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Passive shock isolation utilising dry friction 
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Abstract: A novel shock isolation strategy for base excited system is presented by introducing a two degree of freedom model with passive 

friction, where the friction is applied to an attached mass instead of directly to the primary isolated mass. The model is evaluated against the 

benchmark case of single degree of freedom system with friction applied directly to the primary isolated mass. The performance of the 

models are compared in term of the maximum displacement response and the acceleration during the application of the shock input for the 

case when the shock input duration is approximately equal to the natural period of the system (amplification region). From the results, the 

two degree of freedom model can produce both maximum displacement reduction and smoother acceleration at the point of motion 

transition. An experimental rig was built to validate the theoretical results against the experimental results; it is found that the experimental 

results closely match the theoretical predictions.  
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1. Introduction 

Transient excitation or shock is a short duration input, which is often harmful because it typically involves high forces or motion that can 

subsequently produce high stresses and damage. The mechanical system response, due to the transient excitation, normally requires the time 

history of a quantity that describes the motion, typically the displacement, velocity or acceleration [1]. An inspection of the potential for 

damage can be made by prediction of the shock response spectra (SRS) [1]. For different types of pulses these SRS indicate the severity of 

the response when subjected to different pulse durations. The SRS can also assist in the choice and design of an isolation system [2]. 

Commonly, the analysis of shock isolation is performed using a single degree freedom system (sdof) model comprising linear elements 

subjected to different step and pulse functions [3].  

Ramirez [4] describes and identified, for an undamped base excited single degree of freedom system, three regions of response; the isolation 

region where the maximum response is much smaller than the amplitude of the base input (when the pulse length is much smaller than the 

natural period of the system), the amplification region where the maximum response is larger than the amplitude of the base input (when the 

pulse length is approximately equal to the natural period of the system) and the quasi static region where the response follows the base input 

(when the pulse length is much larger than the natural period of the system. 

A shock isolation system needs to be reliable mechanical design which could sustain different levels of shock excitation. A linear vibration 

or shock isolator is often used, typically comprising of an elastic element acting in parallel with a damping element, normally inserted 

between the existing structure and supporting structure and implemented in a very simple way without modifying the existing structure. The 

study by Hyun, Waters et al [5, 6] shows that such an isolation system with a viscous damper could transmit high forces during a shock for a 

sdof system subjected to base excitation.  

This paper considers a passive isolation system, where friction is introduced as an alternative to the viscous damping element. Ideally it 

might limit the transmitted force, because its restoring force is not dependent on the magnitude of the relative velocity between the structure 

and the base. Early work by Hartog [7,8] and Hundal [9] in the modelling of friction examined various mechanical systems. Ferri [10] 

reviewed the relevant literature on the use of dry friction in passive damping and vibration isolation. Several analytical techniques were 

presented [10], with applications of dry friction in various areas and it was found that dry friction plays an important role.  

Shock typically consists of two phases, the first phase is the response during the shock input application and second phase the residual 

vibration after the shock. In this paper, the strategy of interest for the first phase is to attenuate the response during the shock. The second 

phase to suppress the residual vibration after the shock was studied and discussed theoretically [11]. However, no experimental verification 

has been done and it may be interesting topic for future research. There are not many studies which concern the residual energy after the 

shock, where most studies only concern the forced response during the shock. The most related research came in the form of the free 

vibration analytical solution of a single degree of freedom system with friction, given by Timoshenko et al [12].  

Among the first studies of a shock isolator configuration containing Coulomb friction is the work by Mercer et al [13]. They realized that 

Coulomb friction has a quality in that it can limit the acceleration transmitted to a mounted mass, which cannot be obtained using a viscous 

damper. In an adaptive configuration, for which the normal force is taken as a function of the displacement, this allows for the possibility of 

minimising the maximum displacement whilst still limiting the maximum acceleration. An optimum isolator is then a single degree of 
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freedom system where an elastic linear spring is in parallel with a series combination of a variable Coulomb friction element and a linear 

viscous damper [13]. When the motion is dominated by high frequency content, the viscous damper is locked as a rigid link and the isolator 

behaves as a spring with the Coulomb friction acting in parallel. Then, when the input motion becomes less severe, Coulomb friction 

becomes less dominant, less relative motion across it and viscous damping takes over to dissipate energy and restore the isolator to its 

equilibrium position. Because of good isolation property, there are a significant number of studies recently incorporating friction damping in 

the system for seismic isolation, for example [14, 15, 16]. The study by Castaldo et al employs a two degree of freedom model to represent 

the building flexing on the base mass [16]. Gaul et al also presented the two different semiactive control concepts for vibration reduction that 

adapt the normal force of attached friction dampers [17]. They compared simulation and experimental results of passive and semiactive 

controlled friction with stationary narrowband excitation. 

Although Coulomb friction can minimise the maximum displacement, there is an issue with the acceleration response and an abrupt jump 

every time the motion starts and changes direction due to discontinuity of the Coulomb friction model. Therefore, a better shock isolation 

strategy for a base excited system is to apply friction at an attached mass instead of directly to the primary mass [11]. This paper will present 

and discuss this unique model and it will be evaluated against the benchmark case of single degree of freedom system with friction applied 

directly to the primary mass. Finally, to validate this strategy, an experimental rig was built and the theoretical results are compared with the 

experimental results. 

2. Friction model 

Friction is generally highly stochastic in nature [18]. Friction between sliding surfaces occurs a result of stochastic interactions between 

rubbing asperities. Various approaches to model the friction are presented in the literature, e.g.[19,20]. In nearly all cases there are significant 

variations in both amplitude and frequency, but most friction models do not take these variations into account and instead represent friction 

by a smooth mean value which is sufficiently accurate in term of the results for a dry friction system. The Coulomb friction is a piecewise 

linear function. Hence, the systems incorporating Coulomb friction are composed of segmented solutions and depend upon the direction of 

motion. 

