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Abstract

Kernel principal component analysis (KPCA) based fault detection method, whose statistical model only
utilizes normal operating data and ignores available prior fault information, may not provide the best fault
detection performance for nonlinear process monitoring. In order to exploit available prior fault data to
enhance fault detection performance, a fault discriminant enhanced KPCA (FDKPCA) method is proposed,
which simultaneously monitors two types of data features, nonlinear kernel principal components (KPCs)
and fault discriminant components (FDCs). More specifically, based on the normal operating data, KPCs
are extracted by usual KPCA modeling, while with the normal operating data and prior fault data, FDCs
are obtained by the kernel local-nonlocal preserving discriminant analysis (KLNPDA). Monitoring statistics
are constructed for both the KPCA and KLNPDA sub-models. Moreover, Bayesian inference is employed to
transform the corresponding monitoring statistics into fault probabilities, and the overall probability-based
monitoring statistics are constructed by weighting the results of the two sub-models, which provides more
effective on-line fault detection capability. Two case studies involving a simulated nonlinear system and
a continuous stirred tank reactor demonstrate the superior fault detection performance of the proposed
KLNPDA scheme over the traditional KPCA method.

Key words: Fault detection, nonlinear process, prior fault information, kernel principal component
analysis, fault discriminant enhanced kernel principal component analysis

1. Introduction

With the increasing attention on process safety and product quality, fault diagnosis technologies have

become ever-increasingly important for industrial plants. As computer control systems are widely used in

modern industry, abundant process data are collected and stored in historical database. Therefore, data-

driven fault diagnosis methods have received significant interests from academics and engineers [1, 2, 3,

4, 5]. Many data-driven methods have been developed, including principal component analysis (PCA),

independent component analysis (ICA) and Fisher discriminant analysis (FDA) [6, 7, 8]. Among all these

methods, PCA is a popular one and it has been extensively studied.

To effectively deal with diverse and complicated characteristics of real industrial data, many extended

PCA methods have been reported. For monitoring the process data with serial correlation, Ku et al.

[9] proposed a dynamic PCA (DPCA) by considering lagged measurements, while Huang and Yan [10]
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further combined DPCA with dynamic ICA to monitor the data exhibiting both Gaussian and non-Gaussian

dynamic features. Aiming at the industrial systems with multiple operating modes, improved PCA methods

were studied, which include multiple PCA [11], local neighborhood standardization based PCA [12] and

local neighborhood similarity analysis [13]. To reduce the modeling complexity of plant-wide process, Ge

and Song [14] proposed a distributed PCA method to divide variables into different sub-blocks for sub-PCA

modeling, while Jiang and Yan [15] developed a mutual information based multi-block PCA method. To

cope with multiscale characteristics of process data, multiscale PCA methods were derived by combining

PCA with wavelet analysis [16, 17] or ensemble empirical mode decomposition [18].

All the aforementioned PCA methods assume the linearity of the monitored system. As nonlinearity is

common in industrial processes, nonlinear PCA has become an attractive research topic over the past two

decades. Classic nonlinear PCA methods include neural network PCA [19] and kernel PCA (KPCA) [20].

Because of its simplicity and effectiveness, KPCA gains most attention in the research field of nonlinear

PCA. KPCA was firstly proposed by Schölkopf et al. [20] and then was introduced for nonlinear process

monitoring by Lee et al. [21]. Later, Lee et al. [22] built multiway KPCA for batch process fault detection.

To distinguish the importance of different kernel principal components (KPCs), Jiang and Yan [23] developed

a weighted KPCA. Aiming at nonlinear nonstationary processes, Khediri et al. [24] built a variable window

adaptive KPCA. Considering the local data structure, Deng et al. [25] proposed a modified KPCA assisted

by local structure analysis for nonlinear fault detection. There are also many other important studies on

KPCA which can be found in the literature, e.g., [26, 27, 28, 29].

Although KPCA has achieved successful applications in many industrial cases, there are some critical

issues deserving further research. One important problem is related to the modeling assumption of KPCA.

As an unsupervised approach, all the existing KPCA based fault detection methods only utilize normal

operation data for statistical modeling. For a real industrial process, even though it may be impossible to

collect all types of fault data, there are always some classes of known fault data available in the historical

database. The current KPCA approach completely ignore these prior fault data which can in fact provides

some very valuable and powerful fault discriminant information for aiding on-line fault detection. Therefore,

how to integrate prior fault discriminant information to enhance fault detection performance of KPCA is a

very valuable research topic.

To extract fault discriminant information, a usual strategy is to construct fault classifiers using discrim-

inant analysis techniques. FDA is a most widely used discriminant analysis method for fault classification

[30, 31, 32]. To improve classification performance, many improved FDA methods have been derived, in-

cluding semi-supervised FDA [33], and kernel FDA [34, 35]. Recently, based on local data structure analysis,

localized FDA methods have been developed [36, 37, 38]. Furthermore, by utilizing nonlocal structure infor-

mation, local and nonlocal preserving discriminant analysis (LNPDA) methods were developed to improve

FDA based fault discrimination [39, 40, 41]. All the above-mentioned discriminant analysis methods focus
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on fault classification tasks. However, in this paper, we apply discriminant analysis technique in a very

different way, specifically, to assist KPCA based fault detection method by incorporating a small amount of

prior fault data available.

Against the above background, in this paper, a fault discriminant enhanced KPCA (FDKPCA) is pro-

posed to monitor nonlinear processes by incorporating prior fault information. Fundamentally different

from the traditional KPCA based fault detection method which performs unsupervised modeling on normal

operating data, our FDKPCA applies both unsupervised and supervised modeling techniques to build the

two sub-models. For normal operating data, a KPCA sub-model is developed to extract nonlinear principal

components (PCs) or KPCs, which is a usual unsupervised modeling procedure. However, a kernel LNPDA

(KLNPDA) sub-model is also built based on both normal operating data and available prior fault data to

obtain the fault discriminant components (FDCs), which is a supervised modeling strategy. The monitoring

statistics provided by the two sub-models are transformed into fault probabilities by Bayesian inference and

the overall probability-based monitoring statistics are constructed by weighting the results of the two sub-

models, which provides more effective on-line fault detection capability. To our best knowledge, our work

is the first to effectively integrate KPCA and KLNPDA together for better fault detection, by exploiting

available prior fault information.

