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Adaptive Design of Experiments for Efficient and Accurate 
Estimation of Aerodynamic Loads 

Abstract 

Purpose – The purpose of this paper is to document an efficient and accurate approach to generate aerodynamic tables 

using computational fluid dynamics. This is demonstrated in the context of a concept transport aircraft model. 

Design/methodology/approach – Two design of experiments algorithms in combination with surrogate modelling are 

investigated. An adaptive algorithm is compared to an industry-standard algorithm used as benchmark. Numerical 

experiments are obtained solving the Reynolds-averaged Navier-Stokes equations on a large computational grid. 

Findings – This study demonstrates that a surrogate model built upon an adaptive design of experiments strategy 

achieves a higher prediction capability than that built upon a traditional strategy. This is quantified in terms of the sum of 

the squared error between the surrogate model predictions and the computational fluid dynamics results. The error metric 

is reduced by about one order of magnitude compared to the traditional approach. 

Practical implications – This work lays the ground to obtain more realistic aerodynamic predictions earlier in the aircraft 

design process at manageable costs, improving the design solution and reducing risks. This may be equally applied in the 

analysis of other complex and non-linear engineering phenomena. 

Originality/value – This work explores the potential benefits of an adaptive design of experiment algorithm within a 

prototype working environment, whereby the maximum number of experiments is limited and a large parameter space is 

investigated. 

 

Keywords Design of Experiments; Adaptive Sampling; Surrogate Model; Computational Fluid Dynamics; Transonic 
Cruiser; Turbulence Model. 
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Introduction 

Accurate predictions of aerodynamic loads are generally needed as early as possible during the aircraft design process. 

For a number of flight conditions prescribed by certification authorities, aerodynamic loads form a set of critical loads that 

are used to size aircraft structural components (Pettit, 2004). It is critical to limit the uncertainty associated with critical 

aerodynamic loads because: i) if the critical loads are underestimated, as revealed following flight test, then expensive re-

design is often required incurring the costs and penalties arising from programme delay; and ii) if the critical loads are 

overestimated, the aircraft will be heavier than needed with degraded performances. 



Traditionally, the aircraft design process relies heavily on semi-empirical relations and linear assumptions. The reason for 

this is that, at the early stage of the design process, designers explore a large parameter space resulting in a large 

number of numerical evaluations (Knill, 1999). Speed requirements dominate over accuracy. As the design parameters 

are tightened and addressed in increasing detail, the need for improved realism of predictions calls for higher fidelity 

aerodynamic models. Despite the availability of high performance computing (HPC) facilities, the routine use of 

computational fluid dynamics (CFD) is yet restricted to a pre-defined (small) number of configurations. Two remarkable 

studies are those of (Rogers, 2003) at NASA Ames and of (Rhew, 2007) at NASA Langley. The reasons that linear 

methods have cornered the industrial aircraft design process are two-fold. First, linear methods are corrected to account 

for un-modelled flow physics. Corrections have been calibrated using a number of previous aircraft configurations, and 

high confidence exists. The second reason is that linear methods are fast enough for parametric searches, and their 

analysis setup is straightforward practically building on a simplified description of the lifting surfaces. 

The work presented in this paper addresses the problem to efficiently use CFD as source of the aerodynamic predictions. 

For a representative parameter space, the problem consists of maximising the information extracted from a limited 

number of CFD analysis. Several techniques are nowadays available in order to design the virtual experimental 

campaigns in an efficient and effective way. These include: i) orthogonal design techniques, e.g. fractional, full-factorial 

and face-centred central-composite design (Knill, 1999), in which the design points are chosen deterministically before 

running the virtual experiments; and ii) random methods, e.g. Monte Carlo sampling (Giunta, 2003) and Latin Hypercube 

(LH) (McKay, 1979), where the location of the design points is chosen randomly. The main limitation associated with 

traditional orthogonal and random design of experiments (DOE) techniques lies in the fact that the samples to be 

evaluated are chosen all at the same time, based only on information that is available before running the numerical 

explorative campaign. Since the knowledge available before running the DOE is often very limited, this approach makes 

impossible to know in advance the optimal number of samples and the location of the design points that are required in 

order to achieve a given accuracy in the response surface model built upon the results of the virtual experiments. A 

possible problem arising in this context is the so-called under-sampling effect, where the number of design points and 

their locations do not provide sufficient information to build a response surface function with the desired level of accuracy 

