasedness of σ̂2
j

The remaining lemmas and theorems of this chapter intend to show the un-
biasedness of the estimator for the variance components proposed in equation
(3.15) (page 64). Lemma 13 shows the specific form of the projection matrix
P = I−Z(ZTZ)−1ZT under model (3.11). Lemma 14 shows the specific form of
the matrixDj induced by P. Theorem 15 uses the previous lemmas to calculate
the expected value of the sum of squares of the residuals of model (3.11), for
a given column. Finally, Theorem 16 shows the unbiasedness of the proposed
estimator. Only the latter theorem is referenced in the document, in page 64.

Lemma 13. Let Z be a design matrix of dimension (AJ× (A+ J− 1)) given by

Z =
[

1(J×1) ⊗ I(A) T ⊗ 1(A×1)

]
with T (J×(J−1)) =

[
I −1

]T
. The projection matrix P = I−Z(ZTZ)−1ZT is given

by the Kronecker product of matrices

P = C(J) ⊗C(A),

with C the matrix defined in Lemma 5 (page 48), i.e., C(K) = I(K) −
1
K

1(K).
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Proof. It is straightforward to see that for Z defined as above,

ZTZ =

 JI(A) 0(A×(J−1))

0((J−1)×A) A(1 + I)(J−1)

 .

Moreover, for a matrix M = (1 + I) of dimension (J− 1), M−1 = I− 1
J1. Using

that argument and a lemma for the inverse of block diagonal matrices, (see for
instance Harville, 1997, sec. 8.5),

(
ZTZ

)−1
=

1
J

 I(A) 0(A×(J−1))

0((J−1)×A)
1
A (JI− 1)(J−1)

 .

Furthermore,

(
ZTZ

)−1
ZT =

 1
J

(
1(1×J) ⊗ I(A)

)
1
A

[(
I(J−1) ⊗ 1(1×A)

)
− 1
J1(J−1)×(A(J−1))

]
−1
AJ1(J−1)×A

 .

The hat matrix H = Z(ZTZ)−1ZT is in this case given by

H =
−1
AJ

1(AJ) +
1
J

(
1(J) ⊗ IA

)
+

1
A

(
I(J) ⊗ 1(A)

)
. (3.22)

writing 1(AJ) as 1(A) ⊗ 1(J), and I(AJ) as I(A) ⊗ I(J) and using the property of
the mixed product of the kronecker product (see for instance Harville, 1997,
section 16.1) we obtain,

P =

(
I(J) −

1
J

1J

)
⊗
(
I(A) −

1
A

1A

)
,

which corresponds to the desired expression according to the definition of C.
Notice that P is symmetric.

Lemma 14. Consider P defined as in Lemma 13 and denote ∆j =
(

1
j
(1×J) ⊗ IA

)
,

where 1
j
(1×J) denotes a row vector of dimension J with value of 1 on the j-th component

and zero everywhere else. Then:

Dj := P∆
T
j ∆jP =

(
C(J)1

jj
(J)
C(J)

)
⊗C(A),

where 1
jj
(J)

and 1
◦j
(J)

represent square matrices of dimension J, with zeroes in all com-
ponents except for the one indicated by the superscript, that receives the value 1. The
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symbol ◦ indicates all elements on the index which substitutes, e.g, ◦j indicates column
j.

Proof. According to the definition,

∆Tj ∆j =
(

1
j
(1×J) ⊗ IA

)T (
1
j
(1×J) ⊗ IA

)
= 1

jj
(J)
⊗ IA, (3.23)

given the mixed product property of the Kronecker product and the identity
1
jj
(J)

= 1
j
(J×1)1

j
(1×J). Notice that ∆Tj ∆j = ∆j∆

T
j . Using again the mixed product

property, the definition of P and equation (3.23) we have

P∆Tj ∆j =
(
C(J)1

jj
(J)

)
⊗C(A),

The desired result is obtained multiplying the equation above on the right
by P, using the mixed product property of the Kronecker product and the
idempotence of C shown in Lemma 5. Notice that as ∆Tj ∆j and P are both
symmetric, Dj is also symmetric.

Theorem 15. Consider the model

ηaj = γa + λj + uaj + eaj (3.24)

for a = 1, . . . ,A; j = 1, . . . , J, with γa and λj sets of unknown parameters satis-
fying λ+ = 0, and where uaj are random effects and eaj random errors. It will be
assumed that the terms uaj are the components of the vector u defined in Lemma
11, hence E(u) = 0 and V(u) = Σu unknown, determined by the vector of va-
riance components σ2 = (σ2

1, . . . ,σ2
J). The error terms eaj are arranged as e =

[e11, e21, . . . , e1J, . . . , eAJ]
T , with E(e) = 0 and V(e) = Σe known. Furthermore,

it will be assumed that Cov(u,e) = 0. Denote by ẽaj, the residual correspon-
ding to unit (a, j) on the Ordinary Least Squares (OLS) fit of model (3.24) and let
SSRj =

∑A
a=1 ẽ

2
aj be the sum of squares of the residuals for column j. Then,

E
[
SSRj

]
=
A− 1
J2

[
J(J− 2)σ2

j + σ
2
+

]
+ ξj

where σ2
+ =

∑
j σ

2
j and ξj = Tr

[
DjΣe

]
with Dj =

(
C(J)1

jj
(J)
C(J)

)
⊗C(A) and C is

the matrix defined in Lemma 5.

Proof. Equation (3.24) can be written in matrix notation as:

η = ZΨ+u+ e (3.25)
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where η, u and e are column vectors of dimension AJ, Z is the matrix defined
in Lemma 13, and Ψ is a column vector of dimension A+ J− 1 given by

Ψ =
[
γ1 . . . γA λ1 . . . λJ−1

]T
.

In order to derive an unbiased estimator for the variance components, we will
study the expectation of the sum by column of the squares of the residuals
(SSR) of an Ordinary Least Squares (OLS) fit of (3.25). We will start by remem-
bering that the OLS estimator of Ψ under this model is Ψ̃ = (ZTZ)−1ZTη. The
expected value of the SSR corresponding to column j is given by

E
[
SSRj

]
= E

[(
ηj −ZjΨ̃

)T (
ηj −ZjΨ̃

)]
, (3.26)

where ηj = ∆jη and Zj = ∆jZ are the corresponding submatrices when only
the rows corresponding to the j-th column are selected, and ∆j is defined as
in Lemma 14. Using matrix ∆j and the property of cyclic permutations of the
trace (see for instance Harville, 1997, section 5.2), equation (3.26) can be written
as

E
[
SSRj

]
= Tr

[
E
[(
η−ZΨ̃

) (
η−ZΨ̃

)T]
∆Tj ∆j

]
,

or, by using the identity η−ZΨ̃ = Pη, with P the projection matrix defined by
P = I−Z(ZTZ)−1ZT , as

E
[
SSRj

]
= Tr

[
PE[ηηT ]P∆Tj ∆j

]
. (3.27)

Regarding E[ηηT ], we have

E[ηηT ] = E
[
(ZΨ+u+ e)(ZΨ+u+ e)T

]
= ZΨΨTZT +Σu +Σe, (3.28)

due to the assumptions of zero mean for both u and e and independence
between them. Substituting (3.28) in (3.27), we obtain

E
[
SSRj

]
= Tr

[
PZΨΨTZTP∆Tj ∆j

]
+ Tr

[
P (Σu +Σe)P∆

T
j ∆j

]
= Tr

[
(Σu +Σe)P∆

T
j ∆jP

]
= Tr

[
DjΣu

]
+ Tr

[
DjΣe

]
, (3.29)

with Dj = P∆Tj ∆jP. The second line is obtained using the property of cyclic
permutation of the trace and the orthogonality between the projection matrix
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P and Z.

The particular form of Dj under model (3.24) is given by Lemma 14,

Dj =
(
C(J)1

jj
(J)
C(J)

)
⊗C(A), (3.30)

and the form of Σu is given by Lemma 11,

Σu = (C(J) ⊗C(A))Σϑ(C(J) ⊗C(A)) (3.31)

with Σϑ = diag(σ2)⊗ IA and σ2 = [σ2
1, . . . ,σ2

J ]
T . Substituting (3.31) into DjΣu

and using the property of cyclic permutations of the trace,

Tr
[
DjΣu

]
= Tr

[
(C(J) ⊗C(A))Dj(C(J) ⊗C(A))Σϑ

]
.

Using the definition ofDj given by equation (3.30), the mixed product property
of the Kronecker product and the idempotence of C, it is possible to write

(C(J) ⊗C(A))Dj(C(J) ⊗C(A)) = Dj,

hence,
Tr
[
DjΣu

]
= Tr

[
DjΣϑ

]
. (3.32)

Moreover, according to the definition of Dj and Σϑ,

Tr
[
DjΣϑ

]
= Tr

[(
(C(J)1

jj
(J)
C(J))⊗C(A)

)(
diag(σ2)⊗ IA

)]
= Tr

[(
C(J)1

jj
(J)
C(J)diag(σ2)

)
⊗C(A)

]
= Tr

[(
C(J)1

jj
(J)
C(J)diag(σ2)

)]
Tr
[
C(A)

]
. (3.33)

The mixed product property is used to go from line 1 to 2. Line 3 is obtained
using the property: Tr(A⊗ B) = Tr(A)Tr(B) (Harville, 1997, chapter 16, equa-
tion 1.26).

Now we will focus on the first term on the right hand side. Using the property
of cyclic permutations of the trace we can write

Tr
[(
C(J)1

jj
(J)
C(J)diag(σ2)

)]
= Tr

[(
1
jj
(J)
C(J)diag(σ2)C(J)

)]
.

It is straightforward to see that if M̃ is a square matrix of dimension (J), the
product 1

jj
(J)
M̃ has as result a matrix with all components zero except for the

75



j-th row, that remains as in M̃. Hence, Tr(1jj
(J)
M̃) = M̃jj. Similarly, it is straight-

forward to see that the product M̃ = CMC has components

M̃jl =Mjl − M̄j+ − M̄+l − M̄++.

Taking M = diag(σ) we obtain

Tr
[(

1
jj
(J)
C(J)diag(σ2)C(J)

)]
=

1
J2

(
J(J− 2)σ2

j + σ
2
+

)
, (3.34)

which, substituted in (3.33) and then in (3.32) leads to

Tr
[
DjΣu

]
=

(A− 1)
J2

(
J(J− 2)σ2

j + σ
2
+

)
, (3.35)

given that Tr
[
C(A)

]
= (A− 1). The proof is completed by substituting (3.35)

in (3.29).

Theorem 16. In the same conditions of Theorem 15, an unbiased estimator of the
variance component σ2

j is given by

σ̂2
j =

1
(A− 1)(J− 1)(J− 2)

(
J(J− 1)(SSRj − ξj) −

∑
k

(SSRk − ξk)

)
, (3.36)

for j = 1, . . . , J.

Proof. The proof is immediate taking the expectation on both sides of (3.36)
and using Theorem 15.
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Chapter 4

Simulation Exercise

This chapter presents a simulation exercise that was carried out with the pur-
pose of illustrating the behaviour of the MSPREE and MMSPREE, as well as
to test the proposed methodologies for the estimation of their MSEs. In an
attempt to reflect a realistic situation, a specific estimation problem was iden-
tified, and real data was used to set up the characteristics of the simulation.

