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Abstract— We present a low-complexity framework for 

classifying elementary arm-movements (reach-retrieve, lift-cup-to-

mouth, rotate-arm) using wrist-worn, inertial sensors. We propose 

that this methodology could be used as a clinical tool to assess 

rehabilitation progress in neurodegenerative pathologies tracking 

occurrence of specific movements performed by patients with their 

paretic arm. Movements performed in a controlled training-phase 

are processed to form unique clusters in a multi-dimensional 

feature-space. Subsequent movements performed in an 

uncontrolled testing-phase are associated to the proximal cluster 

using a minimum distance classifier (MDC). The framework 

involves performing the compute-intensive clustering on the 

training-dataset offline (Matlab) whereas the computation of 

selected features on the testing-dataset and the minimum distance 

(Euclidean) from pre-computed cluster centroids are done in 

hardware with an aim of low-power execution on sensor nodes.  

The architecture for feature-extraction and MDC are realized 

using Coordinate Rotation Digital Computer based design which 

classifies a movement in (9n+31) clock cycles, n being number of 

data samples. The design synthesized in STMicroelectronics 

130nm technology consumed 5.3 nW @50 HZ, besides being 

functionally verified upto 20 MHz, making it applicable for real-

time high-speed operations. Our experimental results show that 

the system can recognize all three arm-movements with average 

accuracies of 86% and 72% for four healthy subjects using 

accelerometer and gyroscope data respectively, whereas for stroke 

survivors the average accuracies were 67% and 60%. The 

framework was further demonstrated as a FPGA-based real-time 

system, interfacing with a streaming sensor unit.  

 
Index Terms— Clustering, classification, activity recognition, 

CORDIC, FPGA, low-complexity 

I. INTRODUCTION 

CTIVITY recognition (AR) in nomadic settings has gained 

prominence in the research community for assessing 

human mobility through remote monitoring systems. Remote 

monitoring for long durations has been aided by the 

advancements ubiquitous and mobile computing facilities 

primarily using radio-frequency identification (RFID) [1], low-

cost inertial sensors [2], and fusion of inertial sensor and vision-

based approaches [3]. RFID and vision-based methods are 

primarily restricted to a defined region catering for indoor 

activities, requiring an un-hindered surveillance [4]. Moreover, 
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for systems requiring real-time information, using high 

complexity image processing algorithms can lead to slower 

analysis [3]. Hence, body-worn inertial sensors have gained 

prominence over other approaches [5][6], particularly with the 

shift in research focus towards monitoring human activities 

performed in daily life which is a more natural indicator of the 

subject’s involvement as compared to monitoring only during a 

prescribed exercise/training phase. 

The fundamental requirement for a long-term continuous 

monitoring scenario using resource constrained WSN nodes, is 

a low-power operation to prolong the battery life. Typical 

remote monitoring systems employ computationally intensive 

data processing steps like feature extraction from the sensor 

data and pattern recognition (e.g. classification) which are 

carried out on off-line computational facilities. This involves 

continuous data transmission incurring significant amount of 

energy expenditure at the radio front-end of the sensors. Hence, 

for applications involving continuous remote monitoring (e.g. 

motion/fall detection for the elderly population in daily life), a 

low-power strategy is of paramount importance which can be 

achieved by performing low-complexity data processing in 

resource constrained environment of the sensor node itself [7]. 

In this work, we focus on the application area of arm 

movement recognition aimed at stroke rehabilitation. In 

neurodegenerative pathologies (e.g. stroke or cerebral palsy), 

detecting and classifying particular arm movements (e.g. 

clinically prescribed exercises) performed in daily life, can over 

time provide a measure of rehabilitation progress. A systematic 

exploration to recognize three fundamental movements of the 

upper limb associated with daily living activities using wrist-

worn inertial sensors has already been reported in [8] 

employing a clustering and minimum distance classification 

based approach. Sensor data collected from each subject in a 

constrained training phase (e.g. in the laboratory) are clustered 

to form three unique clusters representing each movement in a 

multi-dimensional feature space. A minimum distance 

classifier (MDC) computes the proximity of the test data 

collected in an unconstrained scenario (e.g. out-of-laboratory), 

to each of the clusters. Classification of the movements 

performed in the subsequent testing phase involving the 

essential steps of – (1) computing selected time-domain 
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features from the sensor data and (2) the distance to the pre-

computed cluster centroids can be mapped to a low-complexity 

architecture to achieve real-time detection of arm movements 

thereby providing an energy efficient solution towards long-

term operation of wearable sensors [7]. 

Hence in this paper, we propose the design and 

implementation of a CoOrdinate Rotation Digital Computer 

(CORDIC) based low-complexity MDC for real-time arm 

movement recognition. The fundamental mathematical 

processes of the MDC have been formulated using the different 

transcendental functions realizable using CORDIC and an 

optimized implementation strategy has been adapted, analyzing 

the shared computational stages. The algorithm proposed in [8] 

has been implemented in an offline-online resource sharing 

mechanism, where the time and memory intensive process of 

feature extraction, selection and cluster formation using 10 runs 

of 10-fold cross-validation (CV), on the training data were done 

in an offline mode (in Matlab). The computation of the selected 

features (required for cluster formation) on the testing data and 

computation of the minimum distance (Euclidean) from the pre-

computed cluster centroids was done in hardware, targeting 

real-time implementation.  

The design was synthesized using STMicroelectronics 130 

nm technology with a supply voltage of 1.08V and occupied 

242K NAND2 equivalent cell area and consumed 5.3 nW @ 50 

Hz, resulting in a low-complexity framework, applicable for 

real-time operations within a WSN node. The application area 

we consider is that of human activity recognition where a 

sampling frequency of up to 50 Hz is deemed sufficient for 

capturing kinematic information [9][10]. The design was 

further verified up to higher frequencies (viz. 20 MHz) and a 

total chip area of the layout was calculated as 2.21 mm2. Our 

experimental results to classify movements of four healthy 

subjects and stroke survivors involving an archetypal activity 

of daily living (ADL), ‘making-cup-of-tea’, show that the 

system can recognize all three arm movements with average 

accuracies of 86% and 72% for healthy subjects using 

accelerometer and gyroscope data respectively, whereas for 

stroke survivors the average accuracies were 67% and 60%. 