(Giunta, 2003). This behaviour is typically observed when design points are not distributed with sufficient density in those 

regions of the parameter space where the output model is characterised by a pronounced non-linearity. The opposite 

effect, named over-sampling, is encountered when the level of accuracy associated with the response surface model 

could have been achieved by running a smaller number of experiments (Crombecq, 2009). This happens, for example, 

when the distribution of the design points is too dense and leads to unnecessary and avoidable computational burdens. 



A feasible way to mitigate the appearance of these problems consists of adopting a more advanced algorithm, such as the 

adaptive DOE (ADOE) (Akram, 2016). This a self-learning algorithm which makes use of an iterative procedure and is 

capable to: i) identify from previous runs the regions of the design space where the output model is characterised by 

stronger non-linearities; and ii) select a new batch of design points by maximising the (expected) information content 

associated with this new set of simulations. Previous applications of ADOE techniques to CFD problems can be found in 

(Da Ronch, 2011), (Ghoreyshi, 2013) and (Mackman, 2013). In this work, we propose to employ an ADOE methodology 

to identify the locations of CFD analyses that provide the best approximation of the objective function. The test case is for 

a complete aircraft configuration which is run on the HPC of the University of Southampton1.  

Test Case 

The test case is for the transonic cruiser (TCR) model that was conceived during the Simulating Aircraft Stability and 

Control Characteristics for Use in Conceptual Design (SimSAC) project (Rizzi, 2011). The TCR is a conceptual design of 

a civil transport aircraft operating at a target Mach number of 0.97, featuring low relaxed static stability boundaries, and 

low manoeuvre and trim drag. The initial concept proposed by SAAB was for a conventional tailed configuration, which 

revealed the need for a large horizontal tail deflection affecting significantly trim drag. The evolution from the initial 

geometry to the final configuration, which includes an all-moving canard for longitudinal control, may be found in (Rizzi, 

2011b). 

A wind tunnel model of the TCR aircraft was built in a 1:40 scale compared to the full scale aircraft. A schematic of the 

TCR design and the sign convention adopted in this work are shown in Figure 1. The apex positions of the canard and 

main wing are, respectively, at 12 and 26% of the fuselage length. The close proximity of the canard with the main wing 

originates strong interference effects of the flow past the canard impinging on the main wing.  

                                                      
1 IRIDIS at the University of Southampton is in the World's Top500 ranking and is the largest HPC facility in the U.K. after 

the national supercomputer. In total, it consists of 12320 processor-cores providing 250 TFlops peak. 



Figure 1 TCR wind tunnel model (Khrabrov, 2010); (Reproduced with permission) 

 

(a) TCR model top view (dimensions in millimetres) 

 

 

 

(b) Body frame of reference 

Numerical analyses presented in this work were obtained for the TCR wind tunnel model geometry. Reference values are 

summarised in Table 1. The geometry features a symmetric aerofoil for the canard, and a cambered one for the main 

wing. The moment reference point is measured from the aircraft nose, positive downstream. 

Table 1 Reference values of the TCR wind tunnel model 

Parameter Value 

Model scale 1:40 

Reference area [m2] 0.3056 

Wing span [m] 1.12 

Mean aerodynamic chord [m] 0.2943 

Moment reference point [m] 0.87475 

Fuselage length [m] 1.597 

 

Experimental Investigations 

Experimental investigations of the steady and unsteady aerodynamic characteristics at low speed were performed in the 

T-103 wind tunnel facility at the Central Aerohydrodynamic Institute (TsAGI), see Figure 2. The wind tunnel has an open 

jet working section of the continuous type with an elliptical cross section, 4.0 m x 2.33 m.  