The target of estimation for this exercise is a population composition con-
formed by individuals, ages 16 and over, disaggregated according to the high-
est academic qualification they have obtained and the Local Authority (LA)
they reside in. Real versions of this composition, can be obtained from the
2001 and 2011 population censuses in England and Wales, through the website
NOMIS provided by the ONS, https://www.nomisweb.co.uk. Those two cen-
sus compositions were used to generate the target and proxy compositions for
the simulation exercise as it will be explained next.

The row and column margins of the 2011 census composition, denoted Ya+
and Y+j for a = 1, . . . ,A and j = 1, . . . , J, constitute the column and row mar-
gins of the target composition and are kept fixed through all the simulation
exercise. The inner cells of the target composition, on the other hand, are ge-
nerated using one out of three possible scenarios of association structure: 1)
the MSPREE structural assumption, 2) the MMSPREE structural assumption,
or 3) the association structure observed in the census 2011 composition. In
order to provide some degree of comparability across scenarios, the observed
composition of the 2001 census, denoted X, was used to generate the target
association structures for scenarios 1 and 2, and also used as proxy for the
calculation of the SPREE-type estimators for all three scenarios. Moreover, the
two census compositions were used to set the matrix of coefficients β of the
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MSPREE and MMSPREE structural assumptions, i.e., for scenarios 1 and 2.
The variance components required for scenario 2, were also motivated by the
real data.

In order to evaluate the characteristics of the point estimators as well as the
proposed methodologies for the estimation of their MSE’s, a double bootstrap
approach was implemented. In each iteration, a population composition Y was
generated, with association structure given by one of the scenarios and with
margins Ya+ and Y+j. Then, a sample composition y was selected from Y and
the SPREE-type estimators were calculated. Furthermore, bootstrap samples
were selected from each y, using the procedures described in sections 2.3 and
3.3 of this document, in order to obtain estimates of the MSEs of the MSPREE
and MMSPREE for each Y .

The simulation exercise provides point estimates of the different SPREE-type
estimators, as well as estimates of their MSEs. Point estimates are analysed to
study the existence of bias and also used to calculate Monte Carlo estimates of
the true MSEs, which are then used to compare the performance of different
SPREE-type estimators, and to study the bias of the methodologies proposed
previously in sections 2.3 and 3.3 for MSE estimation.

This chapter is divided into five sections as follows. Section 4.1 presents a brief
description of the estimation problem according to the real data provided by
the 2001 and 2011 census compositions, as well as some preliminary analysis
using SPREE-type estimators, with the aim of providing background for the
analysis of results. Section 4.2 presents in more detail the three scenarios used
to generate the association structure of the target compositions. Section 4.3
defines the criteria used to compare the different estimators and their MSE’s.
Section 4.4 describes and discusses the main results of the simulation. Finally,
section 4.5 presents complementary tables and figures that may be helpful to
further understand the results of this exercise.
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4.1 The estimation problem in the 2001 and 2011

census compositions

It was previously mentioned that, in this simulation exercise, we are interested
in the estimation of a composition that disaggregates the population according
to the highest academic qualification they have obtained and the LA they re-
side in. Data regarding all academic qualifications possessed by a person is
collected for all persons living in England or Wales and aged 16-74, in ques-
tions 16 and 17 on the 2001 population census, and for all persons aged 16
or over, in question 25 on the 2011 population census. ONS makes available
data regarding the Highest Qualification attained by each individual. Despite
some differences between the questions used in the two censuses, the data
are considered broadly comparable (Office for National Statistics, 2012). The
items considered in the census questions are hereby grouped in six categories:
No qualifications (NQ), Level 1 qualifications (L1), Level 2 qualifications (L2), Level
3 qualifications (L3), Level 4 qualifications or above (L4+) and Other qualifications
(OQ). The questions used in each census to collect these data, as well as the
detail of the categorisation above mentioned, are presented at the end of this
chapter, in Section 4.5, tables 4.12 and 4.13.

Preliminary analysis
England and Wales are geographically disaggregated into 348 LAs. Two of
them, Isles of Scilly and City of London, have less than 7000 persons aged 16
and over according to the 2011 Census, and are discarded from the simulation
exercise. Table 4.1 contains descriptive statistics of the population size and the
distribution of the variable of interest for the remaining 346 LA in conside-
ration. The most noticeable differences between the two censuses lay in the
two extremes of the classification: between 2001 and 2011, there is a reduction
in the proportion of people with non or at most level 1 qualifications that is
compensated by an increase in the proportion of people with L3 and L4+ qua-
lifications.

Because SPREE-type estimators are built on the assumption of a linear relation-
ship between the association structures of the target and proxy compositions,
we will study the relationship between the two sets of interaction terms, αYaj
and αXal, defined as in equation (1.16). Figure 4.1 shows the matrix scatter
plot between pairs of variables αYaj and αXal, for j, l = 1, . . . , 6, as well as the
lines that represent the SPREE and GSPREE structural assumptions for these
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Table 4.1: Descriptive statistics for the composition of Higher Qualifications by
LA. Population censuses 2001 and 2011 in England and Wales.

Statistic Census LA Size Proportion of individuals

NQ L1 L2 L3 L4+ OQ

Min. 2001 21 759 0.2609 0.1891 0.2496 0.0758 0.1479 0.0767

2011 26 893 0.2028 0.1387 0.2299 0.1186 0.2697 0.0403

Q1 2001 62 145 0.2779 0.1802 0.2143 0.0734 0.1767 0.0775

2011 75 544 0.2198 0.142 0.2074 0.1231 0.261 0.0468

Median 2001 83 776 0.2826 0.1731 0.2066 0.0774 0.188 0.0724

2011 101 634 0.2246 0.1357 0.1979 0.1239 0.2689 0.049

Mean 2001 108 669 0.2909 0.1657 0.1938 0.0827 0.1976 0.0694

2011 131 469 0.2266 0.1329 0.1884 0.1235 0.2721 0.0565

Q3 2001 119 067 0.317 0.1816 0.2141 0.0101 0.2034 0.0736

2011 155 873 0.2299 0.1354 0.186 0.1257 0.2677 0.0552

Max. 2001 620 059 0.4068 0.164 0.1795 0.0005 0.1823 0.067

2011 728 363 0.321 0.1512 0.1807 0.0109 0.2613 0.0748

data. In all plots, the Y-axis corresponds to αYaj and the X-axis to αXal. The
different categories of the variable of interest are indicated in the left and bot-
tom corners of the plot. The red line corresponds to an OLS fit between the
two variables in each cell of the matrix-plot. The black continuous line and
the dashed black line in the plots on the diagonal of the matrix, represent the
structural assumptions of the SPREE and GSPREE, respectively. The red line
represents the corresponding OLS fit.

According to the plots in the diagonal of Figure 4.1, there is a fairly strong
linear relationship between αYaj and αXaj, for all categories except OQ. This is
the kind of relationship that is assumed by estimators SPREE and GSPREE.
Moreover, notice that the SPREE assumption, i.e., the black line, may hold rea-
sonably for categories NQ, L1 and L4+, whereas it does not seem to hold for
categories L2, L3 and OQ. On the other hand, the common slope assumed by
the GSPREE for all categories, which for this dataset turns out to be β = 0.74
and is represented by the dashed line, does not improve considerably the fit
for those categories.

Furthermore, notice that any relationship between pairs of interactions corres-
ponding to different categories, i.e., the off-diagonal plots in Figure 4.1, is
ignored by the SPREE and GSPREE estimators but could be taken into account
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by the new proposed estimators, MSPREE and MMSPREE, due to their multi-
variate nature.

Figure 4.1: Interaction terms in the compositions of LA by Higher Qualifica-
tions. Population censuses 2001 and 2011 in England and Wales.
Y-axis: αYaj. X-axis: αXal. Black continuous line: SPREE structural assumption. Black dashed
line: GSPREE structural assumption. Red line: OLS fit.
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Table 4.2 presents the rescaled coefficients of the MSPREE for this dataset (ma-
trix Bp according to section 2.4.1). Notice that, except for category OQ, the
diagonal elements of Bp do not differ substantially from the GSPREE esti-
mated parameter. However, the coefficient estimated using the MSPREE for
category OQ seems more sensible considering the shape of the cloud in the
bottom-right corner of Figure 4.1, than the one estimated using the GSPREE.
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As it will be explained in the next section, the matrix Bp presented in Table 4.2
will also be used to generate the association structures of the target composi-
tion under scenarios 1 and 2.

Table 4.2: Matrix Bp of estimated coefficients for the MSPREE. Composition of
LA by Higher Qualifications. Population censuses 2001 and 2011 in England
and Wales.
Rows: Census 2011. Columns: Census 2001.

Category NQ L1 L2 L3 L4+ OQ

NQ 0.7306 0.0740 -0.1978 -0.0870 -0.1407 0.3516

L1 -0.2314 0.6743 0.0180 -0.0310 0.0221 0.2223

L2 0.2284 0.3067 0.6305 0.0621 0.1774 -0.7746

L3 0.0825 0.0567 0.0632 0.7832 0.0608 -0.2633

L4+ -0.0998 -0.0517 -0.1480 -0.1644 0.8524 0.4639

OQ 0.0203 -0.3857 0.2646 0.2203 -0.1196 -1.3538

The relative differences between the observed value and each of the SPREE-
type estimates were calculated for each cell in the 2011 composition, with the
purpose of studying the degree of model misspecification of each one of the
SPREE-type estimators for the 2001 and 2011 compositions. For instance, for
the SPREE we defined,

Rel. Diff. =
(ŶSaj − Yaj)

Yaj
.

These relative differences are summarized by category, for the SPREE, GSPREE
and MSPREE, in Figure 4.2. Notice that the GSPREE does not improve subs-
tantially over the SPREE regarding the average difference by column in this
case. The MSPREE on the other hand, reduces considerably the size of the dif-
ferences in general and the average differences in absolute value, particularly
for the category OQ. Results for the MMSPREE are not presented here because,
due to the huge sample size (the 2011 population composition is being used
as sample), the MMSPREE is virtually equal to the sample estimate, i.e., fits
almost perfectly all cells.
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Figure 4.2: Relative differences between the observed composition and SPREE-
type estimates. Composition of LA by Higher Qualifications. Census 2001 and
2011 in England and Wales.
Red line: Rel. Diff. = 0. Blue diamond: Mean
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4.2 Simulation Scenarios

As mentioned at the beginning of this chapter, three different scenarios are
used in this simulation exercise to generate the association structure of the
target composition:

• Scenario 1. MSPREE structural assumption.
As in equation (2.2), the association structure of the target composition
is given by αYaj =

∑
l βjlα

X
al, for a = 1, . . . ,A and j, l = 1, . . . , J. The coe-

fficients βjl correspond to the fitting of the real data and were presented
in table 4.2. The terms αXal correspond to the association structure of the
2001 composition.

• Scenario 2. MMSPREE structural assumption.
As in equation (3.2), the association structure of the target composition is
given by αYaj =

∑
l βjlα

X
al+uaj, for a = 1, . . . ,A and j, l = 1, . . . , J, with βjl

and αXal as in scenario 1 and uaj denoting a set of A× J random variables
with expectation zero, defined as in equation (3.3):

uaj = ϑaj −
1
A
ϑ+j −

1
J
ϑa+ +

1
AJ
ϑ++,

for ϑaj a set of A× J independent random variables normally distributed
with expectation zero and variance σ2

j fixed, for j = 1, . . . , J.
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• Scenario 3. 2011 association structure.
The association structure of the target composition is that of the observed
census 2011 composition.