The remainder of this paper is structured as follows. In Section 2, the KPCA method is briefly reviewed.

In Section 3, our proposed FDKPCA method is detailed. The monitoring scheme based on the FDKPCA is

also presented in this section. The proposed method is then evaluated in Section 4, in comparison with the

standard KPCA method, using two case studies involving a simulated nonlinear system and a benchmark

continuous stirred tank reactor (CSTR) system. Finally, the conclusions are drawn in Section 5.

2. KPCA Based Fault Detection Method

KPCA is popular in the field of process monitoring and fault diagnosis because of its excellent nonlinear

feature extraction ability. Its idea is to firstly map the original nonlinear data onto a linear high-dimensional

feature space and then to perform linear PCA in the feature space. Specifically, given a training data matrix

Xn ∈ RN×M , where M is the number of measured variables and N is the number of samples while the

subscript n represents normal operation status, a nonlinear mapping projects the original data space onto a

new high-dimensional feature space as: Φ : RM → F . In the feature space, the data matrix Xn is mapped

onto Φ(Xn) ∈ RN ×F , and its linear PCA decomposition can be expressed as

Φ(Xn) =
K∑

i=1

tip
T
i + E, (1)
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where Φ(Xn) has been mean-centered, ti ∈ RN is the i-th score vector of Φ(Xn), also called the i-th PC,

and pi ∈ F is the corresponding loading vector, while K denotes the number of KPCs retained in the KPCA

model and E ∈ RN ×F is the residual matrix.

The loading vector in (1) can be solved by an eigenvalue decomposition of the covariance matrix of

Φ(Xn) as
1

N − 1
ΦT(Xn)Φ(Xn)pi = λipi, (2)

where λi is the i-th eigenvalue of the covariance matrix 1
N−1ΦT(Xn)Φ(Xn). There exists a coefficient vector

αi ∈ RN satisfying [20, 21]

pi = ΦT(Xn)αi. (3)

Combining (2) and (3) leads to the expression

1
N − 1

ΦT(Xn)Φ(Xn)ΦT(Xn)αi = λiΦT(Xn)αi, (4)

which can further be formulated as [20]

1
N − 1

Φ(Xn)ΦT(Xn)Φ(Xn)ΦT(Xn)αi = λiΦ(Xn)ΦT(Xn)αi. (5)

Let us express the training data matrix as Xn =
[
xn(1) xn(2) · · ·xn(N)

]T, where xn(i) ∈ RM for 1 ≤ i ≤

N denotes the i-th sample data vector. To avoid explicitly defining a high-dimensional nonlinear mapping,

a kernel matrix is introduced as Kn = Φ(Xn)ΦT(Xn) ∈ RN×N , whose (i, j)-th element is Kn(i, j) =(
Φ(xn(i))

)TΦ(xn(j)). By this kernel trick [20], the inner product of two feature vectors in the feature space

can be computed by a kernel function as

(
Φ(xn(i))

)TΦ(xn(j)) = ker(xn(i), xn(j)). (6)

In this paper, we use the well-known Gaussian kernel function ker(xn(i),xn(j)) = exp
(
−∥xn(i)−xn(j)∥2/σ

)
,

where σ > 0 is the kernel width parameter. With the introduction of a kernel function, explicit use of a

high-dimensional nonlinear mapping Φ(·) is avoided and (5) is expressed as

KnKnαi = (N − 1)λiKnαi. (7)

The solutions of (7) are obtained by solving the following problem

Knαi = (N − 1)λiαi (8)
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for the N̄ non-zero eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λN̄ > 0 with the corresponding eigenvectors αi for

1 ≤ i ≤ N̄ , where N̄ ≤ N . Noted that to ensure the coefficient vector pi to be a unity-norm vector, αi

meets the following constraint

αT
i Knαi = 1. (9)

The schematic of this KPCA modeling for process monitoring application is illustrated in Fig. 1.

Figure 1: The schematic of KPCA modeling for fault detection application.

For a testing data vector xt ∈ RM at the time instant t, its i-th KPC can be calculated as

ti =
(
Φ(xt)

)T
pi =

(
Φ(xt)

)TΦT(Xn)αi = kT
n αi, (10)

where kn =
[
ker(xn(1), xt) · · · ker(xn(N),xt)

]T = Φ(Xn)Φ(xt). For process monitoring, two monitoring

statistics T 2 and Q are usually constructed as

T 2 =
[
t1 t2 · · · tK

]
Λ−1

[
t1 t2 · · · tK

]T
, (11)

Q =
N̄∑

i=1

t2i −
K∑

i=1

t2i , (12)

where ti for 1 ≤ i ≤ N̄ are computed by (10) and Λ is the K×K diagonal matrix with the eigenvalues λi for

1 ≤ i ≤ K as its diagonal elements. How to select the number of retained KPCs K can be found in [6, 21].

In this paper, we opt for the average eigenvalue method [21], which retains the KPCs whose eigenvalues are

larger than the average eigenvalue.

3. The proposed method

As can be seen from Fig. 2, our proposed FDKPCA method integrates the KPCA and KLNPDA sub-

models. Since the KPCA modeling was discussed in the previous section, we only need to detail the

proposed KLNPDA modeling as well as the Bayesian inference strategy to construct the final probability-

based monitoring statistics for fault detection.

3.1. Fault Discriminant Modeling Using KLNPDA

We begin by discussing the principle of linear LNPDA. LNPDA originates from local and nonlocal pre-

serving projection (LNPP), which combines the ideas of local preserving projection and nonlocal preserving

projection [42, 43]. Basically, LNPP finds the low dimensional projection of a data matrix such that the

distances of local neighborhood points are as small as possible while the distances of nonlocal neighborhood
5



Figure 2: The schematic of FDKPCA modeling for fault detection application.

points are as large as possible. If we define local neighborhood points as the points from a same class and

nonlocal neighborhood points as the points from different classes, then LNPP becomes a supervised method

known as LNPDA [39, 40, 41]. Therefore, LNPDA is performed to find the data projection direction so that

the points of different classes are far apart while the points of a same class are close.

To cope with the nonlinearity of industrial processes, we propose to use the kernel version of LNPDA,

referred to as KLNPDA, for obtaining FDCs. For training a fault discriminant model, we assume that there

are the normal operation dataset Xn ∈ RN×M and one class of prior fault dataset denoted as Xf ∈ RF×M ,

where the known fault dataset has F sample points each having the same M variables. Then an augmented

data matrix is constructed as Xnf =
[
XT

n XT
f

]T =
[
xnf (1) xnf (2) · · ·xnf (Nf )]T ∈ RNf×M , where Nf =

N + F is the total number of samples in the augmented training dataset.