Figure 2 TCR wind tunnel model tested in TsAGI (Khrabrov, 2010); (a) large amplitude pitch oscillations dynamic rig, and 

(b) 90 deg bank angle for static aerodynamic characteristics; (Reproduced with permission) 

 

(a) Canard-off configuration 

 

(b) Canard-on configuration 

Several configurations of the wind tunnel model were tested to evaluate the influence of single components (vertical tail 

and canard wing) on the overall performance. The experimental measurements included the investigation of the static 

aerodynamic characteristics, unsteady aerodynamic derivatives, and unsteady non-linear aerodynamic characteristics 

during large amplitude oscillations. In particular, static measurements were carried out at a wind tunnel flow velocity of 

40 m/s in a wide range of angles of attack (-10.0 deg ≤ α ≤ 40.0 deg, with Δα = 2.0 deg) and sideslip angles (-16.0 deg ≤ β 

≤ 16.0 deg, with Δβ = 2.0 deg). The full dataset of wind tunnel measurements is described in (Khrabrov, 2011), which also 

discusses the data processing technique. No information on measurement accuracy and uncertainty are, however, given. 

It is worth noting that no transition tripping was installed in the wind tunnel model, and that the leading edge of all lifting 

surfaces is round. As discussed below, the combination of these two aspects makes the prediction of the TCR 

aerodynamic characteristics challenging from a numerical standpoint. It is well-known that the vortical flow behaviour 

around delta wings with a round leading edge is significantly different from that around wings with a sharp leading edge 

(Vallespin, 2011). The separation line is fixed for a sharp leading edge, but depends highly on Reynolds number, surface 

roughness, leading edge bluntness and sweep angle for a round leading edge. Wind tunnel tests were run at a freestream 

speed of 40 m/s, which corresponds at sea level to a Mach number of 0.117 and a Reynolds number of 0.778 million 

based on the mean aerodynamic chord of the wind tunnel model. 

Numerical Investigations 

Numerical investigations reported in (Da Ronch, 2011), (Da Ronch, 2012) and (Mialon, 2011) focussed at comparing 

steady and unsteady predictions of the aerodynamic loads with available experimental measurements.  (Da Ronch, 2012) 

employed a modified version of the k-ω turbulence model and a multi-block structured grid with 8.5 million grid points. 



Predictions for steady results were first validated. The attention was then addressed for unsteady aerodynamics. 

Numerical results of aerodynamic derivatives for small oscillation amplitudes were presented, followed by results for large 

amplitude motions. Dependencies of dynamic characteristics on mean angle of attack and reduced frequency were 

investigated. Computations were for the wind tunnel model with vertical tail and un-deflected canard wing. To the authors' 

knowledge, this is the only original work that performed unsteady time domain calculations based on Reynolds-averaged 

Navier-Stokes (RANS) modelling to extract dynamic derivatives. In (Mialon, 2011), experimental and numerical research 

activities for the determination of dynamic derivatives were reviewed for two aircraft configurations, including the TCR 

model. In addition to the unsteady RANS (URANS) results of (Da Ronch, 2012), the reference included results from linear 

aerodynamic models based on a panel method. (Da Ronch, 2011) discussed current state-of-the-art methods to generate 

aerodynamic tables for flight simulation. For the TCR model, the ability to combine aerodynamic databases of different 

fidelity levels into a single database was demonstrated. In total, 270 CFD simulations were run, and combined with linear 

aerodynamics that provided quantitative trends of the aerodynamic loads across the flight envelope at very low 

computational cost. 

Computational Fluid Dynamics Solver 

The flow solver used in this work is Ansys Fluent (version 14.5). The reason to use a commercial solver, opposed to 

previous work done by the first author with research codes, is to demonstrate the seamless integration of the ADOE 

methodology with a well-established, widely-available software tool. We hope this demonstration will facilitate the adoption 

of the ADOE methodology in the analysis of other complex and non-linear engineering phenomena.  

The low Reynolds number of the operating wind tunnel conditions (M = 0.117 and Re = 0.778·106) and the blunt leading 

edge geometry of the TCR wind tunnel model make the prediction of the resulting turbulent flow difficult, especially for 

what concerns the flow separation near the wing leading edge. No transition tripping was used in the wind tunnel model. 