To motivate a vector of variance components σ2 = (σ2
1, . . . ,σ2

J), for scenario
2, we considered the variance of the misspecification terms in the interaction
scale, for each one of the SPREE-type estimators, when using the 2001 com-
position as proxy and the 2011 composition as sample estimate. For instance,
mG
aj = (α̂G,Y

aj −αYaj), with α̂G,Y
aj the estimated interaction term for cell (a, j) when

using the GSPREE, denotes the misspecification term for that estimator and
cell.

Table 4.3 presents the observed variances of the interaction terms αXaj, as well
as the variances of the misspecification terms for different SPREE-type estima-
tors. For the simulations, we decided to set the variance components σ2

j to the
values in Table 4.4, which results in the variances of the random effects uaj
that are presented in the last row of Table 4.3.

Table 4.3: Variance calculations. Composition of LA by Higher Qualifications.
Population censuses 2001 and 2011 in England and Wales.

NQ L1 L2 L3 L4+ OQ

V(αXaj) 0.0569 0.0264 0.0104 0.0522 0.1122 0.0252

V(mS
aj) 0.0053 0.0024 0.0123 0.04 0.0077 0.1543

V(mG
aj) 0.0048 0.0023 0.0143 0.024 0.0061 0.1315

V(mM
aj ) 0.002 0.0016 0.0051 0.0106 0.003 0.0573

V(uaj) 0.0152 0.0152 0.0152 0.0412 0.0152 0.1555

Table 4.4: Variance components for the simulation exercise. Scenario 2.

NQ L1 L2 L3 L4+ OQ

σ2 0.0100 0.0100 0.0100 0.0491 0.0100 0.2210

The target association structure under scenario 1 does not involve random
components, so it was calculated only once. Afterwards, IPF was used to ob-
tain a composition of expected values with margins Ya+ and Y+j from which
fixed populations were repeatedly generated using independent multinomial
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distributions in each area. Analogously, under scenario 3, fixed populations
were generated using independent multinomial distributions in each area,
with the 2011 composition as expected value. Finally, under scenario 2, ran-
dom variables ϑaj and hence new target association structures, were generated
in each iteration. The simulation procedure is presented in detail at the end of
this chapter, in section 4.5.2.

Under scenarios 1 and 3, samples were selected using three possible sampling
fractions: f = na/Ya+ ∈ {0.1, 0.05, 0.01}. In each scenario, 1000 replications
were obtained, i.e., equal number of populations and samples were selected.
Further 200 bootstrap subsamples were generated from each sample, in order
to obtain estimates for the MSE of MSPREE and MMSPREE. Under scenario 2,
a sample fraction f = 0.05 was assumed and 800 replications with 100 bootstrap
subsamples each, were selected.

4.3 Evaluation criteria

In the first simulation scenario, we generate populations that satisfy the struc-
tural assumption of the MSPREE. Hence, we are interested in verifying if there
is evidence of bias in that estimator; in comparing the relative efficiency of
the different SPREE-type estimators and in studying the potential bias of: i)
ÂV(Ŷ

M
), the analytical approximation to the variance of the MSPREE; and

ii) the bootstrap methodology proposed to estimate MSE(Ŷ
M
). Furthermore,

point estimates of the MMSPREE are also included in the evaluation, in order
to illustrate its behaviour in a situation where the population does not exhibit
unexplained heterogeneity.

In the second simulation scenario, the populations satisfy the MMSPREE struc-
tural assumption. Hence, were are interested in verifying if there is evidence of
bias for that estimator and in illustrating the behaviour of the MSPREE in the
presence of unexplained heterogeneity. Moreover, potential bias in the boot-
strap methodologies proposed for the estimation of the unconditional MSE of
the MSPREE and MMSPREE are also studied.

Finally, populations generated under the third simulation scenario do not sa-
tisfy any of the previously mentioned structural assumptions. Therefore, we
are interested in studying the bias shown by the different SPREE-type estima-
tors and in comparing their relative efficiency.
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Next, we will describe the indicators that are used to summarize the results of
the simulation. For convenience, in the rest of this chapter we will denote by
ŶKaj an estimator of Yaj, with K ∈ {D, S, G, M, MM} indicating the Direct esti-
mator, SPREE, GSPREE, MSPREE and MMSPREE respectively.

4.3.1 Bias. Point estimators.

The existence of bias, B(ŶKaj) = E
[
ŶKaj − Yaj

]
, is analysed using the Monte Carlo

estimate

B̃(ŶKaj) =
1
S

S∑
s=1

(ŶK,s
aj − Ysaj).

where ŶK,s
aj and Ysaj denote the population value and its estimate for the s-th

replication, and S is the total number of Monte Carlo replications. In order to
account for the bootstrap variation, B̃(ŶKaj), its standard error and a normal ap-
proximation are used to build a 95% prediction interval for B(ŶKaj). A number
of prediction intervals which do not contain zero considerably higher than 5%
can be interpreted as evidence against the unbiasedness of a given SPREE-type
estimator.

The size and direction of the bias are studied using the Relative Bias:

Rel. Bias(ŶKaj) =
B̃(ŶKaj)

1
S

∑S
s=1 Y

s
aj

.

Finally, we study the absolute size of the bias is analysed considering averages
of the absolute value of Rel. Bias(ŶKaj), aggregating by category, and over all
cells.

4.3.2 MSE. Point estimators.

The relative performance of different SPREE-type estimators is studied using
the Relative Square Root MSE (RSRMSE):

RSRMSE(ŶKaj) =

√
M̃SE(ŶKaj)

1
S

∑S
s=1 Y

s
aj

,
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where M̃SE(ŶKaj) is a Monte Carlo estimator of the unconditional MSE of ŶKaj
given by

M̃SE(ŶKaj) =
1
S

S∑
s=1

(ŶK,s
aj − Ysaj)

2.

Moreover, the Monte Carlo variance of ŶMaj , denoted by Ṽ(ŶMaj ), is also calcu-
lated.

4.3.3 Variance estimators.

Several variance estimators are considered in this simulation study: i) the boot-
strap estimators M̂SE(ŶMaj ) and M̂SE(ŶMMaj ); ii) the estimator for the analytic

approximation to the variance of the MSPREE, ÂV(Ŷ
M
) and iii) the estimators

for the variance components σ̂2
j for j = 1, . . . , J.

For estimators in i) and ii), the bias is estimated using the deviations respect to
the corresponding Monte Carlo estimates (defined in section 4.3.2), i.e, respect
to M̃SE(ŶKaj) for the estimators in i) and to the Monte Carlo variance Ṽ(ŶMaj ) for
the estimator in ii). For the variance components, results regarding bias (eva-
luated respect to the fixed values in table 4.4) as well as Monte Carlo estimates
of their MSEs, are presented.

4.4 Results

4.4.1 Scenario 1

Bias. Point estimators.
Table 4.5 presents the proportion of areas for which the 95% prediction inter-
val for the bias of the point estimator, does not include the zero, aggregated by
column, for the MSPREE and MMSPREE, in all three scenarios of sample size.
The proportions are close to the coverage level, more for the MSPREE than for
the MMSPREE, suggesting that there is no strong evidence of bias for those
estimators under this scenario. Moreover, when considering the average size
of the absolute value of the relative bias, it is possible to say that any potential
bias in those two estimators is negligible.

On the other hand, there is evidence of bias of around 10% for the SPREE and
9% for the GSPREE in all three sub-scenarios of sampling fraction (see tables
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4.14 and 4.15 in section 4.5.3). Because the SPREE does not use sample infor-
mation, its behaviour is the same for all three sampling fraction sub-scenarios
under study.

Table 4.5: Summary of bias results, MSPREE and MMSPREE, by category and
sampling fraction. Scenario 1.

Estimator Category
Proportion of areas with 0 |Relative bias|

not in the 95% PI Mean

f = 0.1 f = 0.05 f = 0.01 f = 0.1 f = 0.05 f = 0.01

MSPREE

NQ 0.0318 0.0202 0.0145 0.0001 0.0001 0.0002

L1 0.0983 0.0838 0.0434 0.0002 0.0002 0.0003

L2 0.0491 0.0434 0.0145 0.0002 0.0002 0.0002

L3 0.0462 0.0289 0.0058 0.0002 0.0002 0.0002

L4+ 0.0751 0.0549 0.0723 0.0001 0.0001 0.0002

OQ 0.0405 0.0231 0.0780 0.0003 0.0003 0.0005

Average 0.0568 0.0424 0.0381 0.0002 0.0002 0.0003

MMSPREE

NQ 0.0578 0.0318 0.0173 0.0002 0.0002 0.0002

L1 0.1012 0.0925 0.0665 0.0003 0.0003 0.0003

L2 0.0665 0.0723 0.0318 0.0002 0.0002 0.0003

L3 0.0434 0.0231 0.0376 0.0002 0.0002 0.0003

L4+ 0.0780 0.0549 0.0896 0.0002 0.0001 0.0002

OQ 0.0809 0.0607 0.2890 0.0004 0.0004 0.0010

Average 0.0713 0.0559 0.0886 0.0002 0.0002 0.0004

MSE. Point estimators.
The proposed estimators improve considerably over the SPREE and GSPREE
in terms of MSE, for all categories. The RSRMSE of the MSPREE is approxi-
mately 11% the RSRMSE of the SPREE, regardless of the sampling fraction.
Moreover, possibly because there is not unexplained heterogeneity under this
scenario, the RSRMSE of the MMSPREE is slightly bigger (around 15%) than
the one of the MSPREE, for all categories and sub-scenarios of sampling frac-
tion. For illustration, results for f = 0.01 are presented in Table 4.6 and Figure
4.3. Additional results and those corresponding to other sampling fractions
can be found in Figure 4.7 and Table 4.17 in section 4.5.3.
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Table 4.6: Mean RSRMSE of estimators of Y , by category. f=0.01. Scenario 1.

Category Direct SPREE GSPREE MSPREE MMSPREE

NQ 0.0583 0.0396 0.0270 0.0084 0.0096

L1 0.0782 0.0469 0.0226 0.0115 0.0132

L2 0.0627 0.0509 0.0620 0.0093 0.0107

L3 0.0835 0.1160 0.0821 0.0120 0.0139

L4+ 0.0524 0.0275 0.0450 0.0075 0.0085

OQ 0.1334 0.3415 0.3014 0.0187 0.0214

Average 0.0781 0.1037 0.0900 0.0112 0.0129

Figure 4.3: RSRMSE of estimators of Y , by category. f=0.01. Scenario 1.
Estimators: D=Direct, S=SPREE, G=GSPREE, M=MSPREE, M=MMSPREE.
Red line: RSRMSE = 0.
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Variance estimators.
The main results for the variance estimators are presented in Table 4.7. Starting
with ÂV(Ŷ

M
), there is evidence of bias. Considering the process of building

this estimator, possible causes of such bias are: i) a poor approximation from
the first iteration of the IPF to the estimates after convergence; ii) a bad per-
formance of the Taylor linearisation used to derive the estimator or iii) a bad
performance of the estimator of Vα̂. Further research would be necessary to
clarify which of these reasons could be responsible for the bias in this simula-
tion exercise.