The framework was further demonstrated as a real-time 

working system, interfacing a streaming inertial sensor unit, 

host PC and DE4 FPGA board to facilitate serial port controls, 

recognizing a performed arm movement in approximately 0.6 

ms @780 KHz. The main contributions can be enlisted as the 

development of: 

 CORDIC based low-complexity MDC architecture for online 

AR; 

 system demonstrator for real-time AR; 

 generic offline-online framework in conjunction with 

clustering, applicable in wide range of AR applications. 

The rest of the paper is structured as follows:  an overview of 

the application setup is described in Section II and the 

theoretical formulation of the MDC in terms of CORDIC 

rotation along with the architecture for the proposed framework 

is described in Section III. Section IV describes the 

implementation and performance evaluation of the system. 

Finally, related literature and discussion are presented in 

Sections V and VI respectively.  

II. APPLICATION SETUP 

With an aim of continuous monitoring of activities 

performed in daily life by patients, the specific movements (or 

exercises) that need to be tracked as defined by clinicians need 

to be performed multiple times, following an exercise regime 

or a gaming session, in a controlled environment (clinic or 

home) [11][12]. The sensor data collected during this phase can 

be analysed through CV to determine the best cluster forming 

features and obtain the centroids of each cluster corresponding 

to each movement. This helps to perform a clinical profiling of 

the individual patient with respect to their movement quality. 

Movements performed in the uncontrolled nomadic 

environment (involving daily activities) can be associated to the 

proximal cluster centroid using the MDC to detect the 

occurrence of those particular movements. The merits of using 

the clustering based methodology over a plethora of other 

machine learning algorithms [10] for fine-grained arm 

movements, have been presented in detail in [8] whereas issues 

such as sensor selection/placement, data fusion have been 

addressed in [13] for arm movement recognition. 

Given the application framework, this methodology can be 

implemented for online detection of arm movements in a 

resource-constrained environment of body-worn sensor nodes. 

The offline processing of the training data, involving the key 

steps of cluster formation and feature selection need only be 

done when requested by the clinician, depending on the 

rehabilitation progress of the patient over time. Furthermore, 

the test data can be classified in real-time by computing the 

required features and the distance to the pre-computed cluster 

centroids in near real-time, providing an energy efficient 

solution towards long-term operation of wearable sensors. The 

offline-online processing framework is illustrated in Fig. 1. 

Although here we have targeted arm movement as a case study, 

this framework can be suitably used for critical event 

monitoring such as fall-detection or in sports medicine. 
 

Training dataset Feature extraction Feature selection Cluster formation

Testing dataset
Extraction of 

selected features

Minimum distance computation 

from cluster centroids

Classified 

Movements

Offline processing - software

Online processing - hardware
 

Fig. 1. Processing framework – offline/online processing of the training/testing 

dataset respectively. 
 

Experiments were conducted in two phases - 

training/laboratory phase and a testing/out-of-laboratory phase 

on - four healthy subjects at the University of Southampton and 

four stroke survivors at the Brandenburg Klinik. The healthy 

subjects were both right arm dominant while the stroke 

population had either left or right arm impaired. For this 

investigation, three arm movements, elementary in nature were 

considered: (1) Action A – reach and retrieve object, (2) Action 

B – lift cup to mouth and (3) Action C – perform 

pouring/(un)locking action.  
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In the training phase, essential for the target cluster 

formation, each healthy participant performed – 240, 120 and 

120 trials each of Action A, Action B and Action C respectively. 

The stroke survivors performed – 80 trials of A and 40 trials 

each of B and C. The collection of this training set helps to 

inherently capture the personalized (i.e. person-centric) 

movement patterns of the individuals through unique clusters 

augmenting accurate recognition [14]. The more number of 

trials pertaining to Action A w.r.t to B and C is representative of 

the generalised nature of the reach and retrieve movement 

performed frequently in daily lives.  

The testing phase employs an archetypal activity-list (cf. 

Table I) emulating the process of ‘making-cup-of-tea’, 

commonly performed in daily life incurring repeated 

occurrences of the three investigated arm movements. The list 

comprises 20 individual activities having 10 occurrences of 

Action A and 5 each of Actions B and C. The healthy subjects 

performed the activity-list four times with a 10-minute rest 

period between trials whereas the stroke survivors performed 

two trials since they tend to tire quicker. The experiment was 

performed in an unconstrained manner ensuring wider range of 

variability in the data. 
 

TABLE I 

USE CASE ACTIVITY LIST – ‘MAKING-CUP-OF-TEA’ 

Activity Action 

1. Fetch cup from desk A 

2. Place cup on kitchen surface A 

3. Fetch kettle A 

4. Pour out extra water from kettle C 

5. Put kettle onto charging point A 

6. Reach out for power switch on the wall A 

7. Drink glass of water while waiting for kettle to boil B 

8. Reach out to switch off kettle A 

9. Pour hot water from kettle in to cup C 

10. Fetch milk from shelf A 

11. Pour milk into cup C 

12. Put bottle of milk back on shelf A 

13. Fetch cup from kitchen surface A 

14. Have a sip and taste the drink B 

15. Have another sip while walking towards desk B 

16. Unlock the drawer C 

17. Retrieve biscuits from the drawer A 

18. Eat a biscuit B 

19. Lock the drawer C 

20. Have a drink B 

 

For this investigation, we use tri-axial accelerometers (range 

± 1.5 g) and tri-axial gyroscopes (range ± 500 °/s), housed in a 

Shimmer wireless 9DoF kinematic sensor module [15]. The 

impaired arm for the stroke survivors and the dominant arm for 

the healthy subjects, proximal to the wrist, were chosen for the 

sensor placement with the dorsal side of the forearm in contact 

with the XY plane and the Z-axis pointing away from it. 

Magnetometers were not considered for this investigation due 

to the presence of ferromagnetic materials in the home 

environment [16]. Data was collected @50 Hz, transmitted 

along with a timestamp to a host computer using Bluetooth. 