Without other information, all simulations herein reported were run assuming fully turbulent flow. The one-equation 

Spalart-Allmaras turbulence model was used in this study. The model provides the turbulent viscosity to be added to the 

viscous terms of the Navier-Stokes equations and mimics the effects of the inertial turbulent transport on the mean flow. 

The details of the turbulence model can be found in (Spalart, 1992). All computations were run in double precision. 

An unstructured grid for the half-model configuration was generated with 10 million points. Jobs were run on IRIDIS on 32 

processes and about 10 hours of wall clock time. The flow field has a semi-spherical shape with the far-field located on 

average at 170 times the mean aerodynamic chord from the aircraft geometry. This ensures avoiding the flow field 

disturbances propagate beyond the far-field boundary. Boundary conditions were set to symmetry plane on the vertical 

plane of symmetry, and to no-slip adiabatic wall on the aircraft surface. At the inlet, the pressure gradient was set to zero 



while the flow velocity set to the free-stream conditions. The grid, show in Figure 3, was chosen after a grid convergence 

study was carried out, demonstrating independence of the results obtained with the current grid size. 

Figure 3 Surface grid of the TCR wind tunnel model 

 

(a) Canard wing tip 

 

(b) Kink on main wing 

 

In all cases, computed results are for zero side-slip angle (β = 0.0 deg) and the influence of the rear sting was ignored. 

The moment reference point was set at 54.78% of the fuselage length from the foremost point. 

Design of Experiments 

For the size of the computational grid used in this work, a well-converged simulation is computed at high computing times. 

The generation of the aerodynamic database across the flight envelope adopts an ADOE technique, which is detailed in 

the following. A review of the LH method is also given, as it is used as benchmark in order to assess the improvements 

achieved by the ADOE technique compared with a more traditional, industry-standard DOE approach. 

Adaptive Design of Experiments 

The ADOE is an iterative DOE technique in which the data produced during previous iterations are analysed in order to 

distribute the design points of the next iteration in areas of the parameters space considered of interest. The ADOE is a 

self-learning algorithm that is driven by two opposite factors: space-learning and feature-learning. Space-learning is the 

act of exploring the domain to find areas of the design space that have not yet been explored. The main goal of space 

learning is to fill the design space uniformly, avoiding the need of any information about the response of the model. 

maximin sampling (Johnson, 1990) is the technique implemented to support the space-learning aspect of our ADOE 

algorithm. Conversely, the goal of feature-learning is to add new samples in areas of the domain that have already been 



identified as interesting for some reason. Feature-learning is then used to improve the accuracy of the surrogates in given 

areas that can be difficult to model efficiently (discontinuities, steep slopes, etc.). In our implementation of the ADOE, the 

feature-learning aspect provides indication of where the new set of points should be distributed and is supported by two 

different techniques developed in-house: Model Error Sampling (MES) and Non-Linearity Search (NLS).  

With MES, multiple surrogate models are built over the domain. We consider Kriging interpolating models together with 

linear, cubic and thin-plate Radial Basis Functions (RBF). The areas of major interest are identified as those where the 

variance between these surrogate models is higher. The NLS algorithm entails the computation of a hessian 

approximation at a given number of control points within the design space by means of the best interpolating model 

identified up to the given iteration, which is calculated analytically or numerically, depending on the mathematical 

formulation of the response model. The areas of major interest are then identified by evaluating the misfit between the 

simulated output and the output estimated by means of the local linear approximation at nearby samples. 

A balanced strategy, combining space- and feature-learning, is adopted in the current ADOE methodology whereby the 

locations of 50% of the points to be selected for a new iteration is chosen according to the space-learning strategy while 

the remaining 50% of the design points is distributed on the basis of the feature-learning algorithms. The ADOE strategy, 

illustrated in Figure 4, consists of the following steps: 

1. Initialisation. An initial set of samples is drawn according to a traditional (non-adaptive) DOE technique. In this 

work, this is performed by adopting a LH scheme. 

2. Build surrogate models. A set of surrogate models is built according to the available simulation results and the 

regions of major interest are identified according to the MES and NLS algorithms. 

3. Adaptive sampling. A new set of design points is chosen according to the information obtained at Step 2, and 

the trade-off strategy between space- and feature-learning that was chosen before running the algorithm. 