When considering the average of the absolute values of the relative bias for
this estimator, it is observed an over/under estimation of approximately 4%
on the square root of the variance approximation for the three sub-scenarios of
sampling fraction. However, it is important to notice that the estimator is not
always conservative. Table 4.18 and Figure 4.8, in the complementary material
at the end of this chapter, suggest a more conservative behaviour when the
sample size decreases, but this evidence is not conclusive.

There is also evidence of bias for M̂SE(Ŷ
M
). Without taking into account the

direction of the bias, the estimator exhibits an average relative bias of around
2% on the square root of the MSE, irrespective of category or sampling fraction
sub-scenario, which cannot be attributed to bootstrap variation. As with the
analytical approximation above, the MSE estimator is not always conservative.
Furthermore, its average for a given category is almost zero (see Table 4.19 and
Figure 4.9 in section 4.5.3).

4.4.2 Scenario 2

Bias. Point estimators.
Considering the proportion of cells for which zero is not contained in a 95%
prediction interval for the estimator of the bias, there is no strong evidence of
bias for the MSPREE, but there is weak evidence of bias for the MMSPREE
and there is strong evidence of bias for both SPREE and GSPREE estimators
under this scenario. However, notice that the relative size of the bias of the
MMSPREE in absolute value is, on average, less than 0.3% and smaller than
the bias of any other of the SPREE-type estimators, especially for the category
OQ, as can be seen in Table 4.8 and Figure 4.4.
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Table 4.7: Summary of bias results,
√

ÂV(Ŷ
M
) and

√
M̂SE(Ŷ

M
), by category

and sampling fraction. Scenario 1.

Estimator Category
Proportion of areas with 0 |Relative bias|

not in the 95% PI for the bias Mean

f = 0.1 f = 0.05 f = 0.01 f = 0.1 f = 0.05 f = 0.01

√
ÂV(Ŷ

M
)

NQ 1.0000 1.0000 0.9971 0.0295 0.0379 0.0412

L1 1.0000 0.9971 0.9971 0.0412 0.0390 0.0455

L2 1.0000 0.9942 0.9971 0.0536 0.0316 0.0315

L3 1.0000 0.9942 0.9942 0.0368 0.0304 0.0394

L4+ 1.0000 1.0000 0.9971 0.0494 0.0366 0.0432

OQ 0.9971 0.9942 0.9942 0.0297 0.0332 0.0506

Average 0.9995 0.9966 0.9961 0.0400 0.0348 0.0419

√
M̂SE(Ŷ

M
)

NQ 0.9104 0.9075 0.8988 0.0201 0.0208 0.0196

L1 0.9075 0.9133 0.8873 0.0193 0.0194 0.0207

L2 0.9017 0.8931 0.8873 0.0189 0.0198 0.0195

L3 0.9104 0.8815 0.8815 0.0163 0.0162 0.0174

L4+ 0.9133 0.9075 0.9075 0.0214 0.0215 0.0200

OQ 0.9191 0.9075 0.8757 0.0202 0.0202 0.0182

Average 0.9104 0.9017 0.8897 0.0194 0.0196 0.0192

It was argued in section 3.2 that the introduction of random effects in the
structural equation of the MSPREE, under the assumption of normality, has
a column-specific multiplicative effect on the expected value of Y . This could
affect the size of the bias of the SPREE-type estimators. However, perhaps be-
cause the estimators are benchmarked to the known column and row margins,
the bias does not seem to increase. In fact, comparing with the results obtained
under scenario 1 we can notice that the biases of the SPREE and GSPREE es-
timators under both scenarios have approximately the same relative size (see
Table 4.15 for f = 0.05 in section 4.5.3, and Table 4.8 below).

MSE. Point estimators.
Table 4.9 presents the Relative Square Root MSE of the SPREE-type estima-
tors of Y under this scenario. As expected, given that the target composition
has been generated satisfying the MMSPREE structural assumption, such esti-
mator over-performs all fixed-effects SPREE-type estimators in consideration.
More interesting is to notice that, even though the random extra heterogeneity
added to the target association structure in this case does not seem to affect
the size of the bias of the fixed effects estimators, as it was mentioned above,
it does increase their RSRMSE substantially (see Tables 4.17 for f = 0.05 in
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section 4.5.3 and Table 4.9 below).

Table 4.8: Summary of bias results for estimators of Y , by category. Scenario 2.

Category
Proportion of areas with 0 |Relative bias|

not in the 95% PI for B(Ŷ) Mean

SPREE GSPREE MSPREE MMSPREE SPREE GSPREE MSPREE MMSPREE

NQ 0.9306 0.8179 0.0578 0.1590 0.0393 0.0253 0.0027 0.0011

L1 0.9017 0.7919 0.0578 0.1098 0.0459 0.0206 0.0029 0.0012

L2 0.9364 0.9277 0.0434 0.1214 0.0501 0.0609 0.0028 0.0010

L3 0.9595 0.9017 0.0723 0.0838 0.1154 0.0808 0.0060 0.0015

L4+ 0.8671 0.9277 0.0607 0.0723 0.0269 0.0441 0.0027 0.0009

OQ 0.9422 0.9451 0.0751 0.1445 0.3367 0.2958 0.0140 0.0103

Average 0.9229 0.8854 0.0612 0.1151 0.1024 0.0879 0.0052 0.0027

Figure 4.4: Relative Bias of estimators of Y , by category. Scenario 2.
Estimators: D=Direct, S=SPREE, G=GSPREE, M=MSPREE, M=MMSPREE. Red line: Relative
bias = 0.
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Variance estimators.
Considering the absolute value of the relative biases, there is evidence of an
average bias of around 2% in them square root of the bootstrap estimator of
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Table 4.9: Mean RSRMSE of estimators of Y , by category. Scenario 2.

Category SPREE GSPREE MSPREE MMSPREE

NQ 0.1045 0.0989 0.0932 0.0290

L1 0.1172 0.1063 0.1029 0.0361

L2 0.1125 0.1206 0.0965 0.0307

L3 0.2408 0.2237 0.2005 0.0464

L4+ 0.0947 0.1027 0.0885 0.0271

OQ 0.5999 0.5730 0.4585 0.2552

Average 0.2116 0.2042 0.1734 0.0708

MSE(Ŷ
M
), and around 8% in the bootstrap estimator of MSE(Ŷ

MM
), as can be

seen in Table 4.21 in section 4.5.4. However, when including the direction of
the bias it can be seen that if the areas are averaged for a given column, the
bias is close to zero for all columns, except OQ for the MSPREE, see Figure 4.5
below and Table 4.22 in section 4.5.4.

Figure 4.5: Relative Bias of estimators of
√

MSE(Ŷ), by category. Scenario 2.
Left: MSPREE. Right: MMSPREE. Red line: Relative bias = 0.
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Finally, we will turn to the estimator of the variance components. The main
results for this estimator are presented in Table 4.10. There is no evidence of
bias in the estimator of the variance components, except for the category OQ
which shows an overestimation of around 5%. Given that only 800 replications
were used in this scenario, additional simulations might be required before
making a conclusion in this matter. Notice that for all categories, the RSRMSE
is quite high considering the sampling fraction of 0.05 used under this scenario.
However, notice that despite the variability of the estimation of the variance
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components, the MMSPREE still over performs all other estimators in terms of
their RSRMSE.

Table 4.10: Summary of results, estimation of the variance components. Sce-
nario 2.

Category

NQ L1 L2 L3 L4+ OQ

σ2
j 0.0100 0.0100 0.0100 0.0491 0.0100 0.2210

E[σ̂2
j ] 0.0099 0.0100 0.0100 0.0490 0.0099 0.2326

Rel. Bias (σ̂2
j ) -0.0072 0.0034 -0.0026 -0.0009 -0.0065 0.0529

95% CI(σ̂2
j ) (Var) Lim. Inf. 0.0098 0.0099 0.0099 0.0487 0.0098 0.2309

Lim. Sup. 0.0100 0.0102 0.0101 0.0494 0.0101 0.2344

95% CI(σ̂2
j ) (MSE) Lim. Inf. 0.0067 0.0067 0.0066 0.0395 0.0067 0.1780

Lim. Sup. 0.0131 0.0134 0.0133 0.0586 0.0132 0.2873√
MSE(σ̂2

j ) 0.0016 0.0017 0.0017 0.0049 0.0017 0.0279

RSRMSE(σ̂2
j ) 0.1634 0.1712 0.1700 0.0996 0.1674 0.1261

4.4.3 Scenario 3

Bias and MSE. Point estimators.
Remember that under this scenario, the target composition has the association
structure observed in the census 2011 composition, i.e., does not satisfy the
structural assumption of any of the SPREE-type estimates. To illustrate the
results obtained under Scenario 3, the main findings for f = 0.01 are presented
in Table 4.11. Results for other sampling fractions are very similar.

All SPREE-type estimators are biased under this scenario, and such bias cannot
be attributed to Monte Carlo variation. Considering the average of the absolute
value of the relative biases, thee GSPREE represents a modest improvement
over the SPREE, whereas the proposed estimators, MSPREE and MMSPREE,
have a substantially smaller bias. Moreover, comparing only the latter two, it
can be observed that the bias of the MMSPREE is about the same size or smaller
for all categories and the improvement is considerably for OQ. Regarding the
RSRMSE, similar conclusions could be drawn for all fixed-effects SPREE-type
estimators. On the other hand, the MMSPREE, despite having a smaller bias,
presents a higher variance. Both things combined result in an RSRMSE that is
almost comparable to the one of the MSPREE accross all categories, except for
OQ, category for which the mixed effects estimator still performs substantially
better.
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Table 4.11: Summary of bias results, estimators of Y , by category. f = 0.01.
Scenario 3.

Category Direct SPREE GSPREE MSPREE MMSPREE

|Relative Bias|

NQ 0.0017 0.0467 0.0352 0.0242 0.0221

L1 0.0024 0.0547 0.0369 0.0319 0.0325

L2 0.0018 0.0554 0.0651 0.0367 0.0179

L3 0.0021 0.1322 0.1024 0.0654 0.0241

L4+ 0.0012 0.0365 0.0561 0.0279 0.0219

OQ 0.0033 0.3916 0.3620 0.2175 0.0383

Average 0.0021 0.1195 0.1096 0.0673 0.0261

RSRMSE

NQ 0.0582 0.0475 0.0363 0.0267 0.0279

L1 0.0784 0.0559 0.0384 0.0352 0.0379

L2 0.0627 0.0564 0.0660 0.0389 0.0342

L3 0.0835 0.1329 0.1034 0.0676 0.0561

L4+ 0.0525 0.0375 0.0568 0.0299 0.0285

OQ 0.1368 0.3922 0.3627 0.2196 0.1175

Average 0.0787 0.1204 0.1195 0.0697 0.0504
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4.5 Complementary Material

4.5.1 Qualifications data on the 2001 and 2011 population cen-

suses in England and Wales

Table 4.12: Qualifications on the 2001 and 2011 population censuses in England
and Wales

Census 2001 Census 2011
16. Which of these qualifications do you have?
Xall the qualifications that apply or, if not specified, the
nearest equivalent.