III. ALGORITHM TO ARCHITECTURE MAPPING 

The accuracy of any movement recognition technique is 

dependent on several factors such as: nature/number of 

activities, sensor type/number/placement, data mining and the 

classification methodology adopted [10]. Furthermore, there is 

a need for personalised evaluation especially for tracking 

activities that are susceptible to individual and temporal 

variation. In this paper, although the focus is primarily on an 

optimized architecture design for the testing phase, a brief 

overview of the algorithm and associated data processing 

especially in the training phase is quintessential since it 

determines the generation of the cluster centroids used by the 

MDC. The k-means clustering algorithm mentioned in [8], uses 

10 time-domain features, extracted from each of the three axes 

of the accelerometer or the gyroscope sensors. The features are: 

1) standard deviation, 2) root mean square, 3) information 

entropy, 4) jerk metric, 5) peak number, 6) maximum peak 

amplitude, 7) absolute difference, 8) index of dispersion, 9) 

kurtosis, 10) skewness. 

The fundamental concept of clustering is to form groups of 

similar objects as a means of distinguishing them from each 

other and it is well-perceived that cluster analysis is primarily 

used for unsupervised learning where the class labels for the 

training data are unknown. However, k-means clustering can 

also be used for supervised learning as in our proposed 

methodology [8] where we are aware of the labels for the 

training data pertaining to the three movements, helping to have 

a definite estimate on the underlying cluster structure (three 

clusters), facilitating faster convergence during cluster 

formation. We use the regularized Mahalonobis distance 

considering the covariance of the data, where a parameter λ (0 

or 1) is used to control the choice of distance measure (squared 

Mahalonobis or Euclidean). The clustering is performed on the 

feature vectors computed from the training data (accelerometer 

and gyroscope). It is performed in conjunction with a sequential 

forward selection (sfs) algorithm, selecting a combination of 2 

to 30 ranked features (10 features computed on each tri-axial 

axes data) in each step and 10 runs of 10-fold CV (9 segments 

of training and 1 of testing – only considering training data) are 

carried out with each feature combination. Cluster centroids are 

selected based on an experimentally determined threshold 

(25%) of the expected number of data points for each of the 

three clusters formed (healthy subjects: Action A - 240 ± 60, 

Action B/C - 120 ± 30; patients: Action A - 80 ± 20, Action B/C 

- 40 ± 10). Therefore, offline processing provides a detailed list 

of feature combinations that resulted in a successful cluster 

formation and the highest corresponding accuracies (averaged 

over 10 runs) for each subject and each sensor type. 

An important aspect is the choice of features since human 

AR studies typically incur the extraction of time and/or 

frequency domain features, as well as heuristic features from 

data which exhibit discriminative patterns for each movement. 

Commonly used frequency domain features as a result of signal 

transformation – Fourier, wavelet are well equipped in 

capturing dynamic movements like walking, running, etc. (high 

frequency components) while the orientation/postural 

information can be obtained from the low frequency 
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components. In this investigation we use time domain features 

since: 1) we consider fine-grain upper limb movement as 

compared to detecting gross/dynamic activities and static 

postures like standing, running, sitting, cycling, etc. and 2) time 

domain feature extraction incurs low complexity when mapped 

onto equivalent architecture. 

A detailed study on sensor selection/placement and data 

fusion for the targeted arm movements have been reported in 

[13]. Particularly, it has been shown that higher recognition 

sensitivities are achieved using: 1) data from the wrist sensor 

module as compared to the elbow since the former is more 

responsive and produces significant discriminatory patterns for 

the arm movements being investigated and 2) similar time 

domain features extracted on individual sensor axes data as 

compared to considering he modulus of the tri-axial data and 

fusion of specific accelerometer-gyroscope signal 

combinations. Three unique sensor combinations for the wrist 

module (multiplying accelerometer-gyroscope signals) were 

created based on a priori consideration of the expected 

trajectory of the subject’s arm with respect to the sensor 

position and orientation of the sensor axes for the investigated 

movements. The use of all the individual sensor signals, rather 

than a processed signal (i.e. moduli or fused), provides the 

classifier a wider pool of features to select and hence the 

recognition rate for the movements is reflected in the higher 

sensitivity achieved [13]. 

According to the application framework (cf. section II), the 

online processing stage aimed at real-time arm movement 

detection comprises of the key steps – 1) feature extraction from 

the test dataset and 2) associating the test data to the pre-

computed cluster centroids using a MDC. In this section we 

present the architecture and implementation of the MDC in 

conjunction with the cluster centroids for detecting the three 

investigated arm movements. A detailed architecture and 

implementation of several of these features have been presented 

in [17], except for the jerk metric which is an important feature, 

quantifying the tremor inherent in the movement especially 

among the stroke population. Given the low-complexity when 

using CORDIC for formulating the features as demonstrated in 

[17] compared to other implementations, in this paper we use it 

to formulate – 1) the jerk metric and 2) the MDC for classifying 

the test data in the respective feature space. We present a brief 

overview of CORDIC fundamentals, used for the algorithmic-

to-architecture formulation. 

CORDIC is an iterative algorithm which uses 2D vector 

rotation for computing different transcendental functions 

employing the iterative equations:  
 

                 (1) 

 

where, [xj, yj]T, zj and σj ϵ {1, -1} are the intermediate result 

vector, the residual angle and the direction of vector rotation at 

the j-th iteration stage respectively; µ ϵ {1, 0} being the 

coordinate of rotation – circular and linear respectively.  
 

TABLE II 

GENERALISED CORDIC ALGORITHM IN TWO CO-ORDINATE SYSTEMS 

µ ROTATION MODE (Z0 →0) VECTORING (Y0 →0) 

1 

 
 

  

  

0 

  

  

  

 

In each coordinate system, CORDIC in general, can be operated 

in two modes - Vectoring and Rotation [18]. For an input vector 

[x0   y0]T, in the Vectoring mode (y0 →0), the magnitude of the 

vector, angle between the initial vector and the principal 

coordinate axis is computed whereas in the rotation mode (z0 

→0), for a given angle of rotation the final vector is computed. 

These can be used for computing a series of transcendental 

functions as shown in Table II [18]. The transcendental 

functions generated by the vectoring CORDIC operation can be 

used for feature computation and the MDC. We use Vecc, and 

Vecl as operators representing vectoring CORDIC operation in 

circular and linear coordinate system respectively. The input 

dataset is represented by dsi, where i ϵ {0, 1, 2…n-1} and di is 

the output of vectoring CORDIC operation on ds(i-1) data 

sample. The features and the MDC have been formulated in 

terms of CORDIC operation, in line with this convention.  