A Coulomb friction model used to simulate friction behaviour in this paper can be formulated as: 

							 								

			
 

0                               (2.1) 

0          (2.2) 

where 	is the static friction force that the system has to overcome before the system can undergo relative motion.   is the sliding friction 

force defined as ,  is the coefficient of kinetic friction and  the normal load in contact.  is the velocity of the mass and the sign 

function  is often written as  

1

1
 

0                           (2.3) 

0                           (2.4) 

A smooth function had been used herein to replace the sign function in the numerical implementation and solution of the governing 

differential equations of motion for easier and simpler computation. The smooth function used in this case is the error function, erf [21]. This 

function resembles the sign function closely, except that there is no discontinuity at 0. How close the error function is to the sign 

function is governed by a constant ‘a’ which controls the smoothness of the error function curve. Some papers exist examining what is the 

appropriate value for the constant ‘a’, for example [20, 22]. In the papers, it is mentioned that a value of 1000 suffices to fit within the 

analytical solution within 1%. 

In some cases, it has been found that the Coulomb friction model with the coefficient of static friction equal to dynamic or kinetic friction 

gives a good agreement to the validation experiment performed by Lopez et al within 10% [22]. This friction model is expected to give 

realistic predictions of the performance of friction damper with stiff / rigid localised contacts and large relative displacement within the 

contacts.  

3. Benchmark case of a single degree of freedom system with friction 

The typical model used to evaluate the performance of friction damping in shock isolation is a single degree of freedom model where friction 

is applied directly to the primary mass m as shown in Figure 1 [11]. This model serves as a benchmark to the performance of the two degree 

of freedom model which will be introduced in the next section. 
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Figure 1:  A one degree of freedom system isolation configuration with Coulomb friction subjected to a base input. 

The equation of motion of the one degree of freedom shock isolation system with Coulomb friction for the first phase during the shock is 

given by: 

     (3.1) 

where  is the natural frequency of the system.	  is the displacement of the mass and  is the displacement of the base and vertical 

surface shown. 

A versed sine displacement shock is applied at the base to represent a shock input excitation, which closely represents real practical inputs 

with a smooth and continuous first two derivatives (velocity and acceleration) of the displacement. It is given by: 

1 cos 				 0 	       (3.2) 

0																																													            (3.3) 

The shock input has duration of  and amplitude . For the analysis, the length of the versed sine base input used is chosen to be equal 

to natural period of the system T, to see whether the presence of friction can reduce the response which is large for the case of an undamped 

system [20]. This paper does not cover for the case of the input length much smaller and larger than the natural period of the system. The 

case of the input length much smaller than the natural period of the system may be worthwhile to explore in the future which typically 

involves high acceleration.  Whilst for the case of the input length much larger than the natural period of the system the mass will closely 

follow the motion of the base input. 

Non-dimensional parameters can be defined in terms of the physical system parameters. These are the non-dimensional displacements 

, the non-dimensional friction force  , the non-dimensional base input  , the non-dimensional time	  and 

differentiation with respect to non-dimensional time  ,  

Given these definitions, then the equations of motion can subsequently be written in non-dimensional form as 

      (3.4) 

The numerical time domain responses are solved and presented for this model and all subsequent single and two degree of freedom systems 

using the MATLAB Ordinary Differential Equation (ODE) solvers (e.g. ode45, ode23s). Ode45 uses a general purpose numerical Runge-

Kutta integration scheme. However, in some cases, especially when friction is significant, ode23s is more efficient in solving the equations. 

The results were checked for accuracy and convergence for the numerical solutions for this system, as analytical solutions for this model can 

be obtained as it is piecewise continuous. 

 A single degree of freedom system with friction works well in attenuating the maximum displacement response when the length of the 

versed sine base input is equal to the natural period of the system, as shown in Figures 2 (a) and 3. However, this system experiences an 

acceleration discontinuity every time the direction of the friction force changes and at the start of the motion. A typical response is shown in 

Figure 2(b). 
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(a) 

 

(b) 

 

Figure 2: Response of a single degree of freedom system with friction under versed sine base input. (a) Displacement response. (b) 

Acceleration response. Non-dimensional base input magnitude 10 and pulse length . Solid line: base input.  The dash line 

corresponds to 0 ie no friction. The dash dot line 1.5 and the dotted line: 3 . 

The predicted maximum displacement response of the system as friction is varied shown in Figure 3. For this model, as friction increases, 

the maximum response is reduced until it reaches the lowest point, namely	 . In this case, the lowest maximum displacement response 

with respect to the base input is about 0.99 when 4 (ie  4 , larger than the weight of the isolated mass). 

 

Figure 3: The maximum displacement of a single degree of freedom model under versed sine base input when the level of friction is varied. 

Non-dimensional base input magnitude	 10  and pulse length  . 

Then, if the friction is further increased, the mass will stick to the friction interface and follows the displacement motion of the base instead 

of further displacement reduction and energy dissipation. In this case, for the friction typically greater than the value 5, the mass moves 

with the same displacement as the friction surface and the base.  

4. Shock response of a two degree of freedom system with friction 

 

4.1 Displacement response 

The two degree of freedom system considered in this paper is shown in Figure 4. It comprises of the primary structure (primary mass m1 and 

stiffness k1) and the isolated attachment (secondary mass m2 and stiffness k2). For this configuration, friction F is applied to the secondary 

mass m2 only. 

 

 

 

 

 

Figure 4:  A two degree of freedom system isolation configuration with Coulomb friction subjected to a base input.  
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The two degree of freedom system that has been introduced is expected to avoid acceleration discontinuity and obtain a much smoother 

response at the point in time when the direction of the acting friction changes and at the start of motion, while still retaining a reduction in the 

displacement response of the primary isolated mass. Similar to Section 3, a versed sine base input is used in the calculations and the length 

of the base input is chosen to be equal to first natural period of the combined system defined as T1 (calculated from eigenfrequencies of the 

system), to investigate whether the presence of friction can reduce the response, which is large for an undamped system. The equation of 

motion for the two degree of freedom shock isolation system with Coulomb friction for the first phase during the shock is given by: 

           (4.1) 

0   (4.2) 

where  and  are the natural frequencies of the primary and secondary systems respectively when each spring is 

considered separately fixed at its base.	  and  are the displacements of the two masses respectively. 

Non-dimensional parameters can be defined in terms of the physical system parameters. These are the non-dimensional displacements 

  and  , the frequency ratio  , the mass ratio μ  , the stiffness ratio	  , the non-dimensional friction force 

 , the non-dimensional base input  , the non-dimensional time	  and differentiation with respect to non-dimensional 

time  ,  are as previously. 