~ 1 + O levels/CSEs/GCSEs (any grades)

~ 5 + O levels, 5 + CSEs (grade 1), 5+ GCSEs
(grades A-C), School Certificate

~ 1 + A levels/AS levels

~ 2 + A levels, 4 + AS levels, Higher School
Certificate

~ First Degree (eg BA, BSc)

~ Higher Degree (eg MA, PhD, PGCE, post-
graduate certificates/diplomas)

~ NVQ Level 1, Foundation GNVQ

~ NVQ Level 2, Intermediate GNVQ

~ NVQ Level 3, Advanced GNVQ

~ NVQ Levels 4-5, HNC, HND

~ Other Qualifications (eg City and Guilds,
RSA/OCR, BTEC/Edexcel)

~ No Qualifications

17. Do you have any of the following professional
qualifications?

~ No Professional Qualifications

~ Qualified Teacher Status (for schools)

~ Qualified Medical Doctor

~ Qualified Dentist

~ Qualified Nurse, Midwife, Health Visitor

~ Other Professional Qualifications

25. Which of these qualifications do you have?
	 Tick every box that applies if you have any of the qua-
lifications listed
	 If your UK qualification is not listed, tick the box that
contains its nearest equivalent
	 If you have qualifications gained outside the UK, tick
the ’Foreign qualifications’ box and the nearest UK
equivalents (if known)

~ 1-4 O levels/CSEs/GCSEs (any grades), En-
try Level, Foundation Diploma

~ NVQ Level 1, Foundation GNVQ, Basic Skills

~ 5 + O levels (passes)/CSEs (grade 1)/GCSEs
(grades A*-C), School Certificate, 1 A level/2-
3 levels/VCEs, Higher Diploma, Welsh Bac-
calaureate Intermediate Diploma (Wales)

~ NVQ Level 2, Intermediate GNVQ, City and
Guilds Craft, BTEC First/General Diploma,
RSA Diploma

~ Apprenticeship

~ 2 + A levels/VCEs, 4 + AS levels, Higher
School Certificate, Progression/Advanced
Diploma(England), Welsh Baccalaureate Ad-
vanced Diploma (Wales)

~ NVQ Level 3, Advanced GNVQ, City and
Guilds Advanced Craft, ONC, OND, BTEC
National, RSA Advanced Diploma

~ Degree (for example BA, BSc), Higher degree
(for example MA, PhD, PGCE)

~ NVQ Level 4-5, HNC, HND, RSA Higher
Diploma, BTEC Higher Level

~ Professional qualifications (for example
teaching, nursing, accountancy)

~ Other vocational/work-related qualifications

~ Foreign qualifications

~ No qualifications

96



Table 4.13: Categories of Highest Qualifications for the 2011 population census
in England and Wales

Category Items

No qualifications (NQ) No qualifications.

Level 1 (L1) 1-4 O levels/CSEs/GCSEs (any grades), Entry Level, Foundation Diploma.
NVQ Level 1, Foundation GNVQ, Basic Skills.

Level 2 (L2)
5 + O levels (passes)/CSEs (grade 1)/GCSEs (grades A*-C), School Cer-
tificate, 1 A level/2-3 levels/VCEs, Higher Diploma, Welsh Baccalaureate
Intermediate Diploma (Wales).
NVQ Level 2, Intermediate GNVQ, City and Guilds Craft, BTEC
First/General Diploma, RSA Diploma.
Apprenticeship.

Level 3 (L3) 2 + A levels/VCEs, 4 + AS levels, Higher School Certificate, Pro-
gression/Advanced Diploma(England), Welsh Baccalaureate Advanced
Diploma (Wales).
NVQ Level 3, Advanced GNVQ, City and Guilds Advanced Craft, ONC,
OND, BTEC National, RSA Advanced Diploma.

Level 4 and above (L4+)
Degree (for example BA, BSc), Higher degree (for example MA, PhD,
PGCE).
NVQ Level 4-5, HNC, HND, RSA Higher Diploma, BTEC Higher Level.
Professional qualifications (for example teaching, nursing, accountancy).

Other Qualifications (OQ) Other vocational/work-related qualifications.
Foreign qualifications (If the level is unknown).

4.5.2 Procedures for the double-bootstrap simulation

4.5.2.1 Scenario 1

The simulation under scenario 1 starts by generating the assumed association
structure of the target composition

αYaj =
∑
l

βjlα
X
al,

a composition of expected values

µ = IPF
(

exp
{
αY
}

; Ya+ ; Y+j

)
,

and calculating the probabilities πa = µa/Ya+.
For s = 1, . . . ,S:

1. Generate a population composition Ys, by sampling independently in
each area a using a multinomial distribution with vector of probabilities
πa and sample size Ya+. For each area a, calculate θsa = Ysa/Ya+.

2. Generate a sample composition ys, by sampling independently in each
area a using a multinomial distribution with vector of probabilities θsa
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and sample size ya+ = Ya+ × f; with f ∈ {0.1, 0.05, 0.01}.

3. Calculate Ŷ
S,s

, Ŷ
G,s

, Ŷ
M,s

and Ŷ
MM,s

, the SPREE, GSPREE, MSPREE and
MMSPREE of Ys based on ys. For each area a, calculate θ̂

M,s
a = Ŷ

M,s
/Ya+.

4. Calculate the estimator of the variance of the MSPREE, ÂV
(
Ŷ
M,s
)

de-
fined in section 2.3.1.

5. For b = 1, . . . ,B:

5.1. Generate a population composition Ys,b, by sampling independently
in each area a using a multinomial distribution with vector of prob-
abilities θ̂

M,s
a and sample size Ya+. For each area a, calculate

θs,ba = Ys,b/Ya+.

5.2. Generate a sample composition ys,b, by sampling independently in
each area a using a multinomial distribution with vector of proba-
bilities θs,ba and sample size ya+.

5.3. Calculate Ŷ
M,s,b

, the MSPREE of Ys,b based on ys,b.

6. Use the bootstrap estimates Ŷ
M,s,b

for b = 1, . . . ,B, to calculate the esti-
mate of MSE(Ŷ

M,s
) proposed in section 2.3.2.

4.5.2.2 Scenario 2

For s = 1, . . . ,S:

1. For j = 1, . . . , J, generate A independent realisations of a normally dis-
tributed random variable with mean zero and variance σ2

j . Denote them
by ϑsaj, for a = 1, . . . ,A. Calculate usaj = ϑ

s
aj −

1
Aϑ

s
+j −

1
Jϑ
s
a+ + 1

AJϑ
s
++.

2. Set the association structure of the target composition

αY,s
aj =

∑
l

βjlα
X
al + u

s
aj;

calculate the composition of expected values

µs = IPF
(

exp
{
αY,s
}

; Ya+ ; Y+j

)
,

and the probabilities πsa = µsa/Ya+.

3. Generate a population composition Ys, by sampling independently in
each area a using a multinomial distribution with vector of probabilities
πsa and sample size Ya+. For each area a, calculate θsa = Ysa/Ya+.
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4. Generate a sample composition ys, by sampling independently in each
area a using a multinomial distribution with vector of probabilities θsa
and sample size ya+.

5. Calculate Ŷ
S,s

, Ŷ
G,s

, Ŷ
M,s

and Ŷ
MM,s

, the SPREE, GSPREE, MSPREE and
MMSPREE of Ys. Denote by σ̂s the estimator of the vector of variance
components based on ys. Denote by β̂

s
the estimated matrix of

parameters of the MSPREE based on ys. For each area a, calculate
θ̂
s
a = Ŷ

MM,s
/Ya+.

6. For b = 1, . . . ,B:

6.1. For j = 1, . . . , J, generate A independent realisations of a normally
distributed random variable with mean zero and variance σ̂2,s

j . De-
note them by ϑs,baj , for a = 1, . . . ,A. Calculate us,baj = ϑs,baj − 1

Aϑ
s,b
+j −

1
Jϑ
s,b
a+ + 1

AJϑ
s,b
++.

6.2. Calculate
αY,s,b
aj =

∑
l

β̂sjlα
X
al + u

s,b
aj ,

calculate
Ys,b = IPF

(
exp
{
αY,s,b

}
; Ya+ ; Y+j

)
,

and θs,ba = Ys,ba /Ya+.

6.3. Generate a sample composition ys,b, by sampling independently in
each area a using a multinomial distribution with vector of proba-
bilities θs,ba and sample size ya+.

6.4. Calculate Ŷ
M,s,b

and Ŷ
MM,s,b

, the MSPREE and MMSPREE of Ys,b

based on ys,b.

7. Use the bootstrap estimates Ŷ
M,s,b

and Ŷ
MM,s,b

for b = 1, . . . ,B, to cal-
culate the estimates of MSE(Ŷ

M,s
) and MSE(Ŷ

MM,s
) proposed in section

3.3.1.

4.5.2.3 Scenario 3

The simulation under scenario 3 uses as target association structure the one
observed in the Census 2011 composition. The procedure is analogous to the
one followed for Scenario 1, replacing the composition of expected values µ by
the 2011 composition. Only point estimates are calculated under this scenario.
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4.5.3 Additional results. Scenario 1.

Table 4.14: Proportion of cells for which zero is not included in a 95% predic-
tion interval for B(Ŷ), by category. Scenario 1.

f Estimator Category Average
NQ L1 L2 L3 L4+ OQ

0.1

Direct 0.0694 0.1127 0.1098 0.0578 0.0665 0.0751 0.0819

SPREE 0.9913 1.0000 0.9971 1.0000 0.9855 1.0000 0.9957

GSPREE 0.9913 0.9971 0.9942 0.9942 0.9971 1.0000 0.9957

MSPREE 0.0318 0.0983 0.0491 0.0462 0.0751 0.0405 0.0568

MMSPREE 0.0578 0.1012 0.0665 0.0434 0.078 0.0809 0.0713

0.05

Direct 0.0665 0.1358 0.1156 0.0549 0.0751 0.0462 0.0824

SPREE 0.9913 1.0000 0.9971 1.0000 0.9855 1.0000 0.9957

GSPREE 0.9913 0.9971 0.9942 0.9942 0.9971 1.0000 0.9957

MSPREE 0.0202 0.0838 0.0434 0.0289 0.0549 0.0231 0.0424

MMSPREE 0.0318 0.0925 0.0723 0.0231 0.0549 0.0607 0.0559

0.01

Direct 0.0318 0.1098 0.0925 0.0751 0.0289 0.0318 0.0617

SPREE 0.9913 1.0000 0.9971 1.0000 0.9855 1.0000 0.9957

GSPREE 0.9913 0.9971 0.9942 0.9942 0.9971 1.0000 0.9957

MSPREE 0.0145 0.0434 0.0145 0.0058 0.0723 0.0780 0.0381

MMSPREE 0.0173 0.0665 0.0318 0.0376 0.0896 0.2890 0.0886

Table 4.15: Mean of the Relative Bias, in absolute value, of estimators of Y , by
category and sampling fraction. Scenario 1.

f Estimator Category Average
NQ L1 L2 L3 L4+ OQ

0.1

Direct 0.0006 0.0008 0.0006 0.0007 0.0005 0.0011 0.0007

SPREE 0.0387 0.0455 0.0501 0.1154 0.0264 0.3407 0.1028

GSPREE 0.0256 0.0202 0.0612 0.0811 0.0442 0.3008 0.0888

MSPREE 0.0001 0.0002 0.0002 0.0002 0.0001 0.0003 0.0002

MMSPREE 0.0002 0.0003 0.0002 0.0002 0.0002 0.0004 0.0002

0.05

Direct 0.0008 0.0013 0.0009 0.0010 0.0006 0.0014 0.0010

SPREE 0.0387 0.0455 0.0501 0.1154 0.0264 0.3407 0.1028

GSPREE 0.0256 0.0202 0.0612 0.0811 0.0442 0.3008 0.0888

MSPREE 0.0001 0.0002 0.0002 0.0002 0.0001 0.0003 0.0002

MMSPREE 0.0002 0.0003 0.0002 0.0002 0.0001 0.0004 0.0002

0.01

Direct 0.0017 0.0023 0.0018 0.0020 0.0013 0.0033 0.0021

SPREE 0.0387 0.0455 0.0501 0.1154 0.0264 0.3407 0.1028

GSPREE 0.0256 0.0203 0.0612 0.0811 0.0442 0.3007 0.0888

MSPREE 0.0002 0.0003 0.0002 0.0002 0.0002 0.0005 0.0003

MMSPREE 0.0002 0.0003 0.0003 0.0003 0.0002 0.0010 0.0004
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(Ŷ
M
),

by
ca

te
go

ry
an

d
sa

m
pl

in
g

fr
ac

ti
on

.S
ce

na
ri

o
1.