A. Feature - Jerk Metric (jm) 

The jerk metric characterizes the average rate of change of 

acceleration in a movement. It is calculated as the rms value of 

the derivative of the acceleration (jerk) normalized by the 

maximum value of the integral (velocity) [19] as shown in (2). 
 

     (2)                                                 

 

It is important to note here that although the calculation of jerk 

is physically related to the acceleration data but the same 

computing logic is also applied to the rotation data from the 

gyroscope, since the computed metric serves its purpose as a 

discriminating feature for characterising the movements. Since 

the data samples are equally spaced due to the constant 

sampling frequency, the first derivative is computed as the 

difference of the consecutive data samples using a subtractor. 

The integral of the data is computed using trapezoidal 

integration which involves the addition of the consecutive data 

samples and a divide by 2 (implemented as right shift). From 

(2), it can be deduced that the rms of the first derivative of the 

data samples ( ) can be computed using the operator Vecc, 

which is shown in (3). The samples are used as the y input 

to the CORDIC and the x-component of the output is fed back 
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to the x-component of the CORDIC input. 
 

           (3)  

 

Therefore, with new data samples dsi arriving at each clock 

cycle, the x-component of the CORDIC output is computed as: 
 

         (4) 

 

The x-component of the output generated after every complete 

CORDIC operation is scaled with a scale factor K. This is an 

essential step as feeding this result without scaling into the x-

component of the CORDIC input results in an accumulation of 

the scale factor corresponding to each dsi, thereby affecting the 

formulation in (4). Hence, the scale factor compensation is 

invoked after every complete CORDIC operation (comprising 

N stages) with a set of input data, feeding the compensated 

output to the x-input of the CORDIC in the next iteration. 

Following n operations with the scale factor compensation the 

x output of the CORDIC yielding the final result is multiplied 

with 1/√n for obtaining the rms. The value 1/√n is pre-computed 

(n being a fixed number) and is multiplied with the final 

CORDIC output with the help of a reduced complexity 

multiplier-less shift-and-add technique or fixed-number 

multiplier.  

The jerk metric is finally computed using the CORDIC 

operator Vecl as shown in (5). Referring to Table I, 

and  are set as the x0 and y0 inputs to the CORDIC, 

operating in vectoring mode in the linear coordinate system. 
 

      (5) 

 

The implementation includes 1 subtractor and CORDIC (Vecc) 

for computing  and 1 adder for computing by 

trapezoidal integration. Finally, CORDIC (Vecl) is re-used for 

computing the value of the feature. The jerk metric is dependent 

on the rms of the derivative and maximum of the integral taking 

(n + 1) cycles. Considering n as 256 data samples, 

representative of a movement for approximately 5 seconds 

(@50 Hz), facilitates a multiplier-less shift-and-add operation.  

B. Minimum distance classifier (MDC) 

The MDC methodology has been illustrated through a 

mathematical approach having three clusters (A, B, C formed 

using k-means on the training dataset for the three movements) 

and a test vector (T) to be associated in a 2-dimensional feature 

space (f1 and f2) in Fig. 2. The distance of T from each of the 

three centroids are denoted by dA, dB, dC which are compared to 

estimate its proximity to the clusters.      
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Fig. 2. Illustration of the minimum distance classification methodology. 
 

According to Fig. 2, the two dimensional co-ordinates are: 

Cluster centroid A – (fA1, fA2) and Test vector T – (fT1, fT2). This 

feature space (f1, f2) can be extended to incorporate all 30 

features. The Euclidean distance of the test feature vectors from 

the centroid can be computed as in (6), which can be further 

reframed (7), having functional similarity to rms computation 

and can be realized using CORDIC operator Vecc (8), where the 

data samples dAsi, are the computed differences between the 

feature vectors of the test dataset and the cluster centroids. 
 

     (6) 

 

                (7) 
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Similar to rms computation (3), the samples dAsi are fed to the y 

input of CORDIC while the final result (scaled with K) at the x 

output of CORDIC is obtained after n number of operations, 

where n is dependent on the number of features selected (1 > n 

≤ 30). Similarly, the distances dB, dC can be computed using 

Vecc. The offline-online processing approach (cf. section II), 

has been illustrated in Fig. 3, representing the input-output 

signals which have been further described in Table III. 
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Fig. 3. Architecture for offline-online framework for MDC. 
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TABLE III 

LIST OF INPUT-OUTPUT SIGNALS 

Signals Description 

data_in 

16-bit i/p for tri-axial sensor data corresponding to a 

movement performed in the testing phase (Acc_x, Acc_y, 

Acc_z or Gyro_x, Gyro_y, Gyro_z) 

feature-code 

30-bit i/p denoting the selected features out of total 30 

features during cluster formation on the training dataset 

(having ‘1’ for a selected feature else ‘0’); cf. Fig. 4. 

cluster-

centroid 

16-bit i/p each for 3 cluster centroids formed from the 

features selected from the training phase data. 

predicted-

cluster 
2-bit o/p for the predicted cluster computed as the minimum 

distance of the test dataset from the cluster centroids 

 

The sequence of features (10 features) has been illustrated in 

Fig. 4, which are extracted from each tri-axial data segment (x, 

y and z) of each sensor type, thereby having total of 30 features 

[8]. The features selected (out of a total of 30) during the cluster 

formation are represented using a feature-code. An example 30-

bit code: 000100000000000001001000000000, represents the 

features (3, 17, 20) viz. D_x (dispersion computed on x-axis 

data), jerk_y (jerk metric on y-axis) and rms_z (rms on z-axis) 

were selected during cluster formation. 
 

 

Fig. 4. Sequence of features extracted from each tri-axial data segment to form 

a 30-bit feature-code. 

 

The architecture for the MDC, associating the test dataset to 

pre-computed cluster centroids is shown in Figs. 5 and 6. The 

feature-code helps to select the required features. The cluster 

centroid for that corresponding feature is selected through a 

sample counter (5-bit feature-counter) which counts through 

the 30-bit feature-code. 
 

 
Fig. 5. Overview of the MDC architecture. 

 

 
Fig. 6. Architecture for the minimum distance computation module. 