Given these definitions, then the equations of motion can subsequently be written in non-dimensional form as 

                    (4.3) 

μ 0  (4.4) 

Figure 5 shows the maximum displacement of the masses for different levels of friction and stiffness ratio. The results represent the response 

when the mass ratio is μ 0.1 i.e. m2 is 10% of the isolated mass. For practical purposes, a small secondary mass is preferred in order to 

avoid a significant change in the overall weight of the system. In a later section (Section 4.3), the effect of the mass ratio and results for other 

mass ratios will be discussed. The time response plots for the two degree of freedom system are plotted in Figure 6, for the case of low and 

medium stiffness ratios with a mass ratio μ 0.1. The response for the case of a high stiffness ratio (Figure 5(d)) is very close to the 

response of a single degree of freedom system with friction, as shown in Figures 2 and 3. 

  



Page 6 
 

(a) (b) 

 (c)
 

(d)
 

Figure 5:  The maximum displacement response of the two masses in the friction system under a versed sine base input for different levels 

of friction. The solid line is the primary mass displacement and the dashed line is the secondary mass displacement. The dash dot line is the 

relative displacement, Mass ratio μ 0.1, Pulse length	
 
, non-dimensional base input magnitude 10,  stiffness ratio .  (a) 

0.4, (b) 2.5, (c) 10 and (d) 250.
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Figure 6: Time histories and phase plane plots for the case of a soft (frequency ratio 2	stiffness ratio 0.4) and a medium (frequency 

ratio 5	stiffness ratio 2.5) secondary spring stiffness compared to the primary spring under a versed sine base input, mass ratio 

μ 0.1. (a) Primary mass displacement. (b) Primary mass velocity. (c) Primary mass phase plane plot. (d) Secondary mass displacement. (e) 

Secondary mass velocity. (f) Secondary mass phase plane plot. 

The maximum displacement of the primary mass decreases as friction increases to an upper limit which yields a maximum reduction. This is 

defined as  for further reference. This is the region where the secondary mass fully slides with respect to the friction interface or 

experiences stick-slip motion. As the amount of friction increases, the time duration during which the secondary mass sticks onto the friction 

interface increases in comparison to its sliding motion. Then, when friction is further increased to be larger than  , no further reduction is 

obtained and the maximum displacement of the primary mass increases until the friction is large enough to cause the secondary mass to 

completely stop sliding on the friction interface. Above this level of friction, there is no further change to the maximum displacement of the 

primary mass and the primary mass becomes an undamped single degree of freedom system. The smallest maximum displacement is 

obtained when the secondary mass still slides on the friction interface and not when the secondary mass fully sticks on the friction interface. 
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For this system with a softer secondary spring one needs a lower level of friction to stick the secondary mass fully to the friction interface, 

compared to a system with a stiff secondary spring. For the case of 	 0.4 Figure 5a shows that the secondary mass sticks when the non-

dimensional friction is about	 3.5.  However, when medium and high secondary stiffness are used as shown in Figure 5 (b) to (d) with 

	 2.5, 	 10 and 	 250	respectively, the secondary mass sticks when  is about 9.  The system fully sticks in the cases which 

correspond to there being no further change in the maximum relative displacement between the masses and the maximum absolute 

displacement of both masses as friction is increased. The maximum relative displacement of the masses decreases as the secondary stiffness 

increases. This is the case when there is little compression and extension in the secondary stiffness, and both masses tend to move together 

with a small relative displacement. 

The value of  depends upon on the stiffness ratio. The value of  as the stiffness ratio is varied and the normalized maximum 

displacement for the primary mass, 	produced at  are listed in Table 1. When the stiffness ratio is small, the reduction in the 

maximum displacement of the primary mass compared to an undamped system is small, for example	 1.56	 when 	 0.4. The 

reduction produced with respect to an undamped single degree of freedom system 1.7	  is only about 7 percent.  As the stiffness 

ratio increases, there is a greater reduction in the maximum displacement of the primary mass and the largest reduction is produced when the 

stiffness ratio is 	 250. For this case, 	produced at  is 0.99 which corresponds to a reduction of about 42 percent compared to an 

undamped SDOF system. This is when a two degree of freedom system behaves almost identically to a single degree of freedom system with 

friction applied directly to the primary mass, but there are potential reductions in the acceleration discontinuity to be discussed in the next 

section. 

Stiffness ratio, 
 

Non-dimensional friction at which the 

smallest maximum displacement occurs, 

 

Non-dimensional primary mass displacement, 

 

 

0.4
 

0.6 1.56 

2.5
 

3.1 1.3 

10
 

5.3 0.99 

250
 

4.2 0.98 

Table 1: The value of friction which produces the smallest maximum displacement response of the primary mass as the stiffness ratio is 

varied and the corresponding displacement response. The sdof undamped system response for comparison is 
1.7

 .
 

4.2 Acceleration response 

As stated earlier, the two degree of freedom system was introduced to avoid the instantaneous changes in the acceleration of the primary 

mass every time the friction force changes its direction and at the start of the motion. By applying friction to the secondary mass, a smoother 

or reduced acceleration discontinuities of the primary mass could be produced during the changes in the direction of the friction force and at 

the start of the motion. 

The acceleration response of the primary mass for different stiffness ratios is plotted in Figure 7. This is based on the friction value equal to 

 , which is known to produce the smallest maximum displacement for the primary mass at each stiffness ratio. Therefore, it is beneficial 

to see whether this friction value also could produce a good acceleration response for the primary mass. 
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(a) 

 

(b) 

 

(c) 

 

Figure 7: Acceleration response of the primary mass of the two degree of freedom model under a versed sine base input when . (a) 

stiffness ratio	 0.4,	 0.6. (b)  stiffness ratio	 2.5,	 3.1.  (c) stiffness ratio	 10,	 5.3. 

From Figure 7, one can observe that the acceleration of the primary mass is smooth when the stiffness ratio is small. As the stiffness ratio is 

increased, the acceleration of the primary mass changes more sharply every time the friction force changes its directions and at the start of 

the motion.  This is because of a stronger coupling and higher forces acting between the primary and secondary masses on which the friction 

is applied. However, for all of these cases shown, the primary system acceleration response is improved and smoother than the case of a 

single degree of freedom system with friction (see Figure 2(b) for comparison). 