C
at

eg
or

y
f=

0.
1

f=
0.

05
f=

0.
01

Q
1

M
ed

ia
n

M
ea

n
Q

3
Q

1
M

ed
ia

n
M

ea
n

Q
3

Q
1

M
ed

ia
n

M
ea

n
Q

3

N
Q

-0
.0

20
4

0.
00

35
0.

00
94

0.
03

24
0.

00
60

0.
02

85
0.

03
30

0.
05

54
0.

00
45

0.
03

21
0.

03
16

0.
05

52

L1
-0

.0
52

4
-0

.0
28

9
-0

.0
19

9
0.

00
52

-0
.0

39
9

-0
.0

08
4

-0
.0

05
0

0.
02

18
-0

.0
34

0
0.

00
38

0.
00

88
0.

04
40

L2
-0

.0
76

1
-0

.0
49

8
-0

.0
43

0
-0

.0
18

9
-0

.0
35

5
-0

.0
09

8
-0

.0
09

0
0.

01
46

-0
.0

26
4

0.
00

04
0.

00
51

0.
03

12

L3
-0

.0
51

2
-0

.0
26

7
-0

.0
23

8
0.

00
13

-0
.0

18
0

0.
00

34
0.

00
83

0.
03

10
-0

.0
13

3
0.

02
11

0.
02

31
0.

05
27

L4
+

-0
.0

70
4

-0
.0

47
2

-0
.0

39
0

-0
.0

12
7

-0
.0

50
1

-0
.0

22
8

-0
.0

18
2

0.
01

18
-0

.0
15

5
0.

01
39

0.
02

35
0.

05
86

O
Q

-0
.0

27
0

-0
.0

07
6

-0
.0

03
3

0.
02

35
-0

.0
30

7
0.

00
09

0.
00

21
0.

03
18

0.
01

53
0.

04
43

0.
04

62
0.

07
46

Ta
bl

e
4.

19
:R

el
at

iv
e

Bi
as

of
√ M̂

SE
(Ŷ
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4.5.4 Additional results. Scenario 2.

Table 4.20: Relative Bias and RSRMSE of estimators of Y , by category. Scenario
2.

Category Statistic Relative Bias RSRMSE

SPREE GSPREE MSPREE MMSPREE SPREE GSPREE MSPREE MMSPREE

NQ

Q1 -0.0443 -0.0212 -0.0023 -0.0010 0.0924 0.0913 0.0882 0.0251

Median -0.0143 -0.0034 -0.0001 -0.0002 0.0984 0.0948 0.0927 0.0289

Mean -0.0151 0.0032 -0.0001 0.0000 0.1045 0.0989 0.0932 0.0290

Q3 0.0200 0.0193 0.0022 0.0007 0.1096 0.1004 0.0983 0.0329

L1

Q1 -0.0250 -0.0141 -0.0023 -0.0012 0.1047 0.1019 0.1000 0.0317

Median 0.0133 0.0023 0.0001 -0.0002 0.1089 0.1048 0.1021 0.0365

Mean 0.0036 0.0043 0.0001 -0.0001 0.1172 0.1063 0.1029 0.0361

Q3 0.0448 0.0232 0.0025 0.0007 0.1203 0.1093 0.1049 0.0404

L2

Q1 -0.0456 -0.0592 -0.0024 -0.0009 0.0987 0.0994 0.0928 0.0271

Median -0.0025 -0.0175 0.0000 -0.0002 0.1064 0.1104 0.0953 0.0310

Mean 0.0028 0.0008 0.0000 -0.0001 0.1125 0.1206 0.0965 0.0307

Q3 0.0466 0.0431 0.0023 0.0005 0.1227 0.1234 0.0989 0.034

L3

Q1 -0.1280 -0.0879 -0.0047 -0.0013 0.2084 0.2048 0.1963 0.0420

Median -0.0581 -0.0396 0.0005 -0.0002 0.2265 0.2144 0.2013 0.0466

Mean -0.0269 -0.0143 0.0001 -0.0001 0.2408 0.2237 0.2005 0.0464

Q3 0.0538 0.0311 0.0049 0.0010 0.2557 0.2279 0.2049 0.0507

L4+

Q1 -0.0309 -0.0315 -0.0022 -0.0008 0.0867 0.0906 0.0836 0.0232

Median -0.0176 0.0079 -0.0001 -0.0002 0.0933 0.0959 0.0894 0.0271

Mean -0.0136 0.0101 0.0000 -0.0001 0.0947 0.1027 0.0885 0.0271

Q3 0.0001 0.0437 0.0022 0.0006 0.0993 0.1072 0.0937 0.0304

OQ

Q1 -0.0602 -0.0452 -0.0113 -0.0031 0.4838 0.4777 0.4483 0.2062

Median 0.1848 0.1691 0.0002 0.0042 0.5478 0.5322 0.4583 0.2463

Mean 0.1699 0.1530 0.0002 0.0045 0.5999 0.5730 0.4585 0.2552

Q3 0.4202 0.3704 0.0108 0.0120 0.6667 0.6259 0.4716 0.2984

Table 4.21: Summary of Bias results for
√

M̂SE(Ŷ)) by category. Scenario 2.

Category
Proportion of areas with 0 |Relative bias|

not in the 95% PI Mean

MSPREE MMSPREE MSPREE MMSPREE

NQ 0.7746 0.8468 0.0192 0.0614

L1 0.7688 0.8468 0.0201 0.0438

L2 0.8121 0.8353 0.0200 0.0523

L3 0.7919 0.8671 0.0214 0.0427

L4+ 0.8410 0.8642 0.0213 0.0704

OQ 0.8728 0.8613 0.0442 0.2450

Average 0.8319 0.8319 0.0244 0.0860
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Table 4.22: Relative Bias of
√

M̂SE(Ŷ)), by category. Scenario 2.

Category MSPREE MMSPREE

Q1 Median Mean Q3 Q1 Median Mean Q3

NQ -0.0158 0.0005 0.0006 0.0168 -0.0038 0.0403 0.0357 0.0796

L1 -0.0150 -0.0008 0.0003 0.0177 -0.0113 0.0194 0.0223 0.0579

L2 -0.0167 0.0003 0.0006 0.0161 -0.0044 0.0335 0.0305 0.0687

L3 -0.0179 -0.0013 0.0001 0.0171 -0.0169 0.0159 0.0141 0.0493

L4+ -0.0191 -0.0007 -0.0002 0.0156 -0.0013 0.0405 0.0445 0.0924

OQ 0.0073 0.0374 0.0343 0.0618 0.0022 0.1635 0.1891 0.3653

Average -0.0147 0.0028 0.0060 0.0233 -0.0087 0.0353 0.0560 0.0840

Figure 4.10: Estimates of the variance components σ̂2
j , by category. Scenario 2.

Blue diamond: Mean. Red dot: True σ2
j
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Chapter 5

Application. Estimation of the
distribution of ethnic group by
Local Authority in England

This chapter describes an application of the proposed methodology that is
ongoing joint work with the Small Area Estimation team at the Office for Na-
tional Statistics (ONS). Most of the material presented in sections 5.1 and 5.2
as well as some of the material at the beginning of section 5.3 has already
been published as part of Luna et al. (2015). However, the scope of the ana-
lysis presented here exceeds what is covered in that paper, and results for the
MSPREE and MMSPREE estimators are shown here for the first time. The
main contributions of the co-authors in Luna et al. (2015) were the access to
the datasets and excerpts in the description of the data sources (section 5.2).
The data analysis is solely the responsibility of the author of this thesis.

5.1 Motivation

Estimates of demographic characteristics are among the main outputs of Na-
tional Statistical Institutes. In addition to national and regional estimates, for
topics such as Labour Force, Household composition or Ethnicity, periodic es-
timates at lower levels of geographic aggregation are in high demand both for
public policy and research purposes. In census years, given the availability of
data for almost all individuals in the population, reliable estimates for small
geographic domains can be produced in a simply way. During the inter-censal
period, updated socio-demographic data can only be obtained via sample sur-
veys or administrative systems. It is generally difficult to obtain reliable direct
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estimates for small geographic domains from sample surveys due to the small
sample sizes. Data from administrative systems do not have this problem but
in contrast, may not cover the topics of interest. Moreover, definitions of the
variables and domains in administrative sources respond to different purposes
than those of the statistical interest. This can result in comparability issues with
figures obtained from population censuses or household surveys.

Despite the suitability of SAE methods to address this type of problem, few
official figures in the region are being produced using this approach. In the UK
case, the ONS currently disseminates periodically small area estimates regard-
ing three main topics: population estimates, combining data from the Patient
Register and other sources; households in poverty, using the Family Resources
Survey (FRS) and administrative data maintained by the Department for Work
and Pensions; and unemployment, making use of the Annual Population Survey
and the administrative register of jobseekers allowance.

As previously mentioned, the application hereby presented is the result of an
ongoing joint work with the Small Area Estimation team at ONS. It addresses
the problem of how to obtain estimates of the distribution of the population by
ethnic group, in each LA of England, using proxy and survey data. Studying
the feasibility of producing such estimates during the inter-censal period is a
topic of interest for ONS. Moreover, because population censuses are experi-
encing transformations in many European countries, with increasing emphasis
being given to alternative operations based on demographic systems that use
information from administrative sources alone or combined with survey data,
the potential impact of this type of methodology is expected to grow conside-
rably in future.

5.2 Data sources

Data for this application was obtained from four different sources of the Office
for National Statistics. Because some of these are subject to disclosure control,
it was necessary to perform all the data analysis in a Safe Room of the Virtual
Microdata Laboratory (VML) of ONS. All the calculations hereby presented
are the sole responsibility of the author of this thesis.
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5.2.1 Proxy Information

A proxy of the composition of interest was obtained from the 2011 Population
Census in England, which counts the persons and households considered as
usual residents of England and Wales on the 27th March. The 2011 census has
an initial estimated coverage rate for persons of 93% and the observed counts
are adjusted by over and undercount.