4. Check termination criteria. If the termination criteria are not satisfied, a new batch of experiments is run and 

the algorithm restarts from Step 2. Suitable termination criteria may consist of: i) maximum number of model 

evaluation; or ii) accuracy of the surrogate models, measured in terms of misfit between the simulated outputs 

and the output calculated from the surrogate models. In the current implementation, this metric is calculated 

on the basis of an extra set of samples that are used exclusively for this purpose, called “validation set”. 



Figure 4 Schematic of the ADOE framework employed in this work  

 

Similarly to many existing random sampling design schemes, the behaviour of the ADOE algorithm is non-deterministic 

and is influenced by the presence of random components. To assess the robustness of the ADOE algorithm and the 

impact of this inherent randomness on the quality of the results, a suite of analytical test functions (e.g. Ackley, 

Rosenbrock, Goldstein-Price, among others) are considered (Surjanovic and Bingham, 2013). For each of these test 

functions, several runs of the ADOE algorithm were performed by adopting three different values of the random seed and 

considering different number of design points (up to 1,000 points). The quality of the response surface functions built on 

the basis of the outputs calculated at these design points was then assessed by measuring the misfit between the 

response surface model output and the true output at 10,000 validation points, regularly distributed inside the design 

space. To assess the quality of ADOE against a more traditional DOE scheme, the same analysis was performed also by 

considering a LH algorithm. Figure 5 shows the sum of the squared errors (SSE) at the validation points versus the 

number of design points for three runs of ADOE and LH performed with different seed numbers. The results shown in 

Figure 5 were obtained for the Ackley test function. It was found that: i) the impact of the random components of the 

ADOE algorithm on the quality of the sampling scheme is negligible; and ii) the relative improvement of ADOE with 

respect to LH, measured in terms of the SSE metric, is robust. Similar findings were obtained for other types of test 

functions, not reported here for conciseness. 



Figure 5 Sum of squared errors (SSE) at 10,000 validation points versus the number of design points for three runs of 

ADOE and LH performed with different seed numbers; the test function is based on the Ackley function 
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Latin Hypercube Design 

The LH design (LHD) is one of the most commonly used random DOE (McKay, 1979). A LHD is constructed by dividing 

the range of each design parameter in n equally probable intervals, n being the number of design points. The design 

points are then randomly chosen in such a way that for each interval there is only one design point (Knill, 1999). This 

selection of design points ensures that: i) each interval is present in the design; and ii) the number of levels is maximised. 

One of the main advantages of LHDs is that it avoids the “collapse problem”, because if one or more of the input factors 

appear to be irrelevant, every point in the design still gives information about the influence of the other factors on the 

response. In this way, each time-consuming computer experiment adds useful information. 

The intervals onto which each input dimension is subdivided may be assigned randomly or according to a custom rule. An 

efficient and effective way to construct a LHD is to assign the intervals in such a way that the resulting design is space-

filling, i.e. the design points are spread out and do not cluster in one portion of the experimental region. In our 

implementation of LHD, we: i) measure the degree of spread of the design points by computing the minimal distance 

between two of its design points; and ii) choose the LHD which provides the maximum value of this metric. This strategy is 

generally referred to as maximin LHD (Johnson, 1990).  

Results 

This section is organised as follows. First, aerodynamic predictions are validated against available experimental data at 

wind tunnel conditions. Then, the proposed ADOE methodology is demonstrated for a prototype flight envelope. 

Validation at Wind Tunnel Flow Conditions 



The validation is carried out at the operating wind tunnel conditions, M = 0.117 and Re = 0.778·106. The free-stream angle 

of attack is varied between -10.0 and 40.0 deg, and the sideslip angle is fixed at β = 0.0 deg. Experimental data are 

available at a step in angle of attack of 2.0 deg, whereas simulations were performed for a smaller increment of 1.0 deg. 

