The University of Southampton
University of Southampton Institutional Repository

A survey of network lifetime maximization techniques in wireless sensor networks

A survey of network lifetime maximization techniques in wireless sensor networks
A survey of network lifetime maximization techniques in wireless sensor networks
Emerging technologies, such as the Internet of things, smart applications, smart grids and machine-to-machine networks stimulate the deployment of autonomous, selfconfiguring, large-scale wireless sensor networks (WSNs). Efficient energy utilization is crucially important in order to maintain a fully operational network for the longest period of time possible. Therefore, network lifetime (NL) maximization techniques have attracted a lot of research attention owing to their importance in terms of extending the flawless operation of battery-constrained WSNs. In this paper, we review the recent developments in WSNs, including their applications, design constraints and lifetime estimation models. Commencing with the portrayal of rich variety definitions of NL design objective used for WSNs, the family of NL maximization techniques is introduced and some design guidelines with examples are provided to show the potential improvements of the different design criteria
1-29
Yetgin, Halil
61dca21c-f273-4e17-81e7-16abcfb4cd32
Cheung, Kent Tsz Kan
2cd81603-71fa-4ef6-b859-5892fdb08bfd
El-Hajjar, Mohammed
3a829028-a427-4123-b885-2bab81a44b6f
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1
Yetgin, Halil
61dca21c-f273-4e17-81e7-16abcfb4cd32
Cheung, Kent Tsz Kan
2cd81603-71fa-4ef6-b859-5892fdb08bfd
El-Hajjar, Mohammed
3a829028-a427-4123-b885-2bab81a44b6f
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1

Yetgin, Halil, Cheung, Kent Tsz Kan, El-Hajjar, Mohammed and Hanzo, Lajos (2017) A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys & Tutorials, 1-29. (doi:10.1109/COMST.2017.2650979).

Record type: Article

Abstract

Emerging technologies, such as the Internet of things, smart applications, smart grids and machine-to-machine networks stimulate the deployment of autonomous, selfconfiguring, large-scale wireless sensor networks (WSNs). Efficient energy utilization is crucially important in order to maintain a fully operational network for the longest period of time possible. Therefore, network lifetime (NL) maximization techniques have attracted a lot of research attention owing to their importance in terms of extending the flawless operation of battery-constrained WSNs. In this paper, we review the recent developments in WSNs, including their applications, design constraints and lifetime estimation models. Commencing with the portrayal of rich variety definitions of NL design objective used for WSNs, the family of NL maximization techniques is introduced and some design guidelines with examples are provided to show the potential improvements of the different design criteria

Text 07812629.pdf - Accepted Manuscript
Download (3MB)

More information

Accepted/In Press date: 2 January 2017
e-pub ahead of print date: 10 January 2017

Identifiers

Local EPrints ID: 404767
URI: https://eprints.soton.ac.uk/id/eprint/404767
PURE UUID: 5251a7fa-aafe-4ecc-9bd8-c1eb2195c8ab
ORCID for Mohammed El-Hajjar: ORCID iD orcid.org/0000-0002-7987-1401
ORCID for Lajos Hanzo: ORCID iD orcid.org/0000-0002-2636-5214

Catalogue record

Date deposited: 20 Jan 2017 16:40
Last modified: 06 Jun 2018 13:15

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×