Each data vector xnf (i) ∈ RM is firstly mapped onto a high dimensional feature space Φ(xnf (i)) ∈ F .

Then in the feature space, a linear transformation vector q ∈ F is sought to obtain the projection y(i) =(
Φ(xnf (i))

)T
q for 1 ≤ i ≤ Nf so that the points of a same class stay as close as possible while the points

of different classes are as far apart as possible. The former is a local projection optimization problem while

the latter is a nonlocal projection optimization problem.

The local projection optimization can be defined as [42]

min
q

JLocal(q) = min
q

1
2

Nf∑
i=1

Nf∑
j=1

(y(i) − y(j))2wl(i, j)

= min
q

1
2

Nf∑
i=1

Nf∑
j=1

((
Φ(xnf (i))

)T
q −

(
Φ(xnf (j))

)T
q
)2

× wl(i, j), (13)

where q is subject to the unity-norm constraint of qTq = 1, while wl(i, j) is a weighting parameter for the

distance between y(i) and y(j), which puts a high value for the data pair from a same class and a low value

for the data pair from different classes. One simple way to set this weighting parameter is according to

wl(i, j) =


1, if xnf (i), xnf (j) ∈ Xn,

1, if xnf (i), xnf (j) ∈ Xf ,

0, otherwise.

(14)
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Subject to the constraint qTq = 1, the optimization (13) can be reformulated as

min
q

JLocal(q) = min
q

Nf∑
i=1

qTΦ(xnf (i))dl(i, i)
(
Φ(xnf (i))

)T
q

−
Nf∑
i=1

Nf∑
j=1

qTΦ(xnf (i))wl(i, j)
(
Φ(xnf (j))

)T
q, (15)

where dl(i, i) =
∑Nf

j=1 wl(i, j). In matrix form, the optimization (15) can be rewritten as

min
q

JLocal(q) = min
q

qTΦT(Xnf )(Dl − Wl)Φ(Xnf )q = min
q

qTΦT(Xnf )LlΦ(Xnf )q, (16)

where Dl is the Nf ×Nf diagonal matrix with dl(i, i) as its i-th diagonal element, Wl is the Nf ×Nf matrix

whose (i, j)-th element is wl(i, j), and the weighting matrix Ll = Dl − Wl.

Similarly, the nonlocal projection optimization can be expressed as [43]

max
q

JNonLocal(q) = max
q

1
2

Nf∑
i=1

Nf∑
j=1

(y(i) − y(j))2wnl(i, j)

= max
q

1
2

Nf∑
i=1

Nf∑
j=1

((
Φ(xnf (i))

)T
q −

(
Φ(xnf (j))

)T
q
)2

wnl(i, j), (17)

subject to the constraint qTq = 1, where wnl(i, j) is a weighting parameter, which imposes a high value on

the data pair from different classes and a low value for the data pair from a same class, according to

wnl(i, j) =


0, if xnf (i), xnf (j) ∈ Xn,

0, if xnf (i), xnf (j) ∈ Xf ,

1, otherwise.

(18)

The optimization (17) can be formulated in matrix form as

max
q

JNonLocal(q) = max
q

qTΦT(Xnf )(Dnl − Wnl)Φ(Xnl)q = max
q

qTΦT(Xnf )LnfΦ(Xnf )q, (19)

where Wnl is the Nf × Nf matrix whose (i, j)-th element is wnl(i, j), Dnl is the Nf × Nf diagonal matrix

whose i-th diagonal element dnl(i, i) =
∑Nf

j=1 wnl(i, j), and the weighting matrix Lnl = Dnl − Wnl.

By combing the optimizations (16) and (19), the KLNPDA optimization problem can be expressed as

max
q

JNonLocal(q)
JLocal(q)

= max
q

qTΦT(Xnf )LnlΦ(Xnf )q
qTΦT(Xnf )LlΦ(Xnf )q

, (20)
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subject to the constraint qTq = 1. Similar to KPCA, the projection vector q can be spanned using the

training samples as

q =
Nf∑
j=1

βjΦ(xnf (j)) = ΦT(Xnf )β (21)

Where β =
[
β1 β2 · · ·βNf

]T. Substituting (21) into (20) results in the following optimization

max
q

JNonLocal(q)
JLocal(q)

= max
q

βTΦ(Xnf )ΦT(Xnf )LnlΦ(Xnf )ΦT(Xnf )β
βTΦ(Xnf )ΦT(Xnf )LlΦ(Xnf )ΦT(Xnf )β

. (22)

Kernel trick is again applied to avoid the difficulty of explicitly defining the nonlinear high-dimensional

mapping. Denote Knf = Φ(Xnf )ΦT(Xnf ) with its (i, j)-th element Knf (i, j) =
(
Φ(xnf (i))

)TΦ(xnf (j)) =

ker(xnf (i), xnf (j)). Then we have the optimization

max
β

JNonLocal(β)
JLocal(β)

= max
β

βTKnfLnlKnfβ

βTKnfLlKnfβ
. (23)

To ensure a unique non-zero solution, the constraint

βTKnfβ = 1 (24)

should be imposed. To solve the optimization (23), we resort to the following generalized eigen-value

decomposition

KnfLnlKnfβ = γKnfLlKnfβ. (25)

Solving (25) subject to the constraint (24) yields the N̄f non-zero eigenvalues γ1 ≥ γ2 ≥ · · · ≥ γN̄f
with the

corresponding eigenvectors βi for 1 ≤ i ≤ N̄f , where N̄f ≤ Nf .

For a test vector xt at the time instant t, its discriminant component is given by

yi =
(
Φ(xt)

)TΦT(Xnf )βi = knf
Tβi, (26)

where knf = [knf (1) knf (2) · · · knf (Nf )]T ∈ RNf and knf (j) = ker(Φ(xt), Φ(xnf (j))) for 1 ≤ j ≤ Nf . For

fault detection, two fault discriminant statistics are constructed as

T 2
f =

[
y1 y2 · · · yKf

]
Γ−1

[
y1 y2 · · · yKf

]T
, (27)

Qf =
[
yKf +1 · · · yN̄f

]
Ω−1

[
yKf+1 · · · yN̄f

]T
, (28)

where
[
y1 y2 · · · yKf

]T contains the principal FDCs corresponding to the first Kf largest eigenvectors and[
yKf +1 · · · yN̄f

]T contains the remaining N̄f − Kf minor FDCs, while Γ is the covariance matrix of the
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principal FDCs and Ω is the covariance matrix of the remaining minor FDCs, both calculated based on

the training data Xnf . Similarly to KPCA modeling, the value of Kf is selected by the average eigenvalue

method [21].