A preliminary study was conducted to ensure the results presented are fully converged. Two flow conditions were chosen, 

at 0.0 and 10.0 deg angle of attack. The independence on the number of inner iterations was assessed comparing the 

average value of aerodynamic coefficients in the last 1,000 iterations at three relevant check points: after 5,000, 7,500, 

and 10,000 iterations. The convergence of the residuals with the number of iterations is shown in Figure 6. The vertical 

lines in the figures indicate the intermediate check points at 5,000 and 7,500 iterations. The normal force and pitch 

moment coefficients, CN and Cm, respectively, computed at 5,000, 7,500, and 10,000 iterations are reported in Table 2. It 

was found that the percent error, computed using the values at 10,000 iterations as reference, is well below one percent 

in all cases. Based on this finding, all simulation results reported herewith were obtained for 5,000 iterations. 

Figure 6 Convergence of the solution residuals at two angles of attack at wind tunnel conditions (M = 0.117, β = 0.0 deg 

and Re = 0.778·106) 

 

(a) α = 0.0 deg 

 

(b) α = 10.0 deg 

 

Table 2 Convergence of the aerodynamic coefficients with the number of iterations at wind tunnel conditions (M = 0.117, 
β = 0.0 deg and Re = 0.778·106) 

 α = 0.0 deg α = 10.0 deg 

Iterations CN Cm CN Cm 

5000 1.120·10-1 -9.110·10-2 6.435·10-1 -2.077·10-1 

7500 1.120·10-1 -9.110·10-2 6.428·10-1 -2.070·10-1 



10000 1.120·10-1 -9.110·10-2 6.427·10-1 -2.069·10-1 

 

The static aerodynamic characteristics are shown in Figure 7. Available wind tunnel measurements, labelled as “Exp 

Data” in figure, suggest that the normal force coefficient has a linear (or quasi-linear) behaviour with the angle of attack up 

to about 20 deg. Above this angle, the curve slope of the force coefficient decreases, until the maximum value of normal 

force coefficient is found at about 38 deg. The pitch moment coefficient has a strong non-linear dependence on the angle 

of attack. Two break points are identified, at about 6 and 20 deg. For small angles of attack, the pitch moment coefficient 

has a negative slope, i.e. nose-down tendency for increasing angle of attack. A first break point is found at about 6 deg, 

where the slope-sign changes to positive. (Mialon, 2011) attributed this to a continuously increasing lift on the canard 

wing, which is located upstream of the moment reference point and causes a nose-up tendency. The lightly unstable 

characteristics, confined between 6 and 20 deg, are then followed by a second break point, which suggests a massive 

flow separation. 

Figure 7 Static aerodynamic characteristics of the TCR wind tunnel model at wind tunnel conditions (M = 0.117, β = 0.0 

deg and Re = 0.778·106) 

 

(a) Normal force coefficient 

 

(b) Pitch moment coefficient 

 

The comparison of the CFD results against wind tunnel measurements is excellent up to about 20 deg, as in Figure 7. 

Aerodynamic characteristics are well captured, including the normal force coefficient curve slope and the non-linear 

dependence of the pitch moment coefficient with the angle of attack. The reference point for the pitch moment coefficient 

is in close proximity with the location of the vortex breakdown on the main wing, which moves upstream for increasing 

angle of attack. Predictions of Cm are therefore very sensitive to the simulated flow features. The agreement indicates that 



the flow physics are simulated correctly with the turbulence model adopted up to about 20 deg. The surface signature and 

structure of the vortices forming over the canard and main wing are shown in Figure 8 for various angles of attack. Above 

α = 20.0 deg, the flow presents massively separated regions that are not modelled properly with a RANS model, requiring 

higher fidelity in the flow modelling as well as resolving the important unsteady effects in the flow (Righi, 2017). 

Figure 8 Flow visualisation using surface pressure distribution (in Pa) and volume stream traces; for visualisation, the 

computational model was mirrored (M = 0.117, β = 0.0 deg and Re = 0.778·106) 

 

(a) α = 0.0 deg 

 

(b) α = 10.0 deg 

 

(c) α = 15.0 deg 

 

(d) α = 20.0 deg 

 

Aerodynamic Characteristics Across the Flight Envelope 

To investigate the capability of the DOE techniques, a prototypical two-dimensional parameter space was generated. Both 

LHD and ADOE provide the capabilities to consider the design space as a continuum. The lower and upper boundaries 

were defined as a function of the Mach number: α ∈ [-10.0; 40.0] deg at M = 0.117, and α ∈ [-5.0; 5.0] deg at M = 0.97. 