 

The features selected from the testing set (fTsi) and the 

corresponding cluster centroids (fAsi, fBsi, fCsi) are passed onto the 

minimum distance computation module, shown in Fig. 6, using 

subtractors to compute the difference between the 

corresponding features and cluster centroids which are used to 

compute the distance (dA, dB and dC) using operator Vecc (7) to 

produce the respective distances of the test set from each 

centroid. A comparator is used to determine the proximal 

cluster, denoted as 2-bit output (‘00’ - A, ‘01’ - B and ‘10’ - C). 

Here, we have used three CORDIC operations in parallel for 

distance computation from each centroid (cf. Fig. 5) which 

could be achieved by reusing one CORDIC module for a 

sequential computation but at the expense of an increased 

computation time. A high speed design has been preferred in 

view of real-time detection. Using multiple CORDIC modules 

has its effects on the chip area and power and hence a trade-off 

with the computation time is necessary for an optimal design. 

In worst-case scenario, if all 30 features are selected, the 

distance computation from each of the three centroids would 

involve 30 CORDIC operations. Re-using a single CORDIC, 

incurs additional processing time, along with the overheads of 

a control logic. The feature extraction engine consumes 

approximately 1 nW of power [17] given the low frequency 

operations (@50 Hz) and therefore computation time has been 

given priority in this design. 

The computation of the features and the MDC incurs a 

recursive formulation which leads to a computing loop that 

cannot be achieved with a pipelined CORDIC architecture 

whereas using an iterative CORDIC implementation would 

have its effect on the throughput. Hence, a unit latency design 

coalescing all iterations in a single computing stage (one clock 

cycle) is adopted here. We present an estimate of the hardware 

complexity in terms of the total full adder (FA) count, which 

provides an objective reflection of the underlying architecture. 

The MDC requires 3 subtractors and 3 CORDIC modules 

(Vecc). A b-bit Ripple carry adder/subtracter (RCA) 

requires b full adders (FA), therefore we can consider 3b FA for 

the subtractors. The hardware resource for one iteration of an 

N-stage CORDIC rotation (considering a generalized word-

length b) can be computed as 2Nb FA. This can be reused for 

multiple iterations (e.g. rms computation). Although the MDC 

requires 3 CORDIC modules in parallel, 2 modules used for 

feature extraction (1 module used for std, rms, entropy, 

dispersion, kurtosis and skewness as reported in [17] and 1 

module for jerk metric which is independent of the rest of the 

features) can be reused for MDC. Hence, in total we require 

(2Nb + 3b) FA for the MDC implementation. For 

MDC implementation having 16-stages (N) and 24-bit (b) 

datapath, we require 840 FA. It is important to note here that 

for the complexity analysis we did not consider the comparator, 

the counter logic and the multiplexers. 

The complexity of an alternate architecture (without 

CORDIC) for MDC implementation can be estimated 

considering – a squaring unit, non-restoring iterative cellular 

square rooter (SQRT) [20], an accumulator (replacing one 

CORDIC module for the root mean square operation) and 3 
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subtractors. Hence, in total requiring 3 squarers, 3 SQRTs, 3 

accumulators and 3 subtractors. For the sake of convenience, 2 

squaring units can be considered as 1 multiplier and an 

accumulator block can be considered as a FA (registers 

associated with the accumulator are not considered, accounting 

only for arithmetic operations).  

A conventional array multiplier (CAM) requires b(b - 2) FA, 

b half adders (HA) and b2 AND gates. Considering, 2 HA as 1 

FA and 4 AND gates as 1 FA (due to area and transistor count), 

the total gate count of a CAM can be deduced as (1.25b2 – 1.5b) 

FA. Hence, for 3 squaring units (1.5 CAM), Amult = 1.5(1.25b2 

– 1.5b) FA, where (A*) represents the total number of FA’s in 

each circuit. A b-bit SQRT requires 0.125×b(b + 6) FA and 

similar number of XOR gates. Therefore, the total FA count for 

3 SQRTs, (considering 2 XOR gates as 1 FA) is ASQRT = 

(0.1875b2 + 1.125b) FA. Lastly, Aadd/sub = 6b FA (3 subtractors 

+ 3 accumulators) are required. Therefore, the total gate count 

for the MDC computation using an alternate architecture in 

terms of FA count is (Amult + ASQRT + Aadd/sub) = (2.0625b2 + 

4.875b) FA. Hence, for a 24-bit datapath, we require 1305 FA 

which is more than the CORDIC based implementation. 

It is worthwhile to recollect here that the CORDIC based 

feature extraction [17] engine requires 4110 FA (for 16-stage 

CORDIC and 24-bit datapath) whereas the non-CORDIC 

feature extractor requires 6828 FA. Hence, even if the circuit 

elements from the non-CORDIC feature extractor are re-used 

for its equivalent MDC implementation, a unified CORDIC 

based feature extraction engine and its equivalent MDC 

implementation will incur low-complexity and result in an 

optimized design.  

Another important factor is the effect of normalization. The 

clusters are formed in a multi-dimensional feature space where 

the cluster analysis takes place on the features extracted from 

the training data. These features are linearly normalized with 

respect to their minimum and maximum value. Therefore, the 

cluster centroids are represented by the normalised values (i.e. 

in the numeric range of 0 - 1) of the selected features. However, 

during the testing phase, the relevant features are extracted from 

the corresponding sensor data using the feature extraction 

engine and used by the MDC lie in different numeric ranges 

compared to the respective centroids. Therefore, prior to 

computing the Euclidean distance, the centroids are un-

normalized and used as inputs to the RTL module. 

IV. IMPLEMENTATION AND EVALUATION 

A. Verification 

The architecture for feature extraction and MDC was coded 

using Verilog as HDL with a target ASIC implementation. It is 

important to note here that although the input data is 16-bits 

wide, the datapath width in the CORDIC-based feature 

extraction engine and the MDC module is 24-bits. In order to 

achieve the desired 16-bit accuracy a 22-bit word-length should 

be selected [21], according to the formulation (N + Log2N + 2) 

and atleast 16 iterations. Therefore, to obtain a high accuracy a 

24-bit CORDIC was used for this implementation. The design 

was functionally verified using data of 4 healthy subjects and 4 

stroke survivors. For each healthy subject, there were 80 test 

vectors (4 trials of ‘making-cup-of-tea’, having 20 movements 

in each trial). Similarly, for each stroke survivor there were 40 

test vectors (2 trials of ‘making-cup-of-tea’). The results using 

the accelerometer and the gyroscope data are shown in Tables 

IV-V for healthy subjects and stroke survivors. The software 

evaluation results (Matlab) [8] are presented for comparison.   
 