The above analysis is based on the pair of the normal operating dataset and a single prior fault dataset.

In fact, if there are C classes of prior fault data
{

X
(c)
f , c = 1, 2, · · · , C

}
available, the procedure can be

executed for each pair of the normal dataset and a class of fault dataset, leading to the group of C fault

discriminant statistics denoted as
{

T
2(c)
f , Q

(c)
f , c = 1, 2, · · · , C

}
.

3.2. Monitoring Statistics Based on Bayesian Inference

With the proposed FDKPCA method, we obtain two kinds of monitoring statistics from the KPCA

and KLNPDA sub-models. For notational convenience, the KPCA monitoring statistics T 2 and Q are also

denoted as T
2(0)
f and Q

(0)
f and, therefore, all the monitoring statistics can be denoted by T

2(c)
f and Q

(c)
f for

c = 0, 1, 2, · · · , C.

Under the normal operation, all the monitoring statistics should be smaller than their respective confi-

dence limits, which are denoted by T
2(c)
f,lim and Q

(c)
f,lim. In most of the existing KPCA studies, certain statistical

distributions of observed data are assumed for confidence limit computation [21, 22]. However, industrial

data have highly complex characteristics and they may not obey these assumed distributions. Therefore, we

use a data-driven confidence limit computation method based on the well-known kernel density estimation

(KDE) method [25, 44, 45, 46]. Specifically, the normal operation data are first projected onto the statistical

models and the monitoring statistics T
2(c)
f and Q

(c)
f are computed. Then the density function is estimated

for each statistic by the KDE method. Finally, with the given significance level δ, the confidence limit is

determined for every statistic by finding the point occupying the 1−δ area of the estimated density function.

In this paper, the significance level is set to δ = 5%, and thus the 95% confidence limit is applied for each

statistic.

Up to now, the KPCA sub-model and fault discriminant sub-models are built and the monitoring statis-

tics T
2(c)
f and Q

(c)
f for c = 0, 1, 2, ..., C are designed for process monitoring. As different monitoring statistics

are provided, how to combine them to generate an overall decision is critically important. We propose to

use the Bayesian inference to turn each monitoring statistic into a fault probability. Then all the probability

values from different sub-models are combined to construct the probability-based monitoring statistics with

a weighting strategy for enhancing fault detection performance.

According to Bayesian inference [47, 48], the monitoring statistics T
2(c)
f and Q

(c)
f can be transformed

into the posterior fault probabilities P
(c)
T 2 (f

∣∣xt) and P
(c)
Q (f

∣∣xt), computed as

P
(c)
T 2 (f

∣∣xt) =
P

(c)
T 2 (xt

∣∣f)P (c)
T 2 (f)

P
(c)
T 2 (xt)

, c = 0, 1, · · · , C, (29)
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P
(c)
Q (f

∣∣xt) =
P

(c)
Q (xt

∣∣f)P (c)
Q (f)

P
(c)
Q (xt)

, c = 0, 1, · · · , C, (30)

where P
(c)
T 2 (f) and P

(c)
Q (f) are the prior fault probabilities equivalent to the significance level δ, P

(c)
T 2 (xt

∣∣f)

and P
(c)
Q (xt

∣∣f) are the occurrence probabilities of xt under fault condition, which are defined as

P
(c)
T 2 (xt

∣∣f) = exp
(
−T

2(c)
f,lim

/
T

2(c)
f

)
, (31)

P
(c)
Q (xt

∣∣f) = exp
(
−Q

(c)
f,lim

/
Q

(c)
f

)
, (32)

while P
(c)
T 2 (xt) and P

(c)
Q (xt) are the occurrence probabilities of xt, which are computed according to

P
(c)
T 2 (xt) =P

(c)
T 2 (xt

∣∣f)P (c)
T 2 (f) + P

(c)
T 2 (xt

∣∣n)P (c)
T 2 (n), (33)

P
(c)
Q (xt) =P

(c)
Q (xt

∣∣f)P (c)
Q (f) + P

(c)
Q (xt

∣∣n)P (c)
Q (n). (34)

In (33) and (34), P
(c)
T 2 (n) and P

(c)
Q (n) are the prior normal probabilities equivalent to the confidence level 1−δ,

while P
(c)
T 2 (xt

∣∣n) and P
(c)
Q (xt

∣∣n) are the occurrence probabilities of xt under normal operating condition,

defined as

P
(c)
T 2 (xt

∣∣n) = exp
(
−T

2(c)
f

/
T

2(c)
f,lim

)
, (35)

P
(c)
Q (xt

∣∣n) = exp
(
−Q

(c)
f

/
Q

(c)
f,lim

)
. (36)

Two probability-based monitoring statistics, PT 2 and PQ, are then constructed by weighting all the

corresponding posterior fault probabilities according to

PT 2 =
1∑C

c=0 w
(c)
T 2

C∑
c=0

w
(c)
T 2P

(c)
T 2 (f

∣∣xt) =
C∑

c=0

w̄
(c)
T 2P

(c)
T 2 (f

∣∣xt), (37)

PQ =
1∑C

c=0 w
(c)
Q

C∑
c=0

w
(c)
Q P

(c)
Q (f

∣∣xt) =
C∑

c=0

w̄
(c)
Q P

(c)
Q (f

∣∣xt), (38)

where w
(c)
T 2 and w

(c)
Q are the weighting factors, while w̄

(c)
T 2 = w

(c)
T 2

/ ∑C
c=0 w

(c)
T 2 and w̄

(c)
Q = w

(c)
Q

/∑C
c=0 w

(c)
Q are

the normalized weighting factors.