5.2.2 Survey estimates

For this application, we used direct estimates obtained from the Annual Popu-
lation Survey (APS) for the period July 2012-June 2013, with reference point the
31st of December 2012, for all LAs in England, excluding Isles of Scilly and City
of London. With quarterly periodicity and a total sample size of approximately
250,000 individuals per year, the APS has the biggest sample size among all
periodic demographic surveys conducted by ONS.

For any given year, the APS consists of waves 1 and 5 of four successive quar-
ters from the Labour Force Survey (LFS), plus the Annual Local Area LFS
(ALA LFS) boost. Notice that because only households in the waves 1 and 5 of
the LFS are included in the quarterly APS, each respondent appears only once
in any given yearly dataset. Both LFS and the ALA LFS boost cover mainly
private households, therefore communal establishments, armed forces accom-
modation etc., are not included in the APS. An implicit sampling fraction for
the APS was calculated dividing the observed sample size of the period July
2012-June 2013 by the corresponding projected population total in each LA.
Such fraction varies between 0.05% and 2.5% across LA, with an average of
0.8%.

5.2.3 Benchmark totals

Estimates of the LA population sizes can be obtained from the official mid-
year population estimates. These estimates are produced by ONS using the
cohort component method, which uses information on components of popu-
lation change to update the most recent census population. The 2012 and
2013 mid-year population estimates at LA level were used to calculate the row
marginal. As the reference date of such estimates is 30th of June of the corres-
ponding year, an average of the mid-year population estimates for 2012 and
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2013 would provide an estimate of the population close to the 31st of Decem-
ber 2012, consistent with the reference period chosen for the APS.

Direct estimates of the total population size by category of ethnicity, obtained
from the APS at the national level, were rescaled to agree with the row marginal
above described, and then used as benchmarks for the columns in this appli-
cation.

5.2.4 Categories of the variable

The variable Ethnic group is collected in England in a very detailed way. The
APS collects information regarding 15 subcategories of Ethnicity, grouped in 7
main categories: White, Mixed/multiple ethnic groups, Asian/Asian British,
Black/African/Caribbean/Black British, Chinese, Arab and Other ethnic group.
The Census 2011, on the other hand, uses 18 subcategories grouped in 5 main
categories, with Chinese included within Asian and Arab within Other. To use
a classification that is fully harmonisable with both sources, the following six
categories were chosen for this application: White; Mixed/multiple ethnic groups;
Asian/Asian British; Black/African/Caribbean/Black British; Chinese and Other.

5.3 Main results

Census estimates
According to Census 2011 data, the variable ethnicity presents a very un-
equal distribution in this population. Aggregating over the areas in consi-
deration, the category White is dominant with 85.42% of individuals, followed
by Asian (7.10%), Black (3.48%), Mixed (2.25%), Other (1.03%) and finally Chi-
nese (0.72%). How different LA deviate from that global distribution can be
observed in Figure 5.1. Notice that for categories Asian and Black it is pos-
sible to find some areas with proportions considerable higher than the global
proportion. Moreover, notice that in such areas, non-white individuals are pre-
dominantly from one of the two above mentioned categories instead of evenly
distributed. Meanwhile, for the categories Mixed, Chinese and Other, the pro-
portions are uniformly low in all LA.
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Figure 5.1: Distribution of Ethnicity by LA. Population Census 2011 in
England.
Left: Boxplot proportions in each category by LA. Red diamond: mean.
Right: Detail of the more frequent categories. Lines: White: continuous grey. Asian: dotted
black. Black: continuous black. After sorting the LAs according to the proportion of White,
one of each three was included in the plot.

Figure 5.2: Interaction terms of the composition LA by Ethnicity. Population
censuses 2001 and 2011 in England.
Line: Y=X.

To illustrate the linear relationship between pairs of interaction terms for the
composition of ehtnicity by LA, Figure 5.2 shows the corresponding terms in
the compositions of Census 2001 and Census 2011. Notice how, except for the
category Other, interaction terms from the same composition 10 years before
can still work fairly well as linear predictors. Given that the time lapse that is
of our interest is considerably shorter, we expect then for interaction terms of
the census 2011 composition to be good predictors in this case.
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APS estimates
A characterisation of the distribution of ethnicity by LA using direct estimates
is less straightforward due to the small sample sizes of the APS in some areas
and the low frequency of some ethnic groups. Table 5.1 presents the distribu-
tion of LA according to the number of cells with zero estimates. Despite of the
absence of structural zeroes in the proxy composition, 55.2% of the LA have at
least one zero estimate according to the survey data. Moreover, for 4% of the
LA only one ethnic group was observed in the APS.

Table 5.1: LA by number of cells with a direct estimate equal to zero. APS
2012-2013.

Number of cells with Frequency %
a zero estimate

None 155 44.80

One 61 17.63

Two 55 15.90

Three 34 9.83

Four 27 7.80

Five 14 4.04

Total 346 100.00

Given the unequal distribution of the variable ethnicity that was previously
mentioned, it is expected that some categories present a higher number of zero
estimates than others. According to Table 5.2, which shows the number of LA
with zero estimates by ethnic group, this problem is particularly accentuated
for the category Chinese, with a zero estimate for more than 40% of the LA
and, in a lesser degree, for Black and Other which are missing from around
26% of the LA.

Table 5.2: LA with a direct estimate equal to zero by Ethnic group. APS 2012-
2013.

Category Frequency %

White 0 0.00

Mixed 58 15.93

Asian 43 11.81

Chinese 156 42.86

Black 96 26.37

Other 98 26.92

For the cells with a positive estimate, an Approximated Standard Error (ASE)
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was obtained as

ASE(θ̂aj) =

√
θ̂aj(1 − θ̂aj)

na+
×DEFTj

where θ̂aj is the estimate of the within LA proportion corresponding to cate-
gory j in LA a; na+ is the observed sample size on that LA; and DEFTj is a
category-specific design factor included to take into account, at least partially,
the complexity of the sampling design. Because, up to our knowledge, design
factors for the variable ethnicity in the APS are not available, we used a set of
factors provided by ONS for the LFS (Office for National Statistics, 2011, page
146). Those design factors, which correspond to the LFS sample of the last
quarter of 2010, for people aged 16 or more, are presented in Table 5.3. Par-
ticularly for the ethnic groups with lower frequencies, they can be considered
conservative in the context of the LFS (see discussion in Office for National
Statistics, 2011, Section 8.8).

Table 5.3: Design Factors for population aged 16 or more by ethnicity. LFS
October-December 2010.

White Mixed Asian Chinese Black Other

1.5441 1.2903 1.7351 1.6557 1.5809 1.6394

Using the ASE(θ̂aj) as numerator, an approximated Coefficient of Variation
(CV) was calculated for each cell with positive estimate. Some descriptive
statistics of these CVs are presented in Table 5.4 and a summary is provided in
Figure 5.3. Considering an arbitrary threshold of CV of 0.2 or higher, only for
category White the direct estimates could be considered accurate enough as to
be useful. All other categories show a prohibitive high CV in most LA. How-
ever, in the evaluation of the accuracy of the direct estimates it is important
to keep in mind that the information provided by the CV in this case can be
irrelevant given the small sizes of the estimates of the proportions for most ca-
tegories. Alternative measures of accuracy, such as the length of a confidence
interval, might be required in this case in order to provide a more complete
picture.

Before proceeding with the calculation of the SPREE-type estimators, it would
be of interest to study the relationship between the association structures of
the Census 2011 and APS compositions, in a similar way as it was done for the
2001 and 2011 censuses (see Figure 5.2). Unfortunately, this is infeasible due
to the high number or cells with zero estimates obtained in the APS.
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Table 5.4: Descriptive statistics. Approximated CVs for the estimators of the
distribution of Ethnicity by LA. APS 2012-2013.

Statistic Category

White Mixed Asian Chinese Black Other

Q1 0.0087 0.2944 0.2418 0.5708 0.2965 0.3857

Median 0.0157 0.4702 0.4769 0.8228 0.6153 0.6797

Mean 0.0192 0.5675 0.6369 0.9219 0.6966 0.7850

Q3 0.0259 0.7399 0.8769 1.1947 0.9584 1.0828

Figure 5.3: Approximated CVs for the estimators of the distribution of Ethnic-
ity by LA. APS 2012-2013.
Blue diamond: Mean.
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SPREE, GSPREE and MSPREE
An estimate of the variance-covariance matrix of the APS estimates of the fre-
quencies was obtained using the ASE(θ̂aj) previously defined, assuming in-
dependence between LAs and known total LA size, Ya+. Such estimate and
an IWLS algorithm were used to obtain estimates for the parameters of the
GSPREE and MSPREE. The estimated coefficient of the GSPREE is 0.9976, i.e.,
basically coincides with the SPREE in this application. Therefore, only the
GSPREE and MSPREE will considered in the following discussion.

Table 5.5 presents the estimated parameters of the MSPREE. Each row repre-
sents the coefficients of a predictor of an interaction, i.e., α̂Yaj =

∑
l β̂jlα

X
al. The

coefficients have been rescaled for an interpretation in terms of the propor-
tional interactions, i.e., the diagonal elements are free and the sum of non-
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diagonal elements is zero by row and column (see Section 2.4.1). Notice that
the free coefficients for categories White, Asian and Black are very close to 1
(SPREE, GSPREE), therefore, they may benefit less from the additional flexibi-
lity offered by the MSPREE than the remaining categories.

Table 5.5: Estimated coefficients of the MSPREE estimator. Matrix B.

White Mixed Asian Chinese Black Other

White 1.0338 0.0876 0.0804 -0.0743 0.1705 -0.2641

Mixed 0.0042 0.8121 -0.2256 -0.0353 -0.1989 0.4555

Asian -0.0333 -0.0453 0.9946 0.1423 -0.0165 -0.0471

Chinese -0.0015 -0.0320 0.0046 1.3014 -0.0062 0.0350

Black 0.0391 0.0454 0.1266 -0.0318 1.0383 -0.1793

Other -0.0085 -0.0557 0.0140 -0.0009 0.0511 0.7272

Figure 5.4 compares Direct and MSPREE estimates. In general, there is no
evidence of systematic departure of the MSPREE respect to the APS estimates,
even though some over-shrinking is observed for categories Mixed and Chi-
nese. As it can be seen in Figure 5.5, there are not big differences between
GSPREE and MSPREE estimates for categories White, Asian and Black, even
though some differences, principally for the larger proportions, are observed
among the remaining categories. This behaviour was expected according to
the estimated matrix of MSPREE discussed before.

MMSPREE
Initial estimates of the variance components required for the calculation of the
MMSPREE were obtained using the estimator proposed in equation (3.15) in
section 3.2, and the Census 2011 and APS compositions. Such estimates, de-
noted σ̂2

j,1, are presented in the first block of Table 5.6. Notice that negative
estimates, afterwards truncated to zero, were obtained for categories White
and Asian. Moreover, the estimated variance component for category Other
is abnormally high and results in a set of predicted random effects which va-
riance is, as large, as the variance of the corresponding synthetic estimates of
the interaction terms (last column, rows 2 and 5 of Table 5.6). This is unex-
pected because, given that the synthetic estimates of the αYaj and the predicted
random effects are both centred around zero, variances of similar size for these
two sets of terms would indicate that the relevance of the survey and synthetic
estimates in the construction of the MMSPREE is also similar. This may be
reasonable in a situation with big survey sample sizes, but certainly it does not
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seem to be the case of the APS.