TABLE IV 
RECOGNITION SENSITIVITIES FOR ARM MOVEMENTS OF HEALTHY SUBJECTS 

Subject Features 
Sensitivities (%) Overall accuracy 

(%) A B C 

RTL Evaluation 

Accelerometer 

Subject1 11 100 100 75 94 

Subject2 2 85 55 85 78 

Subject3 7 90 90 90 90 

Subject4 23 85 90 70 83 

   Gyroscope   

Subject1 10 50 80 100 70 

Subject2 27 70 80 70 73 

Subject3 18 80 85 90 84 

Subject4 20 40 90 75 61 

Software Evaluation [8] 

Accelerometer 

Subject1 11 100 100 100 100 

Subject2 2 80 5 80 61 

Subject3 7 95 100 90 95 

Subject4 23 95 100 85 94 

   Gyroscope   

Subject1 10 93 90 100 94 

Subject2 27 100 80 60 85 

Subject3 18 90 90 100 93 

Subject4 20 30 95 85 60 

 

TABLE V 
RECOGNITION SENSITIVITIES FOR ARM MOVEMENTS OF STROKE SURVIVORS 

Subject Features 
Sensitivities (%) Overall accuracy 

(%) A B C 

RTL Evaluation 

Accelerometer 

Subject1 19 70 80 100 80 

Subject2 19 85 20 100 73 

Subject3 21 80 90 30 70 

Subject4 8 20 80 50 43 

   Gyroscope   

Subject1 8 80 60 80 75 

Subject2 10 60 90 50 65 

Subject3 24 80 20 70 63 

Subject4 30 50 50 0 38 

Software Evaluation [8]  

Accelerometer 

Subject1 19 80 90 100 88 

Subject2 19 90 20 100 75 

Subject3 21 95 100 20 78 

Subject4 8 10 80 60 40 

   Gyroscope   

Subject1 8 90 50 100 83 

Subject2 10 60 100 60 70 

Subject3 24 85 30 80 70 

Subject4 30 60 40 0 40 
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Stroke survivors 1 and 4 represent two extreme conditions 

(late and early stage of recovery after-stroke) as evaluated by 

respective clinicians. Overall, the results of the RTL simulation 

are on the lower side when compared to the software evaluation. 

The average difference in accuracy between RTL and software 

simulation is 1.25% and 11% using accelerometer and 

gyroscope data respectively for healthy subjects. Similarly, for 

stroke survivors, the average difference in accuracy is 3.75% 

and 5.5% for the two sensor types respectively. The difference 

in the results (decrease in individual movement sensitivities and 

the overall accuracy) of the RTL implementation and software 

can be attributed to the following factors: 
 

(1) accumulation of truncation error, a common phenomenon in 

fixed-point arithmetic operations and occurs due to the 

implemented logic. Moreover, the software implementation 

(Matlab) presents the results in a 64-bit operating system 

whereas the CORDIC-based RTL module has a datapath width 

of 24-bits. Since, in this implementation, to achieve 16-bit 

accuracy, 16 iterations are used and hence this recursive 

CORDIC operation results in error accumulation to a higher 

degree. Hence for the MDC, where a data point is being 

classified based on a distance value, this accumulated error 

could result in misclassification. On the other hand, healthy 

subject2, requiring the computation of minimum number of 

features, viz. 2, is an exception as the overall accuracy achieved 

is higher with RTL. The accumulated error in this case (for 

computing the two required features – standard deviation and 

root mean square computed on the y-axis data [8]) could have 

created a bias for the distance computation of the test data w.r.t 

the centroids, thereby affecting the classification results 

yielding a higher accuracy. This effect is also observed to a less 

extent for the following subject/action/sensor combinations: 

healthy – 2/C/gyroscope; 4/A/gyroscope and stroke - 

1/B/gyroscope; 3/C/accelerometer; 4/A/accelerometer and 

4/B/gyroscope. As further illustration, variation of recognition 

accuracies w.r.t features for healthy subject2 with 

accelerometer data (cf. Fig. 7), shows that using more features 

(beyond 2) does not result in successful cluster formations 

(blank spaces) or improved accuracy. 
 

 
Fig. 7. Variation in accuracy with number of features for healthy Subject2 with 

accelerometer data during software evaluation [8]. 
 

 

(2) the difference of accuracy is further evident especially while 

computing a higher number of features. There are more number 

of test datasets for healthy subjects as compared to the stroke 

survivors and the high number of features computed (e.g. 30 for 

stroke survivor4 further contributes towards the mathematical 

error. It is evident from the feature computation engine [17] that 

the average error may become significant for the features 

particularly involving higher-order terms (e.g. kurtosis, 

skewness) even when the accuracy of the CORDIC itself is set 

high. Hence, to achieve higher accuracy, adjusting the datapath 

width for the MAC unit may be necessary depending on error 

tolerance of the application. A ranked list of the associated 

features for each subject chosen during cluster formation as a 

result of cross-validation is presented in [8]. The number of 

features selected for each subject represent the optimal number 

of top ranked features which resulted in successful cluster 

formation and highest cross-validation accuracies on the 

training dataset.  
 

(3) in this implementation, a signal length of 256 data samples 

has been considered which can be represented on a dyadic scale 

and therefore any multiplication or division operation can be 

implemented through a shift. Hence, for testing with data 

already collected during the experimental protocol, an 

interpolation/extrapolation module in Matlab was implemented 

to pre-process the test data to restrict the sample size to 256 as 

opposed to the software implementation.  
 

(4) lastly, in this design we have not filtered the raw sensor data 

(pre-processing step [8]), to keep the computations at a minimal 

level. Here, our focus was mainly on the implementation of the 

MDC and hence a filter block could be added to improve 

performance. 
 

The achieved results, for both the healthy subjects (average 

accuracy of 86% and 72% with accelerometer and gyroscope 

respectively) and the stroke survivors (average accuracy of 67% 

and 60% with accelerometer and gyroscope respectively) can 

be considered favorable because the methodology was tested to 

detect activities performed in out-of-laboratory, semi-

naturalistic scenario, having a significant degree of variability. 