We now discuss how to design these weighting factors appropriately. Note that the weighting factors

should ensure that the KPCA sub-model can always function well while the fault discriminant sub-models

can provide useful fault information to improve the monitoring performance. For the KPCA sub-model, we
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design its weighting factors as

w
(0)
T 2 =sat

(
exp

(
(T 2(0)

f − T
2(0)
f,lim)

/
T

2(0)
f,lim

))
, (39)

w
(0)
Q =sat

(
exp

(
(Q(0)

f − Q
(0)
f,lim)

/
Q

(0)
f,lim

))
, (40)

where sat(·) represents the saturation function defined by

sat(z) =


0, z < 0,

z, 0 ≤ z ≤ zmax,

zmax, z > zmax.

(41)

In our case studies, we empirically set zmax = 200.

Since the fault discriminant statistics should provide more information only in the case of fault occurrence,

we set the weighting factors w
(c)
T 2 and w

(c)
Q for 1 ≤ c ≤ C according to

w
(c)
T 2 =

 sat
(

exp
(

T
2(c)
f

−T
2(c)
f,lim

T
2(c)
f,lim

))
, if P

(c)
T 2 (f

∣∣xt) > δ & P̄
(c)
T 2 (f

∣∣xt) > δ,

0, otherwise,
(42)

w
(c)
Q =

 sat
(

exp
(

Q
(c)
f

−Q
(c)
f,lim

Q
(c)
f,lim

))
, if P

(c)
Q (f

∣∣xt) > δ & P̄
(c)
Q (f

∣∣xt) > δ,

0, otherwise,
(43)

where

P̄
(c)
T 2 (f

∣∣xt) =
1
L

t∑
i=t−L+1

P
(c)
T 2 (f

∣∣xi), (44)

P̄
(c)
Q (f

∣∣xt) =
1
L

t∑
i=t−L+1

P
(c)
Q (f

∣∣xi), (45)

are the corresponding mean posterior fault probabilities over the L test samples {xt−L+1, xt−L+2, · · · , xt}.

In (42) and (43), P
(c)
T 2 (f

∣∣xt) > δ and P
(c)
Q (f

∣∣xt) > δ mean that the current sample indicates a fault, while

P̄
(c)
T 2 (f

∣∣xt) > δ and P̄
(c)
Q (f

∣∣xt) > δ mean that the average probability of the past L samples indicates a

fault. When both these two conditions are satisfied, the weighting factors will become non-zero values and

the fault discriminant model is therefore activated to contribute to process monitoring. Otherwise, the fault

discriminant model is deactivated. In our study, the value of L is empirically selected as L = 6.

With (37) and (38), two probability-based monitoring statistics are constructed for fault detection.

Different from traditional monitoring statistics, they indicates fault occurrence probabilities. Hence, if

PT 2 ≤ δ and PQ ≤ δ, the process is under normal operation status. Otherwise, a fault is detected.
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3.3. FDKPCA Based Process Monitoring Procedure

We are now ready to summarize our proposed FDKPCA based process monitoring procedure. Similar

to other data-driven methods, the FDKPCA based process monitoring involves two stages: offline model

training and online fault detection. In the offline model training stage, the training dataset including the

normal operating data and some priori fault data are used to build the FDKPCA model. During the online

fault detection stage, new data are projected onto the FDKPCA model and the probability-based monitoring

statistics PT 2 and PQ are computed to judge the process operation status. More specifically, the two stages

of the FDKPCA based process monitoring are as follows.

Offline model training stage

1) Collect normal operating data, divide them into the normal training dataset Xn = X
(0)
f and validation

dataset Xv, and normalize the both datasets with the mean and variance of the normal training dataset.

2) Gather existing fault datasets
{
X

(c)
f , c = 1, 2, ..., C

}
and normalize them with the mean and variance

of the normal training dataset.

3) Build the FDKPCA model, which includes the KPCA sub-model constructed based on the normal

training dataset X
(0)
f , and the fault discriminant sub-models each constructed based on a dataset pair{

X
(0)
f , X

(c)
f

}
.

4) Project the validation data Xv onto the FDKPCA model, and calculate the monitoring statistics T
2(c)
f

and Q
(c)
f for c = 0, 1, 2, ..., C.

5) Apply the KDE to the monitoring statistics obtained in 4) to estimate the confidence limits T
(c)
f,lim and

Q
(c)
f,lim for c = 0, 1, 2, ..., C.

Online monitoring stage

1) Acquire a new data vector xt from the plant at time instant t, and normalize it with the mean and

variance of the normal training dataset.

2) Project xt onto the FDKPCA model, and calculate the corresponding monitoring statistics.

3) Apply the Bayesian inference to calculate the posterior fault probabilities using (29) and (30).

4) Calculate the probability-based monitoring statistics PT 2 and PQ using (37) and (38).

5) Determine if a fault occurs by comparing the monitoring statistics with the significance level.

Finally, we note that when no prior fault data are available, the FDKPCA naturally degenerates to the

traditional KPCA.

12



4. Simulation Studies

Two case studies, a simulated nonlinear system and a benchmark CSTR system, are used to evaluate our

proposed FDKPCA based monitoring scheme, in comparison with the traditional KPCA method. For the

both KPCA and FDKPCA based monitoring statistics, their thresholds are set to the corresponding 95%

confidence limits obtained by the KDE method. In all monitoring charts, the monitoring statistics are plotted

with solid curves and their thresholds are plotted with dashed lines. Two performance metrics are used to

evaluate the fault detection results, namely, the fault detection rate, which is defined as the percentage of

the samples exceeding the limits over all the faulty samples, and the fault detection time, which is defined

as the number of the alarming sample from which successive 6 samples exceed the threshold.

4.1. A Simulated Nonlinear System

The following nonlinear system with M = 6 measured variables, which is the modified version of the

example given in [21], is simulated 

x1 = s1 + e1,

x2 = s2 + e2,

x3 = s3 + e3,

x4 = s2
1 − 3s2 + e4,

x5 = −s3
1 + 3s2

3 + e5,

x6 = s2
1 + 2s3

3 + e6,

(46)

where the source signals si for 1 ≤ i ≤ 3 are independently and uniformly distributed in [0, 4], the noises

ei for 1 ≤ i ≤ 6 are independent and each follows the normal distribution with zero mean and variance

0.01, while xi for 1 ≤ i ≤ 6 are the monitored variables. Normal operation dataset with 600 samples are

generated based on the model (46). Among these data, 300 samples are used as the normal training data to

build statistical model and the other 300 samples are used as the validation dataset to compute confidence

limits. Two faults are designed for this system, which are listed in Table 1. For both faults, the training

datasets, i.e., prior fault datasets, and the testing datasets are generated, respectively, each includes 300

samples with the fault introduced after 100-th sample.