Figure 5.4: Comparison Direct vs MSPREE estimators of the distribution of
Ethnicity by LA.
Continuous line: Y = X
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Figure 5.5: Comparison GSPREE vs MSPREE estimators of the distribution of
Ethnicity by LA.
Continuous line: Y = X
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Due to the instability exhibited by the estimates σ̂2
j,1, an alternative set of esti-

mates was obtained using the two census compositions (2001 and 2011). These
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estimates are denoted by σ̂2
j,2 and presented in the second block of Table 5.6.

Notice that such estimates do not show evidence of the issues discussed above,
which may be caused by the small sample sizes of the APS. Unfortunately, they
are not expected to be unbiased in this case.

Table 5.6: Results estimation of the variance components.

Category

White Mixed Asian Chinese Black Other

σ̂2
j,1 0.0000 0.0525 0.0000 0.0163 0.0335 0.9039

var(ûaj,1) 0.0126 0.0275 0.0126 0.0213 0.0278 0.1323

σ̂2
j,2 0.0243 0.0095 0.0454 0.0449 0.141 0.1357

var(ûaj,2) 0.0509 0.0051 0.0203 0.0111 0.0396 0.0325

var(α̂aj) 0.8403 0.0709 0.3624 0.1905 0.3885 0.1569

Results corresponding to the MMSPREE calculated using the variance compo-
nents σ̂2

j,1 are presented in figures 5.6 and 5.7, and with the variance compo-
nents σ̂2

j,2, in figures 5.8 and 5.9. As expected, there is less evidence of over-
shrinking with the MMSPREE than with the synthetic MSPREE, particularly
with the second set of variance components, which also seems to improve over
the MSPREE.

Figure 5.6: Comparison Direct vs MMSPREE(σ̂2
j,1) estimators of the distribu-

tion of Ethnicity by LA.
Continuous line: Y = X
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Figure 5.7: Comparison MSPREE vs MMSPREE(σ̂2
j,1) estimators of the distri-

bution of Ethnicity by LA.
Continuous line: Y = X
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Figure 5.8: Comparison Direct vs MMSPREE(σ̂2
j,2) estimators of the distribu-

tion of Ethnicity by LA.
Continuous line: Y = X
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Figure 5.9: Comparison MSPREE vs MMSPREE(σ̂2
j,2) estimators of the distri-

bution of Ethnicity by LA.
Continuous line: Y = X
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Finally, given the multivariate nature of the MMSPREE and the sum to zero
constraints satisfied by the predicted random effects, it is not straightforward
to provide results regarding the so-called shrinking factors, or in general, the
relative sizes of the residual terms respect to the predicted random effects.
Remember that according to equation (3.12),

û = Σ̂uV̂
−1 (
η−ZΨ̂

)
i.e, the predicted random effects are linear combinations of the residual terms
ê = η−ZΨ̂, with coefficients given by the product of matrices Σ̂uV̂

−1
. Even

if the sampling design used to obtain the survey data induces independence
across areas, i.e., if V̂ is sparse, the sum to zero constraints imposed on û in-
troduce non-zero entries in all the cells of Σ̂u. In practice, this means that all
residual terms may have a coefficient different from zero in the equation used
to predict any random effect. Clearly, it seems natural that residual terms
corresponding to the same area or category have a higher weight than other
terms. Here, we propose to study the absolute value of the coefficient of êrs
when predicting ûaj, denoted by γ̂rs,aj, for a, r = 1, . . . ,A; and j, s = 1, . . . , J.

Tables 5.7 and 5.8 present the averages of γ̂rs,aj obtained when using the esti-
mates σ̂2

j,1 and σ̂2
j,2 respectively. In each table, the first block of rows correspond

to residual terms in the same area and the last row averages all terms in diffe-
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rent areas.

Table 5.7: Average of γrs,aj when estimated from σ̂2
j,1. Rows: a, j. Columns:

r, s.

Category

White Mixed Asian Chinese Black Other

r = a

White 0.8794 0.034 0.1043 0.0255 0.0366 0.0313

Mixed 0.5429 0.318 0.0654 0.1347 0.118 0.2062

Asian 0.8794 0.034 0.1043 0.0255 0.0366 0.0313

Chinese 0.315 0.0433 0.0278 0.4594 0.0391 0.0684

Black 0.3708 0.0614 0.0435 0.0678 0.3916 0.1176

Other 1.9025 0.211 0.1745 0.2352 0.2358 0.4021

r 6= a 0.0005 0.0028 0.0005 0.003 0.0056 0.0047

Table 5.8: Average of γrs,aj when estimated from σ̂2
j,2. Rows: a, j. Columns:

r, s.

Category

White Mixed Asian Chinese Black Other

r = a

White 1.0014 0.0252 0.0353 0.017 0.0247 0.0226

Mixed 0.1243 0.246 0.032 0.0384 0.0726 0.0692

Asian 0.1701 0.0658 0.3395 0.1342 0.143 0.141

Chinese 0.1242 0.0308 0.0775 0.4823 0.0965 0.0902

Black 0.3858 0.0792 0.1138 0.1543 0.4749 0.1441

Other 0.4196 0.0955 0.145 0.171 0.1767 0.4326

r 6= a 0.0006 0.0006 0.0029 0.0019 0.0024 0.002

The results for the variance components estimated from the two census com-
positions σ̂2

j,2, presented in Table 5.8 show the expected behaviour. For re-
sidual terms in the same area, the diagonal terms, i.e., those corresponding
to the same category, are dominant. Nevertheless, White, the category with
the biggest sample size, plays an important role in the prediction of all other
random effects, even though having a smaller average coefficient than the dia-
gonal term. Moreover, residual terms in other areas have little effect on the
prediction of a given random effect.

On the other hand, the results for the variance components estimated from the
APS, σ̂2

j,1, presented in Table 5.7 behave in an unexpected way: White has a
big coefficient in the prediction of all random effects in the same area, even
considerably higher than the corresponding diagonal term, as it is the case for
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categories Mixed, Asian and Other. This behaviour is a further indication of
issues with that set of estimates of the variance components.

5.4 Discussion

Four different SPREE-type estimators were applied in this application: SPREE,
GSPREE, MSPREE and MMSPREE. An evaluation of the performance of all
them would necessary involve an study of the point estimates, as well as their
estimated MSE. Unfortunately, due to time constraints it was not possible to
obtain MSE estimates, hence we will focus on the behaviour of the point esti-
mates.

As the estimated coefficient of the GSPREE was very close to 1, i.e., the GSPREE
was practically equivalent to the SPREE. We decided to drop one of them from
all analysis in order to avoid repetitions. The matrix of coefficients of the
MSPREE, rescaled in order to be interpreted in terms of the proportional in-
teractions assumption, shown coefficients far from 1 in absolute value for the
categories Mixed, Chinese and Other, indicating that those columns are likely
to benefit from the extra flexibility provided by the additional parameters of
the MSPREE. Indeed, particularly for category Chinese, the MSPREE seems to
present less over-shrinking even though any improvement is modest.

On the other hand, MMSPREE estimates were obtained using two different
sets of variance component estimates: σ̂1

j,2, obtained from the APS and Census
2011 data and σ̂2

j,2, obtained using data from censuses 2001 and 2011. This ap-
proach was adopted because the estimates obtained using APS data exhibited
instability. Such behaviour could be attributed to the small sample sizes of
the APS, therefore, a second set of estimates was calculated using only census
information. Unfortunately, because those estimates correspond to a different
reference period, it is not possible to assume unbiasedness unless the popula-
tion variance components are stable across time.

The main improvements observed for the MMSPREE respect to the MSPREE
in this application were: i) an estimate that is closer to the unbiased direct es-
timator for the cells with biggest sample size, as category White or the highest
proportions of Asian and Black; and ii) a reduction in the over-shrinking for
the remaining categories.
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Chapter 6

Summary and Outline for Future
Research

This document proposes the MSPREE, a SPREE-type estimator for small area
compositions that generalizes the SPREE of Purcell and Kish (1980) and the
GSPREE of Zhang and Chambers (2004). The behaviour of the estimator is
illustrated via simulation in chapter 4, where it exhibited a better performance
than the other two estimators above mentioned in terms of Bias and MSE, in all
scenarios in consideration. Proposing a more flexible fixed effects estimator is
an important contribution because the usual approach of reducing the bias of
a synthetic estimator via the inclusion of random effects is not always feasible,
and can lead to estimates with high MSE if the sample sizes are very small.
Considering the current context of transformation of the population censuses
being undertaken by many NSIs, the proposed estimator emerges as a simple
an flexible alternative with big potential of applicability.

An extension of the MSPREE including cell specific random effects is also pro-
posed, in order to reduce the bias of the MSPREE if the sample size allows
for the prediction of random effects. The proposed mixed effects estimator,
MMSPREE, goes one step ahead of the GSPREE with mixed effects, because it
imposes sum-to-zero row and column constraints in the set of predicted ran-
dom efects, in order to ensure a well defined model on the interactions scale.
Furthermore, such constraints are imposed without increasing considerably
the computational requirements of the estimation process.

An unbiased estimator for the variance components of the random effects for
the MMSPREE is also proposed as part of this thesis. Such an estimator makes
no assumptions regarding the structure of the variance covariance matrix of
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the sampling errors, and can be used to derive predicted random effects that
satisfy the required constraints.

Potential areas of future development for the proposed estimators have already
been identified, particularly from the experience of fitting real data that was
discussed in Chapter 5. They can be summarized under the name of working
with proxy or sample compositions that are somehow different from the target compo-
sition. Examples of this situation are:

• Compositions which refer to a slightly different set of areas. The in-
teraction terms αaj which are the pivot for building SPREE-type esti-
mators are defined relatively to the set of areas and categories that are
included in the composition. In that sense, for a given area, a different
set of interaction terms αa, would be obtained depending on the subset
of areas that is taken into consideration. It would be of interest to un-
derstand the impact of small changes in the geographical classification,
or the case where not all areas are included in the sample.

• Availability of more than one source of proxy data. So far, the proposed
estimators have assumed the existence of only one source of proxy data.
In practice, several sources, perhaps covering different subgroups of the
population, may be available. How to better combine different sources in
order to produce an estimate for small area compositions, is of practical
relevance.

• Availability of more than one source of survey data. In analogous way,
it is possible in some cases to obtain more than one survey estimate of
the composition of interest. More commonly, series of sample estimates
for different periods of time might be obtained from periodic surveys.
Borrowing strength from several sources or across time may have a big
impact in the performance of the estimators. An interesting extension of
the proposed estimators could use some time-dependent structure, either
on the fixed or the random part of the model, in order to take advantage
of the additional information.

• Use of auxiliary information not in the form of a composition. SPREE
type estimators seem somewhat restrictive when compared with other
estimators for small area compositions as those introduced in section 1.4
because auxiliary information not in the form of a proxy composition
cannot, in principle, be included in the estimation process. Developing
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an extension of the MSPREE to handle other type of information would
increase considerably the range of applicability of this estimator.
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López-Vizcaı́no, E., Lombardı́a, M. J., and Morales, D. (2013). Multinomial-
based small area estimation of labour force indicators. Statistical modelling,
13(2):153–178.
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