The accuracy rates reported for the stroke survivors are 

acceptable, according to clinicians, since it provides a gross 

measure of impaired arm use. It is important to mention here 

that a misclassification of a performed movement may not have 

significant clinical impact because in this application (as 

opposed to other clinically critical remote monitoring 

applications, e.g. cardiovascular disease) the final decision on 

the rehabilitation measure and the corresponding prescription 

lies with the jurisdiction of the respective clinicians. This 

methodology could help to augment the clinical findings and 

provide a quantitative measure on the rehabilitation progress of 

patients over time outside the clinical environment. In view of 

the RTL simulation results, the conclusions drawn in [8] are still 

evident – 1) variability in data patterns due to poor repeatability 

and 2) considering more than one sensor type for specific cases 

can improve overall detection accuracy. This can be observed 

particularly for healthy subject2, where although the overall 

accuracy with accelerometer is 78% the sensitivity for Action B 

is low (55%), which is significantly improved when considering 

the gyroscope (80%). Similar trends are observed for healthy 

subject4 with Action A using gyroscope (40%), which can be 

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of Features

O
v
e
ra

ll
 A

c
c
u

ra
c
y
 (

%
)



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS 

detected successfully when considering the accelerometer data 

(85%). Considering more than one sensor type could be 

beneficial for stroke survivors as can be seen for the following 

subject/action combinations – 2/C (gyroscope – 50%, 

accelerometer – 100%); 3/C (accelerometer – 30%, gyroscope 

– 70%). For subject 4, the overall accuracy with both sensors 

are not high, although it can be observed that Action A can be 

recognized by 60% (gyroscope), Action B by 80% and Action C 

by 50% (accelerometer). The low overall accuracy can be 

attributed to the fact that Subject 4 was at an early stage of 

rehabilitation and the impaired arm being tested was not the 

naturally dominant arm thereby resulting in poor repeatability. 

The performance of the proposed clustering-MDC 

methodology was further compared against two well-known 

supervised learning algorithms – linear discriminant analysis 

(LDA) and support vector machines (SVM). LDA was chosen 

in view of its low-computational complexity and SVM known 

for producing high classification accuracy [22]. The average 

overall accuracy using LDA for 4 healthy subjects was 45% 

using accelerometer data and 53% using gyroscope data. 

Correspondingly for 4 stroke survivors, the average accuracy 

was 49% and 46% using accelerometer and gyroscope 

respectively. Similarly, using SVM, for the healthy subjects, the 

average accuracy was 54% and 68% using accelerometer and 

gyroscope respectively whereas for stroke survivors, the results 

were 55% and 50% using accelerometer and gyroscope data. 

Across all test cases, none of the subjects had all three 

movements classified with a sensitivity higher than 60% using 

either of the learning algorithms, thereby proving the 

effectiveness of our proposed methodology [8].  

B. Synthesis and Layout 

The design was synthesized using STMicroelectronics 130-

nm technology library with a supply voltage of 1.08V and 

frequency of 50 Hz, where the synthesized design occupied an 

area of 242K (2-input NAND gate equivalent) and the dynamic 

power consumed was 5.3 nW. The design was also synthesized 

and functionally verified at a higher clock frequency of 20 

MHz. The implementation of the feature extraction engine takes 

a maximum of 3n clock cycles [17] (where n is the number of 

input data samples), if it has to compute the all the 10 features. 

The MDC design takes (9n + 31) clock cycles in the worst case, 

considering it has to compute all the 30 features from the testing 

dataset and compute the Euclidean distance to the three cluster 

centroids. To estimate the total chip area a layout of the 

synthesized design was performed using the Cadence 

Encounter tool as shown in Fig. 8. The total area of the chip was 

estimated as 2.221 mm × 2.215 mm, having 25 signal pads and 

8 power/ground pads. The 16-bit input/output port is used for: 

1) i/p - three sensor data streams (AccX, AccY, AccZ or GyroX, 

GyroY, GyroZ) sequentially; 2) i/p - three centroids; 3) i/p - 30-

bit feature-code split into - lower 16-bits followed by the higher 

14-bits (padded with two zeroes) and 4) o/p - 2-bit (padded with 

14 zeroes) signifying the predicted cluster label. 
 

 
Fig. 8. Core chip layout with all pin assignments. 

C. System Demonstrator using FPGA 

The arm movement recognition framework (cf. section II) 

has been demonstrated as a prototype system using an Altera 

DE4 FPGA in conjunction with a wrist-worn inertial sensor. 

The hardware setup for real-time implementation is shown in 

Fig. 9 where the data from the sensors (tri-axial accelerometers) 

is transmitted to a host computer (i.e. PC) through Bluetooth. 

The raw data is converted to physical values and transmitted to 

the FPGA through RS232. The synthesized MDC HDL was 

integrated with RTL implementation of the RS232 receiver to 

complete the hardware functionality on the FPGA.  
 

 
Fig. 9. FPGA-based demonstrator for real-time arm movement classification 

with movement data collected from the sensor attached to the arm. 

 

The framework was validated with healthy subject2 

performing one trial of ‘making-cup-of-tea’, where 18 out of the 

20 movements were successfully detected. The three centroids 

are stored as binary data in the memory by using the 

megafunction in Quartus which allows the creation of a module 

that takes as input, memory initialization (MIF) files [23] and 

stores the data into the ROM of the FPGA. The feature code is 

sent using the synthesizable ‘readmemb’ function. The FPGA 

operates at a much higher frequency (780 KHz obtained 

through a clock-divider module) compared to the streaming 

sensor operating at 50 Hz. The sensor data was communicated 

to the host PC through Bluetooth using the application 
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ShimmerConnect [15]. The serial port control [24] was 

achieved through the .NET 4.5 framework and an application 

software (written in C#). The baud rate for transmitting the data 

from the PC to the FPGA was set to 4800 bits per second, where 

each set of data was of 64-bits (16-bits for each X, Y, Z axes 

and header code). The start of transmission was indicated by the 

header code which helps the receiver determine the correct axes 

value. A baud tick generator on the FPGA is used for interface 

synchronization which produces a pulse based on a counter 

logic. The classified arm movements are displayed on a 7-

segment display in real-time (Action A – 1, B – 2 and C – 3). 

The synthesized design uses 40,753 logic units and 13,184 bits 

of memory (for storing the centroid and input tri-axial data). 