The parameter space that is illustrated by the dashed line in Figure 9(a) is similar in size to that of (Rogers, 2003), who 

analysed the aerodynamics of a reusable launch vehicle (for eight Mach numbers, five sideslip angles and eight angles of 

attack) under the NASA’s Space Launch Initiative programme.  

Since the DOE techniques are designed to work on rectangular domains, it is required to: i) sample the design points on a 

canonical square defined within the interval [-1; 1] in both dimensions; and ii) map these points onto the physical domain 

by means of a bi-linear transformation. This is illustrated in Figure 9 for the parameter space of this study. 

Figure 9 Bi-linear transformation mapping physical domain in (a) with canonical domain in (b); the symbols show the 

locations where the calculations are performed for validation purposes 
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(b) Canonical domain 

 

The results obtained by running the two DOE techniques, each composed of 40 design points, are compared. The 

reasons to set a small number of design points, 40 in this case, are two-fold. First, the surrogate model built using the 

LHD will converge to that built using the ADOE for increasing number of design points, while the expected potential 

benefits of the ADOE will be for a small number of design points through an improved convergence rate (recall Figure 5). 

The second reason is that, practically, the maximum number of design points is limited by available hardware resources 

and project timescales. At NASA Langley, for example, the initial plan to analyse more than 1000 geometry configurations 

of a launch abort system, consisting of seven geometric parameters, was strategically reduced to 84 (Rhew, 2007). 



The DOE methods are run using the algorithms implemented in the process integration and simulation framework 

Noesis Optimus (Noesis Solutions, 2015). The software is also used to automate the submission of the CFD 

simulations to the IRIDIS HPC. The ADOE strategy is initialized by calculating the output of a set of 10 experiments that 

are drawn using a LH technique. Then, the iterative procedure depicted in Figure 4 is started, and a new batch of 10 

experiments is launched at each iteration until the total number of 40 experiments is reached. 

The outputs obtained by running the two DOE algorithms are employed to build corresponding analytical surrogate 

models of CN and Cm. In this study, the analysis is focused on one type of response surface model, which is based on 

cubic RBFs. Figure 10 shows the behaviour of the surrogate models obtained from LH and ADOE experiments. It was 

found that the response surfaces obtained for CN are virtually the same for both approaches. This is not unexpected 

because the behaviour of CN on the design variables is almost linear within the domain of interest, and therefore a good 

reconstruction of the system response is provided independently of the locations of the design points. On the contrary, the 

surrogates of Cm have substantial differences and provide distinct predictions of the target quantity, particularly, in 

correspondence to the lower-right corner of the investigated domain (low speed, high angles of attack). These differences 

can be explained by the fact that the design points employed by the ADOE algorithm: i) are more uniformly distributed 

within the domain of interest; and ii) provide a better coverage of the area of the domains that are typically difficult to 

model (corners and boundaries). 

Figure 10 Surrogate response built using a cubic RBF model from the interpolation of the outputs associated with: in (a)-

(b), the 40 LH experiments; and in (c)-(d), the 40 ADOE experiments  
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(a) Normal force coefficient / LH 
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(b) Pitch moment coefficient / LH 
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(c) Normal force coefficient / ADOE 
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(d) Pitch moment coefficient / ADOE 

 

The enhanced capability of the ADOE algorithm with respect to LH to distribute the design points in an intelligent way is 

also reflected in an improved quality of the predictions obtained from the associated surrogate models. To quantify this, an 

additional batch of 61 experiments, see Figure 9(a), were run for validating the quality of the surrogate models. Fifty 

validation points are distributed within the domain by means of a LH algorithm, with the remaining 11 points that 

correspond to a subset of the experiments used to validate the CFD model (M = 0.117 and α ∈ [-10.0; 40.0] deg). Figure 9 

depicts the location of these validation points within the design space. The data that correspond to the wind tunnel 

operating conditions are particularly useful to test the ability of the surrogate models to predict the true output at the 

domain boundary. Besides this, we also note that considering a too large number of validation points distributed in the 

correspondence of the domain boundary would not provide a good and global assessment of the quality of the response 

surface over the entire domain. For this reason, we decided to consider only 11 points out of the 40 displayed in Figure 7. 