4.3 Effect of the mass ratio on the shock response 

For practicality, a small secondary mass is preferred. In the previous sections, a small secondary mass was used which is ten times smaller 

than the primary mass. In this section, variations in the secondary mass are investigated to see whether increasing the secondary mass could 

give a smaller maximum displacement of the primary mass during the shock. Two mass ratio values were chosen, which are μ 0.32 and 

μ 1 which will be compared with μ 0.1.  The maximum displacement of the primary mass as friction is varied for these mass ratio 

values can also be seen in Figure 8. The dash lines in the plot correspond to the case of the mass ratio μ 0.32 and the dash dot lines 

correspond to the case of the mass ratio μ 1. This is compared with the solid line for the mass ratio	μ 0.1.	The time response plots for 

the corresponding cases are plotted in Figures 9 and 10 respectively. 

There is a large difference in the maximum displacement response of the primary mass for a different mass ratio only when the stiffness ratio 

is small (Figure 8 (a)). As the stiffness ratio increases, the influence of the mass ratio on the behaviour of the system becomes less 

significant; hence reduction in the difference in the maximum displacement response (Figure 5 (b) to (d)). The large difference that occurs 

when the stiffness ratio is small is caused by the existence of two significant modes that influence the response of the system. The first mode 

is where the two masses move together in phase and the second mode is the mode where the second mass moves in the opposite direction 

compared to the first mass. As the mass ratio is varied for a fixed stiffness ratio, the frequency ratio 	changes. For a small stiffness 

ratio, the change in the frequency ratio produces a large change in the displacement response of the masses because it affects how the two 

modes interact and combine to produce the overall response of the system. When the stiffness ratio is larger, the second mode where masses 

move out of phase, shifts to a higher frequency and its contribution to the response of the system is quite small. In this case, only one mode 

(in phase mode) dominates the response of the system and a small difference is produced in the response of the two masses. 
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For the case of a medium value for the stiffness ratio, 	 2.5 and 	 10, the difference caused by a variation in the mass ratio can only be 

seen for high levels of friction. For high friction, the maximum displacement response of the primary mass is smaller for the case of the 

larger mass ratio. This is because, the primary mass oscillates at a lower amplitude when the secondary mass fully sticks for high friction and 

when the secondary mass (mass ratio) is large. As the stiffness ratio increases to a higher value, this difference becomes less significant. 

Another effect due to the variation in the mass ratio is the change in the value of friction that causes the secondary mass to fully stick on the 

friction interface. For a larger mass ratio, less friction is needed to cause the secondary mass to fully stick. For example, in the case of a small 

stiffness ratio ( 0.4 , the secondary mass fully sticks at 	 2.1 when the mass ratio μ 1 , at 	 2.3 when the mass ratio μ 0.32 

and 	 3.5 when the mass ratio μ 0.1. This is because, lower friction is sufficient to cause the large secondary mass to stop sliding 

relative to the friction interface. This also applies to the case for other stiffness ratios (	 2.5	, 	 10 and 	 250), although it becomes 

less significant at higher stiffness ratios.  

(a) 

 

(b) 

 

(c) (d) 

Figure 8:  The maximum displacement response of the primary mass in the friction system under a versed sine base input for different levels 

of friction. Stiffness ratio :  (a) 0.4, (b) 2.5, (c) 10,(d) 250.  Mass ratio μ 0.1	(solid line), Mass ratio μ 0.32	(dash 

line), Mass ratio μ 1	(dash dot line). Pulse length	
 
, non-dimensional base input magnitude 10.  
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Figure 9: Time histories and phase plane plots for the case of a soft (frequency ratio 1.12, stiffness ratio 0.4) and a medium 

(frequency ratio 2.8, stiffness ratio 2.5) secondary spring stiffness compared to the primary spring under a versed sine base input, 

mass ratio μ 0.32. (a) Primary mass displacement. (b) Primary mass velocity. (c) Primary mass phase plane plot. (d) Secondary mass 

displacement. (e) Secondary mass velocity. (f) Secondary mass phase plane plot. 
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Figure 10: Time histories and phase plane plots for the case of a soft (frequency ratio 0.63, stiffness ratio 0.4) and a medium 

(frequency ratio 1.58, stiffness ratio 2.5) secondary spring stiffness compared to the primary spring under a versed sine base input, 

mass ratio	μ 1. (a) Primary mass displacement. (b) Primary mass velocity.(c) Primary mass phase plane plot. (d) Secondary mass 

displacement. (e) Secondary mass velocity. (f) Secondary mass phase plane plot. 

5. Design and Experimental Validation 

 

A series of experiments were performed to validate the response of a two degree of freedom system with friction. The experiments 

were conducted in a few stages as shown in Figure 11. The stages will be discussed in detail in the following sections. 
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Figure 11: Experimental design and validation steps 

   

5.1 Assemble a finite element model and build as test rigs 

 

The experimental setup designed is a T beam comprising two aluminium beams, namely a primary (150×15×3.3 mm) and a secondary 

beam as shown in Figure 12 which are connected with a bolted connection. Two different secondary beams were used, a thin 

(160×15×0.9 mm) and thick secondary beam (160×15×3 mm). This is to compare between the response of a single and two degree of 

freedom system. It is expected that the configuration with a thin secondary beam vibrates in two dominant modes at low frequencies 

and behaves like a two degree of freedom system. On the other hand, it is expected that the configuration with a thick secondary beam 

behaves like a single degree of freedom system with one dominant mode at low frequencies. 

 

 

 

 

Figure 12: Test rig built for experimental validation 

 

A finite element model was assembled in ANSYS to predict the first few modes of the beam system and verify whether it can be used 

to represent a single or two degree of freedom system in the low frequency range. In the model, one end of the primary beam was set as 

a fix end and another end to be a free end on which the middle of the secondary beam was attached. From the finite element model, the 

system with the thin secondary beam has three natural frequencies below 120 Hz.  There are two coupled modes, which were identified 

as a flexural mode of the primary beam predicted at 59.4 Hz and a flexural mode of the secondary beam predicted at 112.9 Hz. There is 

also another mode between these two modes, which was identified as a torsional mode of the primary beam at 80.5 Hz. However, the 

torsional mode is not significant in comparison with the flexural modes, which was determined from the next step in the experiment. 