Table 1: Two faults of the simulated nonlinear system

Fault Fault Fault magnitude
class description Training data Testing data
D1 A step change in variable x2 -0.4 -0.35
D2 A step change in variable x5 +3.0 +2.8

Gaussian kernel function is used. According to the empirical rules of [21], the kernel width for the KPCA

model is related to the number of monitored variables M . In our simulation study, the kernel width is set
13



to σ = 100M empirically for the KPCA model. The KPCA sub-model of the FDKPCA has the same kernel

width. For the fault discriminant sub-models of the FDKPCA, the kernel width parameters are chosen by

the cross-validation method [49, 50].

4.1.1. Case 1. Prior D1 fault data available

In this case, the FDKPCA model includes one fault discriminant sub-model related to the prior D1 fault

training dataset. Figs. 3 and 4 show the monitoring charts of the KPCA and FDKPCA, respectively, for

the D1 fault testing data. It can be seen from Fig. 3 that the KPCA cannot detect this fault because its

monitoring statistics T 2 and Q stay well below the respective confidence limits with no obvious changes

after the occurrence of fault D1. The fault detection rates based on the T 2 and Q statistics of the KPCA are

7.5% and 8%, respectively. By contrast, the PT 2 chart of the FDKPCA shown in Fig. 4 can detect this fault

at the 116-th sample with a high fault detection rate of 82.0%. However, the PQ chart of the FDKPCA

offers no clear improvement in detecting this fault and its fault detection rate is also 8%. The reason for

good PT 2 performance and poor PQ one is that most significant discriminant information is extracted by
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Figure 3: KPCA monitoring charts for fault D1 of the simulated nonlinear system.
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Figure 4: FDKPCA monitoring charts for fault D1 of the simulated nonlinear system under the case 1 training.
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Figure 5: FDCs and KPCs for the fault D1 test dataset of the simulated nonlinear system under the case 1 training.

the first several principal FDCs which are included in the PT 2 statistic.

To investigate the FDKPCA method further, we provide the KPCs and FDCs for the D1 fault testing

data in Fig. 5. Note that there are 100 normal operation samples and 200 faulty samples in the D1 fault

testing dataset. It is clear from Fig. 5 that the normal and faulty KPCs overlap heavily but the fault FDCs

can mostly be separated from the normal FDCs. This explains the much better fault detection performance

of the FDKPCA in this case. We also plot the monitoring statistics generated by the fault discriminant

sub-model only in Fig. 6, where it can be seen that the T
2(1)
f chart clearly detects the occurrence of fault

D1 with 82.5% fault detection rate.
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Figure 6: Monitoring statistics using the fault discriminant sub-model only for fault D1 of the simulated nonlinear system
under the case 1 training.

The weighting factors to combine the KPCA sub-model and KLNPDA fault discriminant sub-model are

illustrated in Fig. 7. It can be seen that under the normal operation mode (the first 100 samples), w̄
(1)
T 2 for

the fault discriminant sub-model is 0 and w̄
(0)
T 2 for the KPCA sub-model is 1. Thus, the fault discriminant

sub-model is deactivated as it should be. After the fault occurs, w̄
(1)
T 2 becomes non-zero and mostly takes
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Figure 7: Normalized weighting factors of fault probabilities for fault D1 of the simulated nonlinear system under the case 1
training.

large values close to the maximum 1, indicating that the fault discriminant sub-model is correctly activated,

while w̄
(0)
T 2 although becoming smaller still maintains non-zero values most of the time In other words, the

KPCA sub-model is always active. This confirms the effectiveness of our weighting design strategy which

aims to ensure that the KPCA sub-model always functions well while the fault discriminant sub-models

are only activated under a fault condition. As explained previously, for this specific system, little fault

information is involved in Q
2(1)
f statistic of the fault discriminant sub-model and, therefore, w̄

(1)
Q is 0 for

most of the faulty samples.

When detecting an unknown fault which is related to the prior fault data used in training the FDKPCA

model, the fault detection performance of the FDKPCA will obviously be better than that of the KPCA.

Intuitively, when detecting an unknown fault which is not related to any prior fault data for training the

FDKPCA model, the fault detection performance of the FDKPCA should be at least no worse than that

of the KPCA. Figs. 8 and 9 depict the monitoring performance of the KPCA and FDKPCA for the D2

fault test dataset, respectively. From Fig. 8, it can be seen that the KPCA exhibits a poor performance
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Figure 8: KPCA monitoring charts for fault D2 of the simulated nonlinear system.
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Figure 9: FDKPCA monitoring charts for fault D2 of the simulated nonlinear system under the case 1 training.

with the T 2 statistic based fault detection rate of 7% and the Q statistic based fault detection rate of 6.5%.

According to Fig. 9, the performance of the FDKPCA is certainly no worse than that of the KPCA. In fact,

some improvement is achieved by the FDKPCA with its PT 2 statistic attaining the fault detection rate of

27.5% and its PQ statistic achieving the same fault detection rate of 6.5% as the Q statistic of the KPCA.

4.1.2. Case 2. Prior D2 fault data available

After the FDKPCA model is built using the normal operation dataset and prior D2 fault dataset, the

monitoring charts of the constructed FDKPCA model for the D1 fault testing dataset are shown in Fig. 10.

It can be seen from Fig. 10 that a fault detection rate of 44% is obtained based on the FDKPCA’s PT 2

statistic, which is a large improvement over the fault detection rate of 7.5% obtained by the KPCA’s T 2

statistic. The monitoring charts of the constructed FDKPCA model for the D2 fault testing dataset are

depicted in Fig.11, where it can be seen that the FDKPCA’s PT 2 statistic is capable of detecting this fault

with a high fault detection rate of 74.5%.
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Figure 10: FDKPCA monitoring charts for fault D1 of the simulated nonlinear system under the case 2 training.
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Figure 11: FDKPCA monitoring charts for fault D2 of the simulated nonlinear system under the case 2 training.