The scatter plots depicted in Figure 11 compare the outputs calculated by the surrogate models and by CFD calculation at 

the 61 validation points. The predictive capability of each response surface model is measured in terms of the SSE. In the 

figures, the dashed diagonal line indicates a perfect match between the surrogate model prediction and the CFD data. In 

the case of a perfect match, the SSE is zero. The scatter plots demonstrate that the surrogate models built upon the 

ADOE experiments are able to provide a better prediction of the system response. This difference is particularly evident 

by comparing the pitch moment coefficient in Figure 11(b) and (d). In Figure 11(d), data are well aligned along the dashed 

diagonal line, indicating a smaller error to the CFD results than achieved by the surrogate model built using the LH 

experiments. This is quantified in terms of SSE: the SSE value obtained from the ADOE algorithm (SSE = 3.6·10-3) is 

nearly 60% smaller than the same quantity calculated using the LH algorithm (SSE = 8.7·10-3). 



Figure 11 Scatter plots obtained by comparing the outputs calculated from CFD calculations and those evaluated using 

the response surface models of the two output variables (CN and Cm) for each DOE algorithm at 61 validation points 
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(a) Normal force coefficient / LH 
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(b) Pitch moment coefficient / LH 
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(c) Normal force coefficient / ADOE 
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(d) Pitch moment coefficient / ADOE 

Conclusion 

The work carried out in this study investigates an efficient and effective methodology to generate a full aerodynamic 

database for a complete aircraft model. The Reynolds-averaged Navier-Stokes equations are solved on a grid containing 

approximately 10 million points. Preliminary tests confirmed that results were independent of the grid spatial discretisation.  

Having verified that numerical results using a spatially converged grid are in good agreement with experimental data, a 

two-dimensional flight envelope was created. The design parameters are for the angle of attack and Mach number. The 

angle of attack varies with Mach number, and the range reduces for increasing Mach number. A surrogate model, based 



on radial basis function interpolation, was used to approximate the aerodynamic loads across the flight envelope from a 

total of 40 numerical results. To distribute the 40 experiments, two design of experiments strategies were investigated. 

The first one is a traditional Latin Hypercube approach whereby samples are randomly distributed throughout the 

parameter space. The second strategy is based on an adaptive design of experiments technique. To assess the accuracy 

of the two surrogate models, measured in terms of misfit between the numerical results using the Spalart-Allmaras 

turbulence model and the output of the surrogate model, an extra set of samples were used. The extra set of samples 

include 50 points distributed within the domain by means of a Latin Hypercube algorithm while the remaining 11 points are 

for the wind tunnel measurements. The data corresponding to the wind tunnel operating conditions are particularly useful 

to test the ability of the surrogate models to predict the true output in the correspondence of the domain boundary. 

 The predictive capability of each response surface model is measured in terms of the sum of the squared error. In 

the case of a perfect match between the surrogate model prediction and the Reynolds-averaged Navier-Stokes 

data, the sum of the squared error is zero. 

 It was found that the surrogate model built upon the adaptive strategy is able to provide a better prediction of the 

system response. This, in particular, is valid for the pitch moment coefficient that shows strong non-linear 

features. 

 Quantitatively, for the pitch moment coefficient, the sum of the squared error value obtained from the adaptive 

algorithm (SSE = 3.6·10-3) is nearly 60% smaller than the same quantity calculated from the Latin Hypercube 

algorithm (SSE = 8.7·10-3). Conversely, the surrogate model built using the Latin Hypercube algorithm requires 

more samples (and more expensive calculations) to achieve the same error level than the surrogate model using 

the adaptive algorithm. 

Regarding the long-term development: considering that the adaptive strategy does not incur in extra costs compared to 

the traditional counterpart, and that the integration within an existing environment is seamless, the authors hope this 

demonstration will facilitate the adoption of the adaptive design of experiments methodology in the analysis of other 

complex and non-linear engineering phenomena, particularly, within an industrial environment. 
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