This will be discussed further in Section 5.3. Therefore, only two modes dominate the response of the system for the frequency range 

up to 120 Hz and closely represent a two degree of freedom system behaviour. For the system with the thick secondary beam, the 

torsional mode of the primary beam and the flexural mode of the secondary beam increases significantly to 106.1 and 430.9 Hz 

respectively. The flexural mode of the primary beam, however reduced to around 48.8 Hz. This closely represents a single degree of 

freedom system in the low frequency range. The predicted mode shapes of the first three modes of the T beam system for the case of 

thin and thick secondary beams are shown in Figure 13 and Figure 14 respectively. 
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59.4 Hz 

 

80.5 Hz 112.9 Hz 

 

Figure 13: Predicted Mode shapes of the T beam system with thin secondary beam 

 

48.8 Hz 

 

 

106.1  Hz 430.9 Hz

 

 

 

Figure 14: Predicted Mode shapes of the T beam system with thick secondary beam 

 

A steel beam was used to apply friction to the ends of the secondary beam. The steel beam was bolted to the base, so that the friction 

interface could move with the base input following the model. There is a small screw at each end of the secondary beam for the purpose 

of adjusting the normal force between the ends of the secondary beam and the steel beam. The experimental rig was hung with four 

cords and a shaker (Derritron VP4) was attached below the base to apply a base input to the rig. 

 

5.2 Finite element model validation 

 

A scanning laser vibrometer (Polytec PSV 400) was used to measure the response and verify the first three modes predicted by the 

finite element model analysis. For this case, only the system with thin secondary beam was used which potentially represents a two 

degree of freedom system at low frequencies. Broadband random excitation from the vibrometer was used to drive the shaker and the 

results were compared with the finite element model.  

Table 2 shows the comparison between the finite element model prediction and measured natural frequencies for the first three modes 

of the T beam system for the case of the thin secondary beam. The results are within 6.9% difference.  

Modes 
Finite element predicted 

natural frequency (Hz) 

Measured natural 

frequency (Hz) 
Percentage difference 

First mode (flexural mode of the 

primary beam) 
59.4 58.0 2.4 

Second mode (torsional mode of the 

primary beam) 
80.5 75.3 6.9 

Third mode (flexural mode of the 

secondary beam) 
112.9 111.8 0.98 

Table 2: Comparison between finite element predicted and measured natural frequencies.
 

 

 

Figure 15 shows the first three measured operational deflection shape (ODS) of the T beam system. In order to verify the correlation 

between the finite element modal and measured results, the Modal Assurance Criterion [23] was used. It is a widely used technique to 

estimate the degree of correlation between mode shape vectors [24]. Eleven measurement points and three modes were used for this 

calculation using Equation 5.1. 
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Figure 15: Operational deflection shapes of the T beam system with thin secondary beam 

 

 

   
       

2

( , )

T

measured FEi j

T T

measured measured FE FEi i j j

MAC i j
 


    

               (5.1) 

 

From the results, predicted mode shapes from finite element model are within 3 percent difference with their measured operating 

deflection shape. The lowest MAC value between the predicted modes and measured deflection shapes are 0.97. 

 

5.3 System model parameters estimation 

 

Consider a two degree of freedom model as shown in Figure 16 to represent the T beam system behaviour with a thin secondary beam 

at low frequencies. The next experiment was performed to measure the acceleration transmissibility of the beam system and fit the 

measured data to the two degree of freedom model equations (Equation 5.2 and Equation 5.3). The experiment was only performed 

with the thin secondary beam to estimate the physical parameters of the two degree of freedom system namely the stiffness (k1 and k2), 

structural damping (η1 and η2) and mass (m1 and m2). In this section, friction was set to zero. 

 

Figure 16: Two degree of freedom model for comparison with T beam response 

 

The acceleration transmissibilities without friction for the model shown in Figure 16 are 
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    (5.3) 

In the experiment, four accelerometers were used to record the data, one at the base of the rig, one at the end of the primary beam and 

two at opposite ends of the secondary beam. Two accelerometers were used for the secondary beam to confirm that no significant 

difference in the response and the level of friction applied at each end of the secondary beam in the later experiment. The response at 

the end of the primary beam was compared with the response of the primary mass and the response at the end of the secondary beam 

was compared with the response of the secondary mass in the theoretical model. The accelerometers are connected to an analyser and a 

computer for processing and calculating the frequency response functions (acceleration transmissibility) based on the acceleration 

signals. The acceleration transmissibility calculated were between the base and both the primary and secondary beam.  

 

Figure 17 shows the measured acceleration transmissibility of the T beam at low frequencies between 0 to 130 Hz. From the figure, 

two frequencies are dominant, in the region of 55 Hz and 108 Hz corresponding to the flexural modes of the primary beam and 
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secondary beam respectively. There is another mode between these two frequencies, around 75 to 80 Hz, corresponding to a torsional 

mode of the primary beam which has been predicted by finite element model in Section 5.1. However, the response was small in 

comparison with modes at other two frequencies and can be considered negligible.  

   

 

Figure 17: The measured acceleration transmissibility measured from the experiment for the case of no friction and thin secondary 

beam. (a) The primary system response. Solid line: Acceleration at the end of the first beam (sensor 2). Dash line: Predicted 

acceleration of the primary mass using fitted parameters.  (b) The secondary system response. Solid line: Acceleration at the end of the 

secondary beam (sensor 3). Dashed line: Predicted acceleration of the secondary mass using fitted parameters. 

 

A MATLAB fitting function was utilised to search for a combination of second degree of freedom parameters that fit the acceleration 

transmissibility obtained from the measurements. The least square error fit between the measured and model transmissibility was 

calculated (Equation 5.4) such that the summation over the frequency range of the available data is minimised. 
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    (5.4)         

The estimated model parameters are given in the Table 3. The acceleration transmissibilities based on the estimated model parameters 

are plotted on the same figure as the measured acceleration transmissibilities (Figure 17) for comparison. They are in very close 

agreement with each other. The corresponding estimates of the modal damping from the measured response are equal to 0.08 

(fundamental mode around 55 Hz) and 0.06 for the second mode (around 107 Hz). 