4.1.3. Case 3: Both prior D1 and D2 fault data available

The FDKPCA modeling involves building the KPCA sub-model and the two fault discriminant sub-

models. The monitoring results depicted in Figs. 12 and 13 clearly demonstrate that the constructed

FDKPCA model is capable of detecting both the D1 and D2 faults. More specifically, for the D1 fault

testing dataset, the FDKPCA’s PT 2 and PQ statistics achieve the fault detection rates of 84.5% and

10.5%, respectively, while for the D2 fault testing dataset, the PT 2 and PQ statistics of the FDKPCA

model are 75.5% and 6.5%, respectively.

The results of all the three cases are listed in Table 2. The KPCA model is unable to detect the faults D1

and D2 of this simulated nonlinear system. By contrast, the FDKPCA model incorporating both the prior

D1 and D2 fault information is capable of detecting the both faults. Also the FDKPCA model integrating

one prior fault information is able to detect the fault for which it has some prior information. Moreover, the

FDKPCA model trained with one prior fault data is capable of improving the fault detection performance

for the other unseen fault, in comparison with the KPCA model.
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Figure 12: FDKPCA monitoring charts for fault D1 of the simulated nonlinear system under the case 3 training.
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Figure 13: FDKPCA monitoring charts for fault D2 of the simulated nonlinear system under the case 3 training.

Table 2: Fault detection rates (%) of faults D1 and D2 obtained by KPCA and FDKPCA.

Testing KPCA FDKPCA
Fault Case 1 Case 2 Case 3
No. T 2 Q PT 2 PQ PT 2 PQ PT 2 PQ
D1 7.5 8.0 82.0 8.0 44.0 10.5 84.5 10.5
D2 7.0 6.5 27.5 6.5 74.5 6.5 75.5 6.5

4.2. The continuous stirred tank reactor System

The CSTR is a benchmark chemical process widely used in the evaluation of fault detection and process

control methods [7, 51, 52]. In this CSTR system shown in Fig. 14, the input stream including reactant

A flows into reactor where first-order irreversible reaction A → B occurs to produce the component B as

an output stream. Cooling jacket is used to remove the reaction heat. To ensure a stable operation, two

cascade control systems are designed to control reactor level and temperature, respectively.

Based on the mechanical model presented in [51, 52], this CSTR system is simulated. In the simulation

procedure, ten variables are collected and Gaussian noises are added to them as the measurement noises.

C Q T

Q T
Q T

C Q

h

T

Figure 14: Schematic of the CSTR system.
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Table 3: Monitored CSTR system variables and their noise standard deviations (Std.).

Variable Variable Normal Noise Unit
name description value Std.
CA Concentration of reactant A in reactor 0.0372 0.0024 mol/L
T Reactor temperature 402.35 0.71 K
TC Coolant temperature in jacket 345.44 0.63 K
h Reactor level 6.0 0.04 dm
CAF Concentration of reactant A in reactor

feed stream
1.0 0.0024 mol/L

TF Reactor feed temperature 320.0 0.71 K
TCF Coolant inlet temperature 300 0.63 K
QF Reactor inlet flow rate 100 0.71 L/min
Q Reactor outlet flow rate 100 0.71 L/min
QC Coolant flow rate 15 0.1 L/min

Detailed description of these variables and the corresponding noise strengths are given in Table 3. Normal

operation and nine types of fault situations are designed. The designed faults include process condition

changes, sensor malfunctions and valve sticking, as can be seen from Table 4.

Table 4: Fault classes of the CSTR system.

Fault Fault Fault magnitude
class description Training data Testing data
F1 Coolant inlet temperature ramps down. -0.8 K/min -0.9 K/min
F2 Concentration of reactant A in reactor feed

stream ramps up.
+0.003
(mol/L)/min

+0.002
(mol/L)/min

F3 Reactor feed temperature ramps up. 0.6 K/min 0.8 K/min
F4 Coolant valve is stuck at some position. 29.5% 30.5%
F5 Reactor temperature sensor has a bias. +1K +0.7K
F6 Catalyst activation energy ramps up. +6 K/min +4 K/min
F7 Heat-transfer coefficient ramps down. -200 (J/(min ·

K))/min
-220 (J/(min ·
K))/min

F8 Coolant temperature sensor has a bias. +2K +1.5K
F9 Coolant flow rate sensor has a bias. +2L/min +0.5L/min

For the normal operation mode, 500 samples are generated as the normal training dataset and another

800 samples are generated as the validating data. For each of the nine fault classes, the prior fault training

dataset and the fault testing dataset are simulated, which include 500 and 800 samples, respectively. In the

prior fault training data, the fault is introduced after the 50-th sample while in the fault testing data, the

fault is introduced after the 180-th sample. The kernel width parameters for the KPCA and FDKPCA are

determined using the same strategy as given in Section 4.1.

4.2.1. Three prior fault data available

We start by investigating the case that the prior F2, F4 and F8 fault data are available. In this case,

three fault discriminant sub-models are utilized by the FDKPCA.

Firstly, the KPCA and FDKPCA monitoring charts for the F2 Fault testing dataset are depicted in
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Figs. 15 and 16, respectively. The results of Fig. 15 show that the T 2 and Q statistics of the KPCA both

detect this fault at the 367-th sample with the fault detection rates of 75% and 74.8%, respectively. The

FDKPCA results given in Fig. 16 indicate that its PT 2 statistic alarms this fault at the 302-th sample

while its PQ statistic detects this fault at the 347-th sample. Therefore, the PT 2 statistic reduce the fault

detection delay by 65 samples and the PQ statistic alarms the fault 20 samples earlier, compared with the

KPCA. The fault detection rates of the FDKPCA are 82.4% and 79.7% based on the PT 2 and PQ statistics,

respectively, which are both higher than the detection rates of the KPCA method.
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Figure 15: KPCA monitoring charts for fault F2 of the CSTR system.
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Figure 16: FDKPCA monitoring charts for fault F2 of the CSTR system. The model is trained with prior F2, F4 and F8 fault
data.

Furthermore, the KPCA and FDKPCA monitoring results for the F8 fault testing dataset are shown in

Figs. 17 and 18, respectively. As this fault only involves a small sensor bias of coolant temperature sensor

and it does not affect other measured variables, it is difficult for the KPCA method to detect this fault.