The prototype takes 515 clock cycles (≈ 0.6 ms) to produce the 

desired output since it computes two features for healthy 

subject2 (std takes 2n = 512 clock cycles) from the test data. 

For this demonstrator, we have used data from only one sensor 

type (i.e. accelerometers). However, this can be easily extended 

to incorporate the gyroscopes and the whole operation of 

‘feature extraction-MDC’ can be independently performed on 

both sets of data to obtain the desired arm movement 

classification and these results can be analysed in line with the 

conclusions drawn in [8] and also in section IV-A where 

considering more than one sensor type has been advocated to 

ascertain impaired arm usage and rehabilitation progress. 

V. RELATED WORK 

Real-time AR in body sensor networks is a challenging task 

and energy efficiency has received particular attention in recent 

years from the pervasive computing research community for 

ways to extend the battery life of sensors aimed at long-term 

monitoring. With the advent of context-aware processing, 

energy efficient processing on sensor nodes and mobile devices 

has taken precedence. A few recent papers [25-27] have 

discussed the need for reducing energy incurred on 

communication, with [27] showing the importance of on-node 

sensor processing over an off-node scheme saving up to 40% of 

energy trading off accuracy. Some of the recent online AR 

methods have looked into this aspect by processing on the 

sensors (e.g. low-power MSP430 microcontroller) or mobile 

phones (e.g. android) [27]. Another recent work [28] takes a 

hierarchical approach whereby they recognize hand gestures on 

the accelerometer sensor node using a Java based simulator but 

use this information to classify high-level activities on a mobile 

device by transmitting data through a wireless link. Apart from 

reducing communication (through on-node data processing and 

advocating light-weight algorithms), the focus has been on 

issues such as deactivation of power hungry sensors [29] (e.g. 

gyroscopes) and adaptive sampling rate [30]. Hence, to the best 

of our knowledge, this is the first work which has focused on 

an optimized, low-complexity algorithm-to-architecture 

mapping aimed towards a hardware/accelerator based design to 

be used within resource constrained senor nodes. Further 

energy saving design optimisations such as dynamic power 

management (for e.g. shutting down feature extraction engine 

during MDC) and clock gating techniques can be incorporated 

to enhance the proposed low-complexity implementation. 

VI. DISCUSSION 

In this paper, we have presented the architecture and 

implementation of a low-complexity framework for arm 

movement classification in an out-of-laboratory environment 

using body-worn inertial sensors. A completely personalized 

approach has been presented and the results obtained have been 

encouraging and show that these particular arm movements can 

be reliably detected with stroke survivors exhibiting moderate 

levels of involuntary tremor in their movements. The 

framework was further demonstrated as a proof-of-concept real-

time arm movement recognition system. 

One of the key features in such a system is the need for 

adaptability which caters to the change in movement patterns 

over time pertaining to each patient thereby reflecting the 

improvement in their motor functionality as a result of the 

undergoing rehabilitation protocol. The demonstrated 

methodology can detect the change in movement patterns over 

a longitudinal scale by two means: 1) with decreasing 

movement recognition rates over time – due to the differing 

patterns of the daily life movements with respect to the pre-

computed cluster centroids in the selected feature space and 2) 

clinical intervention – clinicians observe a considerable change 

in the movements performed by the patients in comparison to 

their previous assessment (the time of obtaining the training 

data for the clusters). In such circumstances, the patient’s 

training data would be collected periodically and the cluster 

centroids and the associated features (new selected feature set) 

can be re-computed to reflect the changing movement patterns. 

The new cluster centroids and feature set will be subject-

specific due to the inter-subject variability inherent within 

movement profiles, variation in the rehabilitation profile and 

the associated functional ability of each individual subject. This 

information could be further used by the MDC to recognize 

movements performed in daily life. Hence, we plan to carry out 

a longitudinal study in the near future to demonstrate the 

methodology for indicating rehabilitation progress. 

In view of the designed architecture, there are a few 

fundamental factors which can be considered in future designs. 

First, the size of the register bank to store the incoming data 

samples from the sensors has been fixed at 256, representing 5 

seconds of kinematic data (sensor streaming @50 Hz). This 

time duration is suitable for the healthy subjects for the 

completion of the elementary arm movements (actions) chosen 

for the experimental protocol. For patients, depending on the 

level of dexterity, the time taken to perform the movements 

might be more especially when they are in their initial stage of 

rehabilitation. The next available window size, in view of 

representing it in dyadic scale is 512 implying 10 seconds and 

would suit the requirements of patients needing more time to 

complete the actions. An alternate approach would be to reduce 

the sampling frequency in the range of 20~25 Hz which has also 

been considered to be suitable in human activity recognition 

[9][10]. Second, here we consider the Euclidean distance over 

the Mahalanobis distance [8] for the MDC as a proof-of-concept 

implementation since the later increases the complexity 

involved in computing the covariance matrix. Third, a 

fundamental exploration in terms of error accumulation and 
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propagation needs to be carried out and accordingly the 

datapath adjustment for ASIC implementation needs to be done 

in view of the target accuracy. 

This design can be implemented as an ASIC chip and 

embedded on a sensor platform along with other processing 

components like A/D converter, filtering circuit, memory, 

power source, to be used for real-time AR. An ASIC would 

provide leverage in terms of area and power as compared to 

state-of-the-art microcontroller/mobile-platform based designs, 

aiding the development of a point-of-care monitoring system. 

This methodology could be extended for lower limb monitoring 

and used with patients suffering from other neurodegenerative 

disorders exhibiting movement profiles which are less fluidic in 

nature. Real-time detection of arm movements can be useful in 

a wide array of applications in the field of sports, human 

computer interaction or other treatments of arm dexterity. 

Therefore, the developed system can be used to track 

movements of required body segments in these respective fields 

outside a controlled environment. 
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Novelty Statement – The work in this paper proposes a novel low-

complexity architecture, designed for arm movement detection, based on the 

algorithm proposed in [8]. For the design, implementation and the FPGA-based 

prototype demonstrator, the CORDIC-based feature extraction engine proposed 

in [17] has been re-used. An FPGA-based demonstrator was published in our 

previous work (10.1109/ISCAS.2015.7168746), however it is based on a 

different algorithm, using a different board. Hence, as highlighted, the 

fundamental contribution – offline-online design framework and system 

demonstrator for movement detection using the MDC architecture is completely 

novel and unreported. 
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