Parameters Estimated values 

k1 4350.5 N/m 

k2 2279.1 N/m 

m1 0.024 kg 

m2 0.008 kg 

η1 0.09 

η2 0.02 

Stiffness ratio,  0.52 

Mass ratio, μ
 
 0.32 

First natural frequency of a coupled system, ω1 429.1 rad/s 

Frequency ratio,  1.27 

 

Table 3: Two degree of freedom model system parameters estimated by fitting the two degree of freedom model equations with the 

measured data from the experiment.
 

 

For the system with the thick secondary beam, the measured acceleration transmissibility is dominated by the first mode (flexural mode 

of the primary beam) at 45 Hz, while at a very low amplitude was observed the torsional mode of the primary beam and the flexural 

mode of the secondary beam, as shown in Figure 18. Both of the low amplitude modes also shifted to a higher frequency as predicted. 
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In this case, the T beam system closely follow the behaviour of a single degree of freedom system below 100 Hz with dominant 

frequency of 45 Hz. 

 

 

Figure 18: The acceleration transmissibility measured from the experiment for the case of no friction and a thick secondary beam. 

Solid line: Acceleration at the end of the first beam (sensor 2). Dash line: Acceleration at the end of the secondary beam (sensor 3). 

 

5.4 Validation for the case of no friction 

 

For the shock input application, a versed sine base input was generated using MATLAB and exported as a waveform audio format 

(WAV) file. The file can be played through a PC sound card to drive an electrodynamic shaker via an amplifier. This technique was 

used by Ramirez [25] to apply a versed sine base input with minimum residual vibration. It is preferred to have a base input with as 

small a residual response as possible to closely represent a theoretical versed sine. 

 

Before conducting experiment with friction, it is important to perform a validation for the case of no friction to verify that the system 

behaves as predicted by theoretical model when the shock input is applied. The measured acceleration was filtered with a high pass 

filter and subsequently integrated to obtain velocity. Subsequently, the velocity is filtered again and integrated to obtain displacement. 

The low frequencies were filtered to avoid output drift. The displacement of both the T beam and two degree of freedom model are 

normalised with respect to the maximum base input displacement. The time axis is normalised with respect to the length of the pulse, 

about 0.02 s, which is in the region of the first natural period of the T beam system (0.018 s). 

 

Figure 19 shows the measured and simulated normalised displacement response of the T beam system with the thin secondary beam 

and no friction. It was observed that the versed sine base input produced was not a perfectly symmetric. It follows closely the 

theoretical versed sine base input up to half of the pulse length. Then, it started to drift away slightly from the theoretical curve. This 

explains the slight difference between the measured response and simulation after half of the pulse length. 

 

(a) (b) 

Figure 19: Measured displacement response of the thin secondary beam system with no friction and its comparison with simulation.  

(a) Measured. Solid line: Base input. Dash line: Response at the end of the primary beam (sensor 2). Dash dot line: Response at the end 

of the secondary beam (sensor 3). Dot line: Response at the end of the secondary beam (sensor 4). (b) ODE simulation. Solid line: Base 

input. Dash line: Response of the primary mass. Dash dot line: Response at the secondary mass.  
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Figure 20 shows the measured and simulated normalised displacement response of the T beam system with the thick secondary beam 

and no friction. Similar to the case with the thin beam, the difference between measured and simulation displacement response is 

caused by slight deviation of the experimental base input compared to the theoretical versed sine curve. For example, from normalised 

time up to 0.75 of the fundamental system period, the simulation response is larger than the measured response because the theoretical 

versed sine base input is larger than the actual experimental base input. Then, after half of the pulse length, the experimental base input 

becomes larger than the theoretical versed sine base input which caused the simulation response to reduce and become smaller than the 

measured response.  

 

Figure 20: Displacement response of the thick secondary beam system with no friction. Thick solid line: Simulation base input. Thick 

dash line: Response of a single degree of freedom system. Thin solid line: Experimental base input. Thin dash line: Response at the end 

of the primary beam. Thin dash dot line: Response at the end of the secondary beam.  

 

5.5 Estimation and setting the level of friction (free vibration) 

As described in Section 5.1, the normal force and hence friction is adjusted by a small screw at each end of the secondary beam. The normal 

force was set at certain level to give different levels of friction. In order to estimate the value of friction after it was set, a free vibration test 

was performed on the T beam system.  The friction value can be estimated by fitting the results from the free vibration test with the 

analytical solution for any cycle of vibration that minimises the least square error. This applies only for the case when friction is not too large 

to cause the secondary mass to stick (within the sliding region).  Several cycles from the experimental data were used to ensure the level of 

friction is nearly constant, unchanged and repeatable. The value of friction from the experiment was subsequently used to perform 

simulations for the shock response of the system with friction. The predicted results will be compared with the subsequent experiment for 

shock application, which will be discussed in the next section. 

The equations of motion 4.1 and 4.2 with no base motion, 0, can be transformed into equations of motion in the two distinct modes 

depending on the sign of the secondary mass velocity . Initially, the displacement of the primary and secondary mass can be split into two 

modal equations with the solution of u1 and u2 for displacement in each mode respectively as shown in Equation 5.5. 
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 is the mode shape matrix whose columns represent the undamped modes. 

The solution has to be evaluated segment by segment based on the sign of the secondary mass velocity and initial condition of the different 

segments. Hence, when 	positive, equation 5.6 is used and when  is negative, equation 5.7 is used. 
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 is the natural frequency matrix of the two degree of freedom system. The analytical solution for both equations can be 

computed as equation 5.8 and 5.9 respectively; for each piecewise linear response. 
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    (5.9)         

The coefficients A1, A2, B1 and B2 can be calculated by using the initial conditions for each segment.  
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The initial conditions for every segment were based on the final condition of the previous phase of the motion.  