Observe from Fig. 17 that the monitoring statistics of the KPCA fluctuate around the confidence limits and

cannot clearly signal an alarm. The fault detection rates of the KPCA’s T 2 and Q statistics are 28.6% and

29.8%, respectively. By contrast, the FDKPCA exhibits significantly better fault detection performance.
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As can be seen from Fig. 18, the fault detection rates are 74.8% and 32.9% based on the PT 2 and PQ

statistics, respectively. Moreover, the FDKPCA’s PT 2 statistic detects this fault at the 231-th sample and

its PQ detects this fault at the 313-th sample.
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Figure 17: KPCA monitoring charts for fault F8 of the CSTR system.
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Figure 18: FDKPCA monitoring charts for fault F8 of the CSTR system. The model is trained with prior F2, F4 and F8 fault
data.

4.2.2. Three cases of different prior fault data available

Next we compare the performance of the KPCA method with that of the FDKPCA method given the

three cases with different available prior fault data:

Case 1. One prior F2 fault dataset is available.

Case 2. Three prior F2, F4 and F8 fault datasets are available.

Case 3. All the nine prior F1 to F9 fault datasets are available.

Under these three cases, the FDKPCA statistical models are built and tested on all the 9 fault testing

datasets, in comparison with the KPCA. The fault detection rates and fault detection times obtained are

tabulated in Tables 5 and 6, respectively, where symbol / represents failure to detect the fault. For the

FDKPCA under the case 1 training, its monitoring results for fault F2 are significantly better than that of
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Table 5: Fault detection rates (%) for the CSTR system obtained by the KPCA and FDKPCA.

Testing KPCA FDKPCA
Fault Case 1 Case 2 Case 3
No. T 2 Q PT 2 PQ PT 2 PQ PT 2 PQ
F1 85.5 85.5 85.5 85.7 85.5 85.7 89.4 86.3
F2 75.0 74.8 82.1 79.5 82.4 79.7 83.7 79.8
F3 84.0 83.6 84.0 84.5 84.0 84.7 87.1 85.5
F4 34.4 39.0 34.8 49.8 61.5 56.3 69.7 58.6
F5 69.0 74.2 69.2 81.3 84.8 85.3 93.6 87.1
F6 48.9 48.2 50.3 49.7 51.1 50.5 63.1 54.4
F7 61.6 61.8 62.4 64.4 63.9 65.2 71.0 66.1
F8 28.6 29.8 28.7 30.2 74.8 32.9 75.7 35.0
F9 86.3 86.5 87.3 91.9 89.8 92.6 97.7 94.7

the KPCA, while its monitoring performance for the other 8 faults is at least no worse than those of the

KPCA. In fact, according to Table 6, the FDKPCA obtained under the case 1 training also reduces the fault

detection time for fault F5 clearly. As explained previously, fault F8 is the most difficult fault to detect by

data-driven methods. Observe from Table 6 that the FDKPCA obtained under the case 1 training also fails

to detect this fault. With the FDKPCA obtained under the case 2 training, its monitoring performance for

faults F2, F4 and F8 are significantly better than those of the KPCA. Moreover, its monitoring performance

for the other 5 unseen faults are also improved, compared with the KPCA model. With all the 9 classes of

prior fault information available, the FDKPCA obtained under the case 3 training significantly improves the

monitoring performance for all the 9 faults. The average fault detection rates over all the 9 faults obtained

by the KPCA and FDKPCA models are compared Fig. 19.

Table 6: Fault detection times (sample numbers) for the CSTR system obtained by the KPCA and FDKPCA.

Testing KPCA FDKPCA
Fault Case 1 Case 2 Case 3
No. T 2 Q PT 2 PQ PT 2 PQ PT 2 PQ
F1 308 295 308 295 308 295 273 295
F2 367 367 302 347 302 347 300 347
F3 312 312 312 308 312 308 256 308
F4 / / / 318 238 318 203 318
F5 278 277 241 241 241 241 233 241
F6 506 580 506 506 506 478 425 478
F7 472 472 472 472 419 419 405 405
F8 / / / / 231 313 231 313
F9 226 226 226 222 186 186 186 186

4.3. Summary of the Simulation Results

Based on the results of the above two case studies, we can draw the following observations regarding

the features of the proposed FDKPCA monitoring procedure, in comparison with the traditional KPCA

method.
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Figure 19: Average fault detection rates of the KPCA and FDKPCA for the CSTR system.

1. When detecting an unknown fault which is related to the prior fault data used in training the FDKPCA

model, the FDKPCA significantly enhances the fault detection performance, in comparison with the

model incorporating no prior fault information.

2. When detecting an unknown fault which is not related to any prior fault data used in training the

FDKPCA model, the fault detection performance of the FDKPCA is at least no worse than that of the

KPCA. Often, however, the FDKPCA can improve the fault detection performance for an unseen fault,

over the KPCA method. We believe this is because different faults may influence some same monitored

variables.

3. Generally, utilization of prior fault information is beneficial and helps the FDKPCA method to monitor

the process changes better. More specifically, incorporating more prior fault information increases the

fault detection capability of the FDKPCA model.

In addition, the simulation results also verify that the weighting strategy designed in Section 3.2 for

constructing the probability-based monitoring statistics is appropriate and achieves its design goal, which

is to ensure that the KPCA sub-model is always active while the fault discriminant sub-models are only

activated when a fault is detected.

5. Conclusions

A basic principle in data learning or modeling is to incorporate available a priori information regard-

ing the underlying data generating mechanism into the learning process. In this paper, we have adopted

this principle in data-driven nonlinear process monitoring application. In particular, a novel FDKPCA

procedure has been proposed by integrating KPCA modeling with fault discriminant analysis for nonlinear

process monitoring, which incorporates the available prior fault data effectively to enhance fault detection

performance. More specifically, two different types of features, KPCs and FDCs, have been considered in our
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FDKPCA based fault detection. We have proposed to utilize a Bayesian inference to transform the moni-

toring statistics built by the KPCA sub-model and the fault discriminant sub-models into fault probabilities

and have further designed an appropriate weighting strategy to combine the resulting fault probabilities

into the overall probability-based monitoring statistics. Two case studies, involving a simulated nonlinear

system and the benchmark CSTR system, have demonstrated that the proposed FDKPCA method achieves

superior fault detection performance over the widely used KPCA method.

The proposed approach thus has opened a new research direction for data-driven nonlinear process

monitoring, where many issues warrant further study. For example, it is worth considering how to design

alternative weighting factors for monitoring statistics in order to further enhance monitoring performance.

A more challenging problem is how to utilizing the prior fault information to solve much more difficult fault

identification or diagnosis.
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