Depending on the sign of 	and the initial conditions, the correct analytical solution can be calculated as the motion progresses and can be 

fitted into the MATLAB fitting functions to estimate the value of friction. The value of friction was checked so that no significant change 

throughout the motion (relatively constant) to ensure the value used for simulation to predict and validate the result of the shock application 

is correct. The estimated friction will be used in the next section with the estimated two degree of freedom model parameters calculated from 

the previous section, to validate the time response of the system with Coulomb friction subjected to a versed sine base input. However, it is 

still expected there is slight variation in the friction values since friction is most likely changing as the beam moves, as a result of friction 

surface changes, and the bending of the steel beam friction interface. This may influence and create differences between the friction applied 

to end of the secondary beam. Figure 21 shows some examples of comparison between the free vibration experimental results and the 

analytical solution using the friction estimated from the fitting process. The friction values estimated from the fitting process are next to the 

figure. As expected, there is variation in the estimated friction values,which is about ±20% relative to 0.5. All of the estimated values for 

non-dimensional friction  are between 0 and 1, which is still in the sliding region. From the simulations, it is predicted the secondary mass 

will fully stick when the non-dimensional friction  is about equal to 1. 

0.39  0.48 

 

0.6 

Figure 21: Comparison of the free vibration response of the beam system with the analytical solutions to estimate the value of friction. Solid 

line: Response at the end of the primary beam (sensor 2). Dash line: Response at the end of the secondary beam (sensor 3). Dash dot line: 

Free vibration response of the primary mass response with friction estimated. Dot line: Free vibration response of the secondary mass 

response with friction estimated. 

0 1 2 3 4 5 6 7
x 10

-3

-8

-6

-4

-2

0

2

4

6

8x 10
-4

time (s)

D
is

pl
ac

em
en

t (
m

)

0 1 2 3 4 5 6
x 10

-3

-1

-0.5

0

0.5

1x 10
-3

time (s)

D
is

pl
ac

em
en

t (
m

)

0 1 2 3 4 5 6 7
x 10

-3

-1.5

-1

-0.5

0

0.5

1

1.5x 10
-3

time (s)

D
is

pl
ac

em
en

t (
m

)



Page 20 
 

5.6 Validation for the case when friction is applied (Thin secondary beam with friction : under base excitation) 

 

In this case, two levels of friction were applied to the system with thin secondary beam, namely intermediate and high friction. When 

intermediate friction is applied, it is expected that the end of the secondary beam slides with respect to the friction interface and when 

high friction is applied, it is expected that the end of the secondary beam sticks with respect to the friction interface. The measured 

displacement response when friction was applied to the system is shown in Figure 22 and Figure 23 for the case of intermediate and 

high friction respectively. 

(a) 

 

(b) 

Figure 22: Displacement response of the thin secondary beam system with intermediate friction. (a) Measured. Solid line: Base input. 

Dash line: Response at the end of the primary beam (sensor 2). Dash dot line: Response at the end of the secondary beam (sensor 3). 

Dot line: Response at the end of the secondary beam (sensor 4). (b) Simulation with intermediate Coulomb friction. Solid line: Base 

input. Dash thick line: Primary mass response, 0.39. Dash thin line: Primary mass response, 0.48. Dash dot thick line: 

Secondary mass response, 0.39. Dash dot thin line: Secondary mass response, 0.48.  

For the case of intermediate friction (Figure 22), the response at the two ends of the secondary beam were slightly different. The 

difference in the response until a normalised time of 0.5 is small and it subsequently increased slightly. This is as expected from the 

previous free vibration experiment which shows that the friction did vary slightly throughout the motion and may influence the level of 

friction at each end of the secondary beam.  

 

There are also two other identified sources of discrepancy. The first one is the existence of pre-sliding region when the motion starts. 

During this experiment, the base input displacement range generated from the shaker is quite small, roughly less than 1 mm. The pre-

sliding region occurs when the displacement is very small often between 1 and 10 µm [26]. Hence, in the case of small displacement, 

the pre-sliding region is significant in describing the behaviour of the system.  This behaviour is demonstrated until normalised time of 

0.25. The behaviour shows that before gross slip occurs, there is local sliding in the contact. The microscopic behaviour can be 

explained by the interaction between the contact asperities which behave as welded junctions and the shearing that tends to break them 

[27]. The Coulomb friction model has its limitation in describing the motion within this region [26]. Andersson et al explained that 

there are other friction models which are more suitable to describe the motion within the region. The models describe, for small 

displacement, that friction increases with displacement until it reaches the level which can be considered to be the Coulomb sliding 

friction force. Other publications also discussed how the friction increase depends upon the stationary contact time before gross slip 

[27, 28, 29]. 

 

The second source of discrepancy is a soft secondary spring, which could cause the secondary mass to stick for slightly higher levels of 

friction. From the parameter estimation, the secondary stiffness is only about half of the primary stiffness. From the simulation, the 

range of the sliding region for the secondary mass before it sticks is quite small. Any small change in friction could cause the secondary 

mass to stick and cause significant difference in the secondary mass response. 

 

The measured response is then compared with the simulation with non-dimensional friction set as  =0.39 and  =0.48, which are the 

estimated friction values calculated from the previous section. In the simulation, the system reaches its peak displacement before the 

experiment. This shows that Coulomb friction model only appears to be appropriate after non dimensional time of about 0.25, where 

the displacement at the end of the secondary beam is significantly greater than 10 µm. At this point, the friction has increased to the 

level of the Coulomb sliding friction force and gross slip has started. However, the experimental and simulation results are still in good 

agreement with each other and the overall behaviour can still be predicted using simulation with reasonable accuracy.  
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(a) 

 

(b) 

Figure 23: Displacement response of the thin secondary beam system with high friction. (a) Measured. Solid line: Base input. Dash 

line: Response at the end of the primary beam (sensor 2). Dash dot line: Response at the end of the secondary beam (sensor 3). Dot 

line: Response at the end of the secondary beam (sensor 4). (b) Simulation with high Coulomb friction. Solid line: Base input and 

response of the secondary mass. Dash line: Response of the primary mass. 

For the case of high friction the end of secondary mass stuck and moved with the base as expected. From the experiment, both ends of 

the secondary beam had same displacement as the base. The measured response is also in good agreement with the predicted results 

from the simulation. 

 

The results for different levels of friction were compared to see the effect of friction in reducing the displacement and velocity response 

of the primary mass during the shock. The results are shown in Figure 24. From the results, the intermediate friction produces the 

smallest primary mass response. It matches the prediction from the simulation, where the smallest response is produced when the 

secondary mass slides on the friction interface instead of fully sticking. The reduction is small in this case because the choice of the T 

beam which produced a secondary spring that is softer compared to the primary spring in the two degree of freedom model. An 

increase in the secondary spring value will produce more reduction in the response of the isolated mass, which will be shown in the 

next section.    

 

(a) (b) 

Figure 24: (a) Comparison between measured displacement responses at the end of the primary beam with different levels of friction 

for the case of the thin secondary beam. (b) Comparison between measured velocity responses at the end of the primary beam with 

different levels of friction for the case of the thin secondary beam. Solid line: Base input. Dash line: No friction.  Dash dot line: 

Intermediate friction. Dot line: High friction. 

5.7 Validation for the case when friction is applied (Thick secondary beam with friction : under base excitation) 

 

Similar to the case of the thin secondary beam, two levels of friction were also applied to the system with a thick secondary beam, 

namely intermediate and high friction. The measured displacement response when friction was applied to the system is shown in 

Figure 25 (a) and Figure 25 (b)  for the case of intermediate and high friction respectively. For validation, the displacement of a single 

degree of freedom model is also plotted in the same figure. The simulation using the single degree of freedom model was performed 
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with two estimated friction values, =0.2 and	 =0.3 for the case of intermediate friction. From Figure 25, the measurements results are 

very close to the predicted response using the single degree of freedom model.  

 

(a) (b) 

Figure 25: (a) Displacement response of the thick secondary beam system with intermediate friction. Thick solid line: Base input. Thick 

dash line: Measured response at the end of the primary beam. Thick dash dot line: Measured response at the end of the secondary beam. Thin 

dash line: ODE simulation mass response, =0.2.  Thin dash dot line: ODE simulation mass response,	 =0.3.  (b) Displacement response of 

the thick secondary beam system with high friction. Solid line: Base input. Dash line: Response at the end of the primary beam. Dash dot 

line: Response at the end of the secondary beam. 

When friction is applied and increased, there is a reduction in the normalised displacement response of the system as expected. The measured 

displacement response for different levels of friction is shown in Figure 26. The normalized displacement response decreased from 1.7 to 

1.33 which is about 21.8% reduction with intermediate friction. As the friction was further increased, the normalised displacement response 

was further reduced to 1.13, which is about 33.5% reduction in comparison to the case of no friction. 

 

Figure 26: Comparison between measured displacement responses at the end of the primary beam with different levels of friction for the 

case of the thick secondary beam. Solid line: Base input. Dash line: No friction.  Dash dot line: Intermediate friction. Dot line: High friction. 

5.8 Comparison between the response of the thin and thick secondary beam 

Table 4 shows the measured response of the system with either thin or the thick secondary beam. From inspection of the results presented in 

the table, a smaller displacement response of the end of the primary beam is produced when the thick secondary beam is used. The results 

matched the prediction from Section 4.1, as more displacement reduction was obtained for the primary mass when a stiffer secondary spring 

is used in the two degree of freedom model with friction. This is because a stiffer secondary spring is required for the friction effect to be 

transferred to the primary mass. The highest reduction obtained when the secondary spring becomes very rigid as per single degree of 

freedom system. Although the choice of stiffer secondary spring produced a smaller displacement response, it creates a sharp transition and 

acceleration discontinuity as discussed in Section 4.2. 
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Categories 

Thin secondary beam Thick secondary beam 

End of primary beam 

maximum displacement 

End of secondary beam 

maximum displacement 

End of primary beam 

maximum displacement 

End of secondary beam 

maximum displacement 

No friction 1.42 
Sensor 3 1.96 

1.7 1.71 
Sensor 4 2.05 

Intermediate 

friction 
1.26 

Sensor 3 1.68 
1.33 1.09 

Sensor 4 1.43 

High friction 1.31 

Sensor 3 1.03 

1.13 1.06 
Sensor 4 1.09 

Table 4: Comparison between the maximum displacement responses of the systems with thin and thick secondary beams. The maximum 

displacements are normalized with respect to the maximum base input displacement. 

In contrast, if the secondary spring is too soft like the case of the thin secondary beam, not much  attenuation was obtained in the maximum 

displacement response which is also illustrated in Table 4. This is the reason why the two degree of freedom model was introduced in order 

to have various values for the secondary spring for an optimum response of both the displacement and acceleration. As discussed in Section 

4.1 and 4.2, there is an intermediate optimum value where significant maximum displacement reduction and smoother acceleration can be 

produced. 

From Section 4.1 and 4.2, the smallest maximum displacement was obtained when the intermediate friction values used, while the mass 

slides instead of sticking on the friction interface. This has been displayed by the case of the thin secondary beam. However, it is not obvious 

in the case of the thick secondary beam where more friction should be used to observe this behaviour.  

6. Conclusions  

The friction element has been shown to possess a good property in producing isolation during the shock and suppressing the residual 

vibration after the shock. This is because, the force transmission across the friction element is only dependent upon the direction of the 

relative velocity across it instead of magnitude of the relative velocity. The issue with friction is it creates unsmooth acceleration response at 

the point where the motion starts and changes in the direction of motion. Therefore, a two degree of freedom model was introduced where 

friction is applied to a secondary mass and the primary mass becomes the isolated mass. Both significant maximum displacement reduction 

and smoother acceleration can be achieved for the primary isolated mass when an intermediate value of the secondary stiffness is used.  

The theoretical predictions have been experimentally validated with a test rig designed for the first stage during the shock. The test rig 

involves the T-beam configuration which closely replicates the response of a lumped parameter two degree of freedom model at low 

frequencies below 200 Hz. A steel beam attached to the base is used to apply friction on the T-beam configuration. Validation of the system 

produced comparable results to the model with explainable differences. Among the differences are slight dissimilarity between the 

experimental and theoretical versed sine input, the suitability of the Coulomb friction to model a system with small displacements, the 

possibility of friction changes as the friction surface moves and the possibility of friction differences between the two ends of the secondary 

beam. 

The novel strategy to suppress the residual vibration after the shock with the proposed two degree of freedom model was studied and 

discussed theoretically [11]. However, no experimental verification has been done and it may be interesting topic of future research. There is 

limitation on the electrodynamic shaker system where the base still oscillates after the shock and applies a significant input to the test rig 

[11]. The base needs to stop vibrating completely after the shock input to represent the ideal condition and this is dependent upon the amount 

of inertia and damping present in the shaker-rig